2017春八年级数学下册4.1因式分解教学课件(新版)北师大版

合集下载

4.1因式分解(共15张PPT)北师大版初中数学八年级下册

4.1因式分解(共15张PPT)北师大版初中数学八年级下册
课堂小结
布置作业
教科书第94页
习题4.1第1、2、3、4
结同

束学


4.1 因式分解
八年级下册
1.经历从因数分解到因式分解的类比过程,感受类比的方法.




2.经历用几何图形解释因式分解的意义的过程,发展几何直观.
3.了解因式分解的意义,初步体会因式分解与整式乘法的联系.
4.感受因式分解在解决相关问题中的作用.
创设情境
问题导入
探究新知
应用新知
巩固新知
课堂小结
布置作业
创设情境
归纳
因式分解
探究新知
多项式
应用新知
整式乘法与因式分解是互为逆变形.
巩固新知
课堂小结
布置作业
整式乘法
整式乘积
创设情境
课堂练习
判断
判断下列各式从左到右的变形中,是否为因式分解:
探究新知
应用新知
巩固新知
课堂小结
布置作业

. ( − ) = −
. 2 − 1 + 2 = ( − 1)( + 1) + 2
. 2 − 1 = ( − 1)( + 1) 是
. + + = ( + ) + 否
1
E. 2
x
−1
1
=(
x

11)(x+ 1)否否
创设情境
能力提升
思考
若多项式 2 + + 分解因式的结果为 ( − 2)( + 3) ,
探究新知
应用新知

八年级数学下册 4.1 因式分解课件 (新版)北师大版

八年级数学下册 4.1 因式分解课件 (新版)北师大版

能力提升 拓展应用
1当 a 3.14,b 2.386,c 1.386时, 求ab ac的值 .
解: ab-ac=a(b-c) 当a=3.14, b=2.386, c=1.386时, 原式=3.14×(2.386-1.386)
=3.14
2. 20082+2009能被2008整除吗? 解: ∵20082+2009=2008(2008+1)
用a表示任意一个大于1的整数,则:
a3 a a a2 a a (a 2 1) a (a 1)(a 1) (a 1) a (a 1)
上面式子化成了几个整式积的形式
思考:因式分解与整式乘法有什么关系?
因式分解定义
• 把一个多项式化成几__个__整__式__的__积__的 形式,这种变形叫做把这个多项式 分解因式,也叫因式分解。
探究993-99能被100整除吗?
小明是这样想的: 993-99=99×992-99 ×1
=99 ×(992-1) =99 (99+1)(99-1)
= 99×100×98 所以, 993-99能被100整除.
你知道每一步的根据吗?
想一想: 993-99还能被哪些整数整除? 答: 98, 99
将99换成其他任意一个大于1 的整数,上述结论仍然成立吗?
第四1) 736×95+736×5 解 :736×95+736×5=736×(95+5) =736×100=73600
-2.67× 132+25×2.67+7×2.67=
(2)-2.67× 132+25×2.67+7×2.67 解:-2.67× 132+25×2.67+7×2.67 =2.67×(-132+25+7)=2.67×(-100)=-267

北师大版八年级数学下册《因式分解——提公因式法》教学PPT课件(3篇)

北师大版八年级数学下册《因式分解——提公因式法》教学PPT课件(3篇)

