量子力学主要知识点复习资料

合集下载

《量子力学》复习资料提纲

《量子力学》复习资料提纲

)(Et r p i p Ae-⋅=ρϖηϖψ《量子力学》复习 提纲一、基本假设 1、(1)微观粒子状态的描述 (2)波函数具有什么样的特性 (3)波函数的统计解释2、态叠加原理(说明了经典和量子的区别)3、波函数随时间变化所满足的方程 薛定谔方程4、量子力学中力学量与算符之间的关系5、自旋的基本假设 二、三个实验1、康普顿散射(证明了光子具有粒子性) 第一章2、戴维逊-革末实验(证明了电子具有波动性) 第三章3、史特恩-盖拉赫实验(证明了电子自旋) 第七章 三、证明1、粒子处于定态时几率、几率流密度为什么不随时间变化;2、厄密算符的本征值为实数;3、力学量算符的本征函数在非简并情况下正交;4、力学量算符的本征函数组成完全系;5、量子力学测不准关系的证明;6、常见力学量算符之间对易的证明;7、泡利算符的形成。

四、表象算符在其自身的表象中的矩阵是对角矩阵。

五、计算1、力学量、平均值、几率;2、会解简单的薛定谔方程。

第一章 绪论1、德布洛意假设: 德布洛意关系:戴维孙-革末电子衍射实验的结果: 2、德布洛意平面波:3、光的波动性和粒子性的实验证据:4、光电效应:5、康普顿散射: 附:(1)康普顿散射证明了光具有粒子性(2)戴维逊-革末实验证明了电子具有波动性∑=nnn c ψψ1d 2=⎰τψ(全)()ψψψψμ∇-∇2=**ηϖi j ⎩⎨⎧≥≤∞<<=ax x a x x V 或0,0,0)(0=⋅∇+∂∂j tϖρ⎥⎦⎤⎢⎣⎡+∇-=),(222t r V H ϖημ)(,)(),(r er t r n tE i n n n ϖϖϖηψψψ-=n n n E H ψψ=(3)史特恩-盖拉赫实验证明了电子自旋第二章 波函数和薛定谔方程1.量子力学中用波函数描写微观体系的状态。

2.波函数统计解释:若粒子的状态用()t r ,ρψ描写,τψτψψd d 2*=表示在t 时刻,空间r ρ处体积元τd 内找到粒子的几率(设ψ是归一化的)。

第一章 量子力学基础知识

第一章  量子力学基础知识

《结构化学基础》讲稿第一章孟祥军第一章 量子力学基础知识 (第一讲)1.1 微观粒子的运动特征☆ 经典物理学遇到了难题:19世纪末,物理学理论(经典物理学)已相当完善: ◆ Newton 力学 ◆ Maxwell 电磁场理论 ◆ Gibbs 热力学 ◆ Boltzmann 统计物理学上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。

1.1.1 黑体辐射与能量量子化黑体:能全部吸收外来电磁波的物体。

黑色物体或开一小孔的空心金属球近似于黑体。

黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。

★经典理论与实验事实间的矛盾:经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。

按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。

按经典理论只能得出能量随波长单调变化的曲线:Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。

Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。

经典理论无论如何也得不出这种有极大值的曲线。

• 1900年,Planck (普朗克)假定:黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。

• h 称为Planck 常数,h =6.626×10-34J •S•按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合:●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。

能量波长黑体辐射能量分布曲线 ()1/8133--=kt h c h eE ννπν1.1.2 光电效应和光子学说光电效应:光照射在金属表面,使金属发射出电子的现象。

第一章量子力学基础知识总结

第一章量子力学基础知识总结

第一章量子力学基础知识总结微观粒子的运动特征1.黑体辐射和能量量子化●黑体是一种能全部吸收照射到它上面的各种波长辐射的物体。

●黑体辐射的能量量子化公式:●普朗克常数(h=6.626×10-34 J·s)2.光电效应和光子学说●只有当照射光的频率超过某个最小频率(即临阈频率)时,金属才能发射光电子。

●不同金属的临阈频率不同。

●随着光强的增加,发射的电子数也增加,但不影响光电子的动能。

●增加光的频率,光电子的动能也随之增加●式中h为Planck常数,ν为光子的频率●m = h /c2所以不同频率的光子有不同的质量。

●光子具有一定的动量(p)P = mc = h /c = h/λ●光的强度取决于单位体积内光子的数目,即光子密度。

Ek = h -W3.实物微粒的波力二项性● E = h v , p = h / λ●光(各种波长的电磁辐射)和微观实物粒子(静止质量不为0的电子、原子和分子等)都有波动性(波性)和微粒性(粒性)的两重性质,称为波粒二象性4.不确定度关系●具有波动性的粒子其位置偏差(△x )和动量偏差(△p )的积恒定.,有以下关系:量子力学基本假设1、波函数和微观粒子的状态●波函数ψ和微观粒子的状态●合格波函数的条件2、物理量和算符●算符:对某一函数进行运算,规定运算操作性质的符号。

如:sin,log等。

线性算符:Â( 1+ 2)=Â 1+Â 2自轭算符:∫ 1*Â 1 d =∫ 1(Â 1 )*d 或∫ 1*Â 2 d =∫2(Â 1 )*d3、本征态、本征值和Schrödinger方程●A的本征方程Aψ= aψa 称为力学量算符 A 的本征值,ψ称为A的本征态或本征波函数,4、态叠加原理●若 1, 2… n为某一微观体系的可能状态,由它们线性组合所得的 也是该体系可能的状态。

5、Pauli(泡利)原理●在同一原子轨道或分子轨道上,至多只能容纳两个自旋相反的电子。

量子力学复习重点

量子力学复习重点
1 2 1 2



1 e 2

2 2
x
e
i Px
dx




e
1 2 x2 2
e
i Px
dx

1 2 1 2 1 2




e
1 ip p2 2 ( x 2 )2 2 2 2 2
dx

2 e

4 2 1 ( 3 2a0 a0


0
r 2 r / a0 (2r )e dr a0
2 2 a0 a0 4 2 2 ( 2 ) 4 2 4 4 2a0 2a0
(r , , )d (5) c( p) * p (r )

c( p ) 2
p2 ; 2
(3)动量的几率分布函数。
解:(1) U
1 1 2 x 2 2 2 2



x 2 e
2
x2
dx

1 1 1 2 1 1 2 2 2 2 2 2 2 2 4 2 2
1 4

(2) T

4 3 a0


0
r 3 a 2 r / a0 dr

4 3! 3 a0 3 4 2 a0 2 a 0
(2) U (
e2 e2 ) 3 r a0

0 0

2

0
1 2 r / a0 2 e r sin drd d r
e2 3 a0 4e 2 3 a0
解: U ( x)与t 无关,是定态问题。其定态 S—方程

量子力学基础 知识点

量子力学基础 知识点

量子物理知识点小结一、普朗克能量子假说1、黑体辐射的实验定律2、普朗克能量子假说2)维恩位移定律:T λm = b1)斯特藩-玻耳兹曼定律: M (T ) = σT 4对频率为ν 的谐振子, 最小能量 ε 为: ⋅⋅⋅⋅⋅⋅,,,3,2,εεεεn νh =ε谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍,二、爱因斯坦光量子假说1、光量子假说 W m h νm+=221v 2、光电效应方程: 光具有“波粒二象性”光子的动量: λhp =光子的能量: h ν=ε碰撞过程中能量守恒: 2200mc h νc m h ν+=+v m e h e h n +=λλ00碰撞过程中动量守恒:波长的偏移量:)cos 1(0θλλλλ-=-=∆c nm 00243.0m 10432120=⨯⋅≈=-cm h c λ康普顿波长: 三、康普顿效应(X 射线光子与自由电子碰撞)四、玻尔氢原子理论一切实物粒子都具有波粒二象性 2)角动量量子化条件假设; 1)定态假设; 3)频率条件假设h νmc E ==2λh m p ==v ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥∆⋅∆≥∆⋅∆≥∆⋅∆222 z y x p z p y p x 2≥∆⋅∆t Ε五、德布罗意假说六、不确定性关系:七、波函数2、波函数满足的条件1、波函数的统计意义1)归一化条件t 时刻,粒子在空间r 处的单位体积中出现的概率, 与波函数模的平方成正比。

