半导体物理学课后习题第五章第六章答案
半导体物理课后习题答案(精)
第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量EV(k)分别为:h2k2h2(k-k1)2h2k213h2k2Ec= +,EV(k)=-3m0m06m0m0m0为电子惯性质量,k1=(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)导带:2 2k2 2(k-k1)由+=03m0m03k14d2Ec2 22 28 22=+=>03m0m03m0dk得:k=所以:在k=价带:dEV6 2k=-=0得k=0dkm0d2EV6 2又因为=-<0,所以k=0处,EV取极大值2m0dk2k123=0.64eV 因此:Eg=EC(k1)-EV(0)=412m02=2dECdk23m0 8πa,a=0.314nm。
试求: 3k处,Ec取极小值4 (2)m*nC=3k=k14(3)m*nV 2=2dEVdk2=-k=01m06(4)准动量的定义:p= k所以:∆p=( k)3k=k14 3-( k)k=0= k1-0=7.95⨯10-25N/s42. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:f=qE=h(0-∆t1=-1.6⨯10∆k ∆k 得∆t= ∆t-qEπa)⨯10)=8.27⨯10-13s2-19=8.27⨯10-8s (0-∆t2=π-1.6⨯10-19⨯107第三章习题和答案100π 21. 计算能量在E=Ec到E=EC+ 之间单位体积中的量子态数。
*22mLn31*2V(2mng(E)=(E-EC)2解232πdZ=g(E)dEdZ 单位体积内的量子态数Z0=V22100π 100h Ec+Ec+32mnl8mnl1*2(2mn1V Z0=g(E)dE=⎰(E-EC)2dE23⎰VEC2π EC 23100h*2 =V(2mn2(E-E)Ec+8m*L2Cn32π2 3Ecπ =10003L32. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
半导体物理课后习题答案(精)
第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量EV(k)分别为:h2k2h2(k-k1)2h2k213h2k2Ec= +,EV(k)=-3m0m06m0m0m0为电子惯性质量,k1=(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)导带:2 2k2 2(k-k1)由+=03m0m03k14d2Ec2 22 28 22=+=>03m0m03m0dk得:k=所以:在k=价带:dEV6 2k=-=0得k=0dkm0d2EV6 2又因为=-<0,所以k=0处,EV取极大值2m0dk2k123=0.64eV 因此:Eg=EC(k1)-EV(0)=412m02=2dECdk23m0 8πa,a=0.314nm。
试求: 3k处,Ec取极小值4 (2)m*nC=3k=k14(3)m*nV 2=2dEVdk2=-k=01m06(4)准动量的定义:p= k所以:∆p=( k)3k=k14 3-( k)k=0= k1-0=7.95⨯10-25N/s42. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:f=qE=h(0-∆t1=-1.6⨯10∆k ∆k 得∆t= ∆t-qEπa)⨯10)=8.27⨯10-13s2-19=8.27⨯10-8s (0-∆t2=π-1.6⨯10-19⨯107第三章习题和答案100π 21. 计算能量在E=Ec到E=EC+ 之间单位体积中的量子态数。
*22mLn31*2V(2mng(E)=(E-EC)2解232πdZ=g(E)dEdZ 单位体积内的量子态数Z0=V22100π 100h Ec+Ec+32mnl8mnl1*2(2mn1V Z0=g(E)dE=⎰(E-EC)2dE23⎰VEC2π EC 23100h*2 =V(2mn2(E-E)Ec+8m*L2Cn32π2 3Ecπ =10003L32. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
半导体物理学第7版习题及答案
半导体物理学第7版习题及答案第五章习题1. 在⼀个n 型半导体样品中,过剩空⽳浓度为1013cm -3, 空⽳的寿命为100us 。
计算空⽳的复合率。
2. ⽤强光照射n 型样品,假定光被均匀地吸收,产⽣过剩载流⼦,产⽣率为,空⽳寿命为。
(1)写出光照下过剩载流⼦所满⾜的⽅程;(2)求出光照下达到稳定状态时的过载流⼦浓度。
3. 有⼀块n 型硅样品,寿命是1us ,⽆光照时电阻率是10cm 。
今⽤光照射该样品,光被半导体均匀的吸收,电⼦-空⽳对的产⽣率是1022cm -3s-1,试计算光照下样品的电阻率,并求电导中少数在流⼦的贡献占多⼤⽐例?4. ⼀块半导体材料的寿命=10us ,光照在材料中会产⽣⾮平衡载流⼦,试求光照突然停⽌20us 后,s cm pU s cm p Up 3171010010313/10U 100,/10613==?=====?-??-ττµτ得:解:根据?求:已知:τττττg p g p dtp d g Aet p g p dt p d L L tL=?∴=+?-∴=?+=?+?-=?∴-.00)2()(达到稳定状态时,⽅程的通解:梯度,⽆飘移。
解:均匀吸收,⽆浓度cm s pq nq q p q n pq np cm q p q n cm g n p g p pn p n p n pn L /06.396.21.0500106.1101350106.11010.0:101:1010100.19,..32.01191610''===?∴?>?Ω==-σσρp u p p p p cm 的贡献主要是所以少⼦对电导的贡献献少数载流⼦对电导的贡其中⾮平衡载流⼦将衰减到原来的百分之⼏?5. n 型硅中,掺杂浓度N D =1016cm -3, 光注⼊的⾮平衡载流⼦浓度n=p=1014cm -3。
