高考数学高三模拟试卷复习试题调研考试压轴押题学业水平训练043
高考模拟复习试卷试题模拟卷高三数学高三第三次调研考试
高考模拟复习试卷试题模拟卷高三数学高三第三次调研考试数 学(文科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。
2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 一、选择题:本大题共12小题,每小题5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数321iz i i =+-(i 为虚数单位)的共轭复数为() (A )12i +(B )1i -(C )1i -(D )12i -(2)已知集合{}1,0=A ,{}A y A x y x z zB ∈∈+==,,,则B 的子集个数为()(A )3 (B )4 (C )7 (D )8(3)已知2.12=a ,8.021-⎪⎭⎫ ⎝⎛=b ,2log 25=c ,则c b a ,,的大小关系为()(A )a b c <<(B )b a c <<(C )c a b <<(D )a c b <<(4)已知向量()1,3a =,()3,b m =,若向量b 在a 方向上的投影为3,则实数m =()(A )3 (B )3-(CD )-(5)设n S 为等差数列{}n a 的前n 项和,且65101=-+a a a ,则11S =()(A )55 (B )66 (C )110 (D )132 (6)已知34cos sin =+θθ)40(πθ<<,则θθcos sin -的值为() (A )32(B )32-(C )31(D )31-(7)已知圆O :224x y +=上到直线:l x y a +=的距离等于1的点恰有3个,则实数a 的值为()(A )B (C)(D )-或(8)某程序框图如图所示,该程序运行后输出的S 的值是()(A )1007(B ) (C )(D )3024(9)已知双曲线122=-my x 与抛物线x y 82=的一个交点为P ,F 为抛物线的焦点,若5=PF ,则双曲线的渐近线方程为()(A )03=±y x (B )03=±y x (C )02=±y x (D )02=±y x (10)记数列{}n a 的前n 项和为n S ,若2(1)4n n S a n++=,则n a =() (A )2n n (B )12n n -(C )2nn (D )12n n - (11)某几何体的三视图如图,其正视图中的曲线部分为半个圆弧,则该几何体的表面积为() (A )π42616++ (B )π32616++ (C )π42610++ (D )π32610++(12)如图,偶函数()x f 的图象如字母M ,奇函数()x g 的图象如字母N , 若方程()()0=x g f ,()()0=x f g 的实根个数分别为m 、n ,则m n +=()(A )18 (B )16 (C )14 (D )12第Ⅱ卷本卷包括必考题和选考题两部分。
高考数学高三模拟试卷复习试题调研考试压轴押题学业水平训练019
高考数学高三模拟试卷复习试题调研考试压轴押题[学业水平训练]一、选择题(每小题3分,共36分)1.(3分)下列安全标志图中,是中心对称图形的是()A.B.C.D.2.(3分)用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣7 B.(x+4)2=﹣9 C.(x+4)2=7 D.(x+4)2=253.(3分)抛物线y=﹣2(x+3)2﹣4的顶点坐标是()A.(﹣4,3) B.(﹣4,﹣3)C.(3,﹣4) D.(﹣3,﹣4)4.(3分)平面直角坐标系内的点A(﹣2,3)关于原点对称的点的坐标是()A.(3,2)B.(2,﹣3) C.(2,3)D.(﹣2,﹣3)5.(3分)把抛物线y=3x2向左平移2个单位,再向上平移1个单位,所得的抛物线的解析式是()A.y=3(x﹣2)2+1 B.y=3(x﹣2)2﹣1 C.y=3(x+2)2+1 D.y=3(x+2)2﹣16.(3分)函数y=2x2﹣3x+4经过的象限是()A.一,二,三象限B.一,二象限 C.三,四象限 D.一,二,四象限7.(3分)一元二次方程x2﹣2x+2=0的根的情况是()A.有两个不相等的正根B.有两个不相等的负根C.没有实数根 D.有两个相等的实数根8.(3分)近年来某市加大了对教育经费的投入,投入2500万元,将投入3600万元,该市投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3600 B.2500(1+x)2=3600C.2500(1+x%)2=3600 D.2500(1+x)+2500(1+x)2=36009.(3分)如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于()A.55° B.45°C.40°D.35°10.(3分)已知抛物线y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0()A.没有实根B.只有一个实根C.有两个实根,且一根为正,一根为负D.有两个实根,且一根小于1,一根大于211.(3分)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+1上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y212.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac其中正确的结论的有()A.1个B.2个C.3个D.4个二.填空题:(每小题4分,共24分)13.(4分)抛物线y=﹣x2﹣x﹣1的对称轴是.14.(4分)点A(a﹣1,﹣4)与点B(﹣3,1﹣b)关于原点对称,则a+b的值为.15.(4分)抛物线y=x2﹣2x﹣3与x轴的交点坐标为.16.(4分)已知二次函数y=kx2﹣7x﹣7的图象和x轴有交点,则k的取值范围.17.(4分)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两根,则+=.18.(4分)某商品进货单价为30元,按40元一个销售能卖40个;若销售单价每涨1元,则销量减少1个.为了获得最大利润,此商品的最佳售价应为元.三.(共9小题,共90分)19.(6分)解方程:x2﹣4x﹣1=0.20.(8分)已知关于的一元二次方程x2﹣6x+2m﹣1=0有两个相等的实数根,求m的值及方程的根.21.(8分)已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.22.(10分)用长为20cm的铁丝,折成一个矩形,设它的一边长为xcm,面积为ycm2.(1)求出y与x的函数关系式.(2)当边长x为多少时,矩形的面积最大,最大面积是多少?23.(10分)抛物线y=﹣2x2+8x﹣6.(1)求抛物线的顶点坐标和对称轴;(2)x取何值时,y随x的增大而减小?(3)x取何值时,y=0;x取何值时,y>0;x取何值时,y<0.24.(10分)宜春三中学校团委爱心社组织学生为高三学生进行献爱心活动,学生踊跃捐款.初三年级第一天收到捐款1000元,第三天收到1210元.(1)求这两天收到捐款的平均增长率.(2)按照(1)中的增长速度,第四天初三年级能收到多少捐款?25.(12分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,(1)画出△ABC关于x轴对称的△A1B1C1.(2)画出△ABC绕原点O旋转180°后的△A2B2C2.26.(12分)如图,在△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O逆时针方向旋转90°得到△OA1B1.(1)线段A1B1的长是,∠AOA1的度数是;(2)连结AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.27.(14分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求抛物线的解析式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,当以A,C,D为顶点的三角形面积最大时,求点D的坐标及此时三角形的面积.遵义三十一中九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)(•抚州)下列安全标志图中,是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项符合题意;C、不是中心对称图形,故此选项不符合题意;D、不是中心对称图形,故此选项不合题意;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.(3分)(秋•连城县期中)用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣7 B.(x+4)2=﹣9 C.(x+4)2=7 D.(x+4)2=25【分析】方程移项后,利用完全平方公式配方即可得到结果.【解答】解:方程x2+8x+9=0,整理得:x2+8x=﹣9,配方得:x2+8x+16=7,即(x+4)2=7,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.(3分)(•苍南县校级一模)抛物线y=﹣2(x+3)2﹣4的顶点坐标是()A.(﹣4,3) B.(﹣4,﹣3)C.(3,﹣4) D.(﹣3,﹣4)【分析】直接根据顶点式的特点写出顶点坐标.【解答】解:因为y=﹣2(x+3)2﹣4是抛物线的顶点式,根据顶点式的坐标特点,顶点坐标为(﹣3,﹣4).故选D.【点评】主要考查了求抛物线的顶点坐标的方法.4.(3分)(•綦江县)平面直角坐标系内的点A(﹣2,3)关于原点对称的点的坐标是()A.(3,2)B.