高一数学必修1教师用书:模块综合检测(苏教版)
高中数学(苏教版必修一)模块综合测评 Word版含解析
模块综合测评(时间分钟,满分分)一、填空题(本大题共小题,每小题分,共分,请把答案填在题中横线上).已知集合=,=,则∩=.【解析】==,∩=.【答案】.如果集合={>-},那么下列结论成立的是.(填序号)()⊆;(){}∈;()∅∈;(){}⊆.【解析】元素与集合之间的关系是从属关系,用符号∈或∉表示,故()()()不对,又∈,所以{}⊆.【答案】().设集合={,,…,},={,,…,},定义集合⊕={(,)=++…+,=++…+},已知={},={},则⊕的子集为.【解析】因为根据新定义可知,++=++=,故⊕的子集为∅,{()}.【答案】∅,{()}.若函数()=的定义域为,()=(-()的定义域为,则∁(∪)=.【解析】由题意知,(\\(->,->))⇒<<.∴=().(\\(->,(-(≥))⇒≤.∴=(-∞,],∪=(-∞,]∪(),∴∁(∪)=(]∪[,+∞).【答案】(]∪[,+∞).若方程-+=在区间(,)(,∈,且-=)上有一根,则+的值为.【解析】设()=-+,则(-)=-<,(-)=>,所以=-,=-,则+=-.【答案】-.已知函数=()与=互为反函数,()=(-)+,则()的图象恒过定点.【解析】由题知()=,∴()=-+,由-=,得=,故函数()=-+(>,≠)的图象恒过定点.【答案】.已知函数()=(-)++为偶函数,则()在(-,-)上是.(填序号)①增函数;②减函数;③非单调函数;④可能是增函数,也可能是减函数.【解析】∵()为偶函数,∴=,即()=-+在(-,-)上是增函数.【答案】①.已知函数()=+(>且≠)在[]上的最大值与最小值之和为+,则=.【解析】依题意,函数()=+(>且≠)在[]上具有单调性,因此++=+,解得=.【答案】.已知()=(\\(+,≤,,>,))若()=,则=.【解析】当≤时,令+=,解得=-或=(舍去);当>时,令=,解得=.综上,=-或=.【答案】-或.若=()是奇函数,当>时,()=+,则错误!=.【解析】∵()是奇函数,∴错误!=(-)=-( ).又>,且>时,()=+,∴错误!=-.【答案】-.定义在上的函数()满足()=(\\((-(,≤, (-(- (-(,>,))则()的值为.【解析】∵>,且>时,()=(-)-(-),∴()=()-(),又()=()-(),所以()=-(),又∵≤时,()=(-),∴()=-()=-(-)=-.【答案】-.函数=()的图象如图所示,则函数=()的图象大致是.(填序号)。
【三维设计】2013届高中数学 教师用书 模块综合检测 苏教版必修1.doc
模块综合检测(时间:120分钟 满分:160分)一、填空题(本大题共14个小题,每小题5分,共70分.把答案填在题中的横线上) 1.若幂函数y =f (x )的图象经过点(9,13),则f (25)的值是________.解析:设f (x )=x α,将(9,13)代入得9α=13,即32α=3-1,∴2α=-1,∴α=-12,∴f (x )=x -12.∴f (25)=25-12=15.答案:152.(2011·新课标高考改编)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是________.①y =x 3②y =|x |+1 ③y =-x 2+1 ④y =2-|x |解析:y =x 3为奇函数,y =-x 2+1在(0,+∞)上为减函数,y =2-|x |在(0,+∞)上为减函数.故只有②符合条件答案:②3.若集合A ={x |log 12x ≤12},则∁R A =________.解析:由log 12x ≤12得x ≥(12)12=22.∴A =[22,+∞).∴∁R A =(-∞,22). 答案:(-∞,22) 4.试比较1.70.2、log 2.1 0.9与0.82.1的大小关系,并按照从小到大的顺序排列为________. 解析:log 2.10.9<0,1.70.2>0,0.82.1>0. ∵1.70.2>1.70=1,0.82.1<0.80=1, ∴log 2.10.9<0.82.1<1.70.2. 答案:log 2.10.9<0.82.1<1.70.25.设集合M ={x |x -m ≤0},N ={y |y ≥-1},若M ∩N =∅,则实数m 的取值范围是________.解析:M =(-∞,m ],N =[-1,+∞),∵M ∩N =∅, ∴m <-1. 答案:m <-16.(2012·山东高考改编)函数f (x )=1ln (x +1)+ 4-x 2的定义域为________.解析:x 满足⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,即⎩⎪⎨⎪⎧x >-1,x ≠0,-2≤x ≤2.解得-1<x <0或0<x ≤2.答案:(-1,0)∪(0,2]7.若函数f (x )=ax -b 有一个零点是3,那么函数g (x )=bx 2+3ax 的零点是________. 解析:由条件可得3a -b =0,即b =3a , ∴g (x )=bx 2+3ax =3ax 2+3ax ,令g (x )=0 得x =-1,0. 答案:-1,08.函数f (x )=log 13(-3x +2)的单调递增区间为________.解析:∵函数的定义域为-3x +2>0,∴x <23.令u =-3x +2,∵f (u )=log 13u 是减函数,要求f (x )的单调增区间,只需求u =-3x +2的递减区间,即(-∞,23).答案:(-∞,23)9.设函数f (x )=x (e x +a e -x)(x ∈R)是偶函数,则实数a 的值为________.解析:因为f (x )是偶函数,所以恒有f (-x )=f (x ),即-x (e -x+a e x )=x (e x +a e -x),化简得x (e -x+e x)(a +1)=0.因为上式对任意实数x 都成立,所以a =-1.答案:-110.已知函数y =f (x )是R 上的奇函数,且x >0时,f (x )=2x,函数y =f (x )的解析式为________.解析:∵y =f (x )是R 上的奇函数,∴f (0)=0. 又∵当x >0时,f (x )=2x,∴当x <0时,-x >0,f (-x )=2-x=-f (x ), ∴f (x )=-2-x=-(12)x .∴f (x )=⎩⎪⎨⎪⎧2x,x >0,0,x =0,-(12)x,x <0.答案:f (x )=⎩⎪⎨⎪⎧2x,x >00,x =0-(12)x,x <011.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,2x ,x ≤0,则不等式f (x )≥1的解集是________.解析:x >0时,由log 3x ≥1得x ≥3,∴x ≥3. 当x ≤0时,由2x≥1得x ≥0,∴x =0. 由上可知解集为{x |x =0或x ≥3}. 答案:{x |x =0或x ≥3}12.已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如下左图,则函数g (x )=a x+b 的图象是________.解析:由f (x )的图象可知a ∈(0,1),b ∈(-∞,-1).∵0<a <1,∴y =a x单调递减,b <-1,∴x =0时,y =b +1<0,故g (x )=a x+b 的图象是①.答案:①13.函数y =log 2x +log 2(1-x )的最大值是________.解析:要使函数有意义,只要⎩⎪⎨⎪⎧x >01-x >0,解得0<x <1,又y =log 2[x (1-x )]=log 2[-(x -12)2+14],当x ∈(0,1)时,0<-(x -12)2+14≤14,∴y ≤log 214=-2,∴y max =-2. 答案:-214.设定义在R 上的关于x 的函数f (x )=ax +a +1,当-1<x <1时,函数有一个零点,则实数a 的取值范围是________.解析:根据零点存在性定理知,f (-1)f (1)<0, ∵f (-1)=1>0,∴f (1)=2a +1<0,解得a <-12.答案:a <-12二、解答题(本大题共6个小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)计算:(1)[(549)0.5+(0.008)-23÷(0.2)-1]÷0.06250.25;(2)[(1-log 63)2+log 62·log 618]÷log 64. 解:(1)原式=[(73)2×0.5+(0.2)3×(-23)÷(0.2)-1]÷(0.5)4×14=(73+52÷5)÷0.5=223÷12=443. (2)[(1-log 63)2+log 62·log 618]÷log 64=[(log 66-log 63)2+log 62·(log 63+log 66)]÷log 64 =[log 62(log 62+log 63+1)]÷2log 62=1.16.(本小题满分14分)已知集合M ={x |-ax 2+2x +1=0}只有一个元素,A ={x |y =-x +1},B ={y |y =-x 2+2x -1}.(1)求A ∩B ;(2)设N 是由a 可取的所有值组成的集合,试判断N 与A ∩B 的关系. 解:(1)由x +1≥0得x ≥-1, 则A ={x |x ≥-1};由y =-x 2+2x -1=-(x -1)2,得y ≤0, 则B ={y |y ≤0},所以A ∩B ={x |-1≤x ≤0}.(2)因为集合M 只有一个元素,所以当a =0时, 方程2x +1=0只有一个实数解,符合题意; 当a ≠0时,Δ=4-4(-a )=0,解得a =-1. 所以N ={-1,0},则N ⊆A ∩B .17.(本小题满分16分)已知函数f (x )=ax 2+23x +b 是奇函数,且f (2)=53.(1)求实数a ,b 的值;(2)判断函数f (x )在(-∞,-1]上的单调性,并加以证明. 解:(1)∵f (x )是奇函数, ∴f (-x )=-f (x ).∴ax 2+2-3x +b =-ax 2+23x +b =ax 2+2-3x -b. 因此b =-b ,即b =0.又f (2)=53,∴4a +26=53,∴a =2.(2)由(1)知f (x )=2x 2+23x =2x 3+23x,f (x )在(-∞,-1]上为单调增函数.证明:设x 1<x 2≤-1,则x 2-x 1>0,f (x 2)-f (x 1)=23(x 2-x 1)(1-1x 1x 2)=23(x 2-x 1)·x 1x 2-1x 1x 2. ∵x 1<x 2≤-1,∴x 2-x 1>0,x 1x 2>1,f (x 2)>f (x 1).∴f (x )在(-∞,-1]上为单调增函数.18.(本小题满分14分)A 、B 两城相距100 km ,在两地之间距A 城x km 处的D 地建一核电站给A 、B 两城供电,为保证城市安全,核电站距城市的距离不得小于10 km ,已知供电费用刚好和供电距离的平方与供电量之积成正比,比例系数k =0.2,若A 城供电量为20亿度/月,B 城为10亿度/月.(1)写出x 的范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使供电费用最小. 解:(1)10≤x ≤90.(2)y =[20x 2+10(100-x )2]×0.2 =6x 2-400x +20 000(10≤x ≤90). (3)由(2)知,y =6x 2-400x +20 000 =6(x -1003)2+40 0003.∴当x =1003时,y min =40 0003.即核电站建在距A 城1003km 处时,才能使供电费用最小.19.(本小题满分16分)设二次函数f (x )=ax 2+bx +c 在区间[-2,2]上的最大值、最小值分别是M 、m ,集合A ={x |f (x )=x }.(1)若A ={1,2},且f (0)=2,求M 和m 的值;(2)若A ={1},且a ≥1,记g (a )=M +m ,求g (a )的最小值.解:(1)由条件得f (1)=1,f (2)=2,f (0)=2得a =1,b =-2,c =2,f (x )=x 2-2x +2=(x -1)2+1,∴M =f (-2)=4+4+2=10,m =f (1)=1.(2)由条件得ax 2+(b -1)x +c =0有两个相等实根1,从而a +b +c =1,(b -1)2=4ac ,得c =a ,b =1-2a .则f (x )=ax 2+(1-2a )x +a .∵a ≥1,∴对称轴x =2a -12a =1-12a ∈[12,1),∴M =f (-2)=9a -2,m =f (1-12a )=1-14a .∴g (a )=9a -14a -1,(a ≥1),又g (a )在[1,+∞)上单调递增, ∴g (a )最小值=g (1)=8-14=314.20.(本小题满分16分)已知定义在实数集R 上的偶函数f (x )在区间[0,+∞)上是单调增函数.(1)求证:函数f (x )在区间(-∞,0]上是单调减函数; (2)若f (1)<f (lg x ),求x 的取值范围. 解:(1)证明:设x 1<x 2≤0,则-x 1>-x 2≥0, 因为f (x )在区间[0,+∞)上是单调增函数, ∴f (-x 1)>f (-x 2), 又因为f (x )是偶函数,所以f (-x 1)=f (x 1),f (-x 2)=f (x 2),f (x 1)>f (x 2),∴函数f (x )在区间(-∞,0]上是单调减函数. (2)当0<x ≤1时,lg x ≤0,由f (1)<f (lg x )得f (-1)<f (lg x ),函数f (x )在区间(-∞,0]上是单调减函数, ∴-1>lg x ,0<x <110,当x ≥1时,lg x ≥0,由f (1)<f (lg x ),f (x )在区间[0,+∞)上是单调增函数, ∴lg x >1,x >10,综上所述,x 的取值范围是1010⎛⎫ ⎪⎝⎭,∪(10,+∞).。
苏教版数学高一- 数学苏教必修一练习模块检测
模块检测(时间:100分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.若集合A={x|x≥3},B={x|x<m}满足A∪B=R,A∩B=∅,则实数m =________.解析结合数轴知,当且仅当m=3时满足A∪B=R,A∩B=∅.答案 3答案 43.已知x-1+x=22,且x>1,则x-x-1的值为________.解析由x-1+x=22平方得x-2+2+x2=8,则x-2-2+x2=4,∴(x-1-x)2=4,又∵x>1,∴x-x-1=2.答案 24.函数y=log x(3-x)的定义域为________.解析由⎩⎪⎨⎪⎧3-x>0x>0x≠1得(0,1)∪(1,3).答案(0,1)∪(1,3)5.函数f(x)=x3+x+1(x∈R),若f(a)=2,则f(-a)的值为________.解析f(x)-1=x3+x为奇函数,又f(a)=2,∴f(a)-1=1,故f(-a)-1=-1,即f(-a)=0.答案06.设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},若P={1,2,3,4},Q ={x |x +12<2,x ∈R },则P -Q =________.解析 由定义P -Q ={x |x ∈P ,且x ∉Q },求P -Q 可检验P ={1,2,3,4}中的元素在不在Q ={x |x +12<2,x ∈R }中,所有在P 中不在Q 中的元素即为P -Q 中的元素,故P -Q ={4}.答案 {4}7.若函数y =12x 2-x +32的定义域和值域都为[1,b ],则b 的值为________.解析 由二次函数图象知:12b 2-b +32=b ,得b =1或b =3,又因为b >1,所以b =3.答案 38.为了保证信息安全传输必须使用加密方式,有一种方式其加密、解密原理如下:明文――→加密密文――→发送密文―→明文已知加密为y =a x -2(x 为明文、y 为密文),如果明文“3”通过加密后得到密文为“6”,再发送,接受方通过解密得到明文“3”,若接受方接到密文为“14”,则原发的明文是________.解析 由已知,当x =3时y =6,所以a 3-2=6,解得a =2;∴y =2x -2;当y =14时,有2x -2=14,解得x =4.答案 “4”9.方程2-x +x 2=3的实数解的个数为________.解析 画出函数y =2-x 与y =3-x 2的图象,它们有两个交点,故方程2-x +x 2=3的实数解的个数为2个.答案 2答案 a >1或-1<a <011.若函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2;则m 的取值集合为________.解析 由y =x 2-2x +3即y =(x -1)2+2,结合图象分析知m 的取值范围为[1,2]时,能使得函数取到最大值3和最小值2.答案 [1,2]12.y =f (x )在(0,2)上是增函数,y =f (x +2)是偶函数,则f (1),f (52),f (72)的大小关系是________.解析 结合图象分析知:y =f (x )的图象是由y =f (x +2)的图象向右平移两个单位而得到的;而y =f (x +2)是偶函数,即y =f (x +2)的图象关于y 轴对称,所以y =f (x )的图象关于x =2对称,画出图象可以得到f (72)<f (1)<f (52).答案 f (72)<f (1)<f (52)13.如果函数f (x )满足f (n 2)=f (n )+2,n ≥2,且f (2)=1,那么f (256)=________. 解析 f (256)=f (162)=f (16)+2=f (42)+2=f (4)+4=f (22)+4=f (2)+6=1+6=7.答案 714.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0且a ≠1),若g (2)=a ,则f (2)=________.解析 由条件f (2)+g (2)=a 2-a -2+2,f (-2)+g (-2)=a -2-a 2+2,即-f (2)+g (2)=a -2-a 2+2,由此解得g (2)=2,f (2)=a 2-a -2,所以a =2,f (2)=22-2-2=154.答案 154二、解答题(本大题共6小题,共90分)15.(本小题满分14分)设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +(a 2-5)=0}.(1)若A ∩B ={2},求实数a 的值;(2)若B ⊆A ,求实数a 的取值范围.解 由x 2-3x +2=0得x =1或x =2,故集合A ={1,2}.(1)∵A ∩B ={2},∴2∈B ,代入B 中方程得a 2+4a +3=0,∴a =-1或a =-3.当a =-1时,B ={x |x 2-4=0}={-2,2},满足条件;当a =-3时,B ={x |x 2-4x +4=0}={2},满足条件.综上可知,a 的值为-1或-3.(2)对于集合B ,Δ=4(a +1)2-4(a 2-5)=8(a +3).∵B ⊆A ,①当Δ<0,即a <-3时,B =∅,符合题意;②当Δ=0,即a =-3时,B ={2},符合题意;③当Δ>0,即a >-3时,B =A ={1,2},由根与系数的关系得⎩⎨⎧ 1+2=-2(a +1),1×2=a 2-5.即⎩⎪⎨⎪⎧ a =-52,a 2=7,∴a ∈∅.综上可知,a 的取值范围是a ≤-3.16.(本小题满分14分)试讨论关于x 的方程|3x -1|=k 的解的个数.解 设f (x )=|3x -1|,则关于x 的方程|3x -1|=k 的解的个数可转化为观察函数f (x )的图象与直线y =k 的交点个数;而函数f (x )=|3x -1|=⎩⎨⎧3x -1,(x ≥0)1-3x ,(x <0),由函数y =3x 的图象通过图象变换易作出函数f (x )的图象,如下图所示:直线y =k 是与x 轴平行或重合的直线,观察上图知:当k <0时,直线y =k 与f (x )的图象没有交点,故方程|3x -1|=k 的解的个数为0个;当k =0时,直线y =k 与f (x )的图象有1个交点,故方程|3x -1|=k 的解的个数为1个;当0<k <1时,y =k 与f (x )的图象有2个交点,故方程|3x -1|=k 的解的个数为2个;当k ≥1时,直线y =k 与f (x )的图象有1个交点,故方程|3x -1|=k 的解的个数为1个.17.(本小题满分14分)若奇函数f (x )在定义域(-1,1)上是减函数,(1)求满足f (1-a )+f (-a )<0的a 的取值集合M ;(2)对于(1)中的a ,求函数F (x )=log a [1-(1a )2-x ]的定义域.解 (1)不等式f (1-a )+f (-a )<0可化为f (1-a )<-f (-a ),而f (x )为奇函数,∴f (1-a )<f (a ),又f (x )在定义域(-1,1)上是减函数,∴⎩⎨⎧ -1<1-a <1,-1<-a <1,1-a >a ,解得0<a <12,∴M ={a |0<a <12}.(2)为使F (x )=log a [1-(1a )2-x ]有意义,必须1-(1a )2-x >0,即(1a )2-x <1.由0<a<12得1a >2,∴2-x <0,∴x >2.∴函数的定义域为{x |x >2}.18.(本小题满分16分)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元).(1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式;(2)求该种商品的日销售额y 的最大值与最小值.解 (1)y =g (t )·f (t )=(80-2t )·(20-12|t -10|)=(40-t )(40-|t -10|)=⎩⎨⎧ (30+t )(40-t ),(0≤t <10),(40-t )(50-t ),(10≤t ≤20).(2)当0≤t <10时,y 的取值范围是[1 200,1 225],在t =5时,y 取得最大值为1 225;当10≤t ≤20时,y 的取值范围是[600,1 200],在t =20时,y 取得最小值为600.∴第5天,日销售额y 取得最大,为1 225元;第20天,日销售额y 取得最小,为600元.答:日销售额y 最大为1225元;最小为600元.19.(本小题满分16分)已知函数f (x )=x 2-2ax +5(a >1).(1)若f (x )的定义域和值域均是[1,a ],求实数a 的值;(2)若f (x )在区间(-∞,2]上是减函数,试求x ∈[1,a +1]时函数f (x )的最值. 解 (1)∵f (x )=(x -a )2+5-a 2(a >1),∴f (x )在[1,a ]上是减函数,又定义域和值域均为[1,a ],∴⎩⎨⎧ f (1)=a ,f (a )=1,即⎩⎨⎧1-2a +5=a a 2-2a 2+5=1,解得a =2. (2)∵f (x )在区间(-∞,2]上是减函数,∴a ≥2,∴(a +1)-a ≤a -1;又x =a ∈[1,a +1],且(a +1)-a ≤a -1,∴结合函数f (x )的图象得x ∈[1,a +1]时,函数f (x )的最值为:f (x )max =f (1)=6-2a ,f (x )min =f (a )=5-a 2.20.(本小题满分16分)已知函数f (x )的定义域是(0,+∞),当x >1时,f (x )<0,且f (x ·y )=f (x )+f (y ).(1)证明:f (x )在定义域上是减函数;(2)如果f (33)=1,求满足不等式f (x )-f (x -2)≥-2的x 的取值范围.(1)证明 任取x 1,x 2∈(0,+∞),且x 1<x 2,则x 2x 1>1, ∴f (x 2x 1)<0. 又f (x ·y )=f (x )+f (y ),∴f (x 1)+f (x 2x 1)=f (x 2), ∴f (x 2)-f (x 1)=f (x 2x 1)<0,∴f (x 2)<f (x 1), ∴f (x )在定义域内是减函数.(2)解 由已知f (x ·y )=f (x )+f (y ),得2f (33)=f (33)+f (33)=f (13)=2.∴f (x )-f (x -2)≥-2即为f (x )+2=f (x )+f (13)=f (x 3)≥f (x -2),∵f (x )在定义域内是减函数,∴⎩⎪⎨⎪⎧ x 3≤x -2,x >0,x -2>0,∴x ≥3.∴满足题意的x 的取值范围是[3,+∞).。
