2018-2019学年新人教版人教版九年级数学第一学期《第25章概率初步》检测试题(含答案)
2019年人教版九年级数学上《第25章概率初步》单元测试含答案解析

《第25章概率初步》一、选择题:1.同时掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是()A.点数之和为12 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为132.下列说法正确的是()A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生3.下列事件是确定事件的为()A.太平洋中的水常年不干B.男生比女生高C.计算机随机产生的两位数是偶数D.星期天是晴天4.一只小鸟自由自在地在空中飞行,然后随意落在图中所示的某个方格中中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有6个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是()A.B.C.D.不能确定6.在一个不透明的袋子中装有2个红球,3个白球,它们除颜色外其余均相同,随机从中摸出一球,记录下颜色后将它放回袋子中,充分摇匀后,再随机摸出一球,则两次都摸到红球的概率是()A.B.C.D.7.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等8.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50米,100米,50米×2往返跑三项,力量类有原地掷实心球,立定跳远,引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是()A.B.C.D.9.元旦游园晚会上,有一个闯关活动:将20个大小重量完全要样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为()A.B.C.D.10.关于频率和概率的关系,下列说法正确的是()A.频率等于概率;B.当实验次数很大时,频率稳定在概率附近;C.当实验次数很大时,概率稳定在频率附近;D.实验得到的频率与概率不可能相等二、填空题11.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个,搅匀后,从中同时摸出2个小球,请你写出这个实验中的一个可能事件:.12.掷一枚均匀的骰子,2点向上的概率是,7点向上的概率是.13.设盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,若从中随机地取出1个球,记事件A为“取出的是红球”,事件B为“取出的是黄球”,事件C为“取出的是蓝球”,则P(A)= ,P(B)= ,P(C)= .14.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.15.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为.16.从下面的6张牌中,任意抽取两张.求其点数和是奇数的概率为.17.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是.18.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n= .三、解答题19.某出版社对其发行的杂志的质量进行了5次“读者调查问卷”,结果如下:被调查人数n 1001 1000 1004 1003 1000满意人数m 999 998 1002 1002 1000满意频率(1)计算表中各个频率;(2)读者对该杂志满意的概率约是多少?(3)从中你能说明频率与概率的关系吗?20.一个布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小明从布袋中摸出一个球后放回去摇匀,再摸出一个球,请你利用画树状图法分析并求出小明两次都能摸到白球的概率.21.杨华与季红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张.规则如下:当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分;当两张硬纸片上的图形可拼成房子或小山时,季红得1分(如图2).问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?22.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 65 124 178 302 481 599 1803摸到白球的频率0.65 0.62 0.593 0.604 0.601 0.599 0.601(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)= ;(3)试估算盒子里黑、白两种颜色的球各有多少只?《第25章概率初步》参考答案与试题解析一、选择题:1.同时掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是()A.点数之和为12 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为13【考点】随机事件.【分析】找到一定不会发生的事件即可.【解答】解:A、6点+6点=12点,为随机事件,不符合题意;B、例如:1点+1点=2点,为随机事件,不符合题意;C、例如:1点+5点=6点,为随机事件,不符合题意;D、两枚骰子点数最大之和为12点,不可能是13点,为不可能事件,符合题意.故选:D.【点评】本题考查事件的分类,事件根据其发生的可能性大小分为必然事件、随机事件、不可能事件.不可能事件是指在一定条件下,一定不发生的事件.2.下列说法正确的是()A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生【考点】可能性的大小.【分析】事件的可能性主要看事件的类型,事件的类型决定了可能性及可能性的大小.【解答】解:A、可能性很小的事件在一次实验中也会发生,故A错误;B、可能性很小的事件在一次实验中可能发生,也可能不发生,故B错误;C、可能性很小的事件在一次实验中有可能发生,故C正确;D、不可能事件在一次实验中更不可能发生,故D错误.故选:C.【点评】一般地必然事件的可能性大小为1,不可能事件发生的可能性大小为0,随机事件发生的可能性大小在0至1之间.注意可能性较小的事件也有可能发生;可能性很大的事也有可能不发生.3.下列事件是确定事件的为()A.太平洋中的水常年不干B.男生比女生高C.计算机随机产生的两位数是偶数D.星期天是晴天【考点】随机事件.【分析】确定事件包括必然事件和不可能事件.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件.【解答】解:B,C,D都是不一定发生的事件,属于不确定事件.是确定事件的为:太平洋中的水常年不干.故选A.【点评】理解概念是解决这类基础题的主要方法.注意确定事件包括必然事件和不可能事件.4.一只小鸟自由自在地在空中飞行,然后随意落在图中所示的某个方格中(2013•汕头模拟)中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有6个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是()A.B.C.D.不能确定【考点】概率公式.【分析】先计算出此观众前两次翻牌均获得若干奖金后,现在还有多少个商标牌,其中有奖的有多少个,它们的比值即为所求.【解答】解:∵某观众前两次翻牌均获得若干奖金,即现在还有18个商标牌,其中有奖的有4个,∴他第三次翻牌获奖的概率是=.故选B.【点评】本题考查的是随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.6.在一个不透明的袋子中装有2个红球,3个白球,它们除颜色外其余均相同,随机从中摸出一球,记录下颜色后将它放回袋子中,充分摇匀后,再随机摸出一球,则两次都摸到红球的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】压轴题.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】红1 红2 白1 白2 白3红1 红1红1 红1红2 红1白1 红1白2 红1白3红2 红2红1 红2红2 红2白1 红2白2 红2白3白1 白1红1 白1红2 白1白1 白1白2 白1白3白2 白2红1 白2红2 白2白1 白2白2 白2白3白3 白3红1 白3红2 白3白1 白3白2 白3白3解:由列表可知共有5×5=25种可能,两次都摸到红球的有4种,所以概率是.故选D.【点评】考查概率的概念和求法,用树状图或表格表达事件出现的可能性是求解概率的常用方法.用到的知识点为:概率=所求情况数与总情况数之比.7.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等【考点】概率的意义.【专题】压轴题.【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、是随机事件,错误;B、中奖的概率是1%,买100张该种彩票不一定会中奖,错误;C、明天下雨的概率是50%,是说明天下雨的可能性是50%,而不是明天将有一半时间在下雨,错误;D、正确.故选D.【点评】正确理解概率的含义是解决本题的关键.注意随机事件的条件不同,发生的可能性也不等.8.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50米,100米,50米×2往返跑三项,力量类有原地掷实心球,立定跳远,引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是()A.B.C.D.【考点】概率公式.【专题】压轴题.【分析】依据题意找到所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:共有3×3=9种可能,同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的有1种,所以概率是.故选D.【点评】用到的知识点为:概率=所求情况数与总情况数之比.9.元旦游园晚会上,有一个闯关活动:将20个大小重量完全要样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为()A.B.C.D.【考点】概率公式.【专题】应用题.【分析】让红球的个数除以球的总个数即为所求的概率.【解答】解:全部20个球,只有2个红球,所以任意摸出一个乒乓球是红色的概率是=.故选D.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.关于频率和概率的关系,下列说法正确的是()A.频率等于概率;B.当实验次数很大时,频率稳定在概率附近;C.当实验次数很大时,概率稳定在频率附近;D.实验得到的频率与概率不可能相等【考点】利用频率估计概率.【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.【解答】解:A、频率只能估计概率;B、正确;C、概率是定值;D、可以相同,如“抛硬币实验”,可得到正面向上的频率为0.5,与概率相同.故选B.【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.二、填空题11.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个,搅匀后,从中同时摸出2个小球,请你写出这个实验中的一个可能事件:摸到1个红球,1个白球.【考点】随机事件.【专题】开放型.【分析】填写一个有可能发生,也可能不发生的事件即可.【解答】解:摸到1个红球,1个白球或摸到2个红球.【点评】可能事件就是可能发生,也可能不发生的事件.12.掷一枚均匀的骰子,2点向上的概率是,7点向上的概率是0 .【考点】概率公式.【分析】由掷一枚均匀的骰子有6种等可能的结果,其中2点向上的有1种情况,7点向上的有0种情况,直接利用概率公式求解即可求得答案.【解答】解:∵掷一枚均匀的骰子有6种等可能的结果,其中2点向上的有1种情况,7点向上的有0种情况,∴2点向上的概率是:,7点向上的概率是:0.故答案为:,0.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.设盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,若从中随机地取出1个球,记事件A为“取出的是红球”,事件B为“取出的是黄球”,事件C为“取出的是蓝球”,则P(A)= ,P(B)= ,P(C)=.【考点】概率公式.【分析】分别用所求的情况与总情况的比值即可得答案.【解答】解:∵盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,∴若从中随机地取出1个球,则P(A)=,P(B)==,P(C)=.故答案为:,,.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.【考点】列表法与树状图法.【分析】列举出所有情况,看所求的情况占总情况的多少即可.【解答】解:列表得:(1,5)(2,5)(3,5)(4,5)﹣(1,4)(2,4)(3,4)﹣(5,4)(1,3)(2,3)﹣(4,3)(5,3)(1,2)﹣(3,2)(4,2)(5,2)﹣(2,1)(3,1)(4,1)(5,1)∴一共有20种情况,这两个球上的数字之和为偶数的8种情况,∴这两个球上的数字之和为偶数的概率是=.【点评】列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.15.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为.【考点】概率公式;轴对称图形;中心对称图形.【分析】四边形,三角形,正方形,梯形,平行四边形,圆中任取一个图形共有6个结果,且每个结果出现的机会相同,其中既是轴对称图形又是中心对称图形的正方形和圆两个.【解答】解:∵在四边形,三角形,正方形,梯形,平行四边形,圆6个图形中,既是轴对称图形又是中心对称图形的正方形和圆两个.∴从中任取一个图形既是轴对称图形又是中心对称图形的概率为.【点评】正确认识轴对称图形和中心对称图形以及理解列举法求概率是解题的关键.用到的知识点为:概率=所求情况数与总情况数之比.16.从下面的6张牌中,任意抽取两张.求其点数和是奇数的概率为.【考点】概率公式.【分析】一个奇数和一个偶数得和是奇数,6张牌中,任意抽取两张总共有6×5=30种情况,计算出和是奇数的情况个数,利用概率公式进行计算.【解答】解:一个奇数和一个偶数总共有2×2×4=16种情况,故点数和是奇数的概率为.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:∵袋子中共有2+3=5个球,2个红球,∴从中任意摸出一个球,则摸到红球的概率是.故答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n= 1 .【考点】概率公式.【专题】压轴题.【分析】根据白球的概率公式列出关于n的方程,求出n的值即可.【解答】解:由题意知:,解得n=1.【点评】用到的知识点为:概率=所求情况数与总情况数之比.三、解答题19.某出版社对其发行的杂志的质量进行了5次“读者调查问卷”,结果如下:被调查人数n 1001 1000 1004 1003 1000满意人数m 999 998 1002 1002 1000满意频率0.998 0.998 0.998 0.999 1.000(1)计算表中各个频率;(2)读者对该杂志满意的概率约是多少?(3)从中你能说明频率与概率的关系吗?【考点】利用频率估计概率.【分析】(1)概率就是满意的人数与被调查的人数的比值;(2)根据题目中满意的频率估计出概率即可;(3)从概率与频率的定义分析得出即可.【解答】解:(1)由表格数据可得:≈0.998, =0.998,≈0.998,≈0.999, =1.000;(2)由第(1)题的结果知出版社5次“读者问卷调查”中,收到的反馈信息是:读者对杂志满意的概率约是:P(A)=0.998;(3)频率在一定程度上反映了事件发生的可能性大小.尽管每进行一连串(n次)试验,所得到的频率可以各不相同,但只要 n相当大,频率与概率是会非常接近的.因此,概率是可以通过频率来“测量”的,频率是概率的一个近似.概率是频率稳定性的依据,是随机事件规律的一个体现.实际中,当概率不易求出时,人们常通过作大量试验,用事件出现的频率去近似概率.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.20.一个布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小明从布袋中摸出一个球后放回去摇匀,再摸出一个球,请你利用画树状图法分析并求出小明两次都能摸到白球的概率.【考点】列表法与树状图法.【分析】依据题意先用画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:画树形图如下:由图可知,两次摸球可能出现的结果共有9种,而出现(白,白)的结果只有一种,因此,小明两次摸球都摸到白球的概率为P=.【点评】画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(2005•南通)杨华与季红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张.规则如下:当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分;当两张硬纸片上的图形可拼成房子或小山时,季红得1分(如图2).问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?【考点】游戏公平性.【分析】游戏是否公平,关键要看是否游戏双方赢的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【解答】解:(1)这个游戏对双方不公平.∵P(拼成电灯)=;P(拼成小人)=;P(拼成房子)=;P(拼成小山)=,∴杨华平均每次得分为(分);季红平均每次得分为(分).∵<,∴游戏对双方不公平.(2)改为:当拼成的图形是小人时杨华得3分,其余规则不变,就能使游戏对双方公平.(答案不惟一,其他规则可参照给分)【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.(2008•贵阳)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 65 124 178 302 481 599 1803摸到白球的频率0.65 0.62 0.593 0.604 0.601 0.599 0.601(1)请估计:当n很大时,摸到白球的频率将会接近0.6 ;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)= 0.6 ;(3)试估算盒子里黑、白两种颜色的球各有多少只?【考点】利用频率估计概率.【专题】图表型.【分析】(1)计算出其平均值即可;(2)概率接近于(1)得到的频率;(3)白球个数=球的总数×得到的白球的概率,让球的总数减去白球的个数即为黑球的个数.【解答】解:(1)∵摸到白球的频率为0.6,∴当n很大时,摸到白球的频率将会接近0.6.(2)∵摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)=0.6.(3)盒子里黑、白两种颜色的球各有40﹣24=16,40×0.6=24.【点评】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.。
2019年人教版九年级上数学《第25章概率初步》单元测试(带答案)

人教版九上数学第25章概率初步单元测试一、单选题1. 在一次比赛前,教练预言说:“这场比赛我们队有60%的机会获胜”,则下列说法中与“有60%的机会获胜”的意思接近的是( ) A.他这个队赢的可能性较大B.若这两个队打10场,他这个队会赢6场C.若这两个队打100场,他这个队会赢60场D.他这个队必赢2. 如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A.61B.41C.31D.127 3. 小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为 10% ,他明天将参加一场比赛,下面几种说法正确的是( )A.小亮明天的进球率为 10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球 4. 下列说法正确的是( )A.“打开电视机,正在播放《达州新闻》”是必然事件B.天气预报“明天降水概率50%,是指明天有一半的时间会下雨”C.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S 2=0.3,S 2=0.4,则甲的成绩更稳定D.数据6,6,7,7,8的中位数与众数均为75. 小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个 不透明的箱子中装有红、黄、白三种球各 1 个,这些球除颜色外无其他差别,从箱子中随机摸出 1 个球,然后放回箱子中轮到下一个人摸球,三人摸到球的颜色都不相同的概率是( )6. 甲乙两人轮流在黑板上写下不超过 10 的正整数(每次只能写一个数),规定禁止在黑板上写已经写过的数的约数,最后不能写的为失败者,如果甲写第一个,那么,甲写数字( )时有必胜的策略. A.10 B.9 C.8 D.67. 如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数A.32 B.61 C.31 的概率是( )D.21 8. 有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为( )A.54B.53C.52D.519. 某小组做“用频率估计概率”的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是( ) A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球10. 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为( )A.21B.31C.103D.51 11. 一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。
