15.1.2分式的通分练习题
15.1.2分式的基本性质(通分)
二课堂活动;
1、回顾:将异分母分数 化成同分母分数为
2、分数的通分是:把分母的分数化成分母的分数叫做分数的通分。其根据是。
3、启发:分式的通分与分数的通分类似,那么什么是分式的通分呢?其根据又是什么?
4、尝试概括:分式通分的定义:。
分式的通分的根据是
5、提问:
(1) 的公分母是如何确定的?(2)分式 又如何确定公分母呢?
年级组长签字_______集备组长签字______
课题:15.1.2分式的基本性质(通分)主备老师:于冬梅时间:2013.11.29
学习目标:1、经历用类比、观察、联想的方法探索分式通分的方法的过程,理解通分与最简公分母的意义.2、能正确熟练地运用分式的基本性质将分式通分.3.经历分式通分的过程,培养学生合作交流的意识
(3)请概括最简公分母:最简公分母的系数是各分母的系数的,
字母取各分母所有因式的的积。
6.指出下列各组分式的最简公分母:
(1) ;(2) ;(3) .
7.例4.通分:
解:ห้องสมุดไป่ตู้1)最简公分母是.
= = =
(2)最简公分母是.
= =
三.巩固新知拓展提高
1.判断下列通分是否正确:
解:∵最简公分母是6(a+b)²(a-b)
∴
2.通分:(1) 、(2) 、(3)
(4)
四.总结与反思:
五.作业:
人教版八年级上册数学 15.1.2分式的通分练习题
课题: 15.1.2 分式的通分 班级 姓名_________课前预测单1.把各分式化成 ,不改变分式的值,这种变形叫做分式的通分. 通分的依据是2.通分时,先确定各分式的公分母,一般取各分母的所有因式的 的积作公分母,它叫做最简公分母.3.三个分式 x y2, 23y x,xy 41的最简公分母是 ( ) 2222.4.3.12.12A xy B y C xy D x y4.下列说法错误的是( )A .22223221211,;.,366633a x aB x x x x a b a b c 与通分后为通分后为2323,33c ba b c a b c ;C .11m n m n +-与的最简公分母为22m n -;11.()()D a x y b y x --与的最简公分母为()()ab x y y x --当堂训练单1.分式 的最简公分母是 .2.三个分式 的最简公分母是 .3.通分 (1)22334a ab 与 (2) 2212x y x y --与(3) 2221,x y xy y x y +-- (4)b a b a ab 32394,43,31-4.通分:1x 2-4与x 4-2x .5通分:21,2(1)xx x x -+2213,,1y x x x x +-(1)32a 2b 与a -b ab 2c ;(2)2x x -5与3x x +5课后训练单1.公式22(1)x x --,323(1)x x --,51x -的最简公分母为( ) A .2(1)x - B .3(1)x - C .(1)x - D .23(1)(1)x x -- 2.21?11x x x -=+-,则”?”处应填上_________,其中条件是__________. 3.填空(1)22225()312x a bc a b c = ; (2) 222227()1212y ab c a b c = 4.将下列各题的最简公分母写在题后的括号内(1)2134,2b a -( );(2)32221,,253n n s mn m s m s +-( ) (3)2212,,a b a b a b b a +--( ) 5.(百色中考)下列三个分式12x 2、5x -14(m -n )、3x的最简公分母是( ) A.4(m -n)x B.2(m -n)x 2C.14x 2(m -n )D.4(m -n)x 26.通分:(每题10分)(1)2211,a b ab (2)11,x y x y -+ (3)22211,x y x xy -+(4)22,962x x x -- (5)2211,1(1)x x x +-- (6)12,2a a ++7.(罗平县模拟)下列分式是最简分式的是( )。
精选)分式的通分专项练习题
精选)分式的通分专项练习题分式的通分专项练(正)一、填空:1、$\frac{x+1}{5x-2}$;$\frac{-2}{2}$的最简公分母是$\boxed{10}$;2、$\frac{x+y}{x-1};\frac{2x-y}{x-y+1}$的最简公分母是$\boxed{(x-1)(x-y+1)}$;3、$\frac{4x^3+2x^2y+3xy^2}{3x}$的最简公分母是$\boxed{3x^2y}$;4、$\frac{4x^3+2x^2y+3xy^2}{3x}$中的$x$和$y$的值都扩大5倍,那么分式的值为$\boxed{\frac{20x^3+50x^2y+75xy^2}{15x}}$。
2、如果把分式$\frac{a}{b}$扩大5倍;缩小5倍;不改变;扩大25倍,分式变成$\boxed{\frac{5a}{5b}}$、$\boxed{\frac{a}{5b}}$、$\boxed{\frac{a}{b}}$、$\boxed{\frac{25a}{25b}}$。
5、将$\frac{5a}{23}$和$\frac{6a}{2b}$通分后最简公分母是$\boxed{46b}$,分别变为$\boxed{\frac{10ab}{46b}}$和$\boxed{\frac{69a}{46b}}$。
二、通分1、$\frac{x}{11}+\frac{14a}{3c};\frac{4x-1}{2x-1}+\frac{x+5}{x}$;2、$\frac{2}{3x}+\frac{4}{x+2};\frac{3}{x-1}+\frac{1}{2x+1}$;3、$\frac{2}{x+1}-\frac{1}{x-1};\frac{x}{x-3}-\frac{2}{x+2}$;4、$\frac{5}{2x-3}+\frac{5}{3x+5};\frac{2}{x-1}-\frac{3}{x}$;5、$\frac{1}{x+y}-\frac{1}{x-y};\frac{a(x-y)}{2x+y}-\frac{b(y-x)}{2x+y}$;6、$\frac{x-y}{2x+ya}-\frac{x+y}{2x-ya};\frac{a}{x-1}-\frac{b}{a^2-b^2}$;7、$\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1};\frac{2}{x}+\frac{ 3}{y}+\frac{5}{z}$;8、$\frac{1}{(x-1)^2}+\frac{1}{(x-1)(x+1)};\frac{1}{x-1}-\frac{1}{x+1}$;9、$\frac{1}{x-y}+\frac{1}{x+y};\frac{1}{x-1}-\frac{b}{a^2-b^2}$;10、$\frac{1}{a+b}+\frac{1}{a-b};\frac{x}{x-1}-\frac{y}{a^2-b^2}$;11、$\frac{1}{x^2}+\frac{1}{x(x+2)}+\frac{1}{(x+2)^2};\frac{1}{x-2}-\frac{1}{x+2}$;12、$\frac{x}{x-1}-\frac{x-2}{x+1}+\frac{2}{x^2-1};\frac{1}{x-2}+\frac{1}{x+2}-\frac{2}{x^2-4}$;13、$\frac{1}{(x-1)(x+1)}+\frac{1}{(x+1)(x+3)}+\frac{1}{(x+3)(x-1)};\frac{x}{x-1}-\frac{x}{x+1}+\frac{2}{x^2-1}$;14、$\frac{2x-4}{2x^2-2x}+\frac{3x-5}{2x^2-3x+1};\frac{2}{x}-\frac{1}{x-2}+\frac{3}{x^2-x}$;15、$\frac{a}{a^2-1}+\frac{a}{a^2-4}+\frac{a}{a^2-9};\frac{1}{a-1}+\frac{1}{a+1}+\frac{2}{a-3}$;16、$\frac{x^2-4x+3}{(x-1)^2}+\frac{x^2-1}{(x-1)(x+1)}+\frac{x^2+2x+1}{(x+1)^2};\frac{1}{x-1}+\frac{1}{x+1}$。