计算⽆光照和有光照的电导率。
6. 画出p 型半导体在光照(⼩注⼊)前后的能带图,标出原来的的费⽶能级和光照时的准费⽶能级。
半导体物理学课后知识题第五章第六章答案解析
第五章习题1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。
计算空穴的复合率。
2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空穴寿命为τ。
(1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。
3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10Ω•cm 。
今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3•s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例?s cm pU s cm p Up3171010010313/10U 100,/10613==∆=====∆-⨯∆-ττμτ得:解:根据?求:已知:τττττg p g p dtp d g Aet p g p dt p d L L tL=∆∴=+∆-∴=∆+=∆+∆-=∆∴-.00)2()(达到稳定状态时,方程的通解:梯度,无飘移。
解:均匀吸收,无浓度4. 一块半导体材料的寿命τ=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几?5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度∆n=∆p=1014cm -3。
计算无光照和有光照的电导率。
cms pq nq q p q n pq np cm q p q n cm g n p g p pn p n p n pn L /06.396.21.0500106.1101350106.11010.0:101:1010100.1916191600'000316622=+=⨯⨯⨯+⨯⨯⨯+=∆+∆++=+=Ω=+==⨯==∆=∆=+∆-----μμμμμμσμμρττ光照后光照前光照达到稳定态后%2606.38.006.3500106.1109.,..32.01191610''==⨯⨯⨯=∆∴∆>∆Ω==-σσρpu p p p p cm 的贡献主要是所以少子对电导的贡献献少数载流子对电导的贡 。
半导体物理学(刘恩科)第七版_完整课后题答案
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+0m 。
试求:为电子惯性质量,nm a ak 314.0,1==(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2.晶格常数为0.25nm 的一维晶格,当外加102V/m,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tk hqE f ∆∆==得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面(b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (,式中a 为晶格常数,试求(1)布里渊区边界;(2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*pm 解:(1)由0)(=dk k dE 得an k π=(n=0,±1,±2…)进一步分析an k π)12(+=,E(k)有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)ma k E MAX =(ank π2=时,E(k)有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-((3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部an k π2=所以mm n 2*=(5)能带顶部an k π)12(+=,且**n p m m -=,所以能带顶部空穴的有效质量32*m m p =半导体物理第2章习题1.实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理课后习题答案(精)
半导体物理课后习题答案(精)第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量EV(k)分别为:h2k2h2(k-k1)2h2k213h2k2Ec= +,EV(k)=-3m0m06m0m0m0为电子惯性质量,k1=(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)导带:2 2k22(k-k1)由+=03m0m03k14d2Ec2 22 28 22=+=>03m0m03m0dk得:k=所以:在k=价带:dEV6 2k=-=0得k=0dkm0d2EV6 2又因为=-<0,所以k=0处,EV取极大值2m0dk2k123=0.64eV 因此:Eg=EC(k1)-EV(0)=412m02=2dECdk23m0 8πa,a=0.314nm。
试求: 3k处,Ec取极小值4 (2)m*nC=3k=k14 (3)m*nV 2=2dEVdk2=-k=01m06(4)准动量的定义:p= k所以:∆p=( k)3k=k14 3-( k)k=0= k1-0=7.95⨯10-25N/s42. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:f=qE=h(0-∆t1=-1.6⨯10∆k ∆k 得∆t= ∆t-qEπa)⨯10)=8.27⨯10-13s2-19=8.27⨯10-8s (0-∆t2=π-1.6⨯10-19⨯107第三章习题和答案100π 21. 计算能量在E=Ec到E=EC+ 之间单位体积中的量子态数。