(2,﹣3) C.(2,3)D.(﹣2,﹣3)【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y)”解答即可.【解答】解:根据中心对称的性质,得点A(﹣2,3)关于原点对称的点的坐标是(2,﹣3).故选B.【点评】关于原点对称的点坐标的关系,是需要识记的基本问题,记忆方法是结合平面直角坐标系的图形记忆.5.(3分)(秋•遵义期中)把抛物线y=3x2向左平移2个单位,再向上平移1个单位,所得的抛物线的解析式是()A.y=3(x﹣2)2+1 B.y=3(x﹣2)2﹣1 C.y=3(x+2)2+1 D.y=3(x+2)2﹣1【分析】根据二次函数图象的平移规律(左加右减,上加下减)进行解答即可.【解答】解:抛物线y=3x2向左平移2个单位,再向上平移1个单位y=3(x+2)2+1.故选:C.【点评】本题考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.6.(3分)(秋•滁州校级期末)函数y=2x2﹣3x+4经过的象限是()A.一,二,三象限B.一,二象限 C.三,四象限 D.一,二,四象限【分析】利用公式法先求顶点坐标,再判断经过的象限.【解答】解:∵y=ax2+bx+c的顶点坐标公式为(,),∴y=2x2﹣3x+4的顶点坐标为(,),而a=2>0,所以抛物线过第一,二象限.故选B.【点评】本题考查抛物线的顶点坐标和开口方向,能确定这两样,抛物线经过的象限就容易确定了.7.(3分)(•富顺县校级模拟)一元二次方程x2﹣2x+2=0的根的情况是()A.有两个不相等的正根B.有两个不相等的负根C.没有实数根 D.有两个相等的实数根【分析】根据根的判别式△=b2﹣4ac的符号来判定一元二次方程x2﹣2x+2=0的根的情况.【解答】解:∵一元二次方程x2﹣2x+2=0的二次项系数a=1,一次项系数b=﹣2,常数项c=2,∴△=b2﹣4ac=4﹣8=﹣4<0,∴一元二次方程x2﹣2x+2=0没有实数根;故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.(3分)(春•高邮市校级期末)近年来某市加大了对教育经费的投入,投入2500万元,将投入3600万元,该市投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3600 B.2500(1+x)2=3600C.2500(1+x%)2=3600 D.2500(1+x)+2500(1+x)2=3600【分析】设该市投入教育经费的年平均增长率为x,根据:投入资金给×(1+x)2=投入资金,列出方程即可.【解答】解:设该市投入教育经费的年平均增长率为x,根据题意,可列方程:2500(1+x)2=3600,故选:B.【点评】本题主要考查根据实际问题列方程的能力,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.9.(3分)(•无锡)如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于()A.55° B.45°C.40°D.35°【分析】本题旋转中心为点O,旋转方向为逆时针,观察对应点与旋转中心的连线的夹角∠BOD即为旋转角,利用角的和差关系求解.【解答】解:根据旋转的性质可知,D和B为对应点,∠DOB为旋转角,即∠DOB=80°,所以∠AOD=∠DOB﹣∠AOB=80°﹣45°=35°.故选:D.【点评】本题考查旋转两相等的性质:即对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.10.(3分)(秋•遵义期中)已知抛物线y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0()A.没有实根B.只有一个实根C.有两个实根,且一根为正,一根为负D.有两个实根,且一根小于1,一根大于2【分析】首先根据图象求出抛物线y=ax2+bx+c的图象与x轴的交点横坐标取值范围,进而写出一元二次方程ax2+bx+c=0的解的情况.【解答】解:由图可知:抛物线y=ax2+bx+c的图象与x轴的交点横坐标的取值范围是0<x1<1,2<x2<3,则一元二次方程ax2+bx+c=0有两个实根,且一根小于1,一根大于2.故选D.【点评】本题考查的是抛物线与x轴的交点问题的知识,根据抛物线与x轴的交点求出一元二次方程的两个根是解答此题的关键,此题难度不大.11.(3分)(秋•秀峰区校级期中)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+1上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y2【分析】根据二次函数的对称性,可利用对称性,找出点A的对称点A′,再利用二次函数的增减性可判断y值的大小.【解答】解:∵函数的解析式是y=﹣(x+1)2+1,∴对称轴是x=﹣1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随x的增大而减小,于是y1>y2>y3.故选A.【点评】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,12.(3分)(秋•秀峰区校级期中)已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac其中正确的结论的有()A.1个B.2个C.3个D.4个【分析】根据二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定解答.【解答】解:开口向下,则a<0,与y轴交于正半轴,则c>0,∵﹣>0,∴b>0,则abc<0,①正确;∵﹣=1,则b=﹣2a,∵a﹣b+c<0,∴3a+c<0,②错误;∵b=﹣2a,∴2a+b=0,④正确;∴b2﹣4ac>0,∴b2>4ac,⑤正确,故选:D.【点评】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二.填空题:(每小题4分,共24分)13.(4分)(•沈河区模拟)抛物线y=﹣x2﹣x﹣1的对称轴是直线x=﹣.【分析】根据抛物线对称轴公式进行计算即可得解.【解答】解:对称轴为直线x=﹣=﹣=﹣,即直线x=﹣故答案为:直线x=﹣.【点评】本题考查了二次函数的性质,主要利用了对称轴公式,比较简单.14.(4分)(秋•遵义期中)点A(a﹣1,﹣4)与点B(﹣3,1﹣b)关于原点对称,则a+b的值为1.【分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”列方程求出a、b的值,然后相加计算即可得解.【解答】解:∵点A(a﹣1,﹣4)与点B(﹣3,1﹣b)关于原点对称,∴a﹣1=3,1﹣b=4,解得a=4,b=﹣3,所以,a+b=4+(﹣3)=1.故答案为:1.【点评】本题考查了关于原点对称的点的坐标,关于原点对称的点,横坐标与纵坐标都互为相反数.15.(4分)(秋•淅川县期末)抛物线y=x2﹣2x﹣3与x轴的交点坐标为(3,0),(﹣1,0).【分析】要求抛物线与x轴的交点,即令y=0,解方程.【解答】解:令y=0,则x2﹣2x﹣3=0,解得x=3或x=﹣1.则抛物线y=x2﹣2x﹣3与x轴的交点坐标是(3,0),(﹣1,0).故答案为(3,0),(﹣1,0).【点评】本题考查了抛物线与x轴的交点.求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.16.(4分)(•铁力市二模)已知二次函数y=kx2﹣7x﹣7的图象和x轴有交点,则k的取值范围k≥﹣且k≠0.【分析】由于二次函数与x轴有交点,故二次函数对应的一元二次方程kx2﹣7x﹣7=0中,△≥0,解不等式即可求出k的取值范围,由二次函数定义可知,k≠0.【解答】解:∵二次函数y=kx2﹣7x﹣7的图象和x轴有交点,∴,∴k≥﹣且k≠0.故答案为k≥﹣且k≠0.【点评】本题考查了抛物线与x轴的交点,不仅要熟悉二次函数与x轴的交点个数与判别式的关系,还要会解不等式.17.(4分)(•遵义)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两根,则+=﹣2.【分析】利用韦达定理求得x1+x2=2,x1•x2=﹣1,然后将其代入通分后的所求代数式并求值.【解答】解:∵一元二次方程x2﹣2x﹣1=0的两根为x1、x2,x1+x2=2,x1•x2=﹣1,∴+==﹣2.故答案是:﹣2.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.18.(4分)(秋•遵义期中)某商品进货单价为30元,按40元一个销售能卖40个;若销售单价每涨1元,则销量减少1个.为了获得最大利润,此商品的最佳售价应为55元.【分析】根据题意,总利润=销售量×每个利润,设售价为x元,总利润为W元,则销售量为40﹣1×(x﹣40),每个利润为(x﹣30),据此表示总利润,利用配方法可求最值.【解答】解:设售价为x元,总利润为W元,则W=(x﹣30)[40﹣1×(x﹣40)]=﹣x2+110x﹣2400=﹣(x﹣55)2+100,则x=55时,获得最大利润为100元,故答案为:55.【点评】本题考查二次函数的应用、构建二次函数是解决问题的关键,搞清楚利润、销售量、成本、售价之间的关系,属于中考常考题型.三.(共9小题,共90分)19.(6分)(•清远)解方程:x2﹣4x﹣1=0.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:∵x2﹣4x﹣1=0,∴x2﹣4x=1,∴x2﹣4x+4=1+4,∴(x﹣2)2=5,∴x=2±,∴x1=2+,x2=2﹣.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.20.(8分)(秋•遵义期中)已知关于的一元二次方程x2﹣6x+2m﹣1=0有两个相等的实数根,求m的值及方程的根.