基于单片机的数字电路功能测试仪
基于AT89S52单片机的数字网线测试仪设计

21电源 电路 .
电源电路设计 了 2种供电方式 :①接 20 一 2V
9 V变压 器 .变压器 次级输 出 9 V交 流 电压 .经过 “ 桥式 整流 滤 波 稳 压 滤波 ” 输 出+ V直流 后 5
工作 电压 ; ②接 5 D V C电源适配器 , 出+ V直流 输 5
工作 电压 。 22单 片机 I 口与 一 5端 口的连 接 . / 0 4
0 C x6
图 2单片机 I / 0口与 R . 5端 口的连接关系 J4
23数码 管段 选 电路 ( . 以第 一行 的 8 数码 管 个 为例 ) 24数 码管位 选 电路 ( . 以第 一行 的 8 数码 管 个
第 3组 第 4组
0 l
l 0
l 1
0 O
发送端 P P . 00 P . P . P . 0 P . 03 赋 值 O 0 P . 05 O1 06 4 P . 0 P . 2 7
第 1 组
第 ቤተ መጻሕፍቲ ባይዱ组
0
0
0
0
0
0
O
1
0
l
O
1
0
1
1
0
00 x8
表 5 检 测交叉互联 网线 的数码管显示结果
二进 制数 组 成 ) ,按 位 以从 第 1组 到 第 4组 , 将 这 4位 二进 制 [ 网线 R 一 5接头排线示意 图. 图片 并 f 上接第 8 5页1 3、 语 结 所 述 . 文 介绍 的基 于 M t b的磁 保 持继 电器 电 本 al a 首先 .本文 分析 了磁 保持 继 电器 电磁 机构 动 磁机 构 动态 特性计 算分析 是可行 的 。
基于单片机的数字电压表设计

基于单片机的数字电压表设计一、引言在电子测量领域中,电压表是一种常用的测量仪器,用于测量电路中的电压值。
传统的模拟电压表由于精度低、读数不便等缺点,逐渐被数字电压表所取代。
数字电压表具有精度高、读数直观、抗干扰能力强等优点,广泛应用于工业自动化、电子设备检测、实验室测量等领域。
本文将介绍一种基于单片机的数字电压表设计方案,详细阐述其硬件电路设计、软件编程实现以及系统性能测试。
二、系统总体设计方案(一)设计要求设计一款基于单片机的数字电压表,能够测量 0 5V 的直流电压,测量精度为 001V,具有实时显示测量结果的功能。
(二)系统组成本数字电压表系统主要由以下几个部分组成:1、传感器模块:用于将输入的电压信号转换为适合单片机处理的电信号。
2、单片机模块:作为系统的核心,负责对传感器采集到的数据进行处理和计算,并控制显示模块显示测量结果。
3、显示模块:用于实时显示测量的电压值。
三、硬件电路设计(一)传感器模块选用 ADC0809 作为模数转换芯片,它具有 8 个模拟输入通道,可以将 0 5V 的模拟电压转换为 8 位数字量输出。
(二)单片机模块选择 AT89C51 单片机作为控制核心,它具有 4K 字节的 Flash 程序存储器和 128 字节的随机存取数据存储器。
(三)显示模块采用液晶显示屏(LCD1602)作为显示器件,它能够清晰地显示数字和字符信息。
四、软件编程实现(一)编程语言选择使用 C 语言进行编程,C 语言具有语法简洁、可移植性强等优点。
(二)主程序流程主程序首先进行系统初始化,包括单片机端口初始化、LCD1602 初始化、ADC0809 初始化等。
然后启动 ADC0809 进行模数转换,读取转换结果并进行数据处理,计算出实际的电压值。
最后将电压值发送到 LCD1602 进行显示。
(三)模数转换子程序ADC0809 的转换过程通过控制其启动转换引脚(START)和读取转换结束引脚(EOC)来实现。
基于单片机的测距仪的设计

摘要本科生毕业论文(设计)题目:基于单片机的测距仪的设计学生姓名:张学武学号: 201211020226专业班级:电信12102班指导教师:蔡剑华曾高秋完成时间: 2015年5月目录摘要:本文设计了以AT89C52单片机为核心控制单元的超声波测距仪,文章概述了超声波检测的发展及基本原理,介绍了超声波传感器的原理及特性。
利用超声波检测往往比较方便、迅速、计算简单、易于做到实时控制。
该系统主要由蜂鸣器模块、超声波发送模块、超声波接收模块、显示模块四个模块构成。
利用超声波传感器对前方物体进行感应,经单片机对超声波传感器发送和接收的 (1)声波信号进行分析和计算处理,最后将处理结果在LCD1602上显示 (1)引言 (2)1概述 (2)1.1研究背景 (2)2设计要求 (3)3设计方案论证 (3)3.3超声波测距原理 (5)4设计总体方案 (5)4.1总体设计思路 (6)4.2显示部分 (6)4.3按键部分 (6)5硬件电路 (7)5.1功能与原理 (7)5.2资源分配 (8)5.3超声波发送电路 (8)5.4超声波接收电路 (8)5.6复位电路 (11)5.7外部时钟 (12)5.8按键电路 (12)5.9报警电路 (12)5.10温度检测电路 (13)5.11显示接口电路 (14)6软件设计 (15)6.1主程序流程图 (15)6.2超声波发送流程图 (16)6.3 LCD显示流程图 (16)6.4温度读取流程图 (17)7系统仿真 (18)7.1仿真电路图 (18)7.2仿真结果输出 (18)8结论与展望 (20)答谢:首先非常感谢指导老师蔡剑华和曾高秋的精心指导和严格要求,让我充分利用所学的理论知识去完成论文的设计,论文的完成让我极大地提高了实践能力,并对当前电子领域的研究状况和发展方向有了一定的了解,尤其是单片机领域,这对我今后进一步从事电子行业有着极大的帮助。
另外,此次毕业设计还获得了其他老师和同学的大力支持。
毕业设计(论文)-基于单片机的RLC检测仪