2019九年级数学上册 第25章 概率初步单元测试卷(含解析)(新版)新人教版

第25章概率初步考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)任意掷一枚骰子,下列情况出现的可能性比较大的是()A.面朝上的点数是6 B.面朝上的点数是偶数C.面朝上的点数大于2 D.面朝上的点数小于22.(4分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于123.(4分)某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛.其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的()A.众数 B.中位数 C.平均数 D.方差4.(4分)小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球5.(4分)如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A .32 B .61 C .31 D .216.(4分)甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是( ) A .21 B .31 C .41 D .617.(4分)在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC 的( )A .三边中线的交点B .三边垂直平分线的交点C .三条角平分线的交点D .三边上高的交点8.(4分)甲乙两人玩一个游戏,判定这个游戏公平不公平的标准是( ) A .游戏的规则由甲方确定 B .游戏的规则由乙方确定 C .游戏的规则由甲乙双方商定 D .游戏双方要各有50%赢的机会9.(4分)某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是( )A .袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B .掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C .先后两次掷一枚质地均匀的硬币,两次都出现反面D .先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过910.(4分)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外其它完全相同,小明通过多次摸球试验后发现其中摸到红色,黑色球的概率稳定在15%和40%,则口袋中白色球的个数很可能是()A.25 B.26 C.29 D.27二.填空题(共4小题,满分20分,每小题5分)11.(5分)小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是.12.(5分)新定义运算“◎”,对于任意有理数a、b,都有a◎b=a2﹣ab+b﹣1,例如:3◎5=32﹣3×5+5﹣1=﹣2,若任意投掷一枚印有数字1~6的质地均匀的骰子,将朝上的点数作为x的值,则代数式(x﹣3)◎(3+x)的值为非负数的概率是.13.(5分)2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是.14.(5分)如图,这是一幅长为3m,宽为2m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为m2.三.解答题(共9小题,满分90分)15.(8分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个. (1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A .请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个球是黑球的可能性大小是54,求m 的值. 16.(8分)抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后: (1)朝上的点数有哪些结果?他们发生的可能性一样吗?(2)朝上的点数是奇数与朝上的点数是偶数,这两个事件的发生可能性大小相等吗?(3)朝上的点数大于4与朝上的点数不大于4,这两个事件的发生可能性大小相等吗?如果不相等,那么哪一个可能性大一些?17.(8分)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9. (1)这组数据的中位数是 ,众数是 ; (2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.18.(8分)动物学家通过大量的调查估计出,某种动物活到20岁的概率为0.8,活到25岁的概率是0.5,活到30岁的概率是0.3.现年20岁的这种动物活到25岁的概率为多少?现年25岁的这种动物活到30岁的概率为多少?19.(10分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A 型”、“B 型”、“AB 型”、“O 型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:(1)这次随机抽取的献血者人数为人,m= ;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?20.(10分)2017年9月,我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读,某校对A《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.21.(12分)在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.(1)“从中任意抽取1个球不是红球就是白球”是事件,“从中任意抽取1个球是黑球”是事件;(2)从中任意抽取1个球恰好是红球的概率是 ;(3)学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.22.(12分)某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了 名学生; (2)补全条形统计图;(3)若该校共有1500名,估计爱好运动的学生有 人;(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是 .23.(14分)某数学兴趣小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.(1)该事件最有可能是 (填写一个你认为正确的序号).①一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,多次经过该路口时,看见红灯的概率; ②掷一枚硬币,正面朝上;③暗箱中有一个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球. (2)你设计的一个游戏,多次掷一个质地均匀的正六面体骰子,当骰子数字 正面朝上,该事件发生的概率接近于31.2018年秋九年级上学期 第25章 概率初步 单元测试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分) 1.【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可. 【解答】解:∵抛掷一枚骰子共有1、2、3、4、5、6这6种等可能结果,∴A 、面朝上的点数是6的概率为61; B 、面朝上的点数是偶数的概率为63=21;C 、面朝上的点数大于2的概率为64=32;D 、面朝上的点数小于2的概率为61;故选:C .【点评】此题考查了概率公式,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=nm . 2.【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可. 【解答】解:A 、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误; B 、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误; C 、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误; D 、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确; 故选:D .【点评】此题主要考查了随机事件,关键是掌握随机事件定义. 3.【分析】由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可.【解答】解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数, 故只要知道自己的成绩和中位数就可以知道是否进入决赛了. 故选:B .【点评】本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数 4.【分析】直接利用概率的意义分析得出答案.【解答】解:根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛小亮明天有可能进球. 故选:C .【点评】此题主要考查了概率的意义,正确理解概率的意义是解题关键. 5.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵共6个数,大于3的有3个, ∴P (大于3)=63=21; 故选:D .【点评】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=nm . 6.【分析】直接根据题意画出树状图,再利用概率公式求出答案. 【解答】解:如图所示:,一共有4种可能,取出的两个小球上都写有数字2的有1种情况, 故取出的两个小球上都写有数字2的概率是:41.故选:C.【点评】此题主要考查了树状图法求概率,正确得出所有的结果是解题关键.7.【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【解答】解:∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选:B.【点评】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.8.【分析】根据游戏是否公平的取决于游戏双方要各有50%赢的机会,游戏是否公平不在于谁定游戏规则,分别判定即可.【解答】解:根据游戏是否公平不在于谁定游戏规则,游戏是否公平的取决于游戏双方要各有50%赢的机会,∴A.游戏的规则由甲方确定,故此选项错误;B.游戏的规则由乙方确定,故此选项错误;C.游戏的规则由甲乙双方商定,故此选项错误;D.游戏双方要各有50%赢的机会,故此选项正确.故选:D.【点评】此题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.9.【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答】解:A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为53,不符合题意; B 、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为21,不符合题意; C 、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为41,不符合题意; D 、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为31,符合题意; 故选:D .【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比. 10.【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数. 【解答】解:∵摸到红色球、黑色球的频率稳定在15%和40%, ∴摸到白球的频率为1﹣15%﹣40%=45%, 故口袋中白色球的个数可能是60×45%=27个. 故选:D .【点评】本题考查了利用频率估计概率的知识,具体数目应等于总数乘部分所占总体的比值.二.填空题(共4小题,满分20分,每小题5分) 11.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:根据题意知,掷一次骰子6个可能结果,而奇数有3个,所以掷到上面为奇数的概率为21. 故答案为:21. 【点评】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=nm .12.【分析】对于任意有理数a 、b ,都有a◎b=a 2﹣ab+b ﹣1,即可得到(x ﹣3)◎(3+x )=(x ﹣3)2﹣(x ﹣3)(3+x )+3+x ﹣1=﹣5x+20,进而得出代数式(x ﹣3)◎(3+x )的值为非负数的概率. 【解答】解:∵对于任意有理数a 、b ,都有a◎b=a 2﹣ab+b ﹣1, ∴(x ﹣3)◎(3+x )=(x ﹣3)2﹣(x ﹣3)(3+x )+3+x ﹣1=﹣5x+20, 当x=1时,﹣5x+20=15; 当x=2时,﹣5x+20=10; 当x=3时,﹣5x+20=5; 当x=4时,﹣5x+20=0; 当x=5时,﹣5x+20=﹣5; 当x=6时,﹣5x+20=﹣10;∴代数式(x ﹣3)◎(3+x )的值为非负数的概率=64=32, 故答案为:32. 【点评】本题主要考查了概率公式,随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数. 13.【分析】由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,根据概率公式计算即可; 【解答】解:由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能, 所以恰好选到经过西流湾大桥的路线的概率=62=31. 故答案为.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比. 14.【分析】根据题意求出长方形的面积,根据世界杯图案的面积与长方形世界杯宣传画的面积之间的关系计算即可.【解答】解:长方形的面积=3×4=12(m 2),∵骰子落在世界杯图案中的频率稳定在常数0.4附近, ∴世界杯图案占长方形世界杯宣传画的40%, ∴世界杯图案的面积约为:12×40%=4.8m 2, 故答案为:4.8.【点评】本题考查的是利用频率估计概率,正确得到世界杯图案的面积与长方形世界杯宣传画的面积之间的关系是解题的关键.三.解答题(共9小题,满分90分) 15.【分析】(1)当袋子中全部为黑球时,摸出黑球才是必然事件,否则就是随机事件; (2)利用概率公式列出方程,求得m 的值即可.【解答】解:(1)当袋子中全为黑球,即摸出4个红球时,摸到黑球是必然事件; ∵m >1,当摸出2个或3个红球时,摸到黑球为随机事件,故答案为:4;2、3.(2)依题意,得54106=+m , 解得 m=2, 所以m 的值为2.【点评】本题考查的是概率的求法.如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=nm. 16.【分析】(1)根据题意得出落地后朝上的点数可能是1、2、3、4、5、6,再根据概率公式即可得出答案;(2)根据概率公式先分别求出朝上的点数是奇数和朝上的点数是偶数的概率,再进行比较即可; (3)先求出朝上的点数大于4的概率和朝上的点数不大于4的概率,再进行比较即可.【解答】解:(1)因为抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后朝上的点数可能是1、2、3、4、5、6, 所以它们的可能性相同;(2)因为朝上的点数是奇数的有1,3,5,它们发生的可能性是21,朝上的点数是奇数的有2,4,6,它们发生的可能性是21 所以发生的可能性大小相同;(3)因为朝上的点数大于4的数有5,6,发生可能性是62=31, 朝上的点数不大于4的数有1,2,3,4,发生可能性是64=32,所以朝上的点数大于4与朝上的点数不大于4可能性大小不相等,朝上的点数不大于4发生的可能性大.【点评】此题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等. 17.【分析】(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;(2)根据平均数的概念,将所有数的和除以10即可; (3)用样本平均数估算总体的平均数.【解答】解:(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17, 故答案是16,17; (2)()26203171512970101++⨯+++++⨯=14, 答:这10位居民一周内使用共享单车的平均次数是14次; (3)200×14=2800答:该小区居民一周内使用共享单车的总次数为2800次.【点评】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错. 18.【分析】根据概率的和差,可得答案.【解答】解;现年20岁的这种动物活到25岁的概率为8.05.0=0.625, 现年25岁的这种动物活到30岁的概率为5.03.0=0.6, 答:现年20岁的这种动物活到25岁的概率为0.625,现年25岁的这种动物活到30岁的概率为0.6. 【点评】本题考查了概率的意义,利用了概率的和差. 19.【分析】(1)用AB 型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后计算m 的值; (2)先计算出O 型的人数,再计算出A 型人数,从而可补全上表中的数据;(3)用样本中A 型的人数除以50得到血型是A 型的概率,然后用3000乘以此概率可估计这3000人中是A 型血的人数.【解答】解:(1)这次随机抽取的献血者人数为5÷10%=50(人), 所以m=5010×100=20; 故答案为50,20;(2)O 型献血的人数为46%×50=23(人), A 型献血的人数为50﹣10﹣5﹣23=12(人), 如图,故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A 型的概率=5012=256, 3000×256=720, 估计这3000人中大约有720人是A 型血.【点评】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.也考查了统计图. 20.【分析】(1)依据C 部分的数据,即可得到本次一共调查的人数; (2)依据总人数以及其余各部分的人数,即可得到B 对应的人数; (3)列表将所有等可能的结果列举出来,利用概率公式求解即可. 【解答】解:(1)本次一共调查:15÷30%=50(人); 故答案为:50;(2)B 对应的人数为:50﹣16﹣15﹣7=12, 如图所示:(3)列表:∵共有12种等可能的结果,恰好选中A 、B 的有2种, ∴P (选中A 、B )=122=61. 【点评】本题考查了条形统计图、扇形统计图,列表与树状图的应用,解题的关键是通过列表将所有等可能的结果列举出来,然后利用概率公式求解. 21.【分析】(1)直接利用必然事件以及怒不可能事件的定义分别分析得出答案; (2)直接利用概率公式求出答案;(3)首先画出树状图,进而利用概率公式求出答案.【解答】解:(1)“从中任意抽取1个球不是红球就是白球”是必然事件,“从中任意抽取1个球是黑球”是不可能事件; 故答案为:必然,不可能;(2)从中任意抽取1个球恰好是红球的概率是:53; 故答案为:53;(3)如图所示:,由树状图可得:一共有20种可能,两球同色的有8种情况,故选择甲的概率为:208=52; 则选择乙的概率为:53, 故此游戏不公平.【点评】此题主要考查了游戏公平性,正确列出树状图是解题关键. 22.【分析】(1)根据爱好运动人数的百分比,以及运动人数即可求出共调查的人数; (2)根据两幅统计图即可求出阅读的人数以及上网的人数,从而可补全图形. (3)利用样本估计总体即可估计爱好运动的学生人数.(4)根据爱好阅读的学生人数所占的百分比即可估计选出的恰好是爱好阅读的学生的概率. 【解答】解:(1)爱好运动的人数为40,所占百分比为40% ∴共调查人数为:40÷40%=100 (2)爱好上网的人数所占百分比为10% ∴爱好上网人数为:100×10%=10, ∴爱好阅读人数为:100﹣40﹣20﹣10=30, 补全条形统计图,如图所示, (3)爱好运动所占的百分比为40%,∴估计爱好运用的学生人数为:1500×40%=600 (4)爱好阅读的学生人数所占的百分比30%,∴用频率估计概率,则选出的恰好是爱好阅读的学生的概率为103故答案为:(1)100;(3)600;(4)103【点评】本题考查统计与概率,解题的关键是正确利用两幅统计图的信息,本题属于中等题型. 23.【分析】(1)根据统计图可知发生的频率接近31,从而可以解答本题; (2)本题答案不唯一,设计的只要能说明该事件发生的概率接近于31即可.【解答】解:(1)由折线统计图可得,该事件最有可能是暗箱中有一个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球, 故答案为:③;(2)设计的一个游戏,多次掷一个质地均匀的正六面体骰子,当骰子数字1和2正面朝上,该事件发生的概率接近于31, 故答案为:1和2.【点评】本题考查利用频率估计概率、频数分布折线图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.。