苏教版高中数学必修一模块综合测评.docx
高中数学学习材料马鸣风萧萧*整理制作模块综合测评(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.已知集合A ={}0,1,2,3,4,B ={}x ||x |<2,则A ∩B =________. 【解析】 B ={}x ||x |<2={}x |-2<x <2,A ∩B ={}0,1. 【答案】{}0,12.如果集合P ={x |x >-1},那么下列结论成立的是________.(填序号) (1)0⊆P ;(2){0}∈P ;(3)∅∈P ;(4){0}⊆P .【解析】 元素与集合之间的关系是从属关系,用符号∈或∉表示,故(1)(2)(3)不对,又0∈P ,所以{0}⊆P .【答案】 (4)3.设集合B ={a 1,a 2,…,a n },J ={b 1,b 2,…,b m },定义集合B ⊕J ={(a ,b )|a =a 1+a 2+…+a n ,b =b 1+b 2+…+b m },已知B ={0,1,2},J ={2,5,8},则B ⊕J 的子集为________.【解析】 因为根据新定义可知,0+1+2=3,2+5+8=15,故B ⊕J 的子集为∅,{(3,15)}.【答案】 ∅,{(3,15)}4.若函数f (x )=log 2 (x -1)2-x 的定义域为A ,g (x )=ln (1-x )的定义域为B ,则∁R (A ∪B )=________.【解析】 由题意知,⎩⎨⎧x -1>0,2-x >0⇒1<x <2.∴A =(1,2).⎩⎨⎧1-x >0,ln (1-x )≥0⇒x ≤0. ∴B =(-∞,0], A ∪B =(-∞,0]∪(1,2), ∴∁R (A ∪B )=(0,1]∪[2,+∞). 【答案】 (0,1]∪[2,+∞)5.若方程x 3-x +1=0在区间(a ,b )(a ,b ∈Z ,且b -a =1)上有一根,则a +b 的值为________.【解析】 设f (x )=x 3-x +1,则f (-2)=-5<0,f (-1)=1>0,所以a =-2,b =-1,则a +b =-3.【答案】 -36.已知函数y =g (x )与y =log a x 互为反函数,f (x )=g (3x -2)+2,则f (x )的图象恒过定点________.【解析】 由题知g (x )=a x ,∴f (x )=a 3x -2+2,由3x -2=0,得x =23,故函数f (x )=a 3x -2+2(a >0,a ≠1)的图象恒过定点⎝ ⎛⎭⎪⎫23,3. 【答案】 ⎝ ⎛⎭⎪⎫23,37.已知函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在(-5,-2)上是________.(填序号)①增函数;②减函数;③非单调函数;④可能是增函数,也可能是减函数. 【解析】 ∵f (x )为偶函数,∴m =0,即f (x )=-x 2+3在(-5,-2)上是增函数.【答案】 ①8.已知函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a =________.【解析】 依题意,函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上具有单调性,因此a +a 2+log a 2=log a 2+6,解得a =2.【答案】 29.已知f (x )=⎩⎨⎧x 2+1,x ≤0,2x ,x >0,若f (x )=10,则x =________.【解析】 当x ≤0时,令x 2+1=10,解得x =-3或x =3(舍去); 当x >0时,令2x =10, 解得x =5.综上,x =-3或x =5. 【答案】 -3或510.若y =f (x )是奇函数,当x >0时,f (x )=2x +1,则f ⎝ ⎛⎭⎪⎫log 2 13=________.【解析】 ∵f (x )是奇函数, ∴f ⎝ ⎛⎭⎪⎫log 2 13=f (-log 2 3) =-f (log 2 3).又log 2 3>0,且x >0时,f (x )=2x +1,∴f ⎝ ⎛⎭⎪⎫log 2 13=-4.【答案】 -411.定义在R 上的函数f (x )满足f (x )=⎩⎨⎧log 2(4-x ),x ≤0,f (x -1)-f (x -2),x >0,则f (3)的值为________.【解析】 ∵3>0,且x >0时,f (x )=f (x -1)-f (x -2),∴f (3)=f (2)-f (1),又f (2)=f (1)-f (0),所以f (3)=-f (0),又∵x ≤0时,f (x )=log 2 (4-x ),∴f (3)=-f (0)=-log 2 (4-0)=-2.【答案】 -212.函数y =f (x )的图象如图1所示,则函数y =log 12f (x )的图象大致是________.(填序号)图1【解析】 设y =log 12u ,u =f (x ),所以根据外层函数是单调减函数,所以看函数u =f (x )的单调性,在(0,1)上u =f (x )为减函数,所以整体是增函数,u >1,所以函数值小于0,在(1,2)上u =f (x )为增函数,所以整体是减函数,u >1,所以函数值小于0,所以选③.【答案】 ③13.若函数y =⎝ ⎛⎭⎪⎫12|1-x |+m 的图象与x 轴有公共点,则m 的取值范围是________.【解析】 ∵y =⎝ ⎛⎭⎪⎫12|1-x |=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -1(x ≥1),2x -1(x <1),∴画图象可知-1≤m <0. 【答案】 [-1,0)14.已知f (x )=x 2-2ax +2(a ≤-1),若当x ∈[-1,+∞)时,f (x )≥a 恒成立,则实数a 的取值范围是________.【解析】 函数f (x )的对称轴为直线x =a , 当a ≤-1,x ∈[-1,+∞)时, f (x )min =f (-1)=3+2a .又f (x )≥a 恒成立,所以f (x )min ≥a , 即3+2a ≥a ,解得a ≥-3.所以-3≤a ≤-1. 【答案】 [-3,-1]二、解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)(2)原式=⎝ ⎛⎭⎪⎫log 2 3+23log 2 3⎝ ⎛⎭⎪⎫2log 3 2+32log 3 2+log 3 2+(lg 2)2+(1+lg 2)lg 5=53log 2 3·92log 3 2+(lg 2)2+lg 2·lg 5+lg 5=152+lg 2(lg 5+lg 2)+lg 5=152+lg 2+lg 5=152+1=172.16.(本小题满分14分)已知集合A ={x |3≤3x ≤27},B ={x |log 2 x >1}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围. 【解】 (1)A ={x |3≤3x ≤27}={x |1≤x ≤3},B ={x |log 2 x >1}={x |x >2},A ∩B ={x |2<x ≤3},(∁R B )∪A ={x |x ≤2}∪{x |1≤x ≤3}={x |x ≤3}.(2)①当a ≤1时,C =∅,此时C ⊆A ; ②当a >1时,C ⊆A ,则1<a ≤3.综合①②,可得a 的取值范围是(-∞,3].17.(本小题满分14分)某企业拟共用10万元投资甲、乙两种商品.已知各投入x 万元时,甲、乙两种商品可分别获得y 1,y 2万元的利润,利润曲线P 1:y 1=ax n ,P 2:y 2=bx +c 如图2所示.图2(1)求函数y 1,y 2的解析式;(2)为使投资获得最大利润,应怎样分配投资? 【解】 由题图知P 1:y 1=ax n 过点⎝ ⎛⎭⎪⎫1,54,⎝ ⎛⎭⎪⎫4,52,∴⎩⎪⎨⎪⎧ 54=a ·1n,52=a ·4n ,∴⎩⎪⎨⎪⎧a =54,n =12,∴y 1=54x ,x ∈[0,+∞).P 2:y 2=bx +c 过点(0,0),(4,1),∴⎩⎨⎧0=0+c ,1=4b +c ,∴⎩⎪⎨⎪⎧c =0,b =14,∴y 2=14x ,x ∈[0,+∞). (2)设用x 万元投资甲商品,那么投资乙商品为(10-x )万元,则y =54x +14(10-x )=-14x +54 x +52=-14⎝ ⎛⎭⎪⎫x -522+6516(0≤x ≤10),当且仅当x =52即x =254=6.25时,y max =6516, 此时投资乙商品为10-x =10-6.25=3.75万元,故用6.25万元投资甲商品,3.75万元投资乙商品,才能获得最大利润. 18.(本小题满分16分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=a x -1.其中a >0且a ≠1.(1)求f (2)+f (-2)的值; (2)求f (x )的解析式;(3)解关于x 的不等式-1<f (x -1)<4,结果用集合或区间表示. 【解】 (1)∵f (x )是奇函数, ∴f (-2)=-f (2), 即f (2)+f (-2)=0. (2)当x <0时,-x >0,∴f (-x )=a -x -1.由f (x )是奇函数,有f (-x )=-f (x ), 即f (x )=-a -x +1(x <0). ∴所求的解析式为f (x )=⎩⎨⎧a x-1(x ≥0),-a -x+1(x <0).(3)不等式等价于 ⎩⎨⎧ x -1<0,-1<-a-x +1+1<4, 或⎩⎨⎧x -1≥0,-1<a x -1-1<4,即⎩⎨⎧ x -1<0,-3<a -x +1<2或⎩⎨⎧x -1≥0,0<a x -1<5. 当a >1时,有⎩⎨⎧x <1,x >1-log a 2或⎩⎨⎧x ≥1,x <1+log a 5,注意此时log a 2>0,log a 5>0,可得此时不等式的解集为(1-log a 2,1+log a 5). 同理可得,当0<a <1时,不等式的解集为R . 综上所述,当a >1时,不等式的解集为(1-log a 2,1+log a 5); 当0<a <1时,不等式的解集为R .19.(本小题满分16分)已知函数f (x )=log a (a x -1)(a >0,a ≠1), (1)求函数f (x )的定义域; (2)判断函数f (x )的单调性.【解】 (1)函数f (x )有意义,则a x -1>0, 当a >1时,由a x -1>0,解得x >0; 当0<a <1时,由a x -1>0,解得x <0. ∴当a >1时,函数的定义域为(0,+∞);当0<a <1时,函数的定义域为(-∞,0).由函数单调性定义知:当0<a <1时,f (x )在(-∞,0)上是单调递增的. 20.(本小题满分16分)设函数y =f (x )是定义域为R ,并且满足f (x +y )=f (x )+f (y ),f ⎝ ⎛⎭⎪⎫13=1,且当x >0时,f (x )>0.(1)求f (0)的值; (2)判断函数的奇偶性;(3)如果f (x )+f (2+x )<2,求x 的取值范围. 【解】 (1)令x =y =0, 则f (0)=f (0)+f (0),∴f (0)=0. (2)令y =-x ,得f (0)=f (x )+f (-x )=0,∴f (-x )=-f (x ).故函数f (x )是R 上的奇函数. (3)任取x 1,x 2∈R ,x 1<x 2, 则x 2-x 1>0, ∴f (x 2)-f (x 1) =f (x 2-x 1+x 1)-f (x 1) =f (x 2-x 1)+f (x 1)-f (x 1) =f (x 2-x 1)>0.∴f (x 1)<f (x 2).故f (x )是R 上的增函数. ∵f ⎝ ⎛⎭⎪⎫13=1,∴f ⎝ ⎛⎭⎪⎫23=f ⎝ ⎛⎭⎪⎫13+13=f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫13=2.∴f (x )+f (2+x )=f [x +(2+x )] =f (2x +2)<f ⎝ ⎛⎭⎪⎫23,又由y =f (x )是定义在R 上的增函数, 得2x +2<23,解得x <-23. 故x ∈⎝ ⎛⎭⎪⎫-∞,-23.。
苏教版数学高一 必修1模块综合测评
模块综合测评(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.已知集合A ={}0,1,2,3,4,B ={}x ||x |<2,则A ∩B =________. 【解析】 B ={}x ||x |<2={}x |-2<x <2,A ∩B ={}0,1. 【答案】{}0,12.如果集合P ={x |x >-1},那么下列结论成立的是________.(填序号) (1)0⊆P ;(2){0}∈P ;(3)∅∈P ;(4){0}⊆P .【解析】 元素与集合之间的关系是从属关系,用符号∈或∉表示,故(1)(2)(3)不对,又0∈P ,所以{0}⊆P .【答案】 (4)3.设集合B ={a 1,a 2,…,a n },J ={b 1,b 2,…,b m },定义集合B ⊕J ={(a ,b )|a =a 1+a 2+…+a n ,b =b 1+b 2+…+b m },已知B ={0,1,2},J ={2,5,8},则B ⊕J 的子集为________.【解析】 因为根据新定义可知,0+1+2=3,2+5+8=15,故B ⊕J 的子集为∅,{(3,15)}.【答案】 ∅,{(3,15)} 4.若函数f (x )=log 2 (x -1)2-x的定义域为A ,g (x )=ln (1-x )的定义域为B ,则∁R (A ∪B )=________.【解析】 由题意知,⎩⎪⎨⎪⎧x -1>0,2-x >0⇒1<x <2.∴A =(1,2).⎩⎪⎨⎪⎧1-x >0,ln (1-x )≥0⇒x ≤0.∴B =(-∞,0], A ∪B =(-∞,0]∪(1,2), ∴∁R (A ∪B )=(0,1]∪2,+∞). 【答案】 (0,1]∪2,+∞)5.若方程x 3-x +1=0在区间(a ,b )(a ,b ∈Z ,且b -a =1)上有一根,则a +b 的值为________.【解析】 设f (x )=x 3-x +1,则f (-2)=-5<0,f (-1)=1>0,所以a =-2,b =-1,则a +b =-3.【答案】 -36.已知函数y =g (x )与y =log a x 互为反函数,f (x )=g (3x -2)+2,则f (x )的图象恒过定点________.【解析】 由题知g (x )=a x ,∴f (x )=a 3x -2+2,由3x -2=0,得x =23,故函数f (x )=a 3x -2+2(a >0,a ≠1)的图象恒过定点⎝ ⎛⎭⎪⎫23,3. 【答案】 ⎝ ⎛⎭⎪⎫23,37.已知函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在(-5,-2)上是________.(填序号)①增函数;②减函数;③非单调函数;④可能是增函数,也可能是减函数. 【解析】 ∵f (x )为偶函数,∴m =0,即f (x )=-x 2+3在(-5,-2)上是增函数.【答案】 ①8.已知函数f (x )=a x +log a x (a >0且a ≠1)在1,2]上的最大值与最小值之和为log a 2+6,则a =________.【解析】 依题意,函数f (x )=a x +log a x (a >0且a ≠1)在1,2]上具有单调性,因此a +a 2+log a 2=log a 2+6,解得a =2.【答案】 29.已知f (x )=⎩⎨⎧x 2+1,x ≤0,2x ,x >0,若f (x )=10,则x =________. 【导学号:37590093】【解析】 当x ≤0时,令x 2+1=10,解得x =-3或x =3(舍去); 当x >0时,令2x =10, 解得x =5.综上,x =-3或x =5. 【答案】 -3或510.若y =f (x )是奇函数,当x >0时,f (x )=2x +1,则f ⎝ ⎛⎭⎪⎫log 2 13=________.【解析】 ∵f (x )是奇函数, ∴f ⎝ ⎛⎭⎪⎫log 2 13=f (-log 2 3) =-f (log 2 3).又log 2 3>0,且x >0时,f (x )=2x +1, 故f (log 2 3)=2log 2 3+1=3+1=4, ∴f ⎝ ⎛⎭⎪⎫log 2 13=-4. 【答案】 -411.定义在R 上的函数f (x )满足f (x )=⎩⎨⎧log 2(4-x ),x ≤0,f (x -1)-f (x -2),x >0,则f (3)的值为________.【解析】 ∵3>0,且x >0时,f (x )=f (x -1)-f (x -2),∴f (3)=f (2)-f (1),又f (2)=f (1)-f (0),所以f (3)=-f (0),又∵x ≤0时,f (x )=log 2 (4-x ),∴f (3)=-f (0)=-log 2 (4-0)=-2.【答案】 -212.函数y =f (x )的图象如图1所示,则函数y =log 12f (x )的图象大致是________.(填序号)图1【解析】 设y =log 12u ,u =f (x ),所以根据外层函数是单调减函数,所以看函数u =f (x )的单调性,在(0,1)上u =f (x )为减函数,所以整体是增函数,u >1,所以函数值小于0,在(1,2)上u =f (x )为增函数,所以整体是减函数,u >1,所以函数值小于0,所以选③.【答案】 ③13.若函数y =⎝ ⎛⎭⎪⎫12|1-x |+m 的图象与x 轴有公共点,则m 的取值范围是________. 【导学号:37590094】【解析】∵y =⎝ ⎛⎭⎪⎫12|1-x |=⎩⎨⎧⎝ ⎛⎭⎪⎫12x -1(x ≥1),2x -1(x <1),∴画图象可知-1≤m <0. 【答案】 -1,0)14.已知f (x )=x 2-2ax +2(a ≤-1),若当x ∈-1,+∞)时,f (x )≥a 恒成立,则实数a 的取值范围是________.【解析】 函数f (x )的对称轴为直线x =a ,当a ≤-1,x ∈-1,+∞)时, f (x )min =f (-1)=3+2a .又f (x )≥a 恒成立,所以f (x )min ≥a , 即3+2a ≥a ,解得a ≥-3. 所以-3≤a ≤-1. 【答案】 -3,-1]二、解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分) 的值;(2)求(log 2 3+log 8 9)(log 3 4+log 9 8+log 3 2)+(lg 2)2+lg 20×lg 5的值.【解】(2)原式=⎝ ⎛⎭⎪⎫log 2 3+23log 2 3⎝ ⎛⎭⎪⎫2log 3 2+32log 3 2+log 3 2+(lg 2)2+(1+lg 2)lg 5=53log 2 3·92log 3 2+(lg 2)2+lg 2·lg 5+lg 5=152+lg 2(lg 5+lg 2)+lg 5=152+lg 2+lg 5=152+1=172.16.(本小题满分14分)已知集合A ={x |3≤3x ≤27},B ={x |log 2 x >1}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围. 【解】 (1)A ={x |3≤3x ≤27}={x |1≤x ≤3},B ={x |log 2 x >1}={x |x >2},A ∩B ={x |2<x ≤3},(∁R B )∪A ={x |x ≤2}∪{x |1≤x ≤3}={x |x ≤3}.(2)①当a ≤1时,C =∅,此时C ⊆A ; ②当a >1时,C ⊆A ,则1<a ≤3.综合①②,可得a 的取值范围是(-∞,3].17.(本小题满分14分)某企业拟共用10万元投资甲、乙两种商品.已知各投入x 万元时,甲、乙两种商品可分别获得y 1,y 2万元的利润,利润曲线P 1:y 1=ax n ,P 2:y 2=bx +c 如图2所示.图2(1)求函数y 1,y 2的解析式;(2)为使投资获得最大利润,应怎样分配投资? 【解】 由题图知P 1:y 1=ax n 过点⎝ ⎛⎭⎪⎫1,54,⎝ ⎛⎭⎪⎫4,52,x ∈0,+∞).P 2:y 2=bx +c 过点(0,0),(4,1), ∴⎩⎪⎨⎪⎧0=0+c ,1=4b +c ,∴⎩⎨⎧c =0,b =14,∴y 2=14x ,x ∈0,+∞).(2)设用x 万元投资甲商品,那么投资乙商品为(10-x )万元,则y =54x +14(10-x )=-14x +54 x +52=-14⎝ ⎛⎭⎪⎫x -522+6516(0≤x ≤10),当且仅当x =52即x =254=6.25时,y max =6516, 此时投资乙商品为10-x =10-6.25=3.75万元,故用6.25万元投资甲商品,3.75万元投资乙商品,才能获得最大利润. 18.(本小题满分16分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=a x -1.其中a >0且a ≠1.(1)求f (2)+f (-2)的值; (2)求f (x )的解析式;(3)解关于x 的不等式-1<f (x -1)<4,结果用集合或区间表示. 【解】 (1)∵f (x )是奇函数, ∴f (-2)=-f (2), 即f (2)+f (-2)=0. (2)当x <0时,-x >0, ∴f (-x )=a -x -1.由f (x )是奇函数,有f (-x )=-f (x ), 即f (x )=-a -x +1(x <0). ∴所求的解析式为f (x )=⎩⎪⎨⎪⎧a x -1(x ≥0),-a -x +1(x <0).(3)不等式等价于⎩⎪⎨⎪⎧ x -1<0,-1<-a-x +1+1<4,或⎩⎪⎨⎪⎧x -1≥0,-1<a x -1-1<4,即⎩⎪⎨⎪⎧ x -1<0,-3<a -x +1<2或⎩⎪⎨⎪⎧x -1≥0,0<a x -1<5.当a >1时,有⎩⎪⎨⎪⎧x <1,x >1-log a 2或⎩⎪⎨⎪⎧x ≥1,x <1+log a 5,注意此时log a 2>0,log a 5>0,可得此时不等式的解集为(1-log a 2,1+log a 5). 同理可得,当0<a <1时,不等式的解集为R . 综上所述,当a >1时,不等式的解集为(1-log a 2,1+log a 5); 当0<a <1时,不等式的解集为R .19.(本小题满分16分)已知函数f (x )=log a (a x -1)(a >0,a ≠1), (1)求函数f (x )的定义域; (2)判断函数f (x )的单调性.【解】 (1)函数f (x )有意义,则a x -1>0, 当a >1时,由a x -1>0,解得x >0; 当0<a <1时,由a x -1>0,解得x <0. 所以当a >1时,函数的定义域为(0,+∞); 当0<a <1时,函数的定义域为(-∞,0).(2)当a >1时,任取x 1,x 2∈(0,+∞),且x 1>x 2,则即f (x 1)>f (x 2).由函数单调性定义知:当0<a <1时,f (x )在(-∞,0)上是单调递增的. 20.(本小题满分16分)设函数y =f (x )是定义域为R ,并且满足f (x +y )=f (x )+f (y ),f ⎝ ⎛⎭⎪⎫13=1,且当x >0时,f (x )>0.(1)求f (0)的值;(2)判断函数的奇偶性; 【导学号:37590095】 (3)如果f (x )+f (2+x )<2,求x 的取值范围. 【解】 (1)令x =y =0, 则f (0)=f (0)+f (0), ∴f (0)=0. (2)令y =-x ,得f (0)=f (x )+f (-x )=0,∴f (-x )=-f (x ).故函数f (x )是R 上的奇函数.(3)任取x 1,x 2∈R ,x 1<x 2, 则x 2-x 1>0, ∴f (x 2)-f (x 1) =f (x 2-x 1+x 1)-f (x 1) =f (x 2-x 1)+f (x 1)-f (x 1) =f (x 2-x 1)>0.∴f (x 1)<f (x 2).故f (x )是R 上的增函数. ∵f ⎝ ⎛⎭⎪⎫13=1, ∴f ⎝ ⎛⎭⎪⎫23=f ⎝ ⎛⎭⎪⎫13+13 =f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫13=2.∴f (x )+f (2+x )=f x +(2+x )] =f (2x +2)<f ⎝ ⎛⎭⎪⎫23,又由y =f (x )是定义在R 上的增函数, 得2x +2<23,解得x <-23. 故x ∈⎝ ⎛⎭⎪⎫-∞,-23.。