15.1.2分式基本性质考点与练习
15.1.1 分式的基本性质 考点闯关 考点1:分式的基本性质 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变. 用式子表示为:,(0),A AC A A C C B BC B B C÷==≠÷其中,,A B C 是整式。
1.下列各式从左至右的变形不正确的是( )A .2233y y -=-B .66y y x x -=-C .22xy y x y x =D .a a c b b c+=+ 2.若把分式5y x y+中的x 、y 都扩大5倍,那么分式的值( ) A .扩大5倍 B .不变 C .缩小5倍 D .缩小52倍 3.不改变分式的值,把1312x y x y -+的分子与分母中各项的系数都化为整数,结果为______. 4.已知113x y-=,求5352x xy y x xy y +---的值 考点2:分式的约分(1)约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分;找公因式的方法:①当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;②当分子、分母都是多项式时,将能因式分解的先因式分解。
(2)最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.5.下列分式中,是最简分式的是( ).A .2xy xB .222x y -C .22x y x y +-D .22x x + 6.约分:322369a b c a b = ;24424x x x ++=+ . 7.将下列各式约分;22318(1)24a b a b c; 25(3)(2)2(3)a a ----; 2222(3)21a a a --+.8.先化简,再求值:222(1),4x y x y +- 其中35,;2x y ==2223(2),96x xy x xy y --+ 其中32,.43x y ==-题型3:最简公分母与分式的通分通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.最简公分母:各分母的所有因式的最高次幂的积叫做最简公分母通分的关键是准确找出各分式的最简公分母最简公分母的确定方法⑴当各分母的系数都是整数时,取它们的系数的最小公倍数作为最简公分母的系数;⑵所有分式的分母中凡出现的以字母(或含有字母的式子)为底的幂的因式都要取;⑶相同字母(或式子)的幂的因式取指数最高的;⑷当分母是多项式时,一般应将能分解因式的多项式分解因式。
分式的通分经典练习题
1【基础知识】分式的通分1.通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分.2.最简公分母:取各分母所有因式的最高次幂的积作公分母,该公分母叫做最简公分母.3.确定最简公分母的一般步骤: ①取各分母系数的 .②单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式. ③相同字母(或含有字母的式子)的幂的因式取指数 . ④保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取. 【题型1】分式的通分 通分:(1)1ab 2与53a 2c ; (2)x 2y 与23xy 2; (3)2n n -2与3n n +3; (4)1x 2-4与x4-2x.【变式训练】1.分式yx y x y x 322231,3,53的最简公分母是______________. 2.分式12x 2,2y -xy 2,3x的最简公分母是 . 3.通分 (1) yx xy 3275与53; (2)2245与54ac b cab a ; (3)22245与32bcc ab .2(4)22294,65,31m n m mn; (5)222,53,4ac bbca cb a-.(6)625与32--x x x ; (7)aba a 253与522-+. (8))(5与)(4y x b y y x a x -+; (9)b a bb ab a ++23与222.(10)y x x x y 2与4222+- ; (11)43与422-+x x x .(12)))((5与32b a b a b ab +--; (13))(与)(222x y b yy x a x --.(14)93与96522-++m am m a ; (15)2x x 2+2x 与x -6x 2-4;。
通分练习题50以及答案
通分练习题50以及答案朔州市怀仁县吴家窑寄宿制学校教师王存祥一、填一填。
1、把的分数分别化成和原来分数的的分数叫通分。
、3和5的最小公倍数是;6和9的最小公倍数是。
3、2/5=/10=/15=/20=10/4、通分的一般方法是:先求原来几个分母的的最小公倍数,然后把各分数分别化成用这个最小公倍数作的分数。
5、带分数在通分时,只通分部分,部分仍然作新分数的部分。
二、判断题。
1、约分时,每个分数越约越小。
2、通分时,分子、分母都变大了,因此分数值也变大了。
3、通分时,要先求几个分数的最小公倍数。
4、通分和约分的根据是分数的基本性质。
5、通分时最好选这两个分数的最大公因数作它们的公分母。
=>四、写出每组分数的公分母。
= >7135351 和和和和 10346896五、把下面各组分数通分。
12337215337和和和、和和和 16478810346521285728和、和 9133926六、在O里填上“>”、“<”或“=”。
41711223275751○ ○○ ○○○728142853431683737913○○ 1061624七、解决问题。
1、把一堆萝卜平均分给小兔子。
不论分给8只小兔子,还是分给12只小兔子都正好分完。
这堆萝卜至少有多少个?332、如果a,b只有公因数1和通分。
ab13、张叔叔和王叔叔参加了工厂的技能比赛。
张叔叔加工完所有零件的时,王叔叔加工24了所有零件的 ,在这段时间里,谁的成绩更好一些?574234、一块?a href=“http:///fanwen/shuoshuodaquan/”target=“_blank” class=“keylink”>说兀渲?种西红柿,种黄瓜,种茄子,哪种菜的占地面积最多?01560125、修一条路,甲工程队用了2小时,乙工程队用了1 小时,哪个工程队干得快一些?316小时,3113王师傅用了小时,小时,把他们三人完工所用时间按从长到短的顺序依次3010排列起来。
八年级数学人教版上册同步练习分式的基本性质(解析版)