人教版九年级数学上《第25章概率初步》单元检测题有答案

九年级数学(上)第25章《概率初步》单元检测题一、选择题(每小题3分,共30分)1. “抛一枚均匀硬币,落地后正面向上”这一事件是( B )A .必然事件 B. 随机事件 C. 确定事件 D. 不可能事件2. 从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是1P ,摸到红球的概率是2P ,则( B )A. 1P =1,2P =1B. 1P =0,2P =1C. 1P =0,2P =14D. 1P =2P =143. 如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上相应的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是( B ) A.16 B.13 C.12 D.234. 掷一个质地均匀的正方体骰子,当骰子停止后,朝上一面的点数为5的概率是( C )A. 1B. 15C. 16D. 0 5. 在抛掷一枚硬币的实验中,某一组做了500次实验,其出现正面的频率是49.6%,可以推知出现正面的次数是( A )A. 248B. 250C. 258D. 无法确定6.(2015绍兴)在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是( B )A. 13B. 25C. 12D. 357. 一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有6个黄球. 每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n 大约是( D )A. 6B. 10C. 18D. 208.(2015德州)经过某十字路口的汽车,可能直行,也可能左转或者右转. 如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是( C )A. 47B. 49C. 29D. 199. 如图,转动两个转盘,当指针所指的数之和为奇数时,小明胜,否则小亮胜,则小亮获胜的概率是( D )A. 13B. 12C. 49D. 5910. 一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,2. 随机摸出一个小球(不放回),其数字记为p,再随机摸出另一个小球,其数字记为q,则满足关于x的方程2++x px q=0有实数根的概率是( A )A. 12B.13C.23D.56二、填空题(每小题3分,共18分)11. 如图,是一幅普通扑克牌中的13张黑桃牌,将它们洗均匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为 . (8 13)12. 在英语句子“Wish you success!”(祝你成功)中任选一个字母,这个字母为“s”的概率是 . (3 14)13. 在一个不透明的口袋中有颜色不同的红、白两种小球,其中红球3只,白球n只,若从袋中任取一个球,摸出白球的概率为34,则n= . (9)14. 为了估计不透明的袋子里装有多少白球,先从袋中摸出10个球都做上标记,然后放回袋中去,充分摇匀后再摸出10个球,发现其中有一个球有标记,那么你估计袋中大约有个白球 .(100)15.(2015河南)现有四张分别标有数字1,2,3,4的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽取一张,则两次抽取的卡片所标数字不同的概率是 . (58)16. 如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球叠成的图形,最下层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色;则从第(n)个图中随机取出一个球是黑球的概率是 . (21 +n)三、解答题(共8题,共72分)17.(本题8分)布袋中装有1个红球,2个白球,3个黑球,它们除了颜色外完全相同,从袋中任意摸出一个球,求摸出的球是白球的概率 .解:1 318.(本题8分)一个口袋中有3个大小相同的小球,球面上分别写有数字1、2,3,从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.解:(1)共有9种等可能的结果;(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,所以两次摸出的球上的数字和为偶数的概率为59.19.(本题8分)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率 .解:(1)14;(2)∵共有12种等可能结果,他恰好买到雪碧和奶汁的有两种情况∴他恰好买到雪碧和奶汁的概率为:21 126= .20.(本题8分)在一个不透明的口袋中装有红、白、黑三种颜色的小球若干个,它们只有颜色不同,其中有白球2个、黑球1个. 已知从中任意摸出1个球得白球的概率为12.(1)求口袋中有多少个红球;(2)求从袋中一次摸出2个球,得一红一白的概率.(要求画出树状图)解:(1)设袋中有x个红球,据题意得21212=++x,解得x=1∴袋中有红球1个;(2)P (摸得一红一白)=1321.(本题8分)“阳光体育”运动关乎每个学生未来的幸福生活,今年五月,我市某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班选2-3名选手参赛,现将80名选手比赛成绩(单位:次/分钟)进行统计. 绘制成频数分布直方图,如图所示 .(1)图中a 值为 ;(2)将跳绳次数在160-190的选手依次记为1A 、2A 、3A ,从中随机抽取两名选手作经验交流,请用画树状图或列表法求恰好抽取到的选手是1A 和2A 的概率 .解:(1)根据题意得:a=80-8-40-28=4,故答案为4 ;(2)画树状图略, ∵共有12种等可能的结果,恰好抽取到选手1A 和2A 的有两种情况 ∴恰好抽取到选手1A 和2A 的概率为:21126= .22.(本题10分)(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人的某一人. 求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给分析过程)(2)如果甲跟另外n(n ≥2)个人做(1)同样的游戏,那么,第三次传球后球回到甲手里的概率是 ________.(请直接写出结果).解:(1)画树状图略,∵共有9种等可能的结果,其符合要求的结果有3种∴P (第二次传球后球回到甲手里)=3193= (2)21-n n23.(本题10分)某校组织了一次初三科技小制作比赛,有A .B .C ,D 四个班共提供了100件参赛作品. C 班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图l和图2两幅尚不完整的统计图中 .(1)B班参赛作品有多少件?(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?(4)将写有A,B,C,D四个字母的完全相同的卡片放入箱中,从中一次随机抽出两张卡片,求抽到A,B两班的概率 .解:(1)100(1-35%-20%-20%)=25(件),答:B班参赛作品有25件;(2)∵C班提供的参赛作品的获奖率为50%∴C班的参赛作品的获奖数量为:100×20%×50%=10(件),画图略;(3)A班的获奖率为1410035%⨯×100%=40%,B班的获奖率为1125×100%=44%,C班的获奖率为50%,D班的获奖率为810020%⨯×100%=40%,故B班的获奖率高;(4)画图略,一共有12种等可能的情况,符合题意的有2种情况,则从中一次随机抽出两张卡片,抽到A,B两班的概率为21 126=.24.(本题12分)已知M(x,y)是平面直角坐标系xOy中的点,其中x是从l、2、3三个数中任取的一个数,y是从l、2、3、4四个数中任取的一个数 .(l)计算由x、y确定的点M(x,y)在函数y= -x+5的图象上的概率;(2)小明和小红约定做一个游戏,其规则为:若x、y满足xy>6则小明胜;若x、y满足xy<6则小红胜,这个游戏公平吗?说明理由. 若不公平,请写出公平的游戏规则;(3)定义“点M(x,y)在直线x+y=n上”为事件A(2≤n≤7,n为整数),则当A的概率最大时,n的所有可能的值为 .(不需要解答过程)解:(1)14;(2)P(小明胜)=14,P(小红胜)=712;游戏规则改为:若x,y满足xy>6则小明得7分,若x、y满足xy<6则小红得3分;(3)4、5 .。
九年级数学上册第25章概率初步章节同步检测含解析新版新人教版

第25章一、单选题(共36分)1.(本题3分)一个密闭不透明的盒子里有若干个白球,在不允许将球倒出的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球200次,其中16次摸到黑球,估计盒中大约有白球的个数为( )A.30个B.92个C.84个D.76个2.(本题3分)小明在一天晚上帮妈妈洗三个只有颜色不同的有盖茶杯,这时突然停电了,小明只好将茶杯和杯盖随机搭配在一起,那么三个茶杯颜色全部搭配正确的概率是( )A.13B.16C.19D.1273.(本题3分)在单词“APPLE”中随机选择一个字母,选择到的字母是“P”的概率是( )A.14B.15C.25D.354.(本题3分)如图,一个可以自由转动的转盘,被分成了白色和红色两个区域,任意转动转盘一次, 当转盘停止转动时(若指针停在边界处,则重新转动转盘),指针落在红色区域内的概率是()A.16B.15C.13D.125.(本题3分)做重复试验:抛掷一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为()A.0.22 B.0.42 C.0.50 D.0.586.(本题3分)某存折的密码是一个六位数字(每位可以是0),由于小王忘记了密码的首位数字,则他能一次说对密码的概率是( )A.15B.16C.19D.1107.(本题3分)盒中装有4只白球5只黑球,从中任取一只球,取出的球是白球的概率是()A.520B.59C.420D.498.(本题3分)如图,衣橱中挂着3套不同颜色的服装,同一套服装的上衣与裤子的颜色相同.若从衣橱里各任取一件上衣和一条裤子,它们取自同一套的概率是()A.127B.19C.16D.139.(本题3分)从长为10cm,7cm,5cm,3cm的四条线段中任选三条,能构成三角形的概率是()A.12B.13C.14D.3410.(本题3分)以下事件为必然事件的是()A.掷一枚质地均匀的骰子,向上一面的点数小于6 B.多边形的内角和是360C.二次函数的图象不过原点D.半径为2的圆的周长是4π11.(本题3分)下列事件:①在一次数学测试中,小明考了满分;②经过有交通信号灯的路口,遇到红灯;③抛掷两枚正方体骰子,朝上的点数和大于1;④度量任一三角形,其外角和都是180°.其中必然事件是( )A.①B.②C.③D.④12.(本题3分)在一个袋中有4个黑球和若干个白球,每个球除染色外其余相同,摇匀后随机摸出一个球并记下颜色后放回,摇匀后再摸一个球,记下颜色后再放回……,依次不断重复上述摸球过程,当摸了100次后,发现其中有20次摸到的是黑球,请你根据所学知识估计袋中白球的数量约为()A.12 B.16 C.20 D.30二、填空题(共18分)13.(本题3分)一个不透明的袋子中有2个白球和3个黑球,这些球除颜色外完全相同.从袋子中随机摸出1个球,这个球是白球的概率是_____.14.(本题3分)一个不透明的盒子中装有4张卡片,这4张卡片的正面分别画有等腰三角形,线段,圆和三角形,这些卡片除图形外都相同,将卡片搅匀.从盒子中任意抽取一张,卡片上的图形是轴对称图形的概率是_____.15.(本题3分)将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其它差别,每次摸球前先搅拌均匀.随机摸出一球不放回;再随机摸出一球,两次摸出的球上的汉字能组成“柠檬”的概率是_____.16.(本题3分)四张大小、质地都相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下放在桌子上,从中随机抽取两张卡片,那么两张卡片上的数字的乘积为偶数的概率是________.17.(本题3分)一个暗箱里放有a个白球和3个红球,白球的概率是34,球的总个数是_______.18.(本题3分)如图,△ABC中,D、E、F分别是各边的中点,随机地向△ABC中内掷一粒米,则米粒落到阴影区域内的概率是_____.三、解答题(共66分)19.(本题8分)某高级酒店为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折、五折区域顾客就可以获得此项待遇(转盘等分成16份)(1)甲顾客消费80元,是否可获得转动转盘的机会?(2)乙顾客消费150元,获得打折待遇的概率是多少?他获得九折,八折,七折,五折待遇的概率分别是多少?20.(本题8分)车辆经过某市收费站时,可以在4个收费通道A、B、C、D中,可随机选择其中的一个通过.(1)车辆甲经过此收费站时,选择A通道通过的概率是;(2)若甲、乙两辆车同时经过此收费站,请用列表法或树状图法确定甲乙两车选择不同通道通过的概率.21.(本题8分)小明,小亮都想去观看电影,但是只有一张电影票,他们决定采取抽卡片的办法确定谁去,规定如下:将正面分别标有数字1,2,3的三张卡片(除数字外其余都同)洗匀后背面朝上放置在桌面上,随机抽出一张记下数字后放回,重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字,如果两个数字的积为奇数,则小明去;如果两个数字的积为偶数,则小亮去.(1)请用列表或树状图的方法表示抽出的两张卡片上的数字积的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.22.(本题8分)有两组牌,每组牌都是4张,牌面数字分别是1,2,3,4,从每组牌中任取一张,求抽取的两张牌的数字之和等于5的概率,并画出树状图.23.(本题8分)为评估九年级学生的体育成绩情况,某校九年级500名学生全部参加了“中考体育模拟考试”,随机抽取了部分学生的测试成绩作为样本,并绘制出如下两幅不完整的统计表和频数分布直方图:(1)求此次抽查了多少名学生的成绩;(2)通过计算将频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请估计本次测试九年级学生中成绩优秀的人数.24.(本题8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的宜兴﹣我最喜爱的宜兴小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题(1)请补全条形统计图;(2)若全校有1000名同学,请估计全校同学中最喜爱“笋干”的同学有多少人?(3)在一个不透明的口袋中有4个元全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D,随机地把四个小球分成两组,每组两个球,请用列表或画树状图的方法,求出A,B两球分在同一组的概率.25.(本题9分)一只不透明的袋子中装有a个白球,b个黄球和10个红球,这些球除颜色外都相同,将球摇匀,从中任意摸出一个球,摸到红球的概率是40%.(1)当a=8时,求摸到白球的概率;(2)若摸到黄球的概率是摸到白球的两倍,求a,b的值.26.(本题9分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图(图1)的信息回答下列问题:(1)本次调查的学生总数为________人,被调查学生的课外阅读时间的中位数是________小时,众数是_________小时;(2)请你补全条形统计图,在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是_________;(3)若全校九年级共有学生700人,估计九年级一周课外阅读时间为6小时的学生有多少人?(4)若学校选取A、B、C、D四人参加阅读比赛,两人一组分为两组,求A与C是一组的概率,(列表或树状图)参考答案1.B【解析】【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式可求出白球的个数,其中“黑白球总数=黑球个数+白球个数”,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”.【详解】解:设盒子里有白球x 个, 根据=黑球个数摸到黑球的次数黑白球总数摸球总次数得: 816x+8200= 解得:x=92.经检验得x=92是方程的解.故选B.【点睛】本题主要考查利用频率估计概率的知识,利用频率估计概率有以下条件及方法:(1)当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率;(2)当试验次数足够大时,试验频率稳定于理论概率.2.B【解析】【分析】根据题意, 分析可得三个只有颜色不同的有盖茶杯,将茶杯和杯盖随机搭配在一起, 共3⨯2⨯1=6种情况,结合概率的计算公式可得答案.【详解】解: 根据题意, 三个只有颜色不同的有盖茶杯, 将茶杯和杯盖随机搭配在一起, 共3⨯2⨯1=6种情况,而三个茶杯颜色全部搭配正确的只是其中一种;故三个茶杯颜色全部搭配正确的概率为16.故选B.【点睛】本题主要考查概率的计算,用到的知识点为: 概率=所求情况数与总情况数之比.3.C【解析】【分析】由单词“APPLE” 中有2个p, 直接利用概率公式求解即可求得答案.【详解】解:单词“ APPLE” 中有2个p,∴从单词“ APPLE” 中随机抽取一个字母为p的概率为:25故选:C.【点睛】本题主要考查概率的定义.4.C【解析】【分析】认真审题, 仔细观察和分析题干中的已知条件和所给的图形.根据概率的应用, 据此计算后选择求解.【详解】解:转盘被等分成红、白二个扇形,且红色区域的圆心角为120o , 指针落在红色区域的概率是P=120360o o =13故选C.【点睛】解决这个问题的关键之处在于认真审题, 仔细观察和分析题干中的已知条件和所给的图形.根据概率的定义和公式的运用, 据此计算后求解.5.B【解析】【分析】在试验次数不多的情况下,“凸面向上”出现的频率约等于概率.【详解】∵抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为420次, ∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为4201000=0.42, 故选B .【点睛】本题考察概率的相关知识.在试验次数不多的情况下,“凸面向上”出现的频率约等于概率.6.D【解析】【分析】如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n ,由一共有10种等可能的结果,小王能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求【详解】解:∵一共有10种等可能的结果,小王能一次打开该旅行箱的只有1种情况,∴他能一次说对密码的概率是1 10,故选D.【点睛】本题主要考查概率的求法,解决本题的关键是要熟练掌握简单的概率求解方法.7.D【解析】【分析】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn,根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:根据题意可得:一袋中装有4个白球,4个黑球,共9个,任意摸出1个,摸到白球的概率是49故选D.【点睛】本题主要考查概率的求法,解决本题的关键是要熟练掌握概率公式概率P(A)=mn..8.D【解析】【分析】列出事件的出现次数的树状图,用概率公式求解即可.解:为方便起见, 我们将3件上装和3件裤子从1 至 3 编号. 根据题意, 所有可能的结果如下图所示, 且各种结果发生的可能性相同.