概率论-小结与习题课剖析
1概率ACH1-习题课
C
(1)最小号码为5,即从6、7、8、9、10里选两个, 所求概率为:
C C
2 5 3 10
1 12
(2)最大号码为5,即从1,2,3,4里选两个,
2 所求概率为: 4 3 10
1 C = 20 C
8、从一批由1100件正品,400件次品组成的产品中
任取200件.求: (1)恰有90件次品的概率;(2)至少有2件次品的概率。
解: P( AB) P( A) P( AB ) =0.7-0.5=0.2
P ( AB) P( AB) P( B A B ) P ( A B ) P( A) P ( B ) P( AB )
0.2 0.25. 0.7 0.6 0.5
16、根据以往资料表明,某一3口之家,患某种传染病的概率
贝叶斯公式
P ( Bi A) P ( Bi | A) P ( A) P ( A | Bi ) P ( Bi )
P( A | B )P( B )
j 1 j j
n
i 1,2,, n
事件的独立性
P ( A1 An ) P ( A1 ) P ( An ) P ( A1 An ) 1 P ( A1 An ) 1 P ( A1 An ) 1 P ( A1 ) P ( An )
配成一双”(事件A)的概率是多少?
4 解: 样本空间总数:C10 210
1
3
5
7
9
事件A:4只恰成1双或恰成2双.
2 4只恰成2双的取法: C5 10
2 4 2 61 8 10 1 1 2 1 1 ) 4只恰成1双的取法:C5 C4 C2C2 120 或C(C8 - C4 120 5
概率论与数理统计 -课后习题及答案解析(下)
3. x1 , x 2 , L , x 2 n 相互独立且都服从参数为 1 的指数分布, X i = min{x i , x 2 n -i +1 }
(i = 1,2,L , n) .
解: (1) P{ X i = 1, X j = 1} =
50 ´ 49 50 50 ¹ ´ = P{ X i = 1} × P{ X j = 1} , 100 ´ 99 100 100
2 2 ü ì ü ì ï ï1 æ X1 X 2 ö ï ïæ X 1 X 2 ö ÷ ç ÷ ³ = + ³ P íç + 79 . 72 P 39 . 86 ý í ý ÷ ç ÷ çX X3 ø 2 X X3 ø ï ï ï ï þ î è 3 þ îè 3 2
= P{F (1,1) ³ 39.86} = 0.10 。
(2) 由 Dç ç
æ 15S 2 2 è s
30s 4 2 2 ö 15 2 2 2 ÷ D S = = 2 ´ 15 = 30 , ( ) 30 , 得 D ( S ) = = s 。 4 ÷ s 15 15 2 ø
内
E ( X ) = E ( X ) = n , D( X ) =
D ( X ) 2n n = = , E ( S 2 ) = D ( X ) = 2n 。 10 10 5
仅
ìS2 ü £ 2.041ý ,其中 S 2 是样本方差; 2 îs þ
2.求 D ( S 2 ) .
(n - 1) S 2 15S 2 2 ~ c ( n 1 ) , 得 ~ c 2 (15) , 2 2 s s
ì15S 2 ü ìS2 ü P í 2 £ 2.041ý = P í 2 £ 15 ´ 2.041ý = P{c 2 (15) £ 30.615} îs þ î s þ = 1 - P{c 2 (15) > 30.615} = 1 - 0.01 = 0.99 。
概率论与数理统计重点总结及例题解析
概率论与数理统计重点总结及例题解析一:全概率公式和贝叶斯公式例:某厂由甲、乙、丙三个车间生产同一种产品,它们的产量之比为3:2:1,各车间产品的不合格率依次为8%,9%, 12% 。
现从该厂产品中任意抽取一件,求:(1)取到不合格产品的概率;(2)若取到的是不合格品,求它是由甲车间生产的概率。
(同步45页三、1)解:设A1,A2,A3分别表示产品由甲、乙、丙车间生产,B表示产品不合格,则A1,A2,A3为一个完备事件组。
P(A1)=1/2, P(A2)=1/3, P(A3)=1/6,P(B| A1)=0。
08,P(B| A2)=0。
09,P(B| A3)=0。
12.由全概率公式P(B) = P(A1)P(B| A1)+ P(A2)P(B| A2)+ P(A3)P(B| A3) = 0.09由贝叶斯公式:P(A1| B)=P(A1B)/P(B) = 4/9练习:市场上出售的某种商品由三个厂家同时供货,其供应量第一厂家为第二厂家的2倍,第二、三两厂家相等,而且第一、二、三厂家的次品率依次为2%,2%,4%。
若在市场上随机购买一件商品为次品,问该件商品是第一厂家生产的概率是多少?(同步49页三、1)【0.4 】练习:设两箱内装有同种零件,第一箱装50件,有10件一等品,第二箱装30件,有18件一等品,先从两箱中任挑一箱,再从此箱中前后不放回地任取2个零件,求:(同步29页三、5)(1)取出的零件是一等品的概率;(2)在先取的是一等品的条件下,后取的仍是一等品的条件概率. 解:设事件i A ={从第i 箱取的零件},i B ={第i 次取的零件是一等品} (1)P (1B )=P(1A )P (1B |1A )+P (2A )P(1B |2A )=52301821501021=+(2)P (1B 2B )=194.02121230218250210=+C C C C ,则P (2B |1B )=)()(121B P B B P = 0.485二、连续型随机变量的综合题 例:设随机变量X 的概率密度函数为⎩⎨⎧<<=others x x x f 020)(λ 求:(1)常数λ;(2)EX ;(3)P{1〈X<3};(4)X 的分布函数F (x)(同步47页三、2)解:(1)由⎰⎰==∞+∞-201)(xdx dx x f λ得到λ=1/2 (2)3421)(22===⎰⎰∞+∞-dx x dx x xf EX (3)⎰⎰===<<31214321)(}31{xdx dx x f x P (4)当x<0时,⎰∞-==xdt x F 00)(当0≤x<2时,⎰⎰⎰∞-∞-=+==xxx tdt dx dt t f x F 00241210)()(当x ≥2时,F(x )=1故201()02412x F x x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩练习:已知随机变量X 的密度函数为⎩⎨⎧≤≤+=others x b ax x f 010)(且E (X)=7/12。
公共课必考概率论单项知识点精讲及习题解析
公共课必考概率论单项知识点精讲及习题解析随着社会科技的飞速发展,人们对于数字化技术所带来的便利逐渐熟悉并接受,然而,这一便利的背后是大量的数学理论支撑,而概率论则是其中一个重要的分支。
在2023年的公共课考试中,概率论将成为必考内容之一。
本文将对概率论的单项知识点进行深入解析,同时提供相应的习题解析,以期对广大考生有所帮助。
一、概率基本概念概率是指某个事件发生的可能性。
在日常生活中,人们经常会涉及到概率的概念,比如抽奖、投资等。
而在概率论中,我们通常将一个问题转化成一个数学模型,通过数学方法进行分析和求解。
1、样本空间和事件样本空间是指一个试验中所有可能出现的结果的集合。
例如,一次掷骰子的样本空间为{1, 2, 3, 4, 5, 6}。
事件是指样本空间中的一个或多个元素所组成的集合。
例如,掷骰子出现的点数为偶数,这个事件可以表示为{2, 4, 6}。
2、事件的概率事件的概率是指该事件发生的可能性大小。
通常用P(A)表示事件A的概率,计算公式为:P(A) = 事件A发生的次数 / 总试验次数即,事件A发生的次数除以总试验次数,其中总试验次数指的是在相同的条件下,试验重复进行的次数。
二、概率的性质1、非负性对于任何事件A来说,其概率P(A)都是非负数,即P(A)≥0。
2、规范性对于样本空间Ω中的所有事件A,有0≤P(A)≤1。
3、完备性对于样本空间Ω来说,必有P(Ω)=1。
4、可减性对于任何事件A、B来说,有P(A∪B) = P(A)+P(B)-P(A∩B)。
其中,A∪B表示事件A和事件B的并集,即事件A或B发生的情况;A∩B表示事件A和事件B的交集,即事件A和B同时发生的情况。
三、条件概率条件概率是指在已知事件B发生的条件下,事件A发生的概率。
通常用P(A|B)表示事件A在事件B发生的条件下发生的概率,计算公式为:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A和B同时发生的概率,P(B)表示事件B 发生的概率。
概率论知识点整理及习题答案
概率论知识点整理及习题答案概率论知识点整理及习题答案第一章随机事件与概率1.对立事件与互不相容事件有何联系与区别?它们的联系与区别是:(1)两事件对立(互逆),必定互不相容(互斥),但互不相容未必对立。
(2)互不相容的概念适用于多个事件,但对立的概念仅适用于两个事件。
(3)两个事件互不相容只表示两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生。
而两个事件对立则表明它们有且仅有一个发生,即肯定了至少有一个发生。
特别地,=A、AU= 、AI=φ。
2.两事件相互独立与两事件互不相容有何联系与区别?两事件相互独立与两事件互不相容没有必然的联系。
我们所说的两个事件A、B相互独立,其实质是事件A是否发生不影响事件B发生的概率。
而说两个事件A、B互不相容,则是指事件A发生必然导致事件B不发生,或事件B发生必然导致事件A不发生,即AB=φ,这就是说事件A是否发生对事件B发生的概率有影响。
3.随机事件与样本空间、样本点有何联系?所谓样本空间是指:随机试验的所有基本事件组成的集合,常用来记。
其中基本事件也称为样本点。
而随机事件可看作是有样本空间中具有某种特性的样本点组成的集合。
通常称这类事件为复合事件;只有一个样本点组成的集合称为基本事件。
在每次试验中,一定发生的事件叫做必然事件,记作。
而一定不发生的事件叫做不可能事件,记作φ。
为了以后讨论问题方便,通常将必然事件和不可能事件看成是特殊的随机事件。
这是由于事件的性质随着试验条件的变化而变化,即:无论是必然事件、随机事件还是不可能事件,都是相对“一定条件”而言的。
条件发生变化,事件的性质也发生变化。
例如:抛掷两颗骰子,“出现的点数之和为3点”及“出现的点数之和大于33点”,则是不可能事件了;而“出现的点数之和大于3点”则是必然事件了。
而样本空间中的样本点是由试验目的所确定的。
例如:(1)={3,4,5,L,18}。
(2)将一颗骰子连续抛掷三次,观察六点出现的次数,其样本空间为 ={0,1,2,3}。
概率论课后习题解答
一、习题详解:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω;(2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:}{12,11,4,3,22 =Ω;(3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{,2,1,03=Ω; (4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:()}{;51,4≤≤=Ωj i j i(5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离;解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:()}{l y x y x y x =+=Ω,0,0,8 ;1.2 设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件:(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃;(3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃;(5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃;(6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃; (7) A;B;C 中至多有两个发生;ABC ;(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ;注意:此类题目答案一般不唯一,有不同的表示方式。
概率论习题讲解
x e
x!