15.1.2分式的基本性质一、单选题1.下列约分计算结果正确的是 ( )A .22a b a b a b+=++ B .a m m a n n +=+ C .1a b a b -+=-- D .632a a a= 【答案】C 【分析】利用因式分解,确定分子,分母的公因式,后约分化简,计算即可.【详解】∵22a b +与a +b 没有公因式, ∴22a b a b++无法计算, ∴22a b a b a b+=++的计算是错误的, ∴选项A 不符合题意;∵a +m 与a +n 没有公因式, ∴++a m a n 无法计算, ∴a m m a n n+=+的计算是错误的; ∴选项B 不符合题意;∵-a +b = -(a +b )与a +b 的公因式是a +b , ∴()1a b a b a b a b-+--==---, ∴选项C 符合题意; ∵642a a a=, ∴632a a a=的计算是错误的; ∴选项D 不符合题意;故选C .【点评】本题考查了分式的化简,同底数幂的除法,熟练掌握化简计算的要领是解题的关键.2.下列分式中,属于最简分式的个数是( )①42x ,②221x x +,③211x x --,④11x x --,⑤22y x x y -+,⑥2222x y x y xy++. A .1个B .2个C .3个D .4个【答案】B【分析】根据最简分式的定义判断即可. 【详解】①422x x =,③21111x x x -=-+,④111x x -=--,⑤22y x y x x y-=-+,可约分,不是最简分式; ②221x x +,⑥2222x y x y xy++分子分母没有公因式,是最简分式,一共有二个; 故选:B .【点评】本题考查了最简分式,解题关键是明确最简分式的定义,准确判断分子分母是否含有公因式. 3.下列命题中的真命题是( )A .多项式x 2-6x +9是完全平方式B .若∠A ∶∠B ∶∠C =3∶4∶5,则△ABC 是直角三角形C .分式211x x +-是最简分式 D .命题“对顶角相等”的逆命题是真命题【答案】A【分析】根据完全平方公式、直角三角形性质、分式化简、和对顶角相等的逆命题进行判断即可.【详解】∵x 2-6x +9=(x -3)2,故A 选项是真命题;∵∠A ∶∠B ∶∠C =3∶4∶5,∴∠A =45°,∠B =60°,∠C =75°,故B 选项是假命题; ∵21111x x x +=--,故C 选项是假命题; “对顶角相等”的逆命题是相等的角是对顶角,是假命题,故D 选项是假命题;故选:A【点评】本题考查了分式的性质、完全平方公式、直角三角形性质、逆命题,解题关键是熟练掌握相关知识,准确进行判断.4.化简211x x --的结果是( ) A .11x -+ B .11x - C .11x + D .11x-【答案】A【分析】分母因式分解,再约分即可. 【详解】2111(1)(1)11x x x x x x --==-+-+-, 故选:A .【点评】本题考查了分式的约分,解题关键是把多项式因式分解,然后熟练运用分式基本性质进行约分. 5.若把x ,y 的值同时扩大为原来的2倍,则下列分式的值保持不变的是( )A .()22x y x + B .xy x y + C .22x y ++ D .22x y -- 【答案】A 【分析】根据分式的基本性质即可求出答案.【详解】A 、()22224x y x +=()22x y x +,故A 的值保持不变. B 、42=22xy xy x y x y++,故B 的值不能保持不变. C 、221=221x x y y ++++,故C 的值不能保持不变. D 、221=221x x y y ----,故D 的值不能保持不变. 故选:A .【点评】本题考查了分式,解题的关键是正确理解分式的基本性质,本题属于基础题型.6.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为0 【答案】B【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案.【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误;当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确;故选:B .【点评】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解.7.下列命题中,属于真命题的是( )A .如果0ab =,那么0a =B .253x x x -是最简分式C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等【答案】C【分析】根据有理数的乘法、最简分式的化简、直角三角形的性质、对顶角的概念判断即可.【详解】A. 如果 ab=0,那么a=0或b=0或a 、b 同时为0,本选项说法是假命题,不符合题意; B. ()2555==333x x x x x x x ---,故253x x x-不是最简分式,本选项说法是假命题,不符合题意; C. 直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D. 不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉教材中的性质定理.8.若a b ,则下列分式化简中,正确的是( ) A .22a a b b+=+ B .22a a b b -=- C .33a a b b = D .22a a b b = 【答案】C【分析】根据ab ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】∵ab A 、22a a b b+≠+ ,故该选项错误; B 、22a a b b-≠- ,故该选项错误; C 、33a a b b= ,故该选项正确; D 、22a a b b≠ ,故该选项错误; 故选:C .【点评】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;二、填空题目9.已知a 、b 、c 、d 、e 、f 都为正数,12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d=,4 abcdf e=,8 abcde f =,则222222a b c d e f +++++=________. 【答案】1198【分析】根据等式性质及分式性质进行计算即可求得结果. 【详解】由12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d =,4 abcdf e=,8 abcde f =,可将每个等式的左右两边相乘得: ()51abcdef abcdef =,∴1abcdef =,2112bcdef a a a a ⋅==⋅, ∴22a =,同理可得:24b =,28c =,212d =,214e =,218f =, ∴2222221198a b c d e f +++++=; 故答案为1198. 【点评】本题主要考查等式性质及分式性质,熟练掌握等式性质及分式性质是解题的关键. 10.已知114y x -=,则分式2322x xy y x xy y+---的值为______. 【答案】112 【分析】先根据题意得出x-y=4xy ,然后代入所求的式子,进行约分就可求出结果. 【详解】∵114y x-=,∴x-y=4xy ,∴原式=2()383112422x y xy xy xy x y xy xy xy -++==---, 故答案为:112 . 【点评】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键.11.已知2310x x --=,求4231x x x x ++=-__________. 【答案】4 【分析】将分式整理成()()2222131x x x x -+-,根据2310x x --=可得213x x -=,代入分式并约分即可求解.【详解】∵2310x x --=,∴213x x -=∴4231x x x x++- ()()2222131x x x x -+=- ()223343x x x x+==⋅, 故答案为:4. 【点评】本题考查分式的性质,将分式整理成()()2222131x x x x -+-的形式是解题的关键. 12.将分式132132a b a b +-的分子、分母各项系数化为整数,其结果为_______________. 