轨道电路故障分析与处理

合集下载

轨道电路故障分析与处理

轨道电路故障分析与处理

轨道电路故障分析与处理轨道电路用来检查进路是否空闲,反映区段或进路的锁闭和解锁状态,监督列车和调车车列的运行情况。

当轨道电路故障时会出现两种情况:1、有车占用无红光带。

2、无车占用亮红光带。

原因分析:一、有车占用无红光带:当有车占用时控制台无红光带显示故障是非常危险的,当发生这类故障后应首先通知车站值班员停用设备,然后进行处理。

这类故障发生的原因一般在室外设备,可先检查控制台光带表示灯是否有故障,以及轨道继电器是否落下或接点卡阻或粘连等。

这类故障发生在室外设备的主要原因:1、在道岔区段轨道电路,设有轨端绝缘但没有设在受电端的双动道岔渡线或测线上,因轨端接续线或岔后跳线断开、脱落,而造成死区段。

2、轨面电压调整过高或送电端可调电阻调整的阻值过小,造成轨道电路不能正常分路。

3、一送多受轨道区段,因各受电端距离较远,轨面电压调整不平衡,有个别受电端轨面电压过高而造成分路不良。

4、因钢轨轨面生锈,车辆自重较轻或轮对电阻过大等,使车辆轮对分路不良。

5、室外发生混线,有其他电源混入,或牵引电流干扰等使轨道继电器误动。

二、无车占用亮红光带:发生这种故障时,应先在控制台观察故障现象,做出初步判断。

如果几个轨道电路区段同时出现红光带,应重点在分线盒检查轨道电源熔断器熔丝和送电电缆芯线;若相邻两个轨道区段同时出现红光带,一般是相邻两轨道电路轨道绝缘双破损;只有一个轨道区段亮红光带,应首先在分线盘处测试送电电缆端子有无电压,若有电压。

确认为室外故障时,再去室外处理。

判断轨道电路是开路故障还是短路故障是分析故障的关键。

轨道电路开路故障:轨道电路开路后继电器落下,控制台点亮红光带。

开路故障应查钢轨接续线、道岔跳线、箱盒与轨面的引导线(是否断线)。

轨道电路短路故障:短路故障应查绝缘,绝缘破损;其他异物短路,如铁丝等金属褡裢或跳线、引导线混线造成。

例析ZPW—2000A轨道电路故障及处理方法

例析ZPW—2000A轨道电路故障及处理方法

例析ZPW—2000A轨道电路故障及处理方法ZPW-2000A移频轨道电路在我国铁路建设中的普及显示了其高安全性和高可靠性,但在实际运行过程中,由于一些故障的处理经验积累不足,造成故障判断处理不及时,影响运输安全。

现就ZPW-2000A型无绝缘轨道电路区间常见故障进行分析,以期对电务维修人员提供帮助和经验积累。

1 问题的提出ZPW-2000A移频轨道电路故障的原因主要有室内和室外两部分。

室内主要包括配线错误、发送器、接收器、衰耗器故障等,室外主要是补偿电容故障,电气、机械绝缘节不良,电缆故障等。

2 故障原因分析与处理方法2.1 电气绝缘节不良ZPW-2000A无绝缘轨道电路分电气绝缘节和机械绝缘节两种。

如果某区段在衰耗盘测得主轨入电压很低,小轨入电压又很高,其他数据都达标,经核对室外电缆配线准确无误,可以认定是室外电气绝缘节不绝缘,对室外调谐单元、匹配变压器、空心线圈阻抗进行测试,对数据有异常或变化较大的分别更换空心线圈、匹配变压器或调谐单元后,再次在衰耗盘测试,电压均恢复正常。

2.2 区间轨道电路载频设置不合理故障分析从上表可以看出,当补偿电容失效时,在气候条件相同的情况下,只要主轨电压下降达50mV或小轨电压变化在10mV以上,我们就可怀疑补偿电容有问题,及时进行室外电容检查测试,就可确定具体失效电容。

(2)测试电缆模拟网络盘电缆侧电压进行室内外设备故障、隐患判断。

某站某区段在送端电缆模拟网络盘“电缆”测试孔测试,发现电缆侧电压远远小于日常正常测试值,则判断是室内发送设备故障;如果发送端电缆侧电压正常时,测试受端电缆模拟网络盘电缆侧电压,如果电压正常且约等于衰耗盘轨入电压,则是室内接受部分故障;如果电缆侧电压不正常,则可以判断为室外轨道电路部分故障。

(3)测试衰耗器XGJ测试孔电压低于24V时,判断为小轨部分故障。

图4如图4所示:某区段575G出现红光带,经测试判断是小轨部分故障时,首先测试列车运行前方587G轨出2电压,如果电压正常(125~145mV左右),则是本区段575G“XGJ”至下一区段587G“XG”间连线断线或万可端子不良;如果587G衰耗盘测得轨出2电压偏低,再测试587G衰耗盘“轨入”中小轨电压是否正常,如果小轨入电压大于42mV,则是587G衰耗器故障;若不正常可能是室外补偿电容不良。

铁路轨道电路分路不良原因分析及解决措施

铁路轨道电路分路不良原因分析及解决措施

铁路轨道电路分路不良原因分析及解决措施铁路轨道电路分路不良是指铁路轨道上的电路断路或故障,这种情况一旦发生,会对列车行驶安全和正常的运输造成严重影响。

对铁路轨道电路分路不良的原因进行分析,并提出相应的解决措施,对确保铁路运输的安全和顺畅具有十分重要的意义。

1. 设备老化铁路轨道上的电路设备长期使用后会出现老化,比如接触网、信号设备、电缆等,这些老化会导致设备性能下降,甚至发生故障,从而引起轨道电路的分路不良现象。

2. 天气因素恶劣的天气条件也是造成轨道电路分路不良的一个重要因素。

在恶劣的天气条件下,比如大雨、大雪、强风等,铁路轨道电路设备容易受到侵蚀和损坏,从而引发分路不良的问题。

3. 人为操作不当的人为操作也是造成铁路轨道电路分路不良的原因之一。

比如设备维修保养时的操作不当,或者施工作业中的疏忽大意等,都有可能导致轨道电路分路不良。

4. 设计缺陷在铁路轨道电路的设计中,如果存在缺陷,比如电缆走线不合理、设备选择不当等,也容易引发分路不良的问题。

5. 非铁路人员进入当非铁路工作人员进入轨道电路区域,进行一些不正当的操作行为,也会导致轨道电路分路不良的问题发生。

1. 加强设备检修和维护对轨道电路的设备进行定期的检修和维护是非常重要的。

在设备老化、天气恶劣等情况下,通过定期的检修和维护,及时发现设备的问题,并进行维修和更换,可以有效避免轨道电路分路不良的发生。

2. 强化保护措施在恶劣的天气条件下,可以加强对轨道电路设备的保护措施,比如加装防护设施、增加设备维护人员的巡视频率等,以有效防止轨道电路设备受损和分路不良的发生。