所有可能的结果总数为n=3⨯3=9,它们取自同一套的可能的结果总数为m=3 .所以P=31 93 =,故选D.【点睛】本题复习简单事件的概率计算,事件的出现次数可以用画树状图法求出,也可以用列表法求出,注意要不重不漏.9.A【解析】【分析】列举出所有情况,用能组成三角形的情况数除以总情况数即为所求的概率.【详解】共有10、7、5;10、7、3;10、5、3;7、3、5;共4种情况,其中10、7、3;10、5、3这两种情况不能组成三角形,所以P(任取三条,能构成三角形)=21 42 =,故选A.【点睛】本题考查了三角形三边关系,简单的概率计算,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 10.D【解析】【分析】必然事件是指一定会发生的事件,概率为1,根据该性质判断即可.【详解】掷一枚质地均匀的骰子,每一面朝上的概率为16,而小于6的情况有5种,因此概率为56,不是必然事件,所以A 选项错误; 多边形内角和公式为()2180n -︒,不是一个定值,而是随着多边形的边数n 的变化而变化,所以B 选项错误; 二次函数解析式的一般形式为2y ax bx c =++()0a ≠,而当c=0时,二次函数图象经过原点,因此不是必然事件,所以C 选项错误;圆周长公式为2C r π=,当r=2时,圆的周长为4π,所以D 选项正确.故选D .【点睛】本题考查了必然事件的概念,关键是根据不同选项所包含的知识点的概念进行判断对错;必然事件发生的概率为1,随机事件发生的概率为0<P<1,不可能事件发生的概率为0.11.C【解析】【分析】必然事件的发生率为100%,所以一定发生的为必然事件.【详解】解:1,2,4为可能事件,3为一定事件,两个骰子投的数一定大于或等于2,故选C.【点睛】本题考查了必然事件的定义,熟悉掌握概念是解决本题的关键.12.B【解析】【分析】一共摸了100次,其中有20次摸到黑球,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数.【详解】∵共摸了100次,其中20次摸到黑球,∴有80次摸到白球,∴摸到黑球与摸到白球的次数之比为1:4,∴口袋中黑球和白球个数之比为1:4,14164÷=(个).故选B.【点睛】本题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.同时也考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.25,【解析】【分析】等可能事件中每件事发生的概率是相等的,为1n,本题n=5,,一共有两个白球,因此为25.【详解】∵一个不透明的袋子中装有2个白球和3个黑球,共有5个球,∴从袋子中随机摸出一个球,摸出的球是白球的概率是:25.故答案为25.【点睛】本题考查了等可能事件的概率公式,等可能时间每件事发生的概率都是1n,其中n是样本总量,本题是统计与概率部分的简单题型.14.3 4【解析】【分析】等腰三角形、线段、圆是轴对称图形,等可能概型中取到每种图形的概率都是14,所以结果是34.【详解】∵等腰三角形、线段、圆是轴对称图形,三角形不是轴对称图形,∴从盒子中任意抽取一张,卡片上的图形是轴对称图形的概率是34;故答案为:34.【点睛】本题考查了轴对称图形的判断,和简单概率的计算,要注意等腰三角形是轴对称图形,三角形不一定是轴对称图形,正确判断图形是否为轴对称图形是本题的关键.15.1 6【解析】【分析】列表得出所有等可能的情况数,找出能组成“柠檬”的情况数,即可求出所求的概率.【详解】列表得:∵12种可能的结果中,能组成“柠檬”有2种可能,共2种,∴两次摸出的球上的汉字能组成“柠檬”的概率是212=16,故答案为:16.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.16.5 6【解析】【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果, 然后根据概率公式求出该事件的概率即可.【详解】解: 由树状图可知共有4 3=12种可能, 两张卡片上的数字的乘积为偶数的有10种, 所以两张卡片上的数字的乘积为偶数的概率是1012=56.【点睛】画树状图法可以不重复不遗漏的列出所有可能的结果, 适合于两步完成的事件. 用到的知识点为: 概率=所求情况数与总情况数之比.17.12;【解析】【分析】让白球的个数除以球的总数为34,可求得白球的个数,即可求得球的总个数.【详解】解答:P(白球)=aa+3=34,解得:a=9,故总的球数为9+3=12.故本题答案为:12.【点睛】本题考查的是随机事件概率的求法,如果一个事件有n种可能, 而且这些事件的可能性相同, 其中事件A出现m种结果, 那么事件A的概率P(A)=mn.18.1 4【解析】【分析】利用阴影部分与三角形的面积比即可.【详解】设三角形面积为1.∵△ABC中,D、E、F分别是各边的中点,∴DE∥BC,DE=BF,∴四边形BFED是平行四边形,∴△DEF≌△FBD,同理△DEF≌△CFE,△DEF≌△EDA,∴阴影部分的面积=△ABC的面积的14,即米粒落到阴影区域内的概率是11414 .故答案为14.【点睛】本题考查了几何概型的概率求法,利用面积求概率是解题的关键.19.(1)不能;(2)516;18;116;116;116【解析】【分析】(1)根据题意,“顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会”, 甲顾客消费80元,不满足获得转动转盘的条件;(2)根据概率的计算方法,可得出答案.【详解】(1)根据题意,“顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会”, 甲顾客消费80元,不满足获得转动转盘的条件.故答案为:不能获得转动转盘的机会.(2)乙顾客消费150元,能获得一次转动转盘的机会.由于转盘被均分成16份,每份被转到的机会均等,其中打折的占5份,故获得打折待遇的概率为P=5 16;九折占2份,故获得九折待遇的概率为P=21= 168;八折占1份,故获得八折待遇的概率为P=1 16;七折占1份,故获得七折待遇的概率为P=1 16;五折占1份,故获得五折待遇的概率为P=1 16.故答案为:他获得打折待遇的概率为516;他获得九折,八折,七折,五折待遇的概率分别是18;116;116;116.【点睛】本题主要考查概率,掌握概率的计算方法是解答本题的关键.20.(1)14;(2)34,图见解析【解析】【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【详解】(1)共有4种可能,所以选择A通道通过的概率是14.故答案为:14,(2)两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率=1216=34.故答案为(1)14;(2)34,图见解析【点睛】本题考查了概率公式中的等可能概型,和利用树状图解决实际问题,正确画出树状图是本题的关键.21.(1)见详解;(2)游戏不公平,理由见详解;【解析】【分析】(1)根据题意直接列表或画树状图即可;(2)先分别求出两纸牌上的数字之积的所有情况,再求出其中偶数和奇数的个数,即可求出小明获胜的概率和小亮获胜的概率,最后得出游戏是否公平.【详解】(1)画树状图如图:(2)由(1)知一共有9种等可能情形,其中出现积为奇数的情况有4种,出现积为偶数的情况有5种,则P(数字之积为奇数)49=,P(数字之积为偶数)59=P(数字之积为奇数) P(数字之积为偶数),所以游戏不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.22.1 4【解析】【分析】画出树状图,列举出所有情况,看抽取的两张牌的数字之和等于5的情况占所有情况的多少可得答案. 【详解】解:如图,共有16种等可能的情况,和为5的情况有4种,∴P(和为5)= .【点睛】本题主要考查用列表法或画树状图求等可能事件的概率,其中如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.23.(1)50;(2)详见解析;(3)220.【解析】【分析】(1)利用1组的人数除以1组的频率可求此次抽查了多少名学生的成绩;(2)根据总数乘以3组的频率可求a,用50减去其它各组的频数即可求得b的值,再用1减去其它各组的频率即可求得c的值,即可把频数分布直方图补充完整;(3)先得到成绩优秀的频率,再乘以500即可求解.【详解】解:(1)4÷0.08=50(名).答:此次抽查了50名学生的成绩;(2)a=50×0.32=16(名),b=50﹣4﹣8﹣16﹣10=12(名),c=1﹣0.08﹣0.16﹣0.32﹣0.2=0.24,如图所示:(3)500×(0.24+0.2)=500×0.44=220(名).答:本次测试九年级学生中成绩优秀的人数是220名.【点睛】本题主要考查数据的收集、处理以及统计图表。
人教版九年级上册数学《第25章概率初步》单元测试题(解析版)

人教版九年级上册数学《第25章概率初步》单元测试题(解析版)1.下列事件中,是随机事件的是()a.通常温度降到0℃以下,纯净水结冰b.随意翻到一本书的某页,这页的页码是偶数c.我们班里有46个人,必有两个人是同月生的d、在一个不透明的袋子里有两个红色的球和一个白色的球。
除了颜色外,它们都一样。
如果你随意触摸一个球,你更可能触摸到白色的球而不是红色的球2.从甲、乙、丙、丁四人中任选1名代表,甲被选中的可能性是()a.b。
c.d、一,3.甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投掷骰子的点数和大于7,则甲胜;否则,乙胜,则甲、乙两人中()a.甲获胜的可能更大b、 A和b同样有可能赢C。
b更有可能赢d.由于是随机事件,因此无法估计以下习语中描述的事件是随机事件b.水中捞月c、等兔子d.缘木求鱼5.在下列事件中,这是不可避免的:(a)买电影票,座位号必须是偶数。
B.随时打开电视,播放新闻c.将△acb绕点c旋转50°得到△a′c′b′,这两个三角形全等d.阴天就一定会下雨6.下列事件是不可能发生的:(a)地球的体积大于太阳的体积;(c)在降雨期间,湖的水位上升b.第一个来学校的是女生d.体育运动中肌肉拉伤7.如图所示,在游戏转盘中,红色、黄色和蓝色扇区的中心角分别为60°、90°和210°。
转盘自由旋转后指针落在黄色区域的概率为()a.b.c.d.8.小王连续四次投掷质地均匀的硬币,硬币都朝上落下。
如果他第五次扔硬币,硬币朝上的概率是()a.1b.c。
d.9.如图所示,在3×3的正方形网格中,a点和B点位于网格点(网格线的交点)上,并且△ ABC轴对称图形是()a.b.c、 d。
10.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的标号之和为奇数的概率是()a.b。
c.d。
新人教版数学九年级上第25章概率初步检测题含答案

新人教版数学九年级上第25章概率初步检测题含答案(时刻:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.以下事件中,必定发生的是( C )A .打开电视机,正在播放体育节目B .正五边形的外角和为180°C .通常情形下,水加热到100℃沸腾D .掷一次骰子,向上一面是5点2.(2020·宜宾)一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同.在看不到球的条件下,随机地从那个袋子中摸出一个球,摸到白球的概率是( B )A .19B .13C .12D .233.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同,若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( A )A .1B .2C .3D .4 4.下列说法正确的是( C )A .若你在上一个路口遇到绿灯,则在下一路口必遇到红灯B .某篮球运动员2次罚球,投中一个,则可确信他罚球命中的概率为50%C .改日我市会下雨是随机事件D .某种彩票中奖的概率是1%,买100张该种彩票一定会中奖5.一只小鸟自由地在空中飞行,然后随意地落在如图所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是( B )A .12B .13C .14D .15,第5题图) ,第7题图) ,第8题图) ,第10题图)6.在四张背面完全相同的卡片上分别印着等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案差不多上轴对称图形的概率( D )A .34B .14C .13D .127.如图,有一电路AB 是由图示的开关操纵,闭合a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( C )A .15B .25C .35D .458.如图是两个能够自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字,假如同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是( C )A .12B .29C .49D .139.(2020·陕西)小军旅行箱的密码是一个六位数,由于他不记得了密码的末位数字,则小军能一次打开该旅行箱的概率是( A )A .110B .19C .16D .1510.(2020·河北)某小组做“用频率估量概率”的试验时,统计了某一结果显现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是( D )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .一副去掉大小王的一般扑克牌洗匀后,从中任抽一张牌的花色是红桃C .暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一个球是黄球D .掷一个质地平均的正六面体骰子,向上一面的点数是4 二、填空题(每小题3分,共24分)11.某中学九(2)班的“精英小组”有男生4人,女生3人,若选出一人担任组长,则组长是男生的概率为__47___.12.小芳同学有两根长度为4 cm ,10 cm 的木棒,她想钉一个三角形相框,桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的概率是__25___.13.某电视台综艺节目接到热线 500个,现从中抽取“幸运观众”10名,小明的打通了一次热线 ,他成为“幸运观众”的概率是__150___.14.一个平均的立方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷那个立方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是__13___.15.平行四边形中,AC ,BD 是两条对角线,现从以下四个关系式:①AB =BC ;②AC =BD ;③AC ⊥BD ;④AB ⊥BC 中,任取一个作为条件,即可推出平行四边形ABCD 是菱形的概率为__12___.16.从-3,1,-2这三个数中任取两个不同的数,积为正数的概率是__13___.17.(2020·兰州)在四个完全相同的小球上分别写上1,2,3,4四个数字,然后装入一个不透亮的口袋内搅匀.从口袋内任取一个球记下数字后作为点P 的横坐标x ,放回袋中搅匀,然后再从袋中取出一个球记下数字后作为点P 的纵坐标y ,则点P(x ,y)落在直线y=-x +5上的概率是__14___.18.一个不透亮的盒子里有若干个白球,在不承诺将球倒出来数的情形下,为估量白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估量盒中大约有白球__28___个.三、解答题(共66分)19.(8分)掷一个骰子,观看向上一面的点数,求下列事件的概率: (1)点数为偶数;(2)点数大于2且小于5.解:(1)12 (2)1320.(8分)一个不透亮的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是13,求从袋中取出黑球的个数.解:(1)14 (2)设取出x 个黑球,由题意得8-x 20-x =13,解得x =2.经检验x =2是方程的解且符合题意,即从袋中取出黑球个数为221.(8分)(2020·南京)从甲、乙、丙3名同学中随机抽取环保理想者.求下列事件的概率:(1)抽取1名,恰好是甲; (2)抽取2名,甲在其中.解:(1)13 (2)2322.(10分)现有20名理想者预备参加某次博览会的服务工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若某项工作只在甲、乙两人中选一人,他们预备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问那个游戏公平吗?请用树状图或列表法说明理由.解:(1)35(2)画树状图(略),牌面数字之和的所有可能结果为:5,6,7,5,7,8,6,7,9,7,8,9,共12种,其中和为偶数的有:6,8,6,8,故甲参加的概率为P(和为偶数)=412=13,而乙参加的概率为P(和为奇数)=23.因为13≠23,因此游戏不公平23.(10分)中秋节期间,某商场为了吸引顾客,开展有奖促销活动,设立了一个能够自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”“20元”“30元”“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就能够转动转盘一次,商场依照转盘指针指向区域所标金额返还相应数额的购物券.某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得__20___元购物券,最多可得__80___元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.解:画树状图(略),∵共有16种等可能结果,该顾客所获奖券金额不低于50元的有10种,∴该顾客所获购物券金额不低于50元的概率为P =1016=5824.(10分)下表是一名同学在罚球线上投篮的试验结果,依照表中数据,回答问题:投篮次数(n) 50 100 150 200 250 300 500 投中次数(m)286078104124153252(1)估量这名同学投篮一次,投中的概率约是多少?(精确到0.1) (2)依照此概率,估量这名同学投篮622次,投中的次数约是多少? 解:(1)0.5 (2)622×0.5=311,故估量投中的次数约是311次25.(12分)小明、小亮、小芳和两个生疏人甲、乙同在如图所示的地下车库等电梯,已知两个生疏人到1至4层的任意一层出电梯,并设甲在a 层出电梯,乙在b 层出电梯.(1)小明想明白甲、乙二人在同一层出电梯的概率,你能帮他求出吗?(2)小亮和小芳打赌:若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜.该游戏是否公平?若公平,说明理由;若不公平,请修改游戏规则,使游戏公平.解:(1)列表(略),一共显现16种等可能结果,其中在同一层出电梯的有4种结果,则P(甲、乙在同一层出电梯)=416=14(2)甲、乙在同一层或相邻楼层出电梯的有10种结果,故P(小亮胜)=1016=58,P(小芳胜)=1-58=38,∵58>38,∴游戏不公平.修改规则:若甲、乙在同一层或相隔两层出电梯,则小亮胜;若甲、乙相隔一层或三层出电梯,则小芳胜。
2018_2019学年九年级数学上册第二十五章概率初步25.3用频率估计概率作业设计