*2),(ΨΨt r ΨdVdW w === 概率密度: 12=⎰⎰⎰dV Ψ粒子在整个空间出现的总概率等于 1 , 即: 2)标准化条件:单值、连续、有限一维情况: 1)(2=⎰+∞∞-dx x Ψ八、定态薛定谔方程1、定态:若粒子的势能 E P (x ) 与 t 无关,仅是坐标的函数, 微观粒子在各处出现的概率与时间无关2、一维定态薛定谔方程: 0)()()(=-+x E E 2m dx x d P 222ψψ九、氢原子,3,2,1,1)8(22204=⋅-=n nh me E n ε1、能量量子化和主量子数n 2、角动量量子化和角量子数l)1(2)1(+=+=l l h l l L π1,,3,2,1,0-=n l 3、角动量空间量子化和磁量子数m ll m m L l l z ±±±==,,2,1,0, 4、自旋角动量和自旋量子数 21,)1(=+=s s s S 21,±==s s z m m S十、原子的电子壳层结构1、原子中电子状态由四个量子数(n 、l 、m l 、 m s )决定用 K , L , M , N , O , P , …. 表示 2、原子的壳层结构主量子数 n 相同的电子属于同一壳层壳层n = 1 , 2 , 3 , 4 , 5 , 6 , …. 同一壳层中( n 相同),l 相同的电子组成同一分壳层 支壳层 用 s , p , d , f , … , 表示l = 0, 1 , 2 , 3 , … , n -13、原子的壳层结构中电子的填充原则1) 泡利不相容原理2) 能量最小原理。

量子力学复习资料

量子力学复习资料

《量子力学》复习资料第一章 绪论1、经典物理学的困难:①黑体辐射;②光电效应;③氢原子线性光谱;④固体在低温下的比热。

2、★★★普朗克提出能量子假说:黑体只能以νh E =为能量单位不连续的发射和吸收辐射能量,⋯⋯==,3,2,1 n nh E n ν,能量的最小单元νh 称为能量子。

意义:解决了黑体辐射问题。

3、★★★(末考选择)爱因斯坦提出光量子假说:电磁辐射不仅在发射和吸收时以能量νh 的微粒形式出现,而且以这种形式在空间以光速c 传播,这种粒子叫做光量子,也叫光子。

意义:解释了光电效应。

【注】光电效应方程为0221W hv v m m e -= 4、★★★玻尔的三个基本假设:①定态假设:原子核外电子处在一些不连续的定常状态上,称为定态,而且这些定态相应的能量是分立的。

②跃迁假设:原子在与能级m E 和n E 相对应的两个定态之间跃迁时,将吸收或辐射频率为ν的光子,而且有m n E E hv -=.③角动量量子化假设:角动量必须是 的整数倍,即 ,3,2,1,==n n L意义:解决了氢原子光谱问题。

(末考选择)5、★★★玻尔理论后来也遇到了困难,为解决这些困难,德布罗意提出了微观粒子也具有波粒二象性的假说。

6、德布罗意公式:⇒⎪⎩⎪⎨⎧===k n h p h Eλν意义:将光的波动性和粒子性联系起来,两式的左端描述的是粒子性(能量和动量),右端描述的是波动性(频率和波长)。

7、(填空)德布罗意波长的计算:meUhmE h p h 22===λ 8、★★★康普顿散射实验的意义:证明了光具有粒子性。

(末考填空)同时也证实了普朗克和爱因斯坦理论的正确性。

9、★★★证实了电子具有波动性的典型实验:戴维孙-革末的电子衍射实验(也证实了德布罗意假说的正确性)、电子双缝衍射实验。

10、微观粒子的运动状态和经典粒子的运动状态的区别:(1)描述方式不同:微观粒子的运动状态用波函数描述,经典粒子的运动状态用坐标和动量描述;(2)遵循规律不同:微观粒子的运动遵循薛定谔方程,经典粒子的运动遵循牛顿第二定律。

量子力学复习资料

量子力学复习资料

量子力学复习资料一、基本概念1、波粒二象性这是量子力学的核心概念之一。

它表明微观粒子既具有粒子的特性,如位置和动量,又具有波动的特性,如波长和频率。

例如,电子在某些实验中表现出粒子的行为,如碰撞和散射;而在另一些实验中,如双缝干涉实验,又表现出波动的行为。

2、量子态量子态是描述微观粒子状态的方式。

与经典物理学中可以精确确定粒子的位置和动量不同,在量子力学中,粒子的状态通常用波函数来描述。

波函数的平方表示在某个位置找到粒子的概率密度。

3、不确定性原理由海森堡提出,指出对于一个微观粒子,不能同时精确地确定其位置和动量,或者能量和时间。

即:\(\Delta x \cdot \Delta p \geq \frac{\hbar}{2}\),\(\Delta E \cdot \Delta t \geq \frac{\hbar}{2}\),其中\(\hbar\)是约化普朗克常数。

二、数学工具1、薛定谔方程这是量子力学中的基本方程,类似于经典力学中的牛顿运动方程。

对于一个质量为\(m\)、势能为\(V(x)\)的粒子,其薛定谔方程为:\(i\hbar\frac{\partial \Psi(x,t)}{\partial t} =\frac{\hbar^2}{2m}\frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t)\)。

2、算符在量子力学中,物理量通常用算符来表示。

例如,位置算符\(\hat{x}\)、动量算符\(\hat{p}\)等。

算符作用在波函数上,得到相应物理量的可能取值。

三、常见量子力学系统1、一维无限深势阱粒子被限制在一个宽度为\(a\)的区域内,势能在区域内为零,在区域外为无穷大。

其能量本征值为\(E_n =\frac{n^2\pi^2\hbar^2}{2ma^2}\),对应的本征函数为\(\Psi_n(x) =\sqrt{\frac{2}{a}}\sin(\frac{n\pi x}{a})\)。

【高考物理必备知识】专题十 量子力学

【高考物理必备知识】专题十 量子力学

必备知识一、原子核的组成1.αβγ、、射线射线种类组成贯穿本领电离作用αα射线粒子是氦原子核42He很小,一张薄纸就能挡住很强ββ射线粒子是高速电子流0-1e、很大,能穿过几毫米厚的铝板较弱γ射线波长很短的电磁波最大,能穿过几厘米厚的铅板很小2.三种射线在电场、磁场中偏转情况的比较(1)在匀强磁场中,射线偏转半径较大,射线偏转半径较小,射线不偏转,如图所示。

