车辆路径问题

合集下载

车辆路径问题

车辆路径问题

车辆路径问题一、车辆路径问题描述和建模 1. 车辆路径问题车辆路径问题(Vehicle Routing Problem, VRP),主要研究满足约束条件的最优车辆使用方案以及最优化车辆路径方案。

定义:设G={V,E}是一个完备的无向图,其中V={0,1,2…n}为节点集,其中0表示车场。

V,={1,2,…n}表示顾客点集。

A={(i,j),I,j∈V,i≠j}为边集。

一对具有相同装载能力Q的车辆从车场点对顾客点进行配送服务。

每个顾客点有一个固定的需求qi和固定的服务时间δi。

每条边(i,j)赋有一个权重,表示旅行距离或者旅行费用cij。

标准车辆路径问题的优化目标为:确定一个具有最小车辆数和对应的最小旅行距离或者费用的路线集,其满足下列约束条件:⑴每一条车辆路线开始于车场点,并且于车场点约束;⑵每个顾客点仅能被一辆车服务一次⑶每一条车辆路线总的顾客点的需求不超过车辆的装载能力Q⑷每一条车辆路线满足一定的边约束,比如持续时间约束和时间窗约束等。

2.标准车辆路径的数学模型:对于车辆路径问题定义如下的符号:cij:表示顾客点或者顾客点和车场之间的旅行费用等 dij:车辆路径问题中,两个节点间的空间距离。

Q:车辆的最大装载能力 di:顾客点i的需求。

δi:顾客点i的车辆服务时间m:服务车辆数,标准车辆路径问题中假设所有的车辆都是同型的。

R:车辆集,R={1,2….,m}Ri:车辆路线,Ri={0,i1,…im,0},i1,…im?V,,i?R。

一般车辆路径问题具有层次目标函数,最小化车辆数和最小化车辆旅行费用,在文献中一般以车辆数作为首要优化目标函数,在此基础上使得对应的车辆旅行费用最小,下面给出标准车辆路径问题的数学模型。

下面给出标准车辆路径问题的数学模型。

对于每一条弧(I,j),定义如下变量:xijv=1 若车辆v从顾客i行驶到顾客点j0 否则yiv=1 顾客点i的需求由车辆v来完成0 否则mnnmminF x =M ni=1 i=1x0iv+ i=0 j=0 v=1xijv.cij (2.1)车辆路径问题的数学模型可以表述为:n, mv=1 i=0xijv≥1 ?j∈V (2.2)nni=0xipv? j=0xpjv=0 ?p∈V,v∈R (2.3) , mv=1yiv=1 ?i∈V (2.4) ni=1diyiv≤Q ?v∈R (2.5) ,yiv=ni=1xijv ?j∈V,v∈R (2.6)式中,F x 表示目标函数,M为一个无穷大的整数,通过在目标函数中引入参数M,能够保证算法在求解车辆路径问题时以车辆数为第一优化目标,以车辆旅行费用作为第二优化目标,也就是一个具有较少车辆数的解比一个具有较大车辆数但是较小车辆旅行距离的解好。

车辆路径问题的求解方法

车辆路径问题的求解方法

车辆路径问题的求解方法
车辆路径问题是指在给定的地图或路网上,寻找一条最优路径或最短路径,使得车辆从起点到终点能够在最短时间或最小代价内到达目的地。

常见的车辆路径问题包括最短路问题、最小生成树问题、最优化路径问题等。

以下是常见的车辆路径问题的求解方法:
1. Dijkstra算法:Dijkstra算法是求解单源最短路径问题的经典算法,它通过不断更新起点到各个节点的最短距离来求解最短路径。