【分析】首先根据原方程根的情况,利用根的判别式求出m的值,即可确定原一元二次方程,进而可求出方程的根.【解答】解:∵关于x的一元二次方程x2﹣6x+2m﹣1=0有两个相等的实数根,∴△=b2﹣4ac=(﹣6)2﹣4×1×(2m﹣1)=36﹣8m+4=40﹣8m=0,∴m=5,∴关于x的一元二次方程是x2﹣6x+9=0,∴(x﹣3)2=0,解得x1=x2=3.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了一元二次方程的解法.21.(8分)(秋•静宁县期末)已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.【分析】已知二次函数的顶点坐标为(1,4),设抛物线的顶点式为y=a(x﹣1)2+4(a≠0),将点(﹣2,﹣5)代入求a即可.【解答】解:设此二次函数的解析式为y=a(x﹣1)2+4(a≠0).∵其图象经过点(﹣2,﹣5),∴a(﹣2﹣1)2+4=﹣5,∴a=﹣1,∴y=﹣(x﹣1)2+4=﹣x2+2x+3.【点评】本题考查了用顶点式求抛物线解析式的一般方法,必须熟练掌握抛物线解析式的几种形式.22.(10分)(秋•景洪市校级期末)用长为20cm的铁丝,折成一个矩形,设它的一边长为xcm,面积为ycm2.(1)求出y与x的函数关系式.(2)当边长x为多少时,矩形的面积最大,最大面积是多少?【分析】(1)已知一边长为xcm,则另一边长为(20﹣2x).根据面积公式即可解答.(2)把函数解析式用配方法化简,得出y的最大值.【解答】解:(1)已知一边长为xcm,则另一边长为(10﹣x).则y=x(10﹣x)化简可得y=﹣x2+10x(2)y=10x﹣x2=﹣(x2﹣10x)=﹣(x﹣5)2+25,所以当x=5时,矩形的面积最大,最大为25cm2.【点评】本题考查的是二次函数的应用,难度一般,重点要注意配方法的运用.23.(10分)(秋•遵义期中)抛物线y=﹣2x2+8x﹣6.(1)求抛物线的顶点坐标和对称轴;(2)x取何值时,y随x的增大而减小?(3)x取何值时,y=0;x取何值时,y>0;x取何值时,y<0.【分析】(1)根据配方法的步骤要求,将抛物线解析式的一般式转化为顶点式,可确定顶点坐标和对称轴;(2)由对称轴x=﹣2,抛物线开口向下,结合图象,可确定函数的增减性;(3)判断函数值的符号,可以令y=0,解一元二次方程求x,再根据抛物线的开口方向,确定函数值的符号与x的取值范围的对应关系.【解答】解:(1)∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2,∴顶点坐标为(2,2),对称轴为直线x=2;(2)∵a=﹣2<0,抛物线开口向下,对称轴为直线x=2,∴当x>2时,y随x的增大而减小;(3)令y=0,即﹣2x2+8x﹣6=0,解得x=1或3,抛物线开口向下,∴当x=1或x=3时,y=0;当1<x<3时,y>0;当x<1或x>3时,y<0.【点评】本题考查了抛物线和x轴交点的问题,对于抛物线顶点坐标,与x轴的交点坐标的求法及其运用,必须熟练掌握.24.(10分)(秋•遵义期中)宜春三中学校团委爱心社组织学生为高三学生进行献爱心活动,学生踊跃捐款.初三年级第一天收到捐款1000元,第三天收到1210元.(1)求这两天收到捐款的平均增长率.(2)按照(1)中的增长速度,第四天初三年级能收到多少捐款?【分析】(1)设捐款的增长率为x,则第三天的捐款数量为10000(1+x)2元,根据第三天的捐款数量为12100元建立方程求出其解即可.(2)根据(1)求出的增长率列式计算即可.【解答】解:(1)捐款增长率为x,根据题意得:10000(1+x)2=12100,解得:x1=0.1,x2=﹣2.1(舍去).则x=0.1=10%.答:捐款的增长率为10%.(2)根据题意得:12100×(1+10%)=13310(元).答:第四天该校能收到的捐款是13310元.【点评】此题考查了一元二次方程的应用,关键是读懂题意,找出题目中的等量关系,列出方程,注意把不合题意的解舍去.25.(12分)(秋•遵义期中)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,(1)画出△ABC关于x轴对称的△A1B1C1.(2)画出△ABC绕原点O旋转180°后的△A2B2C2.【分析】(1)利用关于x轴对称的点的坐标特征写出点A、B、C的对称点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用关于原点对称的点的坐标特征写出点A、B、C的对称点A2、B2、C2的坐标,然后描点即可得到△A2B2C2.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应点的连线段的夹角都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.26.(12分)(秋•秀峰区校级期中)如图,在△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O逆时针方向旋转90°得到△OA1B1.(1)线段A1B1的长是6,∠AOA1的度数是90°;(2)连结AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.【分析】(1)根据旋转的性质即可直接求解;(2)根据旋转的性质以及平行线的判定定理证明B1A1∥OA且A1B1=OA即可证明四边形OAA1B1是平行四边形;(3)利用平行四边形的面积公式求解.【解答】解:(1)A1B1=AB=6,∠AOA1=90°.故答案是:6,90°;(2)∵A1B1=AB=6,OA1﹣OA=6,∠OA1B1=∠OAB=90°,∠AOA1=90°,∴∠OA1B1=∠AOA1,A1B1=OA,∴B1A1∥OA,∴四边形OAA1B1是平行四边形;(3)S=OA•A1O=6×6=36.即四边形OAA1B1的面积是36.【点评】本题考查了旋转的性质以及平行四边形的判定和面积公式,证明B1A1∥OA是关键.27.(14分)(秋•遵义期中)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求抛物线的解析式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,当以A,C,D为顶点的三角形面积最大时,求点D的坐标及此时三角形的面积.【分析】(1)根据A与B坐标设出抛物线解析式,将C坐标代入即可求出;(2)过点D作DH⊥AB于点H,交直线AC于点G,连接DC,AD,如图所示,利用待定系数法求出直线AC解析式,设D横坐标为m,则有G横坐标也为m,表示出DH与GH,由DH﹣GH表示出DG,三角形ADC面积=三角形ADG面积+三角形DGC面积,表示出面积与m的关系式,利用二次函数性质确定出面积的最大值,以及此时m的值,即此时D的坐标即可.【解答】解:(1)根据题意设抛物线解析式为y=a(x+4)(x﹣2),把C(0,2)代入得:﹣8a=2,即a=﹣,则抛物线解析式为y=﹣(x+4)(x﹣2)=﹣x2﹣x+2;(2)过点D作DH⊥AB于点H,交直线AC于点G,连接DC,AD,如图所示,设直线AC解析式为y=kx+t,则有,解得:,∴直线AC解析式为y=x+2,设点D的横坐标为m,则G横坐标也为m,∴DH=﹣m2﹣m+2,GH=m+2,∴DG=﹣m2﹣m+2﹣m﹣2=﹣m2﹣m,∴S△ADC=S△ADG+S△CDG=DG•AH+DG•OH=DG•AO=2DG=﹣m2﹣2m=﹣(m2+4m)=﹣[(m+2)2﹣4]=﹣(m+2)2+2,当m=﹣2时,S△ADC取得最大值2,此时yD=﹣×(﹣2)2﹣×(﹣2)+2=2,即D(﹣2,2).【点评】此题考查了抛物线与x轴的交点,二次函数的最值,以及待定系数法求二次函数解析式,熟练掌握二次函数的性质是解本题的关键.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
高考数学高三模拟试卷复习试题调研考试压轴押题学业水平训练003
高考数学高三模拟试卷复习试题调研考试压轴押题[学业水平训练]第一中学第一学期期中考试 高三数学(理科)试题卷满分[150]分 时间[120]分钟 11月一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数x x f y +=)(是偶函数,且1)2(=f ,则=-)2(f (▲)A .2B . 3C . 4D . 52.已知:11,:(2)(6)0p m x m q x x -<<+--<,且q 是p 的必要不充分条件,则m 的取值范围是( ▲ )A .35m << B. 35m ≤≤C .53m m ><或 D.53m m ≥≤或3.已知m 为一条直线,βα,为两个不同的平面,则下列说法正确的是(▲ ) A.若ββαα//,//,//m m 则 B.若,m αβα⊥⊥,则m β⊥ C.若ββαα⊥⊥m m 则,,// D.若ββαα⊥⊥m m 则,//,4.函数())cos 3(sin sin 21x x x x f +-=的图象向左平移3π个单位得函数()x g 的图象,则函数()x g 的解析式是(▲ ) A .()⎪⎭⎫⎝⎛-=22sin 2πx x g B .()x x g 2cos 2= C .()⎪⎭⎫⎝⎛+=322cos 2πx x g D .()()2sin 2g x x π=+ 5.若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( ▲ )A .-2B .12-C .12D .2 6.在ABC ∆所在平面上有三点M N P 、、,满足MA MB MC AB ++=,NA NB NC BC ++=,PA PB PC CA ++=,则MNP ∆的面积与ABC ∆的面积比为(▲) A.12 B.13 C.14 D.157.