3. 完善操作规程对铁路轨道电路的操作规程进行完善,加强对操作人员的培训和管理,以保证操作人员对设备进行正确的操作,避免因为人为操作导致分路不良的问题发生。

5. 加强安全管理加强对铁路轨道电路区域的安全管理,严禁非铁路人员进入,对已进入的人员进行有效管控,防止他们的行为对轨道电路的安全造成影响。

轨道电路故障分析可行性

轨道电路故障分析可行性

轨道电路故障分析可行性引言轨道电路是铁路运输系统中至关重要的组成部分,用于监测铁轨上的列车位置和速度。

然而,在实际运营过程中,轨道电路故障是无法避免的。

故障的发生不仅会对列车的运行造成影响,还可能导致安全风险的增加。

因此,通过对轨道电路故障进行可行性分析,可以及时排除故障,提高铁路运输的安全性和效率。

1. 轨道电路故障的分类轨道电路故障按照其所导致的影响可以分为以下几类:- 断电故障:轨道电路供电中断,导致列车无法正常监测位置和速度。

- 短路故障:轨道电路发生短路,使得错误的信号传递给列车。

- 感应故障:外部干扰导致轨道电路误判列车位置和速度。

- 节点连接故障:连接轨道电路的节点出现松动或断裂,导致信号传输失败。

2. 轨道电路故障分析方法2.1 人工巡检人工巡检是一种常用的轨道电路故障分析方法,通过人员对轨道电路设备进行目视检查,寻找异常情况。

然而,由于轨道电路分布范围大、设备繁多,人工巡检存在无法及时发现故障、工作效率低等问题。

2.2 数据分析通过采集轨道电路的工作数据,应用数据分析技术,可以发现轨道电路故障的特征和规律。

数据分析方法可以从以下几个方面进行:- 时域分析:通过对轨道电路工作数据的时间特性进行分析,找出异常波形和信号异常。

- 频域分析:通过对轨道电路工作数据的频率特性进行分析,找出频谱异常。

- 统计分析:通过对轨道电路工作数据的统计特征进行分析,找出异常规律和偏离正常范围的数据点。

2.3 专家经验轨道电路故障的分析还可以借助专家经验,通过专家的知识和经验,辅助判断故障原因。

专家经验是一种重要的辅助分析方法,可以提高故障定位和排除的准确性。

3. 轨道电路故障分析可行性分析3.1 现有数据的可用性在进行轨道电路故障分析之前,需要评估现有数据的可用性。

这包括数据采集频率、数据采集精度、数据存储方式等因素。

如果现有数据无法满足分析的需求,需要采取相应措施进行数据采集和存储的改进。

3.2 分析方法的可操作性在选择轨道电路故障分析方法时,需要考虑方法的可操作性。

ZPW-2000A型无绝缘移频轨道电路室内设备故障处理分析

ZPW-2000A型无绝缘移频轨道电路室内设备故障处理分析

ZPW-2000A型无绝缘移频轨道电路室内设备故障处理分析一、故障现象描述ZPW-2000A型无绝缘移频轨道电路是一种广泛应用于铁路交通自动化控制系统中的关键设备,用于控制列车的运行和停车。

在实际应用中,由于各种原因,这一设备可能会出现各种故障现象,影响铁路交通系统的正常运行。

本文将针对ZPW-2000A型无绝缘移频轨道电路室内设备故障进行分析和处理,以期为相关工作人员提供一定的帮助。

二、常见故障现象及原因分析1. 设备开机后无法正常启动这种故障现象通常是由于电源线接触不良、设备内部故障或者电源供应不足导致的。

在处理这一故障时,首先需要检查设备的电源线是否接触牢固,如果发现接触不良的情况,应及时更换或修复电源线;其次需要检查设备的内部元件是否正常工作,如果发现故障元件,应立即更换;最后需要确认供电电源是否稳定,如供电不足,应及时采取措施解决。

3. 设备工作过程中出现异常信号这种故障现象通常是由于设备接收到了异常信号,或者设备本身存在故障导致的。

在处理这一故障时,首先需要检查设备的信号输入端口,确认是否存在异常信号输入,如存在异常信号,应及时排除;其次需要检查设备本身是否存在故障,如发现故障,应立即修复或更换相应元件。

三、故障处理建议1. 定期检查设备为避免设备出现故障,建议对ZPW-2000A型无绝缘移频轨道电路室内设备进行定期检查,检查设备的电源线、内部元件以及工作状态,发现问题及时处理。

2. 注意设备周围环境ZPW-2000A型无绝缘移频轨道电路室内设备通常被安装在铁路交通自动化控制系统的控制室内,为避免设备受到外部干扰,建议注意设备周围的环境,确保环境清洁、整洁,及时处理设备周围的不良因素。