(x =0,1,2, …,)
N→∞, H (n, M , N ) B(n, p). p M ,
N
n →∞, B(n, p) P() np
1
§2.5 随 机 变 量 旳 分 布 函 数
一.定义
F(x) P(X x)
二.分布函数 旳性质:
(1) 0 F ( x) 1, ( x )
若 不是整数,则当 m [ ]时,P( X m)最大。
13
9. 一本书中每页印刷错误旳个数X 服从泊松分布P0.2,
写出X 旳概率分布,并求一页上印刷错误不多于1个旳概率。
解 X旳概率分布为:PX k 0.2k e0.2
k!
查表求
PX 1 PX 0 PX 1 0.8187 0.1638 0.9825
6设随机变量X 服从二项分布 Bn, p 当x 为何值时,概率
PX x取得最大值。
解
PX
=
x
=
C
x n
pxqn-x
PX x PX x 1
1
n 1p
xq
x
当 x n 1p 时, PX x PX x 1;
当 x n 1p 时, PX x PX x 1;
当 x n 1p 时, PX x PX x 1;
FX
x
x dx f x, ydy
f x, ydy
FY y F , y
y dy f x, ydx
fY y
d dy
FY
y
f x, ydx
§2.11 随机变量旳独立性
一. 离散型随机变量旳独立性 p xi , y j pX xi pY y j
二. 连续随机变量旳独立性
概率论-第2章-小结[7页]
3
小结
01 知识点归纳 02 教学要求和学习建议
2 教学要求和学习建议
(1) 理解随机变量及其分布函数的概念,掌握其性质。 (2) 理解离散型随机变量及其分布律的概念和性质;熟练掌握二项
分布、泊松分布等常用分布及其应用。 (3) 理解连续型随机变量及其概率密度的概念和性质;熟练掌握正
概率论与数理统计(慕课版)
第2章 随机变量及其分布
本章小结
主讲教师 |
1Hale Waihona Puke 本章小结01 知识点归纳 02 教学要求和学习建议
1 知识点归纳
随机变量及其分布
分布函数 离散型随机变量
连续型随机变量
分布律 常用分布 概率密度 常用分布
二项分布 泊松分布 几何分布 超几何分布
正态分布 指数分布 均匀分布
离散型随机变量函数的分布 随机变量函数的分布
工具——掌握 使用——熟练 转换——灵活
离散型随机变量函数的分布 随机变量函数的分布
连续型随机变量函数的分布
6
概率论与数理统计(慕课版)
学海无涯,祝你成功!
主讲教师 |
态分布、指数分布和均匀分布及其应用。 (4) 会利用分布律、概率密度及分布函数计算有关事件的概率。 (5) 会求简单的随机变量函数的概率分布。
5
2 教学要求和学习建议
随机变量及其分布
分布函数 离散型随机变量
连续型随机变量
分布律 常用分布 概率密度 常用分布
二项分布 泊松分布 几何分布 超几何分布
正态分布 指数分布 均匀分布
概率论与数理统计例题和知识点总结
概率论与数理统计例题和知识点总结概率论与数理统计是一门研究随机现象统计规律的学科,它在自然科学、工程技术、经济管理、社会科学等众多领域都有着广泛的应用。
下面将通过一些例题来帮助大家理解和掌握这门学科的重要知识点。
一、随机事件与概率随机事件是指在一定条件下,可能出现也可能不出现的事件。
概率则是衡量随机事件发生可能性大小的数值。
例 1:抛掷一枚均匀的硬币,求正面朝上的概率。
解:因为硬币只有正反两面,且质地均匀,所以正面朝上的概率为1/2。
知识点:古典概型中,事件 A 的概率 P(A) = A 包含的基本事件数/基本事件总数。
例 2:一个袋子里有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。
解:袋子里一共有 8 个球,其中 5 个是红球,所以取出红球的概率为 5/8。
知识点:概率的性质:0 ≤ P(A) ≤ 1;P(Ω) = 1,P(∅)= 0。
二、条件概率与乘法公式条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
例 3:已知在某疾病的检测中,阳性结果中真正患病的概率为 09,而总体人群中患病的概率为 001。
如果一个人的检测结果为阳性,求他真正患病的概率。
解:设 A 表示患病,B 表示检测结果为阳性。
则 P(A) = 001,P(B|A) = 09,P(B|A')= 1 P(B|A) = 01。
根据全概率公式:P(B) =P(A)×P(B|A) + P(A')×P(B|A')= 001×09 +099×01 ≈ 0108。
再根据贝叶斯公式:P(A|B) = P(A)×P(B|A) / P(B) = 001×09 /0108 ≈ 0083。
知识点:条件概率公式:P(B|A) = P(AB) / P(A);乘法公式:P(AB) = P(A)×P(B|A)。
三、独立性如果两个事件的发生与否互不影响,那么称它们是相互独立的事件。
概率论与数理统计第一章小结
1第一章随机事件及其概率一、几种概率1、统计概率2、古典概率NM A P =)(3、几何概率试验的总的几何度量所占的几何度量随机事件)(A A P =4、条件概率)()()|(B P AB P B A P =5、贝努利概率),1,0( )(n m q p C m P m n m mn n ==−2二、事件的关系及其概率)()( .1B P A P B A ≤⊂112. ()()()() ()i i i i AB P A B P A P B P A P A ϕ∞∞====+=∑∑∪(概率的可加性)3. ()()1AB A B P A B ϕ==Ω+=∪)()()(B P A P AB P =⇔4、事件A 与B 是相互独立3三、概率的公式1、加法公式)()()()(AB P B P A P B A P −+=∪2、乘法公式)|()()|()()(B A P B P A B P A P AB P ==3、全概率公式∑==ni i i B A P B P A P 1)|()()(4、贝叶斯公式∑==n i ii i i B A P B P B A P B P 1)|()()|()()()()|(A P AB P A B P i i =4从一副不含大小王的扑克牌中任取一张,记A ={抽到K }, B ={抽到的牌是黑色的}可见, P (AB )=P (A )P (B )P (A )=4/52=1/13,说明事件A 、B 独立.问事件A 、B 是否独立?解:P (AB )=2/52=1/26P (B )=26/52=1/2)()()(B P A P AB P =⇔一、事件A 与B 是相互独立5请问:如图的两个事件是独立的吗?即: 若A 、B 互斥,且P (A )>0, P (B )>0,则A 与B 不独立.反之,若A 与B 独立,且P (A )>0,P (B )>0,则A 、B 不互斥.而P (A ) ≠0, P (B ) ≠0故A 、B 不独立P (AB )=0P (AB ) ≠P (A )P (B )即A B 二、独立与互斥的关系6Ω问:能否在样本空间中找两个事件,它们既相互独立又互斥?这两个事件就是A 和φP ( A) =P ( )P (A)=0φφ与A 独立且互斥φA φφ=不难发现,与任何事件都独立.φΩ前面我们看到独立与互斥的区别和联系.设A、B为互斥事件,且P(A)>0,P(B)>0,下面四个结论中,正确的是:1. P(B|A)>02. P(A|B)=P(A)3. P(A|B)=04. P(AB)=P(A)P(B)设A、B为独立事件,且P(A)>0,P(B)>0,下面四个结论中,正确的是:1. P(B|A)>02. P(A|B)=P(A)3. P(A|B)=04. P(AB)=P(A)P(B)7三、多个事件的独立性将两事件独立的定义推广到三个事件:对于三个事件A、B、C,若P(AB)= P(A)P(B) 四个等式同时P(AC)= P(A)P(C) 成立,则称事件P(BC)= P(B)P(C) A、B、C相互P(ABC)= P(A)P(B)P(C) 独立.89推广到n 个事件的独立性定义,可类似写出:包含等式总数为:1201)11(32−−=⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−+=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n n n n ≤≤≤设A 1,A 2, …,A n 是n 个事件,如果对任意k(1<k n ),任意1i 1<i 2< …<i k n ,具有等式则称A 1,A 2, …,A n 为相互独立的事件.)()()()(2121k k i i i i i i A P A P A P A A A P =10例:同时抛掷两个均匀的正四面体,每一面标有号码1,2,3,4。
概率论与数理统计课后习题集及答案详解
概率论与数理统计课后习题集及解答第一章 随机事件和概率一. 填空题1. 设A, B, C 为三个事件, 且=-=⋃⋃=⋃)(,97.0)(,9.0)(C AB P C B A P B A P 则____. 解.)(1)(1)()()()(ABC P AB P ABC P AB P ABC AB P C AB P +--=-=-=-=)(C B A P ⋃⋃-)(B A P ⋃= 0.97-0.9 = 0.072. 设10件产品中有4件不合格品, 从中任取两件, 已知所取两件产品中有一件是不合格品, 另一件也是不合格品的概率为_______.解. }{合格品二件产品中有一件是不=A , }{二件都是不合格品=B511)()()()()|(2102621024=-===c c c c A P B P A P AB P A B P 注意: }{合格品二件产品中有一件是不=}{不合格品二件产品中恰有一件是 +}{二件都是不合格品 所以B AB B A =⊃,; }{二件都是合格品=A 3. 随机地向半圆a x ax y (202-<<为正常数)内掷一点, 点落在半圆内任何区域的概率与区域的面积成正比, 则原点和该点的连线与x 轴的夹角小于4π的概率为______. 解. 假设落点(X, Y)为二维随机变量, D 为半圆. 则121)),((2==∈a kD Y X P π, k 为比例系数. 所以22ak π= 假设D 1 = {D 中落点和原点连线与x 轴夹角小于4π的区域}πππ121)2141(2)),((22211+=+=⨯=∈a a a D k D Y X P 的面积. 4. 设随机事件A, B 及其和事件A ⋃B 的概率分别是0.4, 0.3, 0.6, 若B 表示B 的对立事件, 则积事件B A 的概率)(B A P = ______.解. =+-+=)()()()(B A P B P A P AB P 0.4 + 0.3-0.6 = 0.13.01.04.0)()()(=-=-=AB P A P B A P .5. 某市有50%住户订日报, 有65%住户订晚报, 有85%住户至少订这两种报纸中的一种, 则同时订这两种报纸的住户的百分比是________. 解. 假设A = {订日报}, B = {订晚报}, C = A + B. 由已知 P(A) = 0.5, P(B) = 0.65, P(C) = 0.85.所以 P(AB) = P(A) + P(B)-P(A + B) = 0.5 + 0.65-0.85 = 0.3.6. 三台机器相互独立运转, 设第一, 第二, 第三台机器不发生故障的概率依次为0.9, 0.8, 0.7, 则这三台机器中至少有一台发生故障的概率________. 解. 设A i 事件表示第i 台机器运转不发生故障(i = 1, 2, 3). 则 P(A 1) = 0.9, P(A 2) = 0.8, P(A 3) = 0.7,)()()(1)(1)()(321321321321A P A P A P A A A P A A A P A A A P -=-==++ =1-0.9×0.8×0.7=0.496.7. 