该算法适用于路网较小的情况。

2. Floyd算法:Floyd算法是一种求解任意两点间最短路径的算法,它通过动态规划的思想,逐步计算出任意两点之间的最短路径。

该算法适用于路网较大的情况。

3. A*算法:A*算法是一种启发式搜索算法,它通过估计每个节点到终点的距离,来选择最优的扩展节点。

该算法适用于需要考虑路况等因素的情况。

4. 蚁群算法:蚁群算法是一种模拟蚂蚁觅食行为的算法,它通过模拟蚂蚁在路径上的行走过程,来寻找最优路径。

该算法适用于需要考虑多个因素的情况。

5. 遗传算法:遗传算法是一种模拟生物进化过程的算法,它通过不断交叉、变异、选择等操作,来寻找最优解。

该算法适用于需要考虑多个因素的情况。

以上是常见的车辆路径问题的求解方法,不同的问题需要选择不同的算法来求解。

车辆路径规划问题研究综述

车辆路径规划问题研究综述

车辆路径规划问题研究综述车辆路径规划问题是指在特定条件下,对车辆的路线进行规划,以达到最优或最优化的目标。

它是一种典型的组合优化问题,涉及到多个领域,如计算机科学、数学、人工智能、交通运输、物流管理等。

研究这些问题的主要目的是为了解决一系列实际应用问题,如物流配送、智能交通管理、货车配送等。

本文将从路线规划问题的定义、算法、应用等方面进行综述。

一、定义车辆路径规划问题可以分为两大类:静态路径规划问题和动态路径规划问题。

静态路径规划问题是指在已知起点和终点的情况下,寻找一条最优路线,使得路线具有一定的性质或满足一定的限制条件。

这些限制条件可以是时间限制、路程限制、交通流限制、成本限制等。

常见算法如Dijkstra算法、A*算法、Floyd算法等。

而动态路径规划问题则是指车辆在运行过程中,需要实时调整路线,以适应环境变化或路况变化。

动态规划问题相对于静态规划问题而言,难度更大,需要更加复杂的算法来求解。

常见算法如遗传算法、模拟退火算法、福尔摩斯算法等。

二、算法1.贪心算法贪心算法是一种基于局部最优原则作出选择的策略。

该算法对于寻找单个最优解十分有效,但在寻找多个最优解或全局最优解时,可能会产生局部最优解而不是全局最优解的问题。

2.动态规划算法动态规划算法是一种可解决具有重叠子问题和最优子结构的问题的算法。

它以自底向上、递推的方式求解问题,具有高效、简单的特点。

该算法可以使我们更加深入地理解问题,在计算机视觉、自然语言处理等领域有广泛的应用。

3.遗传算法遗传算法是一种仿生优化算法,通过模拟进化的过程求解最优解。

在车辆路径规划问题中,该算法一般用于实现路线的优化,通过对种群的遗传进化,不断优化路线,达到最优化的目标。

4.强化学习算法强化学习算法是一种在不断试错过程中学习,以最大化预期收益的方法。

在车辆路径规划问题中,该算法可以用于实现车辆的自主控制和智能驾驶,根据环境变化或路况变化,快速做出反应和调整。

cvrp问题算例

cvrp问题算例

CVRP(车辆路径问题)是一个经典的组合优化问题,旨在为一系列客户分配车辆,使得一定数量的车辆能够以最短的总成本满足所有客户的运输需求。

以下是一个简单的CVRP问题算例:
**问题描述**:
假设有一个物流公司需要在若干城市之间进行货物配送。

公司拥有一定数量的车辆,每辆车的载重量是有限的。

每个城市都有一定的货物需求,且每对城市之间的距离是已知的。

目标是找到一个车辆路径方案,使得所有车辆都能完成配送任务,且总成本最小。

**算例数据**:
* 数据集名称:A-n32-k5
* 最小用车量:5辆
* 最优解路径总长度:784
* 问题类型:CVRP
* 节点数(城市数量):32
* 边的权重类型:2D欧几里得距离
* 车辆最大载重:100单位
* 节点坐标(部分示例):1 8276, 2 9644, 3 505, 4 498 ...
**解决方案**:
解决CVRP问题的常见方法包括启发式算法、精确算法和元启发式算法。

对于大规模问题,元启发式算法(如遗传算法、模拟退火算法等)通常是最有效的选择。

**结论**:
通过使用合适的算法和数据结构,可以有效地解决CVRP问题,并找到最优或近似最优的车辆路径方案,从而降低运输成本并提高物流效率。

车辆路径问题的粒子群算法研究

车辆路径问题的粒子群算法研究

车辆路径问题(Vehicle Routing Problem,简称VRP)是指在满足一定条件下,一批需要送货的客户,使得送货车辆的路线总长度最小或者送达所有客户的总成本最小的问题。

VRP的研究在物流管理、智能交通系统等领域具有重要意义。

粒子群算法(Particle Swarm Optimization,简称PSO)是一种优化算法,它模拟鸟群或鱼群中个体之间的信息共享和合作,通过群体中个体的协作来寻找最优解。

本文将探讨如何利用粒子群算法解决车辆路径问题,并对其研究进行深入分析。

一、车辆路径问题的基本概念1.1 车辆路径问题的定义车辆路径问题是指在满足一定条件下,一批需要送货的客户,使得送货车辆的路线总长度最小或者送达所有客户的总成本最小的问题。

该问题最早由Dantzig和Ramser于1959年提出,随后在实际应用中得到了广泛的关注和研究。

1.2 车辆路径问题的分类车辆路径问题根据不同的约束条件和优化目标可分为多种类型,常见的包括基本车辆路径问题、时间窗车辆路径问题、多车型车辆路径问题等。

1.3 车辆路径问题的解决方法针对不同类型的车辆路径问题,可以采用不同的解决方法,常见的包括启发式算法、精确算法、元启发式算法等。

其中,粒子群算法作为一种元启发式算法,在解决VRP问题中具有一定优势。

二、粒子群算法的基本原理2.1 粒子群算法的发展历程粒子群算法是由Kennedy和Eberhart于1995年提出的一种优化算法,其灵感来源于鸟群或鱼群中个体之间的信息共享和合作。

该算法通过模拟群体中个体的协作来寻找最优解,在解决多种优化问题方面具有良好的性能。

2.2 粒子群算法的基本原理粒子群算法模拟了鸟群或鱼群中个体之间的信息共享和合作过程,其中每个个体被称为粒子,它们以一定的速度在搜索空间中移动,并通过个体最优和群体最优来不断调整自身的位置和速度,最终找到最优解。

2.3 粒子群算法的应用领域粒子群算法在函数优化、特征选择、神经网络训练等领域都得到了广泛的应用,并在一定程度上取得了较好的效果。

车辆路径问题专题—VehicleRoutingProblem

车辆路径问题专题—VehicleRoutingProblem

Periodic VRP (PVRP)
• In classical VRPs, typically the planning period is a single day. In the case of the Period Vehicle Routing Problem (PVRP), the classical VRP is generalized by extending the planning period to M days. • We define the problem as follows: Objective: The objective is to minimize the vehicle fleet and the sum of travel time needed to supply all customers. Feasibility: A solution is feasible if all constraints of VRP are satisfied. Furthermore a vehicle may not return to the depot in the same day it departs. Over the M-day period, each customer must be visited at least once.
Capacitated VRP (CPRV)
• CVRP is a VRP in which a fixed fleet of delivery vehicles of uniform capacity must service known customer demands for a single commodity from a common depot at minimum transit cost. That is, CVRP is like VRP with the additional constraint that every vehicles must have uniform capacity of a single commodity. We can find below a formal description for the CVRP: • Objective: The objective is to minimize the vehicle fleet and the sum of travel time, and the total demand of commodities for each route may not exceed the capacity of the vehicle which serves that route. • Feasibility: A solution is feasible if the total quantity assigned to each route does not exceed the capacity of the vehicle which services the route.