*22mLn31*2V(2mng(E)=(E-EC)2解 232πdZ=g(E)dEdZ 单位体积内的量子态数Z0=V22100π 100h Ec+Ec+32mnl8mnl1*2(2mn1VZ0=g(E)dE=⎰(E-EC)2dE23⎰VEC2π EC 23100h*2 =V(2mn2(E-E)Ec+8m*L2 Cn32π2 3Ecπ =10003L32. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
半导体物理导论课后习题答案5章
高上升;
CD:本征激发为主。晶格振动散射导致迁移率下降,但载流子浓
度升高很快,故电阻率ρ随温度T升高而下降;
第5章
10.对于电阻率为1Ω•cm的P型Si样品,少子寿命τn=10μs,室温下光均 匀照射,电子-空穴对的产生率是1020cm-3•s-1。已知,μp=417cm2/V•s, ni=1.5×1010cm-3。计算
[(31013) 3800 (1.151013) 1800] 1.61019
0.02( cm) 所以J E 0.02 2 0.04 A/ cm2
子寿命为τ。假设小注入条件成立,试推导因光照而形成的电流增
加值为
GnqVA
L
。
解:因光照而形成的电流增加值 I A J ,光照产生的过剩载流
子浓度n G
在小注入下, J
n
E
(n
q
n
)
V L
G
q n V
L
所以,I
A
J
GqnVA
L
第5章
3.证明非简并的非均匀n型半导体中的电子电流形式为 J
p0 p(0)
179mV
(1分)
(2分)
第5章
7.导出非简并载流子满足的爱因斯坦关系。
证明:假设为非简并n型半导体的一维情况,当系统达到热平衡时,半
导体电中性,其电流方程
Jn
n(x)qn E(x)
qDn
dn( x) dx
可得
第5章
8.光均匀照在6Ω•cm的n型样品上,电子-空穴对的产生率为1×1020cm-3s-1, 样品寿命为6μs。试计算光照前后样品的电导率。
(1)此时的电子浓度和空穴浓度; (2)电子和空穴准费米能级EFn , EFp 与平衡费米能级EF的距离。
半导体物理第六章习题答案
第6章 p-n 结1、一个Ge 突变结的p 区n 区掺杂浓度分别为N A =1017cm -3和N D =5´1015cm -3,求该pn 结室温下的自建电势。
解:pn 结的自建电势结的自建电势 2(ln)D A D iN N kT V qn=已知室温下,0.026kT =eV ,Ge 的本征载流子密度1332.410 cm i n -=´代入后算得:1517132510100.026ln0.36(2.410)D V V ´´=´=´4.4.证明反向饱和电流公式(证明反向饱和电流公式(证明反向饱和电流公式(6-356-356-35)可改写为)可改写为)可改写为2211()(1)i s n n p p b k T J b q L L s s s =++ 式中npb m m =,n s 和p s 分别为n 型和p 型半导体电导率,i s 为本征半导体电导率。
证明:将爱因斯坦关系式p p kT D qm =和nnkT D q m =代入式(式(6-356-356-35))得 0000()p n p n S p n n pn p n p p nn p J kT n kT p kT L L L L m m m m m m =+=+因为002i p p n n p=,002i n nn p n =,上式可进一步改写为,上式可进一步改写为00221111()()S n p i n p i n p p p n n n p p nJ kT n qkT n L p L n L L m m m m m m s s =+=+ 又因为又因为()i i n p n q s m m =+22222222()(1)i i n p i p n q n q b s m m m =+=+即22222222()(1)i i i n p p n q q b s s m m m ==++ 将此结果代入原式即得证将此结果代入原式即得证2222221111()()(1)(1)n p i i Sp np pn np pnqkT b kT J q b LL q b L L m m s s mssss=+=××+++ 注:严格说,迁移率与杂质浓度有关,因而同种载流子的迁移率在掺杂浓度不同的p 区和n区中并不完全相同,因而所证关系只能说是一种近似。
半导体物理学课后习题第五章第六章答案
第五章习题1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。
计算空穴的复合率。
2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空穴寿命为τ。
(1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。
3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10Ω•cm 。
今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3•s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例?s cm pU s cm p Up 3171010010313/10U 100,/10613==∆=====∆-⨯∆-ττμτ得:解:根据?求:已知:τττττg p g p dtp d g Aet p g p dt p d L L tL=∆∴=+∆-∴=∆+=∆+∆-=∆∴-.00)2()(达到稳定状态时,方程的通解:梯度,无飘移。
解:均匀吸收,无浓度cm s pq nq q p q n pq np cm q p q n cm g n p g p pn p n p n pn L /06.396.21.0500106.1101350106.11010.0:101:1010100.1916191600'000316622=+=⨯⨯⨯+⨯⨯⨯+=∆+∆++=+=Ω=+==⨯==∆=∆=+∆-----μμμμμμσμμρττ光照后光照前光照达到稳定态后4. 一块半导体材料的寿命τ=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几?5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度∆n=∆p=1014cm -3。