电路由元件A 与两个并联元件B, C 串联而成, 若A, B, C 损坏与否相互独立, 且它们损坏的概率依次为0.3, 0.2, 0.1, 则电路断路的概率是________. 解. 假设事件A, B, C 表示元件A, B, C 完好.P(A) = 0.7, P(B) = 0.8, P(C) = 0.9. 事件线路完好 = A(B + C) = AB + AC.P(A(B + C) ) = P(AB + AC) = P(AB)+P(AC)-P(ABC) = P(A)P(B) + P(A)P(C)-P(A)P(B)P(C) = 0.7×0.8 +0.7×0.9-0.7×0.8×0.9 = 0.686. 所以 P(电路断路) = 1-0.686 = 0.314.8. 甲乙两人投篮, 命中率分别为0.7, 0.6, 每人投三次, 则甲比乙进球多的概率______. 解. 设X 表示甲进球数, Y 表示乙进球数.P(甲比乙进球多) = P(X = 3, Y = 2) +P(X = 3, Y = 1) + P(X = 3, Y = 0) + P(X = 2, Y = 1) +P(X = 2, Y = 0) + P(X = 1, Y = 0) = P(X = 3)P(Y = 2) +P(X = 3)P(Y = 1) + P(X = 3)P(Y = 0) + P(X = 2)P(Y = 1) +P(X = 2)P(Y = 0) + P(X = 1)P(Y = 0)=+⋅⋅⋅21336.04.07.0c +⋅⋅⋅6.04.07.02233c 334.07.0⋅++⋅⋅⋅⋅⋅2132134.06.07.03.0c c +⋅⋅⋅32134.07.03.0c 32134.03.07.0⋅⋅⋅c= 0.148176 + 0.098784 +0.021952 + 0.127008 + 0.028224 + 0.012096 = 0.43624.9. 三人独立破译一密码, 他们能单独译出的概率分别为41,31,51, 则此密码被译出的概率_____.解. 设A, B, C 表示事件甲, 乙, 丙单独译出密码., 则41)(,31)(,51)(===C P B P A P . P(A + B + C) = P(A) + P(B) + P(C)-P(AB)-P(AC)-P(BC) + P(ABC)= P(A) + P(B) + P(C)-P(A)P(B)-P(A)P(C)-P(B)P(C) + P(A)P(B)P(C) =53413151413141513151413151=⋅⋅+⋅-⋅-⋅-++.二.单项选择题.1. 以A 表示“甲种产品畅销, 乙种产品滞销”, 则对立事件A 为(A) “甲种产品滞销, 乙种产品畅销” (B) “甲、乙产品均畅销”(C) “甲种产品滞销” (D) “甲产品滞销或乙产品畅销” 解. (D)是答案.2. 设A, B, C 是三个事件, 与事件A 互斥的事件是(A) C A B A + (B) )(C B A + (C) ABC (D) C B A ++ 解. ==++C B A A )C B A A(φ, 所以(D)是答案. 3. 设A, B 是任意二个事件, 则(A) P(A ⋃B)P(AB)≥P(A)P(B) (B) P(A ⋃B)P(AB)≤P(A)P(B) (C) P(A -B)P(B -A)≤P(A)P(B)-P(AB) (D)41)()(≥--A B P B A P . 解. P(A + B)P(AB)-P(A)P(B) = (P(A) + P(B)-P(AB))P(AB)-P(A)P(B) =-P(A)(P(B)-P(AB)) + P(AB)(P(B)-P(AB) =-(P(B)-P(AB))(P(A)-P(AB)) =-P(B -A)P(A -B) ≤ 0 所以(B)是答案 .4. 事件A 与B 相互独立的充要条件为(A) A + B = Ω (B) P(AB) = P(A)P(B) (C) AB = φ (D) P(A + B) = P(A) + P(B) 解. (B)是答案.5. 设A, B 为二个事件, 且P(AB) = 0, 则(A) A, B 互斥 (B) AB 是不可能事件 (C) AB 未必是不可能事件 (D) P(A) = 0或P(B) = 0. 解. 概率理论中 P(A) = 0不能推出A 为不可能事件(证明超出大纲要求). 所以(C)是答案. 6. 设A, B 为任意二个事件, 且A ⊂B, P(B) > 0, 则下列选项必然成立的是 (A) P(A) < P(A|B) (B) P(A) ≤ P(A|B) (C) P(A) > P(A|B) (C) P(A) ≥ P(A|B) 解. )()()()()()|(A P B P A P B P AB P B A P ≥==(当B = Ω时等式成立). (B)是答案.7. 已知 0 < P(B) < 1, 且P[(A 1 + A 2)|B] = P(A 1|B) + P(A 2|B), 则下列选项必然成立的是 (A))B |P(A )B |P(A ]B |)A P[(A 2121+=+ (B) P(A 1B +A 2B) = P(A 1B) +P(A 2B)(C) P(A 1 +A 2) = P(A 1|B) +P(A 2|B)(D) P(B) = P(A 1)P(B|A 1) + P(A 2)P(B|A 2)解. 由P[(A 1 + A 2)|B] = P(A 1|B) + P(A 2|B)得到)()()()()(])[(2121B P B A P B P B A P B P B A A P +=+, 所以P(A 1B +A 2B) = P(A 1B) +P(A 2B). (B)是答案.三. 计算题1. 某厂生产的产品次品率为0.05, 每100个产品为一批, 抽查产品质量时, 在每批中任取一半来检查, 如果发现次品不多于1个, 则这批产品可以认为合格的, 求一批产品被认为是合格的概率.解. P(该批产品合格) = P(全部正品) + P(恰有1个次品)=2794.050100154995*********=+c cc c c2. 书架上按任意次序摆着15本教科书, 其中有5本是数学书, 从中随机地抽取3本, 至少有一本是数学书的概率.解. 假设A={至少有一本数学书}. A ={没有数学书}P(A ) =9124315310=c c , P(A) = 1-P(A ) = 91673. 全年级100名学生中有男生80名, 来自北京的20名中有男生12名. 免修英语的40名学生中有男生32名, 求出下列概率: i. 碰到男生情况不是北京男生的概率;ii. 碰到北京来的学生情况下是一名男生的概率; iii. 碰到北京男生的概率;iv. 碰到非北京学生情况下是一名女生的概率; v. 碰到免修英语的男生的概率.解. 学生情况: 男生 女生 北京 12 8 免修英语 32 8 总数 80 20i. P(不是北京|男生) =20178068=ii. P(男生|北京学生) =532012=iii. P(北京男生) =10012iv. P(女生|非北京学生) =8012v. P(免修英语男生) =100324. 袋中有12个球, 其中9个是新的, 第一次比赛时从中取3个, 比赛后任放回袋中, 第二次比赛再从袋中任取3个球, 求: i. 第二次取出的球都是新球的概率;ii. 又已知第二次取出的球都是新球, 第一次取到的都是新球的概率.解. i. 设B i 表示第一次比赛抽到i 个新球(i = 0, 1, 2, 3). A 表示第二次比赛都是新球. 于是312339)(c c c B P i i i -=, 31239)|(c c B A P i i -=)()(1)()|()()(3603393713293823193933092312323123933930c c c c c c c c c c c c c c c c c B A P B P A P i i i i i i i +++===∑∑=--=146.0484007056)201843533656398411()220(12==⨯⨯+⨯⨯+⨯⨯+⨯⨯=ii. 215484007056)220(20184)()()|()|(2333=⨯⨯==A P B P B A P A B P5. 设甲、乙两袋, 甲袋中有n 个白球, m 个红球, 乙袋中有N 个白球, M 个红球, 今从甲袋中任取一只放入乙袋, 再从乙袋中任取一球, 问取到白球的概率. 解. 球的情况: 白球 红球 甲袋 n m 乙袋 N M假设 A = {先从甲袋中任取一球为白球} B = {先从甲袋中任取一球为红球} C = {再从乙袋中任取一球为白球} P(C) = P(C|A)P(A) + P(C|B)P(B)nm mM N N m n n M N N +⋅++++⋅+++=111 ))(1()1(n m M N NmN n +++++=第二章 随机变量及其分布一. 填空题1. 设随机变量X ~B(2, p), Y ~B(3, p), 若P(X ≥ 1) =95, 则P(Y ≥ 1) = _________. 解. 94951)1(1)0(=-=≥-==X P X P 94)1(2=-p , 31=p 2719321)0(1)1(3=⎪⎭⎫⎝⎛-==-=≥Y P Y P2. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为cc c c 162,85,43,21, 则c = ______. 解. 2,16321628543211==+++=c cc c c c 3. 用随机变量X 的分布函数F(x)表示下述概率:P(X ≤ a) = ________. P(X = a) = ________.P(X > a) = ________. P(x 1 < X ≤ x 2) = ________.解. P(X ≤ a) = F(a) P(X = a) = P(X ≤ a)-P(X < a) = F(a)-F(a -0) P(X > a) = 1-F(a) P(x 1 < X ≤ x 2) = F(x 2)-F(x 1)4. 设k 在(0, 5)上服从均匀分布, 则02442=+++k kx x 有实根的概率为_____.解. k 的分布密度为⎪⎩⎪⎨⎧=051)(k f 其它50≤≤kP{02442=+++k kx x 有实根} = P{03216162≥--k k } = P{k ≤-1或k ≥ 2} =535152=⎰dk 5. 已知2}{,}{kbk Y P k a k X P =-===(k = 1, 2, 3), X 与Y 独立, 则a = ____, b = ____, 联合概率分布_____, Z = X + Y 的概率分布为_____. 解. 116,132==++a a a a . 4936,194==++b b b b(X, Y)的联合分布为ab = 216α, 539=α α249)3()1()3,1()2(==-===-===-=abY P X P Y X P Z P α66)2,1()3,2()1(=-==+-===-=Y X P Y X P Z Pα251)1,1()2,2()3,3()0(=-==+-==+-====Y X P Y X P Y X P Z P α126)2,3()1,2()1(=-==+-====Y X P Y X P Z Pα723)1()3()1,3()2(==-===-====abY P X P Y X P Z P6. 已知(X, Y)联合密度为⎩⎨⎧+=0)sin(),(y x c y x ϕ 其它4,0π≤≤y x , 则c = ______, Y 的边缘概率密度=)(y Y ϕ______.解.12,1)sin(4/04/0+==+⎰⎰c dxdy y x c ππ所以⎩⎨⎧++=0)sin()12(),(y x y x ϕ 其它4,0π≤≤y x当 40π≤≤y 时))4cos()(cos 12()sin()12(),()(4y y dx y x dx y x y Y +-+=++==⎰⎰∞+∞-πϕϕπ所以⎪⎩⎪⎨⎧+-+=0))4cos()(cos 12()(y y y Y πϕ 其它40π≤≤y7. 