αβγ(2)在匀强电场中,射线偏离较小,αβγ射线偏离较大,射线不偏离,如图所示。

二、原子核的衰变1.原子核的组成:原子核是由质子、中子构成的,质子带正电,中子不带电。

2.衰变定义:原子核放出粒子或粒子,则核电荷数变了,变成另一种原子核,这种变化称为原子核的αβ衰变。

3.原子核的衰变衰变类型αβ衰变衰变衰变方程A Z X→A-4Z-2Y+42He A Z X→ A Z+1Y+0-1e衰变实质2 2个质子和个中子结合成一整体射出核内的一个中子转化成了一个质子和一个电子211H2+10n→42He 10n→11H+0-1e衰变规律电荷数守恒、质量数守恒4.衰变规律:原子核发生衰变时,遵循三个守恒定律(1)衰变前后的电荷数守恒。

(2)质量数守恒。

专题十:量子力学(3)动量守恒。

5.确定原子核衰变次数的方法与技巧(1)方法:设放射性元素A Z X 经过次次衰变后,变成稳定的新元素n α衰变和m βA ′Z ′Y ,则衰变方程为:A Z X→A ′Z ′Y +n 42He +m-1e ,根据电荷数守恒和质量数守恒可列方程:A A n Z =′+4,=+-Z ′2n m .以上两式联立解得:=n A A -′4,=m A A -′2+-。

由此可见,确定衰变次数可归结为解一个二元一次方程Z ′Z 组。

(2)技巧:为了确定衰变次数,一般先由质量数的改变确定衰变的次数α(这是因为衰变的次数多少对质量β 数没有影响),然后根据衰变规律确定衰变的次数。

β6.半衰期(1)定义:放射性元素的原子核有半数发生衰变所需的时间。

(完整版)量子力学知识点总结,推荐文档

(完整版)量子力学知识点总结,推荐文档

1光电效应:光照射到金属上,有电子从金属上逸出的现象。

这种电子称之为光电子。

2光电效应有两个突出的特点:①存在临界频率ν0 :只有当光的频率大于一定值v 0 时,才有光电子发射出来。

若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。

②光电子的能量只与光的频率有关,与光的强度无关。

光的强度只决定光电子数目的多少。

3爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出现,而且以这种形式在空间以光速C 传播,这种粒子叫做光量子,或光子4康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。

⒕康普顿效应的实验规律:射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ;波长增量Δλ=λ-λ随散射角增大而增大5戴维逊-革末实验证明了德布罗意波的存在6波函数的物理意义:某时刻t 在空间某一点(x,y,z)波函数模的平方与该时刻t 该地点(x,y,z)附近单位体积内发现粒子的几率密度(通常称为几率)dw(x,y,z,t)成正比。

按照这种解释,描写粒子的波是几率波7波函数的归一化条件1),,,( 2⎰∞=ψτd t z y x 8定态:微观体系处于具有确定的能量值的状态称为定态。

定态波函数:描述定态的波函数称为定态波函定态的性质:⑴由定态波函数给出的几率密度不随时间改变。

⑵粒子几率流密度不随时间改变。

⑶任何不显含时间变量的力学量的平均值不随时间改变9算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。

10厄密算符的定义:如果算符满足下列等式Fˆ,则称为厄密算符。

式中ψ和φ为任意() ˆ ˆdx F dx F φψφψ**⎰⎰=F ˆ波函数,x 代表所有的变量,积分范围是所有变量变化的整个区域。

推论:量子力学中表示力学量的算符都是厄密算符。

11厄密算符的性质:厄密算符的本征值必是实数。

量子力学期末考试复习重点、复习提纲

量子力学期末考试复习重点、复习提纲

量子力学期末考试复习重点、复习提纲量子力学期末考试复习重点、复习提纲第一章绪论1、了解黑体辐射、光电效应和康普顿效应。

2、掌握玻尔—索末菲的量子化条件公式。

3、掌握并会应用德布罗意公式。

4、了解戴维逊-革末的电子衍射实验。

第二章波函数和薛定谔方程1、掌握、区别及计算概率密度和概率2、掌握可积波函数归一化的方法3、理解态叠加原理是波函数的线性叠加4、掌握概率流密度矢量5、理解定态的概念和特点6、掌握并会应用薛定谔方程求解一维无限深方势阱中粒子的波函数及对应能级7、掌握线性谐振子的能级8、定性掌握隧道效应的概念及应用。

第三章量子力学中的力学量1、会算符的基本计算2、掌握厄米算符的定义公式,并能够证明常见力学量算符是厄米算符。

3、了解波函数归一化的两种方法4、掌握动量算符及其本征方程和本征函数5、掌握角动量平方算符和z分量算符各自的本征值,本征方程6、掌握三个量子数n,l,m的取值范围。

7、了解氢原子体系转化为二体问题8、掌握并会求氢原子处于基态时电子的最可几半径9、掌握并会证明定理属于不同本征值(分立谱)的两个本征函数相互正交10、力学量算符F的本征函数组成正交归一系的表达式(分立谱和连续谱)11、理解本征函数的完全性,掌握波函数按某力学量的本征函数展开(分立谱),会求展开系数,理解展开系数的意义。

12、掌握两个计算期望值的公式,会证明其等价性,能应用两公式计算期望值13、掌握坐标、动量算符之间的对易关系,掌握角动量算符之间的对易关系。

14、掌握并会证明定理如果两个算符有一组共同本征函数,而且本征函数组成完全系,则两个算符对易15、掌握不确定关系不等式。

第四章态和力学量的表象(4.1~4.3节)1、理解和掌握什么是表象2、理解不同表象中的波函数描写同一状态。

3、理解态矢量和希尔伯特空间4、了解算符F在Q表象中的表示形式,算符在其自身表象中的表示形式。

原子物理量子力学主要知识点复习

原子物理量子力学主要知识点复习

1.爱因斯坦关系是什么?什么是波粒二象性?答:爱因斯坦关系:⎪⎩⎪⎨⎧========k n n h n c h n c E p h hv Eλπλνπω22 其中 波粒二象性:光不仅具有波动性,而且还具有质量、动量、能量等粒子的内禀属性,就是由式n r =局限性:(1)不能解释较复杂原子甚至比氢稍复杂的氦原子的光谱;(2)不能给出光谱的谱线强度(相对强度);(3)从理论上讲,量子化概念的物理本质不清楚。

4.类氢体系量子化能级的表示,波数与光谱项的关系?答:类氢体系量子化能级的表示:()22202442nZ e E n πεμ-= 波数与光谱项的关系 ,4,5.3,3,5.2,121ˆ22=⎪⎭⎫ ⎝⎛-=n n R v了与氢原子能级的差别7.自旋假设内容,碱金属光谱精细结构特点?答:自旋假设内容:(1)电子具有自旋角动量s p,它在空间任何方向上的投影只能取两个值: 21±=sz p(2)电子具有自旋磁矩 s μ,它在空间任何方向上的投影只能取两个值:B sz sz me p m e μμ±=±=-=2 碱金属光谱精细结构特点:原子态:2523212121D 3,P 3,P 2,S 2,S 122222 ----n层数(表示L 的S,P,D,F )J ,其中电子总角动量J=轨道角动量L+自旋角动量S 。

