冶金反应动力学基础

合集下载

钢铁冶金过程中的反应动力学研究

钢铁冶金过程中的反应动力学研究

钢铁冶金过程中的反应动力学研究钢铁冶金是很多重工业的基础。

无论是兵器制造、机械制造,还是建筑业等重工业都离不开钢铁工业,而反应动力学理论的研究则是这一产业的核心内容。

本文将从理论和实践两个角度分析钢铁冶金过程中的反应动力学,并探讨它在实践中的应用。

理论探讨钢铁是将矿石经过一系列的加热、冷却等反应后得到的。

这些反应都是化学反应,根据反应动力学理论,化学反应的速率取决于反应物的浓度、温度和催化剂的存在与否等因素。

因此,钢铁冶金中的反应动力学问题,就在于研究这些环节中的化学反应速率。

这对于提高生产效率和降低生产成本都有很大的意义。

先以炼铁为例,炼铁的主要原料来自铁矿石,而矿石中的铁元素一般以氧化铁的形式存在。

炼铁反应过程一般包括热解、还原、熔融和渗碳等环节,其中的反应速率关系到最终产品的质量和产量。

因此,研究炼铁反应动力学,不仅有利于提高炼铁的效率,而且还有助于控制炉温和化学反应过程,保证产品的质量和性能。

钢铁冶金反应动力学的研究还会涉及到高炉煤气的利用、冶金渣的处理、连续铸造过程的优化等众多方面。

这些方面在反应动力学理论的基础上,都有建立自己的模型和理论框架的必要。

应用实践钢铁冶金反应动力学的研究不仅仅是理论上的问题,同时也与实践息息相关。

在实际工业生产中,钢铁冶金反应动力学的研究可以有助于提高钢铁厂的生产效率,提高产品质量和性能。

例如,在钢铁冶金过程中,大量煤气会产生,这些煤气中含有很多高能物质,包括一氧化碳、甲烷等。

通过对反应动力学的研究,我们可以了解这些高能物质对其它反应过程的影响,进而优化工艺,从而实现超高炉煤气的高效利用,节约资源。

另外,钢铁铸造过程也是反应动力学的实践应用之一。

具体来说,连铸是钢铁厂最重要的生产环节之一。

研究熔体的凝固过程,对于提高钢铁的成品率、规格精度,以及钢铁结晶器的设计优化等,都有着至关重要的作用。

钢铁冶金反应动力学的研究,对于提高钢铁质量、提高生产效率,以及降低成本都有着重要的作用。

冶金原理 课后题答案

冶金原理 课后题答案

第一章 冶金热力学基础1.基本概念:状态函数,标准态,标准生成自由能及生成焓,活度、活度系数和活度相互作用系数,分解压和分解温度,表面活性物质和表面非活性物质,电极电势和电池电动势,超电势和超电压。

2.△H 、△S 和△G 之间有何关系,它们的求算方法有什么共同点和不同点?3.化合物生成反应的ΔG °-T 关系有何用途?试根据PbO 、NiO 、SiO2、CO 的标准生成自由能与温度的关系分析这些氧化物还原的难易。

4.化学反应等温式方程联系了化学反应的哪些状态?如何应用等温方程的热力学原理来分析化学反应的方向、限度及各种 因素对平衡的影响?5.试谈谈你对活度标准态的认识。

活度标准态选择的不同,会影响到哪些热力学函数的取值?哪些不会受到影响?6.如何判断金属离子在水溶液中析出趋势的大小?7.试根据Kelvin 公式推导不同尺寸金属液滴(半径分别为r1、r2)的蒸汽压之间的关系。

8.已知AlF 3和NaF 的标准生成焓变为ΔH °298K,AlF3(S)=-1489.50kJ ·mol -1, ΔH °298K,NaF(S)=-573.60kJ ·mol -1,又知反应AlF 3(S)+3NaF (S)=Na 3AlF 6(S)的标准焓变为ΔH °298K=-95.06kJ ·mol -1,求Na 3AlF 6(S)的标准生成焓为多少?(-3305.36 kJ ·mol -1)9.已知炼钢温度下:(1)Ti (S)+O 2=TiO 2(S) ΔH 1=-943.5kJ ·mol -1(2)[Ti]+O 2=TiO 2(S) ΔH 2=-922.1kJ ·mol -1 (3)Ti (S)=Ti(l) ΔH 3=-18.8kJ ·mol -1求炼钢温度下,液态钛溶于铁液反应Ti(l)=[Ti]的溶解焓。