【答案】6243a b a b+- 【分析】根据分式的基本性质,分子分母都乘以最小公倍数6,分式的值不变,并且其分子、分母各项系数化为整数.【详解】1623214332a b a b a ba b ++=--. 故答案为:6243a b a b+-. 【点评】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.三、解答题13.我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:11211x x x x +-+=--=1211x x x -+-- =1+21x -. (1)请写出分式的基本性质 ;(2)下列分式中,属于真分式的是 ;A .21x x -B .11x x -+C .﹣321x -D .2211x x +- (3)将假分式231m m ++,化成整式和真分式的形式. 【答案】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变;(2)C ;(3)231m m ++=m ﹣1+41m + 【分析】(1)根据分式的基本性质回答即可;(2)根据分子的次数小于分母的次数的分式称为真分式进行判断即可;(3)先把23m +转化为214m -+得到22314111m m m m m +-=++++,其中前面一个分式约分后化为整式,后面一个是真分式.【详解】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.(2)根据题意得:选项C 的分子次数是0,分母次数是1,分子的次数小于分母的次数是真分式.而其他选项是分子的次数均不小于分母的次数的分式,故AB D 选项是假分式,故选:C .(3)∵22231441411111m m m m m m m m +-+-=+=++++++=m ﹣1+41m +, ∴故答案为:m ﹣1+41m +. 【点评】本题考察了分式的基本性质以及未知数的次数问题,解答本题的关键是熟悉掌握未知数次数的判断以及分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.14.约分(1)1232632418a x y a x; (2)ma mb mc a b c+-+-; (3)2222444a ab b a b-+-. 【答案】(1)6243a y ;(2)m ;(3)22a b a b-+ 【分析】(1)约去分子分母的公因式636a x 即可得到结果;(2)将分子进行因式分解,约去公因式(a b c +-)即可得到结果;(3)首先把分子分母分解因式,然后再约掉分子分母的公因式即可.【详解】(1)1232632418a x y a x=6362636463a x a y a x ⨯ =6243a y ; (2)ma mb mc a b c+-+- =()m a b c a b c +-+- =m ;(3)2222444a ab b a b-+-=2(2)(2)(2)a b a b a b -+- =22a b a b-+. 【点评】此题主要考查了分式的约分,关键是正确确定分子分母的公因式.15.先约分,再求值:32322444a ab a a b ab--+ 其中12,2a b ==-. 【答案】2123a b a b +-, 【分析】先把分式的分子分母分解因式,约分后把a 、b 的值代入即可求出答案.【详解】原式=2222444a a b a a ab b ()()--+ =2(2)(2)(2)a a b a b a a b +-- =22a b a b +- 当122a b ==-,时 原式=2121-+=13. 【点评】本题考查了分式的约分,解题的关键是熟练进行分式的约分,本题属于基础题型.16.已知32(1)(1)11x A B x x x x -=++--+,求A 、B 的值. 【答案】A=12, B=52 【分析】先对等式右边通分,再利用分式相等的条件列出关于A 、B 的方程组,解之即可求出A 、B 的值. 【详解】∵()()()()(1)(1)()111111A B A x B x A B x A B x x x x x x ++-++-+==-++-+- , 又∵()()321111A B x x x x x -+=-++-, ∴()()()()()321111A B x A B x x x x x ++--=+-+-,∴32A B A B +=⎧⎨-=-⎩ , 解得1252A B ⎧=⎪⎪⎨⎪=⎪⎩. ∴A =12, B =52. 【点评】本题考查了分式的基本性质.利用分式的基本性质进行通分,再利用系数对应法列出方程组是解题的关键.17.若分式,A B 的和化简后是整式,则称,A B 是一对整合分式.(1)判断22244x x x ---与22x x -是否是一对整合分式,并说明理由; (2)已知分式M ,N 是一对整合分式,2a b M a b-=+,直接写出两个符合题意的分式N . 【答案】(1)是一对整合分式,理由见解析;(2)答案不唯一,如1224,b a a b N N a b a b -+==++. 【分析】(1)根据整合分式的定义即可求出答案.(2)根据整合分式的定义以及分式的运算法则即可求出答案.【详解】(1)是一对整合分式,理由如下: ∵2222222424(2)424x x x x x x x x x x x ----+++==---, 满足一对整合分式的定义,22244x x x --∴-与22x x -是一对整合分式. (2)答案不唯一,如1224,b a a b N N a b a b-+==++. 【点评】本题考查了分式的加减法,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.已知430,4520,x y z x y z +-=⎧⎨-+=⎩0xyz ≠. (1)用含z 的代数式表示x ,y ;(2)求222232x xy z x y+++的值. 【答案】(1)13x z =,23y z =;(2)165. 【分析】(1)根据加减消元法解关于x 、y 的方程组即可(2)将(1)中的结果代入分式中进行运算即可【详解】(1)430,4520,x y z x y z +-=⎧⎨-+=⎩①② ①4⨯-②得21140y z -=,解得23y z =. 把23y z =代入①,得24303x z z +⨯-=, 解得13x z =. (2)2222222211232321633351233z z z z x xy z x y z z ⎛⎫⨯+⨯⨯+ ⎪++⎝⎭==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭. 【点评】本题考查了用加减法解方程组的特殊解法,把x 、y 看作未知数解方程组是解题的关键19.一个矩形的面积为223()x y -,如果它的一边为()x y +,求这个矩形的周长.【答案】这个矩形的周长为:84x y -【分析】根据整式的除法运算法则与合并同类项法则,即可求解.【详解】∵矩形的一边长为()x y +,面积为223()x y -, ∴矩形的另一边长为:223()3()()x y x y x y -=-+ ∴该矩形的周长为:2[()3()]x y x y ++-2(42)x y =-84x y =-.答:这个矩形的周长为:84x y -.【点评】本题主要考查整式的除法法则与加法法则,掌握因式分解与合并同类项法则,是解题的关键. 20.阅读理解:对于二次三项式a 2+2ab+b 2,能直接用完全平方公式进行因式分解,得到结果为(a+b )2.而对于二次三项式a 2+4ab ﹣5b 2,就不能直接用完全平方公式了,但我们可采用下述方法:a2+4ab﹣5b2=a2+4ab+4b2﹣4b2﹣5b2=(a+2b)2﹣9b2,=(a+2b﹣3b)(a+2b+3b)=(a﹣b)(a+5b).