电子自旋耦合:通过电子之间的自旋产生彼此的效果力。

9.碱土族元素光谱特点?答:Mg 的光谱与He 类似。

也形成两套线系,有两个主线系、两个第一辅线系、两个第二辅线系等等。

Mg 原子也有两套能级,一套是单层能级——单态,另一套是三层能级——三重态。

单层能级间的跃迁产生单线,三层能级间的跃迁产生多线光谱。

10.LS 耦合与jj 耦合过程?两种耦合方式的原子态表示?答:略L+S S 最J 值13.磁场中原子磁矩的表示及引起的能量差。

答:原子磁矩:φμp meiA 2==,而对于两个或两个以上电子的原子,其磁矩表达式为:J eJ P m egμ2=轨道磁矩:B el e l l l l l m e p m e μμ)1()1(22+=+==; 自旋磁矩:B es e s s s m e p m e μμ3)1(=+== ;总磁矩:()B j ej sl j j j j g p m e p p p p μμ12212222+⋅=⎥⎦⎤⎢⎢⎣⎡+-+=。

量子力学知识点

量子力学知识点

量子力学知识点量子力学是20世纪初发展起来的一种物理学理论,它主要描述微观粒子如原子、电子等的行为。

量子力学的核心概念包括波函数、量子态、不确定性原理、量子纠缠等。

以下是量子力学的一些主要知识点总结:1. 波函数:量子力学中,一个粒子的状态由波函数描述,波函数是一个复数函数,其模的平方给出了粒子在某个位置被发现的概率密度。

2. 薛定谔方程:这是量子力学中描述粒子波函数随时间演化的基本方程。

薛定谔方程是量子力学的核心,它是一个偏微分方程,能够预测粒子的行为。

3. 量子态:量子系统的状态可以由波函数表示,这些状态是离散的,并且遵循一定的量子数规则。

4. 量子叠加原理:量子系统可以同时处于多个可能的状态,这些状态的叠加构成了系统的总状态。

5. 不确定性原理:由海森堡提出,指出无法同时精确测量粒子的位置和动量。

这是量子力学与经典力学的一个根本区别。

6. 量子纠缠:两个或多个粒子可以处于一种特殊的相关状态,即使它们相隔很远,一个粒子的状态改变也会立即影响到另一个粒子的状态。

7. 量子隧道效应:粒子有可能穿过一个经典力学中不可能穿越的势垒,这是量子力学中的一个非直观现象。

8. 波粒二象性:量子力学中的粒子既表现出波动性也表现出粒子性,这种性质由德布罗意提出。

9. 量子力学的诠释:包括哥本哈根诠释、多世界诠释等,不同的诠释试图解释量子力学中观察到的现象。

10. 量子计算:利用量子力学原理进行信息处理的技术,量子计算机能够执行某些特定类型的计算任务,速度远超传统计算机。

11. 量子纠缠与量子通信:量子纠缠是量子通信的基础,可以实现安全的信息传输。

12. 量子退相干:量子系统与环境相互作用,导致量子态的相干性丧失,是量子系统向经典系统过渡的过程。

13. 量子场论:将量子力学与相对论结合起来,描述粒子的产生和湮灭过程。

14. 量子信息:研究量子系统在信息处理中的应用,包括量子密码学、量子通信等。

15. 量子测量:量子力学中的测量问题涉及到波函数的坍缩,即测量过程会导致量子态的不确定性减少。

《量子力学》考试知识点(精心整理)

《量子力学》考试知识点(精心整理)

《量子力学》考试知识点第一章:绪论―经典物理学的困难考核知识点:(一)、经典物理学困难的实例(二)、微观粒子波-粒二象性考核要求:(一)、经典物理困难的实例1.识记:紫外灾难、能量子、光电效应、康普顿效应。

2.领会:微观粒子的波-粒二象性、德布罗意波。

第二章:波函数和薛定谔方程考核知识点:(一)、波函数及波函数的统计解释(二)、含时薛定谔方程(三)、不含时薛定谔方程考核要求:(一)、波函数及波函数的统计解释1.识记:波函数、波函数的自然条件、自由粒子平面波2.领会:微观粒子状态的描述、Born几率解释、几率波、态叠加原理(二)、含时薛定谔方程1.领会:薛定谔方程的建立、几率流密度,粒子数守恒定理2.简明应用:量子力学的初值问题(三)、不含时薛定谔方程1. 领会:定态、定态性质2. 简明应用:定态薛定谔方程第三章:一维定态问题一、考核知识点:(一)、一维定态的一般性质(二)、实例二、考核要求:1.领会:一维定态问题的一般性质、束缚态、波函数的连续性条件、反射系数、透射系数、完全透射、势垒贯穿、共振2.简明应用:定态薛定谔方程的求解、无限深方势阱、线性谐振子第四章量子力学中的力学量一、考核知识点:(一)、表示力学量算符的性质(二)、厄密算符的本征值和本征函数(三)、连续谱本征函数“归一化”(四)、算符的共同本征函数(五)、力学量的平均值随时间的变化二、考核要求:(一)、表示力学量算符的性质1.识记:算符、力学量算符、对易关系2.领会:算符的运算规则、算符的厄密共厄、厄密算符、厄密算符的性质、基本力学量算符的对易关系(二)、厄密算符的本征值和本征函数1.识记:本征方程、本征值、本征函数、正交归一完备性2.领会:厄密算符的本征值和本征函数性质、坐标算符和动量算符的本征值问题、力学量可取值及测量几率、几率振幅。

(三)、连续谱本征函数“归一化”1.领会:连续谱的归一化、箱归一化、本征函数的封闭性关系(四)、力学量的平均值随时间的变化1.识记:好量子数、能量-时间测不准关系2.简明应用:力学量平均值随时间变化第五章态和力学量的表象一、考核知识点:(一)、表象变换,幺正变换(二)、平均值,本征方程和Schrodinger equation的矩阵形式(三)、量子态的不同描述二、考核要求:(一)、表象变换,幺正变换1.领会:幺正变换及其性质2.简明应用:表象变换(二)、平均值,本征方程和Schrodinger equation的矩阵形式1.简明应用:平均值、本征方程和Schrodinger equation的矩阵形式2.综合应用:利用算符矩阵表示求本征值和本征函数(三)、量子态的不同描述第六章:微扰理论一、考核知识点:(一)、定态微扰论(二)、变分法(三)、量子跃迁二、考核要求:(一)、定态微扰论1.识记:微扰2.领会:微扰论的思想3.简明应用:简并态能级的一级,二级修正及零级近似波函数4.综合应用:非简并定态能级的一级,二级修正、波函数的一级修正。

量子力学知识点总结

量子力学知识点总结

1、光子的能量和动量是:E=ℎ v=ћw、p=ℎvn/c=ℎn/λ=ћk2、量子现象:由以上两个公式可以看出,在宏观现象中,h和其他物理量相比较可以略去,因而辐射的能量可以连续变化,因此凡是h在其中起重要作用的现象都可以称为量子现象。

