创新题

合集下载

创新能力练习题

创新能力练习题

创新能力练习题(一)一、单项选择题1、1912年,经济学家熊彼特提出“创新理论”,“创新”逐步成为一个(B)专用名词。

A社会学B经济学C管理学2、理论创新的实质就是(A)。

A解放思想,事实求是B一切从实际出发C与时俱进3、技术创新、制度创新和知识创新等,其“新”的意义是指(C)。

A时间意义上的新B地理意义上的新C知识产权意义上的新4、司马光砸缸的行为用的是(C)思维。

A横向B纵向C逆向5、理论创新的过程不是一帆风顺,而是经历反复斗争、争论以后才最终形成的。

这点显示了理论创新的特征具有(B)。

A继承性B斗争性C加速性6、科技创新需要有自主性,其含义包括(C)。

A学术自主B学术自由CA和B7、创新活动的基础和开端是(A)。

A观念创新B制度创新C技术创新8、在当代,科学、技术、生产三者相互作用的形式逐步是(C)。

A生产→技术→科学B科学→技术→生产C科学←→技术←→生产9、康佳公司向农村市场推出价廉的“福临门”彩电时,将产品不适用的功能减少,这是运用了产品创新思维中的(B)。

A加法B减法C除法10、我国企业制度创新主要是建立(A)。

A现代企业制度B产权制度C科学管理制度二、多项选择题1、判断创新的两个基本标准是(AC)。

A世界范围内的第一B一国或一地区内的第一C显着性变化2、创新需要提出问题,问题产生于(AB)。

A好奇B质疑C想象3、创新精神和创新意识主要来自于(ABC)。

A先天的智力和知识积累B丰富的实践C科学的训练4、系统思维要求我们有(ABC)。

A全局性思维B结构功能性思维C协同性思维5、按思维过程的形成特点,可将思维分为(BC)。

A逻辑式思维B发散式思维C收敛式思维6、人类的社会实践活动决定理论创新的(ABC)。

A内容B范围C方向7、知识创新的源泉是(AB)。

A默然知识B形式知识C扩大知识8、科技创新的内容有材料创新、产品创新以及(BC)。

A经营创新B工艺创新C工具创新9、在知识经济和经济全球化的推动下,组织创新主要呈现的趋势是(ABC)。

创新试题及答案

创新试题及答案

创新试题及答案一、选择题(每题2分,共10分)1. 创新的定义是什么?A. 一种新的思维方式B. 一种新的做事方法C. 一种新的产品或服务D. 以上都是答案:D2. 下列哪项不是创新的特点?A. 独特性B. 实用性C. 可复制性D. 可持续性答案:C3. 创新过程中,哪个阶段最为关键?A. 想法产生B. 想法验证C. 实施执行D. 反馈调整答案:B4. 创新管理的核心是什么?A. 资源配置B. 流程优化C. 风险控制D. 团队协作答案:D5. 创新思维的培养需要哪些条件?A. 开放性思维B. 批判性思维C. 系统性思维D. 以上都是答案:D二、填空题(每题2分,共10分)1. 创新的三个主要来源是______、______和______。

答案:技术进步、市场需求、竞争压力2. 创新的四个阶段包括______、______、______和______。

答案:准备阶段、构思阶段、实施阶段、完善阶段3. 创新团队的构成要素包括______、______和______。

答案:领导者、执行者、监督者4. 创新过程中,______是推动创新实施的关键因素。

答案:资源投入5. 创新的评估指标包括______、______和______。

答案:创新程度、市场接受度、经济回报三、简答题(每题10分,共20分)1. 简述创新对企业的重要性。

答案:创新对企业至关重要,因为它可以帮助企业开拓新市场,提高竞争力,增强盈利能力,同时还能提升企业的品牌形象和市场地位。

2. 描述创新过程中可能遇到的挑战及应对策略。

答案:创新过程中可能遇到的挑战包括资源限制、市场不确定性、技术难题和组织抵抗。

应对策略包括增加研发投入、进行市场调研、建立跨学科团队和推动组织文化变革。

四、论述题(每题20分,共20分)1. 论述如何在企业中建立创新文化。

答案:建立创新文化需要从以下几个方面着手:首先,明确创新的战略地位,将其纳入企业的核心价值;其次,鼓励员工提出新想法,并对创新尝试给予支持和奖励;再次,建立开放的沟通机制,让不同部门和层级的人都能参与创新讨论;最后,定期举办创新培训和研讨会,提升员工的创新能力和意识。

初中创新试题及答案

初中创新试题及答案

初中创新试题及答案一、选择题(每题2分,共10分)1. 以下哪项是光合作用的产物?A. 氧气B. 二氧化碳C. 水D. 葡萄糖答案:A2. 地球的自转周期是多少?A. 24小时B. 365天C. 12个月D. 1年答案:A3. 以下哪个国家不属于G7集团?A. 美国B. 日本C. 德国D. 中国答案:D4. 牛顿的第三定律指出,对于每一个作用力,都有一个大小相等、方向相反的反作用力。

这个定律适用于以下哪个场景?A. 人推墙B. 人走路C. 人游泳D. 所有以上情况答案:D5. 以下哪个元素的化学符号是“Fe”?A. 铁B. 铜C. 锌D. 铅答案:A二、填空题(每题2分,共10分)1. 人体最大的器官是________。

答案:皮肤2. 地球的大气层中,最外层是________。

答案:散逸层3. 圆的周长公式是C=2πr,其中r代表________。

答案:半径4. 牛顿第一定律也被称为________。

答案:惯性定律5. 光年是用于测量________的单位。

答案:距离三、简答题(每题5分,共20分)1. 简述细胞的基本结构和功能。

答案:细胞是生物体的基本单位,具有细胞膜、细胞质和细胞核等结构。

细胞膜负责保护细胞内部并控制物质进出;细胞质是细胞内充满的胶状物质,包含细胞器;细胞核内含有遗传物质DNA,控制细胞的生长、分裂和功能。

2. 描述水循环的过程。

答案:水循环包括蒸发、凝结、降水和径流等过程。

太阳辐射使地表水蒸发成水蒸气,水蒸气在大气中上升并凝结成云,云中的水滴聚集后以降水形式落回地面,地表水再通过河流等途径流回海洋,完成水循环。

3. 解释为什么铁制品容易生锈。

答案:铁制品在潮湿的空气中与氧气和水分子接触,发生氧化反应,形成铁的氧化物,即锈。

这个过程称为腐蚀,是铁制品常见的一种自然退化现象。

4. 阐述牛顿第二定律的内容及其应用。

答案:牛顿第二定律指出,物体的加速度与作用在其上的合外力成正比,与物体的质量成反比。

创新能力考试试题及答案

创新能力考试试题及答案

创新能力考试试题及答案一、选择题1. 创新是指:A. 重复已有的工作方法和思维方式B. 基于现有知识和经验开展新的工作C. 完全摒弃传统方式,追求全新的解决方法D. 依赖他人的创意和想法进行工作答案:B. 基于现有知识和经验开展新的工作2. 创新能力可以通过以下哪些方式培养?A. 学习新的知识和技能B. 持续观察和思考C. 探索未知领域D. 打破常规思维模式答案:A. 学习新的知识和技能;B. 持续观察和思考;C. 探索未知领域;D. 打破常规思维模式3. 创新的核心是:A. 独特的想法和创意B. 高效的工作方法和流程C. 良好的团队沟通与合作D. 商业化的价值创造答案:A. 独特的想法和创意4. 创新过程中最重要的一步是:A. 问题定义和分析B. 创意的产生和筛选C. 资源整合和调配D. 测试和验证答案:A. 问题定义和分析5. 创新能力的培养需要:A. 多元化的知识背景B. 强大的自信心和决心C. 持续的学习和实践D. 优秀的团队支持答案:A. 多元化的知识背景;C. 持续的学习和实践;D. 优秀的团队支持二、问答题1. 请简要解释创新能力的重要性及对个人和组织的影响。