车辆路径问题模型及算法研究

车辆路径问题模型及算法研究

车辆路径问题模型及算法研究车辆路径问题(Vehicle Routing Problem, VRP)是指对于一些地点的需求,如何安排一定数量的车辆在给定的时间内从仓库或中心出发,服务这些地点并返回仓库或中心,使得总运输成本最小的优化问题。

该问题是组合优化领域中的NP-hard问题,对于大规模问题,需要高效的求解算法,以实现实际应用的可行性。

本论文旨在探讨车辆路径问题模型及算法研究,介绍其应用领域和目前的研究现状,探究主要的求解策略和方法,分析其优缺点并比较其结果。

一、车辆路径问题的应用领域车辆路径问题有着广泛的应用领域,如物流配送、货物集中运输、公共交通车辆的调度等。

在工业中,车辆路径问题常被用来确定设备或原材料的运输路线,以最少的时间和成本满足客户的需求,实现物资顺畅流通和经济效益最大化。

在城市交通领域,车辆路径问题被应用于公共交通和出租车的调度,通过优化路线和时间,减少运营成本和不必要的耗时,提升效率和服务质量。

此外,车辆路径问题还被应用于邮政快递配送、应急救援等领域。

二、车辆路径问题建模车辆路径问题的建模一般分为节点表示和弧表示两种。

在节点表示中,将车辆路径问题抽象为有向无环图(DAG),其中每个节点表示一个客户点或者仓库,每个边表示从一个节点到另一个节点的连线,代表可行的路径集合。

在弧表示中,将车辆路径问题表示为一张图,其中边权表示该路径需要花费的时间或者距离,该图同样也可能存在环。

1.节点表示法以Capacitated Vehicle Routing Problem(CVRP)为例,将每个顾客的需求为Q[i],仓库的容量为C,每个顾客的坐标为(x[i],y[i]),仓库的坐标为(x[0], y[0]),顾客之间的欧氏距离为d[i,j]。

则模型可以表示为:\begin{aligned} min\left\{\sum_{(i,j) \in A}d_{i,j}X_{i,j} : \sum_{j = 1}^{n} X_{i,j} = 1, \sum_{i=1}^{n} X_{i,j} = 1\\ \sum_{j \in S} Q_{j} X_{i,j} <= C, X_{i,j} =\{0, 1\} \end{aligned}其中,X[i,j] = 1表示第i个点到第j个点有连线,0表示没有连线,S为与仓库联通的点集合。

车辆路径问题分解课件

车辆路径问题分解课件
盈利能力。
公共交通系统的线路规划
总结词
公共交通系统的线路规划是车辆路径问题在 城市交通管理中的重要应用,旨在优化公交 线路,提高公共交通的便利性和效率。
详细描述
在城市交通管理中,如何合理规划公交线路 、站点和发车时间,以满足市民出行需求和 提高公共交通效率,是车辆路径问题的一个 重要应用。通过对公交线路的优化规划,可 以减少乘客的出行时间和成本,提高公共交 通的便利性和效率,缓解城市交通拥堵问题
特点
VRP具有NP难解特性,随着问题规模的增大,求解变得极为复杂。它涉及到运 筹学、优化算法、计算机科学等多个领域,是物流配送、车辆调度等实际应用领 域的基础问题。
问题的起源和背景
起源
VRP的起源可以追溯到20世纪50年代,当时美国兰德公司(Rand Corporation)的研究人员为了解决美国空军 飞机调度问题而首次提出该问题。
详细描述
蚁群算法通过模拟蚂蚁的信息素传递过程来寻找最优解。在算法中,蚂蚁根据信息素浓度选择移动路 径,同时释放新的信息素,形成正反馈机制。随着迭代次数的增加,最优解逐渐显现。
其他优化算法
总结词
除了上述算法外,还有许多其他用于解决车 辆路径问题的优化算法,如粒子群算法、人 工神经网络等。
详细描述
这些算法在解决车辆路径问题时各有优缺点 ,可以根据问题的具体情况选择合适的算法 。例如,粒子群算法通过模拟鸟群、鱼群等 生物群体的行为来寻找最优解,人工神经网 络则通过模拟人脑神经元之间的连接和信号 传递来寻找最优解。
01
02
03
04
识别问题
明确车辆路径问题的定义 和约束条件,为分解提供 基础。
设计分解结构
根据选择的方法,设计合 适的分解结构,将问题划 分为若干个子问题或功能 模块。

专题-车辆路径问题

专题-车辆路径问题

Cij (i 1,2,..., n 1; j 1,2,..., n; i j, i 0表示配送中心)
四、车辆路径问题的数学模型
(3)目标
各车辆行走的路径使总运输费用最小。
(4)模型中符号定义
1. 2. 3.
所有收货点的货物量需求为 Ri 车辆的容量限制 Wi 决策变量
X ijk
(1)问题
从一个配送中心出发,向多个客户点送货,然 后在同一天内返回到该配送中心,要安排一个 满意的运行路线。
(2)已知条件
1. 2. 3.
配送中心拥有的车辆台数m及每辆车的载重量(吨位) 为Wi (i 1, 2,..., m) 需求点 P 数为n及每个点的需货量为 R (i 1, 2,..., n) i i 配送中心到各需求点的费用及各需求点之间的费用为
j 0
i由车辆 送货,则车辆 k (5) Ykj 或i 若客户点 0,1, 2,..., n; k k 1, 2,..., K ;
X ijk 或0i, j 0,1, 2,..., n; k 1, 2,..., K (6)
每辆车所运送的货物量 不超过其载重量 仅由一辆车送货
s.t. Ri Yki Wk k 1, 2,..., m; (1) 每个需求点由且
i 1 K
Yki 1i 1, 2,..., n;(2)
k 1 n
X ijk Ykj j 0,1, 2,..., n; k 1, 2,..., K ;(3)
i 0 n
若客户点j由车辆k送货,则车 辆k必由某点i到达点j
X ijk Yki i 0,1, 2,..., n; k 1, 2,..., K ;(4)
送完该点的货后必到达另一点j