3、量子化条件:在量子理论中,角动量必须是h的整数倍4、量子化条件的推广:∮pdq=(n+1/2)ℎ, n是0和正整数,称为量子数。

5、德布罗意公式:E=ℎv=ћw、p=ℎ/λn=ћk6、波函数的统计解释:波函数在空间中某一点的强度(振幅绝对值的平方)和在该点找到粒子的概率成比例。

dw(x,y,z,t)= C∣Φ(x,y,z,t)∣²dτ7、态叠加原理:对于一般的情况,如果Ψ1和Ψ2是体系的可能状态,那么它们的线性叠加Ψ=c1Ψ1+c2Ψ2(c1,c2是复数),也是这个体系的一个可能状态,这就是量子力学中的态叠加原理。

态叠加原理还有一个含义:当粒子处于态Ψ1和态Ψ2的线性叠加态Ψ时,粒子时既处在态Ψ1又处在态Ψ2.注意:态叠加原理指的是波函数(概率幅)的线性叠加,而不是概率的叠加8、波函数的标准条件:有限性、连续性、导致可测量的单值性9、什么是定态定态:体系处于Ψ(r,t)=ψ(r)e~-iEt/ћ所描写的状态时,能量具有确定性,这种状态称为定态。

Ψ(r,t)=ψ(r)e~-iEt/ћ称为定态波函数10、定态薛定谔方程:−ћ²/2m▽²ψ+U(r)ψ=Eψ11、本征值方程:ĤΨ=EΨ,E称为算符Ĥ的本征值,Ψ称为算符Ĥ属于本征值E的本征函数12、薛定谔波动方程的一般解可以写为这些定态波函数的线性叠加:13、束缚态:通常把在无限远处为零的波函数所描写的状态称为束缚态14、隧道效应:粒子在能量E小于势垒高度时仍能贯穿势垒的现象15、厄米算符:量子力学中表示力学量的算符都是厄米算符。

算符F̂满足下列等式:∫ψ∗F̂φdx=∫(F̂ψ)∗φdx16、力学量与算符的关系的一个基本假设:量子力学中,表示力学量的算符都是厄米算符,它们的本征函数组成完全系当体系处于波函数ψ(x)所描写的状态时,测量力学F所得的数值,必定是算符F^的本征值之一,测得λn的概率是|Cn∣²17、对易与不对易的关系:如果两个算符F̂和Ĝ,有一组共同本征函数φn而且φn组成完全系,则算符F̂和Ĝ对易。

量子力学主要知识点复习资料

量子力学主要知识点复习资料

大学量子力学主要知识点复习1能量量子化辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。

这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍 对频率为ν 的谐振子, 最小能量ε为: 2.波粒二象性波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。

波粒二象性是量子力学中的一个重要概念。

在经典力学中,研究对象总是被明确区分为两类:波和粒子。

前者的典型例子是光,后者则组成了我们常说的“物质”。

1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。

1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。

根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。

德布罗意公式3.波函数及其物理意义在量子力学中,引入一个物理量:波函数 ,来描述粒子所具εεεεεn ,,4,3,2,⋅⋅⋅νh =εh νmc E ==2λh m p ==v有的波粒二象性。

波函数满足薛定格波动方程粒子的波动性可以用波函数来表示,其中,振幅表示波动在空间一点(x ,y,z )上的强弱。

所以,应该表示 粒子出现在点(x,y,z )附件的概率大小的一个量。

从这个意义出发,可将粒子的波函数称为概率波。

自由粒子的波函数波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义常数因子不确定性设C 是一个常数,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。

相位不定性如果常数 ,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。

表示粒子出现在点(x,y,z )附近的概率。

表示点(x,y,z )处的体积元中找到粒子的概率。

这就是波函数的统计诠释。

自然要求该粒子在空间各点概率之总和为1 必然有以下归一化条件 5. 力学量的平均值既然 表示 粒子出现在点 0),()](2[),(22=-∇+∂∂t r r V mt r t i ψψ)](exp[Et r p i A k -⋅=ψ=ψ2|(,,)|x y z ψ2|(,,)|x y z x y z ψ∆∆∆x y zτ∆=∆∆∆2|(,,)|1x y z dxdydz ψ∞=⎰(,,)x y z ψ(,,)c x y z ψαi e C =(,,)i e x y z αψ(,,)x y z ψ22|()||(,,)|r x y z ψψ=),,(z y x r =23*3|()|()(),x r xd r r x r d r ψψψ+∞+∞-∞-∞==⎰⎰附件的概率,那么粒子坐标的平均值,例如x 的平均值x __,由概率论,有 又如,势能V是 的函数:,其平均值由概率论,可表示为 再如,动量 的平均值为: 为什么不能写成因为x 完全确定时p 完全不确定,x 点处的动量没有意义。

量子力学总复习

量子力学总复习

n n n Nn Nn Nn e
x y z x y z
2 r 2 2
Байду номын сангаас
H nx ( x) H n y ( y ) H nz ( z )
12、势垒贯穿 隧道效应: 粒子在能量E小于势垒高度时仍能贯 穿势垒的现象,称为隧道效应。
需掌握知识点
1、掌握定态的概念;定态的性质。
几 个 重 要 概 念
本征函数
n N ne

n
x
H n ( x)


Nn
n!
,
11、可以用分离变量法求解得到(在笛卡尔坐标中) 三维各向同性谐振子的能级和波函数。
3 Enx ny nz nx n y nz 2
nx , n y , nz 0,1,2,
H mn
2 0
E n Em
m,m n
0
H mn
0
1, m n
0 m
En En H nn
0
m,m n

0 ˆ 0 m H mn H n
En Em 0 * ˆ 0 m (r )H n (r )d
( A) ( S ) 1M s A ( S ) ( A) 00
5、角动量(轨道和自旋)
ˆL ˆ i L ˆ L ˆS ˆ i S ˆ S
2 ˆ2 S ˆ2 S ˆ2 S x y z 4
对两个Fermi子体系:
M s 0, 1
2 n x n ( x) sin ,0 x a a a
es4 es2 En 2 2 2 2 2 n 2n a0