创新能力对个人和组织的影响具有重要意义。

对于个人来说,拥有创新能力可以使其在职场中脱颖而出,提高职业竞争力,同时也能够不断学习和成长。

对于组织来说,创新能力是实现持续竞争优势的关键,可以推动组织不断发展和创造更大的价值。

2. 创新能力的培养方法有哪些?请选择一个方法进行详细说明。

创新能力的培养方法包括学习新的知识和技能、持续观察和思考、探索未知领域、打破常规思维模式等。

其中,学习新的知识和技能是培养创新能力的重要途径之一。

学习新的知识和技能可以扩展个人的思维和认知边界,为创新提供更多的资源和灵感。

通过参加培训课程、读书、关注行业动态等方式,个人可以不断更新自己的知识储备,掌握行业的最新发展趋势和前沿技术。

同时,学习新的知识和技能也能够培养个人的学习能力和适应能力,使其更具备面对挑战和解决问题的能力。

高中数学经典创新题精选60题

高中数学经典创新题精选60题

高中数学经典创新题精选60题1.在实数集R上定义运算*:x*y=x·(1-y).若关于x的不等式x*(x-a)>0的解集是集合{x|-1≤x≤1}的子集,则实数a的取值范围是()A.[0,2]B.[-2,-1)∪(-1,0]C.[0,1)∪(1,2]D.[-2,0]解析:选D.依题意可得x(1-x+a)>0.因为其解集为{x|-1≤x≤1}的子集,所以当a≠-1时,0<1+a≤1或-1≤1+a<0,即-1<a≤0或-2≤a<-1.当a=-1时,x(1-x+a)>0的解集为空集,符合题意.所以-2≤a≤0.故选D.2.A,B,C三个学生参加了一次考试,A,B的得分均为70分,C的得分为65分.已知命题p:若及格分低于70分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是()A.若及格分不低于70分,则A,B,C都及格B.若A,B,C都及格,则及格分不低于70分C.若A,B,C至少有一人及格,则及格分不低于70分D.若A,B,C至少有一人及格,则及格分高于70分解析:选C.根据原命题与它的逆否命题之间的关系知,命题p的逆否命题是若A,B,C至少有一人及格,则及格分不低于70分.故选C.3.在射击训练中,某战士射击了两次,设命题p是“第一次射击击中目标”,命题q 是“第二次射击击中目标”,则命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是()A.(﹁p)∨(﹁q)为真命题B.p∨(﹁q)为真命题C.(﹁p)∧(﹁q)为真命题D.p∨q为真命题解析:选A.命题p是“第一次射击击中目标”,命题q是“第二次射击击中目标”,则命题﹁p是“第一次射击没击中目标”,命题﹁q是“第二次射击没击中目标”,故命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是(﹁p)∨(﹁q)为真命题,故选A.4.若函数y=f(x)对定义域D中的每一个x1,都存在唯一的x2∈D,使f(x1)·f(x2)=1成立,则称f(x)为“影子函数”,有下列三个命题:()①“影子函数”f(x)的值域可以是R;②“影子函数”f(x)可以是奇函数;③若y =f (x ),y =g (x )都是“影子函数”,且定义域相同,则y =f (x )·g (x )是“影子函数”. 上述命题正确的序号是( ) A .① B .② C .③D .②③解析:选B .对于①:假设“影子函数”的值域为R ,则存在x 1,使得f (x 1)=0,此时不存在x 2,使得f (x 1)f (x 2)=1,所以①错;对于②:函数f (x )=x (x ≠0),对任意的x 1∈(-∞,0)∪(0,+∞),取x 2=1x 1,则f (x 1)f (x 2)=1,又因为函数f (x )=x (x ≠0)为奇函数,所以“影子函数”f (x )可以是奇函数,②正确;对于③:函数f (x )=x (x >0),g (x )=1x (x >0)都是“影子函数”,但F (x )=f (x )g (x )=1(x >0)不是“影子函数”(因为对任意的x 1∈(0,+∞),存在无数多个x 2∈(0,+∞),使得F (x 1)·F (x 2)=1),所以③错.综上,应选B .5.设f (x ),g (x )都是定义在实数集上的函数,定义函数(f ·g )(x ):∀x ∈R ,(f ·g )(x )=f (g (x )).若f (x )=⎩⎪⎨⎪⎧x ,x >0,x 2,x ≤0,g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则( )A .(f ·f )(x )=f (x )B .(f ·g )(x )=f (x )C .(g ·f )(x )=g (x )D .(g ·g )(x )=g (x )解析:选A.对于A ,(f ·f )(x )=f (f (x ))=⎩⎪⎨⎪⎧f (x ),f (x )>0,f 2(x ),f (x )≤0,当x >0时,f (x )=x >0,(f ·f )(x )=f (x )=x ;当x <0时,f (x )=x 2>0,(f ·f )(x )=f (x )=x 2;当x =0时,(f ·f )(x )=f 2(x )=0=02,因此对任意的x ∈R ,有(f ·f )(x )=f (x ),故A 正确,选A.6.如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x+32是区间I 上的“缓增函数”,则“缓增区间”I 为( ) A .[1,+∞) B .[0,3] C .[0,1]D .[1,3]解析:选D.因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x -1+32x ,令g (x )=12x -1+32x (x ≥1),则g ′(x )=12-32x 2=x 2-32x 2,由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x 在区间[1,3]上单调递减,故“缓增区间”I 为[1,3].7.设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.解析:由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎡⎦⎤-94,-2,故当m ∈⎝⎛⎦⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象有两个交点.答案:⎝⎛⎦⎤-94,-28.设y =f (x )在(-∞,1]上有定义,对于给定的实数K ,定义f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K ,f (x )>K .给出函数f (x )=2x +1-4x ,若对于任意x ∈(-∞,1],恒有f K (x )=f (x ),则( )A .K 的最大值为0B .K 的最小值为0C .K 的最大值为1D .K 的最小值为1解析:选D.根据题意可知,对于任意x ∈(-∞,1],若恒有f K (x )=f (x ),则f (x )≤K 在x ≤1上恒成立,即f (x )的最大值小于或等于K 即可.令2x =t ,则t ∈(0,2],f (t )=-t 2+2t =-(t -1)2+1,可得f (t )的最大值为1,所以K ≥1,故选D.9.如图,矩形ABCD 的周长为8,设AB =x (1≤x ≤3),线段MN 的两端点在矩形的边上滑动,且MN =1,当N 沿A →D →C →B →A 在矩形的边上滑动一周时,线段MN 的中点P 所形成的轨迹为G ,记G 围成的区域的面积为y ,则函数y =f (x )的图象大致为( )解析:选D.法一:由题意可知点P 的轨迹为图中虚线所示,其中四个角均是半径为12的扇形.因为矩形ABCD 的周长为8,AB =x ,则AD =8-2x 2=4-x ,所以y =x (4-x )-π4=-(x -2)2+4-π4(1≤x ≤3),显然该函数的图象是二次函数图象的一部分,且当x =2时,y =4-π4∈(3,4),故选D.法二:在判断出点P 的轨迹后,发现当x =1时,y =3-π4∈(2,3),故选D.10.已知点A (1,0),点B 在曲线G :y =ln x 上,若线段AB 与曲线M :y =1x 相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.那么曲线G 关于曲线M 的关联点的个数为________.解析:设B (x 0,ln x 0),x 0>0,线段AB 的中点为C ,则C ⎝⎛⎭⎫x 0+12,ln x 02,又点C 在曲线M 上,故ln x 02=2x 0+1,即ln x 0=4x 0+1.此方程根的个数可以看作函数y =ln x 与y =4x +1的图象的交点个数.画出图象(如图),可知两个函数的图象只有1个交点.答案:111.已知奇函数f (x )是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A.14B.18 C .-78D .-38解析:选C.因为函数y =f (2x 2+1)+f (λ-x )只有一个零点,所以方程f (2x 2+1)+f (λ-x )=0只有一个实数根,又奇函数f (x )是定义在R 上的单调函数,所以f (-x )=-f (x ),所以f (2x 2+1)+f (λ-x )=0⇔f (2x 2+1)=-f (λ-x )⇔f (2x 2+1)=f (x -λ)⇔2x 2+1=x -λ,所以方程2x 2-x +1+λ=0只有一个实数根,所以Δ=(-1)2-4×2×(1+λ)=0,解得 λ=-78.故选C.12.曲线y =ln(2x -1)上的点到直线2x -y +8=0的最短距离是________.解析:设M (x 0,ln(2x 0-1))为曲线上的任意一点,则曲线在M 点处的切线与直线2x -y +8=0平行时,M 点到直线的距离即为曲线y =ln(2x -1)上的点到直线2x -y +8=0的最短距离.因为y ′=22x -1,所以22x 0-1=2,解得x 0=1,所以M (1,0).记点M 到直线2x -y +8=0的距离为d ,则d =|2+8|4+1=2 5.答案:2513.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是( )A .[-5,0)B .(-5,0)C .[-3,0)D .(-3,0)解析:选C.由题意,f ′(x )=x 2+2x =x (x +2),故f (x )在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,作出其大致图象如图所示,令13x 3+x 2-23=-23得,x =0或x =-3, 则结合图象可知,⎩⎪⎨⎪⎧-3≤a <0,a +5>0,解得a ∈[-3,0).14.函数f (x )=x 3-3a 2x +a (a >0)的极大值是正数,极小值是负数,则a 的取值范围是________.解析:f ′(x )=3x 2-3a 2=3(x +a )(x -a ),由f ′(x )=0得x =±a , 当-a <x <a 时,f ′(x )<0,函数单调递减; 当x >a 或x <-a 时,f ′(x )>0,函数单调递增, 所以f (x )的极大值为f (-a ),极小值为f (a ). 所以f (-a )=-a 3+3a 3+a >0且f (a )=a 3-3a 3+a <0. 解得a >22. 所以a 的取值范围是⎝⎛⎭⎫22,+∞.答案:⎝⎛⎭⎫22,+∞15.已知圆O 与直线l 相切于点A ,点P ,Q 同时从A 点出发,P 沿着直线l 向右运动,Q 沿着圆周按逆时针以相同的速度运动,当Q 运动到点A 时,点P 也停止运动,连接OQ ,OP (如图),则阴影部分面积S 1,S 2的大小关系是________.解析:设运动速度为m ,运动时间为t ,圆O 的半径为r ,则AQ ︵=AP =tm ,根据切线的性质知OA ⊥AP ,所以S 1=12tm ·r -S 扇形AOB ,S 2=12tm ·r -S 扇形AOB ,所以S 1=S 2恒成立.答案:S 1=S 216.已知θ为直线y =3x -5的倾斜角,若A (cos θ,sin θ),B (2cos θ+sin θ,5cosθ-sin θ),则直线AB 的斜率为( )A .3B .-4 C. 13D .-14解析:选D.由题意知tan θ=3,k AB =5cos θ-sin θ-sin θ2cos θ+sin θ-cos θ=5-2tan θ1+tan θ=-14.故选D.17.已知θ∈(0,π),且sin θ+cos θ=m ,m ∈(0,1),则tan θ的可能取值为( ) A .-3 B .3 C .-13D.13 解析:选A.由m ∈(0,1),得sin θ+cos θ>0,所以θ∈⎝⎛⎭⎫0,3π4.又因为(sin θ+cosθ)2=1+2sin θcos θ=m 2,m ∈(0,1),从而得2sin θcos θ<0,得θ∈⎝⎛⎭⎫π2,π.综上可得θ∈⎝⎛⎭⎫π2,3π4,则tan θ<-1,所以可能的取值为-3,故选A.18.公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现了黄金分割约为0.618,这一数值也可以表示为m =2sin 18°,若m 2+n =4,则m n2cos 227°-1=( )A .8B .4C .2D .1解析:选C.因为m =2sin 18°,m 2+n =4,所以n =4-m 2=4-4sin 218°=4cos 218°. 所以m n2cos 227°-1=2sin 18°4cos 218°2cos 227°-1=4sin 18°cos 18°2cos 227°-1=2sin 36°cos 54°=2sin 36°sin 36°=2.故选C.19.已知sin 10°+m cos 10°=2cos 140°,则m =________. 解析:由sin 10°+m cos 10°=2cos 140°可得, m =2cos 140°-sin 10°cos 10°=-2cos 40°-sin 10°cos 10°=-2cos (30°+10°)-sin 10°cos 10°=-3cos 10°cos 10°=- 3.答案:-320.已知a 24+b 2=1,则|a cos θ+2b sin θ|的最大值为( )A .1 B.233C .2D .23解析:选C.由a 24+b 2=1得a 2+4b 2=4.由辅助角公式可得|a cos θ+2b sin θ|=a 2+4b 2|sin(θ+φ)|=2|sin(θ+φ)|,所以最大值为2.故选C.21.已知a >0,函数f (x )=-2a sin(2x +π6)+2a +b ,当x ∈[0,π2]时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f (x +π2)且lg g (x )>0,求g (x )的单调区间.解:(1)因为x ∈[0,π2],所以2x +π6∈[π6,7π6],所以sin(2x +π6)∈[-12,1],所以-2a sin(2x +π6)∈[-2a ,a ],所以f (x )∈[b ,3a +b ],又因为-5≤f (x )≤1, 所以b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得f (x )=-4sin(2x +π6)-1,g (x )=f (x +π2)=-4sin(2x +7π6)-1=4sin(2x +π6)-1,又由lg g (x )>0,得g (x )>1,所以4sin(2x +π6)-1>1,所以sin(2x +π6)>12,所以2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,所以g (x )的单调增区间为(k π,k π+π6],k ∈Z .又因为当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .所以g (x )的单调减区间为(k π+π6,k π+π3),k ∈Z .所以g (x )的单调增区间为(k π,k π+π6],k ∈Z ,单调减区间为(k π+π6,k π+π3),k ∈Z .22.定义运算|a b c d |=ad -bc .将函数f (x )=|3 sin x1 cos x |的图象向左平移φ(φ>0)个单位,所得图象关于y 轴对称,则φ的最小值为( )A.π3 B.76π C.π6D.56π 解析:选D.f (x )=|3 sin x 1 cos x |=3cos x -sin x =2cos(x +π6),向左平移φ个单位得到y=2cos(x +π6+φ),由题意y =2cos(x +π6+φ)是偶函数,所以π6+φ=k π(k ∈Z ),即φ=k π-π6(φ>0).故当k =1时,φ的最小值为56π.23.如图,将绘有函数f (x )=3sin(ωx +5π6)(ω>0)部分图象的纸片沿x 轴折成直二面角,若A ,B 之间的空间距离为10,则f (-1)=( )A .-1B .1C .-32D.32解析:选D.由题设并结合图形可知, AB =(3)2+[(3)2+(T2)2]=6+T 42=6+π2ω2=10,得π2ω2=4,则ω=π2,所以f (-1)=3sin(-π2+5π6)=3sin π3=32.24.已知P 为△ABC 所在平面内一点,AB →+PB →+PC →=0,|AB →|=|PB →|=|PC →|=2,则△ABC 的面积等于( )A .3B .23C .33D .43解析:选B.因为AB →+PB →+PC →=0,所以AB →=-(PB →+PC →).由平行四边形法则可知,以PB →,PC →为边组成的平行四边形的一条对角线与AB →反向,且长度相等.因为|AB →|=|PB →|=|PC →|=2,所以以PB →,PC →为边的平行四边形为菱形,且除BC 外的对角线长为2,所以BC =23,∠ABC =90°,所以S △ABC =12AB ·BC =12×2×23=23,故选B.25.如图,在△ABC 中,点D 在线段BC 上,且满足BD =12DC ,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N 若AM →=mAB →,AN →=nAC →,则( )A .m +n 是定值,定值为2B .2m +n 是定值,定值为3 C.1m +1n是定值,定值为2 D.2m +1n是定值,定值为3解析:选D.法一:如图,过点C 作CE 平行于MN 交AB 于点E .由AN →=nAC →可得AC AN =1n ,所以AE EM =AC CN =1n -1,由BD =12DC 可得BM ME =12,所以AM AB =n n +n -12=2n 3n -1,因为AM →=mAB →,所以m =2n 3n -1,整理可得2m +1n=3.法二:因为M ,D ,N 三点共线,所以AD →=λAM →+(1-λ)·AN →.又AM →=mAB →,AN →=nAC →,所以AD →=λmAB →+(1-λ)·nAC →.又BD →=12DC →,所以AD →-AB →=12AC→-12AD →,所以AD →=13AC →+23AB →.比较系数知λm =23,(1-λ)n =13,所以2m +1n=3,故选D.26.在如图所示的方格纸中,向量a ,b ,c 的起点和终点均在格点(小正方形顶点)上,若c 与x a +y b (x ,y 为非零实数)共线,求xy的值.解:设e 1,e 2分别为水平方向(向右)与竖直方向(向上)的单位向量,则向量c =e 1-2e 2,a =2e 1+e 2,b =-2e 1-2e 2,由c 与x a +y b 共线,得c =λ(x a +y b ),所以e 1-2e 2=2λ(x -y )e 1+λ(x -2y )e 2,所以⎩⎪⎨⎪⎧2λ(x -y )=1,λ(x -2y )=-2,所以⎩⎨⎧x =3λ,y =52λ,则x y 的值为65.27.已知P 为△ABC 所在平面内一点,AB →+PB →+PC →=0,|AB →|=|PB →|=|PC →|=2,则△ABC 的面积等于( )A .3B .23C .33D .43解析:选B.因为AB →+PB →+PC →=0,所以AB →=-(PB →+PC →).由平行四边形法则可知,以PB →,PC →为边组成的平行四边形的一条对角线与AB →反向,且长度相等.因为|AB →|=|PB →|=|PC →|=2,所以以PB →,PC →为边的平行四边形为菱形,且除BC 外的对角线长为2,所以BC =23,∠ABC =90°,所以S △ABC =12AB ·BC =12×2×23=23,故选B.28.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2-4e ·b +3=0,则|a -b |的最小值是( )A .3-1B .3+1C .2D .2-3解析:选A .法一:设O 为坐标原点,a =OA →,b =OB →=(x ,y ),e =(1,0),由b 2-4e ·b +3=0得x 2+y 2-4x +3=0,即(x -2)2+y 2=1,所以点B 的轨迹是以C (2,0)为圆心,1为半径的圆.因为a 与e 的夹角为π3,所以不妨令点A 在射线y =3x (x >0)上,如图,数形结合可知|a -b |min =|CA →|-|CB →|=3-1.故选A .法二:由b 2-4e·b +3=0得b 2-4e·b +3e 2=(b -e )·(b -3e )=0.设b =OB →,e =OE →,3e =OF →,所以b -e =EB →,b -3e =FB →,所以EB →·FB →=0,取EF 的中点为C ,则B 在以C 为圆心,EF 为直径的圆上,如图.设a =OA →,作射线OA ,使得∠AOE =π3,所以|a -b |=|(a -2e )+(2e -b )|≥|a -2e |-|2e -b |=|CA →|-|BC →|≥3-1.故选A .29.已知直线x +y =a 与圆x 2+y 2=2交于A ,B 两点,O 是原点,C 是圆上一点,若OA →+ OB →=OC →,则a 的值为 ( )A .±1B .± 2C .± 3D .±2 解析:因为A ,B ,C 均为圆x 2+y 2=2上的点, 故|OA →|=|OB →|=|OC →|=2,因为OA →+OB →=OC →,所以(OA →+OB →)2=OC →2, 即OA →2+2OA →·OB →+OB →2=OC →2, 即4+4cos∠AOB =2,故∠AOB =120°. 则圆心O 到直线AB 的距离d =2·cos60°=22=|a |2,则|a |=1,即a =±1. 故选A .30.若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为( )A .(2,0)B .(0,-2)C .(-2,0)D .(0,2)解析:选D.因为a 在基底p ,q 下的坐标为(-2,2), 即a =-2p +2q =(2,4), 令a =x m +y n =(-x +y ,x +2y ),所以⎩⎪⎨⎪⎧-x +y =2,x +2y =4,即⎩⎪⎨⎪⎧x =0,y =2.所以a 在基底m ,n 下的坐标为(0,2). 31.P={}a |a =(1,0)+m (0,1),m ∈R ,Q ={}b |b =(1,1)+n (-1,1),n ∈R 是两个向量集合,则P ∩Q 等于()A.{}(1,1)B.{}(-1,1)C.{}(1,0)D.{}(0,1)解析:选A.设a =(x ,y ),则P ={(x ,y )| ⎩⎪⎨⎪⎧x =1, y =m ,m ∈R },所以集合P 是直线x =1上的点的集合.同理,集合Q 是直线x +y =2上的点的集合,即P ={}(x ,y )|x =1,y ∈R ,Q ={}(x ,y )|x +y -2=0,所以P ∩Q ={}(1,1).故选A.32.已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π].(1)若a ∥b ,求x 的值;(2)记f (x )=a·b ,求f (x )的最大值和最小值以及对应的x 的值. 解:(1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x . 若cos x =0,则sin x =0, 与sin 2x +cos 2x =1矛盾, 故cos x ≠0. 于是tan x =-33.又x ∈[0,π],所以x =5π6. (2)f (x )=a ·b =(cos x ,sin x )·(3,-3) =3cos x -3sin x =23cos ⎝⎛⎭⎫x +π6.因为x ∈[0,π],所以x +π6∈⎣⎡⎦⎤π6,7π6,从而-1≤cos ⎝⎛⎭⎫x +π6≤32.于是,当x +π6=π6,即x =0时,f (x )取到最大值3;当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.33.已知E 为△ABC 的重心,AD 为BC 边上的中线,令AB →=a ,AC →=b ,过点E 的直线分别交AB ,AC 于P ,Q 两点,且AP →=m a ,AQ →=n b ,则1m +1n=( )A .3B .4C .5D .13解析:选A .