车辆路径问题介绍课件

车辆路径问题介绍课件
特点
VRP是一个NP-hard问题,具有高度的复杂性和挑战性。其主要特点包括多个车 辆、多个客户、多种约束条件和优化目标,如最小化总行驶距离、最小化总配送 时间、最大化客户满意度等。
问题的起源与背景
起源
车辆路径问题最早由Dantzig和Ramser于1959年提出,旨在解决美国空军在 欧洲的补给问题。
详细描述
随着电商行业的迅猛发展,电商物流配送问题越来越受到关注。需要解决的问题包括仓 库选址、库存管理、配送路线优化等,目标是实现快速、准确、低成本的配送服务,提
高客户满意度。
05
车辆路径问题的未来研究方向
算法优化与改进
算法并行化
通过将算法拆分成多个子 任务,利用多核处理器或 分布式计算资源并行执行 ,提高算法的执行效率。
农业物资配送问题主要关注如何有效 地将农资产品从供应商运输到农户手 中,同时满足农时和节约成本的需求 。
详细描述
农业物资配送问题具有时限性强、需 求分散、路况复杂等特点。需要综合 考虑道路状况、运输成本、天气等因 素,制定合理的配送计划,确保农资 及时送达农户手中。
案例三:电商物流配送问题
总结词
电商物流配送问题主要关注如何快速、准确地将商品从仓库运输到消费者手中,提高客 户满意度。
混合智能算法
结合启发式算法和数学规 划方法,利用各自的优点 ,提高算法的求解质量和 效率。
算法优化策略
针对不同的问题特征和约 束条件,研究更加精细和 高效的算法优化策略。
多目标优化问题研究
多目标决策理论
研究多目标决策理论和方法,解 决实际车辆路径问题中存在的多
个相互冲突的目标。
多目标优化算法
研究适用于多目标优化的智能算法 ,如遗传算法、粒子群算法等,以 寻找各目标之间的最优解。

车辆路径问题详解课件

车辆路径问题详解课件

多目标优化
将多目标优化技术应用于车辆路径问 题,以实现运输成本、碳排放、时间 等多个目标的平衡优化。
车辆路径问题详 解课件
• 车辆路径问题概述 • 车辆路径问题的数学模型 • 车辆路径问题的优化算法 • 车辆路径问题的扩展问题 • 车辆路径问题的实际应用案例 • 总结与展望
01
CATALOGUE
车辆路径问题概述
定义与特点
• 定义:车辆路径问题(Vehicle Routing Problem,VRP)是一种组合优化问题,旨在确定一组最优路径,使得一定数量的 车辆能够在给定的时间窗口内从配送中心出发,完成一系列的客户配送任务,最终返回配送中心。
多目标车辆路径问题
总结词
同时优化多个目标函数,如运输成本、运输时间、车辆空驶时间等。
详细描述
多目标车辆路径问题是在车辆路径问题的基础上,考虑了多个目标函数的优化。这些目标函数可能包括运输成本、 运输时间、车辆空驶时间等。通过权衡这些目标函数的取舍,可以找到一个最优解,使得各个目标函数都能得到 一定程度的满足。
03
CATALOGUE
车辆路径问题的优化算法
精确算法
精确算法是一种求解车辆路径问题的 算法,它能够找到最优解,但计算复 杂度较高,需要消耗大量的时间和计 算资源。
常见的精确算法包括分支定界法、回 溯法等。这些算法通过穷举所有可能 的解来找到最优解,因此计算量较大, 只适用于小型问题。
启发式算法
• 多目标性:通常需要考虑最小化总运输成本、最小化车辆行驶总距离、最小化车辆空驶时间等多个目标。 • 约束条件:需满足车辆装载量、时间窗口、车辆数量等约束条件。 • 组合优化:需考虑多个路径和多个车辆之间的组合优化。
问题的起源和背景

车辆路径问题概念、模型与算法(五星推荐)

车辆路径问题概念、模型与算法(五星推荐)
车辆路径问题概念、模型及算法
1
精选ppt
1、定义
车辆路径问题(VRP)一般定义为:对一系列装货点和卸 货点,组织适当的行车线路,使车辆有序地通过它们, 在满足一定的约束条件(如货物需求量、发送量、交发 货时间、车辆容量限制、行驶里程限制、时间限制等) 下,达到一定问题的目标(如路程最短、费用最少、时 间尽量少、使用车辆数尽量少等)。
约束条件,求松弛问题的最优解,如果获得整数最优解,
即为所求,运算停止。如果所得到最优解不满足整数约
束条件,则在此非整数解的基础上增加新的约束条件重
分支过程得到的整数解中,目标函数值最优的一个叫 做整数规划目标函数值的“界”。分支过程中非整数的 线性规划的最优解,如果目标函数值劣于或等于这个 “界”,就停止继续分支。这个过程,叫做“定界”。
14
精选ppt
割平面法(Cutting Planes Approach)
用割平面法求解整数规划的基本思路是:先不考虑整数
(5) 相容性约束:引出相容性约束车辆路径问题 (VehicleRouting Problem with Compatibility Constraints, VRPCC)。
(6) 随机需求:引出随机需求车辆路径问题 (VehicleRouting Problem with Stochastic Demand, VRPSD)。
(3) 车型约束:引出多车型车辆路径问题 (Mixed/Heterogeneous Fleet Vehicle Routing Problem, MFVRP/ HFVRP)。
5
精ppt
(4) 时间窗约束:包括硬时间窗(Hard Time windows)和 软时间窗(Soft Time windows) 约束。引出带时间窗(包 括硬时间窗和软时间窗)的车辆路径问题(Vehicle Routing Problem withTime windows,VRPTW)。

车辆路径优化问题综述

车辆路径优化问题综述

车辆路径优化问题综述随着各行业的不断发展,物流运输的重要性也越来越凸显。

而车辆路径优化问题则是物流运输中的一个重要问题,它的解决程度直接关系到物流运输的效率、成本和质量。

本文将从车辆路径优化问题的定义、分类、模型及求解方法等方面进行综述。

一、车辆路径优化问题的定义车辆路径优化问题是指在给定的路网和配送需求下,通过合理的路径规划和调度,使得车辆的行驶距离、时间和成本等指标最小化的问题。

这个问题的本质是一个组合优化问题,需要在满足各种约束条件的前提下,寻找最优解。

二、车辆路径优化问题的分类根据车辆路径优化问题的特点和应用领域,可以将其分为多种不同的类型。

其中,常见的分类方式包括:1. 静态路径优化问题:在给定的路网和配送需求下,确定车辆的路径规划和调度,使得车辆的行驶距离、时间和成本等指标最小化。

这种问题的特点是路网和需求量都是固定的,不存在随时间变化的情况。

2. 动态路径优化问题:在给定的路网和配送需求下,根据实时的交通状况和需求变化,对车辆的路径规划和调度进行优化,使得车辆的行驶距离、时间和成本等指标最小化。

这种问题的特点是路网和需求量都是不断变化的,需要实时调整路径规划和调度。

3. 车辆路径优化问题的应用领域:物流配送、公共交通、城市物流、航空物流等。

三、车辆路径优化问题的模型为了解决车辆路径优化问题,需要建立相应的数学模型。

常用的模型包括:1. TSP模型:TSP(Traveling Salesman Problem,旅行商问题)是一类经典的路径优化问题,是最基本的车辆路径优化问题。