【课堂新坐标】(教师用书)高中数学 第1章 集合综合检测 苏教版必修1
第一章集合(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.下列指定的对象,不能构成集合的是________.(把正确的序号填上)①一年中有31天的月份;②平面上到点O的距离等于1的点;③满足方程x2-2x-3=0的x;④某校高一(1)班性格开朗的女生.【解析】①是集合,一年中有31天的月份只有1,3,5,7,8,10,12这7个月份;②是集合,平面上到点O的距离等于1的点在圆上;③是集合,满足方程x2-2x-3=0的x只有-1和3;④不是集合,“性格开朗”无明确界限不符合集合中元素的确定性.【答案】④2.在下列5个写法:①{0}∈{0,1,2};②∅;③0∈∅;④{0,1,2}⊆{1,2,0};⑤0∩∅=∅.其中错误的写法个数为________.【解析】①不正确,因为{0}⊆{0,1,2};②正确,因为空集是任何非空集合的真子集;③不正确,∅不含有任何元素;④正确,因为任何集合是它自身的子集;⑤不正确,元素与集合不能运算.【答案】3个3.已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=________.【解析】∵A∩B={2,3},∴3∈B,∴m=3.【答案】 34.已知集合A=(1,3),B=[2,4],则A∪B=________.【解析】∵A=(1,3),B=[2,4],∴结合数轴(如图),可知A∪B=(1,4].【答案】(1,4]5.满足条件{1,3}∪M={1,3,5}的集合M的个数是________.【解析】∵{1,3}∪M={1,3,5},∴M中必须含有元素5,∴M可以是{5},{5,1},{5,3},{1,3,5},共4个.【答案】 46.已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7},则∁U(M∪N)=________.【解析】M∪N={1,3,5,6,7},则∁U(M∪N)={2,4,8}.7.已知集合A ={x ∈R |ax 2+2x +1=0,a ∈R }只有一个元素,则a 的值为________.【解析】 当a =0时,A ={-12},当a ≠0时,若集合A 只有一个元素,则Δ=4-4a =0,即a =1,综上,a =0或1.【答案】 0或18.下列四个推理,其中正确的序号为________.①a ∈A ⇒a ∈A ∪B ; ②a ∈A ∪B ⇒a ∈A ∩B ;③A ∪B =B ⇒A ⊆B ; ④A ∪B =A ⇒A ∩B =B .【解析】 ①正确,结合A ∪B 的定义可知a ∈A ⇒a ∈A ∪B ;②不正确,如A ={1,2},B ={3,4},1∈A ∪B ,但1∉A ∩B ;③正确,A ∪B =B ⇔A ⊆B ;④正确,A ∪B =A ⇔B ⊆A ⇒A ∩B =B .【答案】 ①③④9.已知集合A ={x |x =k 3,k ∈Z },B ={x |x =k 6,k ∈Z },则A 与B 的关系为________. 【解析】 ∵k 3=2k 6,∴k 3∈B ,∴A ⊆B ,但B 中元素16∉A ,∴A B . 【答案】 A B10.(2013·苏州高一检测)已知集合A ={x |x <a },B ={x |1<x <2},且A ∪∁R B =R ,则实数a 的取值范围是________.【解析】 ∁R B ={x |x ≤1或x ≥2,∵A ∪∁R B =R ,∴a ≥2.【答案】 {a |a ≥2}11.已知集合M ={x |x =12[1+(-1)n ],n ∈Z },N ={-1,0,1},P ={x |x 2=x }.有下列结论:①M ⊆N ;②P N ;③M =P ;④M ⊆P ;⑤M P ;⑥M P .其中,所有正确结论的序号为________.【解析】 集合M ={0,1},N ={-1,0,1},P ={0,1},由子集意义,得M ⊆N ,M =P ,P N ,M ⊆P .所以①③④正确.【答案】 ①③④12.定义集合A 与B 的运算⊗:A ⊗B ={x |x ∈A ,或x ∈B ,且x ∉A ∩B },已知集合A ={1,2,3,4},B ={3,4,5,6,7},则(A ⊗B )⊗B 为________.【解析】 由运算⊗的定义,得A ⊗B ={1,2,5,6,7},则(A ⊗B )⊗B ={1,2,5,6,7}⊗{3,4,5,6,7}={1,2,3,4}.13.(2013·南京高一检测)某班有学生55人,其中音乐爱好者35人,体育爱好者45人,还有4人既不爱好体育也不爱好音乐,则班级中既爱好体育又爱好音乐的学生有________人.【解析】 设既爱好体育又爱好音乐的学生有x 人,则(35-x )+(45-x )+x +4=55,解得x =29.【答案】 2914.已知集合A ={x |x =19(2k +1),k ∈Z },B ={x |x =49k ±19,k ∈Z },则集合A ,B 之间的关系为________.【解析】 设x 1∈A ,则x 1=19(2k 1+1),k 1∈Z , 当k 1=2n ,n ∈Z 时,x 1=19(4n +1)=49n +19,∴x 1∈B ;当k 1=2n -1,n ∈Z 时,x 1=19(4n -2+1)=49n -19,∴x 1∈B .∴A ⊆B .又设x 2∈B ,则x 2=49k 2±19=19(4k 2±1),k 2∈Z ,而4k 2±1表示奇数,2n +1(n ∈Z )也表示奇数,∴x 2=19(4k 2±1)=19(2n +1),k 2∈Z ,n ∈Z .∴x 2∈A ,∴B ⊆A .综上可知A =B .故填A =B .【答案】 A =B二、解答题(本大题共6小题,共90分,解答应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知全集U =R ,A ={x |-4≤x ≤2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52}, (1)求A ∩B ;(2)求(∁U B )∪P .【解】 借助数轴,如图.(1)A ∩B ={x |-1<x ≤2},(2)∵∁U B ={x |≤-1或x >3},∴(∁U B )∪P ={x |x ≤0或x ≥52}. 16.(本小题满分14分)已知集合A ={3,4,m 2-3m -1},B ={2m ,-3},若A ∩B ={-3},求实数m 的值并求A ∪B .【解】 ∵A ∩B ={-3},∴-3∈A .又A ={3,4,m 2-3m -1},∴m 2-3m -1=-3,解得m =1或m =2.当m =1时,B ={2,-3},A ={3,4,-3},满足A ∩B ={-3},∴A ∪B ={-3,2,3,4}.当m =2时,B ={4,-3},A ={3,4,-3},不满足A ∩B ={-3}舍去.综上知m =1.17.(本小题满分14分)(2013·杭州高一检测)已知A ={x |a ≤x ≤a +3},B ={x |x <-1或x >5}.(1)若A ∩B =∅,求a 的取值范围;(2)若A ∪B =B ,求a 的取值范围.【解】 (1)A ∩B =∅,∴⎩⎪⎨⎪⎧ a ≥-1a +3≤5,解得,-1≤a ≤2,(2)∵A ∪B =B ,∴A ⊆B .∴a +3<-1或a >5,∴a <-4或a >5.18.(本小题满分16分)已知集合A ={2,x ,y },B ={2x ,y 2,2},若A ∩B =A ∪B ,求实数x ,y 的值.【解】 ∵A ∩B =A ∪B ,∴A =B ,∴⎩⎪⎨⎪⎧ x =2x y =y 2或⎩⎪⎨⎪⎧ x =y 2,y =2x ,解得⎩⎪⎨⎪⎧ x =0,y =0,或⎩⎪⎨⎪⎧x =0,y =1,或⎩⎪⎨⎪⎧ x =14,y =12,经检验⎩⎪⎨⎪⎧ x =0,y =0,不合题意,舍去, ∴⎩⎪⎨⎪⎧ x =0,y =1,或⎩⎪⎨⎪⎧ x =14,y =12.19.(本小题满分16分)(2013·南京高一检测)已知集合A ={x |x 2-1=0},B ={x |x 2-2ax +b =0},若B ≠∅,且B ⊆A ,求实数a ,b 的值.【解】A={x|x2-1=0}={1,-1}.由B⊆A,B≠∅,得B={1}或{-1}或{1,-1}.当B={1}时,方程x2-2ax+b=0有两个相等实数根1,由根与系数的关系得a=1,b =1;当B={-1}时,方程x2-2ax+b=0有两个相等实数根-1,由根与系数的关系得a=-1,b=1;当B={1,-1}时,方程x2-2ax+b=0有两个根-1,1,由根与系数的关系得a=0,b =-1.综上,a=1,b=1或a=-1,b=1或a=0,b=-1.20.(本小题满分16分)设A,B是两个非空集合,定义A与B的差集A-B={x|x∈A,且x∉B}.(1)试举出两个数集,求它们的差集;(2)差集A-B与B-A是否一定相等?说明理由;(3)已知A={x|x>4},B={x|-6<x<6},求A-(A-B)和B-(B-A),由此你可以得到什么更一般的结论?(不必证明).【解】(1)如A={1,2,3},B={2,3,4},则A-B={1}.(2)不一定相等,由(1)B-A={4},而A-B={1},故A-B≠B-A.又如,A=B={1,2,3}时,A-B=∅,B-A=∅,此时A-B=B-A,故A-B与B-A不一定相等.(3)因为A-B={x|x≥6},B-A={x|-6<x≤4},A-(A-B)={x|4<x<6},B-(B-A)={x|4<x<6},由此猜测:对于两个集合A,B,有A-(A-B)=B-(B-A).。
新教材高中数学模块测评含解析苏教版选择性必修第一册
模块综合测评(满分:150分 时间:120分钟)一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在等比数列{a n }中,若a 2=4,a 5=-32,则公比q 应为( ) A .±12 B .±2 C .12 D .-2D 〖因为a 5a 2=q 3=-8,故q =-2.〗2.已知直线l 的方程为y =-x +1,则直线l 的倾斜角为( ) A .30° B .45° C .60° D .135°D 〖由题意可知,直线l 的斜率为-1,故由tan 135°=-1,可知直线l 的倾斜角为135°.〗 3.若方程x 2+y 2-4x +2y +5k =0表示圆,则实数k 的取值范围是( ) A .RB .(-∞,1)C .(-∞,1〗D .〖1,+∞)B 〖由方程x 2+y 2-4x +2y +5k =0可得(x -2)2+(y +1)2=5-5k ,此方程表示圆,则5-5k >0,解得k <1.故实数k 的取值范围是(-∞,1).故选B .〗4.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为( )A .54B .52C .32D .54B 〖由题意,1-b 2a 2=⎝⎛⎭⎫322=34,∴b 2a 2=14,而双曲线的离心率e 2=1+b 2a 2=1+14=54,∴e=52.〗 5.设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =xD 〖因为函数f (x )是奇函数,所以a -1=0,解得a =1,所以f (x )=x 3+x ,f ′(x )=3x 2+1,所以f ′(0)=1,f (0)=0,所以曲线y =f (x )在点(0,0)处的切线方程为y -f (0)=f ′(0)x ,化简可得y =x ,故选D .〗6.以F ⎝⎛⎭⎫0,p2(p >0)为焦点的抛物线C 的准线与双曲线x 2-y 2=2相交于M ,N 两点,若△MNF 为正三角形,则抛物线C 的标准方程为( )A .y 2=26xB .y 2=46xC .x 2=46yD .x 2=26yC 〖由题意,以F ⎝⎛⎭⎫0,p 2(p >0)为焦点的抛物线C 的准线y =-p2代入双曲线x 2-y 2=2,可得x =±2+p 24,∵△MNF 为正三角形,∴p =32×22+p 24,∵p >0,∴p =26,∴抛物线C 的方程为x 2=46y .〗7.若函数f (x )=e x (sin x +a )在区间⎝⎛⎭⎫-π2,π2上单调递增,则实数a 的取值范围是( ) A .〖2,+∞) B .〖1,+∞) C .(1,+∞)D .(-2,+∞)B 〖由题意得:f ′(x )=e x (sin x +a )+e x cos x =e x ⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4+a . ∵f (x )在⎝⎛⎭⎫-π2,π2上单调递增, ∴f ′(x )≥0在⎝⎛⎭⎫-π2,π2上恒成立. 又e x >0,∴2sin ⎝⎛⎭⎫x +π4+a ≥0在⎝⎛⎭⎫-π2,π2上恒成立. 当x ∈⎝⎛⎭⎫-π2,π2时,x +π4∈⎝⎛⎭⎫-π4,3π4, ∴sin ⎝⎛⎭⎫x +π4∈⎝⎛⎦⎤-22,1. ∴2sin ⎝⎛⎭⎫x +π4+a ∈(-1+a ,2+a 〗,∴-1+a ≥0,解得a ∈〖1,+∞).故选B .〗 8.已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,抛物线C :y 2=8ax 的焦点为F .若在E 的渐近线上存在点P ,使得AP →⊥FP →,则E 的离心率的取值范围是( )A .(1,2)B .⎝⎛⎦⎤1,324C .⎣⎡⎭⎫324,+∞ D .(2,+∞)B 〖由题意得,A (a ,0),F (2a ,0),设P ⎝⎛⎭⎫x 0,b a x 0,由AP →⊥FP →,得AP →·PF →=0⇒c 2a 2x 20-3ax 0+2a 2=0,因为在E 的渐近线上存在点P ,则Δ≥0,即9a 2-4×2a 2×c 2a 2≥0⇒9a 2≥8c 2⇒e 2≤98⇒e ≤324,又因为E 为双曲线,则1<e ≤324,故选B .〗二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.对于定点P (1,1)和圆C :x 2+y 2=4,下列说法正确的是( ) A .点P 在圆内部 B .过点P 有两条圆的切线C .过点P 被圆截得的弦长最大时的直线方程为x -y =0D .过点P 被圆截得的弦长最小值为22ACD 〖由12+12<4知,点(1,1)在圆内,∴A 对;且过P 不能作出圆的切线,∴B 错;过点P 的最大弦长为直径,所以方程应为y =x ,即x -y =0,∴C 对;D 中,过点P 且弦长最小的方程应是y -1=-(x -1),即x +y -2=0,∴弦长为24-⎝⎛⎭⎫222=22, ∴D 对,故应选ACD .〗10.若S n 为数列{a n }的前n 项和,且S n =2a n +1(n ∈N *),则下列说法正确的是( ) A .a 5=-16 B .S 5=-63C .数列{}a n 是等比数列D .数列{}S n +1是等比数列AC 〖因为S n 为数列{}a n 的前n 项和,且S n =2a n +1(n ∈N *), 所以S 1=2a 1+1,因此a 1=-1,当n ≥2时,a n =S n -S n -1=2a n -2a n -1,即a n =2a n -1,所以数列{}a n 是以-1为首项,以2为公比的等比数列,故C 正确; 因此a 5=-1×24=-16,故A 正确;又S n =2a n +1=-2n +1,所以S 5=-25+1=-31,故B 错误;因为S 1+1=0,所以数列{}S n +1不是等比数列,故D 错误.故选AC .〗11.定义在区间⎣⎡⎦⎤-12,4上的函数f (x )的导函数f ′(x )图象如图所示,则下列结论正确的是( )A .函数f (x )在区间(0,4)单调递增B .函数f (x )在区间⎝⎛⎭⎫-12,0单调递减 C .函数f (x )在x =1处取得极大值 D .函数f (x )在x =0处取得极小值ABD 〖根据导函数图象可知,f (x )在区间⎝⎛⎭⎫-12,0上,f ′(x )<0,f (x )单调递减,在区间(0,4)上,f ′(x )>0,f (x )单调递增,所以f (x )在x =0处取得极小值,没有极大值,所以A 、B 、D 选项正确,C 选项错误.故选ABD .〗12.下列说法正确的是( )A .椭圆x 2a 2+y 2b 2=1上任意一点(非左右顶点)与左右顶点连线的斜率乘积为-b 2a 2B .过双曲线x 2a 2-y 2b 2=1焦点的弦中垂直于实轴的弦长为2b 2aC .抛物线y 2=2px上两点A (x 1,y 1),B (x 2,y 2),若弦AB 经过抛物线焦点,则x 1x 2=p 24D .若直线与圆锥曲线有一个公共点,则该直线和圆锥曲线相切 ABC 〖对于A 中,椭圆的左右顶点的分别为A (-a ,0),B (a ,0), 设椭圆上除左右顶点以外的任意一点P (m ,n ),则 k P A ·k PB =n m +a ·n m -a =n 2m 2-a 2,又因为点P (m ,n )在椭圆上,可得m 2a 2+n 2b 2=1,解得n 2=⎝⎛⎭⎫1-m 2a 2b 2,所以k P A ·k PB =-b 2a 2,所以A 项是正确的;对于B 中,设双曲线x 2a 2-y 2b 2=1右焦点F (c ,0),则AB =2bc 2a 2-1=2b 2a,故B 正确. 对于C 中,当AB 斜率不存在时,x A =x B =p 2,∴有x 1x 2=p 24;当AB 斜率存在时,可设AB 方程为y =k ⎝⎛⎭⎫x -p2. 代入y 2=2px 得k 2⎝⎛⎭⎫x -p 22=2px ,即k 2x 2-k 2px -2px +k 2p 24=0,所以x 1x 2=p 24,故C 正确;对于D 中,当直线和抛物线的对称轴平行时,满足只有一个交点,但此时直线抛物线是相交的,所以直线与圆锥曲线有一个公共点,该直线和圆锥曲线相切是错误,即D 项是不正确的.〗三、填空题(本题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.在等比数列{a n }中,已知a 7a 12=5,则a 8a 9a 10a 11的值为________.25 〖因为a 7a 12=a 8a 11=a 9a 10=5,所以a 8a 9a 10a 11=25.〗14.若直线3x -4y +5=0与圆x 2+y 2=r 2(r >0)相交于A ,B 两点,且∠AOB =120°(O 为坐标原点),则|AB |+r =________.2+23 〖如图,过O 点作OD ⊥AB 于D 点,在Rt △DOB 中,∠DOB =60°,∴∠DBO =30°,又|OD |=|3×0-4×0+5|5=1,∴r =2|OD |=2,|AB |=2r 2-OD 2=23.∴|AB |+r =23+2.〗15.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=2S n S n +1,则a 2=________,S n =________.(本题第一空2分,第二空3分)23 11-2n 〖S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=2S n S n +1,令n =1,则a 2=2a 1(a 1+a 2),∴a 2=-2(-1+a 2),解得a 2=23.又S n +1-S n =2S n S n +1,整理得1S n -1S n +1=2(常数),即1S n +1-1S n =-2(常数), 故数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=-1为首项,-2为公差的等差数列.所以1S n =-1-2(n -1)=1-2n , 故S n =11-2n.〗16.设f ′(x )是函数f (x )的导函数,且f ′(x )>f (x )(x ∈R ),f (2)=e 2(e 为自然对数的底数),则不等式f (x )<e x 的解集为________.(-∞,2) 〖构造f (x )=f (x )e x ∴F ′(x )=f ′(x )e x -e x f (x )e 2x =f ′(x )-f (x )e x .由于f ′(x )>f (x ),故F ′(x )>0 ,即f (x )在R 上单调递增.又f (2)=e 2,故f (2)=f (2)e 2=1,f (x )<e x ,即f (x )=f (x )ex <1=f (2),即x <2.〗四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)求经过两点A (-1,4),B (3,2)且圆心在y 轴上的圆的方程.〖解〗 线段AB 的中点为(1,3),k AB =2-43-(-1)=-12,∴弦AB 的垂直平分线方程为y -3=2(x -1), 即y =2x +1.由⎩⎪⎨⎪⎧y =2x +1,x =0,得(0,1)为所求圆的圆心. 由两点间距离公式得圆半径r 为(0+1)2+(1-4)2=10,∴所求圆的方程为x 2+(y -1)2=10.18.(本小题满分12分)设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .〖解〗 (1)设q (q >0)为等比数列{a n }的公比,则由a 1=2,a 3=a 2+4得2q 2=2q +4,即q 2-q -2=0,解得q =2或q =-1(舍去),因此q =2.所以{a n }的通项公式为a n =2·2n -1=2n .(2)S n =2(1-2n )1-2+n ×1+n (n -1)2×2=2n +1+n 2-2.19.(本小题满分12分)已知函数f (x )=ln x +x 2. (1)求h (x )=f (x )-3x 的极值;(2)若函数g (x )=f (x )-ax 在定义域内为增函数,求实数a 的取值范围. 〖解〗 (1)由已知可得h (x )=f (x )-3x =ln x +x 2-3x , h ′(x )=2x 2-3x +1x(x >0),令h ′(x )=2x 2-3x +1x =0,可得x =12或x =1,则当x ∈⎝⎛⎭⎫0,12∪(1,+∞)时,h ′(x )>0, 当x ∈⎝⎛⎭⎫12,1时,h ′(x )<0,∴h (x )在⎝⎛⎭⎫0,12,(1,+∞)上为增函数,在⎝⎛⎭⎫12,1上为减函数, 则h (x )极小值=h (1)=-2,h (x )极大值=h ⎝⎛⎭⎫12=-54-ln 2. (2)g (x )=f (x )-ax =ln x +x 2-ax , g ′(x )=1x+2x -a (x >0),由题意可知g ′(x )≥0(x >0)恒成立, 即a ≤⎝⎛⎭⎫2x +1x min , ∵x >0时,2x +1x ≥22,当且仅当x =22时等号成立,∴⎝⎛⎭⎫2x +1x min =22, ∴a ≤22,即实数a 的取值范围为(-∞,22〗.20.(本小题满分12分)已知在正项数列{a n }中,a 1=1,点(a n ,a n +1)(n ∈N +)在函数y =x 2+1的图象上,数列{b n }的前n 项和S n =2-b n .(1)求数列{a n }和{b n }的通项公式;(2)设c n =-1a n +1log 2b n +1,求{c n }的前n 项和T n .