由于直线PQ 是过点E 的一条“动”直线,所以结果必然是一个定值.故可利用特殊直线确定所求值.法一:如图1,令PQ ∥BC ,则AP →=23AB →,AQ →=23AC →,此时,m =n =23,故1m +1n=3.故选A . 法二:如图2,直线BE 与直线PQ 重合,此时,AP →=AB →,AQ →=12AC →,故m =1,n =12,所以1m +1n=3.故选A .34.在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,已知向量m =(cos B ,2cos 2 C2-1),n =(c ,b -2a ),且m·n =0. (1)求∠C 的大小;(2)若点D 为边AB 上一点,且满足AD →=DB →,|CD →|=7,c =23,求△ABC 的面积. 解:(1)因为m =(cos B ,cos C ),n =(c ,b -2a ),m ·n =0,所以c cos B +(b -2a )cos C =0,在△ABC 中,由正弦定理得sin C cos B +(sin B -2sin A )cos C =0,sin A =2sin A cos C ,又sin A ≠0, 所以cos C =12,而C ∈(0,π),所以∠C =π3.(2)由AD →=DB →知,CD →-CA →=CB →-CD →, 所以2CD →=CA →+CB →,两边平方得4|CD →|2=b 2+a 2+2ba cos ∠ACB =b 2+a 2+ba =28.① 又c 2=a 2+b 2-2ab cos ∠ACB , 所以a 2+b 2-ab =12.② 由①②得ab =8,所以S △ABC =12ab sin ∠ACB =2 3.35.若数列{a n }满足a 1·a 2·a 3·…·a n =n 2+3n +2,则数列{a n }的通项公式为________. 解析:a 1·a 2·a 3·…·a n =(n +1)(n +2),当n =1时,a 1=6;当n ≥2时,⎩⎪⎨⎪⎧a 1·a 2·a 3·…·a n -1·a n =(n +1)(n +2),a 1·a 2·a 3·…·a n -1=n (n +1),故当n ≥2时,a n =n +2n ,所以a n =⎩⎪⎨⎪⎧6,n =1,n +2n ,n ≥2,n ∈N *.答案:a n =⎩⎪⎨⎪⎧6,n =1,n +2n ,n ≥2,n ∈N *36.已知二次函数f (x )=x 2-ax +a (a >0,x ∈R ),有且只有一个零点,数列{a n }的前n 项和S n =f (n )(n ∈N *).(1)求数列{a n }的通项公式;(2)设c n =1-4a n(n ∈N *),定义所有满足c m ·c m +1<0的正整数m 的个数,称为这个数列{c n }的变号数,求数列{}c n 的变号数.解:(1)依题意,Δ=a 2-4a =0,所以a =0或a =4. 又由a >0得a =4,所以f (x )=x 2-4x +4. 所以S n =n 2-4n +4.当n =1时,a 1=S 1=1-4+4=1; 当n ≥2时,a n =S n -S n -1=2n -5.所以a n =⎩⎪⎨⎪⎧1,n =1,2n -5,n ≥2.(2)由题意得c n =⎩⎪⎨⎪⎧-3,n =1,1-42n -5,n ≥2. 由c n =1-42n -5可知,当n ≥5时,恒有c n >0.又c 1=-3,c 2=5,c 3=-3,c 4=-13,c 5=15,c 6=37,即c 1·c 2<0,c 2·c 3<0,c 4·c 5<0. 所以数列{c n }的变号数为3.37.等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解:(1)设数列{a n }的公差为d ,由题意有 2a 1+5d =4,a 1+5d =3. 解得a 1=1,d =25.所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =[2n +35].当n =1,2,3时,1≤2n +35<2,b n =1;当n =4,5时,2<2n +35<3,b n =2;当n =6,7,8时,3≤2n +35<4,b n =3;当n =9,10时,4<2n +35<5,b n =4.所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.38.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏解析:选B.每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得S 7=a 1(1-27)1-2=381,解得a 1=3,故选B.39.规定:“⊗”表示一种运算,即a ⊗b =ab +a +b (a ,b 为正实数).若1⊗k =3,则k 的值为________,此时函数f (x )=k ⊗xx的最小值为________.解析:由题意得1⊗k =k +1+k =3,即k +k -2=0,解得k =1或k =-2(舍去),所以k =1,故k 的值为1,又f (x )=1⊗x x =x +x +1x =1+x +1x ≥1+2=3,当且仅当x =1x,即x =1时取等号, 故函数f (x )的最小值为3.答案:1 340.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________.解析:如图所示,设S 在底面的射影为S ′,连接AS ′,SS ′.△SAB 的面积为12·SA ·SB ·sin∠ASB =12·SA 2·1-cos 2∠ASB =1516·SA 2=515,所以SA 2=80,SA =4 5.因为SA 与底面所成的角为45°,所以∠SAS ′=45°,AS ′=SA ·cos 45°=45×22=210.所以底面周长l =2π·AS ′=410π,所以圆锥的侧面积为12×45×410π=402π.答案:402π41.如图,在矩形ABCD 中,AB =2AD ,E 为边AB 的中点,将△ADE 沿直线DE 翻折成△A 1DE .若M 为线段A 1C 的中点,则在△ADE 翻折过程中,下列四个命题中不正确的是________(填序号).①BM 是定值;②点M 在某个球面上运动; ③存在某个位置,使DE ⊥A 1C ; ④存在某个位置,使MB ∥平面A 1DE .解析:取DC 的中点F ,连接MF ,BF ,则MF ∥A 1D 且MF =12A 1D ,FB ∥ED 且FB =ED ,所以∠MFB =∠A 1DE .由余弦定理可得MB 2=MF 2+FB 2-2MF ·FB ·cos ∠MFB 是定值,所以M 是在以B 为球心,MB 为半径的球上,可得①②正确;由MF ∥A 1D 与FB ∥ED 可得平面MBF ∥平面A 1DE ,可得④正确;若存在某个位置,使DE ⊥A 1C ,则因为DE 2+CE 2=CD 2,即CE ⊥DE ,因为A 1C ∩CE =C ,则DE ⊥平面A 1CE ,所以DE ⊥A 1E ,与DA 1⊥A 1E 矛盾,故③不正确.答案:③42.如图,已知正方体ABCD ­A 1B 1C 1D 1的棱长为2,长为2的线段MN 的一个端点M 在棱DD 1上运动,点N 在正方体的底面ABCD 内运动,则MN 的中点P 的轨迹的面积是________.解析:连接DN ,则△MDN 为直角三角形,在Rt △MDN 中,MN =2,P 为MN 的中点,连接DP ,则DP =1,所以点P 在以D 为球心,半径R =1的球面上,又因为点P 只能落在正方体上或其内部,所以点P 的轨迹的面积等于该球面面积的18,故所求面积S =18×4πR 2=π2. 答案:π243.如图,透明塑料制成的长方体容器ABCD ­A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH 所在四边形的面积为定值; ③棱A 1D 1始终与水面所在平面平行; ④当容器倾斜如图所示时,BE ·BF 是定值. 其中正确的个数是( ) A .1 B .2 C .3D .4解析:选C.由题图,显然①是正确的,②是错的; 对于③因为A 1D 1∥BC ,BC ∥FG , 所以A 1D 1∥FG 且A 1D 1⊄平面EFGH , 所以A 1D 1∥平面EFGH (水面).所以③是正确的;因为水是定量的(定体积V).所以S△BEF·BC=V,即12BE·BF·BC=V.所以BE·BF=2VBC(定值),即④是正确的,故选C.44.如图,边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A′DE是△ADE绕DE旋转过程中的一个图形,则下列命题中正确的是()①动点A′在平面ABC上的射影在线段AF上;②BC∥平面A′DE;③三棱锥A′­FED的体积有最大值.A.①B.①②C.①②③D.②③解析:选C.①中由已知可得平面A′FG⊥平面ABC,所以点A′在平面ABC上的射影在线段AF上.②BC∥DE,根据线面平行的判定定理可得BC∥平面A′DE.③当平面A′DE⊥平面ABC时,三棱锥A′­FED的体积达到最大,故选C.45.如图,梯形ABCD中,AD∥BC,∠ABC=90°,AD∶BC∶AB=2∶3∶4,E,F分别是AB,CD的中点,将四边形ADFE沿直线EF进行翻折,给出下列四个结论:①DF⊥BC;②BD⊥FC;③平面BDF⊥平面BCF;④平面DCF⊥平面BCF,则上述结论可能正确的是()A.①③B.②③C.②④D.③④解析:选B.对于①,因为BC∥AD,AD与DF相交但不垂直,所以BC与DF不垂直,则①不成立;对于②,设点D在平面BCF上的射影为点P,当BP⊥CF时就有BD⊥FC,而AD∶BC∶AB=2∶3∶4可使条件满足,所以②正确;对于③,当点D在平面BCF上的射影P落在BF上时,DP⊂平面BDF,从而平面BDF⊥平面BCF,所以③正确;对于④,因为点D在平面BCF上的射影不可能在FC上,所以④不成立.46.在矩形ABCD中,AB<BC,现将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折的过程中,给出下列结论:①存在某个位置,使得直线AC 与直线BD 垂直; ②存在某个位置,使得直线AB 与直线CD 垂直; ③存在某个位置,使得直线AD 与直线BC 垂直.其中正确结论的序号是________.(写出所有正确结论的序号)解析:①假设AC 与BD 垂直,过点A 作AE ⊥BD 于E ,连接CE .则⎭⎪⎬⎪⎫AE ⊥BD BD ⊥AC ⇒BD ⊥平面AEC ⇒BD ⊥CE ,而在平面BCD 中,EC 与BD 不垂直,故假设不成立,①错.②假设AB ⊥CD ,因为AB ⊥AD ,所以AB ⊥平面ACD ,所以AB ⊥AC ,由AB <BC 可知,存在这样的等腰直角三角形,使AB ⊥CD ,故假设成立,②正确.③假设AD ⊥BC ,因为DC ⊥BC ,所以BC ⊥平面ADC ,所以BC ⊥AC ,即△ABC 为直角三角形,且AB 为斜边,而AB <BC ,故矛盾,假设不成立,③错.综上,填②.答案:②47.已知动直线l :ax +by +c -2=0(a >0,c >0)恒过点P (1,m )且Q (4,0)到动直线l 的最大距离为3,则12a +2c的最小值为( )A.92 B.94 C .1D .9解析:选B.因为动直线l :ax +by +c -2=0(a >0,c >0)恒过点P (1,m ), 所以a +bm +c -2=0,又Q (4,0)到动直线l 的最大距离为3, 所以(4-1)2+(-m )2=3,解得m =0,所以a +c =2, 则12a +2c =12(a +c )·⎝⎛⎭⎫12a +2c =12⎝⎛⎭⎫52+c 2a +2a c ≥12⎝⎛⎭⎫52+2c 2a ·2a c =94, 当且仅当c =2a =43时取等号,故选B.48.在直线l :3x -y -1=0上求一点P ,使得: (1)P 到A (4,1)和B (0,4)的距离之差最大; (2)P 到A (4,1)和C (3,4)的距离之和最小.解:(1)如图,设B 关于l 的对称点为B ′,AB ′的延长线交l 于P 0,在l 上另任取一点P ,则|P A |-|PB |=|P A |-|PB ′|<|AB ′|=|P 0A |-|P 0B ′|=|P 0A |-|P 0B |,则P 0即为所求.易求得直线BB ′的方程为x +3y -12=0, 设B ′(a ,b ),则a +3b -12=0,①又线段BB ′的中点⎝⎛⎭⎫a 2,b +42在l 上,故3a -b -6=0.②由①②解得a =3,b =3, 所以B ′(3,3).所以AB ′所在直线的方程为2x +y -9=0.由⎩⎪⎨⎪⎧2x +y -9=0,3x -y -1=0可得P 0(2,5). (2)设C 关于l 的对称点为C ′,与(1)同理可得C ′⎝⎛⎭⎫35,245.连接AC ′交l 于P 1,在l 上另任取一点P ,有|P A |+|PC |=|P A |+|PC ′|>|AC ′|=|P 1C ′|+|P 1A |=|P 1C |+|P 1A |,故P 1即为所求.又AC ′所在直线的方程为19x +17y -93=0,故由⎩⎪⎨⎪⎧19x +17y -93=0,3x -y -1=0可得P 1⎝⎛⎭⎫117,267.49.设点P 是函数y =-4-(x -1)2的图象上的任意一点,点Q (2a ,a -3)(a ∈R ),则|PQ |的最小值为( )A.855-2B.5C.5-2D.755-2解析:选C.如图所示,点P 在半圆C (实线部分)上,且由题意知,C (1,0),点Q 在直线l :x -2y -6=0上.过圆心C 作直线l 的垂线,垂足为点A ,则|CA |=5,|PQ |min =|CA |-2=5-2.故选C.50.在平面直角坐标系xOy 中,曲线Γ:y =x 2-mx +2m (m ∈R )与x 轴交于不同的两点A ,B ,曲线Γ与y 轴交于点C .(1)是否存在以AB 为直径的圆过点C ?若存在,求出该圆的方程;若不存在,请说明理由.(2)求证:过A ,B ,C 三点的圆过定点.解:由曲线Γ:y =x 2-mx +2m (m ∈R ),令y =0,得x 2-mx +2m =0. 设A (x 1,0),B (x 2,0),则可得Δ=m 2-8m >0,x 1+x 2=m ,x 1x 2=2m . 令x =0,得y =2m ,即C (0,2m ).(1)若存在以AB 为直径的圆过点C ,则AC →·BC →=0,得x 1x 2+4m 2=0,即2m +4m 2=0,所以m =0或m =-12.由Δ>0得m <0或m >8,所以m =-12,此时C (0,-1),AB 的中点M ⎝⎛⎭⎫-14,0即圆心,半径r =|CM |=174, 故所求圆的方程为⎝⎛⎭⎫x +142+y 2=1716. (2)证明:设过A ,B 两点的圆的方程为x 2+y 2-mx +Ey +2m =0, 将点C (0,2m )代入可得E =-1-2m ,所以过A ,B ,C 三点的圆的方程为x 2+y 2-mx -(1+2m )y +2m =0, 整理得x 2+y 2-y -m (x +2y -2)=0.令⎩⎪⎨⎪⎧x 2+y 2-y =0,x +2y -2=0,可得⎩⎪⎨⎪⎧x =0,y =1或⎩⎨⎧x =25,y =45,故过A ,B ,C 三点的圆过定点(0,1)和⎝⎛⎭⎫25,45.51.已知直线ax +y -1=0与圆C :(x -1)2+(y +a )2=1相交于A 、B 两点,且△ABC 为等腰直角三角形,则实数a 的值为( )A.17或-1 B .-1 C .1或-1D .1解析:选C.由题意得圆心(1,-a )到直线ax +y -1=0的距离为22, 所以|a -a -1|1+a 2=22,解得a =±1,故选C.52.已知抛物线C :x 2=2py (p >0)和定点M (0,1)设过点M 的动直线交抛物线C 于A ,B 两点,抛物线C 在A ,B 处的切线的交点为N .(1)若N 在以AB 为直径的圆上,求p 的值;(2)若△ABN 的面积的最小值为4,求抛物线C 的方程.解:设直线AB :y =kx +1,A (x 1,y 1),B (x 2,y 2),将直线AB 的方程代入抛物线C 的方程得x 2-2pkx -2p =0, 则x 1+x 2=2pk ,x 1x 2=-2p .①(1)由x 2=2py 得y ′=x p ,则A ,B 处的切线斜率的乘积为x 1x 2p 2=-2p ,因为点N 在以AB 为直径的圆上,所以AN ⊥BN , 所以-2p=-1,所以p =2.(2)易得直线AN :y -y 1=x 1p (x -x 1),直线BN :y -y 2=x 2p(x -x 2),联立,得⎩⎨⎧y -y 1=x 1p (x -x 1),y -y 2=x2p (x -x 2),结合①式,解得⎩⎪⎨⎪⎧x =pk ,y =-1,即N (pk ,-1).|AB |=1+k 2|x 2-x 1|=1+k 2(x 1+x 2)2-4x 1x 2=1+k 24p 2k 2+8p , 点N 到直线AB 的距离d =|kx N +1-y N |1+k 2=|pk 2+2|1+k 2,则△ABN 的面积S △ABN =12·|AB |·d =p (pk 2+2)3≥22p ,当k =0时,取等号,因为△ABN 的面积的最小值为4,所以22p =4,所以p =2,故抛物线C 的方程为x 2=4y .53.已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,点M 在AB 上,且AM =13,点P 在平面ABCD 内,且动点P 到直线A 1D 1的距离与动点P 到点M 的距离的平方差为1,则动点P 的轨迹是( )A .直线B .圆C .双曲线D .抛物线解析:选D.在平面ABCD 内过点P 作PF ⊥AD ,垂足为F ,过点F 在平面AA 1D 1D 内作FE ⊥A 1D 1,垂足为E ,连接PE ,则有PE ⊥A 1D 1,即PE 为点P 到A 1D 1的距离.由题意知|PE |2-|PM |2=1,又因为|PE |2=|PF |2+|EF |2,所以|PF |2+|EF |2-|PM |2=1, 即|PF |2=|PM |2,即|PF |=|PM |,所以点P 满足到点M 的距离等于点P 到直线AD 的距离.由抛物线的定义知点P 的轨迹是以点M 为焦点,AD 为准线的抛物线, 所以点P 的轨迹为抛物线.54.若曲线C 上存在点M ,使M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,则称曲线C 为“好曲线”.以下曲线不是“好曲线”的是( )A .x +y =5B .x 2+y 2=9 C.x 225+y 29=1 D .x 2=16y解析:选B.因为M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,所以M 的轨迹是以A (-5,0),B (5,0)为焦点的双曲线,方程为x 216-y 29=1.A 项,直线x +y =5过点(5,0),满足题意,为“好曲线”;B 项,x 2+y 2=9的圆心为(0,0),半径为3,与M 的轨迹没有交点,不满足题意;C 项,x 225+y 29=1的右顶点为(5,0),满足题意,为“好曲线”;D 项,方程代入x 216-y 29=1,可得y -y 29=1,即y 2-9y +9=0,所以Δ>0,满足题意,为“好曲线”.55.如图,斜线段AB 与平面α所成的角为60°,B 为斜足,平面α上的动点P 满足∠P AB =30°,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支解析:选C.母线与中轴线夹角为30°,然后用平面α去截,使直线AB 与平面α的夹角为60°,则截口为P 的轨迹图形,由圆锥曲线的定义可知,P 的轨迹为椭圆.故选C.56.若m ,n 均为非负整数,在做m +n 的加法时各位均不进位(例如:134+3 802=3 936),则称(m ,n )为“简单的”有序对,而m +n 称为有序对(m ,n )的值,那么值为1 942的“简单的”有序对的个数是________.解析:第1步,1=1+0,1=0+1,共2种组合方式;第2步,9=0+9,9=1+8,9=2+7,9=3+6,…,9=9+0,共10种组合方式; 第3步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式; 第4步,2=0+2,2=1+1,2=2+0,共3种组合方式.根据分步乘法计数原理,值为1 942的“简单的”有序对的个数为2×10×5×3=300. 答案:30057.已知P 是△ABC 所在平面内一点,PB →+PC →+2P A →=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是 ( )A.14B.13C.23D.12解析:选D.以PB ,PC 为邻边作平行四边形PBDC ,则PB →+PC →=PD →,因为PB →+PC →+2 P A →=0,所以PB →+PC →=-2P A →,得PD →=-2P A →,由此可得,P 是△ABC 边BC 上的中线AO 的中点,点P 到BC 的距离等于A 到BC 距离的12,所以S △PBC =12S △ABC ,所以将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率为S △PBC S △ABC =12.58.某校举行运动会,其中三级跳远的成绩在8.0米(四舍五入,精确到0.1米)以上的进入决赛,把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6个小组的频数是7.(1)求进入决赛的人数;(2)经过多次测试后发现,甲的成绩均匀分布在8~10米之间,乙的成绩均匀分布在9.5~10.5米之间,现甲、乙各跳一次,求甲比乙跳得远的概率.解:(1)第6小组的频率为1-(0.04+0.10+0.14+0.28+0.30)=0.14,所以总人数为70.14=50.由图易知第4、5、6组的学生均进入决赛,人数为(0.28+0.30+0.14)×50=36,即进入决赛的人数为36.(2)设甲、乙各跳一次的成绩分别为x ,y 米,则基本事件满足⎩⎪⎨⎪⎧8≤x ≤109.5≤y ≤10.5, 设事件A 为“甲比乙跳得远”,则x >y ,作出可行域如图中阴影部分所示.所以由几何概型得P (A )=12×12×121×2=116,即甲比乙跳得远的概率为116.59.已知关于x 的二次函数f (x )=ax 2-4bx +1.(1)设集合P ={1,2,3}和Q ={-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数y =f (x )在区间[1,+∞)上是增函数的概率;(2)设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0,x >0,y >0内的随机点,求函数y =f (x )在区间[1,+∞)上是增函数的概率.解:(1)因为函数f (x )=ax 2-4bx +1的图象的对称轴为x =2ba ,要使f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,当且仅当a >0且2ba≤1,即2b ≤a .若a =1,则b =-1; 若a =2,则b =-1,1; 若a =3,则b =-1,1.所以事件包含基本事件的个数是1+2+2=5,因为事件“分别从集合P 和Q 中随机取一个数作为a 和b ”的个数是15. 所以所求事件的概率为515=13.(2)由(1)知当且仅当2b ≤a 且a >0时,函数f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,依条件可知试验的全部结果所构成的区域为⎩⎪⎨⎪⎧(a ,b )⎪⎪⎪⎪⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a +b -8≤0,a >0,b >0, 构成所求事件的区域为如图所示的三角形BOC 部分. 由⎩⎪⎨⎪⎧a +b -8=0,b =a 2,得交点坐标C ⎝⎛⎭⎫163,83, 故所求事件的概率P =S △BOC S △AOB =12×8×8312×8×8=13.60.设a ,b 是两个实数,给出下列条件: ①a +b >1;②a +b =2;③a +b >2; ④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是________.(填序号) 解析:若a =12,b =23,则a +b >1,但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出; 若a =-2,b =-3,则ab >1,故⑤推不出; 对于③,即a +b >2,则a ,b 中至少有一个大于1, 反证法:假设a ≤1且b ≤1, 则a +b ≤2与a +b >2矛盾,因此假设不成立,故a ,b 中至少有一个大于1. 答案:③。