= −(4 ∙ 6 2 − 4 ∙ 3 + 4 ∙ 7)
= −4(6 2 − 3 + 7).
易错注意:1.公因式要提尽;
2.公因式是某项时剩余的系数1别忘;
错误
提公因式后括号里少了一项.
正确解:原式=3x·
x-6y·
x+1·x
=x(3x-6y+1)
请你判断小明的解法有误吗?
因式分解: - x2+xy-xz.
解:原式= - x(x+y-z).
错误
提出负号时括号里的项
没变号
正确解:原式= - (x2-xy+xz)
=- x(x-y+z)
探索新知
巩固练习 将下列各式分解因式
项式的各项变号;
2.公因式的系数是多项式各项__________________;
系数的最大公约数
相同的字母
3.字母取多项式各项中都含有的____________;
4.相同字母的指数取各项中最小的一个,即 最低次幂
_________.
合作探究
因式分解:a(x-3)+2b(x-3)
(1)多项式的公因式是什么?
B.6(p+q)2-2(p+q)=2(p+q)(3p+q-1)
C.3(y-x)2+2(x-y)=(y-x)(3y-3x+2)
D.3x(x+y)-(x+y)2=(x+y)(2x+y)
4.用提公因式法因式分解:
(1)6p(p+q)-4q(p+q);
解:6p(p+q)-4q(p+q)
=2(p+q)(3p-2q).
A.x4
B.x3+1
C.x4+1
D.x3-1

北师大版八年级下册数学《因式分解》PPT教学课件

北师大版八年级下册数学《因式分解》PPT教学课件

合作探究
探究点三 问题1:因式分解:把一个多项式化成几个 整式 的 积 的形式,这种变形叫 做因式分解.因式分解也可称为 分解因式 . 问题2:你能说明因式分解与整式的乘法有什么关系吗? 多项式的因式分解与整式的乘法互为逆变形过程. 因此可以用整式的乘法来检验分解因式是否正确.
合作探究
探究点四 例1:已知多项式x2-4x+m因式分解的结果为(x+a)(x-6),求2a-m的值 解:(x+a)(x-6)
课程讲授
1 因式分解的定义
问题1:
完成下列题目: x(x-2)=__x_2_-_2_x_ (x+y)(x-y)=__x_2-_y_2__ (x+1)2=_x_2_+_2_x_+_1_
根据左空,解决下列问题: x2-2x=( x )( x-2 ) x2-y2=( x+y )( x-y ) x2+2x+1=( x+1 )2
4.1 因式分解
八年级下册
学习目标
1 经历从分解因数到分解因式的类比过程. 2 了解因式分解的意义,以及它与整式乘法的相互关系. 3 感受因式分解在解决相关问题中的作用.
前置学习
1.下列等式从左到右的变形,属于因式分解的是( D )
A.a(x-y)=ax-ay
B.x²+2x+1=x(x+2)+1
整式乘法
(x+1)(x-1)
课程讲授
1 因式分解的定义
归纳:因式分解与整式乘法是互逆运算,二者是一个 式子的两种不同表现形式.因式分解的等号右边是两个 或几个因式积的形式,整式乘法的等号右边是多项式的 形式.
随堂练习
1. 下列各式中从左到右的变形属于分解因式的是( C ) A. a(a+b-1)=a2+ab-a B. a2-a-2=a(a-1)-2 C. -4a2+9b2=(-2a+3b)(2a+3b) D.2x +1=x(2+ 1 )

4-1 因式分解(课件)八年级数学下册(北师大版)

4-1 因式分解(课件)八年级数学下册(北师大版)
B.a2-b2-c2=(a-b)(a+b)-c2
C.10x2-5x=5x(2x-1)
D.x2-16+6x=(x+4)(x-4)+6x
随堂练习
3.把x2-3xy2分解因式,结果正确的是( D )
A.(x+3xy)(x-3xy)
பைடு நூலகம்
B.x(x-3xy)
C.x2(1-3xy2)
D.x(x-3y2)
4. 20162-2016不能被下列哪个数整除?( B )
A.a2+1=a(a+
1
)
a
B.(x+1)(x-1)=x2-1
C.a2+a-5=(a-2)(a+3)+1
D.x2y+xy2=xy(x+y)
探究新知
分解因式的要求:
1.分解的结果最后是积的形式;
2.每个因式必须是整式,且每个因式的次数都必须低
于多项式的次数;
3.必须分解到每个因式不能再分解为止
随堂练习
A.6
B.2017
C.2016
D.2015
随堂练习
5.若x2+3x+m=(x+1)(x+2),则m的值为( B )
A.1
B.2
C.3
D.4
6. 一个多项式分解因式的结果是(b3+2)(2-b3),那么
这个多项式是( B )
A.b6-4
B.4-b6
C.b6+4
D.-b6-4
随堂练习
7. (3a-y)(3a+y)是下列哪一个多项式因式分解的结果( C )
(2)2a3b2c+4ab3c-abc
=abc·2a2b+abc·4b2-abc·1
=abc (2a2b+4b2-1)
随堂练习
9.将下列各式分解因式

