椭圆的参数方程

合集下载

椭圆参数方程推导原理

椭圆参数方程推导原理

椭圆参数方程推导原理
椭圆参数方程是一种用来描述椭圆形状的数学方程,它可以用来描述椭圆的位置、大小和形状。

椭圆参数方程的推导原理是基于椭圆的标准方程,即:
$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$
其中,a和b分别是椭圆的长轴和短轴。

椭圆参数方程的推导原理是将椭圆的标准方程转换为椭圆参数方程,即:
$$\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$$
其中,h和k分别是椭圆的中心点的横纵坐标。

椭圆参数方程的推导原理是将椭圆的标准方程中的x和y分别减去h和k,然后将结果代入椭圆的标准方程中,即可得到椭圆参数方程。

椭圆参数方程的推导原理是基于椭圆的标准方程,它可以用来描述椭圆的位置、大小和形状。

椭圆参数方程的推导原理是将椭圆的标准方程转换为椭圆参数方程,即将椭圆的标准方程中的x和y分别减去h和k,然后将结果代入椭圆的标准方程中,即可得到椭圆参数方程。

椭圆参数方程的推导原理是一种简单而有效的方法,它可以用来描述椭圆的位置、大小和形状,为椭圆的研究提供了有效的数学工具。

椭圆的参数方程中参数的几何意义

椭圆的参数方程中参数的几何意义

椭圆的参数方程中参数的几何意义椭圆的参数方程中参数的几何意义是指,椭圆的参数方程为x=a cos t,y=b sin t,其中a和b均为正数, t为参数。

其中,参数t 代表椭圆上的点与椭圆圆心所连直线的倾角,即t是一条从圆心出发的射线与x轴的夹角。

a表示椭圆主轴的长度,b表示椭圆次轴的长度,其中a和b的比值称为离心率,离心率越小,椭圆越趋向于圆形;离心率越大,椭圆形状越扁平。

椭圆的边界由椭圆轮廓上的所有点组成,这些点在参数方程中用参数t表示。

通过改变参数t的值,可以得到椭圆轮廓上的所有点,从而确定整个椭圆的形状和大小。

因此,椭圆的参数方程中的参数t、a、b以及离心率,都代表了椭圆的重要几何特征,可以用于描述、计算和绘制椭圆的形状。

椭圆参数方程

椭圆参数方程

2、求定点(2a,0)和椭圆{
Hale Waihona Puke x = a cos θ y = b sin θ
(θ为参数)上各
点连线的中点轨迹方程。
解:设定点与椭圆上的点连线的中点为M ( x, y ) 2a + a cos θ x= 2 则{ (θ为参数) b sin θ y= 2 ( x − a) 2 y 2 上述的方程消去参数,得 + 2 =1 2 a b 4 4
x 9
2
y2 4
解 : 椭圆参数方程 设点P(3cos α ,2sin α ) S⊳ ABC 面积一定 , 需求 S⊳ ABP 最大即可 即 求 点 P 到 线 AB的 距 离 最 大 值
x 线 AB的 方 程 为 3 + y 2
= 1 ⇒ 2x + 3y − 6 = 0 =
6 13
d =
| 6 cos α + 6 sin α − 6 | 2 2 + 32
y
分析1:设P ( ± 8 − 8y 2 , y ),
则d = | ± 8 − 8y 2 − y + 4 | 2
O x
分析2:设P( 2 2 cos φ, sin φ),
则d = | 2 2 cos φ − sin φ + 4 |
P
2 至首次与椭圆相切,切点即为所求. 分析3:平移直线 l 至首次与椭圆相切,切点即为所求 小结:借助椭圆的参数方程, 小结:借助椭圆的参数方程,可以将椭圆上的任意一 点的坐标用三角函数表示,利用三角知识加以解决。 点的坐标用三角函数表示,利用三角知识加以解决。
思考: 与简单的线性规划问题进行类比,你能在实数 x y x, y满足 + = 1的前提下,求出z = x − 2 y的 25 16 最大值和最小值吗?

椭圆的参数方程

椭圆的参数方程


y

x0 y0
a cos b sin
(为参数)
y
B O

M
Nx
做一做1 椭圆
=3 =2
2cos 3sin
,
(φ为参数)的焦距是
26
.
例2
x2 已知椭圆的方程为:25
y2 16
1
,求椭圆内接矩形的最大面积。
做一做2
已知椭圆的方程为:
x2 16

y2 12
1

p是椭圆上的一点;
椭圆的参数方程
复习回顾:
圆的标准方程
圆的参数方程
x2 y2 r2
x r cos

y

r
sin
( 为参数)
(x x0 )2 ( y y0 )2 r 2
x

y

x0 y0

r cos r sin
,
(为参数)
参数
消去参数
普通
方程
方程
ቤተ መጻሕፍቲ ባይዱ
代入参数关系
(1)把椭圆的普通方程化为参数方程; (2)求p到直线x-2y-12=0的距离的范围,并求出距离最小的p的坐标.
课堂小结
椭圆的标准方程: 椭圆的参数方程:
x2 y2 1
a2 b2
x y

a b
cos sin
(
是参数)
椭圆的参数方程中参数 的几何意义:
是∠AOX= ,不是∠MOX=φ.
椭圆的参数方程
2
2
(1)中心在原点,焦点在 x 轴上的椭圆 2 2=1(a>b>0)的一个参