设双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,离心率为e ,过2F 的直线与双曲线的右支交于B A ,两点,若AB F 1∆是以A 为直角顶点的等腰直角三角形,则=2e (▲)A.221+B.224-C.225-D.223+8.设{}(),(()())min (),()(),(()())f x f xg x f x g x g x f x g x ≤⎧=⎨>⎩.若2()f x x px q =++的图象经过两点(,0),(,0)αβ,且存在整数n ,使得1n n αβ<<<+成立,则 ( ▲ )A .{}1min (),(1)4f n f n +>B .{}1min (),(1)4f n f n +<C .{}1min (),(1)4f n f n +=D .{}1min (),(1)4f n f n +≥二、填空题:本大题共7小题,912题:每小题6分,1315题:每小题4分,共36分. 9.已知全集为R ,集合{}{}221,680xA xB x x x =≥=-+≤,则A B =▲.R A C B =▲.()R C A B =▲.10.已知等差数列{}n a ,n S 是数列{}n a 的前n 项和,且满足46310,39a S S ==+,则数列{}n a 的首项1a =____▲___,通项n a =___▲___.11.某空间几何体的三视图如图所示(单位:cm),则该几何体的体积V =▲cm3,表面积S =▲cm2.12.已知函数()()61477x a x x f x a x -⎧-+≤=⎨>⎩;(1)当21=a 时,()x f 的值域为▲, (2)若()x f 是(,)-∞+∞上的减函数,则实数a的取值范围是▲. 13.已知平面向量,()αβαβ≠满足||3α=且α与βα-150︒的夹角为,则|(1)|m m αβ+-的取值范围是_▲. 14.已知实数x 、y 、z 满足0x y z ++=,2221x y z ++=,则x 的最大值为▲. 15.三棱柱111ABC A B C -的底是边长为1的正三角形,高11AA =,在AB 上取一点P ,设11PA C ∆与面111A B C 所成的二面角为α,11PB C ∆与面111A B C 所成的二面角为β,则tan()αβ+的最小值是▲.三、解答题(共5小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤) 16.(本题满分15分)在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,且1)cos(32cos ++=C B A . (Ⅰ)求角A 的大小;(Ⅱ)若81cos cos -=C B ,且ABC ∆的面积为32,求a .17.(本题满分15分)如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,三角形ACD 是正三角形,且AD=DE=2AB ,F 是CD 的中点.(Ⅰ)求证:平面CBE ⊥平面CDE ;(Ⅱ)求二面角C —BE —F 的余弦值.18.(本题满分15分)平面直角坐标系xOy 中,过椭圆2222:1(0)x y M a b a b +=>>右焦点的直线0x y +=交M 于,A B 两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求椭圆M 的方程;(Ⅱ),C D 为M 上的两点,若四边形ACBD 的对角线CD AB ⊥,求四边形ACBD 面积的最大值.19.(本题满分15分)已知函数2()1,()|1|f x x g x a x =-=-.(Ⅰ)若当x ∈R 时,不等式()()f x g x ≥恒成立,求实数a 的取值范围; (Ⅱ)求函数()|()|()h x f x g x =+在区间[2,2]-上的最大值.20.(本题满分14分)已知数列{}n a 满足:10a =,21221,,12,,2n n n n a n n a a -+⎧⎪⎪=⎨++⎪⎪⎩为偶数为奇数,2,3,4,.n =(Ⅰ)求567,,a a a 的值; (Ⅱ)设212n n na b -=,试求数列{}n b 的通项公式;(Ⅲ)对于任意的正整数n ,试讨论并证明n a 与1n a +的大小关系.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(10)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.102.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度4.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<5.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.36.(5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种7.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2B.﹣1C.1D.28.(5分)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]9.(5分)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)复数=.12.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=.13.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是.15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.17.(12分)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.18.(12分)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.19.(12分)设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和Tn.20.(13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.21.(14分)已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(10)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.10【分析】利用二项展开式的通项公式求出(1+x)6的第r+1项,令x的指数为2求出展开式中x2的系数.然后求解即可.【解答】解:(1+x)6展开式中通项Tr+1=C6rxr,令r=2可得,T3=C62x2=15x2,∴(1+x)6展开式中x2项的系数为15,在x(1+x)6的展开式中,含x3项的系数为:15.故选:C.【点评】本题考查二项展开式的通项的简单直接应用.牢记公式是基础,计算准确是关键.2.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}【分析】计算集合A中x的取值范围,再由交集的概念,计算可得.【解答】解:A={x|﹣1≤x≤2},B=Z,∴A∩B={﹣1,0,1,2}.故选:A.【点评】本题属于容易题,集合知识是高中部分的基础知识,也是基础工具,高考中涉及到对集合的基本考查题,一般都比较容易,且会在选择题的前几题,考生只要够细心,一般都能拿到分.3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度【分析】根据 y=sin(2x+1)=sin2(x+),利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.【解答】解:∵y=sin(2x+1)=sin2(x+),∴把y=sin2x的图象上所有的点向左平行移动个单位长度,即可得到函数y=sin(2x+1)的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.4.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<【分析】利用特例法,判断选项即可.【解答】解:不妨令a=3,b=1,c=﹣3,d=﹣1,则,,∴A、B不正确;,=﹣,∴C不正确,D正确.解法二:∵c<d<0,∴﹣c>﹣d>0,∵a>b>0,∴﹣ac>﹣bd,∴,∴.故选:D.【点评】本题考查不等式比较大小,特值法有效,导数计算正确.5.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.3【分析】算法的功能是求可行域内,目标函数S=2x+y的最大值,画出可行域,求得取得最大值的点的坐标,得出最大值.【解答】解:由程序框图知:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域如图:当时,S=2x+y的值最大,且最大值为2.故选:C.【点评】本题借助选择结构的程序框图考查了线性规划问题的解法,根据框图的流程判断算法的功能是解题的关键.6.(5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种【分析】分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论.【解答】解:最左端排甲,共有=120种,最左端只排乙,最右端不能排甲,有=96种,根据加法原理可得,共有120+96=216种.故选:B.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.7.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2B.