量子力学复习提纲

量子力学复习提纲

量子力学复习提纲第一章 绪论 1.德布罗意关系, E h νω==(1)h p n k λ==(2)2.微观粒子的波粒二象性.3. 电子被V 伏电压加速,则电子的德布罗意波长为12.25hA λ=≈(3)第二章 波函数和薛定谔方程 1.波函数的统计解释:波函数在空间某一点的强度()2,r t ψ 和在该处找到粒子的几率成正比,描写粒子的波是几率波. 其中2w*=ψψ=ψ代表几率密度.2.态叠加原理:如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加1122c c ψ=ψ+ψ,也是体系的一个可能状态.3. 薛定谔方程和定态薛定谔方程薛定谔方程()(),ˆ,r t i H r t t∂ψ=ψ∂(4)定态薛定谔方程()()ˆH r E r ψ=ψ (5)其中()22ˆ2H U r μ=-∇+ (6)为哈密顿算符,又称为能量算符,4. 波函数的标准条件: 有限性,连续性(包括ψ及其一阶导数)和单值性.5. 波函数的归一化,1d τ*∞ψψ=⎰(9)6.求解一维薛定谔方程的几个例子.一维无限深势阱及其变种, 一维线性谐振子; 势垒贯穿.第三章 量子力学中的力学量1. 坐标算符, 动量算符及角动量算符;构成量子力学力学量的法则;2. 本征值方程,本征值,本征函数的概念ˆF ψλψ= (10)3. 厄密算符的定义,性质及与力学量的关系.ˆF dx ψφ*=⎰()ˆF dx ψφ*⎰(11)实数性: 厄密算符的本征值是实数.正交性: 厄密算符的属于不同本征值的两个本征函数 相互正交.完全性: 厄密算符ˆF的本征函数()n x φ和()x λφ组成完全系, 即任一函数()x ψ可以按()n x φ和()x λφ展开为级数:()()()n n nx c x c x d λλψφφλ=+∑⎰ (12)展开系数: ()()nnc x x dx φψ*=⎰, (13)()()c x x dx λλφψ*=⎰. (14)2nc 是在()x ψ态中测量力学量F 得到nλ的几率,2c d λλ是在()x ψ态中测量力学量F ,得到测量结果在λ到d λλ+范围内的几率.4. 2ˆL 和ˆZL 算符的本征值方程,本征值和本征函数. ()22ˆ1L l l ψψ=+ , ˆzL m ψψ= 本征函数 (),lm Y θφ.5. 氢原子的哈密顿算符及其本征值,本征函数nlm ψ的数学结构, ()()(),,,nlmnl lm r R r Y ψθφθφ= (15)主量子数n ,角量子数l 和磁量子数m 的取值范围,简并态的概念.6. 氢原子的能级公式和能级的简并度.422,1,2,3,...2s n e E n nμ=-= (16)不考虑电子的自旋是2n 度简并的;考虑电子的自旋是22n 度简并的.7. 给定电子波函数的表达式,根据电子在(),,r θφ点周围的体积元内的几率()22,,sin nlm r r drd d ψθφθθφ(17)计算电子几率的径向分布和角分布.计算在半径r 到r dr +的球壳内找到电子的几率. 8. 给定态函数,计算力学量平均值,平均值的计算公式.()()ˆF x F x dx ψψ*=⎰(18) 注意(11)式对波函数所在的空间作积分. 9. 算符的对易关系及测不准关系.(1) 如果一组算符相互对易,则这些算符所表示的力学量同时具有确定值(即对应的本征值), 这些算符有组成完全系的共同的本征函数.例如: 氢原子的哈密顿算符ˆH ,角动量平方算符2ˆL 和角动量算符ˆz L 相互对易, 则(i) 它们有共同的本征函数nlm ψ, (ii) 在态nlm ψ中,它们同时具有确定值:4222s n e E n μ=-,()21l l + , m .(2) 测不准关系:如果算符ˆF和ˆG 不对易,则一般来说它们不能同时有确定值. 设ˆFˆG -ˆG ˆF =ˆik 则算符ˆF和ˆG 的均方偏差满足:()_______2ˆF ∆⋅()_______22ˆ4k G ∆≥(19)其中 ()()________________________2222222F F F F FF F F F ∆=-=-+=-()__________222F F F ∆=-, ()__________222G G G ∆=-(a) 利用测不准关系估计氢原子的基态能量, 线性谐振子的零点能等.(b) 给定态函数ψ,计算两个力学量ˆF和ˆG 的均方偏差的乘积()_______2ˆF∆⋅()_______2ˆ?G ∆=(20)第四章 态和力学量的表象 1. 对表象的理解(1) 状态ψ: 态矢量(2) Q 表象:力学量Q 的本征函数 ()()()12,,...,...n u x u x u x构成无限维希耳伯特空间(坐标系)的基矢量 (4) 将态矢量按照上述基矢量展开:()()(),n n nx t a t u x ψ=∑()()()12,,...,...n a t a t a t 是态矢量ψ在Q 表象中沿各基矢量的分量.(5) ()2n a t 是在(),x t ψ所描写的态中,测量力学量Q 得到结果为n Q 的几率. 2. 算符在Q 表象中的表示(i)算符ˆF在Q 表象中是一个矩阵, nm F 称为矩阵元 ()(),nm nm F u x F x u x dx i x *∂⎛⎫≡ ⎪∂⎝⎭⎰(ii) 算符在自身表象中是一个对角矩阵,其对角矩阵元为该算符对应的本征值. 3. 量子力学公式的矩阵表述 (1) 平均值公式:†F F =ψψ (21)(2) 本征值方程 → 久期方程()()()()()()1111121222122212 ... ... ... ... : : : ... ... : : :m m n n nm mm a t a t F F F a t a t F F F F F F a t a t λ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭→ 111212122212 ... ... ... ... 0... ... ..............................n n n n nn F F F F F F F F F λλλ--=-(3) 薛定谔方程的矩阵形式 di H dtψ=ψ(22) 4. 么正变换的概念(1) 么正变换是两个表象基矢量之间的变换矩阵. (2) 么正变换的矩阵元由两个表象的基矢量共同确定,()()()(),.n n m m S x x dx S x x dx ββααψϕψϕ***⎫=⎪⎬=⎪⎭⎰⎰(3) 态矢量由A 表象变换到B 表象的公式1b S a -= (23)(4) 力学量ˆF由A 表象变换到B 表象的公式: 1F S FS -'= (24)5. 么正变换的性质(i) 么正变换不改变算符的本征值; (ii) 么正变换不改变矩阵F 的迹; (iii) 么正变换不改变力学量的平均值.第五章 微扰理论(I) 求解非简并定态微扰问题 (1) 确定微扰的哈密顿算符ˆH'. ()0ˆˆˆHH H '=+, 及与()0ˆH对应的零级近似能量()n E 和零级近似波函数()0nψ;(2) 计算能量的一级修正:()()()100ˆn nn E H d ψψτ*'=⎰ (25)(3) 计算波函数的一级修正:()()()()10'00mn n m mn mH E E ψψ'=-∑(26) (4) 计算能量的二级修正:()()()22'0nln ln l H E E E '=-∑ (27)(II) 求解非简并定态微扰问题 (只要求能量的一级修正) 求解步骤(1) 确定微扰的哈密顿算符ˆH'. (2) 确定微扰算符的矩阵元:ˆliH '=ˆl i H d φφτ*'⎰(28)(3) 求解久期方程得到能量的一级修正()()()111121121222112.........................................................n k n k kkkkn H E H H H H E H H H H E '''-'''-='''- (29)(III) 变分法不作要求 (IV) 含时微扰论 (1) 基本步骤设0ˆH 的本征函数为n φ为已知:0ˆn n nH φεφ=(30)将ψ按照0ˆH 的定态波函数n it n n e εφ-Φ=展开:()n nna t ψ=Φ∑(31)展开系数的表达式:()01mk ti t m mka t H e dt i ω'''=⎰(32)其中ˆmn m n H H d φφτ*''=⎰(33)是微扰矩阵元,()1m nmnωεε=-(34)为体系由n ε能级跃迁到m ε能级的玻尔频率. 在t 时刻发现体系处于m Φ态的几率是()2m a t , 体系在微扰的作用下,由初态k Φ跃迁到终态m Φ的几率为()2k m m W a t →= (35)(2) 用于周期微扰()()ˆˆi t i t H t F e e ωω-'=+得到()()()11mk mk i t i t mk m mk mk F e e a t ωωωωωωωω''+-⎡⎤--=-+⎢⎥+-⎣⎦(36)由(36)式,讨论并理解发生跃迁的条件是mkωω=±或m k m k εεω=± (37)(i) 表明只有外界的微扰含有频率mk ω时,体系才能从k Φ态跃迁到m Φ态,这时体系吸收和发射的能量是mk ω ;(ii)跃迁是一个共振现象.(3) 能量时间的测不准关系的含义E t ∆∆ (38)(4) 了解原子的跃迁几率和三个爱因斯坦系数:mk A , mkB 和km B 及相互关系. (5) 了解用含时微扰理论计算爱因斯坦发射和吸收系数(6) 记住对角量子数和磁量子数的选择定则1,0, 1.l l l m m m '∆=-=±⎫⎬'∆=-=±⎭(39) 第六章 散射只要求理解微分散射截面的概论, 不作计算要求.第七章 自旋与全同粒子1. 电子的自旋角动量S ,它在空间任何方向的投影只能取 2z S =± (40) 2. 自旋算符的矩阵形式 01ˆ210x S ⎛⎫= ⎪ ⎪⎝⎭ , 0ˆ20y i S i ⎛⎫-= ⎪ ⎪⎝⎭ , 10ˆ201z S ⎛⎫= ⎪ ⎪-⎝⎭(41) 3.泡利矩阵 01ˆ10x σ⎛⎫= ⎪ ⎪⎝⎭, 0ˆ0y i i σ⎛⎫-= ⎪ ⎪⎝⎭, 10ˆ01z σ⎛⎫= ⎪ ⎪-⎝⎭ (42)(1) 求力学量在某个自旋态的平均值和均方偏差.†G G =ψψ (43)()11121†1222122G G G G G G **⎛⎫ψ⎛⎫=ψψ=ψψ ⎪ ⎪ ⎪ψ⎝⎭⎝⎭ (44) (2)求解自旋角动量算符的本征值方程, 本征值和本征函数4. 自旋与轨道角动量的耦合及产生光谱的精细结构的原因.5. 全同性原理的表述6. 描写全同粒子体系状态的波函数只能是对称或反对称的,它们的对称性不随时间改变.实验证明,微观粒子按照其波函数的对称性可以分为两类: (I) 费米子: 波函数是反对称的;(II) 玻色子: 波函数是对称的.7.泡利不相容原理:不能有两个或两个以上的费米子处于同一状态.。