《冶金热力学与动力学实验》

《冶金热力学与动力学实验》

《冶金热力学与动力学实验》指导书实验一 、 碳的气化反应一.实验目的1.测定恒压下不同温度时反应的平衡常数。

2.了解在恒温恒压下反应达平衡时测定平衡常数的方法。

3.了解影响反应平衡的因素。

二.实验原理在高炉炼铁、鼓风炉炼铜、铅、锌以及煤气发生炉等生产实践中,固体碳的气化反应具有十分重要的意义。

其反应为:C +CO 2=2CO该反应的自由度为F =2-2+2=2,即反应平衡时,气相成分取决于温度和系统的压力。

在一大气压时,该反应的平衡常数为:%)(%)(2222CO CO P P K CO CO P ==(1—1)由等压式知B RT H K P +∆-=303.2lg (1—2)式中ΔH 为反应热,R 为气体常数,T 为绝对温度,B 为常数。

三.实验装置如图2-3所示,由二氧化碳气瓶、气体净化系统、管式高温炉及控温仪表、气体分析仪器组成。

图1-3碳的汽化反应实验装置1.CO2气瓶2 流量计3.管式电阻炉4.铂铑热电偶5.温度控制器6. CO2传感器;7.计算机8实验台四.实验步骤1.按图装好仪器设备,将碳粒装入电炉内瓷管的高温带,塞上胶塞,用融化的石蜡密封好。