创新能力试题

创新能力试题

创新能力练习题(一)
一、列举题
1、举出木炭的5种用途。

例如:木炭能够取暖。

2、举出食盐水的5种用途。

例如:食盐水可以消毒。

3、举出铅球的5种用途。

例如:铁片可以切割。

4、举出乒乓球的5种用途。

例如:乒乓球可以玩游戏。

5、A能够传导B,如:导线能够传导电流。

写出另外5种A和B。

6、A能够充满B,如:水能充满容器。

写出另外5种A和B。

7、A能够牵动B,如:火车头能够牵动列车。

写出另外5种A和B。

8、A能够控制B,如:闸门能够控制水流。

写出另外5种A和B。

9、A能够掩盖B,如:乌云能够掩盖太阳。

写出另外5种A和B。

10、A能够分割B,如:剪刀能够分割布。

写出另外5种A和B。

二、请在10个“十”字加上最多三笔构成新的字。

三、技法应用题。

四、案例分析题
1.我们现在经常享受上网的快乐。

可以通过网络传递信息、查找下载资料、玩游戏等等。

可是盲人要和我们一样上网就会遇到很大困难。

针对“盲人上网”
这个课题,请你分析主要困难,并提出解决方案。


2.以老年人用的拐杖为主题,请在上面增加一些功能,使手杖能够多用(至少5种功能)多功能拐杖。

高中数学经典创新题精选60题

高中数学经典创新题精选60题

高中数学经典创新题精选60题1.在实数集R上定义运算*:x*y=x·(1-y).若关于x的不等式x*(x-a)>0的解集是集合{x|-1≤x≤1}的子集,则实数a的取值范围是()A.[0,2]B.[-2,-1)∪(-1,0]C.[0,1)∪(1,2]D.[-2,0]解析:选D.依题意可得x(1-x+a)>0.因为其解集为{x|-1≤x≤1}的子集,所以当a≠-1时,0<1+a≤1或-1≤1+a<0,即-1<a≤0或-2≤a<-1.当a=-1时,x(1-x+a)>0的解集为空集,符合题意.所以-2≤a≤0.故选D.2.A,B,C三个学生参加了一次考试,A,B的得分均为70分,C的得分为65分.已知命题p:若及格分低于70分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是()A.若及格分不低于70分,则A,B,C都及格B.若A,B,C都及格,则及格分不低于70分C.若A,B,C至少有一人及格,则及格分不低于70分D.若A,B,C至少有一人及格,则及格分高于70分解析:选C.根据原命题与它的逆否命题之间的关系知,命题p的逆否命题是若A,B,C至少有一人及格,则及格分不低于70分.故选C.3.在射击训练中,某战士射击了两次,设命题p是“第一次射击击中目标”,命题q 是“第二次射击击中目标”,则命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是()A.(﹁p)∨(﹁q)为真命题B.p∨(﹁q)为真命题C.(﹁p)∧(﹁q)为真命题D.p∨q为真命题解析:选A.命题p是“第一次射击击中目标”,命题q是“第二次射击击中目标”,则命题﹁p是“第一次射击没击中目标”,命题﹁q是“第二次射击没击中目标”,故命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是(﹁p)∨(﹁q)为真命题,故选A.4.若函数y=f(x)对定义域D中的每一个x1,都存在唯一的x2∈D,使f(x1)·f(x2)=1成立,则称f(x)为“影子函数”,有下列三个命题:()①“影子函数”f(x)的值域可以是R;②“影子函数”f(x)可以是奇函数;③若y =f (x ),y =g (x )都是“影子函数”,且定义域相同,则y =f (x )·g (x )是“影子函数”. 上述命题正确的序号是( ) A .① B .② C .③D .②③解析:选B .对于①:假设“影子函数”的值域为R ,则存在x 1,使得f (x 1)=0,此时不存在x 2,使得f (x 1)f (x 2)=1,所以①错;对于②:函数f (x )=x (x ≠0),对任意的x 1∈(-∞,0)∪(0,+∞),取x 2=1x 1,则f (x 1)f (x 2)=1,又因为函数f (x )=x (x ≠0)为奇函数,所以“影子函数”f (x )可以是奇函数,②正确;对于③:函数f (x )=x (x >0),g (x )=1x (x >0)都是“影子函数”,但F (x )=f (x )g (x )=1(x >0)不是“影子函数”(因为对任意的x 1∈(0,+∞),存在无数多个x 2∈(0,+∞),使得F (x 1)·F (x 2)=1),所以③错.综上,应选B .5.设f (x ),g (x )都是定义在实数集上的函数,定义函数(f ·g )(x ):∀x ∈R ,(f ·g )(x )=f (g (x )).若f (x )=⎩⎪⎨⎪⎧x ,x >0,x 2,x ≤0,g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则( )A .(f ·f )(x )=f (x )B .(f ·g )(x )=f (x )C .(g ·f )(x )=g (x )D .(g ·g )(x )=g (x )解析:选A.对于A ,(f ·f )(x )=f (f (x ))=⎩⎪⎨⎪⎧f (x ),f (x )>0,f 2(x ),f (x )≤0,当x >0时,f (x )=x >0,(f ·f )(x )=f (x )=x ;当x <0时,f (x )=x 2>0,(f ·f )(x )=f (x )=x 2;当x =0时,(f ·f )(x )=f 2(x )=0=02,因此对任意的x ∈R ,有(f ·f )(x )=f (x ),故A 正确,选A.6.如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x+32是区间I 上的“缓增函数”,则“缓增区间”I 为( ) A .[1,+∞) B .[0,3] C .[0,1]D .[1,3]解析:选D.因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x -1+32x ,令g (x )=12x -1+32x (x ≥1),则g ′(x )=12-32x 2=x 2-32x 2,由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x 在区间[1,3]上单调递减,故“缓增区间”I 为[1,3].7.设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.解析:由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎡⎦⎤-94,-2,故当m ∈⎝⎛⎦⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象有两个交点.答案:⎝⎛⎦⎤-94,-28.设y =f (x )在(-∞,1]上有定义,对于给定的实数K ,定义f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K ,f (x )>K .给出函数f (x )=2x +1-4x ,若对于任意x ∈(-∞,1],恒有f K (x )=f (x ),则( )A .K 的最大值为0B .K 的最小值为0C .K 的最大值为1D .K 的最小值为1解析:选D.根据题意可知,对于任意x ∈(-∞,1],若恒有f K (x )=f (x ),则f (x )≤K 在x ≤1上恒成立,即f (x )的最大值小于或等于K 即可.令2x =t ,则t ∈(0,2],f (t )=-t 2+2t =-(t -1)2+1,可得f (t )的最大值为1,所以K ≥1,故选D.9.如图,矩形ABCD 的周长为8,设AB =x (1≤x ≤3),线段MN 的两端点在矩形的边上滑动,且MN =1,当N 沿A →D →C →B →A 在矩形的边上滑动一周时,线段MN 的中点P 所形成的轨迹为G ,记G 围成的区域的面积为y ,则函数y =f (x )的图象大致为( )解析:选D.法一:由题意可知点P 的轨迹为图中虚线所示,其中四个角均是半径为12的扇形.因为矩形ABCD 的周长为8,AB =x ,则AD =8-2x 2=4-x ,所以y =x (4-x )-π4=-(x -2)2+4-π4(1≤x ≤3),显然该函数的图象是二次函数图象的一部分,且当x =2时,y =4-π4∈(3,4),故选D.法二:在判断出点P 的轨迹后,发现当x =1时,y =3-π4∈(2,3),故选D.10.已知点A (1,0),点B 在曲线G :y =ln x 上,若线段AB 与曲线M :y =1x 相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.那么曲线G 关于曲线M 的关联点的个数为________.解析:设B (x 0,ln x 0),x 0>0,线段AB 的中点为C ,则C ⎝⎛⎭⎫x 0+12,ln x 02,又点C 在曲线M 上,故ln x 02=2x 0+1,即ln x 0=4x 0+1.此方程根的个数可以看作函数y =ln x 与y =4x +1的图象的交点个数.画出图象(如图),可知两个函数的图象只有1个交点.答案:111.已知奇函数f (x )是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A.14B.18 C .-78D .-38解析:选C.因为函数y =f (2x 2+1)+f (λ-x )只有一个零点,所以方程f (2x 2+1)+f (λ-x )=0只有一个实数根,又奇函数f (x )是定义在R 上的单调函数,所以f (-x )=-f (x ),所以f (2x 2+1)+f (λ-x )=0⇔f (2x 2+1)=-f (λ-x )⇔f (2x 2+1)=f (x -λ)⇔2x 2+1=x -λ,所以方程2x 2-x +1+λ=0只有一个实数根,所以Δ=(-1)2-4×2×(1+λ)=0,解得 λ=-78.故选C.12.曲线y =ln(2x -1)上的点到直线2x -y +8=0的最短距离是________.解析:设M (x 0,ln(2x 0-1))为曲线上的任意一点,则曲线在M 点处的切线与直线2x -y +8=0平行时,M 点到直线的距离即为曲线y =ln(2x -1)上的点到直线2x -y +8=0的最短距离.因为y ′=22x -1,所以22x 0-1=2,解得x 0=1,所以M (1,0).记点M 到直线2x -y +8=0的距离为d ,则d =|2+8|4+1=2 5.答案:2513.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是( )A .[-5,0)B .(-5,0)C .[-3,0)D .(-3,0)解析:选C.由题意,f ′(x )=x 2+2x =x (x +2),故f (x )在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,作出其大致图象如图所示,令13x 3+x 2-23=-23得,x =0或x =-3, 则结合图象可知,⎩⎪⎨⎪⎧-3≤a <0,a +5>0,解得a ∈[-3,0).14.函数f (x )=x 3-3a 2x +a (a >0)的极大值是正数,极小值是负数,则a 的取值范围是________.解析:f ′(x )=3x 2-3a 2=3(x +a )(x -a ),由f ′(x )=0得x =±a , 当-a <x <a 时,f ′(x )<0,函数单调递减; 当x >a 或x <-a 时,f ′(x )>0,函数单调递增, 所以f (x )的极大值为f (-a ),极小值为f (a ). 所以f (-a )=-a 3+3a 3+a >0且f (a )=a 3-3a 3+a <0. 解得a >22. 所以a 的取值范围是⎝⎛⎭⎫22,+∞.答案:⎝⎛⎭⎫22,+∞15.已知圆O 与直线l 相切于点A ,点P ,Q 同时从A 点出发,P 沿着直线l 向右运动,Q 沿着圆周按逆时针以相同的速度运动,当Q 运动到点A 时,点P 也停止运动,连接OQ ,OP (如图),则阴影部分面积S 1,S 2的大小关系是________.解析:设运动速度为m ,运动时间为t ,圆O 的半径为r ,则AQ ︵=AP =tm ,根据切线的性质知OA ⊥AP ,所以S 1=12tm ·r -S 扇形AOB ,S 2=12tm ·r -S 扇形AOB ,所以S 1=S 2恒成立.答案:S 1=S 216.已知θ为直线y =3x -5的倾斜角,若A (cos θ,sin θ),B (2cos θ+sin θ,5cosθ-sin θ),则直线AB 的斜率为( )A .3B .-4 C. 13D .-14解析:选D.由题意知tan θ=3,k AB =5cos θ-sin θ-sin θ2cos θ+sin θ-cos θ=5-2tan θ1+tan θ=-14.故选D.17.已知θ∈(0,π),且sin θ+cos θ=m ,m ∈(0,1),则tan θ的可能取值为( ) A .-3 B .3 C .-13D.13 解析:选A.由m ∈(0,1),得sin θ+cos θ>0,所以θ∈⎝⎛⎭⎫0,3π4.又因为(sin θ+cosθ)2=1+2sin θcos θ=m 2,m ∈(0,1),从而得2sin θcos θ<0,得θ∈⎝⎛⎭⎫π2,π.综上可得θ∈⎝⎛⎭⎫π2,3π4,则tan θ<-1,所以可能的取值为-3,故选A.18.公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现了黄金分割约为0.618,这一数值也可以表示为m =2sin 18°,若m 2+n =4,则m n2cos 227°-1=( )A .8B .4C .2D .1解析:选C.因为m =2sin 18°,m 2+n =4,所以n =4-m 2=4-4sin 218°=4cos 218°. 所以m n2cos 227°-1=2sin 18°4cos 218°2cos 227°-1=4sin 18°cos 18°2cos 227°-1=2sin 36°cos 54°=2sin 36°sin 36°=2.故选C.19.已知sin 10°+m cos 10°=2cos 140°,则m =________. 解析:由sin 10°+m cos 10°=2cos 140°可得, m =2cos 140°-sin 10°cos 10°=-2cos 40°-sin 10°cos 10°=-2cos (30°+10°)-sin 10°cos 10°=-3cos 10°cos 10°=- 3.答案:-320.已知a 24+b 2=1,则|a cos θ+2b sin θ|的最大值为( )A .1 B.233C .2D .23解析:选C.由a 24+b 2=1得a 2+4b 2=4.由辅助角公式可得|a cos θ+2b sin θ|=a 2+4b 2|sin(θ+φ)|=2|sin(θ+φ)|,所以最大值为2.故选C.21.已知a >0,函数f (x )=-2a sin(2x +π6)+2a +b ,当x ∈[0,π2]时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f (x +π2)且lg g (x )>0,求g (x )的单调区间.解:(1)因为x ∈[0,π2],所以2x +π6∈[π6,7π6],所以sin(2x +π6)∈[-12,1],所以-2a sin(2x +π6)∈[-2a ,a ],所以f (x )∈[b ,3a +b ],又因为-5≤f (x )≤1, 所以b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得f (x )=-4sin(2x +π6)-1,g (x )=f (x +π2)=-4sin(2x +7π6)-1=4sin(2x +π6)-1,又由lg g (x )>0,得g (x )>1,所以4sin(2x +π6)-1>1,所以sin(2x +π6)>12,所以2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,所以g (x )的单调增区间为(k π,k π+π6],k ∈Z .又因为当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .所以g (x )的单调减区间为(k π+π6,k π+π3),k ∈Z .所以g (x )的单调增区间为(k π,k π+π6],k ∈Z ,单调减区间为(k π+π6,k π+π3),k ∈Z .22.定义运算|a b c d |=ad -bc .将函数f (x )=|3 sin x1 cos x |的图象向左平移φ(φ>0)个单位,所得图象关于y 轴对称,则φ的最小值为( )A.π3 B.76π C.π6D.56π 解析:选D.f (x )=|3 sin x 1 cos x |=3cos x -sin x =2cos(x +π6),向左平移φ个单位得到y=2cos(x +π6+φ),由题意y =2cos(x +π6+φ)是偶函数,所以π6+φ=k π(k ∈Z ),即φ=k π-π6(φ>0).故当k =1时,φ的最小值为56π.23.如图,将绘有函数f (x )=3sin(ωx +5π6)(ω>0)部分图象的纸片沿x 轴折成直二面角,若A ,B 之间的空间距离为10,则f (-1)=( )A .-1B .1C .-32D.32解析:选D.由题设并结合图形可知, AB =(3)2+[(3)2+(T2)2]=6+T 42=6+π2ω2=10,得π2ω2=4,则ω=π2,所以f (-1)=3sin(-π2+5π6)=3sin π3=32.24.已知P 为△ABC 所在平面内一点,AB →+PB →+PC →=0,|AB →|=|PB →|=|PC →|=2,则△ABC 的面积等于( )A .3B .23C .33D .43解析:选B.因为AB →+PB →+PC →=0,所以AB →=-(PB →+PC →).由平行四边形法则可知,以PB →,PC →为边组成的平行四边形的一条对角线与AB →反向,且长度相等.因为|AB →|=|PB →|=|PC →|=2,所以以PB →,PC →为边的平行四边形为菱形,且除BC 外的对角线长为2,所以BC =23,∠ABC =90°,所以S △ABC =12AB ·BC =12×2×23=23,故选B.25.如图,在△ABC 中,点D 在线段BC 上,且满足BD =12DC ,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N 若AM →=mAB →,AN →=nAC →,则( )A .m +n 是定值,定值为2B .2m +n 是定值,定值为3 C.1m +1n是定值,定值为2 D.2m +1n是定值,定值为3解析:选D.法一:如图,过点C 作CE 平行于MN 交AB 于点E .由AN →=nAC →可得AC AN =1n ,所以AE EM =AC CN =1n -1,由BD =12DC 可得BM ME =12,所以AM AB =n n +n -12=2n 3n -1,因为AM →=mAB →,所以m =2n 3n -1,整理可得2m +1n=3.法二:因为M ,D ,N 三点共线,所以AD →=λAM →+(1-λ)·AN →.又AM →=mAB →,AN →=nAC →,所以AD →=λmAB →+(1-λ)·nAC →.又BD →=12DC →,所以AD →-AB →=12AC→-12AD →,所以AD →=13AC →+23AB →.比较系数知λm =23,(1-λ)n =13,所以2m +1n=3,故选D.26.在如图所示的方格纸中,向量a ,b ,c 的起点和终点均在格点(小正方形顶点)上,若c 与x a +y b (x ,y 为非零实数)共线,求xy的值.解:设e 1,e 2分别为水平方向(向右)与竖直方向(向上)的单位向量,则向量c =e 1-2e 2,a =2e 1+e 2,b =-2e 1-2e 2,由c 与x a +y b 共线,得c =λ(x a +y b ),所以e 1-2e 2=2λ(x -y )e 1+λ(x -2y )e 2,所以⎩⎪⎨⎪⎧2λ(x -y )=1,λ(x -2y )=-2,所以⎩⎨⎧x =3λ,y =52λ,则x y 的值为65.27.已知P 为△ABC 所在平面内一点,AB →+PB →+PC →=0,|AB →|=|PB →|=|PC →|=2,则△ABC 的面积等于( )A .3B .23C .33D .43解析:选B.因为AB →+PB →+PC →=0,所以AB →=-(PB →+PC →).由平行四边形法则可知,以PB →,PC →为边组成的平行四边形的一条对角线与AB →反向,且长度相等.因为|AB →|=|PB →|=|PC →|=2,所以以PB →,PC →为边的平行四边形为菱形,且除BC 外的对角线长为2,所以BC =23,∠ABC =90°,所以S △ABC =12AB ·BC =12×2×23=23,故选B.28.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2-4e ·b +3=0,则|a -b |的最小值是( )A .3-1B .3+1C .2D .2-3解析:选A .法一:设O 为坐标原点,a =OA →,b =OB →=(x ,y ),e =(1,0),由b 2-4e ·b +3=0得x 2+y 2-4x +3=0,即(x -2)2+y 2=1,所以点B 的轨迹是以C (2,0)为圆心,1为半径的圆.因为a 与e 的夹角为π3,所以不妨令点A 在射线y =3x (x >0)上,如图,数形结合可知|a -b |min =|CA →|-|CB →|=3-1.故选A .法二:由b 2-4e·b +3=0得b 2-4e·b +3e 2=(b -e )·(b -3e )=0.设b =OB →,e =OE →,3e =OF →,所以b -e =EB →,b -3e =FB →,所以EB →·FB →=0,取EF 的中点为C ,则B 在以C 为圆心,EF 为直径的圆上,如图.设a =OA →,作射线OA ,使得∠AOE =π3,所以|a -b |=|(a -2e )+(2e -b )|≥|a -2e |-|2e -b |=|CA →|-|BC →|≥3-1.故选A .29.已知直线x +y =a 与圆x 2+y 2=2交于A ,B 两点,O 是原点,C 是圆上一点,若OA →+ OB →=OC →,则a 的值为 ( )A .±1B .± 2C .± 3D .±2 解析:因为A ,B ,C 均为圆x 2+y 2=2上的点, 故|OA →|=|OB →|=|OC →|=2,因为OA →+OB →=OC →,所以(OA →+OB →)2=OC →2, 即OA →2+2OA →·OB →+OB →2=OC →2, 即4+4cos∠AOB =2,故∠AOB =120°. 则圆心O 到直线AB 的距离d =2·cos60°=22=|a |2,则|a |=1,即a =±1. 故选A .30.若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为( )A .(2,0)B .(0,-2)C .(-2,0)D .(0,2)解析:选D.因为a 在基底p ,q 下的坐标为(-2,2), 即a =-2p +2q =(2,4), 令a =x m +y n =(-x +y ,x +2y ),所以⎩⎪⎨⎪⎧-x +y =2,x +2y =4,即⎩⎪⎨⎪⎧x =0,y =2.所以a 在基底m ,n 下的坐标为(0,2). 31.P={}a |a =(1,0)+m (0,1),m ∈R ,Q ={}b |b =(1,1)+n (-1,1),n ∈R 是两个向量集合,则P ∩Q 等于()A.{}(1,1)B.{}(-1,1)C.{}(1,0)D.{}(0,1)解析:选A.设a =(x ,y ),则P ={(x ,y )| ⎩⎪⎨⎪⎧x =1, y =m ,m ∈R },所以集合P 是直线x =1上的点的集合.同理,集合Q 是直线x +y =2上的点的集合,即P ={}(x ,y )|x =1,y ∈R ,Q ={}(x ,y )|x +y -2=0,所以P ∩Q ={}(1,1).故选A.32.已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π].(1)若a ∥b ,求x 的值;(2)记f (x )=a·b ,求f (x )的最大值和最小值以及对应的x 的值. 解:(1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x . 若cos x =0,则sin x =0, 与sin 2x +cos 2x =1矛盾, 故cos x ≠0. 于是tan x =-33.又x ∈[0,π],所以x =5π6. (2)f (x )=a ·b =(cos x ,sin x )·(3,-3) =3cos x -3sin x =23cos ⎝⎛⎭⎫x +π6.因为x ∈[0,π],所以x +π6∈⎣⎡⎦⎤π6,7π6,从而-1≤cos ⎝⎛⎭⎫x +π6≤32.于是,当x +π6=π6,即x =0时,f (x )取到最大值3;当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.33.