像这样把二次三项式分解因式的方法叫做添(拆)项法.解决问趣:(1)请利用上述方法将二次三项式a2+6ab+8b2分解因式;(2)如图,边长为a的正方形纸片1张,边长为b的正方形纸片8张,长为a,宽为b的长方形纸片6张,这些纸片可以拼成一个不重叠,无空隙的长方形图案,请画出示意图;(3)已知x>0,且x≠2,试比较分式2244812x xx x++++与22428xx x-+-的大小.【答案】(1)(a+2b)(a+4b);(2)见解析;(3)222244428812 x x xx x x x-++>+-++【分析】(1)根据题目的引导,先分组,后运用公式法对原式进行因式分解;(2)根据第一问的因式分解结果,对图形进行排列即可;(3)对两个分式的分子和分母分别进行因式分解,然后对分式进行化简并比较大小.【详解】(1)原式=a2+6ab+9a2﹣b2=(a+3b)2﹣b2=(a+3b﹣b)(a+3b+b)=(a+2b)(a+4b);(2)如图:(3)224(2)(2)(2)28(4)(2)(4)x x x xx x x x x-+-+==+-+-+;22244(2)(2)812(2)(6)(6)x x x xx x x x x++++==+++++;∵x>0,∴x+4<x+6,∴222244428812 x x xx x x x-++>+-++.【点评】本题考查了因式分解的应用,通过因式分解化简分式,根据分母大,分数值反而小来比较大小是解题的关键.祝福语祝你考试成功!。
15.1.2分式的约分和通分
复习回顾:
1.分式的基本性质:
分式的分子与分母同乘(或除以)一个不为0的整式 分式的值___不__变______
用字母表示为:
A AC A AC (C≠0) B ,BC B BC
2.分式的符号法则:
(1) a a b b
(2)a a a b b b
概念——约分与最简分式
与分数的约分类似,我们利用分数的基本性质,
约去3x2 3xy 的分子和分母的公因式 3x
6 x 2 把 3x 2 3xy 化为 x y
6x2
2x
像这样,把一个分式的分子与分母的公因式约去,
叫做分式的约分。
经过约分后的分式
x y 2x
,其分子与分母没有
公因式
像这样,分子与分母没有公因式的分式,叫做最
A. 4 xy B. 3 y 2 C. 12 xy 2 D. 12 x 2 y 2
3.分式
1, x x2 x 2(x1)
的最简公分母是__2_x(__x_+ __1( _). x-1)
4. 三个分式 1, y , 3 的最简公分母
x x2 x x2 1
是 x(x+1( )x-1)
5.通分:
(1) 2 与a-1 3a9 a2 9
3、分式通分与最简公分母:
(1)分数通分:
4 12 8
(1) 7 与 1 12 8
32
最简公分母:
解: 7 12
72 12 2
14 24
1 1 3 3 8 8 3 24
4×3×2=24
(2)观察下列式子,利用分式的基 本性质,仿照分数通分化简:
(1)2a32b与aab2cb
(2) 2x 与3x x5 x5
崇仁县第七中学八年级数学上册第十五章分式15.1分式15.1.2分式的基本性质第2课时分式的约分通分
第2课时 分式的约分、通分1.类比分数的约分、通分,理解分式约分、通分的意义,理解最简公分母的概念. 2.类比分数的约分、通分,掌握分式约分、通分的方法与步骤.重点运用分式的基本性质正确地进行分式的约分与通分. 难点通分时最简分分母的确定;运用通分法则将分式进行变形.一、类比引新1.在计算56×215时,我们采用了“约分”的方法,分数的约分约去的是什么?分式a 2+ab a 2b ,a +bab相等吗?为什么? 利用分式的基本性质,分式a 2+aba 2b 约去分子与分母的公因式a ,并不改变分式的值,可以得到a +b ab.教师点拨:分式a 2+ab a 2b 可以化为a +bab ,我们把这样的分式变形叫做__分式的约分__.2.怎样计算45+67?怎样把45,67通分?类似的,你能把分式a b ,cd变成同分母的分式吗?利用分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,我们把这样的分式变形叫做__分式的通分__.二、探究新知1.约分:(1)-25a 2bc 315ab 2c ;(2)x 2-9x 2+6x +9; (3)6x 2-12xy +6y23x -3y.分析:为约分,要先找出分子和分母的公因式. 解:(1)-25a 2bc 315ab 2c =-5abc ·5ac 25abc ·3b =-5ac23b; (2)x 2-9x 2+6x +9=(x +3)(x -3)(x +3)2=x -3x +3; (3)6x 2-12xy +6y 23x -3y =6(x -y )23(x -y )=2(x -y ).若分子和分母都是多项式,则往往需要把分子、分母分解因式(即化成乘积的形式),然后才能进行约分.约分后,分子与分母没有公因式,我们把这样的分式称为__最简分式__.(不能再化简的分式)2.练习:约分:2ax 2y 3axy 2;-2a (a +b )3b (a +b );(a -x )2(x -a )3;x 2-4xy +2y ;m 2-3m 9-m 2;992-198. 学生先独立完成,再小组交流,集体订正.3.讨论:分式12x 3y 2z ,14x 2y 3,16xy4的最简公分母是什么?提出最简公分母概念.一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母. 学生讨论、小组交流、总结得出求最简公分母的步骤: (1)系数取各分式的分母中系数最小公倍数; (2)各分式的分母中所有字母或因式都要取到; (3)相同字母(或因式)的幂取指数最大的;(4)所得的系数的最小公倍数与各字母(或因式)的最高次幂的积(其中系数都取正数)即为最简公分母.4.通分:(1)32a 2b 与a -b ab 2c ;(2)2x x -5与3xx +5 .分析:为通分,要先确定各分式的公分母.解:(1)最简公分母是2a 2b 2c . 32a 2b=3·bc 2a 2b ·bc =3bc2a 2b 2c, a -b ab 2c =(a -b )·2a ab 2c ·2a =2a 2-2ab2a 2b 2c. (2)最简公分母是(x -5)(x +5). 2x x -5=2x (x +5)(x -5)(x +5)=2x 2+10xx 2-25, 3x x +5=3x (x -5)(x +5)(x -5)=3x 2-15x x 2-25. 5.练习:通分:(1)13x 2与512xy ;(2)1x 2+x 与1x 2-x ;(3)1(2-x )2与xx 2-4. 教师引导:通分的关键是先确定最简公分母;如果分式的分母是多项式则应先将分母分解因式,再按上述的方法确定分式的最简公分母.学生板演并互批及时纠错.6.思考:分数和分式在约分和通分的做法上有什么共同点?这些做法的根据是什么? 教师让学生讨论、交流,师生共同作以小结. 三、课堂小结1.什么是分式的约分? 怎样进行分式的约分? 什么是最简分式?2.什么是分式的通分? 怎样进行分式的通分? 什么是最简公分母?3.本节课你还有哪些疑惑?四、布置作业教材第133页习题15.1第6,7题.本节课是在学习了分式的基本性质后学的,重点是运用分式的基本性质正确的约分和通分,约分时要注意一定要约成最简分式,熟练运用因式分解;通分时要将分式变形后再确定最简公分母.§18.1 平行四边形的性质教案(1)一、教学目标1知识目标:1、通过经历运用图形的变换探索图形性质的过程,体验数学研究和发现的过程,并得出正确的结论.2、在对平行四边形的原有认识的基础上,探索并掌握平行四边形的性质.2能力目标:培养学生的观察猜想、实践操作、团队合作、数学说理能力和数学语言规范表达的能力.3情感目标:渗透化未知为已知的数学方法;渗透从特殊到一般、从具体到抽象、从感性到理性的辩证思想;渗透严谨求实的科学态度的理念;营造“民主、和谐”的课堂氛围让学生在愉快的学习中不断获得成功的体验.