TSP模型的目标是确定一条经过所有需求点的最短路径,使得所有需求点都被访问且仅被访问一次。

2. VRP模型:VRP(Vehicle Routing Problem,车辆路径问题)是一种更为复杂的车辆路径优化问题,它考虑了多个车辆的调度和路径规划。

VRP模型的目标是确定多个车辆的路径规划和调度,使得所有需求点都被访问且仅被访问一次,同时最小化车辆行驶的距离、时间和成本等指标。

车辆路径问题

车辆路径问题

车辆路径问题(VRP)一般定义为:对一系列装货点和卸货点,组织适当的行车线路,使车辆有序地通过它们,在满足一定的约束条件(如货物需求量、发送量、交发货时间、车辆容量限制、行驶里程限制、时间限制等)下,达到一定问题的目标(如路程最短、费用最少、时间尽量少、使用车辆数尽量少等)。

目前有关VRP的研究已经可以表示(如图1)为:给定一个或多个中心点(中心仓库,central depot)、一个车辆集合和一个顾客集合,车辆和顾客各有自己的属性,每辆车都有容量,所装载货物不能超过它的容量。

起初车辆都在中心点,顾客在空间任意分布,车把货物从车库运送到每一个顾客(或从每个顾客处把货物运到车库),要求满足顾客的需求,车辆最后返回车库,每个顾客只能被服务一次,怎样才能使运输费用最小。

而顾客的需求或已知、或随机、或以时间规律变化。

图1 VRP示意图一、在VRP中,最常见的约束条件有:(1) 容量约束:任意车辆路径的总重量不能超过该车辆的能力负荷。

引出带容量约束的车辆路径问题(CapacitatedVehicle Routing Problem,CVRP)。

(2) 优先约束:引出优先约束车辆路径问题(VehicleRouting Problem with precedence Constraints,VRPPC)。

(3) 车型约束:引出多车型车辆路径问题(Mixed/Heterogeneous Fleet Vehicle Routing Problem,MFVRP/ HFVRP)。

(4) 时间窗约束:包括硬时间窗(Hard Time windows)和软时间窗(Soft Time windows) 约束。

引出带时间窗(包括硬时间窗和软时间窗)的车辆路径问题(V ehicle Routing Problem withTime windows,VRPTW)。

(5) 相容性约束:引出相容性约束车辆路径问题(VehicleRouting Problem with Compatibility Constraints,VRPCC)。

车辆路径问题专题—VehicleRoutingProblem[优质ppt]

车辆路径问题专题—VehicleRoutingProblem[优质ppt]

Capacitated VRP (CPRV)
• CVRP is a VRP in which a fixed fleet of delivery vehicles of uniform capacity must service known customer demands for a single commodity from a common depot at minimum transit cost. That is, CVRP is like VRP with the additional constraint that every vehicles must have uniform capacity of a single commodity.
Features
• Depots(number, location) • Vehicles(capacity, costs, time to leave, driver rest
period, type and number of vehicles, max time) • Customers(demands, hard or soft time windows,
单目标问题、多目标问题
• Capacitated VRP (CPRV) • Multiple Depot VRP (MDVRP) • Periodic VRP (PVRP) • Split Delivery VRP (SDVRP) • Stochastic VRP (SVRP) • VRP with Backhauls • VRP with Pick-Up and Delivering • VRP with Satellite Facilities • VRP with Time Windows (VRPTW)

车辆路径问题

车辆路径问题

车辆路径问题(VRP)一般定义为:对一系列装货点和卸货点,组织适当的行车线路,使车辆有序地通过它们,在满足一定的约束条件(如货物需求量、发送量、交发货时间、车辆容量限制、行驶里程限制、时间限制等)下,达到一定问题的目标(如路程最短、费用最少、时间尽量少、使用车辆数尽量少等)。

目前有关VRP的研究已经可以表示(如图1)为:给定一个或多个中心点(中心仓库,centraldepot)、一个车辆集合和一个顾客集合,车辆和顾客各有自己的属性,每辆车都有容量,所装载货物不能超过它的容量。

起初车辆都在中心点,顾客在空间任意分布,车把货物从车库运送到每一个顾客(或从每个顾客处把货物运到车库),要求满足顾客的需求,车辆最后返回车库,每个顾客只能被服务一次,怎样才能使运输费用最小。

而顾客的需求或已知、或随机、或以时间规律变化。

图1 VRP示意图一、在VRP中,最常见的约束条件有:(1)容量约束:任意车辆路径的总重量不能超过该车辆的能力负荷。

引出带容量约束的车辆路径问题(CapacitatedVehicle RoutingProblem,CVRP)。

(2)优先约束:引出优先约束车辆路径问题(VehicleRoutingProblem with precedence Constraints,VRPPC)。

(3)车型约束:引出多车型车辆路径问题(Mixed/HeterogeneousFleet Vehicle Routing Problem,MFVRP/ HFVRP)。

(4)时间窗约束:包括硬时间窗(Hard Time windows)和软时间窗(Soft Time windows)约束。

引出带时间窗(包括硬时间窗和软时间窗)的车辆路径问题(Vehicle Routing Problem withTime windows,VRPTW)。

(5)相容性约束:引出相容性约束车辆路径问题(VehicleRouting Problem with Compatibility Constraints,VRPCC)。