25.3用频率估计概率一、选择题(本题包括15小题,每小题只有1个选项符合题意)1. 绿豆在相同条件下的发芽试验,结果如下表所示:则绿豆发芽的概率估计值是( )A. 0.96B. 0.95C. 0.94D. 0.902. 某人在做掷硬币实验时,投掷m次,正面朝上有n次(即正面朝上的频率是p= ).则下列说法中正确的是( )A. P一定等于,B. P一定不等于,C. 多投一次,P更接近,D. 投掷次数逐渐增加,P稳定在附近3. 小明在一只装有红色和白色球各一只的口袋中摸出一只球,然后放回搅匀再摸出一只球,反复多次实验后,发现某种“状况”出现的机会约为50%,则这种状况可能是( )A. 两次摸到红色球B. 两次摸到白色球C. 两次摸到不同颜色的球D. 先摸到红色球,后摸到白色球4. 一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( )A. 28个B. 30个C. 36个D. 42个5. 为验证“掷一个质地均匀的骰子,向上的点数为偶数的概率是0.5”,下列模拟实验中,不科学的是( )A. 袋中装有1个红球一个绿球,它们除颜色外都相同,计算随机摸出红球的概率B. 用计算器随机地取不大于10的正整数,计算取得奇数的概率C. 随机掷一枚质地均匀的硬币,计算正面朝上的概率D. 如图,将一个可以自由旋转的转盘分成甲、乙、丙3个相同的扇形,转动转盘任其自由停止,计算指针指向甲的概率6. 从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10个和若干个白球,由此估计口袋中大约有多少个白球( )A. 10个B. 20个C. 30个D. 无法确定7. 小鸡孵化场孵化出1000只小鸡,在60只上做记号,再放入鸡群中让其充分跑散,再任意抓出50只,其中做有记号的大约是( )A. 40只B. 25只C. 15只D. 3只8. 一个不透明的盒子里有n个除颜色外其它完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是( )A. 6B. 10C. 18D. 209. 一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是( )A. 红球比白球多B. 白球比红球多C. 红球,白球一样多D. 无法估计10. 关于频率和概率的关系,下列说法正确的是( )A. 频率等于概率;B. 当实验次数很大时,频率稳定在概率附近;C. 当实验次数很大时,概率稳定在频率附近;D. 实验得到的频率与概率不可能相等11. 在学习掷硬币的概率时,老师说:“掷一枚质地均匀的硬币,正面朝上的概率是”,小明做了下列三个模拟实验来验证.①取一枚新硬币,在桌面上进行抛掷,计算正面朝上的次数与总次数的比值;②把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,转动转盘,计算指针落在奇数区域的次数与总次数的比值;③将一个圆形纸板放在水平的桌面上,纸板正中间放一个圆锥(如图),从圆锥的正上方往下撒米粒,计算其中一半纸板上的米粒数与纸板上总米粒数的比值.上面的实验中,不科学的有( )A. 0个B. 1个C. 2个D. 3个12. 抛掷两枚均匀的硬币,当抛掷多次以后,出现两个反面的成功率大约稳定在( )A. 25%B. 50%C. 75%D. 100%13. 下列说法正确的是( )①试验条件不会影响某事件出现的频率;②在相同的条件下试验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同;③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等;④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同.A. ①②B. ②③C. ③④D. ①③14. 小明练习射击,共射击60次,其中有38次击中靶子,由此可估计,小明射击一次击中靶子的概率是( )A. 38%B. 60%C. 约63%D. 无法确定15. 在一个不透明的盒子中,红色、白色、黑色的球共有40个,除颜色外其他完全相同,老师在课堂上组织同学通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,则盒子中黑色球的个数可能是( )A. 16B. 18C. 20D. 22二、填空题(本题包括5小题)16.(2分)有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后.发现摸到红球的频率约为0.6,据此可以估计红球的个数约为____.17.(2分)在“抛掷正六面体”的试验中,如果正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是____.18.(2分)从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:根据以上数据可以估计,该玉米种子发芽的概率约为____(精确到0.1).19.(2分)晓刚用瓶盖设计了一个游戏:任意掷出一个瓶盖,如果盖面朝上则甲胜,如果盖面朝下则乙胜,你认为这个游戏____(是否公平);如果以硬币代替瓶盖,同样做上述游戏,你认为这个游戏____(是否公平).20.(2分)一个不透明的袋中装有2枚白色棋子和n枚黑色棋子,它们除颜色不同外,其余均相同.若小明从中随机摸出一枚棋子,多次实验后发现摸到黑色棋子的频率稳定在80%.则n很可能是___枚.三、解答题(本题包括5小题)21. 某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”、“花开富贵”、“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元.小明购买了100元的商品,他看到商场公布的前10000张奖券的抽奖结果如下:(1)求“紫气东来”奖券出现的频率;(2)请你帮助小明判断,抽奖和直接获得购物卷,哪种方式更合算?并说明理由.22. 研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.活动结果:摸球实验活动一共做了50次,统计结果如下表:推测计算:由上述的摸球实验可推算:(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?23. 端午节吃粽子是中华民族的传统习俗,五月初五早上,奶奶为小明准备了四只粽子:一只肉馅,一香肠馅,两只红枣馅,四只粽子除内部馅料不同外其他均一切相同.小明喜欢吃红枣馅的粽子.(1)请你用树状图为小明预测一下吃两只粽子刚好都是红枣馅的概率;(2)在吃粽子之前,小明准备用一个均匀的正四面体骰子(如图所示)进行吃粽子的模拟试验,规定:掷得点数1向上代表肉馅,点数2向上代表香肠馅,点数3,4向上代表红枣馅,连续抛掷这个骰子两次表示随机吃两只粽子,从而估计吃两只粽子刚好都是红枣馅的概率.你认为这样模拟正确吗?试说明理由.24. 如图,均匀的正四面体的各面依次标有1,2,3,4四个数字.小明做了60次投掷试验,结果统计如下:(1)计算上述试验中“4朝下”的频率是____;(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是.”的说法正确吗?为什么?(3)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于4的概率.25. 一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是年平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如下表:(1)请将数据补充完整;(2)画出“兵”字面朝上的频率分布折线图;(3)如果实验继续进行下去,根据上表的数据,这个实验的频率将稳定在它的概率附近,请你估计这个概率是多少?25.3用频率估计概率参考答案一、选择题(本题包括15小题,每小题只有1个选项符合题意)1. 【答案】B【解析】=(0.960+0.940+0.955+0.950+0.948+0.956+0.950)÷7≈0.95,当n足够大时,发芽的频率逐渐稳定于0.95,故用频率估计概率,绿豆发芽的概率估计值是0.95.故选B.2. 【答案】B【解析】∵硬币只有正反两面,∴投掷时正面朝上的概率为,根据频率的概念可知投掷次数逐渐增加,P稳定在附近.故选D.3. 【答案】C【解析】∵摸到红色和白色球的概率均为,∴反复多次实验后,发现某种“状况”出现的机会约为50%,这种状况可能是两次摸到不同颜色的球.故选C.4. 【答案】A【解析】共摸球400次,其中88次摸到黑球,那么有312次摸到白球;由此可知:摸到黑球与摸到白球的次数之比为88:312;已知有8个黑球,那么按照比例,白球数量即可求出.由题意得:白球有×8≈28个.故选A.5.【答案】D【解析】选项A,袋中装有1个红球一个绿球,它们出颜色外都相同,随机摸出红球的概率是,选项A 正确;选项B,用计算器随机地取不大于10的正整数,取得奇数的概率是,选项B正确;选项C,随机掷一枚质地均匀的硬币,正面朝上的概率是,选项C正确;选项D,将一个可以自由旋转的转盘分成甲、乙、丙3个相同的扇形,转动转盘任其自由停止,指针指向甲的概率是,选项D错误.故选D.6. 【答案】B【解析】摸了150次,其中有50次摸到黑球,则摸到黑球的频率是,设口袋中大约有x个白球,则,解得x=20.故选B.7. 【答案】D【解析】小鸡孵化场孵化出1000只小鸡,在60只上做记号,则做记号的小鸡概率为,再任意抓出50只,其中做有记号的大约是=3只.故选D.8. 【答案】D【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.由题意可得,×100%=30%,解得,n=20(个).故估计n大约有20个.故选:D.点评:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的频率得到相应的等量关系.9. 【答案】A【解析】根据题意可得5位同学摸到红球的频率为85976357505010++++==,由此可得盒子里的红球比白球多.故选A.10. 【答案】B【解析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.A、频率只能估计概率;B、正确;C、概率是定值;D、可以相同,如“抛硬币实验”,可得到正面向上的频率为0.5,与概率相同.故选B.考点:本题考查的是利用频率估计概率点评:解答本题的关键是熟练掌握大量反复试验下频率稳定值即概率.11. 【答案】A【解析】分析每个试验的概率后,与原来的掷硬币的概率比较即可.①由于一枚质地均匀的硬币,只有正反两面,故正面朝上的概率是;②由于把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,标奇数和偶数的转盘各占一半.指针落在奇数区域的次数与总次数的比值为.③由于圆锥是均匀的,所以落在圆形纸板上的米粒的个数也是均匀的分布的,与纸板面积成正比,可验证其中一半纸板上的米粒数与纸板上总米粒数的比值为.三个试验均科学,故选D.考点:模拟实验.12. 【答案】A【解析】抛掷两枚均匀的硬币,可能出现的情况为:正正,反反,正反,反正,所以出现两个反面的概率为,即可知抛掷多次以后,出现两个反面的成功率大约稳定在25%.故选A.点睛:本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.13. 【答案】B【解析】①错误,实验条件会极大影响某事件出现的频率;②正确;③正确;④错误,“两个正面”、“两个反面”的概率为,“一正一反”的机会较大,为.故选B.考点:1.利用频率估计概率;2.可能性的大小;3.概率的意义.14. 【答案】C【解析】∵小明练习射击,共射击60次,其中有38次击中靶子,∴射中靶子的频率≈0.63,故小明射击一次击中靶子的概率约是63%.故选C.点睛:本题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.15. 【答案】A【解析】根据题意,通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,可知摸到盒子中黑色球的概率为1-45%-15%=40%,由此可求得盒子中黑色球的个数为40×40%=16.故选:A.点睛:此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.由于通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,由此可以确定摸到盒子中黑色球的概率,然后就可以求出盒子中黑色球的个数.二、填空题(本题包括5小题)16. 【答案】600【解析】由多次重复上述过程后,发现摸到红球的频率约为,知摸到红球的概率约为所以红球的个数约为17.【答案】【解析】求概率,投一次的概率为,在投一次的概率还是,多次投的概率接近于18. 【答案】0.8【解析】种子粒数5000粒时,种子发芽的频率趋近于0.801,估计种子发芽的概率为0.801,精确到0.1,即为0.8.考点:利用频率估计概率.19.【答案】 (1). 不公平 (2). 公平【解析】因为瓶盖不是均匀的,盖面朝上和盖面朝下的机会不是均等的,所以这个游戏不公平.如果以硬币代替瓶盖,因为硬币是均匀的,正面与反面向上机会相等,所以这个游戏公平.点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.20.【答案】8【解析】不透明的布袋中的棋子除颜色不同外,其余均相同,共有n+2个棋子,其中黑色棋子n个,根据古典型概率公式知:P(黑色棋子)==80%,解得n=8.故答案为:8.考点:利用频率估计概率.三、解答题(本题包括5小题)21.【答案】(1)或5%;(2) 选择抽奖更合算【解析】(1)“紫气东来”奖券出现的频率为500÷ 10000 = 5%。
(完整版)2018人教版九年级数学上《第25章概率初步》单元测试含答案

第二十五章概率初步单元测试一、单选题(共10题;共30分)1、一个暗箱里装有10个黑球,6个白球,14个红球,搅匀后随机摸出一个球,则摸到白球的概率是A、 B、C、D、2、书包里有数学书3本,英语书2本,语文书5本,从中任意抽取一本,是数学书的概率是()A、 B、C、D、3、如图,一个圆形转盘被等分成八个扇形区域,上面分别标上1,3,4,5,6,7,8,9,转盘可以自由转动,转动转盘一次,指针指向的数字为偶数所在区域的概率是()A、 B、C、D、4、在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是()A、 B、C、D、5、下列模拟掷硬币的实验不正确的是()A、用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下B、袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上C、在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上D、将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上6、明明的相册里放了大小相同的照片共32张,其中与同学合影8张、与父母合影10张、个人照片14张,她随机地从相册里摸出1张,摸出的恰好是与同学合影的照片的可能性是()A、B、C、D、7、历史上,雅各布.伯努利等人通过大量投掷硬币的实验,验证了“正面向上的频率在0.5左右摆动,那么投掷一枚硬币10次,下列说法正确的是()A、“正面向上”必会出现5次B、“反面向上”必会出现5次C、“正面向上”可能不出现D、“正面向上”与“反面向上”出现的次数必定一样,但不一定是5次8、一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有125次摸到白球,因此小亮估计口袋中的红球大约有()个.A、100个B、90个C、80个D、70个9、小茜课间活动中,上午大课间活动时可以先从跳绳、乒乓球、健美操中随机选择一项运动,下午课外活动再从篮球、武术、太极拳中随机选择一项运动.则小茜上、下午都选中球类运动的概率是()A、 B、C、D、10、一个不透明的布袋里装有6个黑球和3个白球,它们除颜色外其余都相同,从中任意摸出一个球,是白球的概率为()A、B、C、D、二、填空题(共8题;共24分)11、把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同的两片,然后堆放到一起混合洗匀,从这堆图片中随机抽出两张,这两张图片恰好能组成一张原风景图片的概率是________ .12、在一个不透明的口袋中,装有4个红球和若干个白球,它们除颜色外其它完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,从口袋中任意摸出一个球,估计它是红球的概率是________ .13、布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是________.14、有四张扑克牌,分别为红桃3,红桃4,红桃5,黑桃6,背面朝上洗匀后放在桌面上,从中任取一张后记下数字和颜色,再背面朝上洗匀,然后再从中随机取一张,两次都为红桃,并且数字之和不小于8的概率为________ .15、一个布袋中装有只有颜色不同的a(a>12)个小球,分别是2个白球、4个黑球,6个红球和b个黄球,从中任意摸出一个球,记下颜色后放回,经过多次重复实验,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整).根据题中给出的信息,布袋中黄球的个数为________16、在一个不透明的袋子中有四个完全相同的小球,分别标号为1,2,3,4.随机摸取一个小球不放回,再随机摸取一个小球,两次摸出的小球的标号的和等于4的概率是________17、流传的游戏,游戏时,双方每次任意出“石头”,“剪刀”,“布”这三种手势中的一种,那么双方出现相同手势的概率为________.18、一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为________.三、解答题(共6题;共46分)19、在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个. 现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.20、不透明的盒中装有红、黄、蓝三种颜色的小球若干个(除颜色外均相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,是蓝球的概率为.(1)求盒中黄球的个数;(2)第一次任意摸出一个球放回后,第二次再任意摸一个球,请用列表或树状图,求两次都摸出红球的概率.21、如果手头没有硬币,但想知道掷一次这种均匀的硬币正面朝上的概率是多少,请问你能用三种不同的方法进行模拟试验吗?请写出试验过程.22、如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6;若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?23、一不透明的袋子中装有4个球,它们除了上面分别标有的号码1、2、3、4不同外,其余均相同.将小球搅匀,并从袋中任意取出一球后放回;再将小球搅匀,并从袋中再任意取出一球.若把两次号码之和作为一个两位数的十位上的数字,两次号码之差的绝对值作为这个两位数的个位上的数字,请用“画树状图”或“列表”的方法求所组成的两位数是奇数的概率.24、有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字-1,-2和-3.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为.(Ⅰ)用列表或画树状图的方法写出点Q的所有可能坐标;(Ⅱ)求点Q落在抛物线y=x2-2x-1上的概率.答案解析一、单选题1、【答案】 D【考点】概率公式【解析】【分析】概率的求法:概率=所求情况数与所有情况数的比.由题意得摸到白球的概率是,故选D.【点评】本题属于基础应用题,只需学生熟练掌握概率的求法,即可完成.2、【答案】 B【考点】概率公式【解析】【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,∵书包里有数学书3本,英语书2本,语文书5本,共10本书,∴从中任意抽取一本,是数学书的概率是.故选B.3、【答案】 B【考点】概率公式【解析】【分析】先求出转盘上所有的偶数,再根据概率公式解答即可.∵在1,3,4,5,6,7,8,9中,偶数有4,6,8,∴转动转盘一次,指针指向的数字为偶数所在区域的概率=.故选B.4、【答案】 B【考点】概率公式【解析】【解答】∵在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,∴从中任意摸出一个球,则摸出白球的概率是:=.故选B.【分析】由在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,直接利用概率公式求解即可求得答案.【考点】模拟实验【解析】【解答】A、用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下,正确,不合题意;B、袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上,正确,不合题意;C、在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上,正确,不合题意;D、将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上,由于奇数与偶数个数不相同,故不能模拟掷硬币的实验,故符合题意.故选:D.【分析】利用模拟实验只能用更简便方法完成,验证实验目的,但不能改变实验目的,进而分析得出即可.6、【答案】C【考点】可能性的大小【解析】【解答】解:∵明明的相册里放了大小相同的照片共32张,其中与同学合影8张,∴她随机地从相册里摸出1张,摸出的恰好是与同学合影的照片的可能性是:=.故选;C.【分析】利用与同学合影的照片数量除以相片总数,即可得出答案.7、【答案】C【考点】利用频率估计概率【解析】【解答】解:A、“正面向上”不一定会出现5次,故本选项错误;B、“反面向上”不一定会出现5次,故本选项错误;C、“正面向上”可能不出现,只是几率不太大,故本选项正确;D、“正面向上”与“反面向上”出现的次数可能不一样,故本选项错误;故选C.【分析】利用频率估计概率时,只有做大量试验,才能用频率会计概率,但少数实验不能确定一定会出现和概率相符的结果.8、【答案】 D【考点】利用频率估计概率【解析】【解答】解:球的总数是:10÷=80(个),则红球的个数是:80﹣10=70(个).故选D.【分析】小亮共摸了1000次,其中有125次摸到白球,则白球所占的比例是,据此即可求得球的总数,进而求解.【考点】列表法与树状图法【解析】【解答】解:画树状图为:共有9种等可能的结果数,其中小茜上、下午都选中球类运动的结果数为1,所以小茜上、下午都选中球类运动的概率= .故选A.【分析】画树状图展示所有9种等可能的结果数,再找出小茜上、下午都选中球类运动的结果数,然后根据概率公式计算.10、【答案】B【考点】概率公式【解析】【解答】解:∵个不透明的布袋里装有6个黑球和3个白球,∴中任意摸出一个球,是白球的概率= = .故选B.【分析】直接根据概率公式即可得出结论.二、填空题11、【答案】【考点】列表法与树状图法【解析】【解答】设三张风景图片分别剪成相同的两片为:A1, A2, B1, B2, C1, C2;如图所示:,所有的情况有30种,符合题意的有6种,故这两张图片恰好能组成一张原风景图片的概率是:.