基于单片机的RLC检测仪摘要在应用中,我们常常要用到电阻、电感、电容等最基本的元器件,而对它们的测量就成为了我们经常要做的一件事。
因此,设计一个安全、便捷的RLC检测仪就很有必要了。
硬件方面,以51单片机为核心。
测量电阻和电容,以555芯片为核心,与少量的电阻、电容相连组成振荡电路,再根据电容的充放电过程,使测量电路输出高低电平矩形波。
测量电感,是以mc1648压控振荡器为核心,外接电感、电位器、变容二极管等,组成LC振荡电路,调节变容二极管,使电路发生谐振,输出矩形波。
这样,就把所得的波形送给单片机,通过51单片机的定时/计数功能计算矩形波的频率,再通过公式来算出电阻、电感、电容的参数值,并送显示器显示。
软件方面,通过Keil,用C语言来编程,利用软硬件的结合,制作出一个快速的、方便的、符合实际应用的RLC测量仪。
关键词:51单片机,555电路,1602LCD显示, mc1648压控振荡器ABSTRACTIn applications,we often use the resistance,the capacitance and the inductance etc.The measurement of these components is a thing that we often do.So,it is necessary to design a safe and convenient detector of RLC.In the aspect of hardware,I painting the circuit diagram by Proteus.With 51 SCM as the core and through the oscillating circuit of RC by the 555 timing,we can make themeasurement circuit output a high level rectangle wave by using the process of charging and discharging. With the mc1648 vco as the core,we can form the LC oscillating circuit by the external inductor,potentiometer and transfiguration diode in the measurement of inductance.We can make the circuit produce resonance by adjusting the transfiguration diode.And it can output a high level rectangle. We can calculate the frequency of the rectangle wave through the timing and counting functions of 51 SCM.So we can calculate the parameters of impedance through the formula and show it out through the display.In the aspect of software,I programming by using C language in Keil.With the combination of hardware and software,I will make a quick and actual detector.KEY WORDS: 51 SCM 555 Circuit 1602LCD displays Mc1648 VCO目录1、绪论 (5)1.1本课题的背景、意义及目的 (5)1.2简述本课题在国内外的发展概况及存在的问题 (5)1.3本课题主要研究方法、需要重点研究的问题及解决思路 (6)2、总体方案设计的说明 (7)2.1总体方案的选择 (7)2.2总体方案的分析 (8)3、硬件设计 (9)3.1单片机控制部分 (9)3.2显示部分 (13)3.3测量部分 (16)3.3.1 555定时器 (16)3.3.2 mc1648压控振荡器 (19)3.3.3测电阻的电路 (20)3.3.4测量电容的电路 (21)3.3.5测量电感的电路 (22)4、软件设计 (25)4.1液晶显示部分 (26)4.2定时/计数部分 (28)5、调试与仿真 (29)6、结论 (37)致谢 (38)参考文献 (39)附录 (40)附录一源程序 (40)1、绪论1.1本课题的背景、意义及目的测量是通过实验的方法获得定量信息的过程。
基于单片机的数字频率计的设计与实现

基于单片机的数字频率计的设计与实现摘要随着电子信息产业的发展,信号作为其最基础的元素,其频率的测量在科技研究和实际应用中的作用日益重要,而且需要测频的范围也越来越宽。
传统的频率计通常采用组合电路和时序电路等大量的硬件电路构成,产品不但体积较大,运行速度慢,而且测量范围低,精度低。
因此,随着对频率测量的要求的提高,传统的测频的方法在实际应用中已不能满足要求。
因此我们需要寻找一种新的测频的方法。
随着单片机技术的发展和成熟,用单片机来做为一个电路系统的控制电路逐渐显示出其无与伦比的优越性。
本文阐述了以AT89C51单片机为控制器件的频率测量方法,并用汇编语言进行设计,采用单片机智能控制,结合外围电子电路,用以实现高低信号频率的测量。
本文设计的是一个简易数字频率计,被测信号可以是正弦波、三角波、方波。
首先,我们把待测信号经过放大整形;然后把信号送入单片机的定时计数器里进行计数,获得频率值;最后把测得的频率数值送入显示电路里进行显示。
本文从频率计的原理出发,介绍了基于单片机的数字频率计的设计方案,选择了实现系统得各种电路元器件,并对硬件电路进行了仿真。
关键词单片机;频率计;测量-Design and implementation of Digital FrequencyMeter Based on Single Chip MircrocomputeAbstractAlong with the development of electronic information industry, signal as the basic elements, the frequency measurement in scientificresearch and practical application is increasingly important, but also need the scope of frequency measurement is becoming more and more wide. The traditional frequency plan usually adopts combinational circuits and the sequential circuits of the hardware circuit structure, product not only large size, speed is slow, and measuring range, and low accuracy of low. Therefore, as for frequency measurement requirements, thetraditional method of frequency measurement in practical application already cannot satisfy requirements. Therefore, we need to find a new measuring method of frequency. Along with the development of technology and mature, use a singleship as a circuit system of control circuit shown its incomparable advantages.In this paper, with AT89C51 microcontroller to control the frequency of measurement devices and assembly language design, intelligent control using single chip, combined with the external electronic circuit, can be high and low frequency measurements. This paper designs a simple digital frequency, the measured signal can be sine wave , square wave. Firstly, the rectangular pulse, which the measured signal is amplified and reshaped, is used as control throttle valve. Then, the frequency counter counts the number of the periods using the internal timer/counter of signal is chip so as to gain the frequency value of measured signal. Finally, the frequency value of measured signal is displayed through static display circuits.From the analysis of theory, and introduces the digital frequency plan based on single chip design, selection of the system, and have all kinds of circuit components of hardware circuit simulaion.Keywords Micor- computer;Frequency;Measure-目录摘要...... ................................................................. (I)Abstract ........................................................... .. (II)第1章绪论 ..................................................................... .. (1)1.1 课题背景 ..................................................................... . (1)1.2 单片机的发展及特点 ..................................................................... .................1 1.3 频率计的基础知识 ..................................................................... .....................1 1.4 论文研究内容 ..................................................................... .............................2 第2章单片机简介及方案论证 ..................................................................... ...........3 2.1 AT89C51单片机简介 ..................................................................... ..................3 2.1.1 单片机及其引脚说明 ..................................................................... ...........3 2.1.2 AT89C51的定时/计数器原理 (5)2.1.3 定时/计数器的工作模式 ..................................................................... (6)2.1.4 定时,计数器的特殊功能控制寄存器 (6)2.1.5 定时,计数器(T0,T1)的控制寄存器 (7)2.2 数字频率计设计的几种方案 ..................................................................... (8)2.3 几种方案的优劣讨论 ..................................................................... .................8 2.4 本次设计采用的方案 ..................................................................... .................9 2.5 本章小结 ..................................................................... .....................................9 第3章系统硬件设计 ..................................................................... ........................ 10 3.1 数字频率计工作原理及结构框图 (10)3.1.1 一般数字式频率计的原理 ......................................................................10 3.1.2 基于单片机的数字频率计原理 .............................................................. 10 3.2 电路原理图 ..................................................................... ............................... 11 3.3 放大整形电路 ..................................................................... ........................... 11 3.3.1 放大整形电路的必要性 ..................................................................... ..... 11 3.3.2 放大整形电路的原理 ..................................................................... ......... 11 3.4 分频电路 ..................................................................... ................................... 15 3.4.1 分频电路介绍 ..................................................................... .................... 15 3.5 四选一电路 ..................................................................... ............................... 16 3.6 显示电路 ..................................................................... ................................... 17 3.6.1 显示原理 ..................................................................... ............................ 17 3.6.2 显示电路图 ..................................................................... ........................ 19 3.7 本章小结 ..................................................................... ................................... 20 第4章系统软件设计 ..................................................................... ........................ 21 4.1 软件流程图 ..................................................................... ............................... 21 4.2 测频软件实现原理 ..................................................................... . (21)-4.3 几个重要的分程序 ..................................................................... ................... 22 4.4 本章小结 ..................................................................... ................................... 23 结论 ..................................................................... ..................................................... 24 致谢 ..................................................................... ..................................................... 25 参考文献 ..................................................................... ............................................. 26 附录A ...................................................................... ................................................ 27 附录B ...................................................................... ................................................ 33 附录C ...................................................................... ................................................ 39 附录D ...................................................................... (40)第1章绪论1.1 课题背景在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关,,因此频率计在教学、科研、测量仪器、工业控制[1]等方面都有较广泛的应用。
基于单片机的数字电能表设计