2.分段检查系统是否漏气,重新密封,直至不漏气为止。

3.通电升温接通电源,打开控温器电流为5A,逐步升到10~12 A。

在升温的同时;打开气瓶,以较大的气流(40ml/分)排出系统内的空气,排气5分钟后调流量为20ml/分,并保持此流量不变。

4.炉温在600℃恒温5分钟后,接通CO2气体传感器,计算机读数,记录CO2%含量。

5. 再按上述操作连续4点,700℃,800℃,900℃,1000℃。

分析反应平衡气体中CO2含量同上操作,再取该温度下反应平衡气体,记录CO2%含量。

7.实验完毕,恢复仪器原状,切断电源,关闭气体。

五.实验报告要求1.计算各温度下平衡气相成分,以体积百分数表示,取10次结果的平均值。

2.计算各温度下的平衡常数K p。

3.绘制平衡气相中一氧化碳与温反t的关系曲线。

炼钢过程的物理化学基础

炼钢过程的物理化学基础

炼钢过程的物理化学基础
炼钢是将生铁或生铁合金通过冶炼、熔炼和精炼等过程,去除杂质和调整合金元素含量,制得具有一定化学成分和性能的钢材。

这个过程涉及多种物理和化学原理,其中一些重要的物理化学基础包括:
1.熔炼原理:
熔融与溶解:高温条件下金属原料被熔化,形成熔体。

在熔体中,不同金属元素能够相互溶解,形成合金体系。

相平衡与相图:钢铁冶炼中考虑不同金属之间的相平衡关系,例如铁碳相图,用于预测在不同温度下金属间的相变情况,指导生产实践。

2.去除杂质与精炼原理:
氧化还原反应:在炼钢过程中,通过氧化还原反应去除杂质。

例如,将氧气通过熔融金属,氧气与不纯净金属反应生成氧化物,再被去除,使金属中杂质减少。

渗碳原理:通过加入碳源(如石墨、焦炭等)来调整钢铁的碳含量,使其满足特定的技术要求。

3.结晶与晶体生长:
凝固过程:当熔体冷却至凝固温度以下时,金属开始凝固成晶体结构。

晶体的形成和排列方式直接影响钢材的力学性能。

晶粒粗化与细化:控制熔体冷却速率,可以影响晶粒的尺寸和形态,从而调节钢材的组织结构和性能。

4.热力学与动力学:
热力学平衡:针对炼钢过程中的温度、压力和化学反应等参数,
进行热力学平衡分析,确保炉内反应能够朝着预期的方向进行。

动力学控制:炼钢过程中,不仅需要考虑热力学平衡,还需考虑动力学控制,即控制熔体的流动和传热,以便有效地去除杂质、调整合金成分。

炼钢过程是一个复杂的物理化学过程,其中涉及多种物质相互作用和反应过程。

理解这些物理化学基础是确保钢铁冶炼过程高效、稳定和品质可控的关键。

钢铁冶金原理知识点

钢铁冶金原理知识点

钢铁冶金原理1.冶金热力学研究对象:反应能否进行,即反应的可行性和方向性、反应达到平衡态的条件及该条件下反应物能达到的最大产出率。

2.平衡常数的含义:可逆化学反应达到平衡时,每个产物浓度系数次幂的连乘积与每个反应物浓度系数次幂的连乘积之比,这个比值叫做平衡常数。

3.稀溶液:一定温度和压力下,溶剂遵守拉乌尔定律,溶质遵守亨利定律的溶液。

4.正规溶液:混合焓不为0,但混合熵等于理想溶液混合熵的溶液。

5.活度系数:是指活度与浓度的比例系数。

6.试比较CO和H2还原氧化铁的特点?解CO和H2是高炉内氧化铁的间接还原剂。

它们均能使Fe2O3还原到Fe。

但它们的还原能力在不同温度下却有所不同。

在810℃,两者的还原能力相同,而在810℃以下,CO的还原能力比H2的还原能力强,但在810℃以上,则相反,氢有较强的还原能力,这反映在还原剂的分压上,随温度的升高,还原FeO所要求的CO分压增高,还原FeO 需要的H2分压则减小。

高炉下部高温区H2强烈参与还原,而使C消耗于形成CO(C 的气化反应)的量有所减少。

另,在高温区内,它们形成的产物H2O(g)及CO2均能与焦炭反应,分别形成H2及CO。

增加间接还原剂的产量。

这也就推动了碳直接还原的进行。

在还原的动力学上,由于H2在FeO上的吸附能力及扩散系数均比CO的大,所以H2还原氧化铁的速率,即使在810℃以下,也比CO的高(约5倍)。

提高还原气体中H2的浓度有利于氧化铁还原速率的增加。

7.氢和氮气对钢会产生哪些危害?答:氢在固态钢中的溶解度很小,在钢水凝固和冷却过程中,氢和CO、N2气体一起析出,形成皮下气泡中心缩孔,疏松,造成白点和发纹。

钢中含有氢气的气孔会沿加工方向被拉长形成裂纹,进而引起钢材的强度,塑性,冲击韧性的降低,发生氢脆现象。

氮含量高的钢材长时间放置,将会变脆。

原因是钢种氮化物析出速度很慢,逐渐改变钢的性能。

钢种含氮量高时,在250℃—450℃温度范围,表面发蓝,钢的强度升高,冲击韧性降低,称之为蓝脆。

钢铁冶金原理教学 反应过程动力学方程的建立

钢铁冶金原理教学 反应过程动力学方程的建立
图2-10 液液相界面边界层及浓度分布
如用物质的量浓度对时间的导数来表示总反应的速率,则 因
于是前式可改写为

为容量速率常数,则有
该式为双膜理论的液-液反应过程动力学速率微分式
前式中,令 —为总反应的速率常数;则速率微分式为
式中
是反应的驱动力,而各环节容量速率常数
的倒数,则是各环节呈现的阻力。三个阻力之和即是反
为c0,反应界面上的浓度为c,反应气体的 平衡浓度为c平。组成环节的速率式如下:
界面化学反应速率: 产物层内扩散速率: 对上式(Ⅱ)分离变量积分并由二联立式解出界面浓度c并 代入一式,得出
上式即在忽略外扩散的条件下,反应过程由界面化学反应及 内扩散混合控速的反应速率式。
讨论:内扩散和化学反应限速的情况
2)在两相的界面上,处于动态平衡状态; 3)在每相的范围内组元的扩散通量,对于液体来说与该组元在溶液体 内和界面处的浓度差成正比即
4)虽然在液相内有紊流,但边界层中的流体是静止不动的,不受流体 体内流动状态的影响,在各相中的传质被看作是独立进行的,互不影响。
速率式的推导
各环节及速率如下: 反应物向相界面扩散: 界面化学反应: 产物离开相界面扩散: 当反应处于稳定态时, 联立以上三式可得 出总反应的速率式:
第三节 反应过程动力学方程的建立
Forming the Kinetics Equation of Reaction Process
本节主要内容: 3.1 稳态原理; 3.2 动力学方程的建立过程; 3.3 液-液相反应模型—双膜理论; 3.4 气-固相反应模型—未反应核模型。
3.1 稳定态原理的内容
原理内容:
对串联的反应过程:稳态原理就是串联反应进行了一段时间后,各 反应的速率经过互相调整,从而达到相等。反应的中间产物被下一串联 反应消耗,不出现物质的积累,过程处于稳态中。