3. 及时维护设备1. 确认故障现象首先需要对ZPW-2000A型无绝缘移频轨道电路室内设备出现的故障进行详细确认,包括故障现象、出现频率、影响范围等。

2. 排除外部干扰如发现设备受到了外部干扰,需要及时排除外部干扰因素,保障设备正常工作。

25HZ相敏轨道电路的故障分析与处理

25HZ相敏轨道电路的故障分析与处理

短路故障的查找方法
送电端短路故障的查找 送电端短路故障多发生在长引接线在过轨处相混,
或变压器箱间到扼流变压器间的电缆短路。查找时, 可用钳形表测量长引接线在过轨处前后的电流,确 定引接线是否与轨底短路,若无短路,但轨面电压 很小或为零,扼流变压器的信号圈上也没有电压, 可甩开变压器箱至扼流变压器的电缆,变压器箱的 6#、8#端子上测量,若甩线后有电压,可确定该段 电缆混线,应更换备用芯线处理。
故障。 继电器插接不良。
查找上述故障的方法:
首先在二元二位继电器3—4线圈上测量电压, 在检查局问电压110V是否送至1、2若电压 正常,应检查继电器是否插接良好,若插接 良好,继电器不动作,应更换继电器、若二 元二位继电器励磁吸起,区段仍有红光带, 应检查区段组合内的DGJ和DGJF及其励磁回 路。可在继电器励磁包、侧面端子(轨道架、 组合架)上测量电压,检查回路有无断点, 器材是否良好。
轨面电压低于正常值,轨面电流高于正常值,可确 定为轨道及受电端有虚混或短路。
轨面电压及轨面电流均低于正常值,可确定为送端 引接线虚混、虚接或送端器材故障。
轨面电压及轨道电流均为零,可确定为送电端断路 或短路故障。
断路故障查找
送电端断路故障的查找 首先检查送端引接线有无断线或虚接,然后再开箱
轨道部分短路故障的查找
查找轨道短路较为便捷的方法是用钳形 电流表,沿轨条测量电流,当某处电流 突然下降时,说明短路点就在电流的突 变点处。在查找过程中,对轨距杆绝缘、 极性绝缘、道岔安装装置绝缘、长跳线 过轨处等处,应重点检查。
受电端短路故障的查找
查找受电端短路故障时,首先检查受电长引接 线是否与轨底相混,若扼流变压器的牵引圈处 无短路,再甩开扼流变态 的4或5端子上电缆 线,测量信号圈上的电压是否正常。若信号圈 上电压正常,说明扼流变压器良好,可接着在 轨道变压器II次侧、I次侧、电缆端子上测量电 压,当测量某处无电压时,采用断线法,逐段 甩线,查找短路点。

25HZ相敏轨道电路故障分析及处理

25HZ相敏轨道电路故障分析及处理

25HZ相敏轨道电路故障分析及处理摘要:轨道电路作为轨道交通的重要组成部分,也是有效提高轨道交通建设效率和施工人员工作效率的重要设施。

目前,我国铁路交通对于信号系统高效运行的需求仍有很大的不足。

能适应电力和无电力两类道路,具有明显的优越性。

同时,25HZ相敏电路的工作电压为25HZ的交流电,具有较好的运输性和稳定性。

由与主电源频率不同的内部电源装置供应。

本文以25HZ相敏轨道电路作为主要研究对象,对该轨道电路可能发生的故障进行了研究与分析,期望能够对25HZ相敏轨道电路的故障处理起到一定的作用,从而推动轨道行业的更好发展。

关键词:25HZ相敏轨道电路;故障分析;故障处理1 25HZ相敏轨道电路的原理25HZ的轨道电路是一种连续的轨道电路,它使用25HZ的交流电来进行信号的传输,轨道电路中的二进制继电器可以自由地选择所需的频率。

信号源通常包括两个部分,一个是通过专用25Hz交流变频器的追踪源,另一个是通过本地源。

二进制系统的一端与两个定位追踪电路相连,而另一端则与电源相连,以特定的频率系数。

经过分配器的电力供应和50赫兹的电力供应是不一样的,它确定了铁轨线路有无带电。

2 25HZ相敏轨道电路的特点(1)25Hz相位敏感轨线回路保护是一种双进制轨线位置保护,它既有时又有频,能很好地消除牵引电流的影响。

线路保护由持续的AC保护提供,相对稳定,维护性高。

(2)25Hz跟踪器与输入本地变频器反向相连,本地供电电压随90-1776相位变化,可采取中央调相方式。

在频率系数上,将输入电压从220V±6.6V变为50Hz,保证了线路的稳定;(3)25赫兹的电源以一个频率为其工作原理。

50赫兹电气频率的二分之一为25赫兹的主电气频率。

(4)“田”型配电盘的两个线圈以垂直90°的角度配置;由于采用了双线圈结构,使得由交流电流产生的磁场与共振线圈之间存在着不完整的交叠。

所以在保护盒关闭的时候,线路继电器就会出现故障。

轨道电路故障处理及案例分析演示幻灯片

轨道电路故障处理及案例分析演示幻灯片
8
轨道电路故障处理及案例分析
故障现象: T10543信号机 红灯灭灯,红灯 后移导致 10531G亮红光 带。
9
轨道电路故障处理及案例分析
故障时
T10543信
号机红灯灯
丝电流降至
10
0mA
轨道电路故障处理及案例分析
故障时 10543G功出 电压降至0V 。
11
轨道电路故障处理及案例分析
故障时N+1 发送盒功出 电压降至0V 。
(1)由于相邻站的ZPW-2000A轨道电路小 轨道未纳入联锁,但为了小轨道出现问题能够报 警,便设置了XGBJ,由接盒输出的XGJ条件电 源供电。
(2)相邻站14489G为该站至相邻站集中区 的轨道电路,而某站的ZPW-2000A轨道电路小 轨道纳入了联锁,因此相邻站14489G的小轨条 件要通过站联电路送至该站,使该站14477G动 作。
15
轨道电路故障处理及案例分析
QKZ电源因断线被切断 ,使该组合相对应的所 有区段的QZJ失去正电 源而落下。导致相应信 号机灭灯,轨道电路亮 红带。
16
轨道电路故障处理及案例分析
QZJ落下后切断发送通 道电路导致相应轨道 电路亮红光带。其中 1LQG没有信号机,其 红光带原因为红灯灭 灯后,红灯后移所致 。
障。(小轨道纳入联锁)

接收和发送缆同时断或3
是电源公共部分出故障
轨道电路故障处理及案例分析
2
5
1
6
3
4
4
轨道电路故障处理及案例分析
一、ZPW-2故障范围,因电缆
存在分布电容问题及ZPW-2000A轨道电路为高频轨道 电路,一定要慎用电流表对故障性质进行判断。
19

轨道电路故障处理及案例分析

轨道电路故障处理及案例分析
轨道电路故障处理及案例分析
轨道电路故障处理及案例分析
一、ZPW-2000A轨道电路 1.故障范围判断 根据ZPW-2000A轨道电路的电路特点(无绝 缘、不同载频),可通过本轨主轨入、小轨入和 列车运行前方相邻区段小轨入的电压数据快速判 断故障的大致范围。如下表:
轨道电路故障处理及案例分析
ZPW-2000A轨道电路亮红光带
轨道电路故障处理及案例分析
案例3:2012年5月17日8:01-8:13时 ,某站-相邻站下行区间南昌站所辖的 14477G(集中区的区段)红光带不灭。 原因为南昌南站14489G接收盒的并机 14494G接收盒故障所致。
轨道电路故障处理及案例分析
案例3:某站14477G红光带不灭故障原因分析 如下: (1)由于相邻站的ZPW-2000A轨道电路小轨 道未纳入联锁,但为了小轨道出现问题能够报警 ,便设臵了XGBJ,由接盒输出的XGJ条件电源供 电。 (2)相邻站14489G为该站至相邻站集中区 的轨道电路,而某站的ZPW-2000A轨道电路小轨 道纳入了联锁,因此相邻站14489G的小轨条件要 通过站联电路送至该站,使该站14477G动作。
轨道电路故障处理及案例分析
QKZ电源因断线被切断 ,使该组合相对应的所 有区段的QZJ失去正电 源而落下。导致相应信 号机灭灯,轨道电路亮 红带。
轨道电路故障处理及案例分析
QZJ落下后切断发送通 道电路导致相应轨道 电路亮红光带。其中 1LQG没有信号机,其 红光带原因为红灯灭 灯后,红灯后移所致 。
轨道电路故障处理及案例分析
以上两起25HZ轨道电路亮红光带故障均为工务断轨所 致。 根据以上两个故障案例的微机监测曲线截图可以看 出,25HZ轨道电路发生断轨亮红光带后,电压和相位角 的变化与轨道电路轨端绝缘破损以及轨道电路半短路的 故障数据非常相似,即电压下降、相位角上升。因此很 容易误导故障处理人员按短路的故障进行查找处理。 如因室外单根钢轨断裂,则会造成牵引电流只能在 单轨条上通过,致使通过扼流变线圈上的电流不平衡, 导致扼流变将50HZ电压分量送回室内,因此当故障区段 附近有电力机车时,在分线盘能测到较高的50HZ电压。