北师大版八年级下册数学《4.1 因式分解》教学设计

北师大版八年级下册数学《4.1 因式分解》教学设计

北师大版八年级下册数学《4.1 因式分解》教学设计一. 教材分析《4.1 因式分解》是北师大版八年级下册数学的一章内容。

本章主要介绍了因式分解的概念、方法和应用。

因式分解是初中学过的最复杂的整式运算,也是中学数学中重要的思想方法。

本章内容对于学生来说,既是对之前所学知识的巩固,也是为之后学习更高级数学打下基础。

二. 学情分析学生在学习本章内容之前,已经掌握了整式的加减、乘法、除法等基本运算,同时也学习过一些简单的因式分解方法。

但是,对于八年级的学生来说,因式分解仍然是一个比较困难的问题,需要通过实例讲解和练习来进一步理解和掌握。

三. 教学目标1.知识与技能:使学生理解因式分解的概念,掌握因式分解的方法,能够运用因式分解解决实际问题。

2.过程与方法:通过实例讲解和练习,培养学生观察、分析、归纳的能力,提高解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和毅力,使学生感受到数学的美丽和实用性。

四. 教学重难点1.重点:因式分解的概念和方法。

2.难点:如何运用因式分解解决实际问题。

五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法,通过实例讲解、练习和讨论,使学生理解和掌握因式分解的方法和应用。

六. 教学准备1.准备相关教学材料,如PPT、教案、练习题等。

2.准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)通过一个实际问题,引出因式分解的概念和方法。

例如,讲解“分解因数”的概念,让学生初步了解因式分解的意义。

2.呈现(15分钟)讲解因式分解的基本方法,如提公因式法、公式法等。

通过示例,让学生观察和分析因式分解的过程,引导学生主动思考和探究。

3.操练(15分钟)让学生分组进行练习,互相讨论和交流因式分解的方法。

教师巡回指导,解答学生的疑问,及时给予反馈和评价。

4.巩固(10分钟)让学生独立完成一些因式分解的题目,巩固所学知识。

教师选取部分学生的作业进行讲解和分析,指出其中的错误和不足。

北师大版初中八年级下册数学课件 《提取公因式法》因式分解PPT(第1课时)

北师大版初中八年级下册数学课件 《提取公因式法》因式分解PPT(第1课时)

举一反三
2. 利用分解因式计算:(-2)²ºº¹+(-2)²ºº²× 1 2
解:(-2)²ºº¹+(-2)²ºº²×1 =(-2)²ºº¹×[1-(-2) ×] 2
1
=(-2)²ºº¹×0
2
=0
随堂检测
1.下列各式中,没有公因式的是( C )
A.ab-bc
B.y²-y
C.x²+2x+1 D.mn²-nm+m²
D
3. 把首项系数变为正数.
(1)-2x²y-2xy²=-()
(2)-2x²+3x-1=-() 2x²y+2xy²
2x²-3x+1
活动探究
探究点一 问题1:多项式ac+bc每项含有哪些因式?有相同的因式吗?3x²+x呢? mb²+nb+b呢? 解:多项式ac+bc的ac项含因式a、c、ac;bc项含因式b、c、bc.相同因式:c 多项式3x²+x含因式3、x、x²3x、3x²相同因式:x 多项式mb²+nb+b含因式m、b、b²mx²、n;相同因式:b
4.2提取公因式法 第1课时
八年级下册
学习目标 1 能确定多项式各项的单项式公因式; 2 会用提公因式法把多项式分解因式.
前置学习
1. 下列各式公因式是a的是()D
A. ax+ay+5B.3ma-6ma²C.4a²+10abD.a²-2a+ma
2. -6xyz+3xy²-9x²y的公因式是()
A.-3xB.3xzC.3yzD.-3xy
活动探究
探究点二 问题1:把下列各式因式分解: (1)3x+x³;(2)7x³-21x²; (3)8a³b²-12ab³c+ab;(4)-24x³+12x²-28x. 解:(1)原式=3•x+x²•x=x(3+x²); (2)原式=7x²•x+7x²•3=7x² (x-3); (3)原式=ab•8a²b-ab•12b²c+ab=ab(8a²b-12b²c+1); (4)-(24x³-12x²+28x)=-(4x•6x²-4x•3x+4x•7) =-4x(6x²-3x+7).