〖解〗 (1)∵点()a n ,a n +1(n ∈N +)在函数y =x 2+1的图象上,∴a n +1=a n +1,∴数列{a n }是公差为1的等差数列. ∵a 1=1,∴a n =1+(n -1)=n .∵S n =2-b n ,∴S n +1=2-b n +1,两式相减得:b n +1=-b n +1+b n ,即b n +1b n =12,由S 1=2-b 1,即b 1=2-b 1,得b 1=1. ∴数列{b n }是首项为1,公比为12的等比数列,∴b n =⎝⎛⎭⎫12n -1.(2)log 2b n +1=log 2⎝⎛⎭⎫12n=-n ,∴c n =1n (n +1)=1n -1n +1,∴T n =c 1+c 2+…+c n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1. 21.(本小题满分12分)已知函数f (x )=a ln x +12x 2-(1+a )x ,a ∈R .(1)当a =1时,求函数y =f (x )的图象在x =1处的切线方程; (2)讨论函数f (x )的单调性;(3)若对任意的x ∈(e ,+∞)都有f (x )>0成立,求a 的取值范围. 〖解〗 (1)当a =1时,f (x )=ln x +12x 2-2x ,x >0,f ′(x )=x 2-2x +1x ,f ′(1)=0,f (1)=-32,所以所求切线方程为y =-32.(2)f ′(x )=x 2-(a +1)x +a x =(x -1)(x -a )x .当a =1时,f (x )在(0,+∞)递增;当a ≤0时,f (x )在(0,1)递减,(1,+∞)递增;当0<a <1时,f (x )在(0,a )递增,(a ,1)递减,(1,+∞)递增; 当a >1时,f (x )在(0,1)递增,(1,a )递减,(a ,+∞)递增. (3)由f (x )>0得(x -ln x )a <12x 2-x .注意到y =x -ln x ,y ′=x -1x,于是y =x -ln x 在(0,1)递减,(1,+∞)递增,最小值为1,所以∀x ∈(e ,+∞),x -ln x >0.于是只要考虑∀x ∈(e ,+∞),a <12x 2-x x -ln x .设g (x )=12x 2-x x -ln x ,g ′(x )=12(x -1)(x +2-2ln x )(x -ln x )2,注意到h (x )=x +2-2ln x ,h ′(x )=x -2x,于是h (x )=x +2-2ln x 在(e ,+∞)递增,h (x )>h (e)=e >0,所以g (x )在(e ,+∞)递增,于是a ≤g (e)=e 2-2e2(e -1).22.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程;(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.〖解〗 (1)由题设得4a 2+1b 2=1,a 2-b 2a 2=12,解得a 2=6,b 2=3.所以C 的方程为x 26+y 23=1.(2)设M (x 1,y 1),N (x 2,y 2).若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m ,代入x 26+y 23=1得(1+2k 2)x 2+4kmx +2m 2-6=0.于是x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-61+2k 2. ①由AM ⊥AN 知AM →·AN →=0,故(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=0,可得(k 2+1)x 1x 2+(km -k -2)(x 1+x 2)+(m -1)2+4=0.将①代入上式可得(k 2+1)2m 2-61+2k 2-(km -k -2)4km 1+2k 2+(m -1)2+4=0. 整理得(2k +3m +1)(2k +m -1)=0. 因为A (2,1)不在直线MN 上,所以2k +m -1≠0,故2k +3m +1=0,k ≠1,m =-23k -13.于是MN 的方程为y =k ⎝⎛⎭⎫x -23-13(k ≠1). 所以直线MN 过点P ⎝⎛⎭⎫23,-13. 若直线MN 与x 轴垂直,可得N (x 1,-y 1). 由AM →·AN →=0得(x 1-2)(x 1-2)+(y 1-1)(-y 1-1)=0.又x 216+y 213=1,可得3x 21-8x 1+4=0.解得x 1=2(舍去),x 1=23. 此时直线MN 过点P ⎝⎛⎭⎫23,-13. 令Q 为AP 的中点,即Q ⎝⎛⎭⎫43,13.若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ |=12|AP |=223.若D 与P 重合, 则|DQ |=12|AP |.综上,存在点Q ⎝⎛⎭⎫43,13,使得|DQ |为定值.。
2020_2021学年新教材高中数学模块综合测评含解析苏教版必修一
模块综合测评(教师独具)(时间120分钟,满分150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合A ={x |x 2+x -2≤0,x ∈Z },B ={x |x <-1或x >3},则A ∩B =( ) A .{x |-2<x <-1} B .{x |-2<x <3} C .{-2}D .{-2,-1}C [A ={x |x 2+x -2≤0,x ∈Z }={-2,-1,0,1},所以A ∩B ={-2} .故选C .] 2.已知角α的终边经过点P (3,-4),则tan α=( ) A .35 B .-45 C .-43 D .43C [由正切的三角函数定义可知tan α=y x =-43,故选C .]3.已知命题p :A ∩(∁U B )=∅,命题q :A B ,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件B [因为A ∩(∁U B )=∅⇔A ⊆B ,则q ⇒p, pq .故p 是q 的必要不充分条件.]4.函数f (x )=ln 3x-14+3x -x 2的定义域为( ) A .{x |-1<x <4} B .{x |0<x <4} C .{x |x >4}D .{x |x <-1}B [函数f (x )=ln 3x-14+3x -x 2的定义域满足:⎩⎪⎨⎪⎧3x-1>0,4+3x -x 2>0,解得0<x <4.故选B .]5.若a <b <0,则下列不等式不能成立的是( ) A .1a -b >1aB .1a >1bC .|a |>|b |D .a 2>b 2A [取a =-2,b =-1,则1a -b >1a不成立.] 6.若α=-4,则下列结论不成立的是( ) A .sin α>0 B .cos α<0 C .tan α<0D .sin α<0D [α=-4=-2π+(2π-4),π2<2π-4<π,故角α的终边在第二象限.sin α>0,cos α<0,tan α<0,故选D .]7.已知x >0,y >0,且x +2y =2,则xy ( ) A .有最大值为1 B .有最小值为1 C .有最大值为12D .有最小值为12C [因为x >0,y >0,x +2y =2,所以x +2y ≥2x ·2y ,即2≥22xy ,xy ≤12,当且仅当x =2y ,即x =1,y =12时,等号成立.所以xy 有最大值,且最大值为12.]8.已知函数f (x )=sin ()ωx +φ⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2的图象关于点M ⎝ ⎛⎭⎪⎫-π6,0及直线l :x =π3对称,且f (x )在⎝ ⎛⎭⎪⎫π2,π不存在最值,则φ的值为( )A . -π3B .-π6C .π6D .π3C [函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2的图象关于点M ⎝⎛⎭⎪⎫-π6,0及直线l :x=π3对称. 则T 4+kT 2=π3+π6=π2,∴T =2π1+2k,k ∈N . f (x )在⎝ ⎛⎭⎪⎫π2,π不存在最值,则T ≥π,故k =0时满足条件,T =2π,ω=1.f ⎝ ⎛⎭⎪⎫-π6=sin ⎝⎛⎭⎪⎫-π6+φ=0,则-π6+φ=m π,∴φ=m π+π6,m ∈Z . 当m =0时满足条件,故φ=π6.故选C .]二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列说法正确的是( )A .若幂函数的图象经过点⎝ ⎛⎭⎪⎫18,2,则解析式为y =x -3B .若函数f (x )=x -45,则f (x )在区间(-∞,0)上单调递减 C .幂函数y =x α(α>0)始终经过点(0,0)和(1,1) D .若函数f (x )=x ,则对于任意的x 1,x 2∈[0,+∞)有f x 1+f x 22≤f ⎝⎛⎭⎪⎫x 1+x 22CD [若幂函数的图象经过点⎝ ⎛⎭⎪⎫18,2,则解析式为y =x -13,故A 错误; 函数f (x )=x -45是偶函数且在()0,+∞上单调递减,故在()-∞,0单调递增,B 错误;幂函数y =x α(α>0)始终经过点(0,0)和(1,1),C 正确; 任意的x 1,x 2∈[0,+∞),要证f x 1+f x 22≤f ⎝⎛⎭⎪⎫x 1+x 22,即x 1+x 22≤x 1+x 22,即x 1+x 2+2x 1x 24≤x 1+x 22,即(x 1-x 2)2≥0,易知成立,故D 正确;故选CD .]10.关于函数y =f (x ),y =g (x ),下述结论正确的是( ) A .若y =f (x )是奇函数,则f (0)=0B .若y =f (x )是偶函数,则y =|f (x )|也为偶函数C .若y =f (x )(x ∈R )满足f (1)<f (2),则f (x )是区间[1,2]上的增函数D .若y =f (x ),y =g (x )均为R 上的增函数,则y =f (x )+g (x )也是R 上的增函数 BD [对于A . 若y =f (x )是奇函数,则f (0)=0,当定义域不包含0时不成立,故A 错误;对于B .若y =f (x )是偶函数,f (x )=f (-x ) ,故|f (x )|=|f (-x )|,y =|f (x )|也为偶函数,B 正确;对于C .举反例:f (x )=⎝ ⎛⎭⎪⎫x -432满足f (1)<f (2),在[1,2]上不是增函数,故C 错误;对于D .若y =f (x ),y =g (x )均为R 上的增函数,则y =f (x )+g (x )也是R 上的增函数. 设x 1<x 2,则[f (x 2)+g (x 2)]-[f (x 1)+g (x 1)]=[f (x 2)-f (x 1)]+[g (x 2)-g (x 1)]>0, 故y =f (x )+g (x )单调递增,故D 正确.故选BD .] 11.已知函数f (x )=1+m3x+1(m ∈R )为奇函数,则下列叙述正确的有( ) A .m =-2B .函数f (x )在定义域上是单调增函数C .f (x )∈(-1,1)D .函数F (x )=f (x )-sin x 所有零点之和大于零 ABC [因为函数f (x )=1+m 3x+1(m ∈R )为奇函数,所以f (0)=1+m 30+1=1+m2=0,解得m =-2,故A 正确;因此f (x )=1-23x+1.又因为y =3x+1在定义域上是单调增函数,所以y =23x+1为单调减函数,即f (x )=1-23x +1在定义域上是单调增函数,故B 正确;令t =3x+1,t ∈(1,+∞),所以f (t )=1-2t在t ∈(1,+∞)上的值域为(-1,1),故C 正确;函数F (x )=f (x )-sin x所有零点可以转化为f (x )=sin x 的两个函数的交点的横坐标,因为f (x )和y =sin x 都为奇函数,所以若有交点必然关于原点对称,那么其和应等于零,如图,故选项D 错误.故选ABC .]12.出生在美索不达米亚的天文学家阿尔·巴塔尼大约公元920左右给出了一个关于垂直高度为h 的日晷及其投影长度s 的公式:s =h sin 90°-φsin φ,即等价于现在的s =h cot φ,我们称y =cot x 为余切函数,则下列关于余切函数的说法中正确的是( )A .函数y =cot x 的最小正周期为2πB .函数y =cot x 关于(π,0)对称C .函数y =cot x 在区间(0,π)上单调递减D .函数y =tan x 的图象与函数y =cot x 的图象关于直线x =π2对称BC [y =cot x =cos x sin x =1tan x,画出函数图象,如图所示:故函数的最小正周期为π,关于(π,0)对称,区间(0,π)上单调递减.且函数y =tan x 的图象与函数y =cot x 的图象不关于直线x =π2对称.故选BC .]三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.函数y =sin x -tan x 在[-2π,2π]上零点的个数为________. 5 [由y =sin x -tan x =0得sin x =tan x, 即sin x ⎝ ⎛⎭⎪⎫1-1cos x =0. ∴sin x =0或1-1cos x =0,即x =k π(k ∈Z ),又-2π≤x ≤2π,∴x =-2π,-π,0,π,2π, 从而图象的交点个数为5.]14.已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},∁U B ∩A ={9},则A =________.{3,9} [由题意画出Venn 图,如图所示.由图可知,A ={3,9}.]15.已知sin ⎝ ⎛⎭⎪⎫x -π6=14,则2sin ⎝ ⎛⎭⎪⎫7π6-x +cos ⎝⎛⎭⎪⎫x +4π3=________.34 [2sin ⎝ ⎛⎭⎪⎫7π6-x +cos ⎝ ⎛⎭⎪⎫x +4π3=2sin ⎝ ⎛⎭⎪⎫x -π6+sin ⎝ ⎛⎭⎪⎫x -π6=3sin ⎝ ⎛⎭⎪⎫x -π6=34.]16.已知函数f (x )=12x -22x +1,则g (x )=f (x )+1是________函数(从“奇”“偶”“非奇非偶”及“既是奇函数又是偶”中选择一个填空),不等式f (x 2-x )+f (4x -10)≤-2的解集为________.(本题第一空2分,第二空3分)(1)奇 (2)[-5,2] [函数y =12x ,y =-22x +1单调递增,故f (x )=12x -22x +1单调递增;g (x )=f (x )+1=12x -22x +1+1=12x +2x-12x +1,函数单调递增;g (-x )=12(-x )+2-x-12-x +1=-12x -2x-12x +1=-g (x ),故g (x )是奇函数;f (x 2-x )+f (4x -10)≤-2,即g (x 2-x )≤-g (4x -10)=g (10-4x ).故x 2-x ≤10-4x ,解得-5≤x ≤2.]三、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知p :A ={x |x 2-2x -3≤0,x ∈R },q :B ={x |x 2-2mx +m 2-9≤0,x ∈R ,m ∈R }.(1)若A ∩B =[1,3],求实数m 的值;(2)若q 是p 的必要条件,求实数m 的取值范围. [解] (1)A ={x |-1≤x ≤3,x ∈R },B ={x |m -3≤x ≤m +3,x ∈R ,m ∈R },∵A ∩B =[1,3],∴m =4.(2)∵q 是p 的必要条件 ∴p 是q 的充分条件, ∴A ⊆∁R B ,∴m >6或m <-4.18.(本小题满分12分)已知函数f (x )=2a sin ⎝ ⎛⎭⎪⎫2x +π6+2(其中a 为非零常数). (1)求f (x )的单调增区间;(2)若a >0,x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )的最小值为1,求a 的值.[解] (1)当 a >0时,由-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,解得-π3+k π≤x ≤π6+k π,k ∈Z ,∴当a >0时,函数f (x )的单调增区间为⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π(k ∈Z ),当a <0时,由π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,解得π6+k π≤x ≤2π3+k π,k ∈Z ,∴当a <0时,函数f (x )的单调增区间为⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k ∈Z ).(2)∵0≤x ≤π2,∴π6≤2x +π6≤7π6,∴-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1,∴当a >0时,f (x )的最小值为-a +2=1,∴a =1.19.(本小题满分12分)已知函数f (x )=lg(2+x )+lg(2-x ). (1)判断f (x )的奇偶性,并证明;(2)用定义证明函数f (x )在(0,2)上单调递减; (3)若f (x -2)<f (x ),求x 的取值范围.[解] (1)因为f (x )=lg(2+x )+lg(2-x )=lg(4-x 2),所以函数f (x )的定义域为(-2,2),因为f (-x )=lg(4-(-x )2)=f (x ),所以f (x )是偶函数. (2)任取x 1,x 2∈(0,2)且x 1<x 2,则f (x 1)-f (x 2)=lg(4-x 21)-lg(4-x 22)=lg ⎝ ⎛⎭⎪⎫4-x 214-x 22,因为x 1,x 2∈(0,2)且x 1<x 2,所以4-x 21>4-x 22>0,所以4-x 214-x 22>1,lg ⎝ ⎛⎭⎪⎫4-x 214-x 22>0, 即f (x 1)>f (x 2),所以f (x )在区间(0,2)上单调递减. (3)因为f (x )是偶函数,所以f (x )=f (||x ),又因为f (x )定义域为(-2,2),且在区间(0,2)上单调递减,f (x -2)<f (x ),所以⎩⎨⎧|x -2|>|x |,-2<x -2<2,-2<x <2,解之得0<x <1,所以x 的取值范围是(0,1).20.(本小题满分12分)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos (x 1-x 2)的值.[解] (1)f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3. 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),所以当x ∈(0,π)时,对称轴为x =512π.又方程f (x )=23在(0,π)上的解为x 1,x 2,所以x 1+x 2=56π,则x 1=56π-x 2,所以cos (x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝ ⎛⎭⎪⎫2x 2-π3,又f (x 2)=sin ⎝ ⎛⎭⎪⎫2x 2-π3=23,故cos (x 1-x 2)=23.21.(本小题满分12分)如图,天津之眼,全称天津永乐桥摩天轮,是世界上唯一一个桥上瞰景摩天轮,是天津的地标之一 .永乐桥分上下两层,上层桥面预留了一个长方形开口,供摩天轮轮盘穿过,摩天轮的直径为110米,外挂装48个透明座舱,在电力的驱动下逆时针匀速旋转,转一圈大约需要30分钟.现将某一个透明座舱视为摩天轮上的一个点P ,当点P 到达最高点时,距离下层桥面的高度为113米,点P 在最低点处开始计时.(1)试确定在时刻t (单位:分钟)时点P 距离下层桥面的高度H (单位:米);(2)若转动一周内某一个摩天轮透明座舱在上下两层桥面之间的运行时间大约为5分钟,问上层桥面距离下层桥面的高度约为多少米?[解] (1)如图,建立平面直角坐标系.由题可知OP 在t 分钟内所转过的角为2π30×t =π15t ,因为点P 在最低点处开始计时,所以以Ox 为始边,OP 为终边的角为π15t -π2,所以点P 的纵坐标为55sin ⎝ ⎛⎭⎪⎫π15t -π2,则H =55sin ⎝ ⎛⎭⎪⎫π15t -π2+58=58-55cos π15t (t ≥0),答:在t 分钟时点P 距离下层桥面的高度H 为58-55cos π15t (米).(2)根据对称性,上层桥面距离下层桥面的高度为点P 在t =52分钟时距离下层桥面的高度.当t =52时,H =58-55cos π15t =58-55cos ⎝ ⎛⎭⎪⎫π15×52=58-5532. 答:上层桥面距离下层桥面的高度约为58-5532米.22.(本小题满分12分) 对于函数f (x ),若存在定义域中的实数a ,b 满足b >a >0且f (a )=f (b )=2f ⎝⎛⎭⎪⎫a +b 2≠0,则称函数f (x )为“M 类” 函数.(1)试判断f (x )=sin x ,x ∈R 是否是“M 类” 函数,并说明理由;(2)若函数f (x )=|log 2x -1|,x ∈(0,n ),n ∈N *为“M 类” 函数,求n 的最小值. [解] (1)不是.假设f (x )为M 类函数,则存在b >a >0,使得sin a =sin b , 则b =a +2k π,k ∈Z 或者b +a =π+2k π,k ∈Z , 由sin a =2sina +b2,当b =a +2k π,k ∈Z 时,有sin a =2sin(a +k π),k ∈Z , 所以sin a =±2sin a ,可得sin a =0,不成立;当b +a =π+2k π,k ∈Z 时,有sin a =2sin ⎝ ⎛⎭⎪⎫π2+k π,k ∈Z , 所以sin a =±2,不成立, 所以f (x )不是M 类函数.(2)f (x )=⎩⎪⎨⎪⎧1-log 2x ,0<x ≤2log 2x -1,x >2 ,则f (x )在(0,2)单调递减,在(2,+∞)单调递增,又因为f (x )是M 类函数,所以存在0<a <2<b ,满足1-log 2a =log 2b -1=2|log 2a +b 2-1|, 由等式可得:log 2(ab )=2,则ab =4, 所以a +b 2-2=12(a +4a -4)=a -222a>0, 则log 2a +b 2-1>0,所以得log 2b -1=2⎝ ⎛⎭⎪⎫log 2a +b 2-1, 从而有log 2b +1=log 2⎝⎛⎭⎪⎫a +b 22,则有2b =a +b 24,即⎝ ⎛⎭⎪⎫4b +b 2=8b , 所以b 4-8b 3+8b 2+16=0,则(b -2)(b 3-6b 2-4b -8)=0,由b >2,则b 3-6b 2-4b -8=0,令g (x )=x 3-6x 2-4x -8,当2<x <6时,g (x )=(x -6)x 2-4x -8<0,且g (6)=-32<0,g (7)=13>0,且g (x )连续不断,由零点存在性定理可得存在b ∈(6,7),使得g (b )=0,此时a ∈(0,2),因此n 的最小值为7.。
高中数学(苏教版必修一)配套单元检测:第一章 集 合 模块综合检测C -含答案