轨道电路故障处理及案例分析.

轨道电路故障处理及案例分析.



正常
正常
正常
正常
正常




接收和发送缆同时断或 是电源公共部分出故障
轨道电路故障处理及案例分析
2 3
5
1 4
6
轨道电路故障处理及案例分析
一、ZPW-2000A轨道电路 1.故障范围判断 结合上表,可以快速判断故障范围,因电缆存在 分布电容问题及ZPW-2000A轨道电路为高频轨道电路 ,一定要慎用电流表对故障性质进行判断。 主轨入和小轨入电压均正常,但轨道电路仍然存 在红光带时,则通过轨出1和轨出2的电压值来判断故 障部位。只有轨出1或轨出2电压变化时,排除衰耗盒 背面电压调整跳线无异常后,则可能是衰耗盒内部存 在故障。如轨出1和轨出2均正常,则可能是接收盒( 主、备同时)故障,或是衰耗盒至接收盒之间配线故 障。
轨道电路故障处理及案例分析
案例3:某站14477G红光带不灭故原因分析如 下:
(3)因此相邻站14489G的XGBJ并接了一个 XGJ,由于14489G接收盒的14494G并机接收盒故 障,14489G主接收盒一个盒子的XGJ条件电源同 时带不动两个继电器,故当列车通过14489G时 XGJ落下后,当列车出清时XGJ线圈上的电压只 10.2V,XGJ无法吸起。造成相邻站的小轨条件未 送给南昌站,致使该站的14477G亮红光带。
轨道电路故障处理及案例分析
二、25HZ轨道电路 1. 故障判断 根据相位角情况和电压的情况判断故障的性 质:基本原则相位角升高,电压下降为短路故障 ;相位角下降,电压下降为开路故障。但特殊情 况如下:
轨道电路故障处理及案例分析
二、25HZ轨道电路 1. 故障判断 (1)完全短路的故障相位角会到0度,小 心误判,但认真查看故障开始时故障相位角曲线 一般都会有出现相位角上升的趋势。 (2)断轨时的故障曲线电压会下降至一半 ,相位角会升高,有时高达200-300度,也容易 误判为短路故障。 (3)3V化25HZ轨道电路适配器故障电压下 降一半左右,很容易误判为与相邻区段绝缘节头 短路故障。

ZPW—2000A一体化轨道电路故障分析及处理-

ZPW—2000A一体化轨道电路故障分析及处理-

ZPW—2000A一体化轨道电路故障分析及处理* ZPW-2000A一体化轨道电路作为高速铁路系统的子系统,设备工作的可靠性直接影响行车安全,文章总结了ZPW-2000A一体化轨道电路故障处理的基本程序及其判断与处理方法。

标签:ZPW-2000A;一体化;故障分析;程序引言ZPW-2000A一体化轨道电路具有传输性好、安全性高、可维修性强的特点。

目前,已在客运专线上推广使用。

该系统受环境影响大,若检修及维护不良,会导致系统出现故障,如何减少故障是亟待解决的问题[1]。

1 故障处理程序ZPW-2000A一体化轨道电路衰耗器面板及列控中心机柜上有很多指示灯,室内设备工作情况可以通过指示灯报警,室外设备没有检测及报警装置,其故障类型分为有或没有报警指示两种。

1.1 有报警指示的故障处理ZPW-2000A一体化轨道电路衰耗器面板有主发送器、备发送器、接收器工作指示灯及轨道占用灯和正反向运行指示灯,在列控中心与移频柜的通信接口板面板上有CPU与CAN总线通信的指示灯,还有微机监测设备。

(1)通过查看微机监测找到设备故障,然后到信号机械室相应设备处查看衰耗器面板指示灯及发送器、接收器的工作指示灯是否正常。

由于发送器和接收器都有冗余设计,系统正常工作时有可能中断或不中断。

(2)判断故障是否对行车造成影响,若只有一台主发送器有故障,并且已切换到备用发送器上,接收器仍正常工作,则不影响行车。

若只有一台接收器故障,由于双机成对并联运用,另一台仍能正常工作,不影响行车。

(3)检查发送器。

检查发送电源、断路器、是否断开功出电压等,判断发送器内外故障,如备发送器工作正常,估计是主发送器内部故障或CAN总线通道故障,更换发送器。

(4)检查接收器。

检查接收电源、断路器、是否断开输入电压(主轨道、小轨道)等,区分接收器内外故障,如并机仍可保证GJ工作,估计是单一接收器故障,可更换接收器。

(5)检查轨道电路通信盘。

通信盘工作灯亮红灯,表示轨道电路通信盘故障,更换通信盘,查看轨道电路通信盘面板CANA、CANB、CANC、CAND、CANE总线通信灯状态,常亮或常灭为相应CPU与CAN总线的故障,检查相应CAN总线通道连接或检查移频柜内发送接收设备的工作状态。

25Hz轨道电路故障处理分析

25Hz轨道电路故障处理分析

25Hz轨道电路故障处理分析摘要:随着经济的发展以及科学技术水平的不断提高,我国的铁路建设不断完善,为我国国民经济的发展以及人民生活水平的提高做出重要贡献.在铁路系统之中,轨道电路是十分重要的信号设备,其能否正常运行会对整个铁路系统造成一定程度的影响,因此做好轨道铁路故障的处理工作十分重要。