故答案为:.【分析】把三张风景图片剪成相同的两片后用A1, A2, B1, B2, C1, C2来表示,根据题意画树形图,数出可能出现的结果利用概率公式即可得出答案.12、【答案】【考点】利用频率估计概率【解析】【解答】解:∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,即.故答案为:.【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率即可.13、【答案】【考点】概率公式【解析】【解答】∵一个布袋里装有3个红球和6个白球,∴摸出一个球摸到红球的概率为:.【分析】求摸到红球的概率,即用红球除以小球总个数即可得出得到红球的概率.14、【答案】【考点】列表法与树状图法【解析】【解答】解:画树状图为:共有12种等可能的结果数,其中两次都为红桃,并且数字之和不小于8的结果数为4,所以两次都为红桃,并且数字之和不小于8的概率==.故答案为.【分析】先画树状图展示所有12种等可能的结果数,再找出两次都为红桃,并且数字之和不小于8的结果数,然后根据概率公式求解.15、【答案】 8【考点】利用频率估计概率【解析】【解答】解:球的总数:4÷0.2=20(个),2+4+6+b=20,解得:b=8,故答案为:8.【分析】首先根据黑球数÷总数=摸出黑球的概率,再计算出摸出白球,黑球,红球的概率可得答案.16、【答案】【考点】列表法与树状图法【解析】【解答】解:画树状图得:由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率==,故答案为:.【分析】先画树状图展示所有12种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.17、【答案】【考点】列表法与树状图法【解析】【解答】解:画树状图得:∵共有9种等可能的结果,双方出现相同手势的有3种情况,∴双方出现相同手势的概率P= .故答案为:.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与双方出现相同手势的情况,再利用概率公式即可求得答案.18、【答案】【考点】列表法与树状图法【解析】【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球上两个数字乘积是负数的有6种情况,∴两次摸出的小球上两个数字乘积是负数的概率为:= .故答案为:.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及两次摸出的小球上两个数字乘积是负数的情况,再利用概率公式即可求得答案.三、解答题19、【答案】此游戏不公平.理由如下:列树状图如下,列表如下,<img style="vertical-align:middle;"src=/97/21/97721dbd27213200cd2440eb37ed9372.png color:blue;">【考点】列表法与树状图法,游戏公平性【解析】【解答】游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等。
人教版九年级上册数学 25章概率初步 同步检测带答案。

25.1随机事件与概率一.选择题1.下列事件中,是必然事件的是()A.明天太阳从西边出来B.打开电视,正在播放《云南新闻》C.昆明是云南的省会D.小明跑完800米所用的时间恰好为1分钟2.一个不透明的盒子里装有红、黄、白三种颜色的球,个数分别为2、3、4,这些球除颜色外都相同,从盒子中任抽一个球,则抽到红球的概率是()A.B.C.D.3.“翻开数学书,恰好翻到第16页”,这个事件是()A.随机事件B.必然事件C.不可能事件D.确定事件4.在一个不透明的袋子里装有2个黑球3个白球,它们除颜色外都相同,随机从中摸出一个球,是黑球的概率是()A.B.C.D.5.从﹣3,,0,,这5个数中任意抽取一个,抽到无理数的概率为()A.B.C.D.6.下列说法正确的是()A.“穿十条马路连遇十次红灯”是不可能事件B.任意画一个三角形,其内角和是180°是必然事件C.某彩票中奖概率为1%,那么买100张彩票一定会中奖D.“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是7.小丽书包里准备的3只包装相同的备用口罩中有2只是医用外科口罩,由于感冒她想取一只医用外科口罩去医院就医时佩戴,则她一次取对的概率是()A.0B.C.D.8.下列事件中,是随机事件的是()A.抛出的篮球会下落B.爸爸买彩票中奖了C.地球绕着太阳转D.一天有24小时9.掷一枚质地均匀的硬币6次,下列说法正确的是()A.必有3次正面朝上B.可能有3次正面朝上C.至少有1次正面朝上D.不可能有6次正面朝上10.某商店举办有奖销售活动,购货满100元者发奖券一张,在10000张奖券中设特等奖1个、一等奖10个、二等奖100个,若某人购物满100元,那么他中奖的概率是()A.B.C.D.二.填空题11.一个不透明的袋中装有3个红球,1个黑球,每个球除颜色外都相同.从中任意摸出2球,则“摸出的球至少有1个黑球”是事件.(填“必然”、“不可能”或“随机”)12.有8张卡片,标号为1,2,3,4,5,6,7,8从中任意抽取一张,P(抽到大于3)=.13.掷一枚均匀的硬币,前20次抛掷的结果都是正面朝上,那么第21次抛掷的结果正面朝上的概率为.14.在9张质地完全相同的卡片上分别写上数字﹣4、﹣3、﹣2、﹣1、0、1、2、3、4,从中任意抽取一张卡片,则所抽卡片上的数字的绝对值大于2的概率是.15.一个盒中装着大小、外形一模一样的x颗白色弹珠和12颗黑色弹珠,已知从盒中随机取出一颗弹珠,取得白色弹珠的概率是,则盒中有白色弹珠的颗数为.三.解答题16.①四边形内角和是180°;②今年的五四青年节是晴天;③367人中有2人同月同日生.指出上述3个事件分别是什么事件?并按事件发生的可能性由大到小排列.17.如图,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向偶数区域的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向区域的概率为.18.一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)现再将n个白球放入布袋,搅匀后.使摸出1个白球的概率为.求n的值.参考答案1.解:A、明天太阳从西边出来是不可能事件;B、打开电视,正在播放《云南新闻》是随机事件;C、昆明是云南的省会是必然事件;D、小明跑完800米所用的时间恰好为1分钟是不可能事件;故选:C.2.解:∵盒子里装有红、黄、白三种颜色的球,个数分别为2、3、4,共9个球,从盒子中任抽一个球共有9种结果,其中出现红球的情况2种可能,∴抽到红球的概率是:.故选:C.3.解:“翻开数学书,恰好翻到第16页”确实有可能刚好翻到第16页,也有可能不是翻到第16页,故这个事件是随机事件.故选:A.4.解:∵在一个不透明的袋子里装有2个黑球3个白球,共5个球,∴随机从中摸出一个球,摸到黑球的概率是.故选:A.5.解:∵﹣3,,0,,这五个数中,无理数有2个,∴随机抽取一个,则抽到无理数的概率是,故选:B.6.解:A、“穿十条马路连遇十次红灯”是随机事件,故此选项错误;B、任意画一个三角形,其内角和是180°是必然事件,正确;C、某彩票中奖概率为1%,那么买100张彩票也不一定会中奖,故此选项错误;D、“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是,故此选项错误.故选:B.7.解:∵共有3只包装相同的备用口罩,其中有2只是医用外科口罩,∴她一次取对的概率为;故选:D.8.解:A、抛出的篮球会下落的是,是必然事件,不符合题意;B、爸爸买彩票中奖了,是随机事件,符合题意;C、地球绕着太阳转,是必然事件,不符合题意;D、一天有24小时是必然事件,不符合题意,故选:B.9.解:掷一枚质地均匀的硬币,可能正面向上,也可能反面向上,可能性是均等的,不会受到前一次的影响,掷一枚质地均匀的硬币6次,不一定3次正面朝上,因此A选项不符合题意,“可能有3次正面朝上”是正确的,因此B选项正确;可能6次都是反面向上,因此C不符合题意,有可能6次正面向上,因此D选项不符合题意;故选:B.10.解:∵在10000张奖券中设特等奖1个、一等奖10个、二等奖100个,∴他中奖的概率是=;故选:D.11.解:一个不透明的袋中装有3个红球,1个黑球,每个球除颜色外都相同.从中任意摸出2球,共有以下2种情况:1、2个红球;2、1个红球,1个黑球;所以从中任意摸出2球,“摸出的球至少有1个黑球”是随机事件,故答案为:随机.12.解:标号为1,2,3,4,5,6,7,8的卡片中大于3的有5张,∴P(抽到大于3)=,故答案为:.13.解:由于每一次正面朝上的概率相等,∴第21次抛掷的结果正面朝上的概率为0.5;故答案为:0.5.14.解:∵数的总个数有9个,绝对值大于2的数有﹣4、﹣3、3、4,共4个,∴任意抽取一张卡片,则所抽卡片上数字的绝对值大于2的概率是,故答案为:.15.解:设盒中有白色弹珠x颗,那么盒中一共有弹珠(x+12)颗,∵从盒中随机取出一颗弹珠,取得白色弹珠的概率是,∴=,解得:x=6.故答案为:6.16.解:①是不可能事件;②是随机事件;③必然事件.答:按事件发生的可能性由大到小排列为:③>②>①.17.解:(1)P(指针指向偶数区域)==;(2)方法一:如图,自由转动转盘,当转盘停止时,指针指向阴影部分区域的概率为;方法二:自由转动转盘,当它停止时,指针指向数字不大于4的区域的概率是.故答案为:18.解:(1)∵一个不透明的布袋里装有3个球,其中2个红球,1个白球,∴摸出1个球是白球的概率为;(2)由题意得:,解得:n=4.经检验,n=4是所列方程的解,且符合题意,∴n=4.人教版 九年级数学 25.2 用列举法求概率一、选择题(本大题共10道小题)1. 从同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A.16B.13C.12D.232. 2019·临沂 经过某十字路口的汽车,可能直行,也可能向左转或向右转,若这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( ) A.23B.29C.13D.193. 如图25-2-1,有以下三个条件:①AC =AB ;②AB ∥CD ;③∠1=∠2.从这三个条件中选两个作为题设,另一个作为结论,则组成的命题是真命题的概率是( )A .0B.13C.23D .14. 一个盒子中装有标号分别为1,2,3,4,5的五个小球,这些球除标号不同外其余都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为( ) A.15B.25C.35D.455. 如图,有一块质地均匀的圆铁片,两面上分别写有数字1,2,有一个均匀的三棱锥旋转器和一个均匀的四棱锥旋转器,它们的侧面上分别写有数字1,2,3和数字1,2,3,4.在桌面上同时旋转这三件器物,停下来后,面向桌面的三个数字的积为奇数的概率是( )A.12B.13C.16D.186. 小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中的一项,那么两人同时选择“参加社会调查”的概率为( ) A.14B.13C.12D.347. 如图,正方形ABCD 内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在阴影区域内的概率为( )A.14B.12C.π8D.π48. 三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a ,b ,c ,则以a ,b ,c 为边长的三角形是等边三角形的概率是( ) A.19B.127C.59D.139. 如图,在4×4的正方形网格中,阴影部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂上阴影,使阴影部分的图形仍然构成一个轴对称图形的概率是( )A.613 B.513C.413D.31310. 把十位上的数字比个位、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两数,与7组成“中高数”的概率是( ) A.12B.23C.25D.35二、填空题(本大题共8道小题)11. 如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字,分别转动这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:甲乙积 1 2 3 4123(2)积为9的概率为________,积为偶数的概率为________;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为________.12. (2019·甘肃陇南)一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:请根据以上数据,估计硬币出现“正面朝上”的概率为__________(精确到0.1).13. 一张圆桌旁有四个座位,A先坐在如图所示的位置上,B,C,D三人随机坐到其他三个座位上,则A与B不相邻坐的概率为________.14. 从2019年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生A已选物理,还要从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科,则选修地理和生物的概率为________.15. 如图,转盘中6个扇形的面积相等,任意转动转盘1次,转盘停止转动后,指针指向的数小于5的概率为________.16. 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的展开图的一部分,现从其余的小正方形中任取1个涂上阴影,能构成这个正方体的展开图的概率是________.17. 某校欲从初三年级3名女生、2名男生中任取两名学生代表学校参加全市举办的“中国梦·青春梦”演讲比赛,则恰好选中一男一女的概率是________.18. 已知电路AB由如图所示的开关控制,闭合a,b,c,d,e五个开关中的任意两个,则能使电路形成通路的概率是________.三、解答题(本大题共4道小题)19. 某景区7月1日~7月7日一周的天气预报如图25-2-2,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.20. 如图①,一枚质地均匀的正四面体骰子,它有四个面,且每个面上分别标有数字1,2,3,4.如图②,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从圈D开始顺时针连续跳2个边长,落到圈B……设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A 的可能性是否一样.21. 如图①,在Rt△ABC中,∠C=90°,两条直角边长分别为a,b,斜边长为c.如图②,现将与Rt△ABC全等的四个直角三角形拼成一个正方形EFMN.(1)若Rt△ABC的两直角边长之比为2∶3,现随机向图②掷一枚小针,则针尖落在四个直角三角形区域的概率是多少?(2)若正方形EFMN的边长为8,Rt△ABC的周长为18,求Rt△ABC的面积.22. 母亲节当天,小明去花店买花送给母亲,挑中了康乃馨和兰花两种花.已知康乃馨每枝5元,兰花每枝3元,小明只有30元,希望购买花的枝数不少于7枝,其中至少有一枝是康乃馨.(1)小明一共有多少种可能的购买方案?列出所有方案;(2)如果小明先购买一张2元的祝福卡,再从(1)中任选一种方案买花,求他能实现购买愿望的概率.人教版九年级数学25.2 用列举法求概率课时训练-答案一、选择题(本大题共10道小题)1. 【答案】A2. 【答案】B3. 【答案】D [解析] 构成如下命题:如果①AC =AB ,②AB ∥CD ,那么③∠1=∠2;如果②AB ∥CD ,③∠1=∠2,那么①AC =AB ;如果①AC =AB ,③∠1=∠2,那么②AB ∥CD .这三个命题都是真命题. 故选D.4. 【答案】C [解析] 随机摸出两个球,所有可能的结果有20种,每种结果的可能性相同,其中摸出的小球标号之和大于5的结果有12种,所以所求概率P =1220=35.故选 C.5. 【答案】C [解析] 画树状图如下:因为共有24种等可能结果,面向桌面的三个数字的积为奇数的结果有4种,所以所求概率为16.6. 【答案】A7. 【答案】C [解析] 设正方形ABCD 的边长为2a ,针尖落在阴影区域内的概率=12×π×a24a2=π8. 故选C.8. 【答案】A [解析] 画树状图如下:由树状图知,共有27种等可能的结果,构成等边三角形的结果有3种,所以以a ,b ,c 为边长的三边形是等边三角形的概率是327=19.故选A.9. 【答案】B [解析] 因为根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,共13种情况,而能构成一个轴对称图形的有下列5种情况:所以使图中阴影部分的图形仍然构成一个轴对称图形的概率是513.故选B.10. 【答案】C [解析] 列表如下:由表格可知,所有等可能的结果有30种,其中组成“中高数”的结果有12种,因此组成“中高数”的概率为1230=25.二、填空题(本大题共8道小题)11. 【答案】[解析] (2)一共有12种等可能的结果,其中积为9的结果只有1种,所以积为9的概率为112;12种的结果中积为偶数的结果有8种,所以积为偶数的概率为812=23.(3)1~12这12个数中,不是表格中所填数字的有5,7,10,11,所以所求的概率为412=13. 解:(1)填表如下:(2)112 23 (3)1312. 【答案】0.5【解析】因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为:0.5.13. 【答案】13[解析] 可设第一个位置和第三个位置都与A 相邻.画树状图如下:∵共有6种等可能结果,A 与B 不相邻坐的结果有2种, ∴A 与B 不相邻坐的概率为13.14. 【答案】16[解析] 画树状图如下:由图可知,选修结果共有6种,每种结果出现的可能性相等,其中选修地理和生物的结果只有1种,因此所求概率为16.15. 【答案】23[解析] 转盘转动一次,出现6种等可能的结果,小于5的结果共有4种,故指针指向的数小于5的概率为46=23.16. 【答案】47[解析] 余下的小正方形共有7个,其中上面的4个涂上阴影都能构成正方体的展开图,所以任取1个小正方形涂上阴影,能构成正方体的展开图的概率为47.17. 【答案】35[解析] 解法1:列表如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种, 所以恰好选中一男一女的概率P =1220=35. 解法2:画树状图如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种, 所以恰好选中一男一女的概率P =1220=35.18. 【答案】35[解析] 列表如下:a b c d e e (a ,e ) (b ,e ) (c ,e ) (d ,e ) d (a ,d ) (b ,d ) (c ,d ) (e ,d ) c (a ,c ) (b ,c ) (d ,c ) (e ,c ) b (a ,b ) (c ,b ) (d ,b ) (e ,b ) a(b ,a )(c ,a )(d ,a )(e ,a )∴一共有20种等可能的结果,使电路形成通路的结果有12种, ∴使电路形成通路的概率是1220=35.三、解答题(本大题共4道小题)19. 【答案】解:(1)∵天气预报是晴的有4天,∴随机选择一天,恰好天气预报是晴的概率为47. (2)∵随机选择连续的两天的结果有晴晴,晴雨,雨阴,阴晴,晴晴,晴阴, ∴随机选择连续的两天,恰好天气预报都是晴的概率为26=13.20. 【答案】解:(1)∵掷一次骰子有4种等可能的结果,只有掷得4时,才会落回到圈A , ∴P 1=14. (2)列表如下:所有等可能的结果共有16种,当两次掷得的数字和为4的倍数,即掷得的结果为(1,3),(2,2),(3,1),(4,4)时,才可落回到圈A ,共有4种结果, ∴P 2=416=14.而P 1=14,∴淇淇与嘉嘉落回到圈A 的可能性一样.21. 【答案】(1)因为Rt △ABC 的两直角边长之比为2∶3, 所以设b =2k ,a =3k ,由勾股定理,得c =a2+b2=13k ,所以针尖落在四个直角三角形区域的概率为4×12×2k×3k13k2=1213. (2)因为正方形EFMN 的边长为8,所以c =8,所以a2+b2=c2=64. 因为Rt △ABC 的周长为18, 即a +b +c =18, 所以a +b =10,所以Rt △ABC 的面积=12ab =14[(a +b)2-(a2+b2)] =9.22. 【答案】(1)设小明购买x 枝康乃馨,y 枝兰花,其中x≥1,x ,y 均为整数,则⎩⎪⎨⎪⎧5x +3y≤30,①7≤x +y.②①+②×3,得5x +3y +21≤30+3x +3y , 所以x≤92,所以1≤x≤92. 当x =1时,5×1+3y≤30, 所以y≤253,所以y 可取8,7,6,所以可购买1枝康乃馨,8枝兰花或1枝康乃馨,7枝兰花或1枝康乃馨,6枝兰花. 当x =2时,5×2+3y≤30, 所以y≤203,所以y 可取6,5,所以可购买2枝康乃馨,6枝兰花或2枝康乃馨,5枝兰花. 