基于单片机的数字电能表设计数字电能表是测量电能并传递数据的电气装置。
它们通常采用单片机芯片来实现计算,并将其存储在内存中。
本文将介绍单片机数字电能表的设计方案。
1. 系统结构设计数字电能表的系统结构包括传感器、信号处理电路、单片机芯片、数字显示部分和通讯接口。
传感器用于测量电压、电流等信号并将其转换为电信号。
信号处理电路将采集到的模拟信号转换为数字信号并进行滤波和放大处理。
单片机芯片负责处理信号并实现计算,测量功率、电能、电量等。
数字显示部分将计算结果以数字形式展示出来。
通讯接口用于与计算机、集中抄表系统等外部设备进行数据通讯。
2. 系统功能设计数字电能表的主要功能包括:测量电量、功率、电流、电压等参数;统计电量、功率等负荷分布;完成智能电网的控制和管理;提供数据采集和远程通讯功能等。
3. 硬件设计3.1 传感器设计传感器主要包括电压、电流互感器以及电能表表芯等,其中电压互感器和电流互感器将采集到的电信号转换为电压信号和电流信号,电能表表芯则用于计量电能。
应选择准确可靠的传感器,以保证数字电能表的精度和稳定性。
3.2 信号处理电路设计信号处理电路主要完成信号转换、滤波和放大作用。
转换模拟信号为数字信号是数字电能表工作的前置条件。
采用滤波技术可有效降噪,提高系统稳定性。
应选择具有较高增益、较低噪声、抗干扰能力强的运放等器件。
3.3 单片机设计单片机芯片是数字电能表的核心部分。
MCU通常采用单片机,具有高精度、运算速度快、易于编程、易于扩展等优势。
应根据用户需求选择不同类型的MCU,如8位单片机、16位单片机等。
3.4 数字显示部分设计数字显示部分是数字电能表中的另一个重要组成部分。
可通过数码管、液晶显示屏、LED显示等形式直观地显示电能、功率、电压等参数。
应选择可靠、耐用、能够满足用户需求的显示器件。
3.5 通讯接口设计通信接口可采用RS485通讯、光纤通讯、以太网通讯等形式。
RS485通讯是数字电能表中应用最广泛的通信方式,稳定性好、通讯距离远。
毕业设计(论文)基于单片机的电容测量仪设计

2.3.2基于AT89C51电容测量系统复位电路
MCS-51的复位是由外部的复位电路来实现的。MCS-51单片机片内复位,复位引脚RST通过一个斯密特触发器用来抑制噪声,在每个机器周期的S5P2,斯密特触发器的输出电平由复位电路采样一次,然后才能得到内部复位操作所需要的信号。
利用多谐震荡原理测量电容的方案硬件设计比较简单,但是软件实现相对比较复杂,而直接根据充放电时间判断电容值的方案虽然基本上没有用到软件部分,但是硬件却又十分的复杂。而且他们都无法直观的把测量的电容值大小显示出来。
根据上面两种方案的优缺点,本次设计提出了硬件设计和软件设计都相对比较简单的方案:基于AT89C51单片机和555芯片的数显式电容测量。该方案主要是根据555芯片的应用特点,把电容的大小转变成555输出频率的大小,进而可以通过单片机对555输出的频率进行测量。本方案的硬件设计和软件设计都相对简单。
反向器单稳态触发器显示窄脉冲触发器秒脉冲发生器译码器记数器标准记数脉斱案三基亍at89c51单片机和555芯片构成的多谐振荡申路申容测量返种申容测量斱法主要是通过一块555芯片来测量申容让555芯片工作在直接反馈无稳态的状态下555芯片输出一定频率的斱波其频率的大小跟被测量的申只要我仧能够测量出555芯片输出的频率就可以计算出测量的申容
2.面向应用和现代市场营销模式还没有真正建立起来。本土仪器设备厂商只是重研发,重视生产,重视狭义的市场,还没有建立起一套完整的现代营销体系和面向应用的研发模式。传统的营销模式在计划经济年代里发挥过很大作用,但无法满足目前整体解方案流行年代的需求。所以,为了快速缩小与国外先进公司之间的差距,国内仪器研发企业应加速实现从面向仿制的研发向面向应用的研发的过渡。特别是随着国内应用需求的快速增长,为这一过渡提供了根本动力,应该利用这些动力,跟踪应用技术的快速发展。
毕业设计-基于单片机的数字频率计设计