2.3 椭圆的参数方程

2.3 椭圆的参数方程

2.3 椭圆的参数方程 2.4 双曲线的参数方程1.椭圆的参数方程(1)椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎨⎧x =a cos φ,y =b sin φ(φ为参数),参数的几何意义是以a为半径所作圆上一点和椭圆中心的连线与x 轴正半轴的夹角. (2)中心在C (x 0,y 0)的椭圆的参数方程是⎩⎨⎧x =x 0+a cos φ,y =y 0+b sin φ(φ为参数).2.双曲线的参数方程中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b tan φ(φ为参数),规定φ的取值范围为φ∈[0,2π)且φ≠π2,φ≠32π. 【思维导图】【知能要点】 1.椭圆的参数方程. 2.双曲线的参数方程.题型一 椭圆的参数方程1.和圆的参数方程⎩⎨⎧x =r cos θ,y =r sin θ中的参数θ是半径OM 的旋转角不同,椭圆参数方程⎩⎨⎧x =a cos φ,y =b sin φ中的参数φ是椭圆上点M 的离心角.2.椭圆(x -m )2a 2+(y -n )2b 2=1 (a >b >0)的参数方程为⎩⎨⎧x =m +a cos φ,y =n +b sin φ(φ为参数).【例1】 已知A 、B 分别是椭圆x 236+y 29=1的右顶点和上顶点,动点C 在该椭圆上运动,求△ABC 的重心G 的轨迹的普通方程.解 由动点C 在该椭圆上运动,故据此可设点C 的坐标为(6cos θ,3sin θ),点G 的坐标为(x ,y ),则由题意可知点A (6,0),B (0,3). 由重心坐标公式可知⎩⎪⎨⎪⎧x =6+0+6cos θ3=2+2cos θ,y =0+3+3sin θ3=1+sin θ. 由此消去θ得到(x -2)24+(y -1)2=1即为所求.【反思感悟】 本题的解法体现了椭圆的参数方程对于解决相关问题的优越性.运用参数方程显得很简单,运算更简便.1.设F 1、F 2分别为椭圆C :x 2a 2+y 2b2=1 (a >b >0)的左、右焦点.(1)若椭圆C 上的点A ⎝ ⎛⎭⎪⎫1,32到F 1、F 2距离之和等于4,写出椭圆C 的方程和焦点坐标;(2)设P 是(1)中椭圆上的动点,求线段F 1P 的中点的轨迹方程. 解 (1)由椭圆上点A 到F 1、F 2的距离之和是4, 得2a =4,即a =2. 又点A ⎝ ⎛⎭⎪⎫1,32在椭圆上,因此14+⎝ ⎛⎭⎪⎫322b 2=1,得b 2=3, 于是c 2=a 2-b 2=1,所以椭圆C 的方程为x 24+y 23=1, 焦点坐标为F 1(-1,0),F 2(1,0).(2)设椭圆C 上的动点P 的坐标为(2cos θ,3sin θ), 线段F 1P 的中点坐标为(x ,y ), 则x =2cos θ-12,y =3sin θ+02,所以x +12=cos θ,2y3=sin θ.消去θ,得⎝ ⎛⎭⎪⎫x +122+4y23=1,这就是线段F 1P 的中点的轨迹方程.题型二 双曲线的参数方程与椭圆类似,双曲线的参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b tan φ (φ为参数)中φ的几何意义也是双曲线上一点M 的离心角.【例2】 直线AB 过双曲线x 2a 2-y 2b 2=1的中心O ,与双曲线交于A ,B 两点,P 是双曲线上的任意一点.求证:直线P A ,PB 的斜率的乘积为定值. 证明 如图所示,设P ⎝ ⎛⎭⎪⎫a cos α,b tan α,A ⎝ ⎛⎭⎪⎫a cos θ,b tan θ.∵AB 过原点O ,∴A ,B 的坐标关于原点对称, 于是有B ⎝ ⎛⎭⎪⎫-a cos θ,-b tan θ,从而:k P A ·k PB =b (tan α-tan θ)a ⎝ ⎛⎭⎪⎫1cos α-1cos θ·b (tan α+tan θ)a ⎝ ⎛⎭⎪⎫1cos α+1cos θ =b 2(tan 2 α-tan 2 θ)a 2⎝ ⎛⎭⎪⎫1cos 2 α-1cos 2 θ=b 2a 2为定值. 【反思感悟】 本例的求解充分利用了双曲线的参数方程.一般地,当与二次曲线上的动点有关时,可将动点用参数形式表示,从而将x,y 都表示为某角θ的函数,运用三角知识求解,可大大减少运算量,收到事半功倍的效果.2.如图所示,设M 为双曲线x 2a 2-y 2b 2=1(a ,b >0)上任意一点,O 为原点,过点M作双曲线两渐近线的平行线,分别与两渐近线交于A ,B 两点.探求平行四边形MAOB 的面积,由此可以发现什么结论?解 双曲线的渐近线方程为y =±ba x . 不妨设M 为双曲线右支上一点,其坐标为 ⎝ ⎛⎭⎪⎫a cos φ,b tan φ,则直线MA 的方程为 y -b tan φ=-b a ⎝ ⎛⎭⎪⎫x -a cos φ.①将y =ba x 代入①,解得点A 的横坐标为 x A =a 2⎝ ⎛⎭⎪⎫1cos φ-tan φ.同理可得,点B 的横坐标为x B =a 2⎝ ⎛⎭⎪⎫1cos φ-tan φ.设∠AOx =a ,则tan α=ba .所以,▱MAOB 的面积为S ▱MAOB =|OA |·|OB |sin 2α =x A cos α·x B cos α·sin 2α =a 2⎝ ⎛⎭⎪⎫1cos 2φ-tan 2φ4cos 2α·sin 2α =a 22·tan α=a 22·b a =ab 2.由此可见,平行四边形MAOB 的面积恒为定值,与点M 在双曲线上的位置无关.题型三 参数方程的应用若曲线的参数方程⎩⎨⎧x =2pt 2,y =2pt(t 为参数),由于y x =1t ,因此t 的几何意义是曲线上的点(除顶点外)与曲线的顶点连线的斜率的倒数.【例3】 设飞机以匀速v =150 m/s 做水平飞行,若在飞行高度h =588 m 处投弹(假设炸弹的初速度等于飞机的速度). (1)求炸弹离开飞机后的轨迹方程;(2)试问飞机在离目标多远(水平距离)处投弹才能命中目标.分析 这是物理学中的平抛运动,选择合理的参变量将炸弹(看作质点)的水平方向和竖直方向的运动表示出来.解 (1)如图所示,A 为投弹点,坐标为(0,588),B 为目标,坐标为(x 0,0).记炸弹飞行的时间为t ,在A 点t =0.