北师大版八年级数学(下册)优秀教学案例:4.1因式分解

北师大版八年级数学(下册)优秀教学案例:4.1因式分解
在本章节的教学过程中,我将关注学生在知识与技能、过程与方法、情感态度与价值观等方面的全面发展,努力提高他们的数学素养,为学生的终身发展奠定坚实基础。在教学实践中,注重激发学生的学习兴趣,营造轻松愉快的教学氛围,使他们在愉悦的情感体验中学习数学,感受数学的无穷魅力。
三、教学策略
(一)情景创设
为了让学生更好地理解因式分解的概念和意义,我将通过创设丰富多样的教学情景,引导学生从生活中发现数学的影子。例如,通过实际生活中的物品购买问题,让学生体会因式分解在简化计算方面的作用;或者通过设计有趣的数学故事,将因式分解融入其中,激发学生的学习兴趣。此外,利用多媒体教学手段,如动画、图片等,形象直观地展示因式分解的过程,帮助学生形成直观的认识。
1.例题1:(a+b)×(a+b)
例题2:(x+y)×(x-y)
例题3:a^2+2ab+b^2
2.讨论要求:
(1)各小组讨论并确定解题方法。
(2)各小组派代表展示解题过程及答案。
(3)讨论过程中,鼓励学生提问、质疑,分享解题心得。
(四)总结归纳
在总结归纳环节,我会带领学生回顾本节课所学的因式分解方法,总结各方法的优缺点及适用场景。
2.因式分解的意义:因式分解可以帮助我们简化计算,解决实际问题。
3.因式分解的方法:介绍提取公因式法、十字相乘法、平方差公式等常用的因式分解方法。
在讲解过程中,结合具体例题,让学生直观地感受因式分解的过程,并强调各方法的适用条件及注意事项。
(三)学生小组讨论
在学生小组讨论环节,我会给出几个具有代表性的例题,让学生分组讨论,共同完成因式分解的任务。
北师大版八年级数学(下册)优秀教学案例:4.1因式分解
一、案例背景

因式分解北师大数学八年级下册PPT课件

因式分解北师大数学八年级下册PPT课件
B. − + = − +
C. − = −
D. + = + +

课堂检测
基础巩固题
2.

如果多项式

+



么另一个因式是( B

A. c−b+5ac
B.c+b−5ac
1
C. ac
5
1
D. ac
5


− 的一个因式是 ,那
= ( + ) − ( − ) −
= ++ +− −+ −−
∵ , , 是△ABC的三边,
∴ + + > , + − > , − + > , − − < ,
∴原式< ,即( + − ) − < .
北师大版 八年级 数学 下册
4.1 因式分解
导入新知
630可以被哪些整数整除?
解决这个问题,需要对630进行分解质因数
= × × ×
思考:既然有些数能分解因数,那么类似地,有些多项
式可以分解成几个整式的积吗?
素养目标
2. 理解因式分解与整式乘法之间的联系与区
别.
1. 理解掌握因式分解的意义,会判断一个变
.
探究新知
3.观察下面拼图过程,写出相应的关系式.
(2)
x
x
x
x+1
1
x
1
1
1
x+1
+ +