编号:毕业设计说明书题目:基于单片机的数字频率计设计院(系):电子工程与自动化学院专业:自动化学生姓名:学号:指导教师:职称:教授题目类型:实验研究工程技术研究2012年5月10日摘要在电子技术中,频率是最基本的参数之一,同时也是一个非常重要的参数,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此,频率的测量就显得更为重要。
数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。
它是一种用十进制数字显示被测信号频率的数字测量仪器。
频率测量是电子学测量中最为基本的测量之一。
本文中详细介绍了频率计的仿真及设计过程。
本文设计了一种以单片机STC89C52为核心的数字频率计。
介绍了单片机、放大整形模块、分频模块和LCD1602显示模块等各个模块的组成和工作原理。
测量时,将被测输入信号送给单片机,通过程序控制计数,结果送LCD1602显示频率值。
本次设计是以单片机STC89C52为控制核心,利用它内部的定时/计数器完成待测信号频率的测量。
应用单片机的控制功能和数学运算能力,实现计数功能和频率的换算,最后显示测量的频率值。
本次设计所制作的频率计外围电路简单,大部分功能都通过软件编程实现,利用单片机控制实现频率计的自动换挡功能;用单片机中断控制端口实现频率的测量功能;通过分频电路实现对频率档位的控制。
本次设计的频率计具有测量准确度高,响应速度快,体积小等优点。
实现了1Hz~4MHz范围的频率测量,而且可以实现量程自动切换。
关键词:频率计;单片机;计数器;测量AbstractFrequency measurement is the most basic measurement in electronic field, while also a very important parameter, and with a number of the measurement results of electrical parameters have a very close relationship, so, the measurement of frequency has become more important. The digital frequency meter is an indispensable of measuring instruments in the field of scientific research and production of computers, communications equipment, audio and video. It is a decimal number to display the signal's frequency measuring instruments. The frequency measurement is one of the most basic measurement electronics measurements. Frequency of simulation and design process is described in detail in this article. This paper introduces a microcontroller STC89C52 as the core design of digital frequency meter. Introduced of the composition and working principle of microcontroller, amplifying and shaping module, frequency division module and LCD1602 display module and other modules.The design is based on STC89C52 microcontroller for the control of the core, using its internal timer and counter to complete the test signal frequency measurement. Application control features of the microcontroller and the operational ability of the counting function and frequency conversion, and finally use displays the measured frequency value. The design frequency meter produced peripheral circuits is simple, most of the functions are controlled via software programming, application control features of the microcontroller to achieve the frequency of automatic shift function; frequency measurement functions the microcontroller interrupt control port; control of the frequency of stalls by the divider circuit. The design of the frequency meter is high accuracy, fast response, small size, etc. Achieve100Hz to 4MHz frequency measurements, and can automatically switch the flow to achieve scale.Key words:Frequency meter; microcontroller; counter; measurement目录引言 (1)1 绪论 (2)1.1 频率计概述 (2)1.2 频率计发展现状 (2)1.3 数字频率计的种类 (3)2 总体方案设计 (4)2.1 数字频率计设计内容 (4)2.2 频率测量原理 (4)2.3 总体思路 (5)2.4 具体模块 (5)3 硬件设计 (7)3.1 电路设计的内容和方法 (7)3.1.1 电路设计的步骤 (8)3.2 单片机概述 (8)3.2.1 STC89C52简介 (9)3.2.2 STC89C52RC引脚功能说明 (10)3.2.3 单片机引脚分配 (12)3.3 单片机最小系统 (13)3.3.1 单片机最小系统原理 (13)3.3.2 复位电路及时钟电路 (13)3.4 信号调理及放大整形模块 (14)3.4.1 LM318介绍 (14)3.4.2 1N4733及74LS14介绍 (15)3.5 分频模块 (15)3.5.1 74LS161介绍 (15)3.5.2 74LS153介绍 (16)3.6 LCD显示和键盘 (17)3.6.1 LCD1602简介 (17)3.7 MAX232简介 (20)4 系统软件设计 (22)4.1 软件设计 (22)4.1.1 主程序流程图设计 (22)4.1.2 子程序流程图设计 (22)4.2 Keil和Proteus软件介绍 (25)4.2.1 Keil简介 (25)4.2.2 Proteus简介 (26)4.3 程序编写及仿真图设计 (26)5 调试 (28)5.1 系统调试 (28)5.2 软件调试 (29)5.3 软硬件联合调试 (30)5.4 误差分析 (30)6 总结 (31)谢辞 (32)参考文献 (33)附录 (34)引言频率计是我们在电子电路实验中经常会用到的测量仪器之一,它能将频率用液晶显示器或者数码管直接显示出来,给测试带来很大的方便,使结果更加直接;且频率计还能对其他多种物理量进行测量,如声音的频率、机械振动的频率等,都可以先转变成电信号,然后用频率计来测量。
基于HOLTEK单片机的PM2.5检测仪

1.4
本文的内容共分为七章。第一章绪论,概括了国内空气质量系统发展情况概述、选题的背景和意义概述;第二章PM2.5传感器的介绍和选用,介绍PM2.5的测量方法,重点介绍日本神荣公司PPD42NS传感器的选用与特性;第三章控制系统硬件设计,分析了系统的组成和基本工作原理并详细介绍了电路的组成和实现;第四章控制系统软件的实现,着重介绍了编程语言,主程序流程;第五章原理图及PCB图绘制,介绍Protel99SE软件及软件的使用;第六章实物调试,介绍实物调试遇到的问题;第七章总结,对所做的工作进行总结,并对今后系统的发展与展望提出建议。
This design uses HOLTEK microcontroller core from PPD42NS (Japan SHINYEI) dust sensor measures the concentration of airborne dust, use a digital display of the current air concentration of dust. When the dust concentration in air reaches the set limit correspondingLEDdisplay and intuitive to remind the current pollution levels. The system circuit is simple, stable, highly integrated, easy to debug, high precision, has some practical value.
(1)用HT46F49E单片机控制编程与实现。
(2)用PPD42NS设计与实现空气中PM2.5颗粒的测量。
用51单片机完成等精度频率测量仪的设计毕业论文

(4)编写软件;
(5)系统调试,仿真。
2等精度频率计的原理与应用
2.1 等精度频率计的原理
频率计的核心为单片机对数据的运算处理,而此等精度测量方法是以同步门逻辑控制电路为核心的。同步门逻辑控制电路由D触发器构成。
基本频率测量要求:
幅度:0.5V~5V
频率:1Hz~500kHz
用51单片机完成等精度频率测量仪的设计毕业论文
1 绪 论
1.1 数字频率计简介
数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。它是一种用十进制数字,显示被测信号频率的数字测量仪器。它的基本功能是测量正弦信号,方波信号以及其他各种单位时间变化的物理量。在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精度高,显示直观,所以经常要用到数字频率计。
国际国通用数字频率计的主要技术参数:1.频率测量围:电子计数器的测频围,低端大部分从10Hz开始;高端则以不同型号的频率计而异。因此高端频率是确定低、中、高速计数器的依据。如果装配相应型号的变频器,各种类型的数字频率计的测量上限频率,可扩展十倍甚至几十倍。2.周期测量围:数字频率计最大的测量周期,一般为10s,可测周期的最小时间,依不同类型的频率计而定。对于低速通用计数器最小时间为1ys;对中速通用计数器可小到0.1ys。3.晶体振荡器的频率稳定度:是决定频率计测量误差的一个重要指标。可用频率准确度、日波动、时基稳定度、秒级频率稳定度等指标,来描述晶体振荡器的性能。4.输入灵敏度:输入灵敏度是指在侧频围能保证正常工作的最小输入电压。目前通用计数器一般都设计二个输入通道,即d通道和月通道。对于4通道来说,灵敏度大多为50mV。灵敏度高的数字频率计可达30mV、20mV。5.输入阻抗:输入阻抗由输入电阻和输入电容两部分组成。输入阻抗可分为高阻(1M//25PF、500k//30PF)和低阻(50)。一般说来,低速通用计数器应设计成高阻输入;中速通用计数器,测频围最高端低于100MHz,仍设计为高阻输入;对于高速通用计数器,测频>100MHz, 设计成低阻 (50Q) 输入,测频<100MHz,设计成高阻(500k//30PF)输入。
基于51单片机数字频率计的设计