设M (x ,y )为飞行曲线上的任一点,它对应时刻t ,炸弹初速度v 0=150 m/s ,用物理学知识,分别计算水平、竖直方向的路程,得 ⎩⎪⎨⎪⎧x =v 0t ,y =588-12gt 2 (g =9.8 m/s 2),即⎩⎨⎧x =150t ,y =588-4.9t 2, 这是炸弹飞行曲线的参数方程.(2)炸弹飞行到地面目标B 处的时间t 0满足方程y =0, 即588-4.9t 2=0,解得t 0=230.由此得x 0=150×230=30030≈1 643 (m).即飞机在离目标约1 643 m(水平距离)处投弹才能击中目标.【反思感悟】 准确把握题意,分析物理学中运动过程,选择适当的坐标系及变量,将物理问题转化为数学问题.利用抛物线的参数方程解决.3.青海省玉树县发生7.1级地震,灾区人民的安危牵动着全国人民的心,一批批救援物资源源不断地运往灾区.现在一架救援飞机在离灾区地面593 m 高处以150 m/s 的速度作水平飞行.为使投放救援物资准确落于灾区某指定的地点(不记空气阻力),飞行员应如何确定投放时机呢?解 如图所示,物资投出机舱后,设在时刻t 的水平位移为x ,垂直距离为y ,则⎩⎪⎨⎪⎧x =150t ,y =593-12gt 2(g =9.8 m/s 2). 令y =0,得t ≈11 s ,代入x =150 t ,得x ≈1 650 m.所以,飞行员在离救援点的水平距离约1 650米时开始投放物资,可使其准确落在指定位置.1.已知实数x ,y 满足x 225+y 216=1,求目标函数z =x -2y 的最大值与最小值.解 椭圆x 225+y 216=1的参数方程为⎩⎨⎧x =5cos φ,y =4sin φ(φ为参数).代入目标函数得z =5cos φ-8sin φ=52+82cos(φ+φ0)=89cos(φ+φ0)(tan φ0=85).所以目标函数z min =-89,z max =89.2.点P 在椭圆x 216+y 29=1上,求点P 到直线3x -4y =24的最大距离和最小距离. 解 设P (4cos θ,3sin θ), 则d =|12cos θ-12sin θ-24|5.即d =⎪⎪⎪⎪⎪⎪122cos ⎝ ⎛⎭⎪⎫θ+π4-245,当cos ⎝ ⎛⎭⎪⎫θ+π4=-1时,d max =125(2+2);当cos ⎝ ⎛⎭⎪⎫θ+π4=1时,d min =125(2-2).3.已知弹道曲线的参数方程为⎩⎪⎨⎪⎧x =20t cos π6,y =20t sin π6-12gt 2(g =9.8 m/s 2)(1)求炮弹从发射到落地所需的时间; (2)求炮弹在运动中达到的最大高度. 解 (1)令y =20t sin π6-12gt 2=0, 即4.9t 2-10t =0. 解得t =0或t ≈2.所以炮弹从发射到落地所需时间约为2秒. (2)由y =10t -4.9t 2,得y =-4.9⎝ ⎛⎭⎪⎫t 2-10049t =-4.9⎝ ⎛⎭⎪⎫t -50492+25049.所以当t =5049时,y max =25049≈5.1.所以炮弹在运动中达到的最大高度为5.1米.4.已知双曲线方程为x 2-y 2=1,M 为双曲线上任意一点,M 点到两条渐近线的距离分别为d 1和d 2,求证:d 1与d 2的乘积是常数.证明 设d 1为M 点到渐近线y =x 的距离,d 2为M 点到渐近线y =-x 的距离, 因为M 点在双曲线x 2-y 2=1上,则可设M 点坐标为⎝ ⎛⎭⎪⎫1cos α,tan α.d 1=⎪⎪⎪⎪⎪⎪1cos α-tan α2,d 2=⎪⎪⎪⎪⎪⎪1cos α+tan α2,d 1·d 2=⎪⎪⎪⎪⎪⎪1cos 2α-tan 2α2=12,故d 1与d 2的乘积是常数.[P 36思考交流] 参照求圆的参数方程 ⎩⎪⎨⎪⎧x =(1-k 2)r1+k 2,y =2kr 1+k 2(k 为参数)的方法,给出椭圆另一种形式的参数方程(如图).答 设椭圆的方程为x 2a 2+y 2b 2=1其中a >b >0,则点A 的坐标为(-a ,0),设AP 的斜率为k .直线AP 的方程为y =k (x +a )由⎩⎪⎨⎪⎧y =k (x +a ),x 2a 2+y 2b2=1,可得直线AP 与椭圆的交点的横坐标,x 1=-a ,x 2=ab 2-a 3k 2b 2+a 2k 2. 直线AP 与椭圆交点的纵坐标为y 1=0,y 2=2ab 2k b 2+a 2k 2即点P 的坐标为⎝ ⎛⎭⎪⎫ab 2-a 3k2b 2+a 2k2,2ab 2k b 2+a 2k 2. ∵点P 是椭圆任意的不同于A 的点, ∴⎩⎪⎨⎪⎧x =ab 2-a 3k 2b 2+a 2k 2,y =2ab 2k b 2+a 2k 2(k 为参数),上面参数方程即为椭圆的另一种形式的参数方程.其中参数k 表示直线AP 的斜率.也由此可以看出,由于参数的选取不同,参数方程也不同. [P 37思考交流]1.双曲线的参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b tan φ中,参数的几何意义是什么? 答 参数的几何意义是以原点为圆心,a 为半径的圆的半径的旋转角.2.试求双曲线y 2a 2-x 2b 2=1(a >0,b >0)的参数方程. 答 如图:分别以a ,b 为半径,原点为圆心作同心圆. 设OA =a ,OB =b ,A 为圆上任一点.∠AOx =φ(参数),B 为圆与y 轴的交点,过B 作平行于x 轴的直线交OA 的延长线于B 1点,在Rt △OBB 1中,∠BB 1O =φ,BB 1=b tan φ.过A 的切线交y 轴于A 1点,A 1P ⊥y 轴,A 1P ⊥B 1P . 设点P 的坐标为(x ,y ),在Rt △OAA 1中,∠OA 1A =φ,OA =a ,OA 1=asin φ. x =BB 1=b tan φ,y =OA 1=asin φ. ∴⎩⎪⎨⎪⎧x =b tan φ,y =a sin φ(其中φ为参数),∴y 2a 2-x 2b 2=1(a >0,b >0)的参数方程为⎩⎪⎨⎪⎧x =b tan φ,y =asin φ(φ为参数).3.试求抛物线y 2=2px (p >0)的参数方程.(1)以抛物线上一点(x ,y )与其顶点连线斜率的倒数t 为参数. (2)以抛物线上任意一点(x ,y )的纵坐标y 0为参数. 答 (1)抛物线y 2=2px ,p 为焦点到准线的距离. 