关键词:25Hz轨道电路;线路故障;处理方法;经验总结引言:轨道交通为国民的出行和生产运输提供了便利,要确保轨道交通的运行安全一般会选择25Hz轨道电路信号,但在实际的运行中也会受到诸如环境、设备周期等因素的影响,从而导致出现故障。

技术人员要对25Hz轨道电路的整体架构有个清晰地了解,熟悉常见故障类型并针对性地做好防护和检修,及时响应和解决故障问题,避免损失的继续扩大。

一、25Hz轨道电路的主要架构轨道电路主要是根据实时信号来对列车进行控制的,列车在经过轨道电路设备可以获得该列车的运行数据,以此为基础来对数据进行研究和分析,进而及时排查故障预防事故的发生。

传统的轨道继电器引起结构复杂,占用空间大失误率高,计算机的智能信息化的优点不能有效发挥出来,电路监管效率低下,而25Hz 轨道电路是应用二元二位的轨道继电器,它具备更强的感应能力并且能够自动调整,因此也不需要设置多余的装置就可以达到轨道电路的基本要求,可以为轨道电路持续性供电,除此之外还需要有电阻元器件、变压器等装置,以此构成了较为完整的轨道电路运行系统。

25Hz轨道电路在耗电量上非常少,可以最大化地节约电力能源,同时信号电源是由铁磁分频器来直接提供的,为工作人员处理故障提供的极大的便利。

轨道电路系统一般有两种,一种是有轨线圈,另一种的是局部线圈两种,当它们达到电压的需求时,轨道电路就是未工作的状态,线路也处于空闲的状态;一旦轨道电路感应到列车,整个线路就会转变为分路的状态。

二、轨道电路空闲红光带2.1故障原因在25Hz轨道电路信号设备中,最经常出现的问题是轨道电路空闲红光带。

25HZ相敏轨道电路常见故障处理与判断

25HZ相敏轨道电路常见故障处理与判断

一、案例举例案例一1.故障现象:某一送一受(非电气化非电码化区段)轨道电路区段红光带2.确认故障设备:在控制台观察故障区段,确认属非电气化非发码区段且为一送一受区段。

3.判断故障范围:(1)从分线盘电压判断室内、外故障测试受端电压较平常电压升高时,一般为室内断路。

测试受端电压较平常电压降低时,需甩线测量电缆电压。

电压升高,为室内短路。

电压仍低,为室外故障。

(2)测试受端电压为0,需甩线测量电缆电压。

电压仍为0时,为室外故障。

电压升高,为室内短路故障。

(3)测试受端电压正常:若为25HZ相敏轨道电路,需检查该区段二元二位继电器状态。

二元二位继电器吸起,为轨道架至区段组合断线或组合架内故障。

观察区段组合中的DGJ和DGJF是否吸起来确定。

二元二位继电器未吸起,则说明极性反(极性反一般发生在动线施工后)或局部线圈断和该区段局部电压不良。

4.室内故障的分析处理(1)断路故障处理按照电路配线图逐级测量电压,即可确定故障点。

(2)短路故障处理按照电路配线图甩线测量电压,甩线时应优先断开插接件和接线端子。

5.室外故障的分析处理(1)根据现场条件,就近测量故障区段的轨面电压:电压升高,为测试点至受端断路。

电压为0或降低,应测量电流。

(2)电流较平常增大,为测试点至受端短路。

(3)电流减小时,为测试点到送端短路。

(4)电流为0,为测试点至送端故障,需继续沿钢轨向送端方向测量电压和电流,直至有电压或电流时。

①当有电压无电流时为断路故障,断点为从无到有处。

②当无电压有电流时为短路故障,短路点为从无到有处。

测量送电端限流电阻上的电压值与正常时的测试数据进行比较,是迅速准确判断轨道电路故障性质的有效方法(前提是保证限流电阻接触良好)。

若测得的数值比正常值显著降低或为零,则判断为断线故障;若测得的数值比正常值明显升高,则判断为短路故障。

按照处理室内故障的方法相应处理并结合钳形电流表或轨道测试仪测电流即可。

用钳形电流表或轨道测试仪查钢轨上的短路点时,要注意两个短路点才能构成故障,要一起找出,不留故障隐患。

铁路轨道电路分路不良原因分析及解决措施

铁路轨道电路分路不良原因分析及解决措施

铁路轨道电路分路不良原因分析及解决措施【摘要】铁路轨道电路分路不良是铁路运输中常见的问题,可能导致列车行驶过程中出现故障或事故。

本文从分路不良的原因和解决方案两个方面进行分析。

在原因分析部分,主要包括铁路轨道电路元件老化、接触电阻增大、接地不良等因素;而在解决措施部分,提出了定期检测维护、加强接地连接、更新电路元件等方法。

通过本文的研究,可以有效地预防和解决铁路轨道电路分路不良问题,确保铁路运输的安全和顺畅。

【关键词】铁路轨道、电路分路、不良原因、分析、解决措施、引言、背景介绍、结论、总结1. 引言1.1 背景介绍铁路轨道电路是铁路运输系统中的一个重要组成部分,通过电路与信号系统相连,用于监测铁路上的列车位置和运行状态。

在铁路轨道电路中,分路不良是一个常见且影响运行安全的问题。

分路不良是指在铁路轨道电路中出现的电流无法正常流动的情况,这可能由于电路中的接触不良、绝缘破损、设备老化等多种原因造成。

当出现分路不良时,会导致信号系统无法准确监测列车位置和运行状态,从而增加事故风险。

为了保障铁路运输系统的安全和稳定运行,必须及时发现和解决分路不良问题。

本文将对铁路轨道电路分路不良的原因进行深入分析,并提出相应的解决措施,以期为铁路运输系统的安全运行提供参考和支持。

2. 正文2.1 分路不良的原因分析铁路轨道电路分路不良是指在铁路轨道电路系统中出现的分路信号异常或信号无法正常传输的现象。

这种问题如果得不到及时解决,可能会影响铁路列车的正常运行安全。

分路不良的原因分析主要包括以下几个方面:1. 设备老化:铁路轨道电路系统中的设备长时间使用后可能会出现老化,导致信号传输不畅或出现间断性故障。

2. 环境影响:受到恶劣天气、强电磁干扰等环境因素的影响,铁路轨道电路系统可能会出现分路不良的问题。

3. 施工质量问题:铁路轨道电路系统的安装和维护工作如果存在施工质量问题,如焊接不牢固、连接处松动等,也可能导致分路不良。

ZPW—2000A轨道电路故障分析与处理

ZPW—2000A轨道电路故障分析与处理

- 94 -工 业 技 术0 前言我国铁路系统庞大且复杂,至今我国铁路总里程已经达到了12.7万km,在这其中约20%为高铁线路,剩余部分主要为普速铁路大部分用于承担货物与人员的远距离运输。