计算无光照和有光照的电导率。
%2606.38.006.3500106.1109.,..32.01191610''==⨯⨯⨯=∆∴∆>∆Ω==-σσρp u p p p p cm 的贡献主要是所以少子对电导的贡献献少数载流子对电导的贡 。
半导体物理学(第7版)第五章习题及答案
第五章习题1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。
计算空穴的复合率。
2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空穴寿命为τ。
(1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。
3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10Ω∙cm 。
今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3∙s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例?4. 一块半导体材料的寿命τ=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其s cm pU s cm p Up 3171010010313/10U 100,/10613==∆=====∆-⨯∆-ττμτ得:解:根据?求:已知:τττττg p g p dtp d g Aet p g p dt p d L L tL=∆∴=+∆-∴=∆+=∆+∆-=∆∴-.00)2()(达到稳定状态时,方程的通解:梯度,无飘移。
解:均匀吸收,无浓度cm s pq nq q p q n pq np cm q p q n cm g n p g p pn p n p n pn L /06.396.21.0500106.1101350106.11010.0:101:1010100.1916191600'000316622=+=⨯⨯⨯+⨯⨯⨯+=∆+∆++=+=Ω=+==⨯==∆=∆=+∆-----μμμμμμσμμρττ光照后光照前光照达到稳定态后%2606.38.006.3500106.1109.,..32.01191610''==⨯⨯⨯=∆∴∆>∆Ω==-σσρp u p p p p cm 的贡献主要是所以少子对电导的贡献献少数载流子对电导的贡中非平衡载流子将衰减到原来的百分之几?5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度∆n=∆p=1014cm -3。
(完整word版)半导体物理学(第七版)完整课后答案
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E C (K )=0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-=(, 式中a 为 晶格常数,试求(1)布里渊区边界;(2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,1,2…)进一步分析an k π)12(+= ,E (k )有极大值,222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理第五章习题参考答案pn 结
ln
Nd Na ni 2
1.381023 300 1.6 1019
ln
1015 1017 (1.51010 )2
V
0.694V
(2) 当 ni=2.31013/cm3 时:
i
kT q
ln
Nd Na ni 2
1.381023 300 1.6 1019
ln
1015 1017 (2.3 1013 )
掺杂浓度 Nd 和 Na 越高,耗尽电容越大。 4) 由自建势公式:
i
kT q
ln
Nd Na ni 2
0.7V
从而:
0.73m V 0.3V
W
20 Si q
1 Na
1 Nd
i
V
1.341104 i V m V 1 2 0.97m
3.79m
V 0 V 10V
1.4610-4 F m2
答:t<0 时,pn 结正向导通,p 区的空穴,n 区的电子不断向对方区域扩散,并 在对方区域内形成相当数量的存储积累,正向电流越大,存储载流子的数目也越 多,在 t=0 时,外加电压突然由Va 变为 Va 时,上述存储的电荷基本不变,但电
场出现反向,因此会出现电流反向,大小保持不变的现象。在反向电压作用下, 此前注入基区的积累电荷逐渐被反向电压抽走,积累电荷浓度逐渐减小,反向电 流也随之减小,逐渐减小到反向饱和电流,pn 结转为截止状态。
qN
0
a
qNd
xp x 0 x xp , 0 x d, x xn
d x xn
结合 E d ,以及边界条件: dx
d 2
dx 2
Si
E xp E xn 0 E 0 E 0 Ed Ed
半导体物理分章答案第五章
Rn = rn n( N t − nt ) N t :复合中心浓度 其中, 其中,rn 是与温度有关的 比例系数, 比例系数,称为电子俘获 nt :复合中心上电子浓度 系数。 系数。
⑵电子的发射过程(乙) 电子的发射过程( 是温度的函数,与导带空状态密度成正比。 电子激发几率s-是温度的函数,与导带空状态密度成正比。 在非简并情况下, 可写成: 在非简并情况下,电子的产生率Gn可写成:
第五章 非平衡载流子
Carrier concentrations in unequilibrium
重点: 重点:
1、平衡与非平衡半导体判定标准 2、复合理论 3、非平衡载流子的运动规律
§5.1 非平衡载流子的注入与复合
Injection and Recombination of Carriers