设平面区域D 由曲线2,1,01e x x y xy ====及直线围成, 二维随机变量(X, Y)在D 上服从均匀分布, 则(X, Y)关于X 的边缘密度在x = 2处的值为_______. 解. D 的面积 =2121=⎰e dx x. 所以二维随机变量(X, Y)的密度为: ⎪⎩⎪⎨⎧=021),(y x ϕ 其它D y x ∈),(下面求X 的边沿密度:当x < 1或x > e 2时 0)(=x X ϕ 当1 ≤ x ≤ e 2时 ⎰⎰===∞+∞-x X x dy dy y x x 102121),()(ϕϕ, 所以41)2(=X ϕ. 8. 若X 1, X 2, …, X n 是正态总体N(μ, σ2)的一组简单随机样本, 则)(121n X X X nX +++=服从______. 解. 独立正态分布随机变量的线性函数服从正态分布.μ==⎪⎭⎫ ⎝⎛∑∑==n i i n i i X E n X n E 11)(11, nX D nX n D ni in i i 2121)(11σ==⎪⎭⎫ ⎝⎛∑∑==所以 ),(~2nN X σμ9. 如果(X, Y)的联合分布用下列表格给出,且X 与Y 相互独立, 则α = ______, β = _______.解.213161)1(,18)3(,9)2(,31)2(=+==+==+==++==Y P Y P Y P X P βαβα 132)3()2()1(=++==+=+=βαY P Y P Y P⎪⎪⎩⎪⎪⎨⎧+++=======+++=======)181)(31()3()2()3,2()91)(31()2()2()2,2(ββαβαβααY P X P Y X P Y P X P Y X P两式相除得βαβα=++18191, 解得 βα2=, 92,91==αβ.10. 设(X, Y)的联合分布律为3122 0 122 则 i. Z = X + Y 的分布律 ______. ii. V = X -Y 的分布律______.iii. U= X 2 + Y -2的分布律_______. 解.二. 单项选择题1. 如下四个函数哪个是随机变量X 的分布函数(A)⎪⎪⎩⎪⎪⎨⎧=221)(x F 0022≥<≤--<x x x , (B) ⎪⎩⎪⎨⎧=1sin 0)(x x F ππ≥<≤<x x x 00(C) ⎪⎩⎪⎨⎧=1sin 0)(x x F 2/2/00ππ≥<≤<x x x , (D) ⎪⎪⎩⎪⎪⎨⎧+=1310)(x x F 212100≥<≤<x x x解. (A)不满足F(+∞) = 1, 排除(A); (B)不满足单增, 排除(B); (D)不满足F(1/2 + 0) = F(1/2), 排除(D); (C)是答案. 2. ),4,2,0(!/)( ===-k k ec k X P kλλ是随机变量X 的概率分布, 则λ, c 一定满足(A) λ > 0 (B) c > 0 (C) c λ > 0 (D) c > 0, 且 λ > 0 解. 因为),4,2,0(!/)( ===-k k ec k X P kλλ, 所以c > 0. 而k 为偶数, 所以λ可以为负.所以(B)是答案.3. X ~N(1, 1), 概率密度为ϕ(x), 则(A)5.0)0()0(=≥=≤X P X p (B)),(),()(+∞-∞∈-=x x x ϕϕ (C) 5.0)1()1(=≥=≤X P X p (D) ),(),(1)(+∞-∞∈--=x x F x F 解. 因为E(X) = μ = 1, 所以5.0)1()1(=≥=≤X P X p . (C)是答案.4. X, Y 相互独立, 且都服从区间[0, 1]上的均匀分布, 则服从区间或区域上的均匀分布的随机变量是(A) (X, Y) (B) X + Y (C) X 2 (D) X -Y 解. X ~⎩⎨⎧=01)(x ϕ其它10≤≤x , Y ~⎩⎨⎧=01)(y ϕ其它10≤≤y . 所以(X, Y)~⎩⎨⎧=01),(y x ϕ其它1,0≤≤y x .所以(A)是答案.5. 设函数⎪⎪⎩⎪⎪⎨⎧=120)(xx F 1100>≤<≤x x x 则(A) F(x)是随机变量X 的分布函数. (B) 不是分布函数.(C) 离散型分布函数. (D)连续型分布函数.解. 因为不满足F(1 + 0) = F(1), 所以F(x)不是分布函数, (B)是答案.6. 设X, Y 是相互独立的两个随机变量, 它们的分布函数为)(),(y F x F Y X , 则Z = max(X, Y)的分布函数是(A) )(z F Z = max{)(),(z F z F Y X } (B) )(z F Z = max{|)(||,)(|z F z F Y X } (C) )(z F Z = )()(z F z F Y X (D) 都不是解. }{}),{m ax ()()(z Y z X P z Y X P z Z P z F Z ≤≤=≤=≤=且 )()()()(z F z F z Y P z X P Y X =≤≤因为独立. (C)是答案.7. 设X, Y 是相互独立的两个随机变量, 其分布函数分别为)(),(y F x F Y X , 则Z = min(X, Y)的分布函数是(A) )(z F Z = )(z F X (B) )(z F Z = )(z F Y(C) )(z F Z = min{)(),(z F z F Y X } (D) )(z F Z = 1-[1-)(z F X ][1-)(z F Y ] 解. }{1}),{m in(1)(1)()(z Y z X P z Y X P z Z P z Z P z F Z >>-=>-=>-=≤=且 )](1)][(1[1)](1)][(1[1z F z F z Y P z X P Y X ---=≤-≤--因为独立 (D)是答案.8. 设X 的密度函数为)(x ϕ, 而,)1(1)(2x x +=πϕ 则Y = 2X 的概率密度是 (A))41(12y +π (B) )4(22y +π (C) )1(12y +π (D)y arctan 1π解. )2()2(}2{)()(y F y X P y X P y Y P y F X Y =≤=≤=≤= )4(2)2(112121)2()2()]([)(22''y y y y F y F y X X Y Y +=⎪⎭⎫ ⎝⎛+⋅=⋅=⎪⎭⎫ ⎝⎛==ππϕϕ (B)是答案.9. 设随机变量(X, Y)的联合分布函数为⎩⎨⎧=+-0),()(y x e y x ϕ 其它0,0>>y x , 则2YX Z +=的分布密度是(A) ⎪⎩⎪⎨⎧=+-021)()(y x Z e Z ϕ 其它0,0>>y x (B) ⎪⎩⎪⎨⎧=+-0)(2y x Z e z ϕ 其它0,0>>y x(C) ⎩⎨⎧=-04)(2z Z ze Z ϕ 00≤>z z (D) ⎪⎩⎪⎨⎧=-021)(zZ eZ ϕ 00≤>z z解. 2YX Z +=是一维随机变量, 密度函数是一元函数, 排除(A), (B). 21210=⎰∞+-dz e z , 所以(D)不是答案. (C)是答案.注: 排除法做单项选择题是经常使用而且很有效的方法. 该题也可直接计算Z 的密度: 当z < 0时0)(=z F Z当z ≥ 0时⎰⎰≤+=≤+=≤+=≤=zy x Z dxdy y x z Y X P z YX P z Z P z F 2),()2()2()()(ϕ =12222020+--=⎥⎦⎤⎢⎣⎡-----⎰⎰z z z xz y x e ze dx dy e e ==)()('z F z ZZ ϕ⎩⎨⎧-042z ze 00≤>z z , (C)是答案.10. 设两个相互独立的随机变量X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 则下列结论正确的是(A) P{X + Y ≤ 0} = 1/2 (B) P{X + Y ≤ 1} = 1/2 (C) P{X -Y ≤ 0} = 1/2 (D) P{X -Y ≤ 1} = 1/2解. 因为X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 且X 和 Y 相互独立, 所以 X + Y ~ N(1, 2), X -Y ~ N(-1, 2) 于是P{X + Y ≤ 1} = 1/2, (B)是答案.11. 设随机变量X 服从指数分布, 则Y = min{X, 2}的分布函数是(A) 是连续函数 (B) 至少有两个间断点 (C) 是阶梯函数 (D) 恰好有一个间断点 解. 分布函数:))2,(m in(1))2,(m in()()(y X P y X P y Y P y F Y >-=≤=≤= 当y ≥ 2时101))2,(m in(1)(=-=>-=y X P y F Y 当0 ≤ y < 2时)2,(1))2,(m in(1)(y y X y X P y F Y >>-=>-= ye y X P y X P λ--=≤=>-=1)()(1当y < 0时)2,(1))2,(m in(1)(y y X y X P y F Y >>-=>-= 0)()(1=≤=>-=y X P y X P于是 ⎪⎩⎪⎨⎧-=-011)(yY e y F λ 0202<<≤≥y y y 只有y = 2一个间断点, (D)是答案.三. 计算题1. 某射手有5发子弹, 射击一次的命中率为0.9, 如果他命中目标就停止射击, 不命中就一直到用完5发子弹, 求所用子弹数X 的分布密度. 解. 假设X 表示所用子弹数. X = 1, 2, 3, 4, 5.P(X = i) = P(前i -1次不中, 第i 次命中) = 9.0)1.0(1⋅-i , i = 1, 2, 3, 4.当i = 5时, 只要前四次不中, 无论第五次中与不中, 都要结束射击(因为只有五发子弹). 所以 P(X = 5) = 4)1.0(. 于是分布律为2. 设一批产品中有10件正品, 3件次品, 现一件一件地随机取出, 分别求出在下列各情形中直到取得正品为止所需次数X 的分布密度.i. 每次取出的产品不放回; ii. 每次取出的产品经检验后放回, 再抽取; iii. 每次取出一件产品后总以一件正品放回, 再抽取.解. 假设A i 表示第i 次取出正品(i = 1, 2, 3, …) i.1310)()1(1===A P X P 1331210)()|()()2(11212⋅====A P A A P A A P X P 1331221110)()|()|()()3(11223321⋅⋅====A P A A P A A P A A A P X P 1331221111)()|()|()|()4(1122334⋅⋅⋅===A P A A P A A P A A P X Pii. 每次抽取后将原产品放回1310133)()()()()(11111---⎪⎭⎫⎝⎛====k k k k k A P A P A P A A A p k X P , (k = 1, 2, …)iii.13)()1(1===A P X P 1331311)()|()()2(11212⋅====A P A A P A A P X P1331321312)()|()|()()3(112123321⋅⋅====A P A A P A A A P A A A P X P 1331321311)()|()|()|()4(1121231234⋅⋅⋅===A P A A P A A A P A A A A P X P3. 随机变量X 的密度为⎪⎩⎪⎨⎧-=01)(2x cx ϕ 其它1||<x , 求: i. 常数c; ii. X 落在)21,21(-内的概率. 解. πππϕ1,22|arcsin 21)(110112====-==⎰⎰-∞+∞-c c c x c dx xc dx x3162|arcsin 211))2/1,2/1((2/102/12/12=⋅==-=-∈⎰-ππππx x dx X P 4. 