北师大版初二数学下册数学八年级下北师大第四章因式分解

北师大版初二数学下册数学八年级下北师大第四章因式分解
=m(m-n)(n+m-n) =m²(m-n);
6.(x+y+z)²-(x-y-z)²=(x+y+z+x-y-z)(x+y+z-x+y+z) =2x(2y+2z)
7.4xy²-4x²y-y³=y(4xy-4x²-y²)
8.x²-6x+8=(x-2)(x-4)
1.把下列各式分解因式. (1) 5a²-20b²; (2) p²(a-1)+p(1-a)²; (3)a²(x-y) + 9b²(y-x); (4)(a²-4)²+6(a²-4)+9 .
1. b²- 2b-8=b (b-2 ) – 8; 2. 2x3 4x 2 2x =2x(x²+2x); 3.x(x+y)(x-y)-x(x+y)²=x(x+y)(x-y-x-y); 4.p4 - 1=(p²+1)(p²-1); 5.mn(m-n)-m(n-m)²=mn(m-n)+m(m-n)²
提公因式法 运用公式法
平方差公式 a2 b2 (a b)(a b)
完全平方公式 a2 2ab b2 (a b)2
如果把乘法公式反过来,那 么就可以用来把某些多项式 分解因式,这种分解因式的 方法叫做运用公式法。
下列各式的因式分解是否正确?如果不正确, 应怎样改正?你能从中得到什么启示?
2.你能把下列各式分解因式吗?
(1)x²-y²-2y-1 (2) m²-4mn+3n²
解:(1)原式=x²-(y²+2y+1 ) =x²-(y+1) ² =(x+y+1)(x-y-1)
(2)原式= m²-4mn+4n²-n² =(m-2n) ²-n² =(m-2n+n)(m-2n-n) =(m-n)(m-3n)

北师大版 八年级下册 4.1因式分解课件 (共20张PPT)

北师大版 八年级下册 4.1因式分解课件 (共20张PPT)
分解因式要注意以下几点: 1.分解的对象必须是多项式. 2.分解的结果一定是积的形式. 3.结果中的每一个因式都必须是整式.
跟踪训练
判断下列各式从左到右的变形中,是否为因式分解:
A. x(a﹣b)=ax﹣bx
×
B. x2﹣1+y2=(x﹣1)(x+1)+y2 C. y2﹣1=(y+1)(y﹣1) D. ax+by+c=x(a+b)+c
(1)对于(a-b)(x-y)=ax-ay-bx+by从左到右 的变形是 整式乘法 ,从右到左的变是 因式分解;
nm m
(2)根据下图写出一个因式分解的算式为 _m_n_+_m_2_=m__(__m_+_n_)__.
当堂检测
3.若x2+mx-n分解因式后是(x-2)(x-5), 求m、n的值.
4.求代数式IR1+IR2+IR3的值,其中 R1=19.2,R2=32.4,R3=38.4,I=2.5
可以.
合作探究
问题1:993-99能被100整除这个吗?
993 - 99 99 992 - 99 1 99(992 - 1) 99 9800 98 99 100
想一想: 993-99 还能被哪些整数
整除?
所以,993-99能被100整除.
问题2:如图,一块菜地被分成三部分,你能用不 同的方式表示这块草坪的面积吗?
根据左面算式填空: (1) 3x2-3x=___3_x_(x_-_1_)_ (2)ma+mb+mc=__m__(a_+__b_+_c_) _ (3) m2-16=_(m__+_4_)_(m__-_4_) (4) x2-6x+9=__(_x_-_3_)2__ (5) a3-a=__a_(_a_+_1_)_(_a_-1_)

北师大版数学八年级下册4.1《因式分解》教案

北师大版数学八年级下册4.1《因式分解》教案

北师大版数学八年级下册4.1《因式分解》教案一. 教材分析北师大版数学八年级下册4.1《因式分解》是初中数学的重要内容,主要让学生掌握因式分解的方法和应用。

因式分解是代数运算的基础,对于提高学生的数学思维能力和解决问题的能力具有重要意义。

本节课的内容包括提公因式法、公式法、分组分解法等因式分解方法,通过这些方法的学习,使学生能够灵活运用因式分解解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了整式的乘法运算,具备了一定的代数基础。