基于51单片机数字频率计的设计在电子技术领域中,频率计是一种常见的测试仪器,它可以用来测量信号的频率。
在本文中,我们将通过介绍基于51单片机数字频率计的设计实现来了解它的工作原理和设计流程。
1. 确定设计需求在进行任何项目之前,我们需要明确自己的设计需求。
对于频率计而言,它的主要需求就是准确地测量信号的频率。
因此,我们需要确定我们需要测量的频率范围和精确度。
2. 确定硬件设计在确定了设计需求之后,我们需要确定硬件设计。
对于数字频率计而言,它需要一个计数器来计算信号的脉冲数量。
在本设计中,我们采用74LS90计数器芯片来实现计数功能。
我们还需要一个51单片机来读取计数器的计数值,并将其转换为对应的频率值。
另外,我们还需要硬件板、LCD显示屏、按键等元件来搭建数字频率计的电路结构。
3. 确定软件设计硬件设计完成后,我们需要开发相应的软件来实现我们的需求。
在本设计中,我们使用KEIL C51软件来编写51单片机的程序。
编写软件的主要步骤是读取计数器计数值、计算出对应的频率值、将频率值显示在LCD屏幕上,并实现按键控制。
我们需要将这些步骤按照程序流程依次实现。
4. 进行测试在软件编写完成后,我们需要对数字频率计进行测试,以确保其满足我们的需求。
我们可以使用信号发生器给数字频率计输入不同频率的信号,然后观察LCD屏幕上显示出来的相应频率值是否准确。
如果测试结果不满足我们的需求,则需要对硬件或软件进行优化或调试,直到数字频率计能够正常工作为止。
总之,基于51单片机的数字频率计设计是一个较为简单的电子设计项目。
通过上述步骤的详细介绍,我们了解了数字频率计的设计流程和工作原理,并明确了设计中需要注意的细节和注意事项。
希望能够对大家理解数字频率计的设计过程有所帮助。
基于单片机的数字电压表.

1 前言 (1)2 总体方案设计 (2)2.1 方案论证 (2)2.2 方案比较及选择 (3)3 硬件电路设计 (4)3.1 AD转换电路 (4)3.2 复位电路 (4)3.3 时钟电路 (5)3.4 显示电路 (6)3.5 特殊器件介绍 (6)3.5.1 主控芯片AT89S51 (6)3.5.2 ADC0808 (7)3.5.3 LED (9)4 软件部分设计 (11)4.1 A/D转换子程序 (11)4.2 显示子程序 (12)5 电路仿真 (13)5.1 软件调试 (13)5.2 显示结果及误差分析 (13)6 系统功能 (17)小结 (18)参考文献 (19)附录1 基于单片机的数字电压表原理图 (20)附录2 基于单片机的数字电压表程序清单 (21)1 前言在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。
而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。
数字电压表简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表。
由于数字式仪器具有读数准确方便、精度高、误差小、测量速度快等特而得到广泛应用。
传统的指针式刻度电压表功能单一,进度低,容易引起视差和视觉疲劳,因而不能满足数字化时代的需要。
采用单片机的数字电压表,将连续的模拟量如直流电压转换成不连续的离散的数字形式并加以显示,从而精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC实时通信。
数字电压表是诸多数字化仪表的核心与基础。
以数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表。
目前,由各种单片机和A/D转换器构成的数字电压表作全面深入的了解是很有必要的。
最近的几十年来,随着半导体技术、集成电路(IC)和微处理器技术的发展,数字电路和数字化测量技术也有了巨大的进步,从而促使了数字电压表的快速发展,并不断出现新的类型。
基于单片机原理的多功能测量仪的设计毕业设计

基于单片机原理的多功能测量仪的设计毕业设计目录设计总说明 (III)General Design Description (V)一 .绪论 (8)1.1课题的研究背景 (8)1.2测量仪表的简介 (8)1.3 51单片机简介 (9)二.电参数测量的理论依据 (11)2.1交流电流、电压有效值的测量 (11)2.2两相间相位差的测量 (12)2.3 单相有功功率、无功功率、视在功率的测量 (13)2.4 三相有功功率的测量 (13)2.5功率因数的测量 (14)三.方案设计 (14)3.1 使用功能要求 (15)3.2 仪器设计的总体框架和各模块的划分 (16)四.硬件电路设计 (18)4.1信号采集电路 (18)4.1.1 电压信号采集电路 (18)4.1.2 电流信号采集电路 (20)4.2整形电路设计 (20)4.3 A/D转换电路 (21)4.4 74ls138译码器 (31)4.5 A/D转换电路 (33)4.6显示电路设计 (34)4.6.1数码管的介绍 (34)4.6.2数码管结构 (36)4.6.3驱动方式 (36)4.6.4适用范围 (38)4.7 CD4511 (39)4.7.1引脚功能 (39)4.7.2工作范围 (40)4.7.3真值表 (40)4.7.4使用方法 (40)4.7.5锁存功能 (41)4.8 通信接口电路 (43)4.8.1 Rs485特点 (43)4.8.2接口 (43)4.8.3 rs485功能 (44)4.8.4 RS-485通信电路 (45)五.系统软件设计 (46)5.1 程序模块的划分 (46)5.2 结构化程序的设计方法 (46)5.3 软件模块 (47)5.3.1 主程序流程图 (47)5.3.2数据采集子程序 (49)5.3.3数据处理程序 (49)5.3.4 A/D转换程序 (51)5.3.5数码管显示 (52)5.3.6 RS485 (52)六.总结与展望 (54)附录A: 总电路图 (57)附录B: 总的系统框图 (58)附录C: 程序 (59)致谢 (64)基于单片机原理的多功能测量仪的设计设计总说明随着电力系统的快速发展,电网容量不断增大,结构日趋复杂,电力系统中实时监控、调度的自动化显得尤为重要,而电力参数的数据采集又是实现自动化的重要环节,如何快速准确地采集系统中各元件的电参数(电压、电流、功率、功率因数等)是实现电力系统自动化的一个重要因素。
应用电子毕业设计题目