《车辆路径问题》课件

《车辆路径问题》课件

满载率和里程利用率是衡 量运输效率的重要指标。 通过提高满载率和里程利 用率,可以降低单位里程 的成本,实现成本优化。
组合运输是指将多个需求 点或货物组合在一起进行 运输,以提高满载率和里 程利用率。组合运输可以 降低单位里程的成本,实 现成本优化。
不同的运输方式和运输路 线会有不同的成本。在成 本优化中需要考虑选择合 适的运输方式和路线,以 降低总成本。
背景
随着物流配送行业的快速发展,VRP已成为提高物流效率、降低运输成本的关 键问题。
问题的起源和重要性
起源
VRP最早由Dantzig和Ramser于 1959年提出,是运输问题的一个 变种。
重要性
VRP在实际生活中广泛应用于快 递配送、货物运输、公共交通路 线规划等领域,对于提高物流效 率和客户满意度具有重要意义。
05
车辆路径问题的实际应 用案例
物流配送
物流配送是车辆路径问题最常见的应 用场景之一。
例如,在电商物流中,车辆路径的优 化可以减少配送时间,提高客户满意 度。
通过优化车辆路径,降低运输成本, 提高配送效率,满足客户对时效性的 要求。
公共交通规划
公共交通规划中,车辆路径问题 用于优化公交线路、出租,快速找到问题 的近似最优解。
近似算法
设计具有多项式时间复杂度的近 似算法,在可接受的时间内获得
近似最优解。
THANKS FOR WATCHING
感谢您的观看
《车辆路径问题》ppt 课件
目 录
• 车辆路径问题简介 • 车辆路径问题的基本模型 • 车辆路径问题的求解方法 • 车辆路径问题的优化策略 • 车辆路径问题的实际应用案例 • 未来研究方向和展望
01
车辆路径问题简介

vrp文献综述

vrp文献综述

vrp文献综述VRP(Vehicle Routing Problem,车辆路径问题)是指在给定一组客户需求点和一组配送车辆的情况下,如何合理地安排车辆的路径,使得满足客户需求的同时,最小化总运输成本或最大化配送效率的问题。

VRP是一类经典的组合优化问题,旨在通过合理的车辆路径规划,提高物流配送效率,降低运输成本,并在实际应用中发挥重要作用。

VRP问题最早由Dantzig和Ramser于1959年提出,随后得到了广泛的研究和应用。

根据问题的不同特点和约束条件,VRP可以分为多种变体,如基本VRP、带时间窗口的VRP、多车型VRP等。

不同的变体涉及到不同的约束条件和目标函数,因此需要采用不同的算法和策略来解决。

在VRP研究中,目前主要存在以下几个方面的关注点和挑战:1. 路径规划算法:针对VRP问题,需要设计高效的路径规划算法来寻找最优解或近似最优解。

常用的算法包括精确算法、启发式算法和元启发式算法。

精确算法如分支定界法和动态规划法能够找到最优解,但计算复杂度较高。

启发式算法如贪婪算法、模拟退火算法和遗传算法等能够在可接受的时间内找到较好的解,但不能保证最优解。

元启发式算法是基于多个启发式算法的组合,通过综合各种算法的优点来提高解的质量。

2. 约束条件的考虑:VRP问题通常需要考虑多个约束条件,如车辆容量限制、时间窗口约束、车辆行驶时间限制等。

这些约束条件会增加问题的复杂性,需要在算法设计中加以考虑。

例如,可以采用切割算法来满足车辆容量限制,采用时间窗口扩展算法来满足时间窗口约束。

3. 多目标优化:在实际应用中,VRP问题通常涉及到多个冲突的目标函数,如最小化总运输成本和最大化配送效率。

多目标优化算法可以帮助找到一组权衡解,使得各目标函数之间达到一种平衡。

4. 实时VRP问题:传统的VRP问题通常是在静态环境下进行求解,即给定需求点和车辆信息后,求解一次最优路径。

然而,在实际应用中,需求点和车辆信息可能会发生变化,因此需要考虑实时VRP 问题。

车辆路径问题详解

车辆路径问题详解

2018/10/12
6
数学解析法
最佳解法又称“精确解法”、数学解析法, 就是标准的”最佳化法”,将车辆配送问题, 通过严谨的数学模型或计算机数据结构规划, 利用数学法则或数据结构搜寻的方式,求得 问题的解1。
2018/10/12
7
数学解析法
常见的有:
分枝界限法(Branch and Bound)、 整数规划法(Integer Programming)、 动态规划法(Dynamic Programming)。
2018/10/12
该运行线路计划的成本最低,为14600美元。
35
(三)起讫点重合的问题
• 物流管理人员经常会遇到起讫点相同的路径规划问题。 • 在企业自己拥有运输工具时,该问题是相当普遍的。我们 熟悉的例子有:从某仓库送货到零售点然后返回的路线 (从中央配送中心送货到食品店或药店);从零售店到客 户本地配送的路线设计(商店送货上门);校车、送报车、 垃圾收集车和送餐车等的路线设计。 • 这类路径问题是起讫点不同的问题的扩展形式,但是由于 要求车辆必须返回起点行程才能结束,这样问题的难度就 提高了。 • 我们的目标是找出途径点的顺序,使其满足必须经过所有 点且总出行时间或总距离最短的要求。
安排车辆运行时间
将所有运输路线首尾相连顺序排列,使车辆的 空闲时间最短,就此决定车辆数,并排出配车计划。
2018/10/12
29
最优运输计划安排表
1号线 9号线 5号线 2号线
10号线 4号线 8号线 7号线 3号线
6号线
2018/10/12
30
单一路线选择
• 运输线路的选择影响到运输设备和人员的 利用,正确地确定合理的运输线路可以缩 短运输时间,降低运输成本,因此运输线 路的的选择是运输决策的一个重要领域。 • 运输线路选择问题尽管种类繁多,但我们 可以简单划分为单一路线选择和多起讫点 路线选择两种类型。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第14章车辆路径问题14.1 物流配送车辆优化调度概述14.1.1 概述车辆路径问题:对一系列装货点和(或)卸货点,组织适当的行车路线,使车辆有序地通过它们,在满足一定的约束条件(如货物需求量、发送量、交发货时间、车辆容量限制、行驶里程限制、时间限制等)下,达到一定的目标(如路程最短、费用最少、时间尽量少,使用车辆数尽量少等)。