量子力学复习资料

量子力学复习资料

第一章知识点:1. 黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体.2. 处于某一温度 T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。

3. 实验发现: 热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度 T 有关而与黑体的形状和材料无关。

4. 光电效应---光照射到金属上,有电子从金属上逸出的现5. 光电效应特点:1.临界频率ν0 只有当光的频率大于某一定值ν0时,才有光电子发射出来.若光频率小于该值时,则不论光强度多大,照射时间多长,都没有电子产生.光的这一频率ν0称为临界频率。

2.光电子的能量只是与照射光的频率有关,与光强无关,光强只决定电子数目的多少 (爱因斯坦对光电效应的解释)3. 当入射光的频率大于ν0时,不管光有多么的微弱,只要光一照上,立即观察到光电子(10-9s )6. 光的波粒二象性:普朗克假定a.原子的性能和谐振子一样,以给定的频率 ν 振荡;b.黑体只能以 E = h ν 为能量单位不连续的发射和吸收能量,而不是象经典理论所要求的那样可以连续的发射和吸收能量.7. 总结光子能量、动量关系式如下: 把光子的波动性和粒子性联系了起来8.波长增量 Δλ=λ′–λ 随散射角增大而增大.这一现象称为康普顿效应.散射波的波长λ′总是比入射波波长长(λ′ >λ)且随散射角θ增大而增大。

9.波尔假定:1.原子具有能量不连续的定态的概念. 2.量子跃迁的概念. 10.德布罗意:• 假定:与一定能量 E 和动量 p 的实物粒子相联系的波(他称之为“物质波”)的频率和波长分别为:E = h ν ⇒ ν= E/h • P = h/λ ⇒ λ= h/p • 该关系称为de. Broglie 关系.德布罗意波:ψ= E/h ⇒ω = 2π ν= 2πE/h = E/λ= h/p ⇒n k h k n n h n C h n C E p h E ===⎪⎩⎪⎨⎧=======πλπλνων22其中波长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学量子力学主要知识点复习资料,填空及问答部分1能量量子化辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。

这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍εεεεεn ,,4,3,2,⋅⋅⋅ 对频率为ν 的谐振子, 最小能量ε为: νh =ε2.波粒二象性波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。

波粒二象性是量子力学中的一个重要概念。

在经典力学中,研究对象总是被明确区分为两类:波和粒子。

前者的典型例子是光,后者则组成了我们常说的“物质”。

1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。

1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。

根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。

德布罗意公式h νmc E ==2λhm p ==v3.波函数及其物理意义在量子力学中,引入一个物理量:波函数 ,来描述粒子所具有的波粒二象性。

波函数满足薛定格波动方程0),()](2[),(22=-∇+∂∂t r r V mt r t i ψψ 粒子的波动性可以用波函数来表示,其中,振幅表示波动在空间一点(x ,y,z )上的强弱。

所以,应该表示 粒子出现在点(x,y,z )附件的概率大小的一个量。

从这个意义出发,可将粒子的波函数称为概率波。

自由粒子的波函数)](exp[Et r p i A k -⋅=ψ=ψ波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义常数因子不确定性设C 是一个常数,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。

相位不定性如果常数 ,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。

表示粒子出现在点(x,y,z )附近的概率。

表示点(x,y,z )处的体积元 中找到粒子的概率。

这就是波函数的统计诠释。

自然要求该粒子在空间各点概率之总和为1必然有以下归一化条件 5. 力学量的平均值既然 表示 粒子出现在点 附件的概率,那么粒子2|(,,)|x y z ψ2|(,,)|x y z x y z ψ∆∆∆x y z τ∆=∆∆∆2|(,,)|1x y z dxdydz ψ∞=⎰(,,)x y z ψ(,,)c x y z ψαi e C =(,,)i e x y z αψ(,,)x y z ψ22|()||(,,)|r x y z ψψ=),,(z y x r =23*3+∞+∞坐标的平均值,例如x 的平均值x __,由概率论,有又如,势能V 是 r 的函数:)(r V,其平均值由概率论,可表示为⎰+∞∞-=r d r r V r V 3*)()()(ψψ⎰+∞∞-=rd r r V r V 3*)()()(ψψ再如,动量 的平均值为:为什么不能写成 因为x 完全确定时p 完全不确定,x 点处的动量没有意义。

能否用以坐标为自变量的波函数计算动量的平均值? 可以,但需要表示为p __r d r p r ⎰+∞∞-=3*)(ˆ)(ψψ其中 为动量 的算符6.算符量子力学中的算符表示对波函数(量子态)的一种运算如动量算符∇-≡i pˆ 能量算符Eti E ˆ≡∂∂=动能算符222ˆ∇-=mT动能平均值r d r T r T ⎰+∞∞-=3*)(ˆ)(ψψ 角动量算符pr l ˆˆ⨯= 角动量平均值r d r l r l ⎰+∞∞-=3*)(ˆ)( ψψ薛定谔方程),()],(2[),(22t r t r V mt r t i ψψ+∇-=∂∂算符 ,被称为哈密顿算符,7.定态数学中,形如 的方程,称为本征方程。