但因式分解较为抽象,对于部分学生来说,理解起来存在一定的困难。

因此,在教学过程中,要关注学生的学习差异,针对不同层次的学生进行教学,提高他们的学习兴趣和自信心。

三. 教学目标1.知识与技能目标:使学生掌握因式分解的方法,能够灵活运用各种方法进行因式分解。

2.过程与方法目标:通过小组合作、讨论交流,培养学生的团队协作能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。

四. 教学重难点1.重点:因式分解的方法。

2.难点:灵活运用各种方法进行因式分解,解决实际问题。

五. 教学方法1.情境教学法:通过创设生活情境,激发学生的学习兴趣。

2.启发式教学法:引导学生主动思考,培养学生的创新能力。

3.小组合作学习:培养学生团队协作能力和解决问题的能力。

六. 教学准备1.准备相关教案、PPT、教学素材等。

2.准备黑板、粉笔、投影仪等教学用品。

3.提前让学生预习本节课的内容,了解因式分解的基本概念。

七. 教学过程1. 导入(5分钟)利用生活实例或趣味数学问题,引入因式分解的概念,激发学生的学习兴趣。

2. 呈现(10分钟)通过PPT展示因式分解的方法,包括提公因式法、公式法、分组分解法等。

引导学生了解各种方法的特点和应用。

3. 操练(10分钟)对学生进行分组,每组选定一个因式分解问题,运用所学的methods进行解决。

教师巡回指导,解答学生的疑问。

北师大版八年级下册4.1因式分解(教案)

北师大版八年级下册4.1因式分解(教案)
举例Байду номын сангаас释:
-难点在于如何引导学生从多项式中提取公因式,例如在多项式4x² + 5x + 1中找出公因式。
-解释平方差公式和完全平方公式的适用条件,通过具体题目(如将x² - 6x + 9分解为(x - 3)²)来帮助学生识别和运用这些公式。
-在解决综合问题时,如求解含绝对值符号的方程,指导学生如何先进行因式分解,再根据不同情况讨论解的取值。
2.教学难点
-找出多项式的公因式:学生在寻找多项式的公因式时可能存在困难,特别是在多项式项数较多时。
-判断并运用平方差公式和完全平方公式:学生需要理解平方差和完全平方的结构特点,才能准确应用这些公式进行因式分解。
-灵活运用因式分解解决综合问题:学生需要将因式分解与其他数学知识(如方程、不等式等)结合,解决更复杂的数学问题。
2.提高学生的数学运算能力:使学生能够熟练运用提公因式法、平方差公式和完全平方公式进行因式分解,简化数学表达式,提高解题效率。
3.增强学生的数学建模意识:培养学生将现实问题转化为数学问题,通过因式分解解决实际问题的能力,提高数学建模素养。
4.培养学生的合作交流能力:在小组讨论和互动中,使学生学会倾听、表达、交流与合作,提高团队协作能力。
北师大版八年级下册4.1因式分解(教案)
一、教学内容
本节课选自北师大版八年级下册第四章第一节“因式分解”。教学内容主要包括以下两个方面:
1.因式分解的概念与意义:使学生理解因式分解的定义,掌握因式分解在简化计算、解决方程中的应用。
2.因式分解的方法与步骤:引导学生掌握以下几种因式分解方法:
(1)提公因式法:找出多项式中的公因式,并将其提取出来。
平方差公式和完全平方公式的应用对学生而言也是一个难点。我发现他们在判断何时使用这些公式方面存在困难。在今后的教学中,我可以设计一些更具针对性的练习,让学生在不同的情境中应用这些公式,从而提高他们的识别和应用能力。

北师大版初中八年级下册数学课件 《公式法》因式分解PPT(第1课时)

北师大版初中八年级下册数学课件 《公式法》因式分解PPT(第1课时)