又称运输调度问题,包括两部分:一是行车路线的设计;二是出行时间表的安排。

最基本的车辆路径问题,是客户需求位置已知的情况下,确定车辆在各个客户之间的行程路线,使得运输路线最短或运输成本最低,通过研究车辆路径问题,可以合理使用运输工具,优化运输路线,降低企业物流成本。

14.1.2 路径特性(1)地址特性:车场数目、需求类型、作业要求(2)车辆特性:车辆数量、载重量约束、可运载品种约束、运行路线约束、工作时间约束(3)问题的其他特性:道路网络可能是有向的,或者是无向的;单项作业是否可以分割完成;每一辆车是否可以承担多条线路,是否完成作业后必须回到出发点。

(4)目标函数可能是总成本极小化,或者极小化最大作业成本,或者最大化准时作业。

14.1.3 常见的基本问题(1)旅行商问题在一个配送中心p有一辆容量为q的货车,现有m个需求点的货运任务需要完成,已知需求点i的货运量为gi(i=1,2,…,m),且Σgi≤q,求在满足各收点需求的约束条件下,总发送距离最短的货车送货路线。

在运筹学中,旅行商问题是这样解释的:有一个推销员,要到n个城市去推销商品,当各个城市间的距离已知,并规定每个城市只访问一次,问按什么样的顺序访问,其距离最短。

(2)带容量约束的车辆路线问题在一个配送中心p,有一个车队Qj(j=1,2,…,n),这个车队每辆车容量均为q,且有足够的运力保证任务的完成,需求点i的货运量gi满足:nq≥Σgi≥q。

这样一来,配送中心需要派出若干的车辆来完成配送任务,每个车可能要为多个需求点服务然后返回配送中心。

该问题包括两个要解决的小问题:一是哪些用户要被分配到一条路线上;二是每条路线上的用户的绕行次序。

可以将这个问题看作是一个广义分配问题和多个旅行商问题的结合。

(3)带时间窗的车辆路线问题由于客户会提出配送的时间要求,因此在上述的问题基础上,要增加时间约束。

假设一组有n个需求点要求送货,并表示为1,…,i,…,n,需求点i有一个固定的完成时间Ti,一个服务时间Si,在任何两个需求点i和j之间的运输时间为DH(i,j),距离用dij表示。

这个问题首先在无圈有向网络中寻找i到j,并经过所有节点的路径的最小条数(用最大流或最小费用最大流算法来解),它的解为完成所有需求点运输任务所必需的最小车辆数,然后固定车辆数或求解有关的最小费用流问题,这个解保证最小车队规模的同时,使路线运行费用最小。

(4)收集和分发问题这是对以上问题的推广,假设有多个配送中心,或是允许车辆从需求点发车,问题就升级为有几个封闭循环线路的旅行商问题的组合,这是一个组合优化问题。

车辆调度的目标是以最少的车辆通过最经济的线路完成所有的运输任务。

(5)多车型车辆路线问题(6)优先约束车辆路线问题(7)相容性约束车辆路线问题(8)随机需求车辆路线问题14.1.4 车辆路径问题的求解方法(1)数学解析法如动态规划法、整数规划法、树状搜寻法等。

对于配送点的问题,可以求得一个最优的解,但若求解的节点数增加,其结果相对变差,与实际配送的情况相差较大。

(2)人机互动法提供使用者人机互动的方式,结合使用者过去的经验,调整该模型的参数,以作为配送路线规划决策的依据。

(3)先分组再排路线法先将所有的配送点分成若干的群组,再分别对各个群组进行路线规划,如扫描法。

(4)先排路线再分组法先进行路线的规划,再进行分割,如巨集分割法。

又可以分为单巨集分割法和多巨集分割法。

单巨集分割法:取所有配送点进行旅行商问题的求解,建立一个自原点出发,经过所有结点,最后回到原点的巡回路线,然后以最短路径解法对此路线进行分割,求得所需结果。

多巨集分割法:与单巨集分割法相似,最大的差异在于建立巡回路线时并不包含原点,因此在切割路线时,可以有较多的切割方式。

(5)节省或插入法节省法:以三角不等式为基础,一部车只以一个配送点为起始点,如此若有N个配送点就有N条路线,计算节省量,可将较短的路线与原始路线交换,缩短配送距离。

插入法:将节省法中的节省值观念应用于循序路线构建上,并以距离物流中心最远的配送点作为起始点,再以最临近的一点作为下一个插入点的配送点,求其节省值,根据取值最大者决定插入的位置并进行插入,重复选取与插入的步骤,直到所有配送点均被服务到为止。

(6)改善或交换法以其它方法产生的解为初始解,再利用节点或节线交换的方式,对求出的路线解进行改善,达到更好的目标函数值。

(7)数学规划近似法此法针对放松后的数据模式进行最优化处理。

如可以将车辆路径问题,转换成两个相关的子问题组成的数学规划,其中一个为一般化配送点的指派问题,另一个则为旅行商问题,并提出一些准则用来产生路径种子点,再利用节省值产生一个指派问题的目标函数,然后先解指派问题,再针对每辆车的旅行商问题求解。