已知E 为△ABC 的重心,AD 为BC 边上的中线,令AB →=a ,AC →=b ,过点E 的直线分别交AB ,AC 于P ,Q 两点,且AP →=m a ,AQ →=n b ,则1m +1n=( )A .3B .4C .5D .13解析:选A .由于直线PQ 是过点E 的一条“动”直线,所以结果必然是一个定值.故可利用特殊直线确定所求值.法一:如图1,令PQ ∥BC ,则AP →=23AB →,AQ →=23AC →,此时,m =n =23,故1m +1n=3.故选A . 法二:如图2,直线BE 与直线PQ 重合,此时,AP →=AB →,AQ →=12AC →,故m =1,n =12,所以1m +1n=3.故选A .34.在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,已知向量m =(cos B ,2cos 2 C2-1),n =(c ,b -2a ),且m·n =0. (1)求∠C 的大小;(2)若点D 为边AB 上一点,且满足AD →=DB →,|CD →|=7,c =23,求△ABC 的面积. 解:(1)因为m =(cos B ,cos C ),n =(c ,b -2a ),m ·n =0,所以c cos B +(b -2a )cos C =0,在△ABC 中,由正弦定理得sin C cos B +(sin B -2sin A )cos C =0,sin A =2sin A cos C ,又sin A ≠0, 所以cos C =12,而C ∈(0,π),所以∠C =π3.(2)由AD →=DB →知,CD →-CA →=CB →-CD →, 所以2CD →=CA →+CB →,两边平方得4|CD →|2=b 2+a 2+2ba cos ∠ACB =b 2+a 2+ba =28.① 又c 2=a 2+b 2-2ab cos ∠ACB , 所以a 2+b 2-ab =12.② 由①②得ab =8,所以S △ABC =12ab sin ∠ACB =2 3.35.若数列{a n }满足a 1·a 2·a 3·…·a n =n 2+3n +2,则数列{a n }的通项公式为________. 解析:a 1·a 2·a 3·…·a n =(n +1)(n +2),当n =1时,a 1=6;当n ≥2时,⎩⎪⎨⎪⎧a 1·a 2·a 3·…·a n -1·a n =(n +1)(n +2),a 1·a 2·a 3·…·a n -1=n (n +1),故当n ≥2时,a n =n +2n ,所以a n =⎩⎪⎨⎪⎧6,n =1,n +2n ,n ≥2,n ∈N *.答案:a n =⎩⎪⎨⎪⎧6,n =1,n +2n ,n ≥2,n ∈N *36.已知二次函数f (x )=x 2-ax +a (a >0,x ∈R ),有且只有一个零点,数列{a n }的前n 项和S n =f (n )(n ∈N *).(1)求数列{a n }的通项公式;(2)设c n =1-4a n(n ∈N *),定义所有满足c m ·c m +1<0的正整数m 的个数,称为这个数列{c n }的变号数,求数列{}c n 的变号数.解:(1)依题意,Δ=a 2-4a =0,所以a =0或a =4. 又由a >0得a =4,所以f (x )=x 2-4x +4. 所以S n =n 2-4n +4.当n =1时,a 1=S 1=1-4+4=1; 当n ≥2时,a n =S n -S n -1=2n -5.所以a n =⎩⎪⎨⎪⎧1,n =1,2n -5,n ≥2.(2)由题意得c n =⎩⎪⎨⎪⎧-3,n =1,1-42n -5,n ≥2. 由c n =1-42n -5可知,当n ≥5时,恒有c n >0.又c 1=-3,c 2=5,c 3=-3,c 4=-13,c 5=15,c 6=37,即c 1·c 2<0,c 2·c 3<0,c 4·c 5<0. 所以数列{c n }的变号数为3.37.等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解:(1)设数列{a n }的公差为d ,由题意有 2a 1+5d =4,a 1+5d =3. 解得a 1=1,d =25.所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =[2n +35].当n =1,2,3时,1≤2n +35<2,b n =1;当n =4,5时,2<2n +35<3,b n =2;当n =6,7,8时,3≤2n +35<4,b n =3;当n =9,10时,4<2n +35<5,b n =4.所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.38.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏解析:选B.每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得S 7=a 1(1-27)1-2=381,解得a 1=3,故选B.39.规定:“⊗”表示一种运算,即a ⊗b =ab +a +b (a ,b 为正实数).若1⊗k =3,则k 的值为________,此时函数f (x )=k ⊗xx的最小值为________.解析:由题意得1⊗k =k +1+k =3,即k +k -2=0,解得k =1或k =-2(舍去),所以k =1,故k 的值为1,又f (x )=1⊗x x =x +x +1x =1+x +1x ≥1+2=3,当且仅当x =1x,即x =1时取等号, 故函数f (x )的最小值为3.答案:1 340.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________.解析:如图所示,设S 在底面的射影为S ′,连接AS ′,SS ′.△SAB 的面积为12·SA ·SB ·sin∠ASB =12·SA 2·1-cos 2∠ASB =1516·SA 2=515,所以SA 2=80,SA =4 5.因为SA 与底面所成的角为45°,所以∠SAS ′=45°,AS ′=SA ·cos 45°=45×22=210.所以底面周长l =2π·AS ′=410π,所以圆锥的侧面积为12×45×410π=402π.答案:402π41.如图,在矩形ABCD 中,AB =2AD ,E 为边AB 的中点,将△ADE 沿直线DE 翻折成△A 1DE .若M 为线段A 1C 的中点,则在△ADE 翻折过程中,下列四个命题中不正确的是________(填序号).①BM 是定值;②点M 在某个球面上运动; ③存在某个位置,使DE ⊥A 1C ; ④存在某个位置,使MB ∥平面A 1DE .解析:取DC 的中点F ,连接MF ,BF ,则MF ∥A 1D 且MF =12A 1D ,FB ∥ED 且FB =ED ,所以∠MFB =∠A 1DE .由余弦定理可得MB 2=MF 2+FB 2-2MF ·FB ·cos ∠MFB 是定值,所以M 是在以B 为球心,MB 为半径的球上,可得①②正确;由MF ∥A 1D 与FB ∥ED 可得平面MBF ∥平面A 1DE ,可得④正确;若存在某个位置,使DE ⊥A 1C ,则因为DE 2+CE 2=CD 2,即CE ⊥DE ,因为A 1C ∩CE =C ,则DE ⊥平面A 1CE ,所以DE ⊥A 1E ,与DA 1⊥A 1E 矛盾,故③不正确.答案:③42.如图,已知正方体ABCD ­A 1B 1C 1D 1的棱长为2,长为2的线段MN 的一个端点M 在棱DD 1上运动,点N 在正方体的底面ABCD 内运动,则MN 的中点P 的轨迹的面积是________.解析:连接DN ,则△MDN 为直角三角形,在Rt △MDN 中,MN =2,P 为MN 的中点,连接DP ,则DP =1,所以点P 在以D 为球心,半径R =1的球面上,又因为点P 只能落在正方体上或其内部,所以点P 的轨迹的面积等于该球面面积的18,故所求面积S =18×4πR 2=π2. 答案:π243.如图,透明塑料制成的长方体容器ABCD ­A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH 所在四边形的面积为定值; ③棱A 1D 1始终与水面所在平面平行; ④当容器倾斜如图所示时,BE ·BF 是定值. 其中正确的个数是( ) A .1 B .2 C .3D .4解析:选C.由题图,显然①是正确的,②是错的; 对于③因为A 1D 1∥BC ,BC ∥FG , 所以A 1D 1∥FG 且A 1D 1⊄平面EFGH , 所以A 1D 1∥平面EFGH (水面).所以③是正确的;因为水是定量的(定体积V).所以S△BEF·BC=V,即12BE·BF·BC=V.所以BE·BF=2VBC(定值),即④是正确的,故选C.44.如图,边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A′DE是△ADE绕DE旋转过程中的一个图形,则下列命题中正确的是()①动点A′在平面ABC上的射影在线段AF上;②BC∥平面A′DE;③三棱锥A′­FED的体积有最大值.A.①B.①②C.①②③D.②③解析:选C.①中由已知可得平面A′FG⊥平面ABC,所以点A′在平面ABC上的射影在线段AF上.②BC∥DE,根据线面平行的判定定理可得BC∥平面A′DE.③当平面A′DE⊥平面ABC时,三棱锥A′­FED的体积达到最大,故选C.45.如图,梯形ABCD中,AD∥BC,∠ABC=90°,AD∶BC∶AB=2∶3∶4,E,F分别是AB,CD的中点,将四边形ADFE沿直线EF进行翻折,给出下列四个结论:①DF⊥BC;②BD⊥FC;③平面BDF⊥平面BCF;④平面DCF⊥平面BCF,则上述结论可能正确的是()A.①③B.②③C.②④D.③④解析:选B.对于①,因为BC∥AD,AD与DF相交但不垂直,所以BC与DF不垂直,则①不成立;对于②,设点D在平面BCF上的射影为点P,当BP⊥CF时就有BD⊥FC,而AD∶BC∶AB=2∶3∶4可使条件满足,所以②正确;对于③,当点D在平面BCF上的射影P落在BF上时,DP⊂平面BDF,从而平面BDF⊥平面BCF,所以③正确;对于④,因为点D在平面BCF上的射影不可能在FC上,所以④不成立.46.在矩形ABCD中,AB<BC,现将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折的过程中,给出下列结论:①存在某个位置,使得直线AC 与直线BD 垂直; ②存在某个位置,使得直线AB 与直线CD 垂直; ③存在某个位置,使得直线AD 与直线BC 垂直.其中正确结论的序号是________.(写出所有正确结论的序号)解析:①假设AC 与BD 垂直,过点A 作AE ⊥BD 于E ,连接CE .则⎭⎪⎬⎪⎫AE ⊥BD BD ⊥AC ⇒BD ⊥平面AEC ⇒BD ⊥CE ,而在平面BCD 中,EC 与BD 不垂直,故假设不成立,①错.②假设AB ⊥CD ,因为AB ⊥AD ,所以AB ⊥平面ACD ,所以AB ⊥AC ,由AB <BC 可知,存在这样的等腰直角三角形,使AB ⊥CD ,故假设成立,②正确.③假设AD ⊥BC ,因为DC ⊥BC ,所以BC ⊥平面ADC ,所以BC ⊥AC ,即△ABC 为直角三角形,且AB 为斜边,而AB <BC ,故矛盾,假设不成立,③错.综上,填②.答案:②47.已知动直线l :ax +by +c -2=0(a >0,c >0)恒过点P (1,m )且Q (4,0)到动直线l 的最大距离为3,则12a +2c的最小值为( )A.92 B.94 C .1D .9解析:选B.因为动直线l :ax +by +c -2=0(a >0,c >0)恒过点P (1,m ), 所以a +bm +c -2=0,又Q (4,0)到动直线l 的最大距离为3, 所以(4-1)2+(-m )2=3,解得m =0,所以a +c =2, 则12a +2c =12(a +c )·⎝⎛⎭⎫12a +2c =12⎝⎛⎭⎫52+c 2a +2a c ≥12⎝⎛⎭⎫52+2c 2a ·2a c =94, 当且仅当c =2a =43时取等号,故选B.48.在直线l :3x -y -1=0上求一点P ,使得: (1)P 到A (4,1)和B (0,4)的距离之差最大; (2)P 到A (4,1)和C (3,4)的距离之和最小.解:(1)如图,设B 关于l 的对称点为B ′,AB ′的延长线交l 于P 0,在l 上另任取一点P ,则|P A |-|PB |=|P A |-|PB ′|<|AB ′|=|P 0A |-|P 0B ′|=|P 0A |-|P 0B |,则P 0即为所求.易求得直线BB ′的方程为x +3y -12=0, 设B ′(a ,b ),则a +3b -12=0,①又线段BB ′的中点⎝⎛⎭⎫a 2,b +42在l 上,故3a -b -6=0.②由①②解得a =3,b =3, 所以B ′(3,3).所以AB ′所在直线的方程为2x +y -9=0.由⎩⎪⎨⎪⎧2x +y -9=0,3x -y -1=0可得P 0(2,5). (2)设C 关于l 的对称点为C ′,与(1)同理可得C ′⎝⎛⎭⎫35,245.连接AC ′交l 于P 1,在l 上另任取一点P ,有|P A |+|PC |=|P A |+|PC ′|>|AC ′|=|P 1C ′|+|P 1A |=|P 1C |+|P 1A |,故P 1即为所求.又AC ′所在直线的方程为19x +17y -93=0,故由⎩⎪⎨⎪⎧19x +17y -93=0,3x -y -1=0可得P 1⎝⎛⎭⎫117,267.49.设点P 是函数y =-4-(x -1)2的图象上的任意一点,点Q (2a ,a -3)(a ∈R ),则|PQ |的最小值为( )A.855-2B.5C.5-2D.755-2解析:选C.如图所示,点P 在半圆C (实线部分)上,且由题意知,C (1,0),点Q 在直线l :x -2y -6=0上.过圆心C 作直线l 的垂线,垂足为点A ,则|CA |=5,|PQ |min =|CA |-2=5-2.故选C.50.在平面直角坐标系xOy 中,曲线Γ:y =x 2-mx +2m (m ∈R )与x 轴交于不同的两点A ,B ,曲线Γ与y 轴交于点C .(1)是否存在以AB 为直径的圆过点C ?若存在,求出该圆的方程;若不存在,请说明理由.(2)求证:过A ,B ,C 三点的圆过定点.解:由曲线Γ:y =x 2-mx +2m (m ∈R ),令y =0,得x 2-mx +2m =0. 设A (x 1,0),B (x 2,0),则可得Δ=m 2-8m >0,x 1+x 2=m ,x 1x 2=2m . 令x =0,得y =2m ,即C (0,2m ).(1)若存在以AB 为直径的圆过点C ,则AC →·BC →=0,得x 1x 2+4m 2=0,即2m +4m 2=0,所以m =0或m =-12.由Δ>0得m <0或m >8,所以m =-12,此时C (0,-1),AB 的中点M ⎝⎛⎭⎫-14,0即圆心,半径r =|CM |=174, 故所求圆的方程为⎝⎛⎭⎫x +142+y 2=1716. (2)证明:设过A ,B 两点的圆的方程为x 2+y 2-mx +Ey +2m =0, 将点C (0,2m )代入可得E =-1-2m ,所以过A ,B ,C 三点的圆的方程为x 2+y 2-mx -(1+2m )y +2m =0, 整理得x 2+y 2-y -m (x +2y -2)=0.令⎩⎪⎨⎪⎧x 2+y 2-y =0,x +2y -2=0,可得⎩⎪⎨⎪⎧x =0,y =1或⎩⎨⎧x =25,y =45,故过A ,B ,C 三点的圆过定点(0,1)和⎝⎛⎭⎫25,45.51.已知直线ax +y -1=0与圆C :(x -1)2+(y +a )2=1相交于A 、B 两点,且△ABC 为等腰直角三角形,则实数a 的值为( )A.17或-1 B .-1 C .1或-1D .1解析:选C.由题意得圆心(1,-a )到直线ax +y -1=0的距离为22, 所以|a -a -1|1+a 2=22,解得a =±1,故选C.52.已知抛物线C :x 2=2py (p >0)和定点M (0,1)设过点M 的动直线交抛物线C 于A ,B 两点,抛物线C 在A ,B 处的切线的交点为N .(1)若N 在以AB 为直径的圆上,求p 的值;(2)若△ABN 的面积的最小值为4,求抛物线C 的方程.解:设直线AB :y =kx +1,A (x 1,y 1),B (x 2,y 2),将直线AB 的方程代入抛物线C 的方程得x 2-2pkx -2p =0, 则x 1+x 2=2pk ,x 1x 2=-2p .①(1)由x 2=2py 得y ′=x p ,则A ,B 处的切线斜率的乘积为x 1x 2p 2=-2p ,因为点N 在以AB 为直径的圆上,所以AN ⊥BN , 所以-2p=-1,所以p =2.(2)易得直线AN :y -y 1=x 1p (x -x 1),直线BN :y -y 2=x 2p(x -x 2),联立,得⎩⎨⎧y -y 1=x 1p (x -x 1),y -y 2=x2p (x -x 2),结合①式,解得⎩⎪⎨⎪⎧x =pk ,y =-1,即N (pk ,-1).|AB |=1+k 2|x 2-x 1|=1+k 2(x 1+x 2)2-4x 1x 2=1+k 24p 2k 2+8p , 点N 到直线AB 的距离d =|kx N +1-y N |1+k 2=|pk 2+2|1+k 2,则△ABN 的面积S △ABN =12·|AB |·d =p (pk 2+2)3≥22p ,当k =0时,取等号,因为△ABN 的面积的最小值为4,所以22p =4,所以p =2,故抛物线C 的方程为x 2=4y .53.已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,点M 在AB 上,且AM =13,点P 在平面ABCD 内,且动点P 到直线A 1D 1的距离与动点P 到点M 的距离的平方差为1,则动点P 的轨迹是( )A .直线B .圆C .双曲线D .抛物线解析:选D.在平面ABCD 内过点P 作PF ⊥AD ,垂足为F ,过点F 在平面AA 1D 1D 内作FE ⊥A 1D 1,垂足为E ,连接PE ,则有PE ⊥A 1D 1,即PE 为点P 到A 1D 1的距离.由题意知|PE |2-|PM |2=1,又因为|PE |2=|PF |2+|EF |2,所以|PF |2+|EF |2-|PM |2=1, 即|PF |2=|PM |2,即|PF |=|PM |,所以点P 满足到点M 的距离等于点P 到直线AD 的距离.由抛物线的定义知点P 的轨迹是以点M 为焦点,AD 为准线的抛物线, 所以点P 的轨迹为抛物线.54.若曲线C 上存在点M ,使M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,则称曲线C 为“好曲线”.以下曲线不是“好曲线”的是( )A .x +y =5B .x 2+y 2=9 C.x 225+y 29=1 D .x 2=16y解析:选B.因为M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,所以M 的轨迹是以A (-5,0),B (5,0)为焦点的双曲线,方程为x 216-y 29=1.A 项,直线x +y =5过点(5,0),满足题意,为“好曲线”;B 项,x 2+y 2=9的圆心为(0,0),半径为3,与M 的轨迹没有交点,不满足题意;C 项,x 225+y 29=1的右顶点为(5,0),满足题意,为“好曲线”;D 项,方程代入x 216-y 29=1,可得y -y 29=1,即y 2-9y +9=0,所以Δ>0,满足题意,为“好曲线”.55.如图,斜线段AB 与平面α所成的角为60°,B 为斜足,平面α上的动点P 满足∠P AB =30°,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支解析:选C.母线与中轴线夹角为30°,然后用平面α去截,使直线AB 与平面α的夹角为60°,则截口为P 的轨迹图形,由圆锥曲线的定义可知,P 的轨迹为椭圆.故选C.56.若m ,n 均为非负整数,在做m +n 的加法时各位均不进位(例如:134+3 802=3 936),则称(m ,n )为“简单的”有序对,而m +n 称为有序对(m ,n )的值,那么值为1 942的“简单的”有序对的个数是________.解析:第1步,1=1+0,1=0+1,共2种组合方式;第2步,9=0+9,9=1+8,9=2+7,9=3+6,…,9=9+0,共10种组合方式; 第3步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式; 第4步,2=0+2,2=1+1,2=2+0,共3种组合方式.根据分步乘法计数原理,值为1 942的“简单的”有序对的个数为2×10×5×3=300. 答案:30057.已知P 是△ABC 所在平面内一点,PB →+PC →+2P A →=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是 ( )A.14B.13C.23D.12解析:选D.以PB ,PC 为邻边作平行四边形PBDC ,则PB →+PC →=PD →,因为PB →+PC →+2 P A →=0,所以PB →+PC →=-2P A →,得PD →=-2P A →,由此可得,P 是△ABC 边BC 上的中线AO 的中点,点P 到BC 的距离等于A 到BC 距离的12,所以S △PBC =12S △ABC ,所以将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率为S △PBC S △ABC =12.58.某校举行运动会,其中三级跳远的成绩在8.0米(四舍五入,精确到0.1米)以上的进入决赛,把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6个小组的频数是7.(1)求进入决赛的人数;(2)经过多次测试后发现,甲的成绩均匀分布在8~10米之间,乙的成绩均匀分布在9.5~10.5米之间,现甲、乙各跳一次,求甲比乙跳得远的概率.解:(1)第6小组的频率为1-(0.04+0.10+0.14+0.28+0.30)=0.14,所以总人数为70.14=50.由图易知第4、5、6组的学生均进入决赛,人数为(0.28+0.30+0.14)×50=36,即进入决赛的人数为36.(2)设甲、乙各跳一次的成绩分别为x ,y 米,则基本事件满足⎩⎪⎨⎪⎧8≤x ≤109.5≤y ≤10.5, 设事件A 为“甲比乙跳得远”,则x >y ,作出可行域如图中阴影部分所示.所以由几何概型得P (A )=12×12×121×2=116,即甲比乙跳得远的概率为116.59.已知关于x 的二次函数f (x )=ax 2-4bx +1.(1)设集合P ={1,2,3}和Q ={-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数y =f (x )在区间[1,+∞)上是增函数的概率;(2)设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0,x >0,y >0内的随机点,求函数y =f (x )在区间[1,+∞)上是增函数的概率.解:(1)因为函数f (x )=ax 2-4bx +1的图象的对称轴为x =2ba ,要使f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,当且仅当a >0且2ba≤1,即2b ≤a .若a =1,则b =-1; 若a =2,则b =-1,1; 若a =3,则b =-1,1.所以事件包含基本事件的个数是1+2+2=5,因为事件“分别从集合P 和Q 中随机取一个数作为a 和b ”的个数是15. 所以所求事件的概率为515=13.(2)由(1)知当且仅当2b ≤a 且a >0时,函数f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,依条件可知试验的全部结果所构成的区域为⎩⎪⎨⎪⎧(a ,b )⎪⎪⎪⎪⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a +b -8≤0,a >0,b >0, 构成所求事件的区域为如图所示的三角形BOC 部分. 由⎩⎪⎨⎪⎧a +b -8=0,b =a 2,得交点坐标C ⎝⎛⎭⎫163,83, 故所求事件的概率P =S △BOC S △AOB =12×8×8312×8×8=13.60.设a ,b 是两个实数,给出下列条件: ①a +b >1;②a +b =2;③a +b >2; ④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是________.(填序号) 解析:若a =12,b =23,则a +b >1,但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出; 若a =-2,b =-3,则ab >1,故⑤推不出; 对于③,即a +b >2,则a ,b 中至少有一个大于1, 反证法:假设a ≤1且b ≤1, 则a +b ≤2与a +b >2矛盾,因此假设不成立,故a ,b 中至少有一个大于1. 答案:③。