强化训练
2. 证明:任意两奇数的平方差能被8整除. 证明:设任何奇数为2m+1,2n+1(m,n是整数) 则(2m+1) ²-(2n+1) ² =(2m+1+2n+1)(2m-2n) =4(m-n)(m+n+1) 可见只要证明(m-n)(m+n-1)是偶数即可, 若m,n都是奇数或偶数,则m-n为偶数, 4(m-n)(m+n+1)能被8整除, 若m,n都为一奇一偶,则m+n+1为偶数, 4(m-n)(m+n+1)也能被8整除, 所以,任意的两个奇数的平方差能被8整除.
解:∵b²+2ab=c²+2ac, ∴b²-c²+2ab-2ac=0, ∴(b+c)(b-c)+2a(b-c)=0, (b-c)(b+c+2a)=0. ∵a,b,c为三角形三边,所以b+c+2a>0, ∴b-c=0,即b=c.所以△ABC为等腰三角形.
课堂小结
1.平方差公式运用的条件: (1)二项式 (2)两项的符号相反 (3)每项都能化成平方的形式 2.公式中的a和b可以是单项式,也可以是多项式 3.各项都有公因式,一般先提公因式,再进一步分解,直至不能再分解为止.
强化训练
1.已知a、b、c是∆ABC的三边,且满足a²c²-b²c²=a4-b4,是判断∆ABC的形状. 解:a²c²-b²c²=a4-b4, a²c²-b²c²-a4+b4=0, c²(a²-b²)-(a²+b²)(a²-b²)=0 (a²-b²)(c²-a²-b²)=0 (a+b) (a-b)(c²-a²-b²)=0 其中a+b≠0, ∴a-b=0或c²-a²-b²=0 ∴a²+b²=c²或a=b. ∆ABC是直角三角形,或∆ABC是等腰直角三角形.

北师大版八年级数学下册第四章《4.1 因式分解(1)》公开课课件

北师大版八年级数学下册第四章《4.1 因式分解(1)》公开课课件

练习三 拓展应用
1. 计算: 7652×17-2352 ×17 解: 7652×17-2352 ×17 =17(7652 -2352)=17(765+235)(765 -235) =17 ×1000 ×530=9010000
2. 20042 +2004 能被2005 整除吗?
解: ∵20042+2004=2004(2004+1)
• 15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年7月2021/7/292021/7/292021/7/297/29/2021
• 16、提出一个问题往往比解决一个更重要。因为解决问题也许仅是一个数学上或实验上的技能而已,而提出新的问题,却需要有创造性的想像力,而且标志着科学的真正进步。2021/7/292021/7/29July 29, 2021
• 17、儿童是中心,教育的措施便围绕他们而组织起来。2021/7/292021/7/292021/7/292021/7/29
• 2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二一年六月十七日2021年6月17日星期四 • 3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。10:516.17.202110:516.17.202110:5110:51:196.17.202110:516.17.2021 • 4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19 • 5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021