模块综合检测(C)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.设全集U 是实数集R ,M ={x |x 2>4},N ={x |2x -1≥1},则右图中阴影部分所表示的集合是______________.2.设2a =5b =m ,且1a +1b=2,则m =________.3.设函数f (x )满足:①y =f (x +1)是偶函数;②在[1,+∞)上为增函数,则f (-1)与f (2)的大小关系是________.4.某企业去年销售收入1 000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p %纳税,且年广告费超出年销售收入2%的部分也按p %纳税,其他不纳税.已知该企业去年共纳税120万元,则p =________.5.设f (x )=⎩⎪⎨⎪⎧2e x -1, x <2,log 3(x 2-1),x ≥2.则f (f (2))的值为________. 6.定义运算:如1*2=1,则函数f(x)的值域为________.7.若2lg(x -2y )=lg x +lg y ,则log 2xy=________.8.设函数f (x )=⎩⎪⎨⎪⎧4x -4, x ≤1x 2-4x +3,x >1,g (x )=log 2x ,则函数h (x )=f (x )-g (x )的零点个数是________.9.在下列四图中,二次函数y =ax 2+bx 与指数函数y =(ba)x 的图象只可为________.10.已知下表中的对数值有且只有一个是错误的.11.已知log a 12>0,若224x x a +-≤1a,则实数x 的取值范围为______________.12.直线y =1与曲线y =x 2-||x +a 有四个交点,则a 的取值范围为________________. 13.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则f (13)、f (2)、f (12)的大小关系为________. 14.已知f (x )=a x -2,g (x )=log a |x |(a >0且a ≠1),若f (4)g (-4)<0,则y =f (x ),y =g (x )在同一坐标系内的大致图象是________.三、解答题(本大题共6小题,共90分) 15.(14分)已知函数f (x )=12log [(12)x -1],(1)求f (x )的定义域; (2)讨论函数f (x )的增减性.16.(14分)已知集合A ={x ∈R |ax 2-3x +2=0,a ∈R }. (1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并把这个元素写出来; (3)若A 中至多只有一个元素,求a 的取值范围.17.(14分)设函数f (x )=ax -1x +1,其中a ∈R .(1)若a =1,f (x )的定义域为区间[0,3],求f (x )的最大值和最小值;(2)若f (x )的定义域为区间(0,+∞),求a 的取值范围,使f (x )在定义域内是单调减函数.18.(16分)关于x 的二次方程x 2+(m -1)x +1=0在区间[0,2]上有解,求实数m 的取值范围.19.(16分)据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).(1)当t=4时,求s的值;(2)将s随t变化的规律用数学关系式表示出来;(3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.20.(16分)已知函数f(x)的定义域是{x|x≠0},对定义域内的任意x1,x2都有f(x1·x2)=f(x1)+f(x2),且当x>1时,f(x)>0,f(2)=1.(1)证明:f(x)是偶函数;(2)证明:f(x)在(0,+∞)上是增函数;(3)解不等式f(2x2-1)<2.模块综合检测(C)1.{x|1<x≤2}解析题图中阴影部分可表示为(∁U M)∩N,集合M={x|x>2或x<-2},集合N={x|1<x≤3},由集合的运算,知(∁U M)∩N={x|1<x≤2}.2.10解析由2a=5b=m得a=log2m,b=log5m,∴1a+1b=log m2+log m5=log m10.∵1a+1b=2,∴log m10=2,∴m2=10,m=10.3.f(-1)>f(2)解析由y=f(x+1)是偶函数,得到y=f(x)的图象关于直线x=1对称,∴f(-1)=f(3).又f(x)在[1,+∞)上为单调增函数,∴f(3)>f(2),即f(-1)>f(2).4.25解析利润300万元,纳税300·p%万元,年广告费超出年销售收入2%的部分为200-1 000×2%=180(万元),纳税180·p%万元,共纳税300·p%+180·p%=120(万元),∴p%=25%.5.2解析 ∵f (2)=log 3(22-1)=log 33=1, ∴f (f (2))=f (1)=2e 1-1=2.6.(0,1]解析 由题意可知f (x )=⎩⎪⎨⎪⎧2x x ≤0,2-x ,x >0.作出f (x )的图象(实线部分)如右图所示;由图可知f (x )的值域为(0,1]. 7.2解析 方法一 排除法. 由题意可知x >0,y >0,x -2y >0, ∴x >2y ,x y >2,∴log 2xy >1.方法二 直接法.依题意,(x -2y )2=xy ,∴x 2-5xy +4y 2=0, ∴(x -y )(x -4y )=0,∴x =y 或x =4y , ∵x -2y >0,x >0,y >0,∴x >2y , ∴x =y (舍去),∴x y =4,∴log 2xy =2.8.3解析 当x ≤1时,函数f (x )=4x -4与g (x )=log 2x 的图象有两个交点,可得h (x )有两个零点,当x >1时,函数f (x )=x 2-4x +3与g (x )=log 2x 的图象有1个交点,可得函数h (x )有1个零点,∴函数h (x )共有3个零点. 9.③解析 ∵ba >0,∴a ,b 同号.若a ,b 为正,则从①、②中选.又由y =ax 2+bx 知对称轴x =-b2a <0,∴②错,但又∵y =ax 2+bx 过原点,∴①、④错. 若a ,b 为负,则③正确. 10.lg 1.5解析 ∵lg 9=2lg 3,适合,故二者不可能错误,同理:lg 8=3lg 2=3(1-lg 5),∴lg 8,lg 5正确.lg 6=lg 2+lg 3=(1-lg 5)+lg 3=1-(a +c )+(2a -b )=1+a -b -c ,故lg 6也正确. 11.(-∞,-3]∪[1,+∞) 解析 由log a 12>0得0<a <1.由224x x a+-≤1a得224x x a +-≤a -1, ∴x 2+2x -4≥-1,解得x ≤-3或x ≥1. 12.1<a <54解析 y =⎩⎪⎨⎪⎧x 2-x +a ,x ≥0,x 2+x +a ,x <0,作出图象,如图所示.此曲线与y 轴交于(0,a )点,最小值为a -14,要使y =1与其有四个交点,只需a -14<1<a , ∴1<a <54.13.f (12)<f (13)<f (2)解析 由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x 2=1对称,又当x ≥1时,f (x )=lnx ,所以离对称轴x =1距离大的x 的函数值大, ∵|2-1|>|13-1|>|12-1|,∴f (12)<f (13)<f (2).14.②解析 据题意由f (4)g (-4)=a 2×log a 4<0,得0<a <1,因此指数函数y =a x (0<a <1)是减函数,函数f (x )=a x-2的图象是把y =a x 的图象向右平移2个单位得到的,而y =log a |x |(0<a <1)是偶函数,当x >0时,y =log a |x |=log a x 是减函数.15.解 (1)(12)x -1>0,即x <0,所以函数f (x )定义域为{x |x <0}.(2)∵y =(12)x -1是减函数,f (x )=12log x 是减函数,∴f (x )=12log [(12)x -1]在(-∞,0)上是增函数.16.解 (1)要使A 为空集,方程应无实根,应满足⎩⎪⎨⎪⎧a ≠0Δ<0,解得a >98.(2)当a =0时,方程为一次方程,有一解x =23;当a ≠0,方程为一元二次方程,使集合A 只有一个元素的条件是Δ=0,解得a =98,x =43. ∴a =0时,A ={23};a =98时,A ={43}.(3)问题(3)包含了问题(1)、(2)的两种情况, ∴a =0或a ≥98.17.解 f (x )=ax -1x +1=a (x +1)-a -1x +1=a -a +1x +1,设x 1,x 2∈R ,则f (x 1)-f (x 2)=a +1x 2+1-a +1x 1+1=(a +1)(x 1-x 2)(x 1+1)(x 2+1).(1)当a =1时,f (x )=1-2x +1,设0≤x 1<x 2≤3,则f (x 1)-f (x 2)=2(x 1-x 2)(x 1+1)(x 2+1),又x 1-x 2<0,x 1+1>0,x 2+1>0, ∴f (x 1)-f (x 2)<0,∴f (x 1)<f (x 2). ∴f (x )在[0,3]上是增函数, ∴f (x )max =f (3)=1-24=12,f (x )min =f (0)=1-21=-1.(2)设x 1>x 2>0,则x 1-x 2>0,x 1+1>0,x 2+1>0. 若使f (x )在(0,+∞)上是减函数, 只要f (x 1)-f (x 2)<0, 而f (x 1)-f (x 2)=(a +1)(x 1-x 2)(x 1+1)(x 2+1),∴当a +1<0,即a <-1时,有f (x 1)-f (x 2)<0, ∴f (x 1)<f (x 2).∴当a <-1时,f (x )在定义域(0,+∞)内是单调减函数. 18.解 设f (x )=x 2+(m -1)x +1,x ∈[0,2]. f (0)=1>0,(1)当2是方程x 2+(m -1)x +1=0的解时, 则4+2(m -1)+1=0,∴m =-32.(2)当2不是方程x 2+(m -1)x +1=0的解时, ①方程f (x )=0在(0,2)上有一个解时,则f (2)<0, ∴4+2(m -1)+1<0.∴m <-32.②方程f (x )=0在(0,2)上有两个解时,则⎩⎪⎨⎪⎧Δ=(m -1)2-4≥0,0<-m -12<2,f (2)=4+2(m -1)+1>0,∴⎩⎪⎨⎪⎧m ≥3或m ≤-1,-3<m <1,m >-32.∴-32<m ≤-1.综合(1)(2),得m ≤-1.∴实数m 的取值范围是(-∞,-1].19.解 (1)由图象可知:当t =4时,v =3×4=12, ∴s =12×4×12=24.(2)当0≤t ≤10时,s =12·t ·3t =32t 2,当10<t ≤20时,s =12×10×30+30(t -10)=30t -150;当20<t ≤35时,s =12×10×30+10×30+(t -20)×30-12×(t -20)×2(t -20)=-t 2+70t-550.综上可知s =⎩⎪⎨⎪⎧32t 2, t ∈[0,10],30t -150,t ∈(10,20],-t 2+70t -550,t ∈(20,35].(3)∵t ∈[0,10]时,s max =32×102=150<650.t ∈(10,20]时,s max =30×20-150=450<650. ∴当t ∈(20,35]时,令-t 2+70t -550=650. 解得t 1=30,t 2=40,∵20<t ≤35,∴t =30, 所以沙尘暴发生30 h 后将侵袭到N 城. 20.(1)证明 令x 1=x 2=1,得f (1)=2f (1), ∴f (1)=0.令x 1=x 2=-1,得f (-1)=0, ∴f (-x )=f (-1·x )=f (-1)+f (x )=f (x ). ∴f (x )是偶函数. (2)证明 设x 2>x 1>0, 则f (x 2)-f (x 1)=f (x 1·x 2x 1)-f (x 1)=f (x 1)+f (x 2x 1)-f (x 1)=f (x 2x 1),∵x 2>x 1>0,∴x 2x 1>1.∴f (x 2x 1)>0,即f (x 2)-f (x 1)>0.∴f (x 2)>f (x 1).∴f (x )在(0,+∞)上是增函数. (3)解 ∵f (2)=1,∴f (4)=f (2)+f (2)=2. 又∵f (x )是偶函数,∴不等式f (2x 2-1)<2可化为f (|2x 2-1|)<f (4). 又∵函数f (x )在(0,+∞)上是增函数,∴|2x 2-1|<4. 解得-102<x <102, 即不等式的解集为(-102,102).。
江苏专版2023_2024学年新教材高中数学模块综合测评课件新人教A版必修第一册
1
[解析] , 的图象关于直线 对称. 有唯一的零点, ,解得 .
A
A. B. C. D.
[解析] , , , .故选A.
4.下列四个函数: ; ; ; ,其中定义域与值域相同的函数的个数是( )
B
A.1 B.2 C.3 D.4
[解析] 对于①,根据一次函数的性质可得其定义域和值域都是 ;对于②, ,根据反比例函数性质可得定义域和值域都为 ;对于③,根据指数函数性质可得其定义域为 ,值域为 ;对于④,根据对数函数性质可得定义域为 ,值域为 .故选B.
[解析] 当 时,函数 过定点 且单调递减,则函数 过定点 且单调递增,函数 过定点 , 且单调递减,D选项符合;当 时,函数 过定点 且单调递增,则函数 过定点 且单调递减,函数 过定点 , 且单调递增,各选项均不符合.综上,选D.
6.将函数 的图象向左平移 个单位长度,得到函数 的图象,则 的单调递减区间是( )
由(1)可得 ,所以 .又 ,所以 ,所以 解得 .所以实数 的取值范围是 .
18.(12分)[2023广东佛山期末] 在 , , ,三个条件中任选一个,补充在下面的问题中,并解答.已知 ,且满足___(填写序号即可).
(1)判断 是第几象限角;
(2)求值: .注:若选择不同的条件分别解答,则按第一个解答计分.
(1)求函数 的最小正周期及在 , 上的最大值和最小值;
解 ,所以最小正周期为 .又 ,所以 .由函数图象(图略)知 ,即 在 上的最大值为2,最小值为 .
高中数学 电子题库 模块综合检测 苏教版必修1
模块综合检测(时间:120分钟;满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上) 1.已知集合A ={-1,0,1,2},B ={-2,0,2,4},则A ∩B =________. 解析:A ∩B ={0,2}. 答案:{0,2}模块综合检测2.函数f (x )=log 2(5x +1)的定义域为________.解析:要使函数有意义,则5x +1>0,∴x >-15,∴定义域为(-15,+∞).答案:(-15,+∞)3.计算2lg 2+lg5的值为________. 解析:原式=lg2+lg5=lg10=1. 答案:14.已知函数f (x )=⎩⎪⎨⎪⎧2-x ,x <1,x 2+x ,x ≥1,则f (f (0))的值为________.解析:f (0)=2-0=2,∴f (f (0))=f (2)=22+2=6. 答案:65.对于任意的a ∈(1,+∞),函数y =log a (x -2)+1的图象恒过点________.(写出点的坐标)解析:令x -2=1,∴x =3,∴图象恒过点(3,1). 答案:(3,1)6.函数f (x )是R 上的偶函数,且当x >0时,f (x )=x 3+1,则当x <0时,f (x )=________.解析:设任意的x <0,则-x >0,f (-x )=(-x )3+1=-x 3+1,又因为f (x )是R 上的偶函数,所以f (-x )=f (x ),即当x <0时,f (x )=-x 3+1.答案:-x 3+17.已知函数f (x )满足:x ≥4,则f (x )=(12)x;当x <4时,f (x )=f (x +1),则f (2+log 23)等于________.解析:∵3<2+log 23<4,所以f (2+log 23)=f (3+log 23)且3+log 23>4, ∴f (2+log 23)=f (3+log 23) =(12)3+log 23=18×(12)log 23 =18×(12)log 1213=18×13=124. 答案:1248.函数f (x )=x 2-2+log 12x 零点的个数为________.解析:f (x )的零点即2-x 2=log 12x 的方程根的个数,即y =2-x 2与y =log 12x 两个函数图象的交点个数,画出两个函数的图象(如图),可得出共有两个交点. 答案:29.已知0≤x ≤2,若不等式a ≤4x -3×2x-4恒成立, 则实数a 的取值范围是________.解析:令f (x )=4x -3×2x-4,不等式恒成立, 则a ≤f (x )m i n ,f (x )=(2x )2-3·2x -4=(2x -32)2-254.∵0≤x ≤2,∴1≤2x≤4,∴当2x=32时,f (x )m i n =-254,∴a ≤-254.答案:(-∞,-254]10.有一批材料可以建成200 m 的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成面积相等的矩形,如图所示,则围成的矩形最大面积为________m 2(围墙厚度不计).解析:设矩形宽为x m ,则矩形长为(200-4x ) m ,则矩形面积S =x (200-4x )=-4(x -25)2+2500(0<x <50),∴x =25 m 时,S max =2500 m 2. 答案:250011.已知偶函数f (x )在区间[0,+∞)上单调增加,则满足f (2x -1)<f (13)的x 的取值范围是________.解析:∵f (x )是偶函数,∴f (|2x -1|)<f (13).又∵f (x )在[0,+∞)上递增,∴|2x -1|<13.∴-13<2x -1<13.∴13<x <23. 答案:13<x <2312.已知f (3x)=4x log 23+234,则f (2)+f (4)+f (8)+…+f (28)=________.解析:令3x =t ,则x =log 3t ,代入f (3x)=4x log 23+234, 得f (t)=4log 2t +234,则f (2)+f (4)+…+f (28)=4(1+2+…+8)+234×8=2020. 答案:202013.关于x 的方程x 2-2|x |-3=m 有两个不相等的实数根,则m 的取值范围是________.解析:作出函数y =x 2-2|x |-3及y =m 的图象,两函数图象有两个不同交点时,原方程有两个不相等的实数根,因此可得m =-4或m >-3. 答案:(-3,+∞)∪{-4}14.已知f (x )=ax 2-2ax +b (a >0),则f (2x )与f (3x )的大小关系是________.解析:f (x )=a (x -1)2+b -a .当x >0时,1<2x <3x ,故有f (2x )<f (3x);当x <0时,3x <2x <1,也有f (2x )<f (3x);当x =0时,3x =2x =1,有f (2x )=f (3x).综上,f (2x )≤f (3x).答案:f (2x )≤f (3x)二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分14分)已知全集U =R ,集合A ={a |a ≥2或a ≤-2},B ={a |关于x 的方程ax 2-x +1=0有实根},求A ∪B ,A ∩(∁U B ).解:∵ax 2-x +1=0有实根, ∴①当a =0时,x =1符合题意,②当a ≠0时,由Δ=(-1)2-4a ≥0,解得a ≤14,综上:a ≤14,∴B ={a |a ≤14}.∴A ∪B ={a |a ≤14或a ≥2},A ∩(∁UB )={a |a ≥2}.16.(本小题满分14分)判断函数f (x )=x +1x在(0,1)上的单调性,并给出证明.解:是减函数. 证明如下: 设0<x 1<x 2<1,则f (x 1)-f (x 2)=(x 1-x 2)+(1x 1-1x 2)=(x 1-x 2)(x 1x 2-1)x 1x 2.∵0<x 1<x 2<1,∴x 1x 2-1<0,x 1-x 2<0.∴f (x 1)>f (x 2),∴f (x )在(0,1)上是减函数.17.(本小题满分14分)已知函数f (x )=2x +1,g(x )=x 2-2x +1. (1)设集合A ={x |g(x )=9},求集合A ; (2)若x ∈[-2,5],求g(x )的值域;(3)画出y =⎩⎪⎨⎪⎧f (x ),x ≤0g (x ),x >0的图象,写出其单调区间.解:(1)集合A ={x |g(x )=9}={x |x 2-2x -8=0}={-2,4}.(2)g(x )=(x -1)2,∵x ∈[-2,5], 当x =1时,g(x )m i n =0; 当x =5时,g(x )max =16. (3)画出函数图象如图:则单调增区间是(-∞,0]和[1,+∞),单调减区间是[0,1]. 18.(本小题满分16分)定义在[-2,2]上的偶函数g(x ),当x ≥0时,g(x )单调递减.若g(1-m )<g(m ),求m 的取值范围. 解:∵g(x )在[-2,2]上是偶函数, ∴g(1-m )=g(|1-m |),g(m )=g(|m |). ∵g(1-m )<g(m ), ∴g(|1-m |)<g(|m |).又g(x )在[0,2]上单调递减,∴⎩⎪⎨⎪⎧-2≤1-m ≤2-2≤m ≤2|1-m|>|m|,解得-1≤m <12.19.(本小题满分16分)某汽车生产企业,上年度生产汽车的投入成本为8万元/辆,出厂价为10万元/辆,年销售量为12万辆.本年度为节能减排,对产品进行升级换代.若每辆车投入成本增加的比例为x (0<x ≤12),则出厂价相应提高的比例为0.75x ,同时预计年销售量增加的比例为0.5x .(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)当投入成本增加的比例x 为何值时,本年度比上年度利润增加最多?最多为多少? 解:(1)由题可知,本年度每辆车的利润为10(1+0.75x )-8(1+x ), 本年度的销售量是12(1+0.5x ),故年利润 y =12(1+0.5x )[10(1+0.75x )-8(1+x )]=-3x 2+6x +24,x ∈(0,12].(2)设本年度比上年度利润增加为f (x ),则f (x )=(-3x 2+6x +24)-24=-3(x -1)2+3,因为x ∈(0,12],在区间(0,12]上f (x )为增函数,所以当x =12时,函数y =f (x )有最大值为94.故当x =12时,本年度比上年度利润增加最多,最多为2.25亿元.20.(本小题满分16分)设函数f (x )的定义域为A ,值域为B ,如果存在函数x =g(t),使得函数y =f (g(t))的值域仍然是B ,那么称函数x =g(t)是函数f (x )的一个等值域变换. (1)判断下列函数x =g(t)是不是函数f (x )的一个等值域变换?说明你的理由:①f (x )=2x +1,x ∈R ,x =g(t)=t 2-2t +3,t ∈R ;②f (x )=x 2-x +1,x ∈R ,x =g(t)=2t,t ∈R.(2)设函数f (x )=log 2(x 2-x +1),g(t)=a t 2+2t +1,若函数x =g(t)是函数f (x )的一个等值域变换,求实数a 的取值范围.解:(1)①函数f (x )=2x +1,x ∈R 的值域为R ,∵x =g(t)=t 2-2t +3=(t -1)2+2≥2,∴y =f (g(t))=2[(t -1)2+2]+1≥5,所以,x =g(t)不是f (x )的一个等值域变换;②f (x )=x 2-x +1=(x -12)2+34≥34,即f (x )的值域为[34,+∞),当t∈R 时,f (g(t))=(2t-12)2+34≥34,即y =f (g(t))的值域仍为[34,+∞),所以x =g(t)是f (x )的一个等值域变换.(2)由x 2-x +1>0解得x ∈R,函数f (x )=log 2(x 2-x +1)=log 2[(x -12)2+34]≥log 234,即f (x )的值域为[log 234,+∞),①若a >0,函数g(t)=a t 2+2t +1有最小值1-1a,只需1-1a ≤12,即0<a ≤2,就可使函数y =f (g(t))的值域仍为[log 234,+∞);②若a =0,函数g(t)=a t 2+2t +1=2t +1的值域为R ,函数y =f (g(t))的值域仍为[log 234,+∞);③若a <0,函数g(t)=a t 2+2t +1 有最大值1-1a,只需1-1a ≥12,即a <0,就可使函数y =f (g(t))的值域仍为[log 234,+∞).综上可知:实数a 的取值范围为(-∞,2].。