创新性试题及答案

创新性试题及答案

创新性试题及答案一、单项选择题(每题3分,共30分)1. 以下哪项不是创新性思维的特点?A. 逻辑性B. 灵活性C. 独创性D. 风险性答案:A2. 创新性试题通常不包括以下哪种类型?A. 案例分析题B. 计算题C. 论述题D. 实验设计题答案:B3. 创新性试题的目的是:A. 测试学生的记忆力B. 测试学生的计算能力C. 测试学生的综合分析能力D. 测试学生对知识的熟练程度答案:C4. 以下哪种方法不适用于培养创新性思维?A. 鼓励学生提出问题B. 鼓励学生进行团队合作C. 要求学生严格按照标准答案D. 鼓励学生进行跨学科学习答案:C5. 创新性试题的评分标准通常包含以下哪项?A. 答案的唯一性B. 答案的多样性C. 答案的准确性D. 答案的规范性答案:B6. 在创新性试题中,以下哪种情况最可能得到高分?A. 答案与标准答案完全一致B. 答案有独到见解且逻辑清晰C. 答案有明显错误但有创新点D. 答案与标准答案部分一致答案:B7. 创新性试题通常不要求学生:A. 掌握基础知识B. 进行深入思考C. 遵循固定模式D. 展示个人见解答案:C8. 创新性试题的难度设计应该:A. 与常规试题相同B. 略高于常规试题C. 略低于常规试题D. 完全由学生决定答案:B9. 创新性试题的评分过程应该:A. 完全依赖于评分标准B. 完全依赖于评分老师的主观判断C. 结合评分标准和评分老师的主观判断D. 完全由学生自我评价答案:C10. 创新性试题的反馈机制应该:A. 只提供分数B. 提供分数和正确答案C. 提供分数、正确答案和改进建议D. 提供分数和错误分析答案:C二、简答题(每题5分,共20分)1. 简述创新性试题与传统试题的主要区别。

答案:创新性试题与传统试题的主要区别在于,创新性试题更注重考查学生的综合分析能力、创新思维和解决问题的能力,而传统试题则侧重于考查学生对知识的掌握程度和记忆能力。