﹣1C.1D.2【分析】由已知求出向量的坐标,再根据与的夹角等于与的夹角,代入夹角公式,构造关于m的方程,解方程可得答案.【解答】解:∵向量=(1,2),=(4,2),∴=m+=(m+4,2m+2),又∵与的夹角等于与的夹角,∴=,∴=,∴=,解得m=2,故选:D.【点评】本题考查的知识点是数量积表示两个向量的夹角,难度中档.8.(5分)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]【分析】由题意可得:直线OP于平面A1BD所成的角α的取值范围是∪.再利用正方体的性质和直角三角形的边角关系即可得出.【解答】解:由题意可得:直线OP于平面A1BD所成的角α的取值范围是∪.不妨取AB=2.在Rt△AOA1中,==.sin∠C1OA1=sin(π﹣2∠AOA1)=sin2∠AOA1=2sin∠AOA1cos∠AOA1=,=1.∴sinα的取值范围是.故选:B.【点评】本题考查了正方体的性质和直角三角形的边角关系、线面角的求法,考查了推理能力,属于中档题.9.(5分)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②【分析】根据已知中函数的解析式,结合对数的运算性质,分别判断三个结论的真假,最后综合判断结果,可得答案.【解答】解:∵f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1),∴f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣f(x),即①正确;f()=ln(1+)﹣ln(1﹣)=ln()﹣ln()=ln ()=ln[()2]=2ln()=2[ln(1+x)﹣ln(1﹣x)]=2f(x),故②正确;当x∈[0,1)时,|f(x)|≥2|x|⇔f(x)﹣2x≥0,令g(x)=f(x)﹣2x=ln(1+x)﹣ln(1﹣x)﹣2x(x∈[0,1))∵g′(x)=+﹣2=≥0,∴g(x)在[0,1)单调递增,g(x)=f(x)﹣2x≥g (0)=0,又f(x)≥2x,又f(x)与y=2x为奇函数,所以|f(x)|≥2|x|成立,故③正确;故正确的命题有①②③,故选:A.【点评】本题以命题的真假判断为载体,考查了对数的运算性质,代入法求函数的解析式等知识点,难度中档.10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.【分析】可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及•=2消元,最后将面积之和表示出来,探求最值问题.【解答】解:设直线AB的方程为:x=ty+m,点A(x1,y1),B(x2,y2),直线AB与x轴的交点为M(m,0),由⇒y2﹣ty﹣m=0,根据韦达定理有y1•y2=﹣m,∵•=2,∴x1•x2+y1•y2=2,结合及,得,∵点A,B位于x轴的两侧,∴y1•y2=﹣2,故m=2.不妨令点A在x轴上方,则y1>0,又,∴S△ABO+S△AFO═×2×(y1﹣y2)+×y1,=.当且仅当,即时,取“=”号,∴△ABO与△AFO面积之和的最小值是3,故选B.【点评】求解本题时,应考虑以下几个要点:1、联立直线与抛物线的方程,消x或y后建立一元二次方程,利用韦达定理与已知条件消元,这是处理此类问题的常见模式.2、求三角形面积时,为使面积的表达式简单,常根据图形的特征选择适当的底与高.3、利用基本不等式时,应注意“一正,二定,三相等”.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)复数= ﹣2i .【分析】利用两个复数代数形式的乘除法法则化简所给的复数,可得结果.【解答】解:复数===﹣2i,故答案为:﹣2i.【点评】本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.12.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()= 1 .【分析】由函数的周期性f(x+2)=f(x),将求f()的值转化成求f()的值.【解答】解:∵f(x)是定义在R上的周期为2的函数,∴=1.故答案为:1.【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.13.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于 60 m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)【分析】过A点作AD垂直于CB的延长线,垂足为D,分别在Rt△ACD、Rt△ABD中利用三角函数的定义,算出CD、BD的长,从而可得BC,即为河流在B、C两地的宽度.【解答】解:过A点作AD垂直于CB的延长线,垂足为D,则Rt△ACD中,∠C=30°,AD=46m,AB=,根据正弦定理,,得BC===60m.故答案为:60m.【点评】本题给出实际应用问题,求河流在B、C两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.14.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是 5 .【分析】先计算出两条动直线经过的定点,即A和B,注意到两条动直线相互垂直的特点,则有PA⊥PB;再利用基本不等式放缩即可得出|PA|•|PB|的最大值.【解答】解:由题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即 m(x﹣1)﹣y+3=0,经过点定点B(1,3),注意到动直线x+my=0和动直线mx﹣y﹣m+3=0始终垂直,P又是两条直线的交点,则有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.故|PA|•|PB|≤=5(当且仅当时取“=”)故答案为:5【点评】本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有|PA|2+|PB|2是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有①③④.(写出所有真命题的序号)【分析】根据题中的新定义,结合函数值域的概念,可判断出命题①②③是否正确,再利用导数研究命题④中函数的值域,可得到其真假情况,从而得到本题的结论.【解答】解:(1)对于命题①,若对任意的b∈R,都∃a∈D使得f(a)=b,则f(x)的值域必为R.反之,f(x)的值域为R,则对任意的b∈R,都∃a∈D使得f(a)=b,故①是真命题;(2)对于命题②,若函数f(x)∈B,即存在一个正数M,使得函数f(x)的值域包含于区间[﹣M,M].∴﹣M≤f(x)≤M.例如:函数f(x)满足﹣2<f(x)<5,则有﹣5≤f(x)≤5,此时,f (x)无最大值,无最小值,故②是假命题;(3)对于命题③,若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)值域为R,f(x)∈(﹣∞,+∞),并且存在一个正数M,使得﹣M≤g(x)≤M.故f (x)+g(x)∈(﹣∞,+∞).则f(x)+g(x)∉B,故③是真命题;(4)对于命题④,∵﹣≤≤,当a>0或a<0时,aln(x+2)∈(﹣∞,+∞),f(x)均无最大值,若要使f(x)有最大值,则a=0,此时f(x)=,f(x)∈B,故④是真命题.故答案为①③④.【点评】本题考查了函数值域的概念、基本不等式、充要条件,还考查了新定义概念的应用和极限思想.本题计算量较大,也有一定的思维难度,属于难题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.【分析】(1)令2kπ﹣≤3x+≤2kπ+,k∈z,求得x的范围,可得函数的增区间. (2)由函数的解析式可得 f()=sin(α+),又f()=cos(α+)cos2α,可得sin(α+)=cos(α+)cos2α,化简可得(cosα﹣sinα)2=.再由α是第二象限角,c osα﹣sinα<0,从而求得cosα﹣sinα 的值.【解答】解:(1)∵函数f(x)=sin(3x+),令2kπ﹣≤3x+≤2kπ+,k∈Z,求得﹣≤x≤+,故函数的增区间为[﹣,+],k∈Z. (2)由函数的解析式可得 f()=sin(α+),又f()=cos(α+)cos2α,∴sin(α+)=cos(α+)cos2α,即sin(α+)=cos(α+)(cos2α﹣sin2α),∴sinαcos+cosαsin=(cosαcos﹣si nαsin)(cosα﹣sinα)(cosα+sinα)即(sinα+cosα)=•(cosα﹣sinα)2(cosα+sinα),又∵α是第二象限角,∴cosα﹣sinα<0,当sinα+cosα=0时,tanα=﹣1,sinα=,cosα=﹣,此时cosα﹣sinα=﹣.当sinα+cosα≠0时,此时cosα﹣sinα=﹣.综上所述:cosα﹣sinα=﹣或﹣.【点评】本题主要考查正弦函数的单调性,三角函数的恒等变换,体现了分类讨论的数学思想,属于中档题.17.(12分)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.【分析】(1)设每盘游戏获得的分数为X,求出对应的概率,即可求X的分布列;(2)求出有一盘出现音乐的概率,独立重复试验的概率公式即可得到结论.(3)计算出随机变量的期望,根据统计与概率的知识进行分析即可.【解答】解:(1)X可能取值有﹣200,10,20,100.则P(X=﹣200)=,P(X=10)==P(X=20)==,P(X=100)==,故分布列为:X ﹣200 10 20 100P由(1)知,每盘游戏出现音乐的概率是p=+=,则至少有一盘出现音乐的概率p=1﹣.由(1)知,每盘游戏获得的分数为X的数学期望是E(X)=(﹣200)×+10×+20××100=﹣=.