2017-2018学年九年级数学上册 小专题(七)等积式与比例式的证明(新版)北师大版
九年级数学上册解题技巧专题比例式、等积式的常见证明方法(新版)北师大版
1解题技巧专题:比例式、等积式的常见证明方法直接法、间接法一网搜罗1. 如图,四边形ABCD 的对角线 AC, BD 交于点F ,点E 是BD 上一点,并且/ BAC=3. ^如图,已知 AD 是厶ABC 的角平分线,EF 垂直平分AD,交BC 的延长线于E , 交 AD 于 F.求证:DE = BE- CE.♦类型二利用等线段代换2. 如图,在四边形 ABCD 中, AB= AD,AC 与BD 交于点E ,Z ADB=Z ACB 求证:ABAEAC AD♦类型一 找线段对应的三角形, 利用 相似证明/ BDC=Z DAE 求证:AB AEAC T ADDA解题技巧专题:比例式、等积式的常见证明2♦类型三 找中间比利用等积式代换 4. 如图,在△ ABC 中,点D 为BC 的中 点,AE// BC ED 交AB 于P,交AC 的延长线 于 Q.求证:PD- EQ= PE- DQ.1.证明:证法一:•••/ BAC=Z DAE•••/ BAO Z CAE=Z DAEF Z CAE 即/ BAE =ZCAD •••/ BAC=Z BDC / BFA=Z CFD• 180°—/ BAC-Z BFA= 180°—/ BDC- / CFD 即Z ABE=Z ACD •△ AB0A ACD • AB AE • A C T AD .证法二:•••/ BAC=Z DAE BAO/ CAE = / DAE + / CAE ,即 / BAE =/ CAD T Z BEA=Z DAE^Z ADE Z ADC= / BDO Z ADE Z DAE=Z BDC •Z AEB= AB AEZ ADCABE^A ACD •- T .AC AD2 .证明:•/ AB = AD , •Z ADB =Z ABE T Z ADB=Z ACB •Z ACB=Z ABEAB 又 T Z CAB=Z BAE •△ ACB P A ABE •屁3.证明:如图,连接 AE T EF 垂直平分 AD • AE = DE •Z DAE=Z 4. T AD 是 △ ABC 的角平分线,•Z 1 = Z 2. T Z DAE=Z 2+Z 3, Z 4=Z B +Z 1, •Z B=Z 3.又方法ACAB 又 T AB= ADAB _AC AE =AD3•••/ BEA=Z AEC •••△ BEA^A AEC /•圧• A E = BE- CE • D E = BE- CE 4.证明:T AE// DCQDC=/ E ,/ QCD=Z QAEQCX QAE • EQCD,T AE// BD,PD BD _ f PE =AE T 点PD- EQ= PE- DQ为BC 的中点, B[> CD ,PD DQPE = EQBE AE。
最新北师版九年级初三数学上册解题技巧专题:比例式、等积式的常见证明方法
解题技巧专题:比例式、等积式的常见证明方法——直接法、间接法一网搜罗◆类型一 找线段对应的三角形,利用相似证明1.如图,四边形ABCD 的对角线AC ,BD 交于点F ,点E 是BD 上一点,并且∠BAC=∠BDC =∠DAE.求证:AB AC =AE AD.◆类型二 利用等线段代换2.如图,在四边形ABCD 中,AB =AD ,AC 与BD 交于点E ,∠ADB =∠ACB.求证:AB AE =AC AD.3.★如图,已知AD 是△ABC 的角平分线,EF 垂直平分AD ,交BC 的延长线于E ,交AD 于F.求证:DE 2=BE·CE.◆类型三找中间比利用等积式代换4.如图,在△ABC中,点D为BC的中点,AE∥BC,ED交AB于P,交AC的延长线于Q.求证:PD·EQ=PE·DQ.解题技巧专题:比例式、等积式的常见证明方法1.证明:证法一:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE =∠CAD.∵∠BAC=∠BDC,∠BF A=∠CFD,∴180°-∠BAC-∠BF A=180°-∠BDC-∠CFD,即∠ABE=∠ACD,∴△ABE∽△ACD,∴ABAC=AE AD.证法二:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.∵∠BEA=∠DAE+∠ADE,∠ADC=∠BDC+∠ADE,∠DAE=∠BDC,∴∠AEB=∠ADC.