二、教学重点、难点教学重点:让学生亲历平行四边形性质的“观察——猜想——验证”过程,理解性质内容,并学会用它们进行有关的说理和计算教学难点:通过性质的推导,培养学生独立思考、自主探索的精神,提高分析问题和解决问题的能力.三、教学过程(一)、创设情境、导入新课①多媒体课件展示图片,通过观察图案,指出平行四边形是我们生活中常见的一种图形.②问题情境导入:如图是某区部分街道示意图,其中BC∥AD∥EG,AB//FH∥DC从学校站乘车到书店站只有两条路线有直接到达的公交车,喜羊羊走路线1:学校—E—A—F—书店;美羊羊走路线2:学校—H—O—G—书店.谁先到书店?(二)、概念引入1、两组对边分别平行的四边形叫做平行四边形. 学校书店ACEFGH记作: ABCD 读作:平行四边形ABCD ∵AB∥CD AD∥BC∴四边形ABCD 是平行四边形.或 ∵四边形ABCD 是平行四边形 ∴AB∥CD AD∥BC 教师提示:平行四边形的对边平行 2、下面的图形中 是平行四边形.(三)探索发现 画一画 1、如何画一个ABCD ?2、我们刚才画平行四边形的过程就是利用了平行四边形的特征,请同学们试一试,用什么方法可以再画一个和ABCD 一样大小的EFGH ?量一量1、以同桌为单位,用直尺,量角器等工具度量你的平行四边形的边和角,并记录下数据,猜想平行四边形的对边对角之间的关系.教师请部分同学公布测量结果.2、用几何画板动画展示运动中的平行四边形的对边、对角之间的关系.让学生加深对平行四边形的对边,对角的认识.转一转在平行四边形ABCD 中连结AC 、BD ,它们的交点记为O.用一枚图钉在O 点穿过,观察旋转后的 ABCD 与是否重合用几何画板动态展示平行四边形绕对角线交点旋转180度的情况,引导学生推出平行四边形的性质.引导学生得出结论124563平行四边形的性质:平行四边形的对边相等、对角相等 几何语言描述:∵ 四边形ABCD 是平行四边形∴ AB=CD ,AD =BC .(平行四边形的对边相等) ∠D= ∠B, ∠C= ∠B .(平行四边形的对角相等)(四)例题讲解 例1 如图,在ABCD 中,已知∠A =40°,求其它各个内角的度数.解 ∵四边形ABCD 是平行四边形 ∴ ∠C =∠A = 40° ∵ AD ∥BC ,∴ ∠B = 180°-∠A = 180° - 40° = 140° ∴ ∠D = ∠B = 140°变式1.已知: ABCD 中, 若∠A+∠C=80°,你能求出各角的度数吗?说说你的理由.变式2.已知 ABCD 中, 若∠B=2 ∠A ,你能求出各角的度数吗?说说你的理由. 例2如图,在□ABCD 中,AB=8,周长等于24.求其余三条边的长. 解:在□ABCD 中, AB=CD, AD=BC. ∵ AB=8,∴ CD=8. 又∵AB+BC+CD+AD=24, ∴ AD=BC= = 4.变式1.如图:已知平行四边形ABCD 周长等于16,AB :BC=3:5, 求平行四边形的各边长.变式2.如图:已知平行四边形 ABCD ,CD=3cm,BC=5cm,AC=4cm, 求 ABCD 的面积. 试一试如图,在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺量出平行线之间这些垂线段的长度.1(242)2AB经过度量,我们发现这些垂线段的长度都相等.由此,我们得到平行线的又一个性质:平行线之间的距离处处相等.(五)巩固提高1、(基础题)如图所示,四边形ABCD 是平行四边形 ①若∠A=120° ,则∠B=.∠C= ;∠D=.②若AB =5,BC =3,求它的周长(请写出推理过程). 解决问题引导学生利用平行四边形的性质解决刚才喜羊羊与美羊羊碰到的问题,2、(提高题)如图所示,在平行四边形ABCD 中BC=9,若BE 平分∠ABC,且把AD 分成两段的长度差为1cm,求CD 的长.(六)小结回顾1、平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.2、平行四边形的性质:(七)作业布置 基础题课本习题18.1第1、2题 中等题对边对边平行且相等角对角相等 邻角互补231ECBDABACDEF C如右图,AB=AC,且AB=5,从等腰三角形底边上任一点,分别作两腰的平行线,求所成的平行四边形AEDF的周长?提高题(深圳中考题)如图所示,平行四边形ABCD中,点E在边AD上,以BE为折痕,将ΔABC向上翻折,点A正好落在CD上的点F处,若ΔFDE的周长为8,ΔFCB的周长为22,则FC的长为单项式与单项式相乘1教学目标知识与技能学生能理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算.正确区别各单项式中的系数,同底数的幂和不同底数幂的因式.过程与方法让学生感知单项式乘法法则对两个以上单项式相乘同样成立,知道单项式乘法的结果仍是单项式;经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力.情感、态度与价值观注意培养学生的归纳、概括能力以及运算能力,充分调动学生的积极性,主动性.重点难点重点对单项式运算法则的理解和应用.难点应用单项式与单项式的乘法法则解决数学问题.教学过程一、复习旧知,导入新课我们已经学习了幂的运算性质,你能解答下面的问题吗?1.判断下列计算是否正确,如有错误加以改正.(1)a3·a5=a10;(2)a·a2·a5=a7;(3)(a3)2=a9;(4)(3ab2)2·a4=6a2b4.2.计算:(1)10×102×104=( );(2)(a+b)·(a+b)3·(a+b)4=( );(3)(-2x2y3)2=( ).【教师活动】我们刚才已经复习了幂的运算性质.从本节开始,我们学习整式的乘法.我们知道,整式包括什么?(包括单项式和多项式.)因此整式的乘法可分为单项式乘以单项式、单项式乘以多项式、多项式乘以多项式.这节课我们就来学习最简单的一种:单项式与单项式相乘.二、师生互动,探究新知1.一个长方体底面积是4xy,高度是3x,那么这个长方体的体积是多少?【学生活动】小组合作完成,在小组交流讨论后由代表发言.【教师活动】每一步的依据是什么?(乘法交换律)因此4xy·3x=4·xy·3·x=(4·3)·(x·x)·y=12x2y.(要强调解题的步骤和格式)2.仿照刚才的作法,你能解出下面的题目吗?(1)3x2y·(-2xy3)=[3·(-2)]·(x·x2)(y·y3)=-6x3y4.(2)(-5a2b3)·(-4b2c)=[(-5)×(-4)]·a2·(b3·b2)·c=20a2b5c.【教师活动】第(2)题中在第二个单项式-4b2c中出现的c怎么办?【学生活动】由小组讨论归纳单项式乘单项式的法则,教师板书.单项式和单项式相乘,系数与系数相乘,相同字母的幂分别相乘;对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式.三、随堂练习,巩固新知1.3x5·5x3= ,4y·(-2xy3)= .2.3×103×5×102= .3.(-3x2y)·xy2= .4.下列计算正确的是( )A.4a2·2a2=8a6B.2x4·3x4=6x8C.3x2·4x2=12x2D.(2ab2)·(-3abc)=-6a2b3【答案】1.15x8,-8xy4×1063.-x3y34.B四、典例精析,拓展新知【例1】边长是a的正方形面积是a·a,反过来说,a·a也可以看作是边长为a的正方形的面积. 探讨:3a·2a的几何意义.探讨:3a·5ab的几何意义.【答案】可以看做是长为a,宽为5b,高为3a的长方体的体积,也可以看作是长为5a,宽为b,高为3a的长方体的体积.【例2】纳米是一种长度单位,1米=109纳米,试计算长为5米,宽为4米,高为3米的长方体的体积是多少立方纳米?【分析】长方体体积=长×宽×高【答案】6×1028(立方纳米)【教学说明】注意单位换算.五、运用新知,深化理解1.边长分别为2a和a的两个正方形按如图形式摆放,则图中阴影部分的面积是( )A.2a2B.2C.5a2-3aD.a22.光速约为3×105 km/s,太阳光照射到地球所需的时间为5×102 s,则太阳与地球间的距离是km.【答案】1.A ×108【教学说明】第1题若学生思维受阻时,引导阴影部分可以转化成哪些图形的积和差?直角三角形的底和高各是多少?六、师生互动,课堂小结这节课你学到了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上教师归纳总结.教学反思这节课内容较为简单,在探索单项式乘单项式法则时,注意让学生自己归纳,以提高学生使用数学语言的能力,在推导的过程中,注意每步依据为后面几何证明服务,从而培养逻辑思维能力,变式训练中表达阴影部分面积,旨在培养学生直观图感,将图形语言向数学符号语言转化能力,同时注意转化数学思想的应用.。