这说明每盘游戏平均得分是负分,由概率统计的相关知识可知:许多人经过若干盘游戏后,入最初的分数相比,分数没有增加反而会减少.【点评】本题主要考查概率的计算,以及离散型分布列的计算,以及利用期望的计算,考查学生的计算能力.18.(12分)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB 的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.【分析】(1)用线面垂直的性质和反证法推出结论,(2)先建空间直角坐标系,再求平面的法向量,即可求出二面角A﹣NP﹣M的余弦值. 【解答】解:(1)由三棱锥A﹣BCD及其侧视图、俯视图可知,在三棱锥A﹣BCD中:平面ABD⊥平面CBD,AB=AD=BD=CD=CB=2设O为BD的中点,连接OA,OC于是OA⊥BD,OC⊥BD 所以BD⊥平面OAC⇒BD⊥AC因为M,N分别为线段AD,AB的中点,所以MN∥BD,MN⊥NP,故BD⊥NP假设P不是线段BC的中点,则直线NP与直线AC是平面ABC内相交直线从而BD⊥平面ABC,这与∠DBC=60°矛盾,所以P为线段BC的中点(2)以O为坐标原点,OB,OC,OA分别为x,y,z轴建立空间直角坐标系,则A(0,0,),M(,O,),N(,0,),P(,,0)于是,,设平面ANP和平面NPM的法向量分别为和由,则,设z1=1,则由,则,设z2=1,则cos===所以二面角A﹣NP﹣M的余弦值【点评】本题考查线线的位置关系,考查二面角知识的应用,解题的关键是掌握用向量的方法求二面角大小的步骤,属于中档题.19.(12分)设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和Tn.【分析】(1)由于点(an,bn)在函数f(x)=2x的图象上,可得,又等差数列{an}的公差为d,利用等差数列的通项公式可得=2d.由于点(a8,4b7)在函数f(x)的图象上,可得=b8,进而得到=4=2d,解得 d.再利用等差数列的前n项和公式即可得出.(2)利用导数的几何意义可得函数f(x)的图象在点(a2,b2)处的切线方程,即可解得a2.进而得到an,bn.再利用“错位相减法”即可得出.【解答】解:(1)∵点(an,bn)在函数f(x)=2x的图象上,∴,又等差数列{an}的公差为d,∴==2d,∵点(a8,4b7)在函数f(x)的图象上,∴=b8,∴=4=2d,解得d=2.又a1=﹣2,∴Sn==﹣2n+=n2﹣3n.(2)由f(x)=2x,∴f′(x)=2xln2,∴函数f(x)的图象在点(a2,b2)处的切线方程为,又,令y=0可得x=,∴,解得a2=2.∴d=a2﹣a1=2﹣1=1.∴an=a1+(n﹣1)d=1+(n﹣1)×1=n,∴bn=2n.∴.∴Tn=+…++,∴2Tn=1+++…+,两式相减得Tn=1++…+﹣=﹣==.【点评】本题综合考查了指数函数的运算性质、导数的几何意义、等差数列与等比数列的通项公式及其前n项和公式等基础知识与基本技能方法,考查了推理能力、计算能力、“错位相减法”,属于难题.21.(14分)已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.【分析】(1)求出f(x)的导数得g(x),再求出g(x)的导数,对它进行讨论,从而判断g(x)的单调性,求出g(x)的最小值;(2)利用等价转换,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,所以g(x)在(0,1)上应有两个不同的零点.【解答】解:∵f(x)=ex﹣ax2﹣bx﹣1,∴g(x)=f′(x)=ex﹣2ax﹣b,又g′(x)=ex﹣2a,x∈[0,1],∴1≤ex≤e,∴①当时,则2a≤1,g′(x)=ex﹣2a≥0,∴函数g(x)在区间[0,1]上单调递增,g(x)min=g(0)=1﹣b;②当,则1<2a<e,∴当0<x<ln(2a)时,g′(x)=ex﹣2a<0,当ln(2a)<x<1时,g′(x)=ex﹣2a>0,∴函数g(x)在区间[0,ln(2a)]上单调递减,在区间[ln(2a),1]上单调递增,g(x)min=g[ln(2a)]=2a﹣2aln(2a)﹣b;③当时,则2a≥e,g′(x)=ex﹣2a≤0,∴函数g(x)在区间[0,1]上单调递减,g(x)min=g(1)=e﹣2a﹣b,综上:函数g(x)在区间[0,1]上的最小值为;(2)由f(1)=0,⇒e﹣a﹣b﹣1=0⇒b=e﹣a﹣1,又f(0)=0,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,由(1)知当a≤或a≥时,函数g(x)在区间[0,1]上单调,不可能满足“函数f(x)在区间(0,1)内至少有三个单调区间”这一要求.若,则gmin(x)=2a﹣2aln(2a)﹣b=3a﹣2aln(2a)﹣e+1令h(x)=(1<x<e)则=,∴.由>0⇒x<∴h(x)在区间(1,)上单调递增,在区间(,e)上单调递减,==<0,即gmin(x)<0 恒成立,∴函数f(x)在区间(0,1)内至少有三个单调区间⇔⇒,又,所以e﹣2<a<1,综上得:e﹣2<a<1.【点评】本题考查了,利用导数求函数的单调区间,分类讨论思想,等价转换思想,函数的零点等知识点.是一道导数的综合题,难度较大.20.(13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.【分析】第(1)问中,由正三角形底边与高的关系,a2=b2+c2及焦距2c=4建立方程组求得a2,b2;第(2)问中,先设点的坐标及直线PQ的方程,利用两点间距离公式及弦长公式将表示出来,由取最小值时的条件获得等量关系,从而确定点T的坐标.【解答】解:(1)依题意有解得所以椭圆C的标准方程为+=1.(2)设T(﹣3,t),P(x1,y1),Q(x2,y2),PQ的中点为N(x0,y0),①证明:由F(﹣2,0),可设直线PQ的方程为x=my﹣2,则PQ的斜率.由⇒(m2+3)y2﹣4my﹣2=0,所以,于是,从而,即,则直线ON的斜率,又由PQ⊥TF知,直线TF的斜率,得t=m.从而,即kOT=kON,所以O,N,T三点共线,从而OT平分线段PQ,故得证.②由两点间距离公式得,由弦长公式得==,所以,令,则(当且仅当x2=2时,取“=”号),所以当最小时,由x2=2=m2+1,得m=1或m=﹣1,此时点T的坐标为(﹣3,1)或(﹣3,﹣1).【点评】本题属相交弦问题,应注意考虑这几个方面:1、设交点坐标,设直线方程;2、联立直线与椭圆方程,消去y或x,得到一个关于x或y一元二次方程,利用韦达定理;3、利用基本不等式或函数的单调性探求最值问题.。
高考数学高三模拟试卷复习试题调研考试压轴押题学业水平训练024
DABCD 1 (第6题图)高考数学高三模拟试卷复习试题调研考试压轴押题[学业水平训练]数学试卷(理科) 命题人:高雄略 王飞龙 审题人:卢萍 郑惠群本卷分第Ⅰ卷和第Ⅱ卷两部分。
考试时间为120分钟,试卷总分为150分。
请考生将所有试题的答案涂、写在答题纸上。
第Ⅰ卷一、选择题:本大题共8小题,每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.平行直线l1:3x+4y12=0与l2:6x+8y15=0之间的距离为( ▲ ) A .310B .910C .35D .952.命题“∃α∈[0,+∞),sinα>α”的否定形式是( ▲ ) A .∀α∈[0,+∞),sinα≤αB .∃α∈[0,+∞),sinα≤α C .∀α∈(∞,0),sinα≤αD .∃α∈(∞,0),sinα>α3.某几何体的三视图如图所示(单位:cm ),则该几何 体的体积等于( ▲ )cm3 A .4+23πB .4+32πC.6+23πD.6+32π4.设抛物线C :y2=2px(p>0)的焦点为F.若过F 的直线l 交C 于点A ,B ,且|AB|=3p ,则线段AB 的中点M 到y 轴的距离是( ▲ )A.p 2B.pC.3p2D.2p 5.已知φ是实数,f(x)=cosx ﹒cos(x+π3),则“φ=π3”是“函数f(x)向左平移φ个单位后关于y 轴对称”的( ▲ ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件6.如图,将四边形ABCD 中△ADC 沿着AC 翻折到AD1C , 则翻折过程中线段DB 中点M 的轨迹是( ▲ ) A.椭圆的一段B.抛物线的一段 C.一段圆弧 D.双曲线的一段7.已知双曲线C:x2a2y2b2=1(a,b>0)虚轴上的端点B(0,b),右焦点F ,若以B 为圆心的圆与C的(第3题图)俯视图正视图侧视图一条渐近线相切于点P ,且//,则该双曲线的离心率为( ▲ ) A.5B.2C.1+32 D.1+528.已知非零正实数x1,x2, x3依次构成公差不为零的等差数列.设函数f(x)=xα,α∈{1,12,2,3},并记M={1,12,2,3}.下列说法正确的是( ▲ )A .存在α∈M,使得f(x1), f(x2), f(x3)依次成等差数列B .存在α∈M,使得f(x1), f(x2), f(x3)依次成等比数列C .当α=2时,存在正数λ,使得f(x1), f(x2), f(x3) λ依次成等差数列D .任意α∈M ,都存在正数λ>1,使得λf(x1), f(x2), f (x3)依次成等比数列第Ⅱ卷二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 9.设集合A={x ∈N|6x+1∈N},B={x|y=ln(x1)},则A=▲,B=▲,)(B C A R =▲.10.设函数f(x)=Asin(2x+φ),其中角φ的终边经过点P(1,1),且0<φ<π,f(π2)=2.则φ=▲,A=▲,f(x)在[π2,π2]上的单调减区间为▲.11.设a>0且a ≠1,函数f(x)=⎩⎨⎧ax+12,x ≤0,g(x), x>0为奇函数,则a=▲,g(f(2))=▲.12.如图,在直三棱柱ABCA1B1C1中,AB=BC=CC1=2,AC=23,M 是AC 的中点,则异面直线CB1与C1M 所成角的余弦值为▲.13.设实数x,y 满足x+yxy≥2,则|x2y|的最小值为▲.14.已知非零平面向量a,b,c 满足a▪c= b▪c=3,|ab|=|c|=2,则向量a 在向量c 方向上的投影为▲,a▪b 的最小值为▲.15.设f(x)=4x+1+a▪2x+b(a,b ∈R),若对于∀x ∈[0,1],| f(x)|≤12都成立,则=b ▲.三、解答题:本大题共5小题,共74分。