应用电子毕业设计题目应电专业学生毕业设计选题总体要求:1、给出方案与论证;2、画出系统原理图和电路图;3、主要电路设计与计算;4、系统软件或程序;关键内容可在正文出现,其它程序列入附件5、系统测试与指标;6、稳定性与可靠性;7、论文格式规范,其中正文字数不少于8000字,参考文献不少于10篇;8、所有未在正文中列出的电路图、器件参数、测试数据等均列入附件;7、在规定的时间内选定设计题目,制订设计方案,查阅文献;8、每组任选一题,可一人一组,也可多人一组,分组最多4人。
二人及二人以上一组的必须说明分工。
A类1..智能化门锁系统2.机动车驾驶员电子桩考试系统设计3.多点温度采集与控制网络监控系统的实现-下位机传输协议及应用程序设计4.公交车汉字显示系统5.XX商务楼智能化设计6.XX商务楼智能化设计 --(网络)综合布线设计7.某商场2~ 7层消防报警系统设计8.温度控制系统控制算法及输出驱动电路的实现9.十字路口的交通灯控制10.自整定PID仿真研究11.智能交通灯12.手持机文本阅读器的设计---上位机软件13.手持机文本阅读器的设计手持机硬件14.EDA技术来实现数据通信15.XX花园智能化系统设计16.基于数字控制的三相逆变器设计17.空调自控系统设计18.三关节机器人控制系统设计及仿真19.无限传媒制播网络系统20.交流双速电梯的电气控制系统设计21.具有双闭环微机控制的串级调速系统22.单片机控制自动往返电动小汽车23.信号发生器24.单片机温度控制25.单片机设计电热水壶26.基于AD7135数据采集的温度控制系统的研制———系统硬件设计及抗干扰处理27.基于AD7135数据采集的温度控制系统的研制—系统硬件设计28.基于USB的数据通信模块研究与设计——驱动程序部分29.多点温度采集与控制网络监控系统的实现30.应用于单片机的红外通信接口的设计31.电流检测仪软件研究32.软测量理论及其应用33.远距离数据采集模块的设计——数据采集模块34.锅炉汽包水位和过热蒸汽温度的控制35.微机控制V-M直流电机调速系统设计36.基于USB的数据通信的研究与设计37.电视监控系统38.笼式电动机变压变频调速系统(vvvf)设计——SPWM控制39.汽车站智能化系统设计40.电话报警控制器的研制41.关于某料筒切割装置自动控制系统的设计42.商场消防报警系统设计43.XX大厦消防自动报警、视频监控系统设计44.行政楼消防自动报警系统、通讯系统设计45.行政楼消防自动报警系统、通讯系统设计46.智能化公交管理-乘客自动计数系统47.XX小区智能化设计——安防自动化系统48.自适应PID模糊控制器研究49.自动整纬传感器的设计50.药厂生产厂房环境控制51.基于神经网络的自适应控制52.某检察院计算机网络和视频监控系统设计53.基于PLC的粮库自动调运控制系统54.自动供水系统的设计55.数字录音笔设计----硬件部分56.数字录音笔设计——软件部分57.远距离数据采集模块的设计——微机通信模块58.语音报站59.基于单片机的粮情监控系统60.基于单片机的粮情自动检测系统61.基于单片机的多路信号发生器62.基于AD7714数据采集的温度控制系统的研制63.基于AD652数据采集的温度控制系统的研制—系统硬件设计64.基于89C2051的IC卡读写器设计66.基于单片机的多路温度采集显示系统69.电热炉温度PID控制及MATLAB仿真76.基于PLC的变频调速恒压供水系统77.智能楼宇设计78.电参数综合测量仪79.楼宇会议系统设计80.住宅公用路灯用电量分配装置81.单片机设计太阳能热水器82.波形发生相位测量系统----波形发生器设计83.城市交通智能化管理84.MATLAB对行驶轿车进行仿真85.多功能测试仪----温度测量设计86.PC遥控器(利用串口)87.PC遥控器(利用USB口)88.鼠标遥控器(无线鼠标)89.防盗系统的研制与开发90.具有数码显示的多功能知识竞赛抢答器和评分器91.防盗系统的研制与开发92.单片机温度控制系统93.简易GSP定位信息显示系统的设计94.基于无线传感器网络的矿井安全监测系统设计95.无线传感器网络应用设计96.无线射频卡应用设计97.无线射频卡在实验室管理中的应用98.单片机虚拟实验系统99.语音送客门铃100.交通灯单片机程序设计101.电子时钟单片机程序设计102.舞台灯光设计单片机程序设计103.抢答器控制部分单片机程序设计104.键盘设计单片机程序设计105.防盗电子狗的设计106.数字频率计的设计107.家用电器远程控制108.数据采集系统109.简易数字电压表110.智能红外遥控电风扇的设计一、设计任务语音提示功能、液晶显示界面、16档风速选择等功能二、要求及技术参数1)显示设置在风扇运行过程中有显示界面提示运行的状态(如档位等)。
基于STM32单片机的简易电路特性测试仪

www�ele169�com | 59电子测量0 引言本测试仪对一般三极管放大电路具有输入、输出阻抗测量、幅频特性曲线显示、故障位置判断及故障原因显示的功能。
同时兼具制作成本低,测量精度高,简单易上手的特性。
对于刚接触模拟电路、三极管放大电路的同学来说是一个很好的学习工具。
1 总体设计方案系统硬件结构框图,如图1所示。
经DDS 信号发生器模块产生一定频率、幅值的正弦波信号,由于三极管放大电路的放大倍数较大,若输入信号过大则会产生失真,需要经过信号调理网络进行衰减,之后在三极管放大电路的输入端进行ADC 检测,从而可以检测输入电阻。
在放大电路的输出端,由于输出信号幅值较大,超过单片机ADC 检测限度,故信号需调理后进行采集,同时通过控制继电器吸合控制负载电阻的通断,进行输出电阻的测量。
两个ADC 检测点采集数据,经单片机数据运行处理后,在TFT 屏幕上显示出三极管放大电路的输入、输出阻抗,幅频特性曲线以及电路故障的原因。
2 硬件电路设计■2.1 输入信号调理网络为了满足三极管放大电路最大不失真的要求,经过信号输入测试,应满足输入信号小于60mv。
由于DDS 正弦波输出模块输出的正弦波为一定值556mV,故需要进行信号衰减。
如图2所示,信号衰减网络包括纯电阻分压衰减和电压跟随两部分。
电压跟随器起到稳定隔离的作用,保证 ■2.2 继电器开关驱动电路如图3所示,继电器开关用9013三极管进行驱动,通过单片机进行控制。
从而实现三极管放大电路输出端并联电■2.3 输出端信号调理网络由于三极管的放大倍数较大,其输出端幅值达到6.8V,而单片机的采样幅度要求需要在3.3V 以内,所以需要经过信号调理。
由于测量输出电阻需要给三李申,陈康宁,汪帅,李寒,贾巍(通讯作者)(湖北文理学院汽车与交通工程学院,湖北襄阳,441053)基金项目:湖北文理学院大学生创新创业训练项目(项目编号:S202010509014)。
摘要:本系统是基于STM32单片机ADC检测的简易电路特性测试仪,用于检测三极管放大电路的基本工作特性,同时可以在电路发生故障时,判断电路故障的位置及原因。
基于单片机的数字频率计的设计