苏教版数学必修1:第1章章末综合检测
(时间:120分钟;满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.下列说法:①{0,1}与{1,0}是两个不同的集合;②{(1,1)}与{1}是相同的集合;③0∈N但0∉N *;④方程x 2-2x +1=0的解集是{1},其中正确的是________.(填序号)答案:③④2.给出下列5个集合,①{x |1<x <3,x ∈R};②{x |1<x <3,x ∈Q};③{(x ,y )|(x +1)2+(y -2)2=0};④{(x ,y )|y =2x -3};⑤{x |x ≥1且x ∈Z}∩{x |x ≤3且x ∈Z},其中,为有限集合的是________.(填序号)解析:③中集合为{(-1,2)};⑤中集合为{x |1≤x ≤3,x ∈Z}={1,2,3}.而①②④中元素都为无限个.答案:③⑤3.已知集合M ={x |-2<x <1},N ={x |x ≤-2},则M ∪N =________.解析:M ∪N ={x |-2<x <1或x ≤-2}={x |x <1}=(-∞,1).答案:(-∞,1)4.设A ={(x ,y )|y =-4x +6},B ={(x ,y )|y =5x -3},则A ∩B =________.解析:A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧y =-4x +6y =5x -3 =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x =1y =2={(1,2)}. 答案:{(1,2)}5.设集合U ={1,2,3,4,5},A ={1,2},B ={2,4},则∁U (A ∪B)=________. 解析:A ∪B ={1,2,4},∴∁U (A ∪B)={3,5}.答案:{3,5}6.若集合A ={0,1},A ∪B ={0,1,2},则满足条件的集合B 的个数是________. 解析:由A ={0,1},A ∪B ={0,1,2},可知2∈B ,但0,1可属于B 也可不属于B. ∴B 的取值集合为{2},{0,2},{1,2},{0,1,2},有4种可能.答案:47.设集合M ={x |f(x )=0},N ={x |g(x )=0},则方程f(x )·g(x )=0的解集为________. 解析:f(x )·g(x )=0⇔f(x )=0或g(x )=0,故所求的解集为{x |f(x )=0或g(x )=0}=M ∪N . 答案:M ∪N8.已知全集I(I ≠∅),子集合A 、B 、C ,且A =∁I B ,B =∁I C ,则A 与C 的关系是________. 解析:A =∁I B =∁I (∁I C)=C.答案:A =C9.设M ={3,6,9},若m ∈M ,且9-m ∈M ,那么m 的值是________.解析:当m =3时,9-m =9-3=6∈M ;当m =6时,9-m =9-6=3∈M ;当m =9时,9-m =9-9=0∉M .∴m =3或m =6.答案:3或610.已知集合U ={1,2,3,…,100},A ={被3整除的数},B ={被2整除的数},则A ∪B 中元素的个数有________.解析:集合A 中共有33个元素,集合B 中共有50个元素,又A ∩B 表示被6整除的数的集合,故A ∩B 有16个元素,作出V e nn 图可知A ∪B 中元素个数为33+50-16=67. 答案:6711.设集合M ={x |x =k 2+14,k ∈Z},N ={x |x =k 4+12,k ∈Z},则集合M 与N 的关系是________. 解析:M ={x |x =k 2+14,k ∈Z}={x |x =2k +14,k ∈Z},N ={x |x =k 4+12,k ∈Z}={x |x =k +24,k ∈Z},M 中元素为奇数乘以14,N 中元素为整数乘以14,故M N .答案:M N12.设P ,Q 为两个非空数集,定义集合P +Q ={x |x =a +b ,其中a ∈P ,b ∈Q},若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数是________.解析:由题意,P +Q ={1,2,6,3,4,7,8,11},因此共有8个元素.答案:813.若集合M ={x |x 2+x -6=0},N ={x |a x +2=0,a ∈R},且N M ,则a 的取值集合为________.解析:M ={2,-3}.若N =∅,则a =0;若N ={2},则a =-1;若N ={-3},则-3a +2=0,∴a =23.∴a 的取值集合为{-1,0,23}. 答案:{-1,0,23} 14.已知集合A ={x |-3<x ≤5},B ={x |a +1≤x <4a +1},若B A ,则满足条件的实数a 的取值集合是________.解析:(1)当B =∅时,则4a +1≤a +1,即a ≤0,此时有B A ;(2)当B ≠∅时,由题意可知⎩⎪⎨⎪⎧a +1<4a +1,a +1>-3,4a +1≤5,解得0<a ≤1.综上,a ≤1.答案:{a|a ≤1}二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知集合A ={1,2,3},若A ∪B =A ,求集合B.解:∵A ∪B =A ,∴B ⊆A.∴B 的取值集合为∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.16.(本小题满分14分)已知集合U ={x |x 取不大于30的质数},并且A ∩(∁U B)={5,13,23},(∁U A)∩B ={11,19,29},(∁U A)∩(∁U B)={3,7},求A ,B.解:∵U ={2,3,5,7,11,13,17,19,23,29},由V e nn 图(图略),得A ∩B ={2,17},∴A ={2,5,13,17,23},B ={2,11,17,19,29}.17.(本小题满分14分)设集合A ={2,-1,x 2-x +1},B ={2y ,-4,x +4},且A ∩B ={-1,7},求x ,y 的值.解:∵A ∩B ={-1,7},∴7∈A ,即有x 2-x +1=7,解得x =-2或x =3.当x =-2时,x +4=2∈B ,与2∉A ∩B 矛盾,应舍去;当x =3时,x +4=7,这时2y =-1,即y =-12, 故得x =3,y =-12. 18.(本小题满分16分)已知集合A ={x |x 2+p x +q =0},B ={x |q x 2+p x +1=0},同时满足①A ∩B ≠∅,②A ∩(∁RB)={-2},pq ≠0.求p ,q 的值.解:设x 0∈A ,则有x 20+p x 0+q =0;两端同除以x 20,得1+p·1x 0+q ·1x 20=0, 则知1x 0∈B , 故集合A ,B 中元素互为倒数.由A ∩B ≠∅,一定有x 0∈A ,使得1x 0∈B ,且x 0=1x 0, 解得x 0=±1.又A ∩(∁RB)={-2},则-2∈A ,A ={1,-2}或{-1,-2}.由此得B =⎩⎨⎧⎭⎬⎫1,-12或B =⎩⎨⎧⎭⎬⎫-1,-12. 根据根与系数的关系有⎩⎪⎨⎪⎧1+(-2)=-p 1×(-2)=q 或⎩⎪⎨⎪⎧-1+(-2)=-p ,(-1)×(-2)=q. 得⎩⎪⎨⎪⎧p =1q =-2或⎩⎪⎨⎪⎧p =3,q =2. 19.(本小题满分16分)已知集合A ={a 1,a 2,a 3,a 4},B ={a 21,a 22,a 23,a 24},其中a 1,a 2,a 3,a 4为正整数,且a 1<a 2<a 3<a 4,若A ∩B ={a 1,a 4},a 1+a 4=10,A ∪B 中所有元素之和为124,求集合A.解:由题意得a 1,a 4为两正整数的平方,而a 1+a 4=10,故有a 1=1,a 4=9.由9∈B ,从而3∈A ,由9∈A ,从而81∈B.若a 2=3,则A ={1,3,a 3,9},B ={1,9,a 23,81},从而1+3+a 3+9+a 23+81=124,得a 3=5或a 3=-6(舍去),此时集合A ={1,3,5,9};若a 3=3,则a 2=2,此时A ={1,2,3,9},B ={1,4,9,81}不满足A ∪B 元素和为124,故不合题意.综上所述,集合A ={1,3,5,9}.20.(本小题满分16分)设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +a 2-5=0}.(1)若A ∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围;(3)若U =R ,A ∩(∁U B)=A ,求实数a 的取值范围.解:(1)由题意得A ={1,2}.若A ∩B ={2},则2∈B ,∴22+2(a +1)×2+a 2-5=0,解得a =-1或a =-3.①当a =-1时,B ={x |x 2-4=0}={-2,2},符合题意;②当a =-3时,B ={x |x 2-4x +4=0}={2},符合题意.综上可得a =-1或a =-3.(2)∵A ∪B =A ,∴B ⊆A.Δ=4(a +1)2-4(a 2-5)=8a +24.①当Δ<0即a<-3时,B =∅,符合题意;②当Δ=0即a =-3时,B ={2}⊆A ,符合题意;③当Δ>0即a>-3时,B ⊆A ,则1,2为x 2+2(a +1)x +a 2-5=0的两根,∴⎩⎪⎨⎪⎧-2(a +1)=1+2,a 2-5=1×2,无解. 综上可得a ≤-3.(3)由题意得A ∩B =∅,即1,2∉B ,∴⎩⎪⎨⎪⎧1+2(a +1)+a 2-5≠0,22+2(a +1)×2+a 2-5≠0, 解得a ≠-1或-3或-1±3.∴a 的取值范围是{a|a ≠-1或-3或-1±3,a ∈R}.。
新教材苏教版高中数学必修第一册阶段性综合测验汇总(含四套,附解析)
苏教版必修第一册各阶段综合测验第1~3章综合测验 ............................................................................................................... - 1 - 第4、5章综合测验 ............................................................................................................... - 9 - 第6章综合测验 ................................................................................................................... - 18 - 第7、8章综合测验 ............................................................................................................. - 28 -第1~3章综合测验(120分钟150分)一、单选题(每小题5分,共40分)1.集合A={x∈R|x(x-1)(x-2)=0},则集合A的非空子集的个数为( )A.4B.8C.7D.6【解析】选C.集合A={x∈R|x(x-1)(x-2)=0}={0,1,2},共有23=8个子集,其中非空子集有7个.2.命题“∀x∈R,x2+x+1>0”的否定为( )A.∃x∈R,x2+x+1≥0B.∃x∈R,x2+x+1≤0C.∀x∈R,x2+x+1≥0D.∀x∉R,x2+x+1≥0【解析】选B.由题意得原命题的否定为∃x∈R,x2+x+1≤0.3.若a,b,c∈R且a>b,则下列不等式成立的是( )A.a2>b2B.<C.a>bD.>【解析】选D.选项A: a=0,b=-1,符合a>b,但不等式a2>b2不成立,故本选项是错误的;选项B:当a=0,b=-1符合已知条件,但零没有倒数,故<不成立,故本选项是错误的;选项C:当c=0时a>b不成立,故本选项是错误的;选项D:因为c2+1>0,所以根据不等式的性质,由a>b能推出>.4.已知集合A=,B=,则A∪B= ( )A. B.C. D.【解析】选C.因为A=,B=,所以A∪B=.5.(2019·浙江高考)若a>0,b>0,则“a+b≤4”是“ab≤4”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】选A.如图所示,由a>0,b>0,a+b≤4⇒ab≤4,反之不成立.所以“a+b≤4”是“ab≤4”的充分不必要条件.6.(-6≤a≤3)的最大值为( )A.9B.C.3D.【解析】选B.因为-6≤a≤3,所以3-a≥0,a+6≥0,所以≤=(当且仅当a=-时取等号).即(-6≤a≤3)的最大值为.7.不等式mx2-ax-1>0(m>0)的解集可能是( )A.B.RC.D.【解析】选A.因为Δ=a2+4m>0,所以函数y=mx2-ax-1的图象与x轴有两个交点,又m>0,所以原不等式的解集不可能是B、C、D选项.8.某市原来居民用电价为0.52元/(kW·h),换装分时电表后,峰时段(早上八点到晚上九点)的电价为0.55元/(kW·h),谷时段(晚上九点到次日早上八点)的电价为0.35元/(kW·h).对于一个平均每月用电量为200kW·h的家庭,换装分时电表后,每月节省的电费不少于原来电费的10%,则这个家庭每月在峰时段的平均用电量至多为( )A.110kW·hB.114kW·hC.118kW·hD.120kW·h【解析】选C.设每月峰时段的平均用电量为x kW·h,则谷时段的用电量为(200-x)kW·h;根据题意得(0.52-0.55)x+(0.52-0.35)(200-x)≥200×0.52×10%,解得x≤118.所以这个家庭每月峰时段的平均用电量至多为118kW·h.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.下列命题是真命题的是( )A.若x=1,则x2+x-2=0B.若x2=16,则x=4C.若A⊇B,m∈A,则m∈BD.全等三角形的面积相等【解析】选AD.x2=16时x=±4,B是假命题,若A⊇B,m∈A,m不一定属于B,C是假命题;AD是真命题.10.如果是的充分不必要条件,则a的值可以是( )A.-1B.0C.2D.3【解析】选CD.因为是的充分不必要条件,所以,故a的值可以是2,3.11.下列不等式不正确的是( )A.≥2B.≥2C.>xyD.≥【解析】选BCD.因为x与同号,所以=|x|+≥2,当且仅当x=±1时,等号成立,A正确;当x,y异号时,B不正确;当x=y时,=xy,C不正确;当x=1,y=-1时,D不正确.12.已知二次函数y=ax2+bx+c,且不等式y>-2x的解集为,则( )A.a<0B.方程ax2+bx+c=0的两个根是1,3C. b=-4a-2D. 若方程y+6a=0有两个相等的根,则实数a=-【解析】选ACD.由于不等式y>-2x的解集为,即关于x的二次不等式ax2+x+c>0的解集为,则a<0.由题意可知,1,3为关于x的二次方程ax2+x+c=0的两根,由根与系数的关系得-=1+3=4,=1×3=3,所以b=-4a-2,c=3a,所以y=ax2-x+3a.由题意知,关于x的方程y+6a=0有两相等的根,即关于x的二次方程ax2-x+9a=0有两相等的根,则Δ=-36a2==0,因为a<0,解得a=-.三、填空题(每小题5分,共20分)A=.13.已知集合U=,A=,则U【解析】因为U=,A=,所以A=U答案:14.若二次函数y=x2-mx+3有且只有一个零点,则m=.【解析】二次函数y=x2-mx+3有且只有一个零点,等价于方程x2-mx+3=0的判别式Δ=m2-12=0,所以m=±2.答案:±215.已知A={x|1<x<2},B={x|x2-2ax+a2-1<0},若A⊆B,则a的取值范围是.【解析】方程x2-2ax+a2-1=0的两根为a+1,a-1,且a+1>a-1,所以B={x|a-1<x<a+1}.因为A⊆B,所以解得1≤a≤2.答案:1≤a≤216.若0<x<,则函数y=x的最大值为.【解析】因为0<x<,所以1-4x2>0,所以x=×2x≤×=,当且仅当2x=,即x=时等号成立.答案:四、解答题(共70分)17.(10分)已知集合A={x|x2-4x+3≤0},B={x|x>2}.B)∪A;(1)分别求A∩B,(R(2)已知集合C={x|1<x<a},若C⊆A,求实数a的取值范围.【解析】(1)A={x|x2-4x+3≤0}={x|1≤x≤3},B={x|x>2},所以A∩B={x|2<x≤3},B)∪A={x|x≤2}∪{x|1≤x≤3}={x|x≤3},(R(2)①当a≤1时,C=∅,此时C⊆A;②当a>1时,C⊆A,则1<a≤3;综合①②,可得a的取值范围是(-∞,3].18.(12分)已知p:x2-8x-20≤0,q:x2-2x+1-m2≤0(m>0),若q是p的充分不必要条件,求实数m的取值范围.【解析】由x2-8x-20≤0,得-2≤x≤10.由x2-2x+1-m2≤0,得1-m≤x≤1+m(m>0),所以p:{x|-2≤x≤10},q:{x|1-m≤x≤1+m},因为q是p的充分不必要条件,所以解得0<m≤3,所以所求实数m的取值范围是{m|0<m≤3}.19.(12分)(1)若x<3,求y=2x+1+的最大值;(2)已知x>0,求y=的最大值.【解析】(1)因为x<3,所以3-x>0.又因为y=2(x-3)++7=-+7,由基本不等式可得2(3-x)+≥2=2,当且仅当2(3-x)=,即x=3-时,等号成立,于是-≤-2,-+7≤7-2,故y的最大值是7-2.(2)y==.因为x>0,所以x+≥2=2,所以0<y≤=1,当且仅当x=,即x=1时,等号成立.故y的最大值为1.20.(12分)设a,b,c为△ABC的三边,求证:方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是∠A=90°.,则【证明】(1)必要性:设方程x2+2ax+b2=0与x2+2cx-b2=0有公共根x+2ax0+b2=0,+2cx-b2=0,两式相减可得x=,将此式代入+2ax+b2=0,可得b2+c2=a2,故∠A=90°.(2)充分性:因为∠A=90°,所以b2+c2=a2,b2=a2-c2.①将①代入方程x2+2ax+b2=0,可得x2+2ax+a2-c2=0,即(x+a-c)(x+a+c)=0.将①代入方程x2+2cx-b2=0,可得x2+2cx+c2-a2=0,即(x+c-a)(x+c+a)=0.故两方程有公共根x=-(a+c).所以方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是∠A=90°.21.(12分) 2018年起,政府对环保不达标的养鸡场进行限期整改或勒令关闭.一段时间内,鸡蛋的价格起伏较大(不同周价格不同).假设第一周、第二周鸡蛋的价格分别为x、y(单位:元/kg);甲、乙两人的购买方式不同:甲每周购买3 kg鸡蛋,乙每周购买10元钱鸡蛋.(1)若x=8,y=10,求甲、乙两周购买鸡蛋的平均价格;(2)判断甲、乙两人谁的购买方式更实惠(平均价格低视为实惠),并说明理由. 【解析】(1)因为x=8,y=10,所以甲两周购买鸡蛋的平均价格为=9(元), 乙两周购买鸡蛋的平均价格为=(元).(2)甲两周购买鸡蛋的平均价格为=, 乙两周购买鸡蛋的平均价格为=,由(1)知x=8,y=10时乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,猜测乙的购买方式更实惠.依题意x,y>0,且x≠y,因为-==>0,所以>,所以乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,即乙的购买方式更实惠.22.(12分)志愿者团队要设计一个如图所示的矩形队徽ABCD,已知点E在边CD 上,AE=CE,AB>AD,矩形的周长为 8 cm.(1)设AB=x cm,试用x表示出图中DE的长度,并求出x的取值范围;(2)计划在△ADE区域涂上蓝色代表星空,如果要使△ADE的面积最大,那么应怎样设计队徽的长和宽.【解析】(1)由题意可得AD=4-x,且x>4-x>0,可得2<x<4,CE=AE=x-DE,在直角三角形ADE中,可得AE2=AD2+DE2,即(x-DE)2=(4-x)2+DE2,化简可得DE=4-(2<x<4).=AD·DE=(4-x)(2)S△ADE=2≤2=12-8,当且仅当x=2,4-x=4-2,即队徽的长和宽分别为2 cm,(4-2)cm时, △ADE的面积取得最大值.第4、5章综合测验(120分钟150分)一、单选题(每小题5分,共40分)1.化简的值是( )A.-B.-C.D.±【解析】选A.==-.2.(2020·临汾高一检测)已知函数f(x)=则f(f(-2))=( )A. B. C.1 D.2【解析】选A.根据题意函数f(x)=则f(-2)=2-2=,则f(f(-2))=f==.【补偿训练】已知函数f(x)=则f= ( )A.1B.eC.D.-1【解析】选A.根据题意,函数f(x)=则有f==e,则f=f(e)=ln e=1.3.函数f(x)=的定义域为( )A.{x|x≤2或x≥3}B.{x|x≤-3或x≥-2}C.{x|2≤x≤3}D.{x|-3≤x≤-2}【解析】选A.由x2-5x+6≥0,解得,。
苏教版高中数学必修一模块综合检测B.docx