高考数学高三模拟试卷复习试题高三年级调研考试 3
高考数学高三模拟试卷复习试题高三年级调研考试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试用时120分钟.第Ⅰ卷(选择题 共50分)参考公式:如果事件A 、B 互斥,那么柱体(棱柱、圆柱)的体积公式P (A+B )=P (A )+P (B ) h V S =柱体 如果事件A 、B 相互独立,那么 其中S 表示柱体的底面积,P (A·B )=P (A )·P (B )h 表示柱体的高一、单项选择题:(每一小题仅有一个正确答案,请将正确答案的代号填入 答题表内。
每小题5分,共计60分)1.下列关系中正确的是 ( )A.φ∈0B.a ∈{a}C.{a,b}∈{b,a}D.φ=}0{2. 不等式21≥-xx 的解集为()A . )0,1[-B . ),1[+∞-C . ]1,(--∞D . ),0(]1,(+∞--∞3.对任意实数,,a b c 在下列命题中,真命题是()A .""ac bc >是""a b >的必要条件B .""ac bc =是""a b =的必要条件C .""ac bc >是""a b >的充分条件D .""ac bc =是""a b =的充分条件4.若平面向量与向量)2,1(-=的夹角是o180,且53||=,则=()A .)6,3(-B . )6,3(-C . )3,6(-D . )3,6(-5.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为023=-y x ,1F 、2F 分别是双曲线的左、右焦点。
若3||1=PF ,则=||2PF ()A . 1或5B . 6C . 7D .96、原点到直线y=kx+2的距离为2,则k 的值为 ( ) A. 1 B. 1 C. ±1 D. ±77、若135sin )cos(cos )sin(=+-+αβααβα,且β是第二象限角,则βcos 的值为() A .1312 B .1312- C .53 D .53-8、在等差数列{a n }中,a 1+a 2+a 3+a 4+a 5=15 , a 3= ( ) A. 2 B. 3 C. 4 D. 59、已知函数b a x f x+=)(的图象经过点)3,1(,又其反函数)(1x f-的图象经过点)0,2(,则函数)(x f 的表达式是()A .12)(+=xx f B .22)(+=xx fC .32)(+=xx f D .42)(+=xx f10、已知向量与,则下列命题中正确的是 ( ) A. 若|a |>|b |,则a >b B. 若|a |=|b |,则a =bC. 若=,则∥D. 若≠,则与就不是共线向量11.下列函数中为偶函数的是 ( )A .f(x)=1x3 B.f(x)=2x1 C.f(x)=x2+2 D.f(x)=x312. 一商场有三个大门,商场内有两部上楼的电梯,一顾客从商场外到商场二楼购物,不同的走法共有( )A.5种B.6种C.8种D.9种第Ⅱ卷(非选择题 共100分)二、填空题:(本大题共4小题,每小题4分,共16分.答案填在题中横线上)11.一个圆柱的底面半径和高都与一个球的直径相等,则该圆柱与该球的体积比为____________。
高考数学高三模拟试卷复习试题调研考试压轴押题学业水平训练020
高考数学高三模拟试卷复习试题调研考试压轴押题[学业水平训练]理科数学一、选择题:本大题共12小题,每小题5分. .3.16 1.复数-1+31+i i =( ) A. 2+i B. 2i C. 1+2i D. l2i 2. 已知集合A={l ,3,m ),B={l ,m ),AB =A ,则m=( ) A. 0或3; B .0或3C .1或3 D.1或33. 下面四个条件中,使a>b 成立的充分而不必要的条件是( )A. a>b+lB. a>blC. a2>b2D. a3>b34. 直线l 过抛物线C :x2=4y 的焦点且与y 轴垂直,则,与C 所围成的图形的面积等于( ).A .43 B.2 C .83. D. 162 5.某种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需要再补 种2粒,补种的种子数记为X,则X 的数学期望为( ).A. 100B. 200C. 300D. 4006.51()(2)a x x x x +-的展开式中各项系数的和为2,则该展开式中常数项为( )A. 40B. 20C. 20D. 407.△ABC 中,AB 边的高为CD.若CB =a ,CA =b ,a·b=0,|a|=1,|b|=2,则AD =( )A.1155a b -B.4455a b -C.1155b a -D. 4455b a - 8. 已知F1,F2为等轴双曲线C 的焦点,点P 在C 上,|PFl| =2|PF2|,则cos ∠F1PF2=( ) A.14 B. 35 C.34 D. 45 9.执行如图所示的程序框图,若输入n= 10,则输出S=( )A.511B .1011C .3655D. 7255 10.某几何体的三视图如图所示,该几何体的表面积是( )A. 28B. 24+62 C .20+213 D .16+62+21311.设P,Q 分别为圆x2+(y 一6)2 =2和椭圆210x +y2 =1上的点,则 P ,Q 两点间的最大距离是( )A. 52B.46+2C. 62D.7+212.设函数f(x) =2ln(1)x x +-,函数(),0()(),0_f x x g x f x x ≥⎧=⎨-<⎩;以下命题中,假命题是() A .对任意实数a 、b ,a≠b ,都有f (a )≠f(b)B .存在实数a 、b ,a≠b ,使得g(a )=f(b)c .对任意实数a 、b ,O<a<b ,都有f(a)+f(一b )>g(b) g(a)D .存在实数a 、b ,a<b<0,使得f(a)+f(—b)>g(b)一g (一a )二、填空题:本大题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件1030330x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,则z=3xy 的最小值为____.14.等差数列{an}的前n 项和为Sn ,已知al=10,a2为整数,且Sn≤S4,则公差d=.15.若函数f(x)= cos2x+asinx 在区间(6π,2π)是减函数,则a 的取值范围是. 16.正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE=BF= 37,动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为____.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本题满分12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cosA=23, sinB=5cosC.(1)求tanC 的值; (2)若a=2,求△ABC 的面积.18.(本题满分12分)如图,四棱锥SABCD 中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形,AB=BC=2,CD=SD=1.(l)证明:SD ⊥平面SAB;(2)求AB 与平面SBC 所成的角正弦值,19.(本题满分12分)从某工厂生产的某产品中抽取500件,测量这些产品的一项质量指标,由测量结果得到下列频数分布表:(1)作出这些数据的频率分布直方图,并估计该产品质量指标值的平均数x 及方差s2 (同一组中的数据用该组的中点值作代表); (2)可以认为这种产品的质量指标值Z 服从正态分布N(μ,σ2),其中μ近似为样本平均数 x ,σ2。
高考数学高三模拟试卷复习试题调研考试压轴押题学业水平训练043
高考数学高三模拟试卷复习试题调研考试压轴押题[学业水平训练]16、如图,以ox 为始边作角α与()παββ<<<0,它们的终边分别与单位圆交于点P 、Q ,已知点P 的坐标为)54,53(-。
(1)sin 2cos 211tan ααα+++求的值;(2)()0sin OP OQ αβ⋅=+若,求的值。
17.(满分12分)如图,在正方体ABCD 一A1B1C1D1中,AB =3, CE =2EC1.(I )若F 是AB 的中点,求证:C1F//平面BDE;(II )求三棱锥D -BEB1的体积。
19.已知正项等比数列{}n a 的前n 项和为n S )(*∈N n ,且20,2321==S a a a 。
(1)求数列{}n a 的通项公式;(2)设21222log log log n n c a a a =+++,12111n nT c c c =+++,求使λ>n T 对任意*∈N n 恒成立的实数λ的取值范围。
22、已知函数()xf x e ax =-(1)若函数()f x 在1x =处取得极值,求函数()y f x =在点0,(0)f ()处的切线方程 (2)当0,x ≥()()0f x f x --≥恒成立,求a 的最大值 (3)当1,a =解关于x 的不等式:()(1)()(1)f x f f x f ≤⎧⎨-≤⎩16、(1)三角函数的定义,得,54sin ,53cos =-=αα……………2分 则原式=2518cos 2cos sin 1cos 2cos sin 222==++αααααα。