其中 方程 称为能量本征方程,被称为能量本征函数, E 被称为能量本征值。

当E 为确定值,),(t r ψ=)(r E ψ)exp(Et i-拨函数所描述的状态称为定态,处3d r dxdydz=*3()(),p p p p d p ϕϕ+∞-∞=⎰⎰+∞∞-=rd r r p r p 3*)()()(ψψ∇-≡ i p ˆpˆAf af =ˆA →算符,f →本征函数,a →本征值22ˆ()2H V r m =-∇+22ˆ[()]()()()()2E E E E V r r E r H r E r m ψψψψ-∇+=→=)(r E ψ于定态下的粒子有以下特征:粒子的空间概率密度不随时间改变,任何不显含t 的力学量的平均值不随时间改变,他们的测值概率分布也不随时间改变。

8.量子态叠加原理但一般情况下,粒子并不只是完全处于其中的某一本征态,而是以某种概率处于其中的某一本征态。

换句话说,粒子的状态是所有这些分立状态的叠加,即)()(x c x n nn ψψ∑=,具有),(中发现粒子处于态)(表示在态||2x x c n n ψψ的概率能量n E9. 宇称若势函数V (x )=V (-x ),若)(x ψ是能量本征方程对于能量本征值E 的解,则)(x -ψ也是能量本征方程对于能量本征值E 的解具有确定的宇称。

无简并,则若的解,如果能量本征值是能量本征方程对应于设)()(),()()(x x x V x V Ex ψψψ-= 10.束缚态 通常把在无限远处为零的波函数所描写的状态称为束缚态 11. 一维谐振子的能量本征值12. 隧穿效应量子隧穿效应为一种量子特性,是如电子等微观粒子能够穿过比它们能量大的势垒的现象。

这是因为根据量子力学,微观粒子具有波的性质,而有不为零的概率穿过位势障壁。

又称隧穿效应,势垒贯穿。

按照经典理论,总能量低于势垒是不能实现反应的。

但依量子力学观点,无论粒子能量是否高于势垒,都不能肯定粒子是否能越过势垒,只能说出粒子越过势垒概率的大小。

它取决于势垒高度、宽度及粒子本身的能量。

能量高于势垒的、运动方向适宜的未必一定反应,只能说反应概率较大。

而能量低于势垒的仍有一定概率实现反应,即可能有一部分粒子(代表点)穿越势垒(也称势垒穿透barrier penetration),好像从大山隧道通过一般。

这就是隧道效应。

例如H+H2低温下反应,其隧道效应就较突出。

13. 算符对易式一般说来,算符之积不满足交换律,即 ,由此导致量子力学中的一个基本问题:对易关系 对易式 ,通常 坐标对易关系角动量的对易式 :()()()()()()()()()cos()cos()cos()sin()sin()sin()P P x x P x x x P x x x x P x x x P x x x ψψψψψψψψψ=-=-==-=-→=-=→=-=-定义空间反演算符为如果或,称具有确定的偶宇称或奇宇称,如偶宇称奇宇称注意:一般的函数没有确定的宇称.,2,1,0,)2/1(⋅⋅⋅=+==n n E E n ω A B B A ˆˆˆˆ≠A B B AB A B A ˆˆˆˆ]ˆ,ˆ[,ˆˆ-≡∀设和0]ˆ,ˆ[≠B A⎩⎨⎧≠===βαβαδααββ,0,]ˆ,[ i i p z y x ,,,=βα,0]ˆ,ˆ[,ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[,0]ˆ,ˆ[,ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[,0]ˆ,ˆ[,0],ˆ[,],ˆ[,],ˆ[,],ˆ[,0],ˆ[,],ˆ[,],ˆ[,],ˆ[,0],ˆ[=-====-=-====-====-=-===z y x y z y x z x z y y y z x y y z x z y x x x y z z y y y x x x p l p i p l p i p l p i p l p l p i p l p i p l p i p l p l z l x i y l y i x l x i z l y l z i x l y i z l z i y l x lyx z x z y z y x z z y y x x l i l l l i l l l i l l l l l l l l ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[,0]ˆ,ˆ[,0]ˆ,ˆ[,0]ˆ,ˆ[ ======14.厄密算符平均值的性质,ˆ~ˆˆ,ˆ*的厄密共轭算符称为的共轭转置算符则A A A A ∀。

=即记为*~ˆˆ,ˆA A A ++先转置,再共轭。

**ˆ~ˆψτϕϕτψA d A d ⎰⎰= 体系的任何状态下,其厄密算符的平均值必为实数,在任何状态下平均值为实的算符必为厄米算符,实验上可观测量相应的算符必须是厄米算符。

厄密算符的属于不同本征值的本征函数彼此正交。

15. 量子力学关于算符的基本假设1、微观粒子的状态由波函数 描写。

2、波函数的模方 表示 t 时刻粒子出现在空间点(x,y,z )的概率。

3、力学量用算符表示。

4、波函数的运动满足薛定格方程16.算符的本征方程,本征值与本征函数 数学中,形如 的方程,称为本征方程。

其中 3*其中,,)(均可展开如下:状态完备态矢,系统的任何能构成一组正交归一都是不简并的,则,果的本征态与本征值,如ˆ是算符和dr a a x A A A n n n nn n n n n ⎰∑==∀ψψψψψψψ17. 不确定度关系的严格表达18. 两个算符有共同本征态的条件两个算符对易,即0]ˆ,ˆ[=B A19. 力学量完全集]ˆ,ˆ[,0]ˆ,ˆ[,0]ˆ,ˆ[,ˆˆˆˆ2222222===++=z y x z y x l l l l l l l l l l 有令ˆAf af =),(t rψψ=2|),(|t rψ2222ˆ(,)()(,)(,),2ˆ(,)2i r t V r t Hr t t mH V r t m ψψψ∂=-∇+=∂=-∇+→哈密顿算符ˆA →算符,f →本征函数,a →本征值ˆ,ˆˆˆnnnn n AA A n AA A A AAψψψψψψ==满足的和不止一组可能有组,因此此式称为的本征方程,称为的一个本征值,称为的一个本征态。

若算符的本征值是简并的,仅由其本征值无法惟一地确定其本征态。

若要惟一地确定其本征态,必须再加上另一些与之对易的算符的本征值才可。

例如,仅由 的本征值不能确定体系状态,必再加上的本征值才能确定体系状态。

这样,为了完全确定一个体系的状态,我们定义力学量完全集。

定义:如果有一组彼此独立而且相互对易的厄米算符 ,它们只有一组共同完备本征函数集,记为,可以表示一组量子数,给定一组量子数后,就完全确定了体系的一个可能状态,则称为体系的一组力学量完全集。

20. 力学量完全集共同本征态的性质若能级简并21. 守恒量对于Hamilton 量H 不含时的量子体系,如果力学量A 与H 对易,则无论体系处于什么状态(定态或非定态),A 的平均值及其测值的概率分布均不随时间改变,所以把A 称为量子体系的一个守恒量。

相关文档
最新文档