2. 请举例说明如何设计一个创新性试题。

创新思维训练75题及答案

创新思维训练75题及答案

创新思维训练75题及答案【1】假设有一个池塘,里面有无穷多的水。

现有2个空水壶,容积分别为5升和6升。

问题是如何只用这2个水壶从池塘里取得3升的水。

【2】周雯的妈妈是豫林水泥厂的化验员。

一天,周雯来到化验室做作业。

做完后想出去玩。

"等等,妈妈还要考你一个题目,"她接着说,"你看这6只做化验用的玻璃杯,前面3只盛满了水,后面3只是空的。

你能只移动1只玻璃杯,就便盛满水的杯子和空杯子间隔起来吗?" 爱动脑筋的周雯,是学校里有名的"小机灵",她只想了一会儿就做到了。

请你想想看,"小机灵"是怎样做的?【3】三个小伙子同时爱上了一个姑娘,为了决定他们谁能娶这个姑娘,他们决定用手枪进行一次决斗。

小李的命中率是30%,小黄比他好些,命中率是50%,最出色的枪手是小林,他从不失误,命中率是100%。

由于这个显而易见的事实,为公平起见,他们决定按这样的顺序:小李先开枪,小黄第二,小林最后。

然后这样循环,直到他们只剩下一个人。

那么这三个人中谁活下来的机会最大呢?他们都应该采取什么样的策略?【4】一间囚房里关押着两个犯人。

每天监狱都会为这间囚房提供一罐汤,让这两个犯人自己来分。

起初,这两个人经常会发生争执,因为他们总是有人认为对方的汤比自己的多。

后来他们找到了一个两全其美的办法:一个人分汤,让另一个人先选。

于是争端就这么解决了。

可是,现在这间囚房里又加进来一个新犯人,现在是三个人来分汤。

必须寻找一个新的方法来维持他们之间的和平。

该怎么办呢?按:心理问题,不是逻辑问题【5】在一张长方形的桌面上放了n个一样大小的圆形硬币。

这些硬币中可能有一些不完全在桌面内,也可能有一些彼此重叠;当再多放一个硬币而它的圆心在桌面内时,新放的硬币便必定与原先某些硬币重叠。

请证明整个桌面可以用4n个硬币完全覆盖【6】一个球、一把长度大约是球的直径2/3长度的直尺.你怎样测出球的半径?方法很多,看看谁的比较巧妙【7】五个大小相同的一元人民币硬币。

创新测试题及答案

创新测试题及答案

创新测试题及答案一、单项选择题(每题2分,共20分)1. 创新的定义是什么?A. 旧事物的重复B. 新事物的创造C. 旧事物的复制D. 新事物的模仿答案:B2. 创新通常与哪个词联系在一起?A. 传统B. 保守C. 创新D. 守旧答案:C3. 在创新过程中,哪个因素最为重要?A. 资金B. 技术C. 人才D. 市场答案:C4. 以下哪项不是创新的常见障碍?A. 缺乏资源B. 缺乏知识C. 缺乏时间D. 缺乏创新精神答案:D5. 创新管理的核心是什么?A. 产品开发B. 项目管理C. 风险管理D. 知识管理答案:D6. 创新的驱动力是什么?A. 竞争B. 需求C. 技术进步D. 所有以上答案:D7. 创新的类型包括哪些?A. 产品创新B. 过程创新C. 市场创新D. 所有以上答案:D8. 创新的衡量标准通常是什么?A. 创新的频率B. 创新的规模C. 创新的影响D. 所有以上答案:D9. 创新的最终目的是?A. 提高效率B. 增加利润C. 提高市场份额D. 所有以上答案:D10. 创新的常见策略有哪些?A. 产品差异化B. 技术领先C. 市场细分D. 所有以上答案:D二、多项选择题(每题3分,共15分)1. 创新的来源可能包括哪些?A. 客户需求B. 竞争对手C. 内部研发D. 外部合作答案:ABCD2. 创新的挑战包括哪些?A. 技术难题B. 市场接受度C. 资金限制D. 法律风险答案:ABCD3. 创新的策略可能包括哪些?A. 快速跟进B. 领先创新C. 模仿创新D. 联合创新答案:ABCD三、判断题(每题2分,共10分)1. 创新总是需要大量的资金投入。

(错误)2. 创新只发生在高科技领域。

(错误)3. 创新可以是渐进的,也可以是颠覆性的。

(正确)4. 创新只与产品有关,与流程无关。

(错误)5. 创新是企业持续发展的关键。

(正确)四、简答题(每题5分,共20分)1. 请简述创新对企业的重要性。

创新思维题(附答案)

创新思维题(附答案)
6、最大数字:如果让你用2、3、4来组成数字,你能组出最大的数字是多少?
7、三个学生:放学后,有三个学生留下来做作业,过了一会儿,学生全部走了。这时,老师来了,发现还有两个同学在继续做作业。你知道这是怎么回事吗?
8、买东西:张先生在商店买同样的东西,如果他买一个的话,得85元,买两个的话,得70元,买三个的话,得55元。
25、吃蛋:俗话说:种瓜得瓜,种豆得豆。王爷爷没有养过鸡,但是每天早上总是吃两个蛋,这不是花钱买的,也不是别人送或孩子们孝敬的。这是怎么回事?
26、蜘蛛和蚊子:小明把蜘蛛和蚊子放在一个瓶子里,然后查了一下,总共有48条腿,那么,你能判断出蜘蛛和蚊子各有多少只吗?
11、奇怪的人:一个没有双眼的人,看到树上有李子。他摘下了李子又留下了李子。想一想,这是什么道理?
12、有多少土:工人在山腰上挖了一个大洞,洞深10米,宽1.5米,高2米。请问:洞里面有多少立方米的土?
13、两车同行:小汽车在什么时候能够和火车同一方向、同一速度前进?
14、公共汽车上的怪事:毛毛坐上一辆公共汽车他发现买票的人(包括毛毛在内)只占车上的三分之一,可汽车一直到终点,司机和售票员也没有向另外三分之二的人索要车票。你知道这是什么吗?
以上似乎答非所问,实际上乙回答的正是甲所问的问题。你知道乙回答了什么吗?
4、找错误:做事不认真、不负责任,就会弄出很多错误。有人说,这一问题上就有4处错误。请问错误在什么地方?
5、什么东西:什么东西,你用左手可以握住它,而你的右手怎么也够不到?什么东西离你的脚很近,但你不能用左脚踩到它?什么东西是属于你的,但是别人用得反而比你用得多?
18、密电:公安机关截获某犯罪团伙的一封密电。电文如下:“吾合分昌盍旮垄聚鑫。”你能破译这封密电吗?

创新能力考试题及答案

创新能力考试题及答案

创新能力考试题及答案一、单项选择题(每题3分,共30 分)1、1912年,经济学家熊彼特提出“创新理论”,“创新”逐步成为一个( B )专用名词。

A 社会学B 经济学C 管理学2、理论创新的实质就是( A )。

A 解放思想,事实求是B 一切从实际出发C 与时俱进3、技术创新、制度创新和知识创新等,其“新”的意义是指( C )。

A 时间意义上的新B 地理意义上的新C 知识产权意义上的新4、司马光砸缸的行为用的是( C )思维。

A 横向B 纵向C 逆向5、理论创新的过程不是一帆风顺,而是经历反复斗争、争论以后才最终形成的。

这点显示了理论创新的特征具有( B )。

A 继承性B 斗争性C 加速性6、科技创新需要有自主性,其含义包括( C )。

A 学术自主B 学术自由C A和B7、创新活动的基础和开端是( A )。

A 观念创新B 制度创新C 技术创新8、在当代,科学、技术、生产三者相互作用的形式逐步是( C )。

A 生产→技术→科学B 科学→技术→生产C 科学←→技术←→生产9、康佳公司向农村市场推出价廉的“福临门”彩电时,将产品不适用的功能减少,这是运用了产品创新思维中的( B )。

A 加法B 减法C 除法10、我国企业制度创新主要是建立( A )。

A 现代企业制度B 产权制度 C 科学管理制度二、多项选择题(每题4 分,共40 分)1、判断创新的两个基本标准是(AC )。

A 世界范围内的第一B 一国或一地区内的第一 C 显著性变化2、创新需要提出问题,问题产生于(AB )。

A 好奇B 质疑C 想象3、创新精神和创新意识主要来自于(ABC )。

A先天的智力和知识积累B丰富的实践 C 科学的训练4、系统思维要求我们有(ABC )。

A 全局性思维B 结构功能性思维C 协同性思维5、按思维过程的形成特点,可将思维分为(BC )。

A 逻辑式思维B 发散式思维C 收敛式思维6、人类的社会实践活动决定理论创新的(ABC )。

创新练习题有答案

创新练习题有答案

创新观练习题1、(2011·安徽高考)下图漫画给我们的哲学启示是A.把握事物的联系,利用客观规律B.坚持实践的观点,重视直接经验C.发挥主观能动性,探究事物本质D.坚持辩证否定观,树立创新意识2、阅读下图漫画,对锯树人行为的分析正确的是①该行为表明否定是事物自身的否定②该行为是形而上学否定观的体现③该行为承认否定是发展的环节④该行为没有抓住事物的主流A.①③B.②③C.①④D.②④3、2012年度诺贝尔文学奖获得者莫言认为,其创作深受魔幻现实主义代表作家马尔克斯和福克纳的影响,同时他又意识到一定要果断地“逃离”他们,形成自己的风格。

这给我们的哲学启示是A.面向世界,博采众长B.拓展想象空间,摆脱已有观念C.坚持辩证否定观,树立创新意识D.做好量变的准备,促进事物的质变4、(2012·大纲全国卷)某饭店老板请来许多一流的建筑师和工程师,探讨如何扩建狭小老旧的电梯。

他们一致认为:饭店必须停业半年才能扩建好电梯。

饭店一位清洁工说:“要是我,就会直接在屋外装上电梯。

”根据清洁工的建议,新电梯很快安装好了。

这是建筑史上第一次把电梯安装在室外。

这一案例表明()①丰富的专业知识是创新思维的源泉②丰富的实践经验必然促进思维创新③正确发现和提出问题是创新的首要环节④创新是对既有理论和实践的突破A.①②B.②③C.①④D.③④5、(2011·福建高考)我国科研人员自行研发的北斗卫星导航系统,其最大的创新在于把导航与通信紧密地结合起来,同时具备定位与文字通信功能。

“北斗”的发展和完善将为人们的生产和生活提供更多更好的服务。

材料表明()A.科学技术的进步对社会发展起积极的推动作用B.科学研究应树立创新意识,不唯上不唯书只唯实C.科学理论能够正确地预见社会发展的方向和趋势D.科学实验是人类思维在认识和改造社会中创造性的表现6、在一项测验中,应试者遇到了这样一个问题:谁能将一个瓶盖拧开?第一位拧了几分钟没有打开,就拿出了手帕包在瓶盖上面拧,还是不行;第二位身强力壮,显然力气不小,拧了半天也没有打开;第三位以为是他们拧的方向不对,于是反方向拧,还是不行。

初中创新试题及答案

初中创新试题及答案

初中创新试题及答案一、选择题(每题2分,共10分)1. 以下哪项是光合作用的主要产物?A. 氧气B. 二氧化碳C. 葡萄糖D. 水答案:A2. 世界上最长的河流是?A. 尼罗河B. 亚马逊河C. 长江D. 密西西比河答案:A3. 地球的大气层中,最外层的是什么?A. 平流层B. 电离层C. 臭氧层D. 对流层答案:B4. 以下哪种元素是人体必需的微量元素?A. 钙B. 铁C. 钠D. 钾答案:B5. 计算机中,用于存储数据的硬件设备是?A. CPUB. 内存C. 硬盘D. 显卡答案:C二、填空题(每题2分,共10分)1. 细胞的基本结构包括细胞膜、细胞质和______。

答案:细胞核2. 地球的自转周期是______小时。

答案:243. 人体最大的器官是______。

答案:皮肤4. 光年是用于测量______的单位。

答案:距离5. 牛顿是国际单位制中力的单位,它的定义是使______千克的物体产生1米每秒平方的加速度所需的力。

答案:1三、简答题(每题5分,共20分)1. 请简述光合作用的过程。

答案:光合作用是植物、藻类和某些细菌利用光能将二氧化碳和水转化为葡萄糖和氧气的过程。

这个过程发生在叶绿体中,通过光系统吸收光能,驱动电子从水分子中分离,产生氧气和氢离子,氢离子用于合成葡萄糖。

2. 描述地球的大气层结构。

答案:地球的大气层从内到外依次是:对流层、平流层、中间层、热层和外层空间。

对流层是最低的层,也是我们日常天气变化发生的地方。

平流层包含臭氧层,可以吸收紫外线。

中间层、热层和外层空间则涉及更复杂的物理和化学过程。

3. 解释什么是元素周期表。

答案:元素周期表是按照原子序数排列的元素列表,它展示了元素的化学性质和物理性质的周期性变化。

每个元素都有一个特定的位置,根据其电子排布和化学性质进行分类。

4. 简述计算机操作系统的基本功能。

答案:计算机操作系统是管理计算机硬件和软件资源的软件,它提供用户界面,允许用户与计算机交互,同时控制硬件设备,如CPU、内存、硬盘等,并管理软件程序的运行和数据的存储。

有关创新的题目

有关创新的题目

有关创新的题目一、选择题(1 - 10)1. 创新的本质是()A. 突破传统思维B. 创造新的事物C. 对既有理论和实践的突破与超越D. 提出新的概念解析:C。

创新不仅仅是突破传统思维(A选项)或者创造新事物(B选项)这么简单,也不只是提出新的概念(D选项)。

创新的本质是对既有理论和实践的突破与超越,它涉及到从思想到实践全方位的变革与提升。

2. 在创新过程中,()往往是创新的源泉。

A. 问题B. 知识C. 资金D. 人才解析:A。

问题能够引发人们去思考、探索,从而找到新的解决方法,是创新的源泉。

知识(B选项)是创新的基础;资金(C选项)是创新的支持条件;人才(D 选项)是创新的关键因素,但问题才是激发创新的源头。

3. 以下哪种思维方式对创新最有帮助()A. 线性思维B. 发散思维C. 收敛思维D. 定式思维解析:B。

发散思维能够从一个点出发,向多个方向思考,产生多种不同的想法和解决方案,对创新最有帮助。

线性思维(A选项)是一种比较单一的思维方式;收敛思维(C选项)主要是将多种想法集中到一个方向,不利于产生大量新的创意;定式思维(D选项)则会限制思维的拓展,不利于创新。

4. 创新对于企业发展的重要性体现在()A. 提高竞争力B. 降低成本C. 增加产量D. 以上都是解析:D。

创新可以通过开发新的产品或服务提高企业的竞争力(A选项);通过创新生产流程等方式降低成本(B选项);也可以通过创新技术提高生产效率从而增加产量(C选项),所以以上都是创新对企业发展的重要性体现。

5. 教育创新的核心是()(人教版教材相关概念)A. 教学方法创新B. 教育观念创新C. 课程体系创新D. 教育评价创新解析:B。

教育观念创新是教育创新的核心。

只有教育观念得到更新,才能引导教学方法(A选项)、课程体系(C选项)和教育评价(D选项)等方面的创新。

6. 科技创新在现代社会中的作用不包括()A. 推动经济发展B. 改善人们生活质量C. 阻碍传统文化传承D. 增强国家综合实力解析:C。

关于创新的惊艳神仙作文题目

关于创新的惊艳神仙作文题目

关于创新的惊艳神仙作文题目1. 创新之光:照亮未来的星辰之路2. 颠覆与重塑:创新的力量与魅力3. 思维的翅膀:创新在梦想的天空翱翔4. 跨越时代的创新:引领未来的无限可能5. 创新的火花:点燃智慧的熊熊烈火6. 勇攀创新高峰:探索未知的边界与挑战7. 创新之光:驱散陈旧的迷雾与黑暗8. 颠覆传统,创新未来:探索创新的无限魅力9. 创新的力量:驱动社会进步的强大引擎10. 智慧的火花:创新在思考中绽放光彩这些题目旨在突出创新的重要性、魅力和力量,同时也具有文学性和吸引力,能够引起读者的兴趣和共鸣。

当然,您还可以根据自己的理解和需求,对这些题目进行进一步的修改和创新。

关于创新的惊艳神仙作文题目(1)1. 创新之光:照亮未来的星辰之路2. 颠覆与重塑:创新的力量与魅力3. 梦想之翼:创新引领我们飞翔4. 智慧之火:点燃创新的无限可能5. 创变未来:以创新之笔绘制时代新篇章6. 破茧成蝶:创新助力梦想蜕变7. 灵感之源:创新思维的奇妙之旅8. 颠覆传统:创新引领时代的潮流9. 勇攀创新高峰:探索未知世界的壮丽风景10. 创新之翼:引领我们飞向更广阔的天地这些题目都强调了创新的重要性、魅力以及其对未来的影响,同时具有一定的文学色彩和吸引力,能够激发读者的阅读兴趣和思考。