∴△ABE∽△ACD,∴ABAC=AE AD.2.证明:∵AB =AD ,∴∠ADB =∠ABE .∵∠ADB =∠ACB ,∴∠ACB =∠ABE .又∵∠CAB =∠BAE ,∴△ACB ∽△ABE ,∴AB AE =AC AB .又∵AB =AD ,∴AB AE =AC AD.3.证明:如图,连接AE .∵EF 垂直平分AD ,∴AE =DE ,∴∠DAE =∠4.∵AD 是△ABC 的角平分线,∴∠1=∠2.∵∠DAE =∠2+∠3,∠4=∠B +∠1,∴∠B =∠3.又∵∠BEA=∠AEC ,∴△BEA ∽△AEC .∴AE CE =BE AE,∴AE 2=BE ·CE ,∴DE 2=BE ·CE . 4.证明:∵AE ∥DC ,∴∠QDC =∠E ,∠QCD =∠QAE ,∴△QCD ∽△QAE ,∴DQ EQ=CD AE .∵AE ∥BD ,∴∠B =∠P AE ,∠BDP =∠AEP ,∴△BDP ∽△AEP ,∴PD PE =BD AE.∵点D 为BC 的中点,∴BD =CD ,∴PD PE =DQ EQ,即PD ·EQ =PE ·DQ .学习名言警句:1.在科学上面没有平坦的大道,只有不畏劳苦沿着陡峭山路攀登的人,才有希望到达光辉的顶点。
最新北师版九年级初三数学上册解题技巧专题:比例式、等积式的常见证明方法
解题技巧专题:比例式、等积式的常见证明方法——直接法、间接法一网搜罗◆类型一 找线段对应的三角形,利用相似证明1.如图,四边形ABCD 的对角线AC ,BD 交于点F ,点E 是BD 上一点,并且∠BAC=∠BDC =∠DAE.求证:AB AC =AE AD.◆类型二 利用等线段代换2.如图,在四边形ABCD 中,AB =AD ,AC 与BD 交于点E ,∠ADB =∠ACB.求证:AB AE =AC AD.3.★如图,已知AD 是△ABC 的角平分线,EF 垂直平分AD ,交BC 的延长线于E ,交AD 于F.求证:DE 2=BE·CE.◆类型三找中间比利用等积式代换4.如图,在△ABC中,点D为BC的中点,AE∥BC,ED交AB于P,交AC的延长线于Q.求证:PD·EQ=PE·DQ.解题技巧专题:比例式、等积式的常见证明方法1.证明:证法一:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE =∠CAD.∵∠BAC=∠BDC,∠BF A=∠CFD,∴180°-∠BAC-∠BF A=180°-∠BDC-∠CFD,即∠ABE=∠ACD,∴△ABE∽△ACD,∴ABAC=AE AD.证法二:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.∵∠BEA=∠DAE+∠ADE,∠ADC=∠BDC+∠ADE,∠DAE=∠BDC,∴∠AEB=∠ADC.∴△ABE∽△ACD,∴ABAC=AE AD.2.证明:∵AB =AD ,∴∠ADB =∠ABE .∵∠ADB =∠ACB ,∴∠ACB =∠ABE .又∵∠CAB =∠BAE ,∴△ACB ∽△ABE ,∴AB AE =AC AB .又∵AB =AD ,∴AB AE =AC AD.3.证明:如图,连接AE .∵EF 垂直平分AD ,∴AE =DE ,∴∠DAE =∠4.∵AD 是△ABC 的角平分线,∴∠1=∠2.∵∠DAE =∠2+∠3,∠4=∠B +∠1,∴∠B =∠3.又∵∠BEA=∠AEC ,∴△BEA ∽△AEC .∴AE CE =BE AE,∴AE 2=BE ·CE ,∴DE 2=BE ·CE . 4.证明:∵AE ∥DC ,∴∠QDC =∠E ,∠QCD =∠QAE ,∴△QCD ∽△QAE ,∴DQ EQ=CD AE .∵AE ∥BD ,∴∠B =∠P AE ,∠BDP =∠AEP ,∴△BDP ∽△AEP ,∴PD PE =BD AE.∵点D 为BC 的中点,∴BD =CD ,∴PD PE =DQ EQ,即PD ·EQ =PE ·DQ .我爸爸告诉我,你现在翻的一页书都是将来要数的一张张钞票,所以不让你学习的人,就是在抢你的财富,不想要的都是傻子。
最新北师版九年级初三数学上册解题技巧专题:比例式、等积式的常见证明方法