冶金动力学第一章化学反应速率基础知识

冶金动力学第一章化学反应速率基础知识
增加实验课程比重
希望后续课程能增加实验课程的比重,通过实验来验证和巩固理论 知识,提高实践能力和创新能力。
拓展应用领域知识
建议课程适当拓展冶金动力学在其他领域的应用知识,如材料科学、 环境科学等,拓宽学员的知识视野和应用能力。
THANK YOU
感谢聆听
掌握了实验技能
通过实验课程的学习,我掌握了测量化学反应速 率的实验技能,包括实验设计、实验操作和数据 处理等方面。
激发了学习兴趣
本次课程的内容丰富、生动有趣,让我对冶金动 力学产生了浓厚的兴趣,期待后续课程的学习。
对未来学习建议和期望
加强理论知识学习
建议后续课程继续加强理论知识的学习,包括反应机理、反应动力 学方程等方面的内容,为后续实验和工程应用提供理论支持。
反应速率的表示方法
反应速率可以用微分法或积分法表示。微分法是通过测量反应过程中某一时刻的反应速率 来表示整个过程的反应速率;积分法则是通过测量反应开始到某一时刻的反应物或生成物 的浓度变化来表示整个过程的反应速率。
学员心得体会分享
1 2 3
加深了对化学反应速率的理解
通过本次课程的学习,我对化学反应速率的定义、 影响因素和表示方法有了更深入的理解,对后续 学习打下了坚实的基础。
温度对催化剂活性的影响
温度不仅直接影响反应速率,还会影响催化剂的活性。对于某些催化剂,存在最佳的反应温度范围,超出此范围 催化剂活性降低。
催化剂对反应速率影响
催化剂降低活化能
催化剂通过提供新的反应路径,使反应 的活化能降低,从而加快反应速率。
VS
催化剂的选择性
不同的催化剂对同一反应可能具有不同的 选择性,即可能促进不同的反应步骤或生 成不同的产物。因此,选择合适的催化剂 对于优化反应过程至关重要。

Sn、SnS、Cu、Cu2S相互反应的动力学分析与讨论

Sn、SnS、Cu、Cu2S相互反应的动力学分析与讨论

第20卷 第8期 中 国 水 运 Vol.20 No.8 2020年 8月 China Water Transport August 2020收稿日期:2020-02-25作者简介:张 博(1993-),男,硕士研究生,从事真空冶金方面的研究。

通讯作者:熊 恒(1980-),男,博士,副教授,从事有色冶金方面的研究。

基金项目:省部共建复杂有色金属资源清洁利用国家重点实验室自主课题研究课题基金(项目编号:CNMRCUTS1701);国家自然科学基金(项目编号:51874156);国家自然科学基金(项目编号:51964033) 。

Sn、SnS、Cu、Cu 2S 相互反应的动力学分析与讨论张 博1,2,3,刘大春2,3,熊 恒2,3*,周正恩4,邓 勇2,3,李 玲2,3,徐宝强2,3(1.复杂有色金属资源清洁利用国家重点实验室,云南 昆明 650093;2.昆明理工大学 真空冶金国家工程实验室,云南 昆明 650093;3.云南省有色金属真空冶金重点实验室,云南 昆明 650093;4.北京科技大学 冶金与生态工程学院,北京 100083)摘 要:冶金过程动力学是冶金过程中的重要组成部分,是冶金物理化学的一个重要分支,是通过化学动力学原理及宏观动力学方法研究从矿石提出金属及其化合物的一种方法。

本文对SnS 与Cu、Sn 与Cu 2S 反应过程的动力学问题进行了分析与讨论,提出了一种检测SnS、Cu、Sn 与Cu 2S 混合物中Cu、Cu 2S 含量的方法,得到了反应活化能Ea 和反应级数n 等动力学数据的计算方法,为后续的实验研究的开展提供了理论上的依据与指导。