高中数学学习材料马鸣风萧萧*整理制作模块综合检测(B)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分) 1.集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为________________.2.设函数f (x )=⎩⎪⎨⎪⎧1-2x 2(x ≤1)x 2+3x -2 (x >1),则f (1f (3))的值为________.3.若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是________.4.三个数a =0.32,b =log 20.3,c =20.3之间的大小关系是________.5.若函数f (x )唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,那么下列命题中正确的是________.(填序号) ①函数f (x )在区间(0,1)内有零点;②函数f (x )在区间(0,1)或(1,2)内有零点; ③函数f (x )在区间[2,16)内无零点; ④函数f (x )在区间(1,16)内无零点.6.已知0<a <1,则方程a |x |=|log a x |的实根个数是________.7.函数f (x )=x 2-2ax +1有两个零点,且分别在(0,1)与(1,2)内,则实数a 的取值范围是________.8.一批设备价值a 万元,由于使用磨损,每年比上一年价值降低b %,则n 年后这批设 备的价值为________万元. 9.下列4个函数中: ①y =2 008x -1;②y =log a 2 009-x2 009+x (a >0且a ≠1);③y =x 2 009+x 2 008x +1;④y =x (1a -x -1+12)(a >0且a ≠1).其中既不是奇函数,又不是偶函数的是________.(填序号)10.设函数的集合P ={f (x )=log 2(x +a )+b |a =-12,0,12,1;b =-1,0,1},平面上点的集合Q ={(x ,y )|x =-12,0,12,1;y =-1,0,1},则在同一直角坐标系中,P 中函数f (x )的图象恰好..经过Q 中两个点的函数的个数是________. 11.计算:0.25×(-12)-4+lg 8+3lg 5=________.12.若规定⎪⎪⎪⎪⎪⎪a b cd =|ad -bc |,则不等式log2⎪⎪⎪⎪⎪⎪1 11x <0的解集是________.13.已知关于x 的函数y =log a (2-ax )在[0,1]上是减函数,则a 的取值范围是________.14.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,则不等式f (x )<-12的解集是________.二、解答题(本大题共6小题,共90分)15.(14分)已知函数f (x )=()12log 1x -的定义域为集合A ,函数g (x )=223m x x ---1的值域为集合B ,且A ∪B =B ,求实数m 的取值范围.16.(14分)已知f (x )=x +ax 2+bx +1是定义在[-1,1]上的奇函数,试判断它的单调性,并证明你的结论. 17.(14分)若非零函数f (x )对任意实数a ,b 均有f (a +b )=f (a )·f (b ),且当x <0时,f (x )>1; (1)求证:f (x )>0;(2)求证:f (x )为减函数;(3)当f (4)=116时,解不等式f (x 2+x -3)·f (5-x 2)≤14.18.(16分)我市有甲,乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.某公司准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.(1)设在甲家租一张球台开展活动x小时的收费为f(x)元(15≤x≤40),在乙家租一张球台开展活动x小时的收费为g(x)元(15≤x≤40),试求f(x)和g(x);(2)选择哪家比较合算?为什么?19.(16分)已知函数y=f(x)的定义域为D,且f(x)同时满足以下条件:①f(x)在D上是单调递增或单调递减函数;②存在闭区间[a,b]D(其中a<b),使得当x∈[a,b]时,f(x)的取值集合也是[a,b].那么,我们称函数y=f(x)(x∈D)是闭函数.(1)判断f(x)=-x3是不是闭函数?若是,找出条件②中的区间;若不是,说明理由.(2)若f(x)=k+x+2是闭函数,求实数k的取值范围.(注:本题求解中涉及的函数单调性不用证明,直接指出是增函数还是减函数即可) 20.(16分)已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=a x-1.其中a>0且a≠1.(1)求f(2)+f(-2)的值;(2)求f(x)的解析式;(3)解关于x的不等式-1<f(x-1)<4,结果用集合或区间表示.模块综合检测(B)1.4解析 ∵A ∪B ={0,1,2,a ,a 2},又∵A ∪B ={0,1,2,4,16}, ∴⎩⎪⎨⎪⎧ a =4,a 2=16,即a =4.否则有⎩⎪⎨⎪⎧a =16a 2=4矛盾. 2.127128解析 ∵f (3)=32+3×3-2=16,∴1f (3)=116,∴f (1f (3))=f (116)=1-2×(116)2=1-2256=127128.3.[0,1)解析 由题意得:⎩⎪⎨⎪⎧0≤2x ≤2x ≠1,∴0≤x <1.4.b <a <c解析 20.3>20=1=0.30>0.32>0=log 21>log 20.3. 5.③解析 函数f (x )唯一的一个零点在区间(0,2)内,故函数f (x )在区间[2,16)内无零点. 6.2解析 分别画出函数y =a |x |与y =|log a x |的图象,通过数形结合法,可知交点个数为2.7.1<a <54解析 ∵f (x )=x 2-2ax +1,∴f (x )的图象是开口向上的抛物线. 由题意得:⎩⎪⎨⎪⎧f (0)>0,f (1)<0,f (2)>0.即⎩⎪⎨⎪⎧1>0,1-2a +1<0,4-4a +1>0,解得1<a <54.8.a (1-b %)n解析 第一年后这批设备的价值为a (1-b %); 第二年后这批设备的价值为a (1-b %)-a (1-b %)·b %=a (1-b %)2;故第n 年后这批设备的价值为a (1-b %)n . 9.①③解析 其中①不过原点,不可能为奇函数,也可能为偶函数;③中定义域不关于原点对称,则既不是奇函数,又不是偶函数. 10.6解析 当a =-12,f (x )=log 2(x -12)+b ,∵x >12,∴此时至多经过Q 中的一个点;当a =0时,f (x )=log 2x 经过(12,-1),(1,0),f (x )=log 2x +1经过(12,0),(1,1);当a =1时,f (x )=log 2(x +1)+1经过(-12,0),(0,1),f (x )=log 2(x +1)-1经过(0,-1),(1,0);当a =12时,f (x )=log 2(x +12)经过(0,-1),(12,0),f (x )=log 2(x +12)+1经过(0,0),(12,1).11.7解析 原式=0.25×24+lg 8+lg 53=(0.5×2)2×22+lg(8×53)=4+lg 1 000=7. 12.(0,1)∪(1,2)解析 ⎪⎪⎪⎪⎪⎪1 11 x =|x -1|, 由log 2|x -1|<0,得0<|x -1|<1, 即0<x <2,且x ≠1. 13.(1,2)解析 依题意,a >0且a ≠1, ∴2-ax 在[0,1]上是减函数,即当x =1时,2-ax 的值最小,又∵2-ax 为真数, ∴⎩⎪⎨⎪⎧a >12-a >0,解得1<a <2. 14.(-∞,-1)解析 当x >0时,由1-2-x <-12,(12)x >32,显然不成立. 当x <0时,-x >0.因为该函数是奇函数,所以f (x )=-f (-x )=2x -1.由2x -1<-12,即2x <2-1,得x <-1.又因为f (0)=0<-12不成立,所以不等式的解集是(-∞,-1).15.解 由题意得A ={x |1<x ≤2},B =(-1,-1+31+m ].由A ∪B =B ,得A ⊆B ,即-1+31+m ≥2,即31+m ≥3, 所以m ≥0.16.解 ∵f (x )=x +ax 2+bx +1是定义在[-1,1]上的奇函数,∴f (0)=0,即0+a02+0+1=0,∴a =0.又∵f (-1)=-f (1),∴-12-b =-12+b ,∴b =0,∴f (x )=xx 2+1.∴函数f (x )在[-1,1]上为增函数. 证明如下:任取-1≤x 1<x 2≤1,∴x 1-x 2<0,-1<x 1x 2<1, ∴1-x 1x 2>0.∴f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1x 22+x 1-x 21x 2-x 2(x 21+1)(x 22+1)=x 1x 2(x 2-x 1)+(x 1-x 2)(x 21+1)(x 22+1) =(x 1-x 2)(1-x 1x 2)(x 21+1)(x 22+1)<0,∴f (x 1)<f (x 2),∴f (x )为[-1,1]上的增函数.17.(1)证明 f (x )=f (x 2+x 2)=f 2(x2)≥0,又∵f (x )≠0,∴f (x )>0.(2)证明 设x 1<x 2,则x 1-x 2<0, 又∵f (x )为非零函数,∴f (x 1-x 2)=f (x 1-x 2)·f (x 2)f (x 2)=f (x 1-x 2+x 2)f (x 2)=f (x 1)f (x 2)>1,∴f (x 1)>f (x 2),∴f (x )为减函数. (3)解 由f (4)=f 2(2)=116,f (x )>0,得f (2)=14.原不等式转化为f (x 2+x -3+5-x 2)≤f (2),结合(2)得: x +2≥2,∴x ≥0,故不等式的解集为{x |x ≥0}. 18.解 (1)f (x )=5x,15≤x ≤40;g (x )=⎩⎪⎨⎪⎧90, 15≤x ≤3030+2x , 30<x ≤40.(2)①当15≤x ≤30时,5x =90,x =18, 即当15≤x <18时,f (x )<g (x ); 当x =18时,f (x )=g (x ); 当18<x ≤30时,f (x )>g (x ). ②当30<x ≤40时,f (x )>g (x ),∴当15≤x <18时,选甲家比较合算; 当x =18时,两家一样合算;当18<x ≤40时,选乙家比较合算.19.解 (1)f (x )=-x 3在R 上是减函数,满足①;设存在区间[a ,b ],f (x )的取值集合也是[a ,b ],则⎩⎪⎨⎪⎧-a 3=b-b 3=a ,解得a =-1,b =1,所以存在区间[-1,1]满足②, 所以f (x )=-x 3(x ∈R )是闭函数.(2)f (x )=k +x +2是在[-2,+∞)上的增函数,由题意知,f (x )=k +x +2是闭函数,存在区间[a ,b ]满足② 即:⎩⎨⎧k +a +2=a k +b +2=b.即a ,b 是方程k +x +2=x 的两根,化简得, a ,b 是方程x 2-(2k +1)x +k 2-2=0的两根. 且a ≥k ,b >k .令f (x )=x 2-(2k +1)x +k 2-2,得⎩⎪⎨⎪⎧f (k )≥0Δ>02k +12>k,解得-94<k ≤-2,所以实数k 的取值范围为(-94,-2].20.解 (1)∵f (x )是奇函数,∴f (-2)=-f (2),即f (2)+f (-2)=0.(2)当x <0时,-x >0,∴f (-x )=a -x -1. 由f (x )是奇函数,有f (-x )=-f (x ),∵f (-x )=a -x -1,∴f (x )=-a -x +1(x <0).∴所求的解析式为f (x )=⎩⎪⎨⎪⎧a x -1 (x ≥0)-a -x +1 (x <0).(3)不等式等价于⎩⎪⎨⎪⎧x -1<0-1<-a -x +1+1<4 或⎩⎪⎨⎪⎧x -1≥0-1<a x -1-1<4, 即⎩⎪⎨⎪⎧ x -1<0-3<a -x +1<2或⎩⎪⎨⎪⎧x -1≥00<a x -1<5. 当a >1时,有⎩⎪⎨⎪⎧ x <1x >1-log a2或⎩⎪⎨⎪⎧x ≥1x <1+log a 5,注意此时log a 2>0,log a 5>0, 可得此时不等式的解集为(1-log a 2,1+log a 5).同理可得,当0<a <1时,不等式的解集为R . 综上所述,当a >1时,不等式的解集为(1-log a 2,1+log a 5); 当0<a <1时,不等式的解集为R .。
苏教版数学高一-数学苏教版必修一模块综合检测A
模块综合检测(A)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.已知集合{2x ,x +y}={7,4},则整数x =______,y =________.2.已知f(12x -1)=2x +3,f(m)=6,则m =_______________________.3.函数y =x -1+lg (2-x)的定义域是________. 4.函数f(x)=x 3+x 的图象关于________对称.5.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足f(x +y)=f(x)f(y)”的是______.(填序号)①幂函数;②对数函数;③指数函数;④一次函数.6.若0<m<n ,则下列结论不正确的是________.(填序号)①2m >2n ;②(12)m <(12)n ;③log 2m>log 2n ;④12log m>12log n.7.已知a =0.3,b =20.3,c =0.30.2,则a ,b ,c 三者的大小关系是________.8.用列举法表示集合:M ={m|10m +1∈Z ,m ∈Z }=________.9.已知函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为________.10.函数y =|lg(x +1)|的图象是________.(填序号)11.若函数f (x )=lg(10x +1)+ax 是偶函数,g (x )=4x-b2x 是奇函数,则a +b =________.12.已知f (x 5)=lg x ,则f (2)=________.13.函数y =f (x )是定义域为R 的奇函数,当x <0时,f (x )=x 3+2x -1,则x >0时函数的解析式f (x )=________.14.幂函数f (x )的图象过点(3,427),则f (x )的解析式是________. 二、解答题(本大题共6小题,共90分) 15.(14分)(1)计算:12729⎛⎫ ⎪⎝⎭+(lg 5)0+132764-⎛⎫ ⎪⎝⎭;(2)解方程:log 3(6x -9)=3.16.(14分)某商品进货单价为40元,若销售价为50元,可卖出50个,如果销售价每涨1元,销售量就减少1个,为了获得最大利润,求此商品的最佳售价应为多少?17.(14分)已知函数f(x)=-3x2+2x-m+1.(1)当m为何值时,函数有两个零点、一个零点、无零点;(2)若函数恰有一个零点在原点处,求m的值.18.(16分)已知集合M是满足下列性质的函数f(x)的全体:在定义域D内存在x0,使得f(x0+1)=f(x0)+f(1)成立.(1)函数f (x )=1x是否属于集合M ?说明理由;(2)若函数f (x )=kx +b 属于集合M ,试求实数k 和b 满足的约束条件.19.(16分)已知奇函数f (x )是定义域[-2,2]上的减函数,若f (2a +1)+f (4a -3)>0,求实数a 的取值范围.20.(16分)已知函数f (x )=⎩⎨⎧x -2x (x >12)x 2+2x +a -1 (x ≤12).(1)若a =1,求函数f (x )的零点;(2)若函数f (x )在[-1,+∞)上为增函数,求a 的取值范围.模块综合检测(A)1.2 5解析 由集合相等的定义知,⎩⎪⎨⎪⎧ 2x =7x +y =4或⎩⎪⎨⎪⎧2x =4x +y =7,解得⎩⎨⎧x =72y =12或⎩⎪⎨⎪⎧x =2y =5,又x ,y 是整数,所以x =2,y =5.2.-14解析 令12x -1=t ,则x =2t +2,所以f(t)=2×(2t +2)+3=4t +7.令4m +7=6,得m =-14.3.[1,2)解析 由题意得:⎩⎪⎨⎪⎧x -1≥02-x>0,解得1≤x<2.4.原点解析 ∵f(x)=x 3+x 是奇函数, ∴图象关于坐标原点对称. 5.③解析 本题考查幂的运算性质. f(x)f(y)=a x a y =a x +y =f(x +y). 6.①②③解析 由指数函数与对数函数的单调性知只有④正确. 7.b>c>a解析 因为a =0.3=0.30.5<0.30.2=c<0.30=1, 而b =20.3>20=1,所以b>c>a.8.{-11,-6,-3,-2,0,1,4,9}解析 由10m +1∈Z ,且m ∈Z ,知m +1是10的约数,故|m +1|=1,2,5,10,从而m 的值为-11,-6,-3,-2,0,1,4,9. 9.2解析 依题意,函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上具有单调性, 因此a +a 2+log a 2=log a 2+6,解得a =2. 10.①解析 将y =lg x 的图象向左平移一个单位,然后把x 轴下方的部分关于x 轴对称到上方,就得到y =|lg(x +1)|的图象.11.12解析 ∵f (x )是偶函数, ∴f (-x )=f (x ),即lg(10-x+1)-ax =lg 1+10x10x -ax =lg(10x+1)-(a +1)x =lg(10x +1)+ax ,∴a =-(a +1),∴a =-12,又g (x )是奇函数,∴g (-x )=-g (x ),即2-x -b 2-x =-2x +b 2x ,∴b =1,∴a +b =12.12.15lg 2 解析 令x 5=t ,则x =15t .∴f (t )=15lg t ,∴f (2)=15lg 2.13.x 3-2-x +1解析 ∵f (x )是R 上的奇函数,∴当x >0时, f (x )=-f (-x )=-[(-x )3+2-x -1]=x 3-2-x +1. 14.f (x )=34x解析 设f (x )=x n ,则有3n =427,即3n =343,∴n =34,即f (x )=34x . 15.解 (1)原式=12259⎛⎫ ⎪⎝⎭+(lg 5)0+13334-⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=53+1+43=4. (2)由方程log 3(6x -9)=3得6x -9=33=27,∴6x =36=62,∴x =2. 经检验,x =2是原方程的解.16.解 设最佳售价为(50+x )元,最大利润为y 元, y =(50+x )(50-x )-(50-x )×40=-x 2+40x +500. 当x =20时,y 取得最大值,所以应定价为70元. 故此商品的最佳售价应为70元.17.解 (1)函数有两个零点,则对应方程-3x 2+2x -m +1=0有两个根,易知Δ>0,即Δ=4+12(1-m )>0,可解得m <43;Δ=0,可解得m =43;Δ<0,可解得m >43.故m <43时,函数有两个零点;m =43时,函数有一个零点;m >43时,函数无零点. (2)因为0是对应方程的根,有1-m =0,∴m =1.18.解 (1)D =(-∞,0)∪(0,+∞),若f (x )=1x ∈M ,则存在非零实数x 0,使得1x 0+1=1x 0+1,即x 20+x 0+1=0, 因为此方程无实数解,所以函数f (x )=1x ∉M .(2)D =R ,由f (x )=kx +b ∈M ,存在实数x 0,使得 k (x 0+1)+b =kx 0+b +k +b ,解得b =0, 所以,实数k 和b 的约束条件是k ∈R ,b =0.19.解 由f (2a +1)+f (4a -3)>0得f (2a +1)>-f (4a -3), 又f (x )为奇函数,得-f (4a -3)=f (3-4a ), ∴f (2a +1)>f (3-4a ),又f (x )是定义域[-2,2]上的减函数, ∴2≥3-4a >2a +1≥-2, 即⎩⎪⎨⎪⎧2≥3-4a 3-4a >2a +12a +1≥-2,∴⎩⎪⎨⎪⎧a ≥14a <13a ≥-32,∴实数a 的取值范围为[14,13).20.解 (1)当a =1时,由x -2x =0,x 2+2x =0,得零点为2,0,-2.(2)显然,函数g (x )=x -2x 在[12,+∞)上递增,且g (12)=-72;函数h (x )=x 2+2x +a -1在[-1,12]上也递增,且h (12)=a +14.故若函数f (x )在[-1,+∞)上为增函数, 则a +14≤-72,∴a ≤-154.故a 的取值范围为(-∞,-154].。
苏教版高中数学必修一模块综合检测卷
高中数学学习资料金戈铁骑整理制作模块综合检测卷(时间: 120 分钟满分:150分)一、选择题 (本大题共 12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题意的 )1.已知全集 U={1,2,3,4},A= {1,2},B={2,3},则?U (A∪B)=()A.{3}B.{4}C.{3,4}D.{1,3,4}分析:由于 A= {1,2},B={2,3},所以 A∪ B={1,2,3}.所以 ?U∪B)=.(A{4}答案: B.当>1时,在同一平面直角坐标系中,函数=a-x与 y=log2a y a x 的图象是 ()答案: A.已知会合==x +,==x2+1},则 A∩B=()3 A {x|y1} B{y|yA.?B.[-1,1]C.[-1,+∞ )D.[1,+∞ )分析: A= {x|y=x+1 } = {x|x≥ - 1}, B = {y|y= x2+ 1} ={y|y≥1}.所以 A∩B=[1,+∞).答案: D4.设 f(x)是 R 上的偶函数,且在 (0,+∞ )上是减函数,若 x1<0,x1+x2>0,则 ()A.f(-x1)> f(-x2)B.f(-x1)=f(-x2)C.f(-x1)< f(-x2)D.f(-x1)与 f(-x2)大小不确立分析:由 x1<0,x1+ x2>0 得 x2>- x1>0,又 f(x)是 R 上的偶函数,且在 (0,+∞)上是减函数,所以 f(-x2)= f(x2)<f(-x1).答案: A5.已知函数 f(x)的单一递加区间是 (-2,3),则 y=f(x+5)的单调递加区间是()A.(3, 8)B.(-7,- 2)C.(-2,3)D.(0,5)分析:由于 f(x)的单一递加区间是 (-2,3),则 f(x+5)的单一递增区间知足- 2<x+5<3,即- 7<x<- 2.答案: B6.若 x∈[0,1],则函数 y=x+2-1- x的值域是 ()A.[ 2-1,3-1]B.[1, 3 ]C.[ 2-1, 3 ]D.[0,2-1]分析:该函数为增函数,自变量最小时,函数值最小;自变量最大时,函数值最大.故y min=2-1, y max= 3.答案: C7.以下不等式正确的选项是 ()111111A. 62<32<64111111B.64<62<32111111C. 32<64<62111111D. 32<62<64答案: A8.已知函数 f(x)= e x-1,g(x)=- x2+4x-3,如有 f(a)=g(b),则 b 的取值范围为 ()A.[2- 2,2+ 2]B.(2- 2,2+ 2)C.[1, 3]D.(1,3)分析: f(x)= e x-1>-1,g(x)=- x2+4x-3=- (x-2)2+1≤1,如有 f(a)= f(b),则 g(b)∈(-1,1],即- b2+4b-3>- 1? 2- 2<b<2+ 2.答案: B2x-1-2,x≤1,9.已知函数 f(x)=-log2(x+1),x>1,且 f(a)=- 3,则 f(6-a)=()A.-7B.-5C.-3D.-1 4444分析:当 a≤1 时, f(a)=2a-1-2=- 3,则 2a-1=- 1 不建立,舍去.当 a>1 时, f(a)=- log2(a+1)=- 3.所以 a+1=8,a=7.此时 f(6-a)=f(- 1)=2-2-2=-7 4.答案: A10.设偶函数 f(x)=log a|x+b|在(0,+∞ )上是单一减函数,则 f(b -2)与 f(a+1)的大小关系是 ()A.f(b-2)=f(a+1)B.f(b-2)>f(a+1)C.f(b-2)<f(a+1)D.不可以确立分析:由于 y=log a+是偶函数,=,|x b| b 0所以 y= log a|x|.又在 (0,+∞)上是单一递减函数,所以 0<a<1.所以 f(b-2)=f(- 2)=f(2),f(a+1)中 1< a+1<2.所以 f(2)< f(a +1),所以 f(b -2)<f(a +1).答案: C11.某食品的保y( 位:小 )与 藏温度 x( 位:℃ )足函数关系 y =ekx +b(e =⋯ 自然 数的底数, k ,b 常数 ).若食品在 0 ℃的保 是 192 小 ,在 22 ℃的保 是48 小, 食品在 33℃的保 是 ()A .16 小B .20 小C .24 小D .28 小分析:由 得 e b=192,①e22k + b=e22k·e b= 48,②将①代入 ②得 e22k=14, e 11k =12.3当 x =33 , y = e33k + b= (e11k )3·eb= 12 ×192=24.所以 食品在 33 ℃的保 是 24 小 .答案: Cx 2-ax +5,x <1,.已知函数f(x) =+1,在 R 上 , 数 a12x ≥1,1x的取 范 是 ()A .(-∞, 2]B .[2,+∞ )C .[4,+∞ )D .