人教版八年级数学上册教案-15.1.2分式的基本性质分式通分
在本次教学活动中,我注意到学生在学习分式的基本性质与通分这一章节时,存在一些理解和掌握上的难点。首先,我发现学生在理解分式基本性质时,对于为何乘除同一个数(除数不为0)不会改变分式的值这一点上存在困惑。在今后的教学中,我需要更加形象、具体地解释这一性质的数学原理,以便学生能够更好地理解。
3.重点难点解析:在讲授过程中,我会特别强调分式基本性质和通分方法这两个重点。对于难点部分,如选取公倍数和分解因式,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式通分相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示分式通分的基本原理。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式通分的基本概念。通分是指将分母不相同的分式通过乘以适当的整式,使分母相同,以便进行加减运算。它是分式运算中的重要环节,帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何将$\frac{1}{x}$和$\frac{2}{x+1}$通分,以及通分在简化分式运算中的作用。
在授课过程中,我也注意到学生在解决实际问题时构建分式模型的能力较弱。为了提高学生的这一能力,我将在下一节课中增加一些关于建模的讲解和练习,帮助学生学会如何从实际问题中抽象出分式模型。
此外,教学流程的设计方面,导入新课环节的问题设置可能还不够吸引学生的兴趣,今后我需要在这个环节下更多功夫,设计更具趣味性和启发性的问题,激发学生的学习兴趣和好奇心。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《分式的基本性质与通分》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将不同单位的量进行换算的情况?”比如,将米和厘米的长度进行加减。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式通分的奥秘。
15.1.2分式的基本性质(三)通分 (2)
像这样,根据分式的式的通分.
追问1
你认为分式通分的关键是什么?
分式通分的关键是找出分式各分母的公分母.
追问2 母是什么?
2a b 1 上面问题中的分式 与 的公分 2 3ab 2a c
为通分要先确定各分式的公分母,一般取各分母的 所有因式的最高次幂的积作公分母,它叫做最简公分母 .
通分: x y 2c 3ac x 1 4 x 1 () 1 与 ; (2) 与 2 ; (3) , , 3 . 2 ab bc bd 4b 2 x 3 x 4 x
解:(3)最简公分母是 12 x 3 .
x 1 2 x 2 4 3x x 1 4 x3
(x 1) 6x 6( x x 1) , 2 3 2 x 6 x 12 x 4 ( 4 x 2) 16 x 2 , 2 3 3x ( 4 x ) 12 x (x 1) ( 3) ( 3 x 1) . 3 3 4 x ( 3) 12 x
x xc xc , ab ab c abc y ya ya . bc bc a bca
通分: x y 2c 3ac x 1 4 x 1 () 1 与 ; (2) 与 2 ; (3) , , 3 . 2 ab bc bd 4b 2 x 3 x 4 x
解:(2)最简公分母是 4b 2 d . 2c 2c 4b 8bc , 2 bd bd 4b 4b d 3ac 3ac d 3acd . 2 2 2 4b 4b d 4b d
1、约分 :
16x y (1) 4 20xy
x (4) 2 x 2x
2 3
x 4 (2) 2 x 4x 4
2
x xy (3) 2 x
2
分式通分练习题100道题初二
分式通分练习题100道题初二1. 计算:$\frac{2}{3} + \frac{1}{4}$2. 计算:$\frac{3}{8} - \frac{1}{5}$3. 计算:$\frac{3}{5} \times \frac{2}{3}$4. 计算:$\frac{2}{3} \div \frac{1}{4}$5. 计算:$\frac{3}{2} + \frac{4}{5}$6. 计算:$\frac{5}{6} - \frac{2}{3}$7. 计算:$\frac{4}{5} \times \frac{3}{4}$8. 计算:$\frac{2}{3} \div \frac{5}{6}$9. 计算:$\frac{9}{10} + \frac{1}{5}$10. 计算:$\frac{7}{12} - \frac{1}{6}$11. 计算:$\frac{2}{7} \times \frac{5}{6}$12. 计算:$\frac{3}{4} \div \frac{2}{5}$13. 计算:$\frac{5}{6} + \frac{2}{3}$14. 计算:$\frac{4}{5} - \frac{3}{4}$15. 计算:$\frac{1}{3} \times \frac{2}{5}$16. 计算:$\frac{3}{4} \div \frac{1}{2}$18. 计算:$\frac{2}{3} - \frac{1}{6}$19. 计算:$\frac{3}{5} \times \frac{3}{4}$20. 计算:$\frac{4}{5} \div \frac{2}{3}$21. 计算:$\frac{1}{2} + \frac{3}{4}$22. 计算:$\frac{2}{3} - \frac{1}{5}$23. 计算:$\frac{2}{5} \times \frac{3}{4}$24. 计算:$\frac{2}{3} \div \frac{4}{5}$25. 计算:$\frac{1}{3} + \frac{1}{4}$26. 计算:$\frac{3}{4} - \frac{1}{2}$27. 计算:$\frac{2}{5} \times \frac{2}{3}$28. 计算:$\frac{3}{4} \div \frac{1}{3}$29. 计算:$\frac{1}{2} + \frac{2}{3}$30. 计算:$\frac{7}{10} - \frac{1}{5}$31. 计算:$\frac{1}{4} \times \frac{2}{3}$32. 计算:$\frac{3}{5} \div \frac{3}{4}$33. 计算:$\frac{1}{2} + \frac{1}{3}$35. 计算:$\frac{1}{5} \times \frac{2}{3}$36. 