北师大版初中八年级下册数学:第四章 因式分解 复习课件

北师大版初中八年级下册数学:第四章 因式分解 复习课件

观察上面这五道题的解题过程,你有什么 发现?
• a2+a=a(a+1) • a2-b2=(a+b)(a-b) • a2-2ab+b2=(a-b)2
• a2b-ab2=ab(a-b)
• ma+mb=m(a+b) • 我们把上面这种从左式到右式的恒等变形叫做多
项式的因式分解。
多项式的因式分解的概念
把一个多项式化为几个整式 的积的形式,叫做把这个多项式 分解因式。
第四章 因式分解 复习课件
(一)【教学目标】 1、认知目标: (1)理解因式分解的意义和概念。 (2)认识因式分解与整式乘法的相互关系——相反方向的恒等 变形,并会运用它们之间的相互关系寻求因式分解的方法,培 养学生创编因式分解题目的能力。 (3)掌握因式分解的基本方法:提公因式法、公式法。明确 用公式法分解因式就是逆用乘法公式,进一步提高代数式的恒 等变形能力。 2、能力目标:在因式分解的教学中,注意揭示数学中的可逆 关系,培养学生的辨证思维以及创造性思维能力,提高学生的 综合运用能力。 3、情感目标:培养学生独立思考,勇于探索的精神和实事求 是的科学态度。激发学习兴趣,使学生满腔热忱,科学积极地 投入到这部分内容的学习,让学生体验到成功的喜悦。
例2:把下列各多项式分解因式:
(1)(x+z)²- (y+z)² (2)4(a+b)²-25(a-b)² (3)(x+y+z)²-(x-y-z )² (4)(4a+5b)2-(2a-b)2 (5)9x2-(x-2y)2
ห้องสมุดไป่ตู้
例3:下列各式是否为完全平方式:
• ① x 2 2xy y 2
• ② 4a2 4ab 2b2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(m+4)(m-4) (3) m2-16=__________ 2 2 ( x -3) (4) x -6x+9=________
a(a+1)(a-1) (5) a3-a=___________
由a(a+1)(a-1)得到a3-a的变形是什么运算? 由a3-a得到a(a+1)(a-1)的变形与它有什么不同? 答:由a(a+1)(a-1)得到a3-a的变形是 整式乘法,由a3-a得到a(a+1)(a-1)
第四章 Байду номын сангаас式分解
4.1 因式分解
复习 导入
合作 探究 课堂 小结 随堂 训练
复习导入
1.整式乘法有几种形式? (1)单项式乘以单项式 (2)单项式乘以多项式 (3)多项式乘以多项式 2.乘法公式有哪些?
(1)平方差公式 (2)完全平方公式
首页
合作探究
993-99能被100整除吗? 你是怎样想的?与同伴交流. 小明是这样想的:
2.分接的结果一定是几个整式 的乘积的形式. 3.要分解到不能分解为止.
首页
随堂训练
1.判断下列各式哪些是整式乘法?哪些是因式分解? (1).x2-4y2=(x+2y)(x-2y) 因式分解 (2).2x(x-3y)=2x2-6xy 整式乘法 (3).(5a-1)2=25a2-10a+1 整式乘法 (4).x2+4x+4=(x+2)2 因式分解 (5).(a-3)(a+3)=a2-9 整式乘法 (6).m2-42=(m+4)(m-4) 因式分解 (7).2 πR+ 2 πr= 2 π(R+r) 因式分解
首页
2.把下列各式写成乘积的形式: =(1+x)(1-x) (1). 1-x2 (2). 4a2+4a+1 =(2a+1)2 =4x(x-2) (3). 4x2-8x (4). 2x2y-6xy2 =2xy(x-3y)
(5). 1-4x2 (6). x2-14x+49
=(1-2x)(1+2x) =(x-7)2
4. 20042+2004能被2005整除吗? 解: ∵20042+2004=2004(2004+1) =2004 ×2005
∴ 20042+2004能被2005整除
99 99 99 99 99 1
3 2
99(992 1) 99 9800 98 99 100 所以, 99 99能被100整除 .
3
你知道每一步 的根据吗? 想一想: 99399还能被哪些 整数整除?
首页
计算下列各式: x (1) 3x(x-1)= 3x2 - 3__,
的变形与上面的变形互为逆过程.
分解因式定义:
把一个多项式化成几个整式积的形式,这种变形
叫做把这个多项式分解因式.
想一想: 分解因式与整式乘法有何关系?
善于辨析:分解因式与整式乘法
有什么关系? 分解因式
二者是互逆的恒等变形
课堂小结
• 分解因式与整式乘法是互逆过程.
• 分解因式要注意以下几点:
1.分解的对象必须是多项式.
根据左面算式填空: 3x(x-1) (1) 3x2-3x=_________
m a+b+c) _( ________ (2) m(a+b+c) = ma+mb+mc ______, (2)ma+mb+mc=__
2 -16 m (3)(m+4)(m-4)= _____,
(4)(x-3)2= x2-6x+9 , (5)a(a+1)(a-1)= a3__, a
相关文档
最新文档