随机变量X 分布密度为i. 2102)(x x -⎪⎩⎪⎨⎧=πϕ 其它1||<x , ii. ⎪⎩⎪⎨⎧-=02)(x x x ϕ 其它2110≤≤<≤x x求i., ii 的分布函数F(x).解. i. 当x ≤ 1时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当-1< x < 1时 ⎰⎰∞--++-=-==x x x x xdt t dt t x F 21arcsin 1112)()(212πππϕ 当x ≥ 1时 ⎰⎰∞--=-==x dt t dt t x F 112)()(112πϕ所以 ⎪⎪⎩⎪⎪⎨⎧++-=121arcsin 110)(2x x xx F ππ 1111≥<<--≤x x xii. 当x < 0时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当0 ≤ x < 1时 ⎰⎰∞-===x x x tdt dt t x F 2)()(2ϕ当1 ≤ x < 2时 122)2()()(2110-+-=-+==⎰⎰⎰∞-x x dt t tdt dt t x F x x ϕ当2 ≤ x 时 1)2()()(2110⎰⎰⎰∞-=-+==x dt t tdt dt t x F ϕ所以 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-=112220)(22x x x x F 221100≥<≤<≤<x x x x5. 设测量从某地到某一目标的距离时带有的随机误差X 具有分布密度函数⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞试求: i. 测量误差的绝对值不超过30的概率;ii. 接连独立测量三次, 至少有一次误差的绝对值不超过30的概率.解. 因为⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞, 所以X ~N(20, 402). i. {}⎭⎬⎫⎩⎨⎧<-<-=<<-=<25.0402025.13030)30|(|X P X P X P )25.1()25.0(-Φ-Φ=1)25.1()25.0()25.1(1()25.0(-Φ+Φ=Φ--Φ= 18944.05987.0-+== 0.4931.(其中Φ(x)为N(0, 1)的分布函数)ii. P(至少有一次误差的绝对值不超过30) = 1-P(三次误差的绝对值都超过30) =88.012.01)4931.0(13=-=- 6. 设电子元件的寿命X 具有密度为⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x问在150小时内, i. 三只元件中没有一只损坏的概率是多少? ii. 三只电子元件全损坏的概率是多少? iii. 只有一个电子元件损坏的概率是多少?解. X 的密度⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x . 所以31100)150(1501002==<⎰dx x X P . 令p = P(X ≥ 150) = 1-31= 32.i. P(150小时内三只元件没有一只损坏) =2783=p ii. P(150小时内三只元件全部损坏) =271)1(3=-piii. P(150小时内三只元件只有一只损坏) =943231213=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛c 7. 对圆片直径进行测量, 其值在[5, 6]上服从均匀分布, 求圆片面积的概率分布.解. 直径D 的分布密度为⎩⎨⎧=01)(d ϕ 其它65≤≤d假设42D X π=, X 的分布函数为F(x).)()()(2x D P x X P x F ≤=≤=π当x ≤ 0时, F(x) = 0 当x > 0时⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 当时即425,54ππ<<x xF(x) = 0 当时即πππ925,645≤≤≤≤x x⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 =54145-=⎰ππxdt x当 x > 9π时 1)()(65===⎰⎰∞-dt dt t x F x ϕ所以 ⎪⎪⎩⎪⎪⎨⎧-=1540)(πxx F ππππ99425425>≤≤<x x x 密度⎪⎩⎪⎨⎧==01)(')(x x F x πϕ 其它ππ9425≤≤x8. 已知X 服从参数 p = 0.6的0-1分布在X = 0, X = 1下, 关于Y 的条件分布分别为表1、表2所示表1 表2Y 1 2 3 Y 1 2 3 P(Y|X = 0)41 21 41 P(Y|X = 1) 21 61 31 求(X, Y)的联合概率分布, 以及在Y ≠ 1时, 关于X 的条件分布.解. X 的分布律为(X, Y)3.05321)1()1|1()1,1(=⋅=======X P X Y P Y X P 1.05361)1()1|2()2,1(=⋅=======X P X Y P Y X P2.05331)1()1|3()3,1(=⋅=======X P X Y P Y X P1.05241)0()0|1()1,0(=⋅=======X P X Y P Y X P2.05221)0()0|2()2,0(=⋅=======X P X Y P Y X P1.05241)0()0|3()3,0(=⋅=======X P X Y P Y X P所以Y 的分布律为5.06.03.0)1()1,0()1|0(==≠≠==≠=Y P Y X P Y X P5.06.03.0)1()1,1()1|1(==≠≠==≠=Y P Y X P Y X P所以9. 设随机变量X 与Y 相互独立, 并在区间[0, 9]上服从均匀分布, 求随机变量YXZ =的分布密度.解. X ~⎪⎩⎪⎨⎧=091)(x X ϕ 其它90≤≤x , Y ~⎪⎩⎪⎨⎧=091)(x Y ϕ 其它90≤≤y因为X, Y 相互独立, 所以(X, Y)联合密度为(X, Y)~⎪⎩⎪⎨⎧=0811),(y x ϕ 其它9,0≤≤y x , )()()(z X Y P z Z P z F Z ≤=≤=当 z ≤ 0时0)(=z F Z 当 0 < z < 1时D 1z z dxdy Xz Y P z X Y P z Z P z F D Z 219921811811)()()()(1=⋅⋅==≤=≤=≤=⎰⎰ 当z ≥ 1时⎰⎰=≤=≤=≤=2811)()()()(D Z dxdy Xz Y P z X Y P z Z P z F zz 211)992181(811-=⋅-⋅=所以 ⎪⎪⎩⎪⎪⎨⎧==2'21210)()(zz F z Z Z ϕ 1100≥<<≤z z z 10. 设(X, Y)的密度为⎩⎨⎧--=0)1(24),(y x y y x ϕ 其它1,0,0<+>>y x y x 求: i.)21|(),|(),(=x y x y x X ϕϕϕ, ii. )21|(),|(),(=y x y x y Y ϕϕϕ 解. i.⎰∞+∞-=dy y x x X ),()(ϕϕ当x ≤ 0 或 x ≥ 1时0),()(==⎰∞+∞-dy y x x X ϕϕ当0 < x < 1时310)1(4)1(24),()(x dy y x y dy y x x x X -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(4)(3x x X ϕ 其它10<<x所以 ⎪⎩⎪⎨⎧---==0)1()1(6)(),()|(3x y x y x y x x y X ϕϕϕ 其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(24)21|(y y x y ϕ 其它210<<yii.⎰∞+∞-=dx y x y Y ),()(ϕϕ当y ≤ 0 或 y ≥ 1时0),()(==⎰∞+∞-dx y x y Y ϕϕ当0 < y < 1时210)1(12)1(24),()(y y dx y x y dx y x y y Y -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(12)(2y y y Y ϕ 其它10<<y所以 ⎪⎩⎪⎨⎧---==0)1()1(2)(),()|(2y y x y y x y x Y ϕϕϕ其它1,0,0<+>>y x y x所以 ⎩⎨⎧-==0)21(4)21|(x y x ϕ 其它210<<x第三章 随机变量的数字特征一. 填空题1. 设随机变量X 与Y 相互独立, D(X) = 2, D(Y) = 4, D(2X -Y) = _______. 解. D(2X -Y) = 4D(X) + D(Y) = 122. 已知随机变量X ~N(-3, 1), Y ~N(2, 1 ), 且X 与Y 相互独立, Z = X -2Y + 7, 则Z ~____. 解. 因为Z = X -2Y + 7, 所以Z 服从正态分布. E(Z) = E(X)-2E(Y) + 7 = 0. D(Z) = D(X -2Y + 7) = D(X) + 4D(Y) = 1+4 = 5. 所以Z ~N(0, 5)3. 投掷n 枚骰子, 则出现点数之和的数学期望______. 解. 假设X i 表示第i 颗骰子的点数(i = 1, 2, …, n). 则 E(X i ) = 27616612611=⋅++⋅+⋅(i = 1, 2, …, n) 又设∑==ni i X X 1, 则27)()()(11nX E X E X E ni i ni i ===∑∑== 4. 设离散型随机变量X 的取值是在两次独立试验中事件A 发生的次数, 如果在这些试验中事件发生的概率相同, 并且已知E(X) = 0.9, 则D(X) = ______. 解. ),2(~p B X , 所以E(X) = 0.9 = 2p. p = 0.45, q = 0.55 D(X) = 2pq = 2×0.45×0.55 = 0.495.5. 设随机变量X 在区间[-1, 2]上服从均匀分布, 随机变量⎪⎩⎪⎨⎧-=101Y 000<=>X X X , 则方差D(Y) = _______.解. X ~⎪⎩⎪⎨⎧=031)(x ϕ 其它21≤≤-xY因为 33)0()1(20==>==⎰dx X P Y P 0)0()0(====X P Y P3131)0()1(01==<=-=⎰-dx X P Y P于是 313132)(=-=Y E , 13132)(2=+=Y E , 98)]([)()(22=-=Y E Y E Y D6. 若随机变量X 1, X 2, X 3相互独立, 且服从相同的两点分布⎪⎪⎭⎫ ⎝⎛2.08.010, 则∑==31i i X X 服从_______分布, E(X) = _______, D(X) = ________.解. X 服从B(3, 0.2). 所以E(X) = 3p = 3×0.2= 0.6, D(X) = 3pq = 3×0.2×0.8 = 0.487. 设X 和Y 是两个相互独立的随机变量, 且X ~N(0, 1), Y 在[-1, 1]上服从均匀分布, 则),cov(Y X = _______.解. 因为X 和Y 是两个相互独立的随机变量, 所以),cov(Y X = 0.8. 设X 和Y 是两个相互独立的随机变量, 其概率密度分别为:⎩⎨⎧=02)(x x ϕ 其它10≤≤x , ⎩⎨⎧=--0)()5(y e y ϕ 其它5>y , 则E(XY) = ________. 解. 322)()(1=⋅==⎰⎰∞+∞-xdx x dx x x X E ϕ 6)()(5)5(=⋅==⎰⎰∞+--∞+∞-dy e y dy y y Y E y ϕ因为X 和Y 是两个相互独立的随机变量, 所以E(XY) = E(X)E(Y) = 49. 