1前言频率测量是电子学测量中最为基本的测量之一。
由于频率信号抗干扰性强,易于传输,因此可以获得较高的测量精度。
随着数字电子技术的发展,频率测量成为一项越来越普遍的工作,测频原理和测频方法的研究正受到越来越多的关注。
1.1频率计概述数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。
它是一种用十进制数字显示被测信号频率的数字测量仪器。
它的基本功能是测量正弦信号、方波信号及其他各种单位时间内变化的物理量。
在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。
传统的频率计采用测频法测量频率,通常由组合电路和时序电路等大量的硬件电路组成,产品不但体积大,运行速度慢而且测量低频信号不准确。
本次采用单片机技术设计一种数字显示的频率计,测量准确度高,响应速度快,体积小等优点。
1.2频率计发展与应用在我国,单片机已不是一个陌生的名词,它的出现是近代计算机技术的里程碑事件。
单片机作为最为典型的嵌入式系统,它的成功应用推动了嵌入式系统的发展。
单片机已成为电子系统的中最普遍的应用。
单片机作为微型计算机的一个重要分支,其应用范围很广,发展也很快,它已成为在现代电子技术、计算机应用、网络、通信、自动控制与计量测试、数据采集与信号处理等技术中日益普及的一项新兴技术,应用范围十分广泛。
其中以AT89S52为内核的单片机系列目前在世界上生产量最大,派生产品最多,基本可以满足大多数用户的需要。
2 系统总体设计2.1测频的原理测频的原理归结成一句话,就是“在单位时间内对被测信号进行计数”。
被测信号,通过输入通道的放大器放大后,进入整形器加以整形变为矩形波,并送入主门的输入端。
由晶体振荡器产生的基频,按十进制分频得出的分频脉冲,经过基选通门去触发主控电路,再通过主控电路以适当的编码逻辑便得到相应的控制指令,用以控制主门电路选通被测信号所产生的矩形波,至十进制计数电路进行直接计数和显示。
基于STM32单片机的放大电路故障测试仪设计

基于STM32单片机的放大电路故障测试仪设计1. 引言放大电路是电子设备中常见的功能模块之一,其作用是将输入信号放大到所需的幅度。
然而,由于各种原因,放大电路可能会出现故障,导致信号失真或无法正常工作。
因此,设计一种能够有效检测和诊断放大电路故障的测试仪对于维护和修复电子设备至关重要。
2. STM32单片机的优势STM32单片机是一种基于ARM Cortex-M内核的嵌入式微控制器系列。
它具有高性能、低功耗、丰富的外设接口和灵活性等优势,适用于各种应用场景。
在放大电路故障测试仪设计中,STM32单片机可以作为控制核心,并通过其丰富的外设接口实现信号采集、数据处理和显示等功能。
3. 放大电路故障分类在进行放大电路故障测试之前,有必要了解常见的放大电路故障类型。
根据实际经验和文献研究,可以将放大电路故障分为以下几类:3.1 输入端相关故障:包括输入端短路、开路或接触不良等问题,可能导致输入信号无法正常传递到放大电路中。
3.2 输出端相关故障:包括输出端短路、开路或电压偏移等问题,可能导致放大电路输出信号失真或无法正常输出。
3.3 偏置电压故障:当放大电路中的偏置电压不稳定或超出合理范围时,会导致整个放大电路工作不正常。
3.4 放大倍数故障:当放大倍数超出设计范围或不稳定时,会导致信号失真或过度放大等问题。
4. 测试仪设计方案基于STM32单片机的放大电路故障测试仪设计方案如下:4.1 硬件设计:4.1.1 信号采集模块:通过外部模拟输入接口采集待测试的输入信号,并通过高精度ADC模块将其转换为数字信号。
4.1.2 信号处理模块:将采集到的数字信号传递给STM32单片机,并进行相应的处理和分析。
可以使用数字滤波、频谱分析等算法来检测和诊断故障。
4.1.3 显示模块:使用液晶显示屏或其他合适的显示设备来显示测试结果和相关信息。
4.2 软件设计:4.2.1 系统初始化:初始化STM32单片机和外部模块,设置相应的工作模式和参数。
基于振荡的单片机RLC测试仪的设计