当前,铁路系统为了满足经济快速发展对于运力的需求,通过调整铁路线路与时刻表来进一步地提速用以更好、更快地完成人员与物资的输送。

而上述部分完成的前提则是要具有完善、高效的铁路信号系统。

ZPW—2000A 轨道电路作为铁路信号系统中的重要组成部分,其工作的可靠性、稳定性与铁路系统的正常工作有着直接而密切的联系。

在ZPW—2000A 轨道电路运行中应当积极做好ZPW—2000A 轨道电路运行故障的分析并采取针对性的措施予以解决保障ZPW—2000A 轨道电路的安全、高效、稳定的运行。

1 ZPW—2000A轨道电路工作原理ZPW—2000A 轨道电路是由电气绝缘节、发送器、接收器、防雷系统、轨道继电器以及传输电缆等器件所组成的长达29m 的钢轨区段。

ZPW—2000A 轨道电路根据其结构及原理可以分为主轨道电路和小轨道电路两大部分,其中又可以认为小轨道电路为主轨道电路的延续区段。

ZPW—2000A 轨道电路由室内和室外两大部分组成,两者共同构成完整的回路用以对列车运行状态进行监控。

2 ZPW—2000A轨道电路常见红光带故障分析红光带故障是ZPW—2000A 轨道电路运行中较为常见的一种故障,造成ZPW—2000A 轨道电路出现红光带故障的原因多且复杂,根据ZPW—2000A 轨道电路出现红光带故障原因的种类与特性的不同主要分为以下4种:本区段主、小轨道同时故障,本区段主、小轨任一出现故障,相邻两轨道区段同时出现故障以及瞬间闪红光带。

为做好ZPW—2000A 轨道电路红光带故障的排查与处理应当结合红光带特性的不同进行相应的处理。

2.1 本区段主、小轨同时故障当本区段主、小轨同时故障造成ZPW—2000A 轨道电路出现红光带故障时,可以初步判定故障点为室内信号发送设备。

铁路轨道电路分路不良原因分析及解决措施

铁路轨道电路分路不良原因分析及解决措施

铁路轨道电路分路不良原因分析及解决措施铁路轨道电路是铁路运输系统中的重要组成部分,它通过信号和道岔的控制,确保列车在轨道上安全、准确地行驶。

在实际运行中,铁路轨道电路分路不良问题时有发生,给铁路运输带来了一定的安全隐患和运营压力。

本文将通过对铁路轨道电路分路不良原因的分析及解决措施的讨论,为解决这一问题提供参考。

一、铁路轨道电路分路不良原因分析1. 轨道绝缘损坏轨道绝缘损坏是导致铁路轨道电路分路不良的主要原因之一。

在车辆行驶过程中,轨道绝缘受到了重压和磨损,随着使用时间的增加,绝缘可能发生老化、变形或碎裂等情况,导致电路分路不良。

2. 大气环境影响铁路周围的大气环境也是导致铁路轨道电路分路不良的重要原因之一。

在潮湿多雨的地区,铁路轨道电路易受潮气和水气的影响,增加了电路分路的可能性。

3. 设备故障铁路轨道电路设备的故障也是导致电路分路不良的原因之一,例如接触线、电缆、信号机等设备出现故障或缺陷,都可能导致电路分路不良的发生。

4. 维护不到位铁路轨道电路的维护不到位也是导致电路分路不良的原因之一。

对于老旧设备和老化的绝缘,如果没有及时进行维护和检修,就容易导致电路分路不良。

二、铁路轨道电路分路不良解决措施1. 维护保养针对轨道绝缘老化和设备故障等问题,铁路部门应当加强对轨道绝缘和设备的维护保养工作,定期进行检修和更换,确保轨道电路设备的正常运行。

2. 技术更新采用新的材料和技术,提高轨道绝缘的使用寿命和抗老化能力,减少因轨道绝缘老化导致的电路分路不良的可能性。

3. 设备监测建立设备监测体系,实时监测轨道电路设备的运行状态,提前发现并解决设备故障和缺陷,降低电路分路不良的发生概率。

4. 环境保护采取措施,改善铁路周边的大气环境,减少潮湿和水气对轨道电路的影响,降低电路分路不良的可能性。

5. 人员培训加强对铁路维护人员的培训和管理,提高其对轨道电路设备的维护保养水平,确保设备的正常运行和电路分路不良的预防。

铁道铁路职业考试ZPW-2000轨道电路故障分析处理案例论文

铁道铁路职业考试ZPW-2000轨道电路故障分析处理案例论文

ZPW-2000轨道电路故障分析处理案例一、发送盒故障1.现象描述⑴控制台移频报警;⑵衰耗盒面板“发送工作”指示灯绿灯熄灭。

2.案例记录某日某站控制台移频报警,无红光带。

3.原因分析⑴用C D96数字选频表的直流档,在衰耗盒面板上“发送电源”插孔测试,工作电源正常;⑵用C D96数字选频表选好相应频率,在衰耗盒面板上“发送功出”插孔测试,无电压输出,判断为发送器故障。

4.解决措施更换损坏的发送盒,故障恢复。

分析提示:⑴发送器工作电源正常,但没有功出电压输出,可以考虑发送器故障。

但是当低频编码不良时,也没有功出电压输出,这时应考虑其它故障点。

⑵测量直流电压或单一频率的交流电压时,也可以使用普通数字万用表,但不要使用机械式万用表。

二、编码电路断线故障1.现象描述⑴控制台移频报警;⑵衰耗盒面板“发送工作”指示灯绿灯熄灭。

2.案例记录某日某站开放某信号时控制台移频报警,无红光带。

3.原因分析⑴用C D96数字选频表的直流档,在衰耗盒面板上“发送电源”插孔测试,工作电源正常;⑵因仅在开放某信号时移报警,怀疑编码电路故障,取消某信号后,移频报警消失,判断正确。