1、非平衡载流子及其产生(注入) 非平衡载流子及其产生(注入)
非平衡态的电子与空穴各自处于热平衡态 则 1 fn (E) = E−En
F
f p (E) =
1 + e k0T 1
p EF − E k 0T
1+ 1+ e n E F → 电子准费米能级
p E F → 空穴准费米能级
对于非简并系统,可求得: 对于非简并系统,可求得:
n = Nce
n Ec − E F − k 0Tபைடு நூலகம்p E F − Ev − k 0T
(1)平衡态 G = R = r n0 p0 = r ni2 (2)非平衡态
在非简并情况下,产生率G仅 在非简并情况下,产生率G 非平衡载流子的复合率U 是温度的函数。 = 复合率 – 产生率。 产生率。 非平衡载流子的复合率Ud是温度的函数。即,当温度一定, 当温度一定, 半导体材料的G 半导体材料的G在平衡态和非平 Ud = R - G = r n p - r 衡态状态下数值相等) n0 p0 = r ( n p - ni2 。 衡态状态下数值相等。
半导体物理第六章习题答案
实用文档第6章 p-n 结1、一个Ge 突变结的p 区n 区掺杂浓度分别为N A =1017cm -3和N D =51015cm -3,求该pn 结室温下的自建电势。
解:pn 结的自建电势 2(ln )D A D iN N kTV q n =已知室温下,0.026kT =eV ,Ge 的本征载流子密度1332.410 cm i n -=⨯代入后算得:1517132510100.026ln0.36(2.410)D V V ⨯⨯=⨯=⨯ 4.证明反向饱和电流公式(6-35)可改写为20211()(1)i s n n p pb k T J b q L L σσσ=++ 式中npb μμ=,n σ和p σ分别为n 型和p 型半导体电导率,i σ为本征半导体电导率。
证明:将爱因斯坦关系式p p kT D q μ=和n n kT D qμ=代入式(6-35)得 0000()p n pnS p n n p npn pp nn p J kTn kTp kT L L L L μμμμμμ=+=+因为002i p p n n p =,002i n n n p n =,上式可进一步改写为221111()()S n p i n p i n p p p n n n pp nJ kT n qkT n L p L n L L μμμμμμσσ=+=+实用文档又因为()i i n p n q σμμ=+22222222()(1)i i n p i p n q n q b σμμμ=+=+实用文档即22222222()(1)i i i n p p n q q b σσμμμ==++ 将此结果代入原式即得证2222221111()()(1)(1)n p i i S p n p p n n p p nqkT b kT J q b L L q b L L μμσσμσσσσ=+=⋅⋅+++ 注:严格说,迁移率与杂质浓度有关,因而同种载流子的迁移率在掺杂浓度不同的p 区和n 区中并不完全相同,因而所证关系只能说是一种近似。
半导体物理 刘恩科 第五章习题解答
(
)
dp 1015 18 −4 = − = − 3.3 × 10 cm ( ) dx 3 × 10−4
空穴扩散电流密度,
Jp = −qD p
dp = 1.6 ×10−19 ×10.4 × 3.3 ×1018 = 5.5 ( A / cm 2 ) dx
15.
ρ = 1Ω ⋅ cm, N t = 1015 cm −3 , (∆n )0 = 1010 cm −3,µ n = 1350cm 2 / (V ⋅ s )
p=0
所以,
ni2 1.5 × 1010 =− ∆p = p − p 0 = − p 0 = − ND 1016
(
)
2
= −2.3 × 10 4 cm −3
达到稳态时,少子产生率,
G = −R = −
∆p
τp
2.3 × 10 4 9 −3 cm = = × ⋅s 2 . 3 10 −5 10
(
)
13.
p n = ∆p + p n 0 ≈ 0, n ≈ nn 0
np < ni2 , U < 0 —— 净产生
在 n = p >> ni 的半导体区域,
np > ni2 , U > 0 (净复合)
12.
N D = 1016 cm −3,τ p = 1 × 10 −5 s, E t = Ei
解:因为少子空穴的浓度,
τ n = 3.5 × 10 −4 s, µ n = 3600cm 2 / (V ⋅ s )
解:由爱因斯坦关系式,得到电子扩散系数,
Dn
µn
k 0T k 0T = → Dn = µn q q
电子扩散长度,
k 0T Ln = Dnτ n = q µ nτ n
刘恩科半导体物理第六章课后习题最全答案
d 2V x 0 2 dx dV x x c dx
令 V 0 0 ,则 A 0 ,V x cx
E(x) c<0 0 V(x) x c>0 c>0
dV x V x dx x dx cx A dx
2 11.6 8.85 10 14 0.94 19 16 1.6 10 10
1 2
12.2 10
1 10 2
3.5 105 cm
(2) 画出 x 和 V x 的图线
+ + + + + + + + V + + + + + + + +
kT n , p kT p ,Ln Dn n , 又 Dn D q q L p D p p
Jp Jn D p N A Ln Dn N D L p
p N A Dn n n N D D p p
p N A n n n N D p p
1.56 10 x 3.47 10
9
5
V
cm
2
2 x
dV x dx
2
qN D x n
1.56 109 x 3.47 109 V cm2
V1 x qN A x 2 r 0
8 2 p
r 0
J s 400 6 10 1.6 10 5 J s 300 1.5 10 10
12 2
解法二:
半导体物理第五章习题答案
第五篇 题解-非平衡载流子刘诺 编5-1、何谓非平衡载流子?非平衡状态与平衡状态的差异何在?解:半导体处于非平衡态时,附加的产生率使载流子浓度超过热平衡载流子浓度,额外产生的这部分载流子就是非平衡载流子。