抛物线上任意一点M (x ,y ),∠MOx =α,则yx =tan α代入y 2=2px 中y ·tan α=2p .∴y =2p tan α.x =y 22p =12p ·(2p )2tan 2 α=2p tan 2α.设t =1tan α,则⎩⎨⎧x =2pt 2,y =2pt .其中t 为参数.几何意义是抛物线上任意一点与抛物线顶点的连线的斜率的倒数.故⎩⎨⎧x =2pt 2,y =2pt即为所求.(2)⎩⎪⎨⎪⎧x =y 202p ,y =y 0(y 0为参数).几何意义是抛物线上任意点的纵坐标. 【规律方法总结】1.椭圆和双曲线的参数方程中,参数φ的几何意义都是曲线上点M 的离心角;抛物线参数方程中参数t 的几何意义是抛物线上的点(除顶点外)和顶点连线斜率的倒数.2.利用圆锥曲线的参数方程,可以方便求解一些需要曲线上点的两个坐标独立表示的问题,如求最大值、最小值问题、轨迹问题等.3.圆锥曲线的参数方程可以有不同的形式,求曲线的参数方程可根据具体问题选取角度、长度、斜率、时间等作为参数.一、选择题1.下列参数方程(t 为参数)与普通方程x 2-y =0表示同一曲线的方程是( ) A.⎩⎨⎧x =|t |,y =tB.⎩⎨⎧x =cos t ,y =cos 2tC.⎩⎨⎧x =tan t ,y =1+cos 2t 1-cos 2tD.⎩⎨⎧x =tan t ,y =1-cos 2t 1+cos 2t解析 注意参数范围,可利用排除去.普通方程x 2-y =0中的x ∈R ,y ≥0.A 中x =|t |≥0,B 中x =cos t ∈[-1,1],故排除A 和B.而C 中y =2cos 2t 2sin 2t =cos 2t =1tan 2t=1x 2,即x 2y =1,故排除C. 答案 D2.下列在曲线⎩⎨⎧x =sin 2θ,y =cos θ+sin θ(θ为参数)上的点是( )A.⎝ ⎛⎭⎪⎫12,-2B.⎝ ⎛⎭⎪⎫-34,12 C.(2,3)D.(1,3)解析 转化为普通方程:y 2=1+x (|y |≤2),把选项A 、B 、C 、D 代入验证得,选B. 答案 B3.若点P (3,m )在以点F 为焦点的抛物线⎩⎨⎧x =4t 2,y =4t (t 为参数)上,则|PF |等于( )A.2B.3C.4D.5解析 抛物线为y 2=4x ,准线为x =-1,|PF |为P (3,m )到准线x =-1的距离,即为4. 答案 C4.已知椭圆的参数方程⎩⎨⎧x =2cos t +1,y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的倾斜角α为( ) A.π3B.π6C.2π3D.5π6解析 M 点的坐标为(2,23), ∴k =3,tan α=3,α=π3. 答案 A 二、填空题5.曲线⎩⎨⎧x =3t -2,y =t 2-1与x 轴交点的坐标是______________. 解析 将曲线的参数方程化为普通方程:(x +2)2=9(y +1),令y =0,得x =1或x =-5.答案 (1,0),(-5,0)6.双曲线⎩⎪⎨⎪⎧x =3+3tan φ,y =1cos φ(φ为参数)的渐近线方程是________. 解析 将参数方程化为普通方程是y 2-(x -3)29=1, a =1,b =3,渐近线的斜率k =±13,双曲线的中心为(3,0),∴渐近线方程为y=±13(x -3).答案 y =±13(x -3)7.二次曲线⎩⎨⎧x =5cos θ,y =3sin θ(θ是参数)的左焦点的坐标是________. 解析 题中二次曲线的普通方程为x 225+y 29=1左焦点为(-4,0).答案 (-4,0)8.过双曲线x 2-y 2=4的右焦点F 作倾斜角为105°的直线,交双曲线于P ,Q 两点,则|FP |·|FQ |的值为________.解析 因双曲线的标准方程为x 24-y 24=1, ∴a =b =2.∴c =a 2+b 2=4+4=2 2.故右焦点为F (22,0).∴可设过F (22,0),倾斜角为105°的直线的参数方程为⎩⎨⎧x =22+t cos 105°,y =t sin 105°(t 为参数).代入双曲线方程x 2-y 2=4,整理得32t 2+(23-2)t -4=0, ∴|FP |·|FQ |=|t 1t 2|=⎪⎪⎪⎪⎪⎪⎪⎪-432=833.答案 833 三、解答题9.已知圆O 1:x 2+(y -2)2=1上一点P 与双曲线x 2-y 2=1上一点Q ,求P ,Q 两点距离的最小值.解 圆心O 1坐标为(0,2),Q 点坐标为⎝ ⎛⎭⎪⎫1cos φ,tan φ, |QO 1|2=1cos 2φ+(tan φ-2)2=1cos 2φ+tan 2φ-4tan φ+4=2tan 2φ-4tan φ+5.设t =tan φ,|QO 1|2=2t 2-4t +5=2(t -1)2+3≥3,∴|QO 1|min =3,∴PQ 两点间的距离的最小值为3-1.10.已知曲线C :x 24+y 29=1,直线l :⎩⎨⎧x =2+t ,y =2-2t(t 为参数). (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.解 (1)曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|,则|P A |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值, 最大值为2255.当sin(θ+α)=1时,|P A |取得最小值, 最小值为255.11.已知椭圆x 24+y 2=1上任一点M (除短轴端点外)与短轴两端点B 1,B 2的连线分别交x 轴于P ,Q 两点,求证:|OP |·|OQ |为定值.证明 设M (2cos φ,sin φ),φ为参数,B 1(0,-1),B 2(0,1).则MB 1的方程:y +1=sin φ+12cos φ·x ,令y =0,则x =2cos φsin φ+1,即|OP |=|2cos φ1+sin φ|. MB 2的方程:y -1=sin φ-12cos φx ,∴|OQ |=⎪⎪⎪⎪⎪⎪2cos φ1-sin φ. ∴|OP |·|OQ |=⎪⎪⎪⎪⎪⎪2cos φ1+sin φ×⎪⎪⎪⎪⎪⎪2cos φ1-sin φ=4. 