当x =3时,5×3+3y≤30, 所以y≤5,所以y 可取5,4,所以可购买3枝康乃馨,5枝兰花或3枝康乃馨,4枝兰花. 当x =4时,5×4+3y≤30, 所以y≤103,所以y 可取3, 所以可购买4枝康乃馨,3枝兰花. 综上所述,共有8种购买方案. 方案如下表:(单位:枝)(2)若小明先购买一张2元的祝福卡,则5x +3y≤28,则他能实现购买愿望的方案为方案二、方案三、方案四、方案五、方案七,共5种,所以从(1)中任选一种方案买花,他能实现购买愿望的概率为58.第25章 概率初步 25.3 用频率估计概率1. 关于频率和概率的关系,下列说法正确的是( ) A .概率等于频率B .当试验次数很大时,频率稳定在概率附近C .当试验次数很大时,概率稳定在频率附近D .试验得到的频率与概率不可能相同2. 从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为( ). A .11000 B .1200C .12 D .153.下列说法正确的是( ).A .抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;B .为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;C .彩票中奖的机会是1%,买100张一定会中奖;D .中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,于是他得出全市拥有空调家庭的百分比为100%的结论.4. 在抛掷一枚硬币的试验中,第一小组做了 500 次试验,当出现正面的频数为________时,其出现正面的频率才是 49.6 %( ) A .248 B .250 C .258 D .无法确定5. 某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有( ). A .10粒 B .160粒 C .450粒 D .500粒 6.某校男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的概率是53,这个53的含义是( ). A .只发出5份调查卷,其中三份是喜欢足球的答卷; B .在答卷中,喜欢足球的答卷与总问卷的比为3∶8; C .在答卷中,喜欢足球的答卷占总答卷的53;D.在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球.7.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从1,四位同学分别采用了下列装法,你认为他袋中摸到红球的概率为5们中装错的是().A.口袋中装入10个小球,其中只有两个红球;B.装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球;C.装入红球5个,白球13个,黑球2个;D.装入红球7个,白球13个,黑球2个,黄球13个.8.某学生调查了同班同学身上的零用钱数,将每位同学的零用钱数记录了下来(单位:元):2,5,0,5,2,5,6,5,0,5,5,5,2,5,8,0,5,5,2,5,5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0.假如老师随机问一个同学的零用钱,老师最有可能得到的回答是().A. 2元 B.5元 C.6元 D.0元9. 小明想知道一碗芝麻有多少粒,于是就从中取出100粒涂上黑色,然后放入碗中充分搅匀后再随意取出100粒,其中有5粒是黑色的,因此可以估算这碗芝麻有粒.10. 为了估计水塘中的鱼的个数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼.如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的条数可估计为条.11. 在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个.12. 同时抛掷两枚硬币,按照正面出现的次数,可以分为“2个正面”、“1个正面”和“没有正面”这3种可能的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚硬币10次,下表为实验记录的统计表:结果第一组第二组第三组第四组第五组第六组两个正面 3 3 5 1 4 2一个正面 6 5 5 5 5 7没有正面 1 2 0 4 1 1由上表结果,计算得出现“2个正面”、“1个正面”和“没有正面”这3种结果的频率分别是___________________.当试验组数增加到很大时,请你对这三种结果的可能性的大小作出预测:______________.13.红星养猪场400头猪的质量(质量均为整数千克)频率分布如下,其中数据不在分点上组别频数频率46 ~ 50 4051 ~ 55 8056 ~ 60 16061 ~ 65 80从中任选一头猪,质量在65kg以上的概率是___________.14. 图表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约是.(精确到0.1)从袋口里随机摸出5个球(不放回),其中有2个为黑球,请你估计口袋里大约有多少个白球?参考答案:1---8 BBBAC CCB9. 200010. 120011. 1512. 3113,,102020111 ,, 42413. 0.1, 0.2, 0.4, 0.2, 0.075, 0.025;0.114. 0.515. 解:设有x个白球,根据已知,得25=8x+8,解得x=12,所以可估计口袋中共有12个白球.。
人教版九年级上册(新)第25章《概率初步》全章试题含答案

人教版九年级上册(新)第25章《概率初步》全章试题班级: 姓名: 分数一、单选题1.“抛一枚均匀硬币,落地后正面朝上”.这一事件是 ( )A. 随机事件B. 确定事件C. 必然事件D. 不可能事件 2.下列说法不正确的是A .选举中,人们通常最关心的数据是众数( )B .从1、2、3、4、5中随机取一个数,取得奇数的可能性比较大C .必然事件的概率为1D .某游艺活动的中奖率是60%,说明参加该活动10次就有6次会获奖3.在一个不透明的口袋中,装有3个红球,2个白球,除颜色不同外其余都相同,则随机从口袋中摸出一个球为红色的概率是( ) A .31 B .52 C .51 D .53 4.在一个不透明袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是( ) A .14 B .13C .12D .23 5.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的可估计为( )A .3000条B .2200条C .1200条D .600条6.下表是某种抽奖活动中,封闭的抽奖箱中各种球的颜色、数量,以及它们所代表的奖项:为了保证抽奖的公平性,这些小球除了颜色外,其他都相同,而且每一个球被抽中的机会均相等,则该抽奖活动抽中一等奖的概率为( ) A.16 B. 51C. 310D. 12 7.某奥体中心的构造如图所示,其东、西面各有一个入口A 、B ,南面为出口C ,北面分别有两个出口D 、E .聪聪若任选一个入口进入,再任选一个出口离开,那么他从入口A 进入并从北面出口离开的概率为( ) A .16 B .15 C .13D .12第8题图8. 如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是( )A .π2 B .2π C .π21D .π29.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( )A.14 B. 12 C. 34D. 1 10. 从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M :“这个四边形是等腰梯形” .下列判断正确的是( ) A .事件M 是不可能事件 B .事件M 是必然事件 C .事件M 发生的概率为 15D .事件M 发生的概率为 25二、填空题11.一个盒子内装有大小、形状相同的四个球,其中红球1个,绿球1个,白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是 ; 12.同时抛掷两枚硬币正面均朝上的概率为____ .13.在一个木制的棱长为3的正方体的表面涂上颜色,将它的棱三等分,然后从等分点把正方体锯开,得到27个棱长为l 的小正方体,将这些小正方体充分混合后,装入口袋,从这个口袋中任意取出一个第7题图小正方体,则这个小正方体的表面恰好涂有两面颜色的概率是 .14.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,放回.通过多次摸球实验后发现,摸到黄色球的概率稳定在15%附近,则袋中黄色球可能有___________个.15.一只盒子中有红球m 个,白球8个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m +n = .16.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游戏 .(填“公平”或“不公平”).17. 在x 2□2xy□y 2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是___________.18.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是 .19. 从-2、-1、0、1、2这5个数中任取一个数,作为关于x 的一元二次方程20x x k -+= 的k 值,则所得的方程中有两个不相等的实数根的概率是 .20.如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球叠成的图形,最下一层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色;;则从第(n )个图中随机取出一个球,是黑球的概率是 .三、解答题21.有3张形状材质相同的不透明卡片,正面分别写有1、2、-3,三个数字.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字作为一次函数b kx y +=中k 的值;第二次从余下的两张卡片中再随机抽取一张,上面标有的数字作为b 的值.(1)k 的值为正数的概率是 ; (2)用画树状图或列表法求所得到的一次函数b kx y +=的图像经过第一、三、四象限的概率.22.小英与她的父亲、母亲计划清明小长假外出旅游,初步选择了苏州、常州、上海、南京四个城市,由于时间仓促,他们只能去其中一个城市,到底去哪一个城市三个人意见不统一,在这种情况下,小英父亲建议,用小英学过的摸球游戏来决定,规则如下:①在一个不透明的袋子中装一个红球(苏州)、一个白球(常州)、一个黄球(上海)和一个黑球(南京),这四个球除颜色不同外,其余完全相同;②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;③若两人所摸出球的颜色相同,则去该球所表示的城市旅游,否则,前面的记录作废,按规则②重新摸球,直到两人所摸出球的颜色相同为止.按照上面的规则,请你解答下列问题:(1)已知小英的理想旅游城市是常州,小英和母亲随机各摸球一次,,请用画树状图或列表法求两人均摸出白球的概率是多少?(2)已知小英母亲的理想旅游城市是上海,小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是多少?参考答案一、填空题1、A2、D 3、D 4、A 5、A 6、A 7、A 8、A 9、B 10、B 二、填空 11、61、12、41 13、4914、6 15、 8 16: 不公平 17、21 18、31 19、53 20、21n三、解答题 21、(1)32 (2)3222、答案:解:(1)画树状图得:········· 2分∵共有16种等可能的结果,均摸出白球的只有1种情况,·········3分∴小英和母亲随机各摸球一次,均摸出白球的概率是:;·········5分(2)由(1)得:共有16种等可能的结果,至少有一人摸出黄球的有7种情况,··6分∴小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是:.·········8分。
新人教版九年级上数学第25章《概率初步》检测题含答案

人教版九年级数学(上)第25章《概率初步》检测题一、选择题(每小题3分,共30分)1、不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )A.摸出的是3个白球;B.摸出的是3个黑球;C.摸出的是2个白球、1个黑球;D.摸出的是2个黑球、1个白球;2、如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是( )A.14;B.18;C.28;D.38;第2题图3、某校举行春季运动会,需要在七年级选取一名志愿者,七(1)班、七(2)班、七(3)班各有2名同学报名参加,现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是七(3)班同学的概率是( )A.16;B.13;C.12;D.23;4、学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是( )A.19;B.16;C.13;D.12;5、已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为1 3 ,则a等于( )A.1;B.2;C.3;D.4;6、时代中学周末有40人去体育场观看足球比赛,40张票分别为B 区第2排1号到40号.分票采用随机抽取的办法,小明第一个抽取,他抽取的座位号为10号,接着小亮从其余的票中任意抽取一张,取得的一张恰与小明邻座的概率是( )A.140;B.12;C.139;D.239;7、一只不透明的袋子中有两个完全相同的小球,上面分别标有1、2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机摸出一个小球,则两次摸出小球的号码之积为偶数的概率是( )A.14;B.13;C.12;D.34;8、盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,放回盒子中,搅拌均匀后再摸,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为( )A.90个;B.24个;C.70个;D.32个;9、在数-1,1,2中任取两个数作为点的坐标,那么该点刚好在一次函数y=x-2图象上的概率是( )A.12;B.13;C.14;D.16;10、若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是( )A.12;B.23;C.25;D.35;二、填空题(每空3分,共36分)11、从长度分别为2、4、6、7的四条线段中随机取三条,能构成三角形的概率是.12、在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现,记录了如下的数据: 次数 1 2 3 4 5 6 7 8 9 10黑棋数 1 3 0 2 3 4 2 1 1 3估算袋中的白棋子数量为枚.13、如图,一只蚂蚁从A 点出发到D、E、F 处寻觅食物.假定蚂蚁在每个岔路口都等可能地随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A,B,C 都是岔路口).那么, 第13题图蚂蚁从A 出发到达E 处的概率是.14、在一副扑克牌中,规定红桃、方块、大王为红色,其余为黑色,则从中任意抽取两张.事件A:“一张红色,一张黑色”;事件B:“恰好是大王和小王”;事件C:“一张大王,另一张也是红色”.按照发生的可能性从大到小把A、B、C用“>”连接为: .15、一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次,摸出的小球标号的和等于4的概率是.16、抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不到的情况下随机摸出两只袜子,它们恰好同色的概率是.17、把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同的两片,然后堆放到一起混合洗匀.从这堆图片中随机抽出两张,这两张图片恰好能组成一张原风景图片的概率是.18、抛一枚质地均匀的硬币,正面朝上的概率为;抛两枚硬币都是正面朝上的概率为;抛三枚硬币都是正面朝上的概率为;抛四枚硬币都是正面朝上的概率为;抛n枚硬币都是正面朝上的概率为.三、解答题(共54分)19、6分)在一个不透明的口袋中装有大小、外形一模一样的5个红球、3个蓝球和2个白球,它们已经在口袋中被搅匀了,请判断以下事件是随机事件、不可能事件、还是必然事件.(1)从口袋中一次任意取出一个球,是白球;(2)从口袋中一次任取5个球,全是蓝球;(3)从口袋中一次任取5个球,只有蓝球和白球,没有红球;(4)从口袋中一次任意取出9个球,恰好红、蓝、白三种颜色的球都齐了.20206分)某公司现有甲、乙两种品牌的计算器,甲品牌计算器有A,B,C 三种不同的型号,乙品牌计算器有D,E 两种不同的型号,某中学要从甲、乙两种品牌的计算器中各选购一种型号的计算器.(1)列举出所有选购方案;(2)如果(1)中各种选购方案被选中的可能性相同,那么A 型号计算器被选中的概率是多少?21、(8分)一个盒子里有标号分别为1、2、3、4、5、6的六个小球,这些小球除标号数字外都相同.(1)从盒中随机摸出一个小球,求摸到标号数字为奇数的小球的概率.(2)甲、乙两人用这六个小球玩摸球游戏.规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里.充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字.若两次摸到小球的标号数字同为奇数或同为偶数,则判甲羸;若两次摸到小球的标号数字为一奇一偶,则判乙羸.请用列表法或画树形图的方法说明这个游戏对甲、乙两人是否公平.22、(8分)某乳品公司最新推出一款果味酸奶,共有红枣、木瓜两种口味,若送奶员连续三天,每天从中任选一瓶某种口味的酸奶赠送给某住户品尝,则该住户收到的三瓶酸奶中,至少有两瓶为红枣口味的概率是多少? (请用“画树形图”的方法给出分析过程,并求出结果)23、(8分)一个不透明袋子里有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性是否相同?(2)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,则n的值是多少?(3)在一个摸球游戏中,所有可能出现的结果如图,根据树状图呈现的结果,求两次摸出的球颜色不同的概率.24、(8分)父亲节快到了,明明准备为爸爸煮四个大汤圆作早点:一个芝麻馅、一个水果馅、两个花生馅,四个汤圆除内部材料不同外,其它一切均相同.(1)求爸爸吃前两个汤圆刚好都是花生馅的概率;(2)若给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生馅的可能性是否会增大? 请说明理由.25、(10分)李娜获得法网公开赛的冠军,圆了中国人的网球梦,也在国内掀起一股网球热.某市准备为青少年举行一次网球知识讲座,小明和妹妹都是网球迷,要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题,小明想到一个办法:他拿出一个装有质地、大小相同的2x个红球与3x 个白球的袋子(x>1),让爸爸从中摸一个球,如果摸出的是红球,妹妹去听讲座,如果摸到的是白球,小明去听讲座.(1)爸爸说这个办法不公平,请你用概率的知识解释原因.(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,请问摸球的结果是对小明有利还是对妹妹有利,说明理由.参考答案:1、A;2、D;3、B;4、C;5、A;6、D;7、D;8、B;9、D;10、C;11、12;12、40;13、12;14、A>C>B;15、316;16、13;17、15;18、12,14;18;116;12n;19、解:(1)可能发生,也可能不发生,是随机事件;(2)一定不会发生,是不可能事件;(3)可能发生,也可能不发生,是随机事件;(4)一定会发生,是必然事件.2020:(1)选购方案有6种等可能的结果:(A,D),(A,E),(B,D),(B,E),(C,D),(C,E);(2)P(A 型号被选中)=21 = 6321、解:(1)P(奇)=31 = 62(2)列表如下:由表可知共有36种等可能的情况,其中摸到小球标号同为奇数或同为偶数有18种,一奇一偶有18种;∴P(甲赢)=181=362;P(乙赢)=181=362∴这个游戏对甲、乙两人是公平的.22、解:画树形图如下:∴共有8种等可能情况,其中4种情况至少有两瓶为红枣口味;∴P(至少有两瓶为红枣口味)=41 = 8223、解:(1)相同;(2) 2;(3)由树状图可知共有12种等可能结果,其中两次摸出的球颜色不同(记为事件A)的结果共有10种,∴P(A)=105=126甲/乙 1 2 3 4 5 61 1,1 1,2 1,3 1,4 1,5 1,62 2,1 2,2 2,3 2,4 2,5 2,63 3,1 3,2 3,3 3,4 3,5 3,64 4,1 4,2 4,3 4,4 4,5 4,65 5,1 5,2 5,3 5,4 5,5 5,66 6,1 6,2 6,3 6,4 6,5 6,624、解:(1)分别用A,B,C 表示芝麻馅、水果馅、花生馅的大汤圆,画树状图得∵共有12种等可能的结果,爸爸吃前两个汤圆刚好都是花生馅的有2种情况,∴爸爸吃前两个汤圆刚好都是花生馅的概率为21= 126.(2)会增大.理由:分别用A,B,C 表示芝麻馅、水果馅、花生馅的大汤圆,画树状图:∵共有2020可能的结果,爸爸吃前两个汤圆都是花生馅的有6种情况,∴爸爸吃前两个汤圆都是花生馅的概率为631=20106>。