[2,4]1分析:当 x ≥1 , f(x)=1+x 减函数,所以 f(x)在 R 上 减函数,要求当 x <1 , f(x)=x 2-ax +5 减函数,a所以 2≥1,即a ≥2,而且 足当x =11, f(x)=1+x 的函数不大于 x=1 时 f(x)= x2-ax+5 的函数值,即 1- a+5≥2,解得 a≤4.所以实数 a 的取值范围 [2,4].答案: D二、填空题 (本大题共 4 小题,每题 5 分,共 20 分.把答案填在题中横线上 )113.2-3, 32与 log25 三个数中最大的数是 ________.1分析:由于 2-3<1,32<2,log25>2.所以这三个数中最大的数为log25.答案: log25x-214.函数 y=x-3 lg 4-x的定义域是__________.x-2≥0,分析:由题知x-3≠0,所以 2≤x<4 且 x≠3.4-x>0,答案: [2, 3)∪(3,4)b- 2x15.已知函数f(x)=2x+1为定义是区间 [-2a,3a-1]上的奇函数,则 a+b=________.b- 2x分析:由于函数f(x)=2x+1为定义是区间 [-2a,3a- 1]上的奇函数,所以- 2a+3a-1=0,所以 a=1.b-20b-1又 f(0)=20+1=2=0,所以b=1.故 a+b=2.答案: 216.若函数 f(x)=|4x-x2|-a 的零点个数为 3,则 a=________.分析:作出 g(x)=|4x-x2|的图象, g(x)的零点为 0 和 4.由图象可知,将 g(x)的图象向下平移 4 个单位时,知足题意,所以a=4.答案: 4三、解答题 (本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程式演算步骤 )17.(本小题满分 10 分 )设函数 f(x)=ax2+(b-8)x-a-ab 的两个零点分别是- 3 和 2.(1)求 f(x);(2)当函数 f(x)的定义域是 [0,1]时,求函数 f(x)的值域.解: (1)由于 f(x)的两个零点是- 3 和 2,所以函数图象过点 (- 3,0),(2,0).所以有 9a-3(b- 8)-a-ab=0.①4a+2(b-8)- a-ab=0.②①-②得 b=a+ 8.③③代入②得 4a+ 2a- a-a(a+8)=0,即 a2+3a=0,由于 a≠0,所以 a=- 3.所以 b=a+8=5.所以 f(x)=- 3x2-3x+ 18.2(2)由(1)得 f(x)=- 3x2-3x+18=- 3 x+12+34+18,1图象的对称轴方程是x=-2,又 0≤x≤1,所以 f(x)min=f(1)=12,f(x)max=f(0)=18.所以函数 f(x)的值域是 [12,18].18.(本小题满分 12 分 )已知二次函数f(x)=ax2+bx+1(a>0),f(x), x>0,F(x)=-f(x),x<0,若 f(-1)=0,且对随意实数 x 均有 f(x)≥0,(1)求 F(x)的表达式;(2)当 x∈[-2,2]时,g(x)= f(x)-kx 是单一函数,求 k 的取值范围.解: (1)由于 f(x)= ax2+bx+1,f(-1)= 0,所以 a-b+1=0.又由于对随意实数x,均有 f(x)≥0,所以=b2-4a≤0.2所以 (a+1) -4a≤0.所以 f(x)= x2+2x+1.x2+2x+1,x>0,(2)由于 g(x)=f(x)-kx= x2+2x+1- kx= x2+(2-k)x+ 1,在[-2,2]上是单一函数,k-2k- 2所以2≥2或2≤-2,解之得 k≥6 或 k≤-2.所以 k 的取值范围是 {k|k≥6 或 k≤-2}.19. (本小题满分 12 分) 已知函数f(x)=2x-1,其定义域为x{x|x≠0}.(1)用单一性的定义证明函数f(x)在区间 (0,+∞ )上为增函数;(2)利用 (1)所获得的结论,求函数f(x)在区间 [1,2]上的最大值与最小值.(1)证明:设 x1,x2∈(0,+∞),且 x1<x2,则 x2-x1>0.2-11-1 2-x 1f(x 2)-f(x 1)= 2x2x x.x 2 -x 1=x 1x 2 由于 x 1< x 2,所以 x 2- x 1>0.又由于 x 1,x 2∈(0,+ ∞),所以 x 2x 1>0,f(x 2)- f(x 1)>0.2x -1故 f(x)=x在区间 (0,+ ∞)上为增函数.(2)解:由于 f(x)=2x - 1在区间 (0,+ ∞)上为增函数,x所以 f(x)min =f(1)=2-1=1,f(x)max =f(2)= 2×2-1=3.12 2. 本小题满分 12 分 已知函数 f(x) = m -4,且 f(4)=3.20 ( ) xx(1)求 m 的值;(2)判断 f(x)的奇偶性;(3)若不等式 f(x)-a >0 在区间 [1,+∞ )上恒建立,务实数 a 的取值范围.解: (1)由于 f(4)= 3,所以 4m-44=3,所以 m =1.4(2)由(1)知 f(x)=x -x ,其定义域为 {x|x ≠0},对于原点对称.4 又 f(-x)=- x --x =-4x -x =- f(x),所以 f(x)是奇函数.1(3)由于 y =x ,y =- x 在区间 [1,+ ∞)上都是增函数,所以 f(x)在区间 [1,+ ∞)上为增函数,所以 f(x)≥f(1)=- 3.由于不等式 f(x)-a > 0 在区间 [1,+ ∞)上恒建立,即不等式 a <f(x)在区间 [1,+ ∞ )上恒建立,所以 a <- 3,故实数 a 的取值范围是 (- ∞,- 3).21.(本小题满分 12 分)“活水围网”养鱼技术拥有养殖密度高、经济效益好的特色. 研究表示: “活水围网”养鱼时, 某种鱼在必定的条件下,每尾鱼的均匀生长速度 v (单位:千克 /年)是养殖密度 x(单位:尾 /立方米 )的函数.当 x 不超出 4(尾/立方米 )时, v 的值为 2(千克/年);当 4≤x ≤20 时,v 是 x 的一次函数; 当 x 达到 20(尾/立方米 ) 时,因缺氧等原由, v 的值为 0(千克 /年 ).(1)当 0<x ≤20 时,求函数 v (x)的表达式;(2)当养殖密度 x 为多大时,鱼的年生长量 (单位:千克 /立方米 )f(x) =x ·v (x)能够达到最大,并求出最大值.解: (1)由题意:当 0< x ≤4 时, v (x)=2;当 4<x ≤20 时,设 v (x)=ax + b ,明显该函数在 [4, 20]是减函数,a =- 120a + b =0, 8,由已知得 解得 5+ = ,4a b 2 b =2.2,0< x ≤4,x ∈N *,故函数 v (x)= -1 +5, 4≤x ≤20,x ∈N *.8x2(2)依题意并由 (1)可得2x , 0<x ≤4,x ∈ N *,f(x)=-18x2+52x , 4≤x ≤20,x ∈N *.当 0≤x ≤4 时, f(x)为增函数,故 f max (x)=f(4)=4×2= 8;当 4≤x ≤20 时, f(x)=- 18x 2+52x =- 18(x 2-20x)=- 81(x -10)21002+ 8 ,f max (x)=f(10)=12.5.所以,当 0<x ≤ 20 时, f(x)的最大值为 12.5.当养殖密度为 10 尾/立方米时,鱼的年生长量能够达到最大,最大值约为 12.5 千克 /立方米.m -g (x )的定义域为22.(本小题满分 12 分)已知奇函数 f(x)= 1+g (x )R ,此中 g(x)为指数函数,且过定点 (2,9).(1)求函数 f(x)的分析式;(2) 若对随意的 ∈ [0 , 5] ,不等式2+2t +k)+f(-2t 2+2t -5) t f(t>0 恒建立,务实数 k 的取值范围. 解: (1)设 g(x)=a x >,且 ≠ ,则 2=9.(a 0 a 1) a 所以 a =- 3(舍去 )或 a = 3,m -3x所以 g(x)=3x , f(x)= 1+ 3x .又 f(x)为奇函数,且定义域为R ,所以 f(0)=0,m -301-3x则 1+30 =0,所以 m =1,所以 f(x)=1+3x .(2)设 x 1<x 2,则1-3x 1-1-3x 2=2( 3x 2-3x 1)f(x 1)-f(x 2)=+3x 1+3x 2(1+3x 1)( 1+ 3x 2).1 1由于 x1< x2,所以 3x2-3x1>0,2(3x2-3x1)所以>0,(1+3x1)( 1+3x2)所以 f(x1)-f(x2)>0,即 f(x1)>f(x2),所以函数 f(x)在 R 上单一递减.要使对随意的t∈[0,5], f(t2+2t+k)+f(-2t2+ 2t-5)>0 恒成立,即 f(t2+2t+k)>- f(-2t2+2t-5)恒建立.由于 f(x)为奇函数,所以 f(t2+2t+k)>f(2t2-2t+5)恒建立.又由于函数 f(x)在 R 上单一递减,所以对随意的 t∈[0,5], t2+2t+k<2t2-2t+5 恒建立,即对随意的 t∈[0,5], k<t2-4t+5=(t-2)2+1 恒建立.而当 t∈[0, 5]时, 1≤(t-2)2+1≤10,所以 k<1.。
2022届高中数学 教师用书 模块综合检测 苏教版必修1
模块综合检测时间:120分钟满分:160分一、填空题本大题共14个小题,每小题5分,共70分.把答案填在题中的横线上1.若幂函数=f的图象经过点9,错误!,则f25的值是________.解析:设f=α,将9,错误!代入得9α=错误!,即32α=3-1,∴2α=-1,∴α=-错误!,∴f=-错误!∴f25=25-错误!=错误!答案:错误!2.2022·新课标高考改编下列函数中,既是偶函数又在0,+∞单调递增的函数是________.①=3②=||+1 ③=-2+1 ④=2-||解析:=3为奇函数,=-2+1在0,+∞上为减函数,=2-||在0,+∞上为减函数.故只有②符合条件答案:②3.若集合A={|og错误!≤错误!},则∁R A=________.解析:由og错误!≤错误!得≥错误!错误!2.10.92.10.92.10.9≤0},N={|≥-1},若M∩N =∅,则实数m的取值范围是________.解析:M=-∞,m],N=[-1,+∞,∵M∩N=∅,∴m即错误!解得-13a3a0,∴0时,f=2,函数=f的解析式为________.解析:∵=f是R上的奇函数,∴f0=0又∵当>0时,f=2,∴当0,f-=2-=-f,∴f=-2-=-错误!∴f=错误!则不等式f≥1的解集是________.解析:>0时,由og3≥1得≥3,∴≥3当≤0时,由2≥1得≥0,∴=0由上可知解集为{|=0或≥3}.答案:{|=0或≥3}12.已知函数f=-a-b其中a>b的图象如下左图,则函数g=a+b的图象是________.解析:由f的图象可知a∈0,1,b∈-∞,-1.∵0,解得00,∴f1=2a+12323140,f2-f1=错误!2-11-错误!=错误!2-1·错误!∵10,12>1,f2>f1.∴f在-∞,-1]上为单调增函数.18.本小题满分14分A、B两城相距100 km,在两地之间距A城 m处的D地建一核电站给A、B两城供电,为保证城市安全,核电站距城市的距离不得小于错误!,已知供电费用刚好和供电距离的平方与供电量之积成正比,比例系数=,若A城供电量为20亿度/月,B城为10亿度/月.1写出的范围;2把月供电总费用表示成的函数;3核电站建在距A城多远,才能使供电费用最小.解:110≤≤902=[202+10100-2]×=62-400+20 00010≤≤90.3由2知,=62-400+20 000=6-错误!2+错误!∴当=错误!时,min=错误!即核电站建在距A城错误! m处时,才能使供电费用最小.19.本小题满分16分设二次函数f=a2+b+c在区间[-2,2]上的最大值、最小值分别是M、m,集合A={|f=}.1若A={1,2},且f0=2,求M和m的值;2若A={1},且a≥1,记ga=M+m,求ga的最小值.解:1由条件得f1=1,f2=2,f0=2得a=1,b=-2,c=2,f=2-2+2=-12+1,∴M=f-2=4+4+2=10,m=f1=12由条件得a2+b-1+c=0有两个相等实根1,从而a+b+c=1,b-12=4ac,得c=a,b=1-2a则f=a2+1-2a+a∵a≥1,∴对称轴=错误!=1-错误!∈[错误!,1,∴M =f -2=9a -2,m =f 1-错误!=1-错误!∴ga =9a -错误!-1,a ≥1,又ga 在[1,+∞上单调递增,∴ga 最小值=g 1=8-错误!=错误!20.本小题满分16分已知定义在实数集R 上的偶函数f 在区间[0,+∞上是单调增函数. 1求证:函数f 在区间-∞,0]上是单调减函数;2若f 1-2≥0,因为f 在区间[0,+∞上是单调增函数,∴f -1>f -2,又因为f 是偶函数,所以f -1=f 1,f -2=f 2,f 1>f 2,∴函数f 在区间-∞,0]上是单调减函数.2当0g ,01,>10, 综上所述,的取值范围是1010⎛⎫ ⎪⎝⎭,∪10,+∞.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块综合检测(时间:120分钟 满分:160分)一、填空题(本大题共14个小题,每小题5分,共70分.把答案填在题中的横线上)1.若幂函数y =f (x )的图象经过点(9,13),则f (25)的值是________. 解析:设f (x )=x α,将(9,13)代入得9α=13, 即32α=3-1,∴2α=-1,∴α=-12, ∴f (x )=x -12.∴f (25)=25-12=15. 答案:152.(2011·新课标高考改编)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是________.①y =x 3 ②y =|x |+1 ③y =-x 2+1 ④y =2-|x |解析:y =x 3为奇函数,y =-x 2+1在(0,+∞)上为减函数,y =2-|x |在(0,+∞)上为减函数.故只有②符合条件答案:②3.若集合A ={x |log 12x ≤12},则∁R A =________. 解析:由log 12x ≤12得x ≥(12)12=22. ∴A =[22,+∞).∴∁R A =(-∞,22). 答案:(-∞,22) 4.试比较1.70.2、log 2.1 0.9与0.82.1的大小关系,并按照从小到大的顺序排列为________.解析:log 2.10.9<0,1.70.2>0,0.82.1>0.∵1.70.2>1.70=1,0.82.1<0.80=1,∴log 2.10.9<0.82.1<1.70.2.答案:log 2.10.9<0.82.1<1.70.25.设集合M ={x |x -m ≤0},N ={y |y ≥-1},若M ∩N =∅,则实数m 的取值范围是________.解析:M =(-∞,m ],N =[-1,+∞),∵M ∩N =∅,∴m <-1.答案:m <-16.(2012·山东高考改编)函数f (x )=1ln (x +1)+ 4-x 2的定义域为________. 解析:x 满足⎩⎨⎧x +1>0,x +1≠1,4-x 2≥0,即⎩⎨⎧x >-1,x ≠0,-2≤x ≤2.解得-1<x <0或0<x ≤2. 答案:(-1,0)∪(0,2]7.若函数f (x )=ax -b 有一个零点是3,那么函数g (x )=bx 2+3ax 的零点是________.解析:由条件可得3a -b =0,即b =3a ,∴g (x )=bx 2+3ax =3ax 2+3ax ,令g (x )=0得x =-1,0.答案:-1,08.函数f (x )=log 13(-3x +2)的单调递增区间为________.解析:∵函数的定义域为-3x +2>0,∴x <23. 令u =-3x +2,∵f (u )=log 13u 是减函数,要求f (x )的单调增区间,只需求u =-3x+2的递减区间,即(-∞,23). 答案:(-∞,23) 9.设函数f (x )=x (e x +a e -x )(x ∈R)是偶函数,则实数a 的值为________.解析:因为f (x )是偶函数,所以恒有f (-x )=f (x ),即-x (e -x +a e x )=x (e x +a e -x ),化简得x (e -x +e x )(a +1)=0.因为上式对任意实数x 都成立,所以a =-1.答案:-110.已知函数y =f (x )是R 上的奇函数,且x >0时,f (x )=2x,函数y =f (x )的解析式为________.解析:∵y =f (x )是R 上的奇函数,∴f (0)=0.又∵当x >0时,f (x )=2x ,∴当x <0时,-x >0,f (-x )=2-x =-f (x ),∴f (x )=-2-x =-(12)x . ∴f (x )=⎩⎪⎨⎪⎧2x ,x >0,0,x =0,-(12)x ,x <0. 答案:f (x )=⎩⎪⎨⎪⎧2x ,x >00,x =0-(12)x ,x <0 11.已知函数f (x )=⎩⎨⎧log 3x ,x >0,2x ,x ≤0,则不等式f (x )≥1的解集是________. 解析:x >0时,由log 3x ≥1得x ≥3,∴x ≥3.当x ≤0时,由2x ≥1得x ≥0,∴x =0.由上可知解集为{x |x =0或x ≥3}.答案:{x |x =0或x ≥3}12.已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如下左图,则函数g (x )=a x +b 的图象是________.解析:由f (x )的图象可知a ∈(0,1),b ∈(-∞,-1).∵0<a <1,∴y =a x 单调递减,b <-1,∴x =0时,y =b +1<0,故g (x )=a x +b 的图象是①.答案:①13.函数y =log 2x +log 2(1-x )的最大值是________.解析:要使函数有意义,只要⎩⎨⎧x >01-x >0, 解得0<x <1,又y =log 2[x (1-x )]=log 2[-(x -12)2+14], 当x ∈(0,1)时,0<-(x -12)2+14≤14,∴y ≤log 214=-2, ∴y max =-2.答案:-214.设定义在R 上的关于x 的函数f (x )=ax +a +1,当-1<x <1时,函数有一个零点,则实数a 的取值范围是________.解析:根据零点存在性定理知,f (-1)f (1)<0,∵f (-1)=1>0,∴f (1)=2a +1<0,解得a <-12. 答案:a <-12二、解答题(本大题共6个小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)计算:(1)[(549)0.5+(0.008)-23÷(0.2)-1]÷0.06250.25; (2)[(1-log 63)2+log 62·log 618]÷log 64.解:(1)原式=[(73)2×0.5+(0.2)3×(-23)÷(0.2)-1]÷(0.5)4×14=(73+52÷5)÷0.5=223÷12=443. (2)[(1-log 63)2+log 62·log 618]÷log 64=[(log 66-log 63)2+log 62·(log 63+log 66)]÷log 64=[log 62(log 62+log 63+1)]÷2log 62=1.16.(本小题满分14分)已知集合M ={x |-ax 2+2x +1=0}只有一个元素,A ={x |y =-x +1},B ={y |y =-x 2+2x -1}.(1)求A ∩B ;(2)设N 是由a 可取的所有值组成的集合,试判断N 与A ∩B 的关系.解:(1)由x +1≥0得x ≥-1,则A ={x |x ≥-1};由y =-x 2+2x -1=-(x -1)2,得y ≤0,则B ={y |y ≤0},所以A ∩B ={x |-1≤x ≤0}.(2)因为集合M 只有一个元素,所以当a =0时,方程2x +1=0只有一个实数解,符合题意;当a ≠0时,Δ=4-4(-a )=0,解得a =-1.所以N ={-1,0},则N ⊆A ∩B .17.(本小题满分16分)已知函数f (x )=ax 2+23x +b 是奇函数,且f (2)=53. (1)求实数a ,b 的值;(2)判断函数f (x )在(-∞,-1]上的单调性,并加以证明.解:(1)∵f (x )是奇函数,∴f (-x )=-f (x ).∴ax 2+2-3x +b =-ax 2+23x +b =ax 2+2-3x -b. 因此b =-b ,即b =0.又f (2)=53,∴4a +26=53,∴a =2. (2)由(1)知f (x )=2x 2+23x =2x 3+23x , f (x )在(-∞,-1]上为单调增函数.证明:设x 1<x 2≤-1,则x 2-x 1>0,f (x 2)-f (x 1)=23(x 2-x 1)(1-1x 1x 2) =23(x 2-x 1)·x 1x 2-1x 1x 2. ∵x 1<x 2≤-1,∴x 2-x 1>0,x 1x 2>1, f (x 2)>f (x 1).∴f (x )在(-∞,-1]上为单调增函数.18.(本小题满分14分)A 、B 两城相距100 km ,在两地之间距A 城x km 处的D 地建一核电站给A 、B 两城供电,为保证城市安全,核电站距城市的距离不得小于10 km ,已知供电费用刚好和供电距离的平方与供电量之积成正比,比例系数k =0.2,若A 城供电量为20亿度/月,B 城为10亿度/月.(1)写出x 的范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使供电费用最小.解:(1)10≤x ≤90.(2)y =[20x 2+10(100-x )2]×0.2=6x 2-400x +20 000(10≤x ≤90).(3)由(2)知,y =6x 2-400x +20 000=6(x -1003)2+40 0003. ∴当x =1003时,y min =40 0003. 即核电站建在距A 城1003km 处时,才能使供电费用最小. 19.(本小题满分16分)设二次函数f (x )=ax 2+bx +c 在区间[-2,2]上的最大值、最小值分别是M 、m ,集合A ={x |f (x )=x }.(1)若A ={1,2},且f (0)=2,求M 和m 的值;(2)若A ={1},且a ≥1,记g (a )=M +m ,求g (a )的最小值.解:(1)由条件得f (1)=1,f (2)=2,f (0)=2得a =1,b =-2,c =2,f (x )=x 2-2x +2=(x -1)2+1,∴M =f (-2)=4+4+2=10,m =f (1)=1.(2)由条件得ax 2+(b -1)x +c =0有两个相等实根1,从而a +b +c =1,(b -1)2=4ac ,得c =a ,b =1-2a .则f (x )=ax 2+(1-2a )x +a .∵a ≥1,∴对称轴x =2a -12a =1-12a ∈[12,1), ∴M =f (-2)=9a -2,m =f (1-12a )=1-14a. ∴g (a )=9a -14a-1,(a ≥1), 又g (a )在[1,+∞)上单调递增,∴g (a )最小值=g (1)=8-14=314. 20.(本小题满分16分)已知定义在实数集R 上的偶函数f (x )在区间[0,+∞)上是单调增函数.(1)求证:函数f (x )在区间(-∞,0]上是单调减函数;(2)若f (1)<f (lg x ),求x 的取值范围.解:(1)证明:设x 1<x 2≤0,则-x 1>-x 2≥0,因为f (x )在区间[0,+∞)上是单调增函数,∴f (-x 1)>f (-x 2),又因为f (x )是偶函数,所以f (-x 1)=f (x 1),f (-x 2)=f (x 2),f (x 1)>f (x 2),∴函数f (x )在区间(-∞,0]上是单调减函数.(2)当0<x ≤1时,lg x ≤0,由f (1)<f (lg x )得f (-1)<f (lg x ),函数f (x )在区间(-∞,0]上是单调减函数,∴-1>lg x ,0<x <110, 当x ≥1时,lg x ≥0,由f (1)<f (lg x ),f (x )在区间[0,+∞)上是单调增函数,∴lg x >1,x >10,综上所述,x 的取值范围是1010⎛⎫ ⎪⎝⎭,∪(10,+∞).。