若随机变量X 1, X 2, X 3相互独立, 其中X 1在[0, 6]服从均匀分布, X 2服从正态分布N(0, 22), X 3服从参数λ = 3的泊松分布, 记Y = X 1-2X 2 + 3X 3, 则D(Y) = ______. 解. )(9)(4)()32()(321321X D X D X D X X X D Y D ++=+-==4639441262=⨯+⨯+二. 单项选择题1. 设随机变量X 和Y 独立同分布, 记U = X -Y , V = X + Y , 则U 和V 必然 (A) 不独立 (B) 独立 (C) 相关系数不为零 (D) 相关系数为零 解. 因为X 和Y 同分布, 所以E(U) = E(X)-E(Y) = 0, E(U)E(V) = 0. 0)()()(22=-=Y E X E UV E .所以 cov(X,Y) = E(UV)-E(U)E(V) = 0. (D)是答案. 2. 已知X 和Y 的联合分布如下表所示, 则有(A) X 与Y 不独立 (B) X 与Y 独立 (C) X 与Y 不相关 (D) X 与Y 彼此独立且相关 解. P(X = 0) = 0.4, P(Y = 0) = 0.3.0.1 = P(X = 0, Y= 0) ≠ P(X = 0)×P(Y = 0). (A)是答案.3. 设离散型随机变量X 可能取值为: x 1 = 1, x 2 = 2, x 3 = 3, 且E(X) = 2.3, E(X 2) = 5.9, 则x 1, x 2, x 3所对应的概率为(A) p 1 = 0.1, p 2 = 0.2, p 3 = 0.7 (B) p 1 = 0.2, p 2 = 0.3, p 3 = 0.5 (C) p 1 = 0.3, p 2 = 0.5, p 3 = 0.2 (D) p 1 = 0.2, p 2 = 0.5, p 3 = 0.3解. 3.223)1(32)(212121332211=--=--++=++=p p p p p p p x p x p x X E 7.0221=+p p9.5)1(94)(21213232221212=--++=++=p p p p p x p x p x X E 1.35821=+p p解得 p 1 = 0.2, p 2 = 0.3, p 3 = 0.5. (B)是答案.4. 现有10张奖券, 其中8张为2元, 2张为5元, 今每人从中随机地无放回地抽取3张, 则此人抽得奖券的金额的数学期望(A) 6 (B) 12 (C) 7.8 (D) 9解. 假设X 表示随机地无放回地抽取3张, 抽得奖券的金额. X 的分布律为157)()6(31038====c c P X P 三张都是二元157),()9(3101228====c c c P X P 一张五元二张二元151),()9(3102218====c c c P X P 二张五元一张二元8.71511215791576)(=⋅+⋅+⋅=X E . (C)是答案. 5. 设随机变量X 和Y 服从正态分布, X ~N(μ, 42), Y ~N(μ, 52), 记P 1 =P{X ≤ μ-4}, P 2 = P{Y≥ μ + 5}, 则(A) 对任何μ, 都有P 1 = P 2 (B) 对任何实数μ, 都有P 1 < P 2 (C) 只有μ的个别值, 才有P 1 = P 2 (D) 对任何实数μ, 都有P 1 > P 2 解. P 1 = {X ≤ μ-4} =)1(1)1(14Φ-=-Φ=⎭⎬⎫⎩⎨⎧-≤-μX PP 2 = {Y ≥ μ + 5} =)1(115115Φ-=⎭⎬⎫⎩⎨⎧≤--=⎭⎬⎫⎩⎨⎧≥-μμY P Y P(其中Φ(x)为N(0, 1)的分布函数). 所以(A)是答案.6. 随机变量ξ = X + Y 与η = X -Y 不相关的充分必要条件为(A) E(X) = E(Y) (B) E(X 2)-E 2(X) = E(Y 2)-E 2(Y) (C) E(X 2) = E(Y 2) (D) E(X 2) + E 2(X) = E(Y 2) + E 2(Y) 解. cov(ξ, η) = E(ξη)-E(ξ)E(η)E(ξη) =)()()])([(22Y E X E Y X Y X E -=-+ E(ξ)E(η) = [E(X)+E(Y)][E(X)-E(Y)] = )()(22Y E X E - 所以(B)是答案.三. 计算题1. 设X 的分布律为1)1()(++==k ka a k X P , k = 0, 1, 2, …, a > 0, 试求E(X), D(X).解. ∑∑∑∞=+∞=+∞=⎪⎭⎫⎝⎛+=+===1111011)1()()(k k k k k k a a k a a ka k X kP X E令 22'2'1211201)1(1)(x x x x x x x kx x kxx f k k k k k k -=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛===∑∑∑∞=∞=-∞=+ 2222)11()1()1(a aa a a a a f =+-+=+, 所以a a a X E =⋅=21)(.∑∑∑∞=+∞=+∞=+-+=+===11112022)1()11()1()()(k k kk k k k a a k k a a k k X P k X E∑∑∑∞=∞=+∞=+-+++=+-++=11111)1()1(11)1()1()1(k kkk k k k k k a a a k k a a a k a a k k 令 3''2''1111)1(21)1()1()(x x x x x x x kx k x kxk x f k k k k k k-=⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=+=+=∑∑∑∞=+∞=-∞= 23)1(2)11(12)1(a a a a a aa a f +=+-+=+,所以2222)1(211)(a a a a a aX E +=-+⋅+=.222222)]([)()(a a a a a X E X E X D +=-+=-=.2. 设随机变量X 具有概率密度为⎪⎩⎪⎨⎧=0cos 2)(2xx πϕ 其它2||π≤x , 求E(X), D(X).解. 0cos 2)()(222===⎰⎰-∞+∞-πππϕxdx xdx x x X E⎰-=-=222222cos 2)]([)()(πππxdx x X E X E X D211222cos 122222-=+=⎰πππdx x x 3.求⎥⎦⎤⎢⎣⎡+2)(sin Y X E π. 解. 2)(sinY X +π的分布律为 25.015.0)1(40.0145.002)(sin =⨯-+⨯+⨯=⎥⎦⎤⎢⎣⎡+Y X E π 4. 一汽车沿一街道行驶需要通过三个设有红绿信号灯路口, 每个信号灯为红或绿与其它信号灯为红或绿相互独立, 且红绿两种信号显示的时间相等, 以X 表示该汽车首次遇到红灯前已通过的路口的个数, 求: i. X 的概率分布, ii. ⎪⎭⎫⎝⎛+XE 11 解. 假设X 为该汽车首次遇到红灯已通过的路口数P(X = 0) = P{第一个路口为红灯} =2P(X = 1) = P{第一个路口为绿灯, 第二个路口为红灯} =2212121=⋅ P(X = 0) = P{第一,二路口为绿灯, 第三个路口为红灯} =321P(X = 0) = P{第一, 二, 三路口为绿灯} =3219667214121312121211111332=⋅+⋅+⋅+⋅=⎪⎭⎫⎝⎛+X E 5. 设(X, Y)的分布密度⎩⎨⎧=+-04),()(22y xxye y x ϕ其它0,0>>y x求)(22Y X E +. 解. ⎰⎰⎰⎰>>+-∞+∞-∞+∞-+=+=+00)(222222224),()(y x y xdxdy xye y x dxdy y x y x Y X E ϕ434sin cos 02202πθθθπ=⋅⋅⋅⋅=⎰⎰∞+-rdr e r r d r 6. 在长为l 的线段上任选两点, 求两点间距离的数学期望与方差.解. 假设X, Y 为线段上的两点. 则它们都服从[0, l ]上的均匀分布, 且它们相互独立.X ~⎪⎩⎪⎨⎧=01)(l x ϕ 其它l x ≤≤0, Y ~⎪⎩⎪⎨⎧=01)(l y ϕ 其它l y ≤≤0(X, Y)的联合分布为⎪⎩⎪⎨⎧=01)(2l x ϕ 其它l y x ≤≤,0.又设Z = |X -Y|, D 1={(x, y): x > y, 0 ≤ x, y ≤ l }, D 2={(x, y): x ≤ y, 0 ≤ x, y ≤ l }⎰⎰⎰⎰⎰⎰-+-=-=∞+∞-∞+∞-21221)(1)(),(||)(D D dxdy l x y dxdy l y x dxdy y x y x Z E ϕ⎰⎰⎰⎰-+-=l y lxdy dx x y l dx dy y x l2002])([1])([13212122022ldy y l dx x ll l=+=⎰⎰ 6)(1),()()(2002222l dxdy y x ldxdy y x y x Z E ly lx =-=-=⎰⎰⎰⎰∞+∞-∞+∞-≤≤≤≤ϕ 1896)]([)()(22222l l l Z E Z E Z D =-=-=7. 设随机变量X 的分布密度为)(,21)(||+∞<<-∞=--x e x x μϕ, 求E(X), D(X). 解. ⎰⎰⎰∞+∞--∞+∞---∞+∞-+-===dt e t x t dx e x dx x x X E t x ||||)(2121)()(μμϕμ=⎰∞+∞--dt te t ||21+μμμ==⎰⎰∞+-∞+∞--0||21dt e dt e tt⎰⎰⎰∞+∞--∞+∞---∞+∞-+-===dt e t x t dx e x dx x x X E t x ||2||222)(2121)()(μμϕμ=⎰∞+-02dt e t t+20022μμμ+==⎰⎰∞+-∞+-dt e dt e t t所以 22)]([)()(2222=-+=-=μμX E X E X D8. 设(X, Y)的联合密度为⎪⎩⎪⎨⎧=01),(πϕy x 其它122≤+y x , 求E(X), D(Y), ρ(X, Y).解. 01),()(122===⎰⎰⎰⎰+∞∞-+∞∞-≤+y x xdxdy dxdy y x x X E πϕ01),()(122===⎰⎰⎰⎰+∞∞-+∞∞-≤+y x ydxdy dxdy y x y Y E πϕ41cos 11),()(20132122222====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-≤+πθθππϕdr r d dxdy x dxdy y x x X E y x 41sin 11),()(20132122222====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-≤+πθθππϕdr r d dxdy y dxdy y x y Y E y x 01),()(122===⎰⎰⎰⎰∞+∞-∞+∞-≤+y x xydxdy dxdy y x xy XY E πϕ41)]([)()(22=-=X E X E X D , 41)]([)()(22=-=Y E Y E Y D0)()()()()(=-=Y D X D Y E X E XY E XY ρ.9. 假设一部机器在一天内发生故障的概率为0.2, 机器发生故障时全天停止工作. 若一周5个工作日里无故障, 可获利润10万元, 发生一次故障仍可获利润5万元; 发生二次故障所获利润0元; 发生三次或三次以上故障就要亏损2万元. 求一周内期望利润是多少? 解. 假设X 表示一周内发生故障的天数. 