解题技巧专题:比例式、等积式的常见证明方法——直接法、间接法一网搜罗◆类型一 找线段对应的三角形,利用相似证明1.如图,四边形ABCD 的对角线AC ,BD 交于点F ,点E 是BD 上一点,并且∠BAC=∠BDC =∠DAE.求证:AB AC =AE AD.◆类型二 利用等线段代换2.如图,在四边形ABCD 中,AB =AD ,AC 与BD 交于点E ,∠ADB =∠ACB.求证:AB AE =AC AD.3.★如图,已知AD 是△ABC 的角平分线,EF 垂直平分AD ,交BC 的延长线于E ,交AD 于F.求证:DE 2=BE·CE.◆类型三找中间比利用等积式代换4.如图,在△ABC中,点D为BC的中点,AE∥BC,ED交AB于P,交AC的延长线于Q.求证:PD·EQ=PE·DQ.解题技巧专题:比例式、等积式的常见证明方法1.证明:证法一:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE =∠CAD.∵∠BAC=∠BDC,∠BF A=∠CFD,∴180°-∠BAC-∠BF A=180°-∠BDC-∠CFD,即∠ABE=∠ACD,∴△ABE∽△ACD,∴ABAC=AE AD.证法二:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.∵∠BEA=∠DAE+∠ADE,∠ADC=∠BDC+∠ADE,∠DAE=∠BDC,∴∠AEB=∠ADC.∴△ABE∽△ACD,∴ABAC=AE AD.2.证明:∵AB =AD ,∴∠ADB =∠ABE .∵∠ADB =∠ACB ,∴∠ACB =∠ABE .又∵∠CAB =∠BAE ,∴△ACB ∽△ABE ,∴AB AE =AC AB .又∵AB =AD ,∴AB AE =AC AD.3.证明:如图,连接AE .∵EF 垂直平分AD ,∴AE =DE ,∴∠DAE =∠4.∵AD 是△ABC 的角平分线,∴∠1=∠2.∵∠DAE =∠2+∠3,∠4=∠B +∠1,∴∠B =∠3.又∵∠BEA=∠AEC ,∴△BEA ∽△AEC .∴AE CE =BE AE,∴AE 2=BE ·CE ,∴DE 2=BE ·CE . 4.证明:∵AE ∥DC ,∴∠QDC =∠E ,∠QCD =∠QAE ,∴△QCD ∽△QAE ,∴DQ EQ=CD AE .∵AE ∥BD ,∴∠B =∠P AE ,∠BDP =∠AEP ,∴△BDP ∽△AEP ,∴PD PE =BD AE.∵点D 为BC 的中点,∴BD =CD ,∴PD PE =DQ EQ,即PD ·EQ =PE ·DQ .成功名言警句:2、对我来说,不学习,毋宁死。
比例式和等积式的证明-
比例式和等积式的证明————从一道课本题的解题反思和探究中提高解题能力关 键 词:比例式 反思 探究 规律内容提要:比例式和等积式的证明中,如何找比例式是难点。
利用A 型图和X 型图寻找比例式比较容易比例式和等积式的证明是初中平面几何题型中一类重要题型。
其中等积式可以转化成比例式,因此主要是比例式的证明。
许多学生看到题后都不知道从何入手,用什么方法证明。
笔者从一道课本上的习题的反思和探究中总结出了一些方法。
如何提高数学解题能力,有许多因素。
不少的学生采用“题海战术”来提高解题能力。
“题海战术”固然在一定程度上可以提高解题能力,但这是“事倍功半”。
而解题过程中和解题后的“反思和探究”能达到“事半功倍”的效果。
那什么是“解题的反思和探究”呢?也就是解答一道题的前后,进行如下一些思考:1.命题是考查我们哪些知识点?哪些概念、公式、定理,以及它们的应用?2.命题有无其他的思路和其他的解法?能否一题多解?哪一种更简捷?3.命题能否有规律可循?能否举一反三?多题一解?许多学生是单纯地做题,不会过多地去思考和分析。
再加上老师在指导和训练上的欠缺,没能形成良好的解题习惯。
在农村中学中,这种情况尤为突出。
分析过程是解数学题的一个必要环节,解题的反思和探究包含了分析过程。
分析就是人们在思维活动中把研究对象由统一整体分解为它的各个组成部分,即把一个复杂的事物分解成简单的部分或要素,并对它的各个部分或各种要素分别进行研究,揭示出它的属性和本质,从未知追述到已知的思维过程和研究方法。
对于解数学题不仅仅是这种逆行过程。
解数学题的分析还可以从已知到未知顺势分析。
也可以从两边同时分析,从中找到共同点。
另外,分析应把以前的经验和方法应用到解题过程中。
九年义务教育三年制初中〈〈几何〉〉第二册第222页B 组第一题:△ABC中,作直线DN 平行于中线AM ,设这条直线交边AB 于点D ,交边CA 的延长线于点E ,交边BC 于点N ,求证:AB AD = ACAE E 解题过程: A一. 作图:(图1)二. 分析: D1.平时做题不能简单地做出来了事,而应该多思 B C考多分析。