通常所指的非平衡载流子是指非平衡少子。
热平衡状态下半导体的载流子浓度是一定的,产生与复合处于动态平衡状态 ,跃迁引起的产生、复合不会产生宏观效应。
在非平衡状态下,额外的产生、复合效应会在宏观现象中体现出来。
5-2、漂移运动和扩散运动有什么不同?解:漂移运动是载流子在外电场的作用下发生的定向运动,而扩散运动是由于浓度分布不均匀导致载流子从浓度高的地方向浓度底的方向的定向运动。
前者的推动力是外电场,后者的推动力则是载流子的分布引起的。
5-3、漂移运动与扩散运动之间有什么联系?非简并半导体的迁移率与扩散系数之间有什么联系?解:漂移运动与扩散运动之间通过迁移率与扩散系数相联系。
而非简并半导体的迁移率与扩散系数则通过爱因斯坦关系相联系,二者的比值与温度成反比关系。
即T k q D 0=μ 5-4、平均自由程与扩散长度有何不同?平均自由时间与非平衡载流子的寿命又有何不同?答:平均自由程是在连续两次散射之间载流子自由运动的平均路程。
而扩散长度则是非平衡载流子深入样品的平均距离。
它们的不同之处在于平均自由程由散射决定,而扩散长度由扩散系数和材料的寿命来决定。
平均自由时间是载流子连续两次散射平均所需的自由时间,非平衡载流子的寿命是指非平衡载流子的平均生存时间。
前者与散射有关,散射越弱,平均自由时间越长;后者由复合几率决定,它与复合几率成反比关系。
5-5、证明非平衡载流子的寿命满足()τte p t p -∆=∆0,并说明式中各项的物理意义。
证明:()[]ppdt t p d τ∆=∆-=非平衡载流子数而在单位时间内复合的子的减少数单位时间内非平衡载流时刻撤除光照如果在0=t则在单位时间内减少的非平衡载流子数=在单位时间内复合的非平衡载流子数,即()[]()1−→−∆=∆-pp dt t p d τ在小注入条件下,τ为常数,解方程(1),得到()()()20−→−∆=∆-p te p t p τ式中,Δp (0)为t=0时刻的非平衡载流子浓度。
半导体物理学课后习题第五章第六章答案讲解学习
半导体物理学课后习题第五章第六章答案仅供学习与交流,如有侵权请联系网站删除 谢谢2 第五章习题1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。
计算空穴的复合率。
2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空穴寿命为τ。
(1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。
3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10Ω•cm 。
今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3•s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例?s cm pU s cm p Up 3171010010313/10U 100,/10613==∆=====∆-⨯∆-ττμτ得:解:根据?求:已知:τττττg p g p dtp d g Aet p g p dt p d L L tL=∆∴=+∆-∴=∆+=∆+∆-=∆∴-.00)2()(达到稳定状态时,方程的通解:梯度,无飘移。
解:均匀吸收,无浓度cms pq nq q p q n pq np cm q p q n cm g n p g p p n p n p n pn L /06.396.21.0500106.1101350106.11010.0:101:1010100.1916191600'000316622=+=⨯⨯⨯+⨯⨯⨯+=∆+∆++=+=Ω=+==⨯==∆=∆=+∆-----μμμμμμσμμρττ光照后光照前光照达到稳定态后仅供学习与交流,如有侵权请联系网站删除 谢谢34. 一块半导体材料的寿命τ=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几?5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度∆n=∆p=1014cm -3。
半导体物理第五章习题答案
半导体物理第五章习题答案第5章非平衡载流子1. 一个n 型半导体样品的额外空穴密度为1013cm -3,已知空穴寿命为100s ,计算空穴的复合率。
解:复合率为单位时间单位体积内因复合而消失的电子-空穴对数,因此1317306101010010U cm s ρτ--===??V 2. 用强光照射n 型样品,假定光被均匀吸收,产生额外载流子,产生率为g p ,空穴寿命为,请①写出光照开始阶段额外载流子密度随时间变化所满足的方程;②求出光照下达到稳定状态时的额外载流子密度。
解:⑴光照下,额外载流子密度n =p ,其值在光照的开始阶段随时间的变化决定于产生和复合两种过程,因此,额外载流子密度随时间变化所满足的方程由产生率g p 和复合率U 的代数和构成,即()p d p pg dt τ=-V V ⑵稳定时额外载流子密度不再随时间变化,即()0d p dt=V ,于是由上式得0p p p p g τ?=-=3. 有一块n 型硅样品,额外载流子寿命是1s ,无光照时的电阻率是10cm 。