⑶对照电路原理图查找为组合侧面端子压接不良。

4.解决措施重新压接万可端子恢复。

因编码电路故障造成主发送F B J落下,自动切换至N+1F S 工作,不会出现红光带,为缩小故障查找范围,有条件时可以开放不同信号进行试验。

三、发送器底座接触不良1.现象描述衰耗盒面板“发送工作”指示灯绿灯点亮,轨道空闲但“轨道占用”指示灯红灯点亮。

2.案例记录某日某站X X区段红光带,控制台无移频报警。

3.原因分析⑴用C D96数字选频表的直流档,在衰耗盒面板上“发送电源”插孔测试,工作电源正常;⑵在衰耗盒上测试“发送功出”无电压输出。

⑶怀疑为发送盒故障,更换发送盒仍未恢复。

⑷测试发送盒后部S1、S2仍无输出,拆除发送盒发现发送器底座S1端子碳化严重,更换端子后恢复。

4.解决措施更换端子后恢复因功出端子高电压、大电流,如果虚接会造成局部发热,长时会造成端子损坏,造成开路故障。

轨道电路典型故障及分析

轨道电路典型故障及分析

19
主要内容
1、 区间分路不良 2、 雷电防护 3、 钢轨接地危险性及防范 4 、调谐区故障危险性及防护 5、 复线线路完全横向连接最小间距 6、 站内移频轨道电路分路不良 7、 站内道岔并联分支连接线断线后列车丧失分路 8、 站内移频轨道电路绝缘破损,机 车信号误动升级 9 、站内轨道电路单向回流中断 10、 同方向载频信号邻线干扰 11、动车组侧线启动越过无连通回流 的绝缘节,烧钢 轨及 绝缘节
桥梁; (5)隧道 ;(6)轴温探测仪地面与钢轨连接部分等。
16
主要内容
1、 区间分路不良 2、 雷电防护 3、 钢轨接地危险性及防范 4 、调谐区故障危险性及防护 5、 复线线路完全横向连接最小间距 5、 站内移频轨道电路分路不良 6、 站内道岔并联分支连接线断线的列车丧失分路 7、 站内移频轨道电路绝缘破损,机 车信号误动升级 8 、站内轨道电路单相回流中断 9、 同方向载频信号邻线干扰 10、动车组侧线启动越过无连通回流 的绝缘节,烧钢 轨及 绝缘节
9
典型案例分析—区间分路不良
7)建议接收器采用15秒的吸起延时; 8)建议采用类似站内轨道电路三点检查方法;
以上1~6为加强措施,7、8为系统有效措施
应强调的两个问题:
1)鉴于目前电容质量的高可靠性,电容应视为可靠环节, 不再考虑一个电容故障不造成“红光带”的约束,“可靠性” 让位于“安全性”; 2)电容施工时钻孔及安装方式应按标准操作。 5、区间分路不良的解决过程可视为总结经验,靠国际标准的 过程。
1
实作培训对象
全路有关客运专线路局的信号安全技术管
理干部及技术人员
2
培训目的
1、使大家清楚认识到轨道电路是一门涉及行车、人身安全的 “安全技术”。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当两个送电端邻接时亦可利用此法进行。
以上是JZXC——480型轨道电路的基本测试方法,它完全也适用于25HZ轨道电路的检测,只不过不同的是25HZ轨道电路的所谓“极性”是由相位来区分的,在测试时还应注意相位的问题,要配合相位的检查来测试。相位的测试方法如下:
一、轨道电路的基本检测方法

2DGJ
BG
轨道电路极性交叉图1
1DGJ
将两根短路线跨接在两组绝缘上,此时,轨道继电器衔铁落下,则说明极性是正确的。因此时电源正负极互相短路。反之,则极性没有做到交叉(两轨面电压差值不能太大)。
2、在交流轨道电路中当送电端和受电端邻接时,则可利用短路线一根和交流电压表一块按下图中所示进行检查。
为了保证轨道电路不受邻近轨道电路电流的影响而使轨道继电器衔铁错误动作,两个邻接的轨道电路电源极性必须进行交叉安排。检查轨道电路是否合于这种安排,其测试方法如下:
1、在交流轨道电路区段两个受电端邻接时,可利用两根短路线,如下图中所示进行检查。
将两根短路线跨接在两组绝缘上,此时,轨道继电器衔铁落下,则说明极性是正确的。因此时电源正负极互相短路。反之,则极性没有做到交叉(两轨面电压差值不能太大)。
③若轨道继电器1GJ和2GJ全部失磁落下和电压表读数减小,甚至为零或反向动作时,则说明绝缘(A)和(B)都有破损现象存在。
2、感应测试法
这种测试法是利用电磁感应的原理来进行的,如下图所示,由于交变磁场对线圈的影响,在线圈内产生一个感应电势,该电势通过电表或蜂鸣器反映出轨道绝缘是否良好。因此,它只能适用于交流或脉冲(电码)式轨道电路区段,其他类型轨道电路不宜使用。
2、感应测试法
这种测试法是利用电磁感应的原理来进行的,如下图所示,由于交变磁场对线圈的影响,在线圈内产生一个感应电势,该电势通过电表或蜂鸣器反映出轨道绝缘是否良好。因此,它只能适用于交流或脉冲(电码)式轨道电路区段,其他类型轨道电路不宜使用。
感应线圈测试图
用耳机(高阻型)和带铁心的感应线圈各一个,感应线圈沿带有交流电的钢轨移动时,在耳机内即可听到嗡嗡声。若在不通过交流电的钢轨上移动时,则在耳机内无声。因此将该线圈在绝缘上移动时,如果耳机发现有“卜卜”的声音则说明该处绝缘有破损现象,反之若耳机内无声音,则说明绝缘性能良好。
2、在交流轨道电路中当送电端和受电端邻接时,则可利用短路线一根和交流电压表一块按下图中所示进行检查。
首先将电压表接在受电端钢轨面上,由电压表上读得电压V1值,然后将电压表跨接在一组钢轨绝缘上,再将短路线跨接在另一组钢轨绝缘上,这样从电压表有可读得电压V2值,如果电压值V1小于V2,则说明该处极性是交叉的,反之,则极性没有交叉(此时同样应注意两轨面电压的差值,差值大亦有可能误判)。
(六)、极性交叉检查
为了保证轨道电路不受邻近轨道电路电流的影响而使轨道继电器衔铁错误动作,两个邻接的轨道电路电源极性必须进行交叉安排。检查轨道电路是否合于这种安排,其测试方法如下:
1、在交流轨道电路区段两个受电端邻接时,可利用两根短路线,如下图中所示进行检查。
BG



BG




a
B
A
Rx
DGJ
RDD
RDD
BG
轨道电路绝缘仪表测试图2
V(3)、如下图所示,首先将电压跨接在2GJ受电端的钢轨面上,此时,由电压表上可读得一个数值,然后利用短路线a跨接在相邻轨道电路异侧钢轨上(如图中虚线)。
BG
a