你可以根据自己的写作内容和风格,选择适合的题目进行创作。

关于创新的惊艳神仙作文题目(2)1. 创新之光:点亮未来的星辰大海2. 逐梦创新路:探索未知的无限可能3. 智慧火花:创新引领时代的变革4. 颠覆与重塑:创新的力量与魅力5. 创意无限:创新是未来的敲门砖6. 创新之翼:展翅高飞向未来之巅7. 奇思妙想:创新点亮生活的色彩8. 跨界融合:创新推动文化的交流与共生9. 勇攀创新高峰:挑战自我,超越极限10. 智慧之树:创新之根,硕果累累这些题目都具有一定的吸引力和深度,能够引发读者的兴趣和思考。

当然,您可以根据自己的写作内容和风格进行调整和创新,打造出更加独特的作文题目。

列举10个训练创新能力的题目

列举10个训练创新能力的题目

列举10个训练创新能力的题目1.巧排队列24个人排成6列,要求每5个人为—列,请问该怎么排列好呢?2.升斗量水一长方形的升斗,它的容积是1升。

有人也称之为立升或公升。

现在要求你只使用这个升斗,准确地量出0.5升的水。

请问应该怎样办才能做到这一点呢?3.违纪开车在美国城市街道的交叉路口上,明文规定着,有步行者横过公路时,车辆就应停在人行道前等待。

可是偏偏有个汽车司机,当交叉路口上还有很多人横过马路时,他却突然撞进人群中,全速向前跑。

这时旁边的警察看了也无所谓,并没有责怪他。

你说这是为什么?4.变换方位在桌子上并排放有3张数字卡片组成三位数字216。

如果把这3张卡片的方位变换一下,则组成了另一个三位数,这个三位数恰好用43除尽。

是什么数、怎样变换的?5.月球飞鸟月球上的重力只有地球上的六分之一。

有一种鸟在地球上飞20公里要用1小时,如果把它放到月球上,飞20公里要多少时间?6.诚实与说谎A、B、C、D4个孩子在院子里踢足球,把一户人家的玻璃打碎了。

可是当房主人问他们是谁踢的球把玻璃打碎的,他们谁也不承认是自己打碎的。

房主人问A,A说:“是C打的。

”C则说“A说的不符合事实。

”房主人又问B,B说:“不是我打的。

”再问D,D说是“A打的。

”已经知道这4个孩子当中有1个很老实、不会说假话:其余3个都不老实,都说的是假话。

请你帮助分析一下这个说真话的孩子是谁,打碎玻璃的又是谁?7.最后一个字母英语字母表的第一个字母是A。

B的前面当然是A。

那么最后一个字母是什么?8.沉船某人有过这样一次经历:他乘坐的船驶到海上后就慢慢地沉下去了,但是,船上所有的乘客都很镇静,既没有人去穿救生衣,也没有人跳海逃命,却眼睁睁地看着这条船全部沉没。

9.火车过隧道两条火车轨道除了在隧道内的一段外都是平行铺设的。

由于隧道的宽度不足以铺设双轨,因此,在隧道内只能铺设单轨。

一天下午,一列火车从某一方向驶入隧道,另一列火车从相反方向驶入隧道。

赋能一线生产的创新题目

赋能一线生产的创新题目

以下是一些关于赋能一线生产的创新题目:
1.利用人工智能和机器学习优化生产线效率
2.实现生产过程中的实时数据监控与预测分析
3.构建智能化仓储管理系统,提升物料流转效率
4.创新供应链协同机制,实现高效采购与物流管理
5.利用数字孪生技术,构建虚拟生产线以提升生产透明度
6.基于物联网技术的设备监控与预防性维护系统
7.创新员工培训和激励机制,提升一线员工生产效率
8.引入精益生产理念,降低生产成本并提升产品质量
9.利用大数据和云计算技术,实现生产资源的优化配置
10.构建智能制造生态系统,推动企业数字化转型
这些题目涵盖了技术创新、管理创新、人力资源创新等多个方面,旨在通过赋能一线生产,提升企业整体竞争力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历届中考语文开放型试题集锦1、填空,使之构成排比句;然后填写一句带有哲理性的话作结。

一朵鲜花点缀不出绚丽的春天,一个音符谱写不了动人的乐章,棵绿草铺展不成碧绿的草原,一朵浪花激荡不起汹涌的波涛,只有人们团结一致,万众一心才能共筑成新的万里长城。

2、中考前夕,早在初一就辍学回家的李彤去看望他的同学小海。

李彤对他说:“小海,我真后悔当初辍学。

因为没有文化,在社会上什么都干不好。

我要是还能像你现在这样继续学习该多好啊!你可得好好复习呀!”小海听后该如何说,请将你认为小海应该说的话写在下面。

小海对李彤说:嗯,我会的。

不过你不用灰心,有那么多的成功人士都是自学创业的,我相信,如果你现在积极学习,一定可以成功的!4、阅读下面一段文字,完成后面的题目。

王大妈正在忙着做晚饭时,突然厨房的电灯熄灭了,抽油烟的风扇也停了,便十分焦急的去找邻居家里正在读初三的小刚。

小刚到王大妈家一检查,便知道是厨房电线开关上的保险丝烧坏了,仅只用几分钟时间,便修好了。

(1)请写一段话说明小刚修复保险丝的过程,不得超过50字。

只见小明小心翼翼地先把烧坏的保险丝取下,然后有条不紊的将新的更换上去(2)保险丝修复好后,王大妈与小刚妥贴的对话是:王大妈说:谢谢你了要不是你我们家今天不知能吃上饭不能呢(25字以内)小刚回答说您客气了,帮助老人是我的责任您如果再有难事找我就行了(25字以内)6、小刚要参加市里的诗歌朗诵比赛,为此他每天练习得很晚。

有一天邻居陈伯伯对他说:“小刚呀,你学习可真刻苦,每天晚上12点多了,我们都睡下了,你还在大声朗读什么东西。

”小刚谦虚地回答道:“陈伯伯过奖了,我还差得很远,还需要努力。

”(1)陈伯伯说话所强调的意思是你练习太晚,打扰了我们的休息(2)小刚理解的意思是陈伯伯在夸奖自己(3)如果你是小刚,得体的回答应该是我以后一定注意不会打扰到大家7、某餐馆门口贴着一副对联,上联是:碟中餐粒粒皆辛苦,弃之可惜;下联是:杯中酒口口都香甜,量力而行。

请你将中小学生都很熟悉的一首古诗中的有关语句填入上联,使之完整。

8、中国足球队在世界杯决赛小组赛上失利。

假如请你发一条手机信息鼓励他们,你想说什么?(不超过15个字)化悲痛为力量,相信你们下次定能创造辉煌9、据报道,某动物园里有些动物,因长期吞食游客扔给的包装食品及杂物,腹中长了结石。

这严重影响了动物的健康,管理人员不得不给它们施行手术。

针对这一现象,请你为动物园管理处拟一条标语,奉劝游客爱护动物。

语言要简明、得体,20字以内。

动物是我们的朋友,请把它们当做朋友10、星期日上午,班级团支部组织团员到社区为老人开展服务活动,而你没有准时赶到,耽误了大家的出发时间,你该怎样对大家说呢?真抱歉,我来晚了,对不起大家,耽误了大家的时间13、删改下面句子中画线的部分,使它与前面的句子组成对偶句。

遥望东南,建几处依山楼榭;近看西北角,造起三间面临绿水的轩斋。

改后为:遥望东南,建几处依山楼榭;近看西北,造三间临水轩斋。

14、根据你的观察和对生活的感悟,仿照下面的句子再写一个句子。

大自然能给我们许多启示:滴水可以穿石,是在告诉我们做事应持之以恒;大地能载万物,是在告诉我们求学要广读博览;梅花傲立风霜,是在告诉我们处世应不惧艰险15、用“惟妙惟肖、异想天开”造一个句子。

(30字以内)这惟妙惟肖的图画并非异想天开,而是未来人们生活的真实写照。

16、请你展开联想和想像,运用修辞方法,把“遥望”“繁星”“闪烁”这三个词扩展成一段50字左右的文字。

(词语顺序不拘)小时候的夏夜,是每天躺在奶奶的臂弯里仰望那星光闪烁的夜空17、过度砍伐、无节制使用是森林资源遭到破坏的重要原因。

2001年武汉市政府在全体市民中发起了“禁止使用一次性木筷”的活动,得到了广大市民的积极拥护和支持。

现请你根据平时的观察和思考,提一条保护森林资源的建议或拟一条含警示性的标语。

你正在使用的筷子是树木之躯,浪费的是你的生命!18、根据下面提供的情景,完成后面的各题。

要求:简明、扼要、连贯,合情合理。

情景:该交中考报名表了,可小华的表上连一个字还没写。

这时你收表正好走到了小华跟前。

当你提示小华该交表时,小华那不同往日的神情映入了你的眼帘。

(1)将小华此时的情形描摹出来:小华一脸的愁眉不展,手里握着报表犹豫不决(2)看到小华这样,你便关切地对小华说:怎么了,还没考虑好么(3)听完你的一番话,小华说:我还没考虑好(4)看来小华没有填表是有原因的。

请你对小华问题的原因做出合理的分析。

小华可能因为怕报了自己理想的学校却考不上(5)由小华的问题你想到了什么?请你写出来。

我们每个人要对自己有信心,无论做什么事都要学会对自己说我能行19、举出一个你周围发生的人类对自然“大不敬”的事例,并提出解决这一问题的具体措施。

随手将生活垃圾倒入河道环保部门组织专门的巡逻小组在河旁巡视在河庞竖立警示语20、近日,某市教育局动员全市中学生积极参与“做文明学生,建文明校园,创文明城市”的主题活动。

请你为这次活动拟一条宣传标语(不超过25字)。

我们是希望,让校园文明希望是我们创造文明城市21、请你拟一条有关绿色环保的公益广告语。

(语言要精练得体)例1:踏破青毡可惜,多行数步何妨。

例2:春花烂漫,请你手下留情。

答:枝头花何须折远处望更灿烂22、有人把生命比作四季,想一想,还可以把生命比作什么,请把你的想法写在下面。

生命像大海,正因为撞击到礁石,才产生美丽的浪花23、揣摩下面这段文字的大意,给这段话的开头补上一个恰当的句子。

世界上力量最大的东西是什么回答纷纭得很。

有的说“象”,有的说“狮”,有人开玩笑似的说,是“金刚”。

金刚有多少气力,当然大家全不知道。

结果,这一切答案完全不对,世界上气力最大的,是植物的种子。

一粒种子可以显现出来的力,简直是超越一切的。

24、在下文的文末补上一句符合上文文意的话。

(不超过30字)革命者的责任,正是把前进中的各种“不如意事”变成“如意事”。

要做到这一点,最要紧的是“向前看,脚莫停”。

好比骑自行车,刚上车时,车身总要晃几下,会骑车的人,一面调整重心,一面脚下使劲噔几下,车子就会在前进中达到新的平衡了。

如果脚下停住,只是原地转把,非连人带车摔倒不可。

这自然是个比喻,任何比喻都是跛脚的,然而它要说明的道理却千真万确:要获得一件事的成功,必须付出代价。

25、下面是一些同学写给一位老师的信的一段。

请根据“内容提示”,在横线上将信补写完整。

包括标点,不超过45字。

内容提示:这位老师学识渊博,讲起课来滔滔不绝,让学生独立思考的机会很少;只注重知识的传授,忽略能力的训练。

学生对此很不满意,迫切要求老师改变教学方法,活跃学习气氛,以提高教学质量。

以下是学生写给老师的一封信,你把信的内容补充完整。

……老师,您学识渊博,处处为学生着想,也应该让学生独立去思考,使学生在训练中得到锻炼,得以提高比如您可以选出经典题型,在课堂上让同学们参与讲解使课堂的学习气氛更为活跃……以上意见不一定对,仅供老师参考。

26、读下面文字,在横线上补写出恰当的语句。

千里马若不长鸣,就不会引起伯乐的注意,可能要一辈子困于常马;雄鹰若不展翅高飞,就不会引起猎人的瞩目,可能要一世被当做雉类。

27、按下面特定的情景写话。

你的班主任对工作十分负责,对学生也十分关心,只是脾气急躁了一点。

①请你用一句话委婉地向老师表达你的意思。

答:_________ ________。

②同学们对班主任有情绪,请你以班长的身份,用一句话劝劝他们。

答:28、由“丘蚓”(或“伞”)展开联想和想像,写一段话。

要求运用拟人和反问的修辞方法,字数50—80字。

30、某餐馆的广告词是:“好吃,请告诉大家;不好吃,请告诉我们。

”这两句话看似挺自信,但仔细想想,这样说显得该餐馆对自己的饭菜质量仍没有十分把握。

如果稍作改动,改为:好吃,请告诉我们;不好吃,请告诉大家,那就显得该餐馆对自己的饭菜质量自信多了。

31、根据下列情景,以“天空”为重点,写一段话,不少于30个字。

情景:夏天傍晚天空32、张晓和王玲是同班同学,读初三。

星期天上午,张晓约王玲去打羽毛球。

王玲的奶奶说:“不比你,成绩好,我们玲玲耽搁不起呀!”如果你是张晓,你该怎么说?奶奶,这跟成绩没有关系,多运动一下对王玲的学习也有好处啊您说是么?34、二战期间,罗斯福、邱吉尔及斯大林三巨头在雅尔塔开会。

罗斯福和邱吉尔合计着想调理斯大林一把。

一天早餐,三个人在一起聊天。

罗斯福说:“昨天我做了一个梦,梦见自己成了地球的主宰!”邱吉尔说:“昨天我做了一个梦,梦见自己成了宇宙的主宰!”两人说完后,得意地瞧着斯大林。

斯大林……斯大林听完罗斯福和邱吉尔的谈话后,会有什么的反应,该说点什么?请在下面的横线处续写出来:〔续写〕斯大林说:昨天我也做了一个梦,梦见自己对你们的要求都没有批准。

35、新世纪的第一个春天以来,一股社会实践活动的热潮在我市中小学涌起,同学们在活动中开阔了眼界,增强了能力,学会了学习。

请用一句话拟一条标语,为中小学生参与这一活动鼓鼓劲。

答:我们的双手和大脑一样灵敏,我们要用双手打造未来!36、作为全国著名旅游城市,我市不断改善旅游环境,以吸引天下游客。

请用一句话拟一条广告语,向天下游客介绍我市。

(可以自选我市某一旅游景点介绍,可以就我市整体特点介绍,也可以就自己所在地的特点介绍。

)答:38、请你为学校草坪里的警示牌拟写一条标语,提醒同学们爱护草坪。

(不得用“爱护”“禁止”等类似词语)现在的草儿,明天的希望39、下面是两个寓理于物的例句,请你另选一件物品(例如“镜子”、“风筝”……)写一个既符合物品特点,又包含生活道理的句子。

例句(1)蜡烛:站得不端正的,必然泪多命短。

(2)月亮:正因为有圆有缺,才使人不感到乏味。

风筝:正因为从不顺风,从不屈服,才飞得更高。

,44、展开合理想像,用优美流畅的语言(50字左右),把下面语句所表现的画面描述出来。

孤帆远影碧空尽,唯见长江天际流。

(李白《黄鹤楼送孟浩然之广陵》)45、阅读下面这首小诗,补写第二小节的空缺内容,使之与第一、三小节保持连贯。

小时候,上学后,长大后,母爱融在乳汁里,母爱贴在书包上,母爱藏在枕头里,吮着它,背着它,枕着它,香甜甜。

踏踏实实。

爱意绵绵。

46、根据下面一段话中的统计数据,请为这段话写一个结束句(不超过20字)。

最近,记者考察了某市最繁华的商业街,对这条商业街的商业用字进行了调查,发现整个路段的747个招牌中,含有不规范字的招牌多达118个,约占总数的16%。

在这118个招牌中共有326个不规范字。

由此看来,规范汉字已成为整个社会所要关注的一大问题。

48、根据下面这则新闻内容,按要求答题。

南方网讯至6月4日,三峡工程蓄水进入第四天,越来越多的漂浮物,在库区水面成片聚集,给三峡大坝垃圾清理工作带来巨大压力。

相关文档
最新文档