则X ~B(5, 0.8)33.0)8.0()0(5===X P , 41.0)8.0(2.05)1(4=⨯⨯==X P20.0)8.0(2.0)2(3225=⨯⨯==c X P , 06.020.041.033.01)3(=---=≥X P又设YE(Y) = 10×0.33 + 5×0.41 + 0×0.20 + (-2)×0.06 = 5.23(万元)10. 两台相互独立的自动记录仪, 每台无故障工作的时间服从参数为5的指数分布; 若先开动其中的一台, 当其发生故障时停用而另一台自行开动. 试求两台记录仪无故障工作的总时间T 的概率密度)(t f 、数学期望和方差.解. 假设X 、Y 分别表示第一、二台记录仪的无故障工作时间, 则X 、Y 的密度函数如下:⎩⎨⎧<≥=-05)(~,5x x e x f Y X xX 、Y 相互独立, 且 T = X + Y .X 、Y 的联合密度: ⎩⎨⎧≥≥=+-,00,0,25),()(5y x e y x f y x关于T 的分布函数: ⎰⎰≤+=≤+=≤=ty x T dxdy y x f t Y X P t T P t F ),(}{}{)(当 0<t 时⎰⎰⎰⎰≤+≤+===≤+=≤=ty x ty x T dxdy dxdy y x f t Y X P t T P t F 00),(}{}{)(当 0≥t 时⎰⎰⎰⎰≥≥≤++-≤+==≤+=≤=0,0)(525),(}{}{)(y x t y x y x ty x T dxdy edxdy y x f t Y X P t T P t Ft t tx t y x x t y t x te e dx e e dy e dx e 550055050551|)(525----------=-==⎰⎰⎰所以 ⎩⎨⎧<≥--=--0,00,51)(55t t te e t F t t T所以T 的概率密度: ⎩⎨⎧<≥==-0,00,25)]'([)(5t t e t t F t f t T T 所以 ⎰⎰∞+∞-∞+-===5225)()(052dt e t dt t f t T E t T 所以⎰⎰∞+∞-∞+-=-=-=-=25225425)52()()]([)()(0532222dt e t dt t f t T E T E T D tT第四章 大数定律和中心极限定理一. 填空题1. 设Y n 是n 次伯努利试验中事件A 出现的次数, p 为A 在每次试验中出现的概率, 则对任意 ε > 0, 有=⎪⎭⎫⎝⎛≥-∞→ε||lim p n Y P n n __________. 解. =⎪⎭⎫⎝⎛≥-∞→ε||lim p n Y P n n 1-011||lim =-=⎪⎭⎫ ⎝⎛<-∞→εp n Y P n n2. 设随机变量X 和Y 的数学期望是2, 方差分别为1和4, 而相关系数为0.5, 则根据切比雪夫不等式P(|X -Y| ≥ 6) ≤ _______. 解. E(X -Y) = E(X)-E(Y) = 2-2 = 0 D(X -Y) = D(X) + D(Y)-)()(2Y D X D XY ρ= 1 + 4-2×0.5×1×2 = 3所以 1213636)()6|(|2==-≤≥-Y X D Y X P二. 选择题1. 设随机变量n X X X ,,,21 相互独立, n n X X X S +++= 21, 则根据列维-林德伯格(Levy-Lindberg)中心极限定理, n S 近似服从正态分布, 只要n X X X ,,,21 ( A ) 有相同的数学期望 ( B ) 有相同的方差( C ) 服从同一指数分布 ( D ) 服从同一离散型分布解. 列维-林德伯格(Levy-Lindberg)中心极限定理要求n X X X ,,,21 既有相同的数学期望, 又有相同的方差, 因此( A ) 、( B )、 ( D )都不是答案, ( C )为答案.三. 计算题1. 某厂有400台同型机器, 各台机器发生故障的概率均为0,02, 假如各台机器相互独立工作, 试求机器出现故障的台数不少于2台的概率.解. 假设X 表示400台机器中发生故障的台数, 所以X ~B(400, 0.02) 由棣莫佛-拉普拉斯定理:。
概率论与数理统计学习指导及习题解析第6章 数理统计的基本概念
定理2: 设X1,X2, …, Xn是来自正态总体N(μ,σ2) 的一个样本,X与S2分别是样本均值和样本方差,
(1)
n1S2
2
~Hale Waihona Puke 2n1(2) X与S2相互独立。
第 6 章 数理统计的基本概念
定理3: 设X1, X2, …, Xn是来自正态总体N(μ,σ2) 的一个样本, X与S2分别是样本均值和样本方差,
定义2: 设X~N(0, 1), Y~χ2(n), 且X和Y相互独立, 则
称做自t 由度X为n的t变量, 其概率分布称做自由度为n的t分布, Y /n
记为t~t(n)。
第 6 章 数理统计的基本概念
定义3: 设X~χ2(n1), Y~χ2(n2), 且X与Y相互独立, 则 称做自由度为(n1, n2)的F变量, 其概率分布称做自由度为(n1, n2)的F分布, 记为F~F(n1,n2)。其中n1和n2分别称为F(n1,n2) 分布的第一自由度和第二自由度。
Xi
16
Xi i1
V ~ t 16
1
Y 16 2 i
16 i1 16
16
Yi2
i1
第 6 章 数理统计的基本概念
【例6.5】 设X1,X2, …, X10是来自总体X~N(μ,42)的 简单随机样本, 已知P{S2>a}=0.1, 求a
解 本题涉及样本方差的概率问题, 且是已知概率值, 求上侧分位数的值。
B k1 ni n1 XiXk,
k1,2,
第 6 章 数理统计的基本概念
2) 定义1: 设X1,X2, …, Xn是n个相互独立的标准正态随 机变量, 则它们的平方和χ2=X21+X22+…+X2n称做自由度为 n的χ2变量, 其概率分布称做自由度为n的χ2分布, 记为 χ2~χ2(n)。
概率论与数理统计课件--复习小结《》.ppt
S12
2 1
S22
2 2
~ F(n1 1, n2 1)
证明 由已知条件知
(n1
1)S12
2 1
~
2(n1
1),
(n2
1)S22
2 2
~
2(n2
1)
且相互独立,由F分布的定义有
(n1 1)S12
2 1
(n2 1)S22
2 2
(n1 (n2
1) 1)
X
S n
t
2
(n
1) ,
X
S n
t
2
(n
1)
阿gh,
小结
总体服从正态分布的均值或方差的区间估计
假设置信水平为1-
(3)均值已知,对方差的区间估计
构造2-统计量,查2-分布临界值表,
确定2的双侧分位数 2 (n), 2 (n)
1 2
2
得2的区间估计为
n
Xi 2
n
Xi
2
i1
2 (n)
n
Xi 2
i1
,
2 (n)
2
n
Xi
2
i 1
2 (n)
1 2
(4)均值未知,对方差的区间估计,构造2统计量
(n 1)S 2
,
2
2
(n
1)
(n 1)S 2
2
阿g1h,2
(n
1)
阿gh,
单个正态总体方差已知的均值检验 U检验
问题:总体 X~N(,2),2已知
假设 H0:=0;H1:≠0
(3)令 d ln L 0
i 1
d
概率论知识点总结及心得体会
第一章随机事件和概率第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用E表示。
在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。
不可能事件:在试验中不可能出现的事情,记为①。
必然事件:在试验中必然出现的事情,记为S或Q。
2、我们把随机试验的每个基本结果称为样本点,记作e或3.全体样本点的集合称为样本空间•样本空间用S或Q表示.一个随机事件就是样本空间的一个子集。
基本事件一单点集,复合事件一多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。
事件间的关系及运算,就是集合间的关系和运算。
3、定义:事件的包含与相等若事件A发生必然导致事件B发生,则称B包含A,记为B二A 或A B o若A B且A二B则称事件A与事件B相等,记为A = B。
定义:和事件“事件A与事件B至少有一个发生”是一事件,称此事件为事件A 与事件B的和事件。
记为 A U B o用集合表示为:A U B={e|e € A,或e € B} o定义:积事件事件“事件A与事件B都发生”为A与B的积事件,记为A AB或AB,用集合表示为AB={e|e € A且e€ B}。
定义:差事件称“事件A发生而事件B不发生,这一事件为事件A与事件B的差事件,记为A - B,用集合表示为A-B={e|e € A, e B}。
定义:互不相容事件或互斥事件如果A, B两事件不能同时发生,即AB = O,则称事件A与事件B是互不相容事件或互斥事件。
定义6 :逆事件/对立事件称事件“ A不发生”为事件A的逆事件,记为d。
A与d满足:A U Q = S,且.A d=①。
运算律:设A, B, C为事件,则有(1 )交换律:A U B=B U A, AB=BA(2) 结合律:A U (B U C)=(A U B)U C=A U B U CA(BC)=(AB)C二ABC(3 )分配律:A U (BAC) = (A U B) A(A U C)A(B U C)= (A AB)U (A A C)二 AB U AC(4)德摩根律: A B = A BA B = A B小结:事件的关系、运算和运算法则可概括为四种关系:包含、相等、对立、互不相容; 四种运算:和、积、差、逆;四个运算法则:交换律、结合律、分配律、对偶律。
概率论小结
越来越发现概率论还是挺有意思的,花点时间小结了一点东西,要是谁发现有啥错误(尤其是第6点反常积分公式的推导),一定要不吝赐教啊。
1.两两独立与相互独立:对于n个事件A1,A2,A3,……A n,(1)两两独立:这n个事件中任意2个相互独立(2)相互独立:这n个事件中任意k (2≤k≤n)个相互独立(3)因此,相互独立是两两独立的充分不必要条件2.P(AB)=0并不能说明AB为不可能事件,因此并不能说A与B 互斥。
3.求一维随机变量函数的分布:(1)对于离散型随机变量,一般用定义法(2)对于连续型随机变量,有两种方法:①公式法②定义法:先求F Y(y) =P (Y≤y) =P ( g(X)≤y) =⎰≤yxg dx) ()x(f, 于是f Y(y)=F’Y (y)。
在这里,我们建议都采用定义法,因为定义法比较容易理解,同时公式法比较难记,而且它有一定的使用前提,而定义法是普遍使用的方法。
4.对于一维随机变量,有P(a≤X≤b)=F(b)-F(a);同样,对于二维随机变量,则是P(a≤X≤b,c≤Y≤d)=F(a,c)+F(b,d)-F(a,d)-F(b,c),这也解释了为何判断一个二元函数能不能作为二维随机变量的分布函数时,需要用“矩形法”来判断的原因。
当然,求这类概率亦可用直接用概率密度在相应区间上积分。
5.对于一个二维随机变量的概率密度,将其进行一重积分,得到的是边缘概率密度;将其进行二重积分,得到的是联合分布函数。
6.计算反常积分⎰-b2acxdxe的方法:由于这个函数的不定积分结果并不能用初等函数表示出来,所以需要借助标准正态分布函数来求解,其结果为:⎰-b 2acxdxe=cπ(Φ(bc2)-Φ(ac2))再查表即可。
当然,考试不会考这个难度的,把常见的记住就行。
7.关于条件概率密度取值范围的写法:(1)对一切y∈A, f X∣Y(x∣y)=……,x∈B;或(2)对一切x∈A, f Y∣X(y∣x)=……,y∈B。
概率论-课程总结
AB C A BC A B C A B C AB BC AC
第一章 概率论的基本概念
2 给出了随机事件的频率及概率的含义和基本性 质。要求熟练掌握概率的基本性质:
(1) 概率的(公理化)定义
1
0
0 P ( A) ;
(非负性)
20
30
P ( S ) 1 ; (正则性或正规性)
A 与 B、A 与 B 、A 与 B 也相互独立.