输入信号调理电路 由D触发器 、反相器和过零 比较器构 成 ,经 过过零比较器后输入信号变为方波信号,为了改善方 波 的上升沿和下降沿,增加了两个斯密特反向器构成整形 电
I ITIH 10nlH
1.0281'1'1H 10.O5m H
2.8 0.5
路,整形后 的信号作为预置闸门的同步信号【4_ 。
随着 电子工业的发 展,电子元器件急剧增加,在 实际使 用过程 中,我们 要对 一些电感 、电阻、电容值进行测量。因 此,设计出一款安全、便捷、可靠 、精度高的无线链路层控制 协议 (Radio Link Control,RLC)测试仪,具有很大 的实际 意义 。常见 的电路参数数字 化测量 装置都是先将被测参 数
第 1期 2018年 1月
无 线互联 科技
WirelesS Internet Technology
No.1
January,2018
基于振荡的单片机RLC测试仪的设计
徐仲意 ,何建强。陈 盎 。邵昱博
(商洛学院,陕西 商洛 726000)
摘 要:为克服传统的外加交流测量法电源波动易引起偏差和文氏电桥测量法参数调节复杂等问题,文章设计了以89c5l单片 机 系统为核心的RLCf l, I试仪 ,实现RLc参数的自动测量和显示,该测试仪具有自动量程转换、实时显示等功能。通过Multisim 软件,对 电阻、电容 以及电感所组成的振 荡电路进行仿 计,系统结构合 理、操作便捷 ,且测量准确度 高、响应速度 决、测量 范围广。 关键谰:振荡;单片机 ;RLc测试仪
一 67—
第 1期 2018年 1月
出三 的值 。
f _] 上 …V cc RD
DIS OUT
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于单片机的数字电路功能测试仪的设计
摘要介绍了在实验室环境下,采用单片机最小系统测试数字集成电路的方法。
该设计有硬件简洁,软件编制方便灵活特点,对于通用集成电路可利用固化在片内的品种数据表测试。
测试结果通过发光管表示。
关键词功能测试真值表表格法人机对话
一、测试原理
在实验里,集成电路的测试是一件经常性的工作,在一批实验做完经后,电路是好是坏从表面上是看不出来的,如用简单办法,给电路加直流电源用万用表测,则是一非常麻烦的事,因为一块电路有好多脚,朵按照真值表一拍一拍的测,是一件非常费时费力的事,在一般实验室条件,数字电路只需进行,功能测试即可。
下面介绍一种数字集成电路的功能测试仪的设计方法在本设计中,由于采用了硬件的优化设计,只需采用单片机最小系统的简单硬件,即可完成24脚以下的各种TTL、CMOS、HC系列数字电路的功能测试,,包括各种通用门电路、译码器、数据选择器、触发器、计数器等。
解决其测试总问题。
在本设计中,仪器可用‚连续测试(TEST)/单拍(SING)‛两种方式进行测试。
在连续方式时,按下TEST测试按钮可在1秒钟内测完全部参数,并将测试后的结果在LED灯上显示。
屏幕同时显示真值表全部内容的实测结果。
如果按单拍可以一拍一拍的进行测试,数据存入程序库中。
在测试仪中,最多可以固化100个常用数字电路的测试程序,在一般情况下,可以用拨盘开关选择测品种。
二、单片机硬件系统构成
本设计采用TA89C51单片机最小系统构成测试硬件。
其硬件结构如下图所示。
单片机的三个8位口P0,P1,P2作为待测电路DUT的管脚I/O接有20pin ,16pin,14pin三个空测试插座。
这些插座的电源VCC和地GND是公共的。
其它管脚依次连接到P0,P1,P2线上。
图1 硬件原理图
P3口用作测试控制,P3.2用作单拍/连续选择开关。
P3.3用作TEST测试按钮。
40只LED指示灯分两排排列,用来指示真值表所规定的管脚状态。
20个绿色的灯表示实测管脚的状态,管脚灯主要用于单拍测试时指示每一拍的管脚,是否合格。
在连续测试时因为灯光闪烁太快,这些指示灯不起作用,红色的灯表示出错管脚的状态,红灯亮,该管脚有错,测试结束时,TEST LED灭。
绿色LED和红色。
用来指示电路合格与否。
绿灯为PASS,红灯为FAIL。
通过6只74HC595接40只LED指示灯,P3.0用作串-并行移位寄存器74HC595的串行信号输入。
P3.1用作74HC 595的移位脉冲信号。
这些信号由89C51软件生成。
P1.7作为74HC595移位寄存器的清零输入,P1.6为锁存CLK输入。
P0口除作为低8位管脚I/O还接有二个8421码的拨盘开关。
这两位拨盘开关用作89C51内固化的测试表格选择。
可选择0#--99#共100个不同的测试品种。
8421码的拨盘开关的原理图如图所示。
拨盘开关由P0口输入。
通过74LS373锁存器由P3.6用一个正脉冲将拨盘开关数锁存,在测试开始时即可将锁存数读入,并可将在89C52 ROM区的指的指定测试程序调入RAM 中的当前测试程序区。
可开始测试。
拨盘开关在‚00‛位置时,从原理图上可看出,8421开关均处于断开状态,这时P0各位接入10K上拉电阻。
这个上拉电阻对测试来说是十分必要的。
P1,P2口因为有内部上拉电阻,所以不必外接上拉电阻。
三、字电路测试仪系统软件
各种不同品种的数字电路,其管脚排列不同,各管脚功能也是完全
不一样的。
测试的时候,首先要根据真值表在输入管脚加上一定的测试条件。
或者是高电平或者是低电平。
对于时序电路,还应在指定管脚加上正脉冲或负脉冲信号,全部测试条件加上,待电路稳定以后,再将输出管脚的状态送入计算机,计算机将该实测管脚信号与真值表比较,如果一致则该节拍测试合格,否则为不合格。
可见,不同品种的测试数据或同一品种的不同节拍,其测试数据都是不一样的,因此除了系统程序以外,还应该针对各种不同品种,编制与真值表相对应的品种测试数据表。
本例中根据20pin 16pin 14pin三种不同管脚插座,分别用三个不同的数字电路,74LS245,74LS138,74LS164。
20pin 16pin 14pin分别给出引脚号T1---T20、T1—T16、T1—T14对应I/O接口如下表:
表一:引脚对应接口表
要注意的是判别一块电路的好坏,不能只看几个测试节拍,而要根据真值表的所有项目对照,只要其中有一个状态测试不合格,该电路就是不合格。
一个电路的测试往往要几十个测试节拍才能完成。
一个品种对应一个品种数据表。
在本设计中,品种数据表中‚管脚数‛和‚I/O‛用来确定该品种电路的管脚数和输入输出管脚。
每一个测试节拍第一条是控制字,‚控制字‛用来编程测试标志,指明该节拍要否加入测试脉冲,以及加入几个测试脉冲。
每个测试节拍要按真值表用‚H/L‛规定各管脚的逻辑电平。
‘1’为高电平,‘0’为低电平如要加测试脉冲,则用‚CP‛规定哪些脚是加脉冲脚。
‘1’是要加脉冲的脚,‘0’是不加脉冲的脚。
如不加脉冲,则不安排CP1-CP3。
测完一个节拍,以后再测下一个节拍,直到遇到结束标志为止。
可见各品种的品种数据表长度并不相等。
每个品种的数据表经事先高度以后固化在片内的程序存储器中。
每个品种数据表的首地址也列成一个表格叫品种向量表,以备拨盘开关选择现测品种。
品种数据表的格式确定以后,系统程序也就确定了。
系统程序的工作,实际上就是不断地送测试条件到管脚,再取输出管脚的实际状态并与真值表进行比较判别的过程。
其流程图系统开机复位到进入主程序,,首先读入拨盘开关的数据。
如拨盘开关为‘00’,则将品种方面军当前测试品种的RAM区中。
如不为‘00’。
则程序开始查询测试按钮,等待测试信号。
测试程序有两个主要通道,单拍测试通道的连续测试通道。
单拍测试时,每按一次测试按钮,测试一个节拍,测试结果由面板LED显示。
连续测试时,每按一次按钮,将测试完所有的节拍。
测试结果在面板LED显示,并自动送入PC机,可在PC机的屏幕上显示所有测试结果。
单拍时,每一个测试节拍的合格与否,都可由PASS灯或FALL灯指示,连续时,只有在全部节拍测试完后再根据FALL标志由PASS灯或FAIL灯给出指示。
单拍/连续状态可随时用单拍/连续开关进行切换。
测试过程框图如下:
图2:测试过程框图
在对待测电路加上H/L规定的测试条件时,输出脚都应全部送高电平。
不能将输出脚加上低电平。
否则可能导致与待测电路输出脚的电平冲突。
空脚、电源、地未接单片机,属于无关项,为方便起见可设为高电平。
作者简解:刘昌珍女江苏师范学院电子信息工程本科工程师;。