即|OP |·|OQ |=4为定值.12.已知抛物线y 2=2px (p >0),过动点M (a ,0)且斜率为1的直线l 与该抛物线交于不同的两点A ,B ,|AB |≤2p .(1)求a 的取值范围;(2)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值.解 设直线l 的方程为y =x -a 代入y 2=2px 中,得:x 2-2(a +p )x +a 2=0.(1)设A ,B 两点的坐标为(x 1,y 1)、(x 2,y 2),则x 1+x 2=2(a +p ),x 1x 2=a 2.∴|AB |=1+12(x 1+x 2)2-4x 1x 2=24(a +p )2-4a 2=28ap +4p 2≤2p ,∴2(8ap +4p 2)≤4p 2,解得a ≤-p 4.(2)A ,B 的中点坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,即为(a +p ,p ),斜率为-1,垂直平分线方程为y -p =-(x -a -p )=-x +a +p .y =0时,x =a +2p ,∴点N 的坐标为(a +2p ,0),∴点N (a +2p ,0)到直线AB 的距离为|2p |2=2p ,则S △NAB =12·2p ·28ap +4p 2=p 8ap +4p 2=2p ·p 2+2ap =2p 2pa +p 2,当a 最大时,S △NAB 取最大值,故a =-p 4时,S 取最大值为2p 2.习题2-2 (第28页)A 组1.解 (1)a 作为参数时,方程表示直线;φ作为参数时,方程表示圆.(2)x ,y 分别表示曲线上任意一点的横、纵坐标;x 0,y 0分别表示曲线上某一定点的横、纵坐标;若a 作为参数,则它表示直线上定点M 0(x 0,y 0)与直线上任意一点M (x ,y )构成的有向线段M 0M →的数量,此时φ是直线的倾斜角;若φ作为参数,则它表示圆的半径与x 轴正方向所夹的角,此时a 表示圆的半径. 2.2π33.解直线方程⎩⎨⎧x =-2-2t ,y =3+2t (t 为参数)可以变形为⎩⎪⎨⎪⎧x =-2-22(2t ),y =3+22(2t ).所以|2t |=2,2t =±2.所以所求点的坐标为(-3,4)或(-1,2).4.解 将直线l 1的参数方程⎩⎪⎨⎪⎧x =4+613t ,y =3+413t ,代入l 2:x +y -2=0,得t =-132. 所以点Q 的坐标为(1,1),所以|PQ |=13.5.解(1)⎩⎪⎨⎪⎧x =1+12t ,y =5+32t (t 为参数).(2)将⎩⎪⎨⎪⎧x =1+12t ,y =5+32t代入x -y -23=0,得t =-10-6 3. 由t 的几何意义知,两直线的交点到点M 的距离为|t |=10+6 3.(3)将⎩⎪⎨⎪⎧x =1+12t ,y =5+32t代入x 2+y 2=16, 得t 2+(53+1)t +10=0.所以t 1+t 2=-(53+1),t 1t 2=10.由t 的几何意义知,直线与圆的两个交点到点M 的距离分别为|t 1|,|t 2|.因为t 1t 2>0,所以t 1,t 2同号,所以|t 1|+|t 2|=53-1,|t 1|·|t 2|=10.6.解 (1)⎩⎨⎧x =2+5cos α,y =3+5sin α(α为参数). (2)若a >0,如图,设点P (x ,y ),则由题意,取|OP |=t 为参数.在Rt △AOP 中,作PM ⊥OA ,根据射影定理,所以⎩⎨⎧|OP |2=OM ·OA ,t 2=x ·2a , 所以x =t 22a ,所以⎩⎪⎨⎪⎧x =t 22a ,y =±t 2a4a 2-t 2(t 为参数). 若a <0,同理.7.证明 以圆心为原点,建立平面直角坐标系,设圆的半径为R ,则圆的参数方程为⎩⎨⎧x =R cos θ,y =R sin θ(θ为参数).圆内接矩形在第一象限内的顶点坐标为(R cos θ,R sin θ).所以S =4R cos θ·R sin θ=2R 2sin 2θ.要使S 最大,则2θ=π2,θ=π4.即圆的内接矩形中正方形的面积最大.8.解 直线方程为y =tan θ·x .由⎩⎨⎧y =tan θ·x ,x 2+y 2-2x =0,得圆x 2+y 2-2x =0的参数方程为 ⎩⎪⎨⎪⎧x =21+tan 2θ,y =2tan θ1+tan 2θ(θ为参数).9.P ⎝ ⎛⎭⎪⎫332,1,θ=arctan 239 10.解 直线方程为y =tx +4.由⎩⎨⎧y =tx +4,4x 2+y 2-16=0,得椭圆4x 2+y 2=16的参数方程为⎩⎪⎨⎪⎧x =8t t 2+4,y =-4t 2+16t 2+4(t 为参数). B 组1.以时间t 为参数,点M 轨迹的参数方程为⎩⎨⎧x =1+9t ,y =1+12t .2.解直线的参数方程⎩⎨⎧x =2+t ,y =4-t 可以变形为直线⎩⎪⎨⎪⎧x =2-22(-2t ),y =4+22(-2t ),则两个交点到点A (2,4)的距离之和为2(|t 1|+|t 2|),将直线方程⎩⎨⎧x =2+t ,y =4-t ,代入y 2=4x ,得t 2-12t +8=0.所以t 1+t 2=12,t 1t 2=8.所以2(|t 1|+|t 2|)=2|t 1+t 2|=12 2.3.解 因为点B (x ′,y ′)在椭圆⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数)上运动,所以⎩⎨⎧x ′=2cos θ,y ′=3sin θ.设⎩⎨⎧x =x ′+y ′,y =x ′-y ′,则⎩⎨⎧x =2cos θ+3sin θ,y =2cos θ-3sin θ,所以动点P 的轨迹的普通方程为⎝ ⎛⎭⎪⎫x -y 42+⎝ ⎛⎭⎪⎫x -y 62=1. 4.解 由cos ∠MOQ =35,得在Rt △MOQ 中,OQ OM =35.因为OM =10,所以OQ =6,即a =6.所以双曲线的方程为x 236-y 29=1,且点P 为(10,4).5.略6.⎩⎨⎧x =7 782.5cos θ,y =7 721.5sin θ(θ为参数). 7.⎩⎪⎨⎪⎧x =v 0t ,y =-12gt 2(t 为参数). 8.点M 的轨迹的参数方程为⎩⎨⎧x =a cos φ,y =b sin φ(φ为参数).。