今用光照射该样品,光被半导体均匀吸收,电子-空穴对的产生率是1022/cm 3s ,试计算光照下样品的电阻率,并求电导中少数载流子的贡献占多大比例解:光照被均匀吸收后产生的稳定额外载流子密度226163101010 cm p p n g τ-?=?==?=-取21350/()n cm V s μ=?,2500/()p cm V s μ=?,则额外载流子对电导率的贡献1619()10 1.610(1350500) 2.96 s/cm n p pq σμμ-=?+=+=V 无光照时0010.1/s cm σρ==,因而光照下的电导率0 2.960.1 3.06/s cm σσσ=+=+=V相应的电阻率 110.333.06cm ρσ===Ω? 少数载流子对电导的贡献为:p p p p q p pq pq g σμμτμ=≈=V 代入数据:16190()10 1.6105000.8/p p p p p q pq s cm σμμ-=+?≈?==∴00.80.26263.06p σσσ===+V ﹪即光电导中少数载流子的贡献为26﹪4.一块半导体样品的额外载流子寿命 =10s ,今用光照在其中产生非平衡载流子,问光照突然停止后的20s 时刻其额外载流子密度衰减到原来的百分之几解:已知光照停止后额外载流子密度的衰减规律为0()tP t p e τ-=V V因此光照停止后任意时刻额外载流子密度与光照停止时的初始密度之比即为()tP t e P τ-=V V 当520210t s s μ-==?时202100(20)0.13513.5P e e P --====V V ﹪ 5. 光照在掺杂浓度为1016cm -3的n 型硅中产生的额外载流子密度为n=p=1016cm -3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可修改 第五章习题1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。
计算空穴的复合率。
2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空穴寿命为。
(1)写出光照下过剩载流子所满足的方程;(2)求出光照下达到稳定状态时的过载流子浓度。
3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10cm 。
今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例?s cm p U scm p Up 3171010010313/10U 100,/10613==∆=====∆-⨯∆-ττμτ得:解:根据?求:已知:τττττg p g p dt p d g Ae t p g p dt p d L L t L =∆∴=+∆-∴=∆+=∆+∆-=∆∴-.00)2()(达到稳定状态时,方程的通解:梯度,无飘移。
解:均匀吸收,无浓度cms pq nq q p q n pq np cm q p q n cm g n p g p pn p n p n pn L /06.396.21.0500106.1101350106.11010.0:101:1010100.1916191600'000316622=+=⨯⨯⨯+⨯⨯⨯+=∆+∆++=+=Ω=+==⨯==∆=∆=+∆-----μμμμμμσμμρττ光照后光照前光照达到稳定态后可修改4. 一块半导体材料的寿命=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几?5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度n=p=1014cm -3。
计算无光照和有光照的电导率。
%2606.38.006.3500106.1109.,..32.01191610''==⨯⨯⨯=∆∴∆>∆Ω==-σσρp u p p p p cm 的贡献主要是所以少子对电导的贡献献少数载流子对电导的贡Θ。
后,减为原来的光照停止%5.1320%5.13)0()20()0()(1020s e p p e p t p t μτ==∆∆∆=∆--cm s q n qu p q n p p p n n n cm p cm n cm p n cm n K T n p n i /16.21350106.110:,/1025.2,10/10.105.1,30019160000003403160314310=⨯⨯⨯=≈+=∆+=∆+=⨯===∆=∆⨯==---μμσ无光照则设半导体的迁移率)本征空穴的迁移率近似等于的半导体中电子、注:掺杂有光照131619140010(/19.20296.016.2)5001350(106.11016.2)(:--=+=+⨯⨯⨯+≈+∆++=+=cm cms nq q p q n pq nq p n p n pn μμμμμμσ可修改6. 画出p 型半导体在光照(小注入)前后的能带图,标出原来的的费米能级和光照时的准费米能级。
7. 掺施主浓度N D =1015cm -3的n 型硅,由于光的照射产生了非平衡载流子n=p=1014cm -3。
试计算这种情况下的准费米能级位置,并和原来的费米能级作比较。
E c E i E v E cE FE iE v E FpE Fn 光照前光照后 ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-=-==+⨯=+=∆+=⨯=+=∆+=-T k E E e n p T k E E e n n cm N n p p p cm n n n FP ii o i Fn i Di 01414152101420315141503/101010)105.1(10/101.11010Θ度强电离情况,载流子浓可修改8. 在一块p 型半导体中,有一种复合-产生中心,小注入时,被这些中心俘获的电子发射回导带的过程和它与空穴复合的过程具有相同的概率。
试求这种复合-产生中心的能级位置,并说明它能否成为有效的复合中心?9. 把一种复合中心杂质掺入本征硅内,如果它的能级位置在禁带中央,试证明小注入时的寿命=n+p 。
0.0517eV P F E F E 0.0025eV F E n F E 0.289eV 10101.51410Tln 0k i n D N Tln o k i E F E 平衡时0.229eV 10101.51410Tln 0k i E FP E i P P Tln 0k i E FP E 0.291eV 10101.515101.1Tln 0k i E Fn E in n Tln 0k i E Fn E =-=-∴=⨯==--=⨯-=--==⨯⨯=-+=∴Tk E E e n p p p p p pn r k E E e n n r pn r n T k E E e n r n n r n s n N o F i i t p o i t i t n tn t o i t i n t n t n t t -≈∆+=<<∆=--==001T ,.小注入:由题知,从价带俘获空穴向导带发射电子被电子占据复合中心接复合理论:解:根据复合中心的间不是有效的复合中心。