关键词:经典动力学;数据分析;检测方法中图分类号:TQ35 文献标识码:A 文章编号:1006-7973(2020)08-0138-03引言冶金过程动力学是研究化学反应的速率随浓度、温度、时间的变化关系,从而建立得到相关化学方程式,可以对该反应进行推论或解释[1]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
aA bB cY dZ
AA BB YY ZZ
反应物 i 0 ;生成物 i 0 。
(1)反应进度 / Extent of reaction
t =0~t 范围内,反应进度 为:
ni nio i
式中nio、ni 初始和某一时刻物质的量, mol;
无论i是反应物或生成物,反应进度均为正值。
c Sc 1/ 3 ( ) 1/ 3
u
D
金属液与熔渣的Sc (Schmidt) 值103-104,所 以两者的δc<δu。
扩散边界层
流体以层流状态流过平板时:
扩散与传质的区别
(1)静止介质中质点的扩散; 扩散 传质: (2) 层流中的传质;
(3)紊流中的传质; (4) 相际传质。
扩散过程 / Diffusion process
( 1 ) 菲克第一定律 Fick’s first law of diffusion
dc/dt=0(稳态)
dc/dx=(c2-c1)/△x=常数
(4)反应级数/ Reaction order
对于基元反应:
AA BB YY ZZ
n = (-A)+(-B)
反应级数
(5)速率方程解析
不可逆反应: AB
dcA dt
kcAn
不可逆反应: n = 0, 1, 2
零级
n 0,
[c]cc0 kt
c0 c kt, c c0 kt
* A---普通分子全部
转化成活化分子时反
tg =-E/R
应速度常数。
0
1/T
5.3 扩散与相间传质 Diffusion and interphase transmission
扩散--- 热运动导致的物质质点由高化学势 向低化学势区域的运动过程。
传质--- 化学势梯度引起的原子、分子运动 以及外力场或密度差造成的流体微元运动产 生的物质迁移过程。
经验公式:
D
D0
exp(
ED RT
)
ED扩散活化能, J·mol -1。 D0-频率因子, 与D的单位同为m2·s-1。
ln(
D
/
D0
)
ED RT
(4)边界层/Boundary layer
u---速度边界层 c---扩散边界层 c’--有效扩散边界层
速度边界层与扩散边界层 当流体以层流状态流过平板时
导出
nA nB nY nZ ni A B Y Z i
d dnA dnB dnY dnZ dni A B Y Z i
(2)反应速率/ Reaction rate

d
1
dni
dt i dt
mol·s−1
v 1 • d(ni /V ) 1 • dci
V i dt
i dt
冶金过程动力学 Kinetics of reactions in metallurgical processes
第五章 冶金反应动力学基础
5.1 概述
(1)基本定义 (2)所属范畴 (3)应用实例 (4)参考书
所属范畴
冶金过程 动力学
定义与相关课程
化学反应动力学
均相内物质间
(均相)
反应机理与反应速度
式中,E---反应活化能(activation energy), A---频率因子(frequency factor)。
A 与 T 对k 的作用
* T---普通分子活
lnk
ln k E ln A RT
化分子转化的推动力。
(2.2 30)
* E---普通分子活
化分子转化时需要的
能量。
lnA
冶金工业出版社,1981 (俞景禄、魏季和译) 鞭岩、森山昭著,冶金反应工程学,科学出版社,1981
(蔡志鹏、谢裕生译)
5.2 化学反应动力学基础
(1)反应进度 (2)反应速率 (3)速率方程 (4) 反应级数 (5)速率方程解析 (6) 反应速率与温度的关系
化学反应 / Chemical reactions
实际情况
(J1
J2)A
c t
dx
A
J c x t
从非稳态到稳态变化
传导介质 c
B+N2
t=t∞ t=t4
t=0
cB
t=t3
t=t2 t=t1
2
1
气相内B浓度 cBb
X
( 3 ) 扩散系数和温度的关系 Relationship of diffusion coefficient with temperature
mol·m-3·s−1
(3)速率方程 / Ra
---速率方程
(k---反应速度常数)
质量作用定律:对于一个基元反应,一定温度下的 反应速率与各反应物浓度幂指数的乘积成正比。
(Law of mass action:19世纪中期G.M.古德贝格和P.瓦格)
一级 二级
n 1,
ln[c]cc0 kt
ln(c0 / c) kt, ln(c / c ) ln(c0 / c ) kt
n 2,
[
1 c
]c c0
kt
11 kt,
c0 c
11 kt
c c0
(6)反应速率与温度的关系
由阿累尼乌斯方程(Arrhenius equation):
ln(k / k ) E ln( A / A ) RT
在化学反应动力学基础上,结 合反应器研究传质、传热和流体流 动对过程的机理和速率的影响。
实例
FeO Fe
参考书
张家芸主编,冶金物理化学,冶金工业出版社,2004 郭汉杰编著,冶金物理化学教程,冶金工业出版社,2006 韩其勇主编,冶金过程动力学,冶金工业出版社,1983 G. H. 盖格、D. R. 波伊里尔著,冶金中的传热传质现象,
J Ax
D
A
(
dcA dx
)
mol/m2 s
摩尔扩散通量 JA, x,浓度cA的SI单位为mol•m-3。
( 2 ) 菲克第二定律 Fick’s second law of diffusion
J c x t
J=-D(〆c/〆x)
c (D c) t x x
c t
D
2c x2
非稳态扩散 Diffusion with non-steady state
Chemical kinetics
传输原理
物质(热量、动量、质量) 相内与相间传输
Transport phenomena
钢铁冶金学 有色冶金学
各种工艺与反应器内 经济、有效地提取金属
Metallurgy
Kinetics of reactions in metallurgical processes
冶金过程动力学
相关文档
最新文档