第一章 概率论的基本概念
3 必然事件S与任意随机事件A相互独立; 不可能事件Φ与任意随机事件A相互独立.
注意1:两事件相互独立与互不相容的区别: “A与B互不相容”,指两事件不能同时发生, 即 P(AB)=0。 “A与B相互独立”,指A是否发生不影响B 发生的概率,即P(AB)=P(A)P(B)或
常用公式
P( A B C ) P( A B C ) 1 P( A B C )
第一章 概率论的基本概念
3. 等可能概型(古典概型)
特点是:
样本空间的元素只有有限个;
(有限性)
每个基本事件发生的可能性相同。(等可能性)
随机事件的概率:
A包含的基本事件数 即: P ( A) . S中基本事件总数
第一章 概率论的基本概念
(4)n个事件的相互独立性
设 A1, A2, , An 为n 个随机事件,如果下列 等式成立:
1 i j n P Ai A j P Ai P A j P A A A P A P A P A 1 i j k n i j k i j k P A A A P A P A P ( A ) 1 i i i n i1 i 2 im i1 i2 in 1 2 m P A1 A2 An P A1 P A2 P An
概率论与数理统计课程小结
概率论与数理统计课程小结学习《概率论与数理统计》完感觉是“课文看得懂,习题做不出”。
要做出题目,至少要弄清概念,有些还要掌握一定的技巧。
这句话说起来简单,但是真正的做起来就需要花费大量的力气。
我在学习时,只注重公式、概念的记忆和套用,自己不对公式等进行推导。
这就造成一个现象:虽然在平时的做题过程中,自我感觉还可以;尤其是做题时,看一眼题目看一眼答案,感觉自己已经掌握的不错了,但一上了考场,就考砸。
这就是平时的学习过程中只知其一、不知其二,不注重对公式的理解和推导造成的。
在看书的时候注意对公式的推导,这样才能深层次的理解公式,真正的灵活运用。
做到知其一,也知其二。
现在概率统计的考试考的是基础知识,主要涉及排列组合、导数、积分、极限这四部分。
说这部分是基础,本身就说明这些知识不是概率统计研究的内容,只是在研究概率统计的时候不可缺少的一些工具。
即然这样,在考试中就不会对这部分内容作过多的考察,也会尽量避免在这些方面丢分。
有些人花大量的力气学习微积分,甚至学习概率统计之前,将微积分重现学一边,这是不可取的。
对这部分内容,将教材上涉及到的知识选出来进行复习,理解就可以。
万不能让基础知识成为概率统计的拦路虎。
学习中要知道那是重点,那是难点。
如何掌握做题技巧?俗话说“孰能生巧”,对于数学这门课,用另一个成语更贴切“见多识广”。
对于我们而言,学习时间短,想利用“孰能生巧“不太现实,但是”见多识广“确实在短时间内可以做到。
这就是说,在平时不能一味的多做题,关键是多做一些类型题,不要看量,更重要的是看多接触题目类型。
同一个知识点,可以从多个角度进行考察。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 样本空间、随机事件的概念.
2.事件的运算:和、差、积;互斥事件、对立事件.
非负性
3.概率的概念和性质:
规范性
可列可加性
两个原理
4.排列和组合:排列有无放放回回
组合
5.等可能概型.
第一章 随机事件及其概率习题课
6.几何概型.
7.条件概率:P(B A) P( AB)
P( A)
8.全概率公式和贝叶斯公式
P( A)
n
P(Bi )P( A Bi )
i 1
P
(
B
j
A)
P(Bj )P(ABj )
n
P(Bi )P( A Bi )
i 1
9.事件的独立性: P( AB) P( A)P(B)
第一章 随机事件及其概率习题课 例题: 1. 证明关于事件的等式B A ( AB) ( AB)
第一章 随机事件及其概率习题课
例题 13 (Buffon 投针问题) 在平面上有等距离的平行线,平行线间的距离为 2a(a>0),该平面任意投掷一枚长为 2l(l<a)的圆柱 形的针,试求此针与任一平行线相交的概率。
第一章 随机事件及其概率习题课
历史上有一些学者曾做过这个实验,例如,Wolf 在 1850 年投掷 5000 次,得到的近似值 3.1596;Smith 在 1855 年投掷 3204 次,得到的近似值 3.1554; Lazzerini 在 1901 年投掷 3408 次,得到的近似值 3.14159B 为随机事件,且 P(B) 0, P(A | B) 1,
则必有
.
(A) P(A B) P(A). (B) P(A B) P(B).
(C) P(A B) P(A). (D) P(A B) P(B).
第一章 随机事件及其概率习题课 例题:
第一章 随机事件及其概率习题课
例题:
12.设有四张卡片上分别标以 1,2,3,4。今取 1 张. 设:事件 A为取到 1 或 2;事件B为取到 1 或 3; 事件C 为取到 1 或 4.试验证:
P( AB) P( A) P(B) P(BC ) P(B) P(C) P(CA) P(C ) P( A) 但 P( ABC ) P( A) P(B) P(C)
第一章 随机事件及其概率习题课
例题:
8 设甲袋中有 3 个白球、2 个红球,乙袋中有 2 个白球、3 个红球. 先从甲袋中任取一球放入乙 袋,再从乙袋中任取一球放入甲袋,求: (1) 甲袋中红球增加的概率; (2) 甲袋中红球不变的概率;
第一章 随机事件及其概率习题课 例题:
9.设 A, B,C 相互独立,证明 A与B C 独立, B C 与 A也独立.
第一章 随机事件及其概率习题课
例题:
10、某高射炮发射一发炮弹击中飞机的概率为 0.6,现在用此种炮若干门同时发射一发炮 弹,问至少需要配多少门高射炮才能以不小 于 99%的概率击中来犯的一架敌机?
第一章 随机事件及其概率习题课
例题:
11.甲乙丙三人向同一个目标射击,设各击中目标 的概率分别为 0.4,0.5,0.7.如果只有一个人击 中目标,则目标被击毁的概率是 0.2;如果有 两个人同时击中目标,则目标被击毁的概率是 0.6;如果三个人同时击中目标,则目标一定被 击毁.求目标被击毁的概率.
第一章 随机事件及其概率习题课
例题:
5.已知 P(B A) 1, P( A) 1 , P( A B) 1 ,求 P( AB),
4
3
3
P( AB), P( A B)
第一章 随机事件及其概率习题课 例题:
6、将有 3 名优秀生的 15 名课外活动小组成员随 机的分成三个科目不同的 5 人小组,每个小组 有 1 名优秀学生的概率是多少?3 名优秀学生 同时分到一个小组的概率是多少?
第一章 随机事件及其概率习题课 例题:
14、随机地向半圆0 y 2ax x2(a 为正常数) 内掷一点,点落在半圆内任何区域的概率与区 域的面积成正比,则原点和该点连线与 x 轴正 向的夹角小于 的概率为 C .
4
A. 1 B. 1 C. 1 1
2
2
D. 1 3
3、5 双不同的手套,任取 4 只,求 4 只都不配对 的概率.
第一章 随机事件及其概率习题课
例题: 4、 50 只电子管随机地取来,用在 10 个电子电 路板上,其中有 3 只电子管是次品,每个电 路板用 3 只电子管。若将 3 只次品都安装在 一个电路板上,则这个电路板是废品,问发 生电路板是废品的概率是多少?
第一章 随机事件及其概率习题课 例题: 7、试卷中有一道选择题,共有 4 个答案可供选择,
其中只有一个答案是正确的,任一考生如果会解这 道题,则一定能选出正确答案,如果不会解这道题, 也可能通过试猜而选中正确答案,其概率是 1/4, 设考生会解这道题的概率是 0.7,求: (1)考生选出正确答案的概率; (2)考生在选出正确答案的前提下,确实会解这道 题的概率。