14.2 旅行商问题旅行商问题属于数学NP难题,所谓NP难题,是完全多项式非确定问题。

有些计算问题是确定性的,比如加减乘除之类,你只要按照公式推导,按部就班一步步来,就可以得到结果。

但是,有些问题是无法按部就班直接地计算出来。

比如,找大质数的问题。

有没有一个公式,你一套公式,就可以一步步推算出来,下一个质数应该是多少呢?这样的公式是没有的。

再比如,大的合数分解质因数的问题,也没有一个公式,把合数代进去,就直接可以算出,它的因子各自是多少。

这种问题的答案,是无法直接计算得到的,只能通过间接的“猜算”来得到结果。

这也就是非确定性问题。

而这些问题的通常有个算法,它不能直接告诉你答案是什么,但可以告诉你,某个可能的结果是正确的答案还是错误的。

这个可以告诉你“猜算”的答案正确与否的算法,假如可以在多项式时间内算出来,就叫做多项式非确定性问题。

而如果这个问题的所有可能答案,都是可以在多项式时间内进行正确与否的验算的话,就叫完全多项式非确定问题。

完全多项式非确定性问题可以用穷举法得到答案,一个个检验下去,最终便能得到结果。

但是这样算法的复杂程度,是指数关系,因此计算的时间随问题的复杂程度成指数的增长,很快便变得不可计算了。

旅行商问题有很多种解法,有分枝定界解法、整数规划的解法、动态规划的解法、遗传算法的解法等,随着城市数量的增加,其精确解越难找出,只能找出近似解。

这里介绍一种简单的算法,称为最小增量法。

设有N个城市,每个城市之间的距离已知,要从某一个城市出发,再回到该城市,其余每个城市都仅到一次,选择经过城市的顺序,使总路程最短。

最小增量法计算的步骤:(1)选择离出发点最近的点作为初始回路,设这两个点为(i,j)(2)在已知回路上(i,j)中插入一个城市点k,计算增加的路程数,即:δ(3)比较所有的点的δk值,取最小的δk值所对应的点作为新插入点。

(4)重复前两步,直到所有的点都被插入为止,所得的回路即为要求的最优解。

8出发,再回到城市8,找一个最短的回路。

(2)将剩余的点1、2、3、4、5、6六个点分别插入到7→8和8→7之间,算出每个δk值,计算结果见表1。

(4)将剩余的点2、3、4、5、6分别插入到7→1,1→8,8→7,1→7,7→8,8→1之间;点1、2、4、5、k 值,见表3。

4。

总路程为:318 8 51出发回到城市1的最优旅行方案14.3 扫描法当配送点较多,需要多个运输车辆进行配送时,可以用比较简单的扫描法找出最优解的近似解。

扫描法由两个阶段组成:第一个阶段是将停留点的货运量分配给送货车,第二阶段是安排停留点在路线上的顺序。

其具体步骤为:(1)将配送中心和配送点的位置及需要量,按实际的位置画在图上。

(2)从规定的位置或习惯上从正北方向开始,用直尺按顺时针或逆时针方向转动直尺,直到直尺交到一个配送点,此时判断累积的装货量是不是超过配送车辆的载重,如果是,则将最后停留的点排除后将路线定下来。

再从这个被排除的点开始继续扫描,从而开始一条新的路线。

一直到所有的点都被扫描到为止。

(3)对每条运行路线安排停留顺序,以求运行距离最小化。

例3:某公司从其所属的配送中心用货车给各个客户点送货,全天的送货量如图所示,送货数量按件计算,货车每次可运载10000件,完成一次运行路线一般需要一天时间。

该公司需要确定:需要多少辆货车才能完成所有的配送工作?每条路线上有哪些客户点?货车途径有关客户点的顺序。

14.4 单中心非满载送货车辆路径问题的启发式算法一、禁忌搜寻法简介主要内容是使用移步的方式,运用具有弹性的记忆结构,以迭代的方式从目前的解出发开展对邻近解的搜寻,而其记忆结构可分为长期记忆结构和短期记忆结构两种。

记忆的目的在于使寻求解的过程能越过局部最优解而找到更好的解。

(1)初始解(2)移步:在所有合法的邻近解里,选最优解,作为下一步找邻近解的基础。

(3)禁忌名单:为了避免重复前面已选取过的解,将最近几次移步的解记录在禁忌名单中。

(4)免禁准则:如果被禁忌的解可以使目标函数得以改善,则可以被释放。

(5)停止准则:整个计算过程结束的条件。

二、问题特点(1)物流配送中心的位置为已知并且唯一(2)需求点的位置及需求量为已知(3)需求点与需求点之间的路线及距离为已知且确定(4)货车经过需求点只有卸货而无装货,配送完毕后空车返回配送中心 (5)物流中心只有一种货车(6)目标函数为:使货车配送路线的总成本最小,或距离最短。

V —需求点集合 O —配送中心 W —货车的容量 K —货车集合 qi —需求点i 的需求量 cij —需求点i 到j 点的距离 yik=1如果配送点i 由货车k 服务,0其它情形yik=1如果配送点i 由货车k 服务,0其它情形数学模型目标函数:约束条件:三、求解过程1、构造初始解可以用扫描法作为基础,先进行分组,分组后求最优顺序。

由于扫描的起点为不同,因此可以得到很多不同的路线构造结果。

因此,当一组初始解完成最优化求解之后,要继续建立另一组新的初始解,并进行另一次最优化求解,直到完成所有可能的初始解为止。

2、搜索移步(1)建立配送点数据表(2)设定参数:禁忌名单长度,最大重复搜寻次数(3)目标函数与移步例4:下表为各个配送点的距离,求旅行商问题。

解:(1)交换相邻两个配送点,计算回路的距离增量,距离增量为:δ=d13+d24-d12-d34距离增量可写为:δ=dik+dhj-dij-dhk5→6→1。

此时回路总长为40。

再进行交换,列出交换结果见表所示:∑∑∑∈∈∈K k V i Vj ijijk c x min K k W y q Vi ik i ∈∀≤∑∈,K k V i y x K k V j y x V i y i k y ik V j ijk jk Vi ijk K k ik K k ik ∈∈∀=∈∈∀=∈===∑∑∑∑∈∈∈∈,,,,,10, 34 5 6 7 58 3 11 2 6 3 46 67 54 3 121 25用扫描法求出的分组结果,由于不同的线路之间不可以交换节点,所以所得的解可能并不是最优的解,为了得到更优的解,应当允许不同的线路之间交换节点。

相关文档
最新文档