参数方程椭圆

参数方程椭圆

参数方程椭圆一、椭圆的定义椭圆是平面上到两个定点F1和F2距离之和等于常数2a(a>0)的点P的轨迹。

定点F1和F2称为椭圆的焦点,线段F1F2的长度称为椭圆的长轴,长轴中点O称为椭圆的中心,线段AB垂直于长轴且过中心O,长度为2b,则b被称为短轴。

二、参数方程参数方程是用参数表示自变量和因变量之间关系的方程。

对于椭圆而言,其参数方程可以表示为:x=a*cos(t)y=b*sin(t)其中t是参数。

三、如何绘制椭圆可以使用计算机软件或者手工绘制来完成。

手工绘制需要画出长轴和短轴,并且确定焦点位置。

然后按照参数方程依次取不同t值时对应的x,y坐标进行描点,并将这些点依次连接起来即可得到整个椭圆形状。

四、参数方程与直角坐标系下方程之间的转换在直角坐标系下,椭圆可以表示为:(x^2/a^2)+(y^2/b^2)=1通过代入cos(t)和sin(t)得到:(x^2/a^2)+(y^2/b^2)=cos^2(t)+sin^2(t)=1因此,参数方程和直角坐标系下的方程是等价的。

五、参数a和b的含义a和b分别代表椭圆长轴和短轴的长度。

在参数方程中,当t取0时,x=a;当t取π/2时,y=b。

因此,a和b可以用来确定椭圆的大小。

六、参数方程椭圆的性质1. 椭圆是对称图形,关于x轴、y轴以及原点对称。

2. 椭圆上任意一点到两个焦点距离之和等于常数2a。

3. 椭圆上任意一点到长轴中心O的距离与到短轴中心O'(O'为长轴与短轴交点)的距离之和等于常数2a,即PF1+PF2=2a=PQ+PQ'。

4. 椭圆面积为πab。

5. 椭圆周长无法用初等函数表示。

七、应用参数方程椭圆在数学以及物理学等领域有广泛应用。

例如,在天文学中,行星运动可以用椭圆来描述;在工程设计中,椭圆形状的物体可以减小空气阻力,提高速度;在艺术领域中,椭圆形状也常被用来表现某些特定的情感或者意境。

椭圆的参数方程

椭圆的参数方程

l:x-y+4=0的距离最小.
y
分析1: P( 8 8y 2 , y), 设
则d | 8 8y 2 y 4 | 2
O x
分析2:设P(2 2 cos, sin ),
则d | 2 2 cos sin 4 | 2
P
分析3:平移直线 l 至首次与椭圆相切,切点即为所求. 小结:借助椭圆的参数方程,可以将椭圆上的任意一
2
B
)

方程为__________ __________ ?
解:方程x 2 y 2 4 x cos 2 y sin 3 cos2 0 可以化为( x 2 cos ) ( y sin ) 1
2 2
所以圆心的参数方程为 {
x 2 cos y sin
(3)
x 9
2
1 (4)
y 25
2
x 64
2

y 100
2
1
x 2cos 练习2:已知椭圆的参数方程为 ( 是 y sin
参数) ,则此椭圆的长轴长为( 4 ),短轴长为
( 2 ),焦点坐标是(( 3 , 0)),离心率是 (
3 2
)。
例2、如图,在椭圆x2+8y2=8上求一点P,使P到直线
a ,0
(
),(0,
c,0)
b)

b ,0
),(0,
(0,
c)
a)
长半轴长为a,短半轴长为b.
焦距为2c;
a,b,c关系 离 心 率
a2=b2+c2
c e a
问题、如下图,以原点为圆心,分别以a,b(a>b>0) 为半径作两个圆,点B是大圆半径OA与小圆的交点,过 点A作AN⊥ox,垂足为N,过点B作BM⊥AN,垂足为M, 求当半径OA绕点O旋转时点M的轨迹参数方程. 分析:点M的横坐标与点A的横坐标相同, 点M的纵坐标与点B的纵坐标相同. y 而A、B的坐标可以通过 引进参数建立联系.

(完整版)椭圆的参数方程和极坐标方程总结

(完整版)椭圆的参数方程和极坐标方程总结

完整版)椭圆的参数方程和极坐标方程总结概述椭圆是一种重要的几何图形,具有许多应用。

在数学中,椭圆可以通过参数方程和极坐标方程进行描述和表示。

本文将详细介绍椭圆的参数方程和极坐标方程,包括定义、推导以及应用等方面。

参数方程定义椭圆的参数方程通常由两个参数表示,分别是水平方向的参数t和垂直方向的参数u。

以坐标点(x,y)表示的椭圆上的任意一点,其参数方程可以用如下形式表示:x = a * cos(t)y = b * sin(t)其中,a和b分别代表椭圆的半长轴和半短轴的长度。

参数方程推导为了推导出椭圆的参数方程,我们可以从椭圆的标准方程出发,即:x - h)^2 / a^2) + ((y - k)^2 / b^2) = 1其中,(h,k)表示椭圆的中心点坐标。

我们可以通过引入参数u,将标准方程中的变量x和y表示为:x = a * cos(u)y = b * sin(u)通过将x和y的表达式代入标准方程中,可以得到:a * cos(u) - h)^2 / a^2) + ((b * sin(u) - k)^2 / b^2) = 1进一步整理可得:cos(u))^2 / a^2 + (sin(u))^2 / b^2 = 1因为`(cos(u))^2 + (sin(u))^2 = 1`,上式化简为:cos(u))^2 / a^2 + (sin(u))^2 / b^2 = (cos(u))^2 / a^2 + ((sin(u))^2 /b^2) * (a^2 / b^2) = 1比较原式与化简式,可得:a^2 = 1b^2 = a^2 / b^2由此,我们得到了椭圆的参数方程。

极坐标方程定义椭圆的极坐标方程由一个参数θ表示,以坐标点(r,θ)表示的椭圆上的任意一点,其极坐标方程可以用如下形式表示:r(θ) = a * b / sqrt((b * cos(θ))^2 + (a * sin(θ))^2)其中,a和b分别代表椭圆的半长轴和半短轴的长度。

特别解析:椭圆的参数方程

特别解析:椭圆的参数方程

特别解析:椭圆的参数方程一、复习焦点在x 轴上的椭圆的标准方程:22221(0)x y a b a b +=>>焦点在y 轴上的椭圆的标准方程:22221(0)y x a b a b+=>>二、椭圆参数方程的推导1. 焦点在x 轴上的椭圆的参数方程因为22()()1x y a b +=,又22cos sin 1ϕϕ+=, 设cos ,sin x ya bϕϕ==,即a cos y bsin x ϕϕ=⎧⎨=⎩,这是中心在原点O,焦点在x 轴上的椭圆的参数方程。

2.参数ϕ的几何意义如图,以原点O 为圆心,分别以a ,b (a >b >0)为半径作两个圆。

设A 为大圆上的任意一点,连接OA,与小圆交于点B 。

过点A 作AN ⊥ox ,垂足为N ,过点B 作BM ⊥AN ,垂足为M ,求当半径OA 绕点O 旋转时点M 的轨迹参数方程.设以Ox 为始边,OA 为终边的角为ϕ,点M 的坐标是(x, y)。

那么点A 的横坐标为x ,点B 的纵坐标为y 。

由于点A,B 均在角ϕ的终边上,由三角函数的定义有:||cos cos x OA a ϕϕ==,||sin cos y OB b ϕϕ==。

当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是:a cos y bsin x ϕϕ=⎧⎨=⎩ ,这是中心在原点O,焦点在x 轴上的椭圆的参数方程。