代入公式很小。
,11,;011t p t n o F i i t p n o F i i p o i t i n N r N r p n p n E E E E r r T k E E e n r T k E E e n r +==-=-∴≈-=-τn p t p n iT iF p p n r r p p p r p n n r E E E E Si 001010)(N )()(::∆++∆+++∆++===τ根据间接复合理论得复合中心的位置本征可修改10. 一块n 型硅内掺有1016cm -3的金原子 ,试求它在小注入时的寿命。
若一块p 型硅内也掺有1016cm -3的金原子,它在小注入时的寿命又是多少?11. 在下述条件下,是否有载流子的净复合或者净产生:(1)在载流子完全耗尽(即n, p 都大大小于n i )半导体区域。
(2)在只有少数载流子别耗尽(例如,p n <<p n0,而n n =n n0)的半导体区域。
(3)在n=p 的半导体区域,这里n>>n i0 n p nt p t n p t p n p t n Ti F r N r N p n n r r N p n n r p n n r r N p n n r p n p n E E E τττ+=+=∆++∆+++∆++∆++======11)()()()(000000001100所以:因为:s N r r Au Si p s N r r A Si n cm N t n n n t p p p t 9168101617316106.110103.611106.8101015.111u 10--+----⨯=⨯⨯==⨯=⨯⨯===ττ决定了其寿命。
对少子电子的俘获系数中,型。
决定了少子空穴的寿命对空穴的俘获系数中,型可修改12. 在掺杂浓度N D =1016cm -3,少数载流子寿命为10us 的n 型硅中,如果由于外界作用,少数载流子全部被清除,那么在这种情况下,电子-空穴对的产生率是多大?(E t =E i )。
产生复合率为负,表明有净载流子完全耗尽,00,0)1()()()(112112<+-=≈≈+++-=p r n r n r r N U p n p p r n n r n np r r N U p n i p n t p n i p n t 产生复合率为负,表明有净结,(反偏,只有少数载流子被耗尽0)(),)2()()()(11200112<++-=≈<<+++-=p r n n r n r r N U n n p p pn p p r n n r n np r r N U p n i p n t n n n n p n i p n t 复合复合率为正,表明有净(0)()(),)3()()()(1122112>+++-=>>=+++-=p n r n n r n n r r N U n n p n p p r n n r n np r r N U p n i p n t i p n i p n t 03160340203160,0,0,10/1025.2,10p p n p cm n n cm n n p cm N n i D -=∆=∆===⨯====i T k E E v T k E E v i T k E E c Tk E E c p n i p n t p n i p n t n e N e N p n e N e N n p r n n r n r r N p p r n n r n np r r N U o vi vi c C ======++-=+++-=--------0T 00T111102112)()()()(可修改13. 室温下,p 型半导体中的电子寿命为=350us ,电子的迁移率u n =3600cm -2/(Vs)。
试求电子的扩散长度。
14. 设空穴浓度是线性分布,在3us 内浓度差为1015cm -3,u p =400cm 2/(Vs)。
试计算空穴扩散电流密度。
s cm p p r N n r n r r N n r n r n r n r r N p p t n i p n t ip i n o n i p n t 39640022/1025.210101025.2U ⨯-=⨯⨯-=-=-=-≈++-=-τcmq T k D L q T k D q T k D n n n n n n o n n 18.0103503600026.0600=⨯⨯⨯=====-μτμμ:解:根据爱因斯坦关系241500/55.510310400026.0cm A x p T k x p q T k q dx p d qD J p p PP =⨯⨯⨯=∆∆=∆∆=∆-=-μμ可修改15. 在电阻率为1cm 的p 型硅半导体区域中,掺金浓度N t =1015cm -3,由边界稳定注入的电子浓度(n )0=1010cm -3,试求边界 处电子扩散电流。
16. 一块电阻率为3cm 的n 型硅样品,空穴寿命p =5us,在其平面形的表sN r n cm N Si p g nx E n x nE x n D t n t n n t ppp p p 8158********.110103.61110:---⨯=⨯⨯==∆=-+∆-∂∂+∂∆∂-∂∆∂=∂∆∂ττμμ遇到复合中心复合的复合中心内部掺有由于根据少子的连续性方程0,0,,2222=∆-∆=∆-∆∆nn nP D ndx n d nx n d D ττ达到稳定分布无产生率无电场nn n L xL xD L Be Ae x n n n τ=+=∆+-,)(:方程的通解为00000002)()(0)(,)0(,0:n T k q n D qD n qD L n qD dx x n d qD J e n x n n x n n x nn n n n n o n nn x n n Lnx∆=∆=∆=∆=∆=∴∆=∆∴=∞∆∞=∆=∆==-τμττ边界条件可修改 面处有稳定的空穴注入,过剩浓度(p )=1013cm -3。