计算:$\frac{2}{3} \div \frac{1}{5}$37. 计算:$\frac{1}{2} + \frac{1}{4}$38. 计算:$\frac{3}{4} - \frac{1}{3}$39. 计算:$\frac{3}{5} \times \frac{1}{2}$40. 计算:$\frac{5}{6} \div \frac{2}{3}$41. 计算:$\frac{1}{3} + \frac{2}{5}$42. 计算:$\frac{5}{6} - \frac{1}{4}$43. 计算:$\frac{1}{4} \times \frac{3}{5}$44. 计算:$\frac{4}{5} \div \frac{2}{3}$45. 计算:$\frac{1}{2} + \frac{2}{5}$46. 计算:$\frac{2}{3} - \frac{1}{4}$47. 计算:$\frac{2}{5} \times \frac{1}{2}$48. 计算:$\frac{3}{4} \div \frac{3}{5}$49. 计算:$\frac{1}{4} + \frac{1}{3}$50. 计算:$\frac{3}{5} - \frac{1}{6}$52. 计算:$\frac{3}{8} \div \frac{1}{4}$53. 计算:$\frac{4}{5} + \frac{3}{4}$54. 计算:$\frac{5}{6} - \frac{1}{3}$55. 计算:$\frac{2}{3} \times \frac{1}{2}$56. 计算:$\frac{3}{4} \div \frac{4}{5}$57. 计算:$\frac{2}{5} + \frac{1}{3}$58. 计算:$\frac{3}{4} - \frac{3}{5}$59. 计算:$\frac{1}{5} \times \frac{1}{2}$60. 计算:$\frac{5}{6} \div \frac{2}{3}$61. 计算:$\frac{2}{3} + \frac{2}{7}$62. 计算:$\frac{5}{6} - \frac{1}{6}$63. 计算:$\frac{1}{3} \times \frac{1}{4}$64. 计算:$\frac{3}{4} \div \frac{2}{5}$65. 计算:$\frac{3}{8} + \frac{1}{2}$66. 计算:$\frac{3}{5} - \frac{1}{3}$67. 计算:$\frac{2}{3} \times \frac{2}{5}$69. 计算:$\frac{3}{7} + \frac{1}{4}$70. 计算:$\frac{5}{6} - \frac{2}{3}$71. 计算:$\frac{1}{4} \times \frac{1}{3}$72. 计算:$\frac{2}{3} \div \frac{4}{5}$73. 计算:$\frac{3}{10} + \frac{1}{5}$74. 计算:$\frac{5}{8} - \frac{1}{3}$75. 计算:$\frac{3}{4} \times \frac{1}{3}$76. 计算:$\frac{4}{5} \div \frac{2}{3}$77. 计算:$\frac{2}{5} + \frac{1}{2}$78. 计算:$\frac{1}{3} - \frac{1}{6}$79. 计算:$\frac{5}{6} \times \frac{2}{3}$80. 计算:$\frac{3}{4} \div \frac{3}{5}$81. 计算:$\frac{1}{4} + \frac{2}{3}$82. 计算:$\frac{2}{3} - \frac{1}{5}$83. 计算:$\frac{1}{5} \times \frac{3}{4}$84. 计算:$\frac{2}{3} \div \frac{5}{6}$86. 计算:$\frac{3}{5} - \frac{1}{6}$87. 计算:$\frac{1}{2} \times \frac{2}{3}$88. 计算:$\frac{3}{4} \div \frac{1}{2}$89. 计算:$\frac{2}{5} + \frac{2}{3}$90. 计算:$\frac{7}{10} - \frac{1}{5}$91. 计算:$\frac{1}{3} \times \frac{2}{5}$92. 计算:$\frac{5}{6} \div \frac{3}{4}$93. 计算:$\frac{4}{5} + \frac{3}{8}$94. 计算:$\frac{3}{4} - \frac{1}{2}$95. 计算:$\frac{1}{2} \times \frac{1}{3}$96. 计算:$\frac{3}{4} \div \frac{1}{4}$97. 计算:$\frac{2}{5} + \frac{1}{4}$98. 计算:$\frac{3}{4} - \frac{2}{5}$99. 计算:$\frac{1}{3} \times \frac{1}{5}$100. 计算:$\frac{2}{3} \div \frac{1}{6}$以上是100道分式通分的练习题,希望能够帮助你提高在初二分式通分的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.1.2分式的通分作业1 杨永华
1.分式的通分
(1)根据分式的基本性质,把几个异分母分式分别化成与原来分式相等的同分母分式,叫做分式的通分。
2.最简公分母
各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母。
一、填空: 1、
22152
;;236x x x x x +--的最简公分母是 ; 2、
3232
12;;425x y x x y
x x y xy
+--的最简公分母是 ; 3、
121
;
23x x x x -++-的最简公分母是 ; 4、345
;:(1)(2)(2)(3)3
x x x x x -----的最简公分母是
5、在下列等式中,填写未知的分子或分母
(1) 2
3()
44y x x =; (2) 34857515)(9xy x y x y =; (3) 2()7()x y y x x --=; (4) 2
4()
2332x x x x
-=--。
6、如果把分式
3x
x y
+中的x 和y 的值都扩大5倍,那么分式的值( ) (A)扩大5倍; (B)缩小5倍; (C)不改变; (D)扩大25倍。
7、将5a,
23
6,24a
a b b
通分后最简公分母是( ) (A)8a 2b 3
; (B)4ab 3
; (C)8a 2b 4
; (D)4a 2b 3
二、通分 1、xy y x xz y 41,.3,22 2、432221;1;1xy
y x y x 3、22225,103,54ac b b a c c b a - 4、2
22254
,
43,32b a ab a - 5、22152;;236x x x x x +-- 6、121
;
23
x x x x -++- 7、
2
2
1
,b a b a a -- 8 、()()x y b y y x a x --,
15.1.2分式的通分作业2 1、4322361,41,21xy y x z y x 2、321ab ,c
b a 2
252
3、2211
,
424
x x x -- 4、()()x y b y y x a x --, 5、()1
,
11
2
2
--x x x 6、21
,2(1)x x x x +- 7、2
1,442x
x x -- 8、()4
2,361,42222---x x x x x x
9、2
2;y x y x y -+ 10、()()()()
,a b b c a b b c b c b a ++----。