()ϕ为参数在椭圆的参数方程中,通常规定参数ϕ的范围为[0,2)ϕπ∈。

思考:椭圆的参数方程中参数ϕ的意义与圆的参数方程r cos y r sin x θθ=⎧⎨=⎩ 中参数θ的意义类似吗?由图可以看出,参数ϕ是点M 所对应的圆的半径OA (或OB )的旋转角(称为点M 的离心角),不是OM 的旋转角。

参数θ是半径OM 的旋转角。

3. 焦点在y 轴上的椭圆的参数方程2222y 1,b ax +=三、例题分析例1.把下列普通方程化为参数方程.把下列参数方程化为普通方程例2. 已知椭圆22221(0)x y a b a b+=>>,求椭圆内接矩形面积的最大值.解:设椭圆内接矩形的一个顶点坐标为(cos ,sin )a b θθ4cos sin 2sin22S a b ab ab θθθ=⋅=≤ 矩形()224k k Z S ab ππθ∴=+∈=矩形当时,最大。

如何理解椭圆的参数方程

如何理解椭圆的参数方程

如何理解椭圆的参数方程椭圆作为一种常见的几何形状,在数学和物理学中有着广泛的应用。

椭圆的参数方程是一种以参数表示的椭圆方程,它对于解决某些问题具有优势。

本文将介绍椭圆的几何性质、椭圆的参数方程的建立、椭圆参数方程的应用、椭圆参数方程与直角坐标方程的转化、椭圆参数方程在极坐标系中的应用、椭圆的参数方程的导数与曲线形状的关系以及椭圆的参数方程在数值计算中的应用。

1. 椭圆的几何性质椭圆是一种二次曲线,它由两个焦点和其周围的曲线组成。

椭圆的焦点到椭圆中心的距离之和等于常数,这个常数等于椭圆的长轴长。

椭圆的长轴在垂直方向上,短轴在水平方向上。

椭圆的中心位于两个焦点的连线上,离焦点越远,椭圆越大。

2. 椭圆的参数方程的建立椭圆的参数方程是以参数表示的椭圆方程,它通常用于解决某些问题。

参数方程的形式通常为:x = a * cosθ,y = b * sinθ其中a和b是椭圆的长半轴和短半轴长,θ是参数。

这个参数方程可以表示一个椭圆,其中焦点到中心的距离之和等于常数。

3. 椭圆的参数方程的应用椭圆的参数方程在解决某些问题时具有优势。

例如,在物理学中,椭圆的参数方程可用于描述振动的模式或旋转的轨迹。

在工程学中,椭圆的参数方程可用于设计图形或模型。

此外,椭圆的参数方程还可以用于数值计算和统计分析等领域。

4. 椭圆参数方程与直角坐标方程的转化椭圆的参数方程和直角坐标方程之间可以通过转换关系相互转化。

具体来说,将椭圆的参数方程中的参数θ用反正弦函数或反正切函数表示,即可得到椭圆的直角坐标方程。

同样地,将椭圆的直角坐标方程中的变量x和y用三角函数表示,即可得到椭圆的参数方程。

5. 椭圆的参数方程在极坐标系中的应用极坐标系是一种以极点为中心的坐标系,其中极径表示到极点的距离,极角表示方向角。

椭圆的参数方程也可以用于极坐标系中。

具体来说,将椭圆的参数方程中的x用极径表示,y用极角表示,即可得到椭圆的极坐标方程。

这个极坐标方程可以用来描述一个椭圆的极坐标图形。

椭圆的参数方程 (2)

椭圆的参数方程 (2)

椭圆的参数方程介绍椭圆是数学中一种重要的曲线,具有许多有趣和实际应用。

在本文档中,我们将讨论椭圆的参数方程,并探讨如何使用这些参数方程来描述和绘制椭圆。

参数方程的定义椭圆的参数方程是指将椭圆上的每一个点的坐标都用一个参数表示出来的方程。

当然,我们也可以使用直角坐标系下的方程来描述椭圆,但是参数方程更加灵活和方便。

椭圆的参数方程通常由以下两个参数表示:•a:椭圆的长轴长度的一半;•b:椭圆的短轴长度的一半。

参数方程的公式椭圆的参数方程的基本形式如下:x = a * cos(t)y = b * sin(t)在这里,参数t表示椭圆上的一个点的位置,取值范围一般是[0, 2π]或[-π, π]。

通过改变参数t的取值,我们可以得到椭圆上的所有点的坐标。

示例为了更好地理解椭圆的参数方程,我们通过一个具体的示例来展示如何求得椭圆上的点坐标。

假设我们有一个椭圆,长轴长度为6,短轴长度为4。

我们可以代入参数方程中的公式,得到椭圆上的点坐标。

让我们令a = 6,b = 4。

首先,我们取一些不同的t值,例如0,π/4,π/2,3π/4,π,并代入公式计算对应的点坐标:t = 0: (x, y) = (6 * cos(0), 4 * sin(0)) = (6, 0)t = π/4: (x, y) = (6 * cos(π/4), 4 * sin(π/4)) = (4.243, 2.829)t = π/2: (x, y) = (6 * cos(π/2), 4 * sin(π/2)) = (0, 4)t = 3π/4: (x, y) = (6 * cos(3π/4), 4 * sin(3π/4)) = (-4.243, 2.829)t = π: (x, y) = (6 * cos(π), 4 * sin(π)) = (-6, 0)通过以上计算,我们得到了椭圆上的五个点的坐标。