B
A
2DGJ
BG
BG
分歧轨道电路分路灵敏度测试图
在进行测试前,行将轨面处理干净,然后用事先准备好的标准分路灵敏度线在轨面上进行分路。分路后,轨道继电器正常工作停止或轨道继电器衔铁落下,残压符合规定,表示该区段分路灵敏度符合要求。
(五)、轨道绝缘的测试
1、仪表测试法
⑴、在送电端的两根钢轨之间并接一块电压表或串联一块电流表,其连接方式如下图中所示。
感应线圈测试图
用耳机(高阻型)和带铁心的感应线圈各一个,感应线圈沿带有交流电的钢轨移动时,在耳机内即可听到嗡嗡声。若在不通过交流电的钢轨上移动时,则在耳机内无声。因此将该线圈在绝缘上移动时,如果耳机发现有“卜卜”的声音则说明该处绝缘有破损现象,反之若耳机内无声音,则说明绝缘性能良好。
(六)、极性交叉检查
变压器电压测试图
在进行测试工作时,无论在任何情况下,都不能将电压表串接在电路中。由于电压表本身内阻很高,若串接在电路 中,将会影响轨道电路的正常工作。
2、变阻器电压降
用电压表(交流电可采用0——2.5V)一块,并接在变阻器(R)的两端,如下图所示,即可进行测试。
变阻器电压测试图
(二)、送电端轨面电压和电压测试
一、轨道电路的基本检测方法
轨道电路的一般检测,铁路信号工作中不可缺少的一项重要工作,根据规定,信号工区应定期进行下列项目的检测:
(一)、电源变压器及变阻器的测试
1、电源变压器电压
用交流电压表一块并接在变压器Ⅱ次线圈的端子上,如图所示,即可进行测试。交流电压表的量程应为实际使用电压的1.5——2倍,内阻一般应大于200欧母。
当短路线a连接在两根钢轨上时,由于轨道电路绝缘不好,电路中绝缘电阻值减少,直接影响电压表(或电流表)上的读数。但此时尚不能确定故障位置。为此,在保留短路线a的基础上,再利用短路线b跨接在其中一组绝缘上,将轨道绝缘加以短路,若电压表(或电流表)读数有较大变化时,则说明相对应的一组绝缘不良;若电压表(或电流表)读数不变时,则可将此短路线b跨接在另一组绝缘上,然后由上述原理来判断相对应的一组绝缘性能情况。
a
R
A
V
b
轨道绝缘绝缘仪表测试图1
当接仪表后,在电压表(或电流表)一即可读得一个数值。然后利用短路线a连接在相邻轨道电路两根钢轨上(如图中虚线所示),此时,如果电压表(或电流表)读数没有变化时,则说明这一对绝缘良好;如果电压表(或电流表)读数有变化时则说明这一对绝缘中有不良的现象存在。
交流轨道电路可按图中所示,用交流电压表和交流电流表各一块,分别进行测试即可。
A
V
A
V
A
交流轨道电路受电端电压、电流测试图
(四)、分路效应的检查
以标准的分路电阻值短路两根钢轨时,观察轨道电路的动作情况,并测试轨道继电器端子上的残压,应小于等于所规定的标准。
对于非分支轨道电路区段(如站内轨道电路),可按下图中所示,将标准分路灵敏度线在受电端轨面上进行分路即可。
交流轨道电路可按下图中所示,即可测试。用交流电压表和交流电流表各一块,分别连接在钢轨上和供电电路内,即可进行测试。仪表量程应根据轨道电路类型来定。
交流轨道电路轨面电压和电流的测试图
(三)、受电端电压、电流(中继变压器一次、二次电压、电流和轨道电路电压)的测试
交流轨道电路可按图中所示,用交流电压表和交流电流表各一块,分别进行测试即可。
(2)、如下图中所示,首先将电压表跨接在受电端钢轨上,此时电压表上可读得一个数值,然后利用短路线阿跨接在其中一组绝缘节A两端的钢轨上。此时,如果轨道继电器衔铁落下或电压表数值减小,甚至指针反方向动作时,则说明相对应的那组绝缘B有破损现象。因此时邻接轨道电源通过绝缘B直接串在电路中,构成环状电路所致。再按此法,将短路线a跨接在另一组绝缘B上,同样即可测得相对绝缘A的性能情况。
交流轨道电路受电端电压、电流测试图
(四)、分路效应的检查
以标准的分路电阻值短路两根钢轨时,观察轨道电路的动作情况,并测试轨道继电器端子上的残压,应小于等于所规定的标准。
对于非分支轨道电路区段(如站内轨道电路),可按下图中所示,将标准分路灵敏度线在受电端轨面上进行分路即可。
对于分支轨道电路区段,可按图中所示,首先将标准分路灵敏度线在未设的轨道电路继电器的一侧尽头处的轨面上进行分路,然后再设有轨道继电器一侧处进行分路即可。
分歧轨道电路分路灵敏度测试图
在进行测试前,行将轨面处理干净,然后用事先准备好的标准分路灵敏度线在轨面上进行分路。分路后,轨道继电器正常工作停止或轨道继电器衔铁落下,残压符合规定,表示该区段分路灵敏度符合要求。
(五)、轨道绝缘的测试
1、仪表测试法
⑴、在送电端的两根钢轨之间并接一块电压表或串联一块电流表
在进行测试工作时,无论在任何情况下,都不能将电压表串接在电路中。由于电压表本身内阻很高,若串接在电路 中,将会影响轨道电路的正常工作。
2、变阻器电压降
用电压表(交流电可采用0——2.5V)一块,并接在变阻器(R)的两端,如下图所示,即可进行测试。
R
V
变阻器电压测试图
(二)、送电端轨面电压和电压测试
交流轨道电路可按下图中所示,即可测试。用交流电压表和交流电流表各一块,分别连接在钢轨上和供电电路内,即可进行测试。仪表量程应根据轨道电路类型来定。
R
A
V
交流轨道电路轨面电压和电流的测试图
(三)、受电端电压、电流(中继变压器一次、二次电压、电流和轨道电路电压)的测试
(2)、如下图中所示,首先将电压表跨接在受电端钢轨上,此时电压表上可读得一个数值,然后利用短路线阿跨接在其中一组绝缘节A两端的钢轨上。此时,如果轨道继电器衔铁落下或电压表数值减小,甚至指针反方向动作时,则说明相对应的那组绝缘B有破损现象。因此时邻接轨道电源通过绝缘B直接串在电路中,构成环状电路所致。再按此法,将短路线a跨接在另一组绝缘B上,同样即可测得相对绝缘A的性能情况。
(3)、如下图所示,首先将电压跨接在2GJ受电端的钢轨面上,此时,由电压表上可读得一个数值,然后利用短路线a跨接在相邻轨道电路异侧钢轨上(如图中虚线)。
相关文档
最新文档