2018-2019学年度人教版数学九年级上第25章概率初步单元测试卷有答案

2018-2019学年度人教版数学九年级上册第25章《概率初步》单元测试卷(考试时间:120分钟 满分:120分)第Ⅰ卷 (选择题 共36分)一、选择题(每小题3分,总计36分。
请将唯一正确答案的字母填写在表格内)1.下列事件中是随机事件的有( )①早晨的太阳一定从东方升起 ②打开数学课本时刚好翻到第60页 ③从一定高度落下的图钉,落地后钉尖朝上 ④小红经过十字路口时,遇到红灯A .1个B .2个C .3个D .4个2.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件必然发生的是( )A .摸出的4个球中至少有一个是白球B .摸出的4个球中至少有一个是黑球C .摸出的4个球中至少有两个是黑球D .摸出的4个球中至少有两个是白球3.如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是( )A.14B.13C.12D.234.在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是( )A.17B.37C.47D.575.小明在做一道正确答案是2的计算题时,由于运算符号(“+”“-”“×”或“÷”)被墨迹污染,看见的算式是“4■2”,那么小明还能做对的概率是( )A.14B.13C.16D.126.某校举行春季运动会,需要在七年级选取一名志愿者,七(1)班、七(2)班、七(3)班各有2名同学报名参加,现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是七(3)班同学的概率是( )A.16B.13C.12D.237.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( )A .1B .2C .3D .48.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是( )A.19B.16C.13D.129.一只不透明的袋子中有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机摸出一个小球,则两次摸出小球的号码之积为偶数的概率是( )A.14B.13C.12D.3410.在数-1,1,2中任取两个数作为点的坐标,那么该点刚好在一次函数y =x -2图象上的概率是( ) A.12 B.13 C.14 D.1611.从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为( ) A.12 B.13 C.14 D.1512.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有6个黄球,每次摸球前先将盒子里的球摇匀,任意摸出1个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么推算出n 大约是( )A .6B .10C .18D .20第Ⅱ卷 (非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.(盐城中考)如图所示是一个飞镖游戏板,大圆的直径把一组同心圆分成四等份,假设飞镖击中圆面上每一个点都是等可能的,则飞镖落在灰色区域的概率是____.第13题图 第15题图14.某校九(2)班在体育考试中全班所有学生的得分情况如表所示:从九(2)__ _.15.一个均匀的立方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是__ _.16.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不到的情况下随机摸出两只袜子,它们恰好同色的概率是__ _.17.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是__ _. 18. 在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:姓名 学号 班级------------------------------------------------装-----------------------------------订----------------------------------线--------------------------------------------------根据以上数据,估算袋中的白棋子数量为____枚. 三、解答题(本大题共8小题,共66分)19.(5分)下列事件中,哪些事件是必然事件,哪些事件是不可能事件,哪些事件是随机事件? (1)中秋节晚上一定能看到月亮; (2)各边相等的多边形是正多边形;(3)在面值为1元、2元、5元的三张人民币中任取两张,面值的和小于8元; (4)买一张彩票,末位数字是8;(5)从装有2个红球和3个黄球的袋子中摸出一个白球.20.(6分)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球、8个黑球、7个红球. (1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是13,求从袋中取出黑球的个数.21.(8分)如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,当作指向右边的扇形).(1)求事件“转动一次,得到的数恰好是0”发生的概率; (2)写出此情境下一个不可能发生的事件;(3)用树状图或列表法,求事件“转动两次,第一次得到的数与第二次得到的数绝对值相等”发生的概率.22.(8分)端午节放假期间,小明和小华准备到宜宾的蜀南竹海(记为A )、兴文石海(记为B )、夕佳山居民(记为C )、李庄古镇(记为D )中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.(1)小明选择去蜀南竹海旅游的概率为________;(2)用画树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率.23.(8分)全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是__ __; (2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.24.(10分)如图的方格地面上,标有编号A ,B ,C 的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,问小鸟落在草坪上的概率是多少? (2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A 和B 的2个小方格空地种植草坪的概率是多少(用树状图或列表法求解)?25.(10分)教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是__0__;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排和第三排灯的概率.26.(11分)从一副52张(没有大小王)的扑克牌中,每次抽出1张,然后放回洗匀再抽,在试验中得到下表中部分数据:(1)将数据表补充完整;(2)从上表中可以估计出现方块的概率是________(精确到0.01);(3)从这副扑克牌中取出两组牌,分别是方块1,2,3和红桃1,2,3,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,若摸出的两张牌的牌面数字之和等于3,则甲方赢;若摸出的两张牌的牌面数字之和等于4,则乙方赢.你认为这个游戏对双方是公平的吗?若不是,有利于谁?请你用概率知识(列表法或画树状图法)加以分析说明.参考答案一、二、 13.12. 14.58. 15.13. 16.13. 17.14. 18.40三、 解答题(本大题共8小题,共66分)19.(3)是必然事件,(1)(2)(4)是随机事件,(5)是不可能事件.20.(1)14;(2)设取出x 个黑球,由题意得8-x 20-x =13,解得x =2,经检验x =2是方程的解且符合题意,即从袋中取出黑球的个数为2.21.(1)P (所指的数为0)=13;(2)答案不唯一,如:事件“转动一次,得到的数恰好是2”或事件“转动两次,第一次与第二次得到的两数之和为3”;(3)列表或画树状图略.P (所指两数的绝对值相等)=59.22.(1)14;(2)画树状图如下:根据树状图可知,共有16种等可能的结果,其中小明和小华都选择去兴文石海旅游的结果有1种,所以P (小明和小华都选择去兴文石海)=116.23.(1)12(2)解:乙家庭没有孩子,准备生两个孩子,所有可能出现的结果有(男,男),(男,女),(女,男),(女,女),共有4种,它们出现的可能性相同,所有的结果中,满足“至少一个孩子是女孩”(记为事件A )的结果有3种,所有P (A )=34.24.解:(1)P (小鸟落在草坪上)=69=23.(2)由列表可知,共有6种等可能结果,编号为A ,B 的2个小方格空地种植草坪有2种,所以P (编号为A ,B 的2个小方格空地种植草坪)=26=13.25,A ,A ,A 分别表示第一排,第二排,第三排,第四排日光灯,列表如图所示.∴共有12种情况,其中满足条件的有两种(A 3,A 1)(A 1,A 3), ∴P (关掉第一排和第三排)=212=16. 26. 解:(1)30;0.250;(2)0.25;(3)列表如下.所有等可能的结果有9种,其中甲方赢的结果有2种,乙方赢的结果有3种,∴P (甲方赢)=29,P (乙方赢)=39=13,∴P (乙方赢)≠P (甲方赢),∴这个游戏对双方是不公平的,有利于乙方.。
2018-2019学年九年级数学上册 第25章 概率初步 25.1 随机事 件与概率 25.1.2 概率课件 (新版)新人教版

图25-1-6
解:一共有 8 个相等的扇形,所有可能结果的总数为 8. (1)指针指向红色的结果有 2 个, 2 1 ∴P(指针指向红色)=8=4; (2)指针指向黄色或绿色的结果有 3+3=6(个), 6 3 ∴P(指针指向黄色或绿色)=8=4.
当堂测评
1.[2017· 宁波] 一个不透明的布袋里装有 5 个红球,2 个白球,3 个黄球, 它们除颜色外其余都相同,从袋中任意摸出 1 个球,是黄球的概率为( C ) 1 A.2 3 C.10 1 B.5 7 D.10
图25-1-11
解:(1)∵转盘被平均分成 16 份,其中有颜色的部分占 6 份,∴P(获得奖 6 3 品)=16=8. (2)∵转盘被平均分成 16 份,其中红色、黄色、绿色部分分别占 1 份、2 份、3 份, 1 2 1 3 ∴P(获得玩具熊)=16,P(获得童话书)=16=8,P(获得水彩笔)=16.
3.必然事件、不可能事件、随机事件的概率之间的关系 必然事件:P(A)=1. 不可能事件:P(A)=0. 随机事件:0<P(A)<1. 规 律:事件发生的可能性越大,它的概率越接近 1;反之,事件发生
的可能性越小,它的概率越接近 0.因此概率从数量上刻画了一个随机事件发生 的可能性的大小.
数量关系:
图 2519
6.[2017· 通辽] 毛泽东在《沁园春· 雪》中提到五位历史名人:秦始皇、汉 武帝、唐太宗、宋太祖、成吉思汗,小红将这五位名人简介分别写在五张完全 相同的知识卡片上,小哲从中随机抽取一张,卡片上介绍的人物是唐朝以后出 2 生的概率是 5 .
7.[2016· 济宁] 如图 25110,在 4×4 的正方形网格 中, 黑色部分的图形构成一个轴对称图形, 现在任意选取 一个白色的小正方形并涂黑, 使黑色部分的图形仍然构成 一个轴对称图形的概率是( B ) 6 A.13 4 C.13 5 B.13 3 D.13
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十五章综合检测试卷(满分:100分 时间:90分钟)一、选择题(每小题2分,共20分)1.【2017·辽宁抚顺中考】下列事件中是必然事件的是( D ) A .任意画一个正五边形,它是中心对称图形 B .实数x 使式子x -3有意义,则实数x >3C .a ,b 均为实数,若a =38,b = 4 ,则a >b D .5个数据分别是:6,6,3,2,1,则这组数据的中位数是32.【2016·福建三明中考】对“某市明天下雨的概率是75%”这句话,理解正确的是( D )A .某市明天将有75%的时间下雨B .某市明天将有75%的地区下雨C .某市明天一定下雨D .某市明天下雨的可能性较大3.【四川德阳中考】下列事件发生的概率为0的是( C ) A .射击运动员只射击1次,就命中靶心 B .任取一个实数x ,都有|x |≥0C .画一个三角形,使其三边的长分别为8 c m 、6 c m 、2 c mD .抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为64.一个袋中有4颗珠子,其中2颗红色,2颗蓝色,除颜色外其余特征均相同,若从这个袋中任取2颗珠子,都是蓝色珠子的概率为( D )A.12 B .13C .14D .165.【2016·湖南常德中考】下列说法正确的是( D )A .袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B .天气预报“明天降水概率为10%”,是指明天有10%的时间会下雨C .某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖D .连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上 6.一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数.将骰子抛掷两次,掷第一次,将朝上一面的点数记为x ;掷第二次,将朝上一面的点数记为y ,则点(x ,y )落在直线y =-x +5上的概率为( C )A.118 B .112C .19D .147.【2016·广西梧州中考】三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a 、b 、c ,则以a 、b 、c 为边长正好构成等边三角形的概率是( A )A.19 B .127C .59D .138.在物理课上,某实验的电路图如图所示,其中S 1、S 2、S 3表示电路的开关,L 表示小灯泡,R 为保护电阻.若闭合开关S 1、S 2、S 3中的任意两个,则小灯泡L 发光的概率是( B )第8题A.16 B .13C .12D .239.如图是两个完全相同的转盘,每个转盘被分成了面积相等的四个区域,每个区域内分别填上数字“1”“2”“3”“4”.甲、乙两学生玩转盘游戏,规则如下:固定指针,同时转动两个转盘,任其自由转动,当转盘停止时,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜,那么在该游戏中乙获胜的概率是( A )第9题A.34 B .14C .12D .5610.如图,正六边形中,点A 在一边上运动,AO 交六边形的另一边于点B ,过点O 作AB 的垂线交六边形于C 、D 两点,形成如图所示的阴影部分.小姜设计了两个方案:①把如图所示的飞镖盘纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是14;②以O 为旋转中心,把六边形做成转盘,则指针落在阴影部分的概率是14.那么以上两种方案正确的是( C )第10题A .①②B .①C .②D .①②都错误二、填空题(每小题3分,共24分)11.袋子中装有白球3个和红球2个,每个球除颜色外都相同,从袋子中任意摸出一个球.则P (摸到白球)=__35__;P (摸到红球)=__25__;P (摸到绿球)=__0__.12.【上海中考】某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是__750__.13.【2016·新疆乌鲁木齐中考】不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,则第一次摸到红球,第二次摸到绿球的概率为__14__.14.将红、黄、蓝三种颜色不同外,其余相同的球放在不透明的纸箱里,其中红球4个,蓝球3个,黄球若干个.若每次只摸出一球(摸出后放回),摸出红球的概率是25,则黄球有__3__个.15.【2016·湖北黄石中考】如图所示,一只蚂蚁从A 点出发到D 、E 、F 处寻觅食物.假定蚂蚁在每个岔路口都等可能的随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A 、B 、C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是__12__.第15题16. 一张圆桌旁有四个座位,A 先座在如图所示的座位上,B 、C 、D 三人随机坐到其他三个座位上.则A 与B 不相邻而坐的概率是__13__.第16题17.【2017·江苏宿迁中考】如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2 m 的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是__1__m 2.第17题18.冰冰和雪雪做掷两个筹码的游戏,两个筹码是这样的:一个两面都写有8;另一个一面写有8,另一面写有9.游戏规则是:两人各持一筹码同时掷出,如果掷出一对8,雪雪得1分;如果掷出一个8和一个9,冰冰得1分,你觉得这个游戏公平吗?__公平__.(选填“公平”或“不公平”)三、解答题(共56分)19.(9分)【2017·江苏淮安中考】一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.(1)用树状图或列表等方法列出所有可能出现的结果; (2)求两次摸到的球的颜色不同的概率. 解:(1)如图:(2)共有6种等可能情况,两次摸到的球的颜色不同的情况有4种,概率为46=23.20.(9分)下表是一名同学在罚球线上投篮的试验结果,根据表中数据,回答问题.(1)(2)根据此概率,估计这名同学投篮622次,投中的次数约是多少? 解:(1)估计这名同学投篮一次,投中的概率约是0.5.(2)622×0.5=311(次).所以估计这名同学投篮622次,投中的次数约是311次. 21.(9分)“六一”儿童节期间,某商厦为了吸引顾客,设立了一个可以自由转动的转盘(转盘被平均分成16份),并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准哪个区域,顾客就可以获得相应的奖品.第21题小明和妈妈购买了125元的商品,请你分析计算: (1)小明获得奖品的概率是多少? (2)小明获得童话书的概率是多少?解:(1)∵转盘被平均分成16份,其中有颜色部分占6份,∴小明获得奖品的概率为616=38. (2)∵转盘被平均分成16份,其中黄色部分占2份,∴小明获得童话书的概率为216=18. 22.(9分)【2016·四川成都中考】在四张编号为A 、B 、C 、D 的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.第22题(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A 、B 、C 、D 表示);(2)我们知道,满足a 2+b 2=c 2的三个正整数a 、b 、c 称为勾股数,求抽到的两张卡片上的数都是勾股数的概率.解:(1)画树状图如下:共有12种等可能的结果数.(2)由题意,易知卡片B 、C 、D 中的三个数,是勾股数则抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率=612=12.23.(10分)甲、乙两同学投掷一枚骰子,用字母p 、q 分别表示两人各投掷一次的点数. (1)求满足关于x 的方程x 2+px +q =0有实数解的概率; (2)求(1)中方程有两个相同实数解的概率. 解:列表计算Δ=p 2-4q 的值如下:19种,故其概率为1936.(2)由上表可知,满足方程有两个相同实数解的情况共2种,故其概率为118.24.(10分)【云南中考】现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方体骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同).先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树状图的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢.问:小明和小王谁赢的可能性更大?请说明理由.解:(1)画树状图如下:共有18种等可能情况,数字之积为6的情况有3种,则P (数字之积为6)=318=16.(2)由树状图可知,该游戏所有等可能的结果共18种,其中骰子向上一面出现的数字与卡片上的数字之积大于7的有7种;骰子向上一面出现的数字与卡片上的数字之积小于7的有11种,所以小明赢的概率为718,小王赢的概率为1118,故小王赢的可能性更大.。