绘制椭圆使用参数方程可以方便地绘制椭圆。

我们可以在绘图软件或编程语言中使用这些参数方程来绘制椭圆。

椭圆参数方程

椭圆参数方程

椭圆参数方程
建筑,是历史上古今灿烂明晰的凸显,也是运用许多几何形状创新美学精彩作品之一。

椭圆参数方程与建筑有着千丝万缕的联系,无论现代建筑还是传统古迹,都时刻反映着它的存在。

椭圆参数方程主要针对的是椭圆,它是圆形的一种变体。

椭圆参数方程的定义是:椭圆的一般方程是一阶参数方程,表示为:X = F(t),其中F(t)是有界的函数,定义域为[-1,1]。

在传统的古迹建筑中,椭圆参数方程的运用更加明显,个别建筑如大里建筑,其建筑门楼屋顶便是典型的椭圆形状,这种几何状都采用椭圆参数方程作为几何形状学上的模型来定义。

此外,多环设计也可以通过椭圆参数方程构成,多环结构最优美的例子则是古希腊的卫城云梯,在这里则可以清晰看到椭圆参数方程的踪影。

除了古迹建筑外,现代建筑也广泛采用椭圆参数方程。

主流的现代建筑便有大量椭圆形状出现,这种风格更多的体现在材质的选择上。

椭圆的外观特点,夹带着优雅的柔美和略带奢华的气质,通过椭圆参数方程的描述而得以体现,让建筑外表更加生动有趣。

椭圆参数方程在建筑方面的运用独具一格,不仅让建筑外表更加具有现代主义的风格,也为古迹建筑注入活力,大大提升了整体的美学水准。

不论是现代的新式建筑还是传统的古迹建筑,椭圆参数方程所绘制的几何状都给其带去了美学和时尚的气息,椭圆形态也成为现代主义建筑风格中不可或缺的艺术元素。

高考数学知识点:椭圆的参数方程_知识点总结

高考数学知识点:椭圆的参数方程_知识点总结

高考数学知识点:椭圆的参数方程_知识点总结
高考数学知识点:椭圆的参数方程椭圆的参数方程:
椭圆的参数方程是,θ∈[0,2π)。

椭圆的参数方程的理解:
如图,以原点为圆心,分别以a,b(a>b>0)为半径作两个圆,点B是大圆半径OA与小圆的交点,过点A作AN∈Ox,垂足为N,过点B作BM∈AN,垂足为M,求当半径OA绕点O 旋转时,点M的横坐标与点A的横坐标相同,点M的纵坐标与点B的纵坐标相同.而A、B的坐标可以通过引进参数建立联系.设,由已知得,即为点M的轨迹参数方程,消去参数得,即为点M的轨迹普通方程。

(1)参数方程,是椭圆的参数方程,高考物理;
(2)在椭圆的参数方程中,常数a、b分别是椭圆的长半轴长和短半轴长.a>b,称为离心角,规定参数的取值范围是[0,2π);。

椭圆的参数方程课件

椭圆的参数方程课件

利用复数推导椭圆的参数方程
总结词
深奥、抽象
详细描述
通过引入复数,利用复数的性质 推导椭圆的参数方程,这种方法 较为深奥、抽象,需要较高的数 学素养和理解能力。
05
椭圆的参数方程的扩展知 识
利用椭圆的参数方程研究圆
椭圆的参数方程与圆的参数方程之间的联系
通过椭圆的参数方程,可以推导出圆的参数方程,从而对圆进行更深入的研究。
椭圆的参数方程与直角坐标方程的转化
• 将椭圆的参数方程转化为直角坐标方程,可以得 到以下形式
椭圆的参数方程与直角坐标方程的转化
$$\begin{aligned} x = a\cos\theta \\
y = b\sin\theta
椭圆的参数方程与直角坐标方程的转化
对应的直角坐标方程为
这个直角坐标方程描述了一个以$(a/2, b/2)$为圆心, $\sqrt{a^{2}/4 + b^{2}/4}$为半径的圆。
02
当t=0时,表示椭圆中心,当t在 实数范围内变化时,表示椭圆上 的点的横坐标在椭圆上移动。
椭圆的焦点与离心率
椭圆的焦点是指椭圆上与椭圆中 心距离相等的两个点,它们位于
椭圆的长轴上。
椭圆的离心率是指椭圆焦点到椭 圆中心的距离与椭圆长轴半径的
比值,用e表示。
当e增大时,椭圆变得更扁平; 当e减小时,椭圆变得更接近圆
\end{aligned}$$
$$(x - \frac{a}{2})^{2} + (y - \frac{b}{2})^{2} = \frac{a^{2}}{4} + \frac{b^{2}}{4}$$
02
椭圆的参数方程的几何意 义参数t的几何意义 Nhomakorabea01

椭圆参数方程的角度几何意义

椭圆参数方程的角度几何意义

椭圆参数方程的角度几何意义
椭圆是高中数学中的一个重要概念,在几何图形中也是一种经常出现的形状。

其参数方程为:
x = a*cosθ
y = b*sinθ
其中,a和b分别为椭圆的长半轴和短半轴,θ为角度。

从角度的角度来看,椭圆的参数方程可以帮助我们更好地理解椭圆的几何特征。

我们可以发现,θ的变化会影响椭圆上的点的位置。

当θ为0时,x 取到最大值a,y为0,此时点位于椭圆的右端点。

当θ为90°时,y取到最大值b,x为0,此时点位于椭圆的上端点。

当θ为180°时,x取到最小值-a,y为0,此时点位于椭圆的左端点。

当θ为270°时,y取到最小值-b,x为0,此时点位于椭圆的下端点。

因此,θ的变化可以帮助我们确定椭圆上的点的位置,进而确定椭圆的形状。

我们还可以通过θ来推导椭圆的性质。

例如,我们可以通过对θ的变化求导,得到椭圆上某一点的切线斜率。

具体地,对x和y分别求导,得到:
dy/dx = -(a/b)*cosθ/sinθ = -(a/b)*cotθ
因此,我们可以得到椭圆上任意一点处的切线斜率为-(a/b)*cotθ。

通过这个公式,我们可以推导出椭圆的离心率、焦点、直径等性质。

我们还可以从θ的角度来理解椭圆的旋转。

如果我们将θ加上一个常数k,就相当于将整个椭圆沿着中心点旋转了k度。

这可以帮助我们更好地理解椭圆的对称性和旋转对其形状的影响。

椭圆的参数方程在角度的角度下具有重要的几何意义。

通过对θ的变化和推导,我们可以更好地理解椭圆的形状和性质,帮助我们更好地解决与椭圆相关的问题。

椭圆的参数方程例题

椭圆的参数方程例题

椭圆可以用参数方程来表示,其中参数方程的变量可以是角度或参数t。

以下是一个椭圆的参数方程的例子:
在这个参数方程中,a表示椭圆的横向半轴长度,b表示椭圆的纵向半轴长度。

参数t的范围通常是[0, 2π],可以根据需要进行调整。

例如,如果a = 3,b = 2,则椭圆的参数方程为:
通过在不同的t值上计算x和y的对应值,可以得到椭圆上的一系列点。

这些点连接在一起就形成了椭圆的轮廓。

【例题】
当a = 4、b = 2时,椭圆的参数方程为:
在这个例子中,椭圆的横向半轴长度为4,纵向半轴长度为2。

我们可以选择在[0, 2π]范围内取一些t值,然后计算相应的x和y坐标。

例如,当t = 0时:
因此,椭圆上的一点是(4, 0)。

再例如,当t = π/4时:
因此,椭圆上的一点是(2√2, √2)。

通过类似的方式,可以选择其他t值,计算得到椭圆上的更多点,从而绘制出整个椭圆的轮廓。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档