……………6分(2)0,,OP OQ OP OQ →→⋅=⊥即……………7分53cos )2sin(sin =-=-=∴απαβ,54sin )2cos(cos ==-=απαβ,……………10分257sin cos cos sin )sin(=+=+∴βαβαβα……………12分 18、解:(I )由20,2321==S a a a 可得14a =,公比q=4,…………4分∴242n n n a ==.……………5分(Ⅱ)21222log log log 242(1)2(1)n n c a a a n n n n =+++=+++-+=+……………7分11111223(1)1n nc n n n ++=+++=⨯⨯++分 由λ>n T 对任意*∈N n 恒成立,111+-<n λ,得21<λ22、解:(1)由题意知()(1)0xf x e a f e a a e ''=-⇒=-=⇒=,所以曲线()y f x =在(0,(0))f 处的切线方程为(1)1y e x =-+……………3分(2)令()()()2x x g x f x f x e e ax -=--=--,则()e e 2xxg x a -'=+-,(ⅰ)若1a ≤,当0x >时,()e e2220xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数,所以,0x ≥时,()(0)0g xg =≥,即()()0f x f x --≥. (ⅱ)若1a >,方程()0g x '=的正根为1ln(x a =+,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数. 所以,1(0)x x ∈,时,()(0)0g x g <=,即()()0f x f x --<,与题设()()0f x f x --≥相矛盾.综上,满足条件的a 的取值范围是(]1-∞,,所以a 的最大值为1……………7分(3)1,1,x x e x e e x e -⎧-≤-⎪⎨+≤-⎪⎩①设函数()1t g t e t e =--+,则()1tg t e '=-当0t <时,()0g t '<;当0t >时,()0g t '>,故()g t 在(,0)-∞单调递减,在(0,)+∞单调递增。
高考数学高三模拟试卷复习试题调研考试压轴押题学业水平训练004
高考数学高三模拟试卷复习试题调研考试压轴押题[学业水平训练]高三理数一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 抛物线24y x =的焦点坐标是A. (0,1)B.(1,0)C.(0,2)D.(0,116) 2. 已知圆221236F x y ++=(:),定点220F (,),A 是圆1F 上的一动点,线段2F A 的垂直平分线交半径1F A 于P 点,则P 点的轨迹C 的方程是A. 22143x y +=B.22195x y +=C.22134x y +=D.22159x y += 3.将函数y=3sin (2x+3π)的图象经过怎样的平移后所得的图象关于点(12π-,0)中心对称 A. 向左平移12π个单位 B.向右平移12π个单位 C.向左平移6π个单位 D.向右平移6π个单位 4.函数21e x y x =-()的图象是5. 已知某几何体的三视图如图所示,则该几何体的体积为A. 83πB. 3πC.103π D.6π 6.已知A B P 、、是双曲线22221(0,0)x y a b a b-=>>上不同的三点,且A B 、连线经过坐标原点,若直线PA PB 、的斜率乘积3PA PB k k =,则该双曲线的离心率为A. C. 2 D.37.已知抛物线24x y =上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为A. 34B.32C.1D.28. 如图是一个几何体的三视图,在该几何体的各个面中,面积最小的面的面积为A. 9.在等腰直角三角形ABC 中,∠C=90°,2CA =,点P 为三角形ABC 所在平面上一动点,且满足BP =1,则()BP CA CB +的取值范围是A. [-B. [0,C. [2,2]D.[-10.已知12,F F 是椭圆2211612x y +=的左、右焦点,点M (2,3),则∠12F MF 的角平分线的斜率为A. 11.如图,在四棱锥PABCD 中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为底面ABCD 内的一个动点,且满足MP=MC ,则点M 在正方形ABCD 内的轨迹为下图中的12.已知球O 与棱长为4的正方体1111ABCD A B C D -的所有棱都相切,点M 是球O 上一点,点N 是△1ACB 的外接圆上的一点,则线段MN 的取值范围是A. B. 2]C. D.二、填空题:本题共4小题,每小题5分。
高考数学高三模拟试卷试题压轴押题学业分层测评4
高考数学高三模拟试卷试题压轴押题学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.命题“若m=10,则m2=100”与其逆命题、否命题、逆否命题这四个命题中,真命题是( )A.原命题、否命题B.原命题、逆命题C.原命题、逆否命题D.逆命题、否命题【解析】因为原命题是真命题,所以逆否命题也是真命题.【答案】C2.有下列四个命题:(1)“若x2+y2=0,则xy=0”的否命题;(2)“若x>y,则x2>y2”的逆否命题;(3)“若x≤3,则x2-x-6>0”的否命题;(4)“对顶角相等”的逆命题.其中真命题的个数是( )A.0 B.1 C.2 D.3【解析】3.下列说法中错误的个数是( )①命题“余弦函数是周期函数”的否命题是“余弦函数不是周期函数”;②命题“若x>1,则x-1>0”的否命题是“若x≤1,则x-1≤0”;③命题“两个正数的和为正数”的否命题是“两个负数的和为负数”;④命题“x=-4是方程x2+3x-4=0的根”的否命题是“x=-4不是方程x2+3x-4=0的根”.A.1 B.2 C.3 D.4【解析】①错误,否命题是“若一个函数不是余弦函数,则它不是周期函数”;②正确;③错误,否命题是“若两个数不全为正数,则它们的和不为正数”;④错误,否命题是“若一个数不是-4,则它不是方程x2+3x-4=0的根”.【答案】C4.已知命题p:若a>0,则方程ax2+2x=0有解,则其原命题、否命题、逆命题及逆否命题中真命题的个数为( )A.3 B.2 C.1 D.0【解析】易知原命题和逆否命题都是真命题,否命题和逆命题都是假命题.故选B.【答案】B5.在下列四个命题中,真命题是( )A.“x=3时,x2+2x-3=0”的否命题B.“若b=3,则b2=9”的逆命题C.若ac>bc,则a>bD.“相似三角形的对应角相等”的逆否命题【解析】A中命题的否命题为“x≠3时,x2+2x-3≠0”,是假命题;B中命题的逆命题为“若b2=9,则b=3”,是假命题;C中当c<0时,为假命题;D中原命题与逆否命题等价,都是真命题.故选D.【答案】D二、填空题6.“若x,y全为零,则xy=0”的否命题为________.【答案】若x,y不全为零,则xy≠07.下列命题中:①若一个四边形的四条边不相等,则它不是正方形;②正方形的四条边相等;③若一个四边形的四条边相等,则它是正方形.其中互为逆命题的有________;互为否命题的有________;互为逆否命题的有________.(填序号)【答案】②和③①和③①和②8.给出下列命题:①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题;②命题“△ABC中,若AB=BC=CA,那么△ABC为等边三角形”的逆命题;③命题“若a>b>0,则3a>3b>0”的逆否命题;④“若m>1,则mx2-2(m+1)x+(m-3)>0的解集为R”的逆命题.其中,真命题的序号为________. 【导学号:26160008】【解析】①否命题:若b2-4ac≥0,则方程ax2+bx+c=0(a≠0)有实根,真命题;②逆命题:若△ABC为等边三角形,则AB=BC=CA,真命题;③因为命题“若a>b>0,则3a>3b>0”是真命题,故其逆否命题是真命题;④逆命题:若mx2-2(m+1)x+(m-3)>0的解集是R,则m>1,假命题.所以应填①②③.【答案】①②③三、解答题9.写出命题“已知a,b∈R,若a2>b2,则a>b”的逆命题、否命题和逆否命题,并判断它们的真假.【解】逆命题:已知a,b∈R,若a>b,则a2>b2;否命题:已知a,b∈R,若a2≤b2,则a≤b;逆否命题:已知a,b∈R,若a≤b,则a2≤b2.原命题是假命题.逆否命题也是假命题.逆命题是假命题.否命题也是假命题.10.已知命题p:“若ac≥0,则二次方程ax2+bx+c=0没有实根”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假,并证明你的结论.【解】(1)命题p的否命题为“若ac<0,则二次方程ax2+bx+c=0有实根”.(2)命题p的否命题是真命题.证明如下:∵ac<0,∴-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根.∴该命题是真命题.[能力提升]1.(·陕西高考)原命题为“若an+an+12<an,n∈N+,则{an}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( ) A.真,真,真 B.假,假,真C.真,真,假D.假,假,假【解析】an +an +12<an ⇔an +1<an ⇔{an}为递减数列. 原命题与其逆命题都是真命题,所以其否命题和逆否命题也都是真命题,故选A. 【答案】 A2.下列四个命题:①“若x +y =0,则x =0,且y =0”的逆否命题;②“正方形是矩形”的否命题;③“若x =1,则x2=1”的逆命题;④若m >2,则x2-2x +m >0.其中真命题的个数为( )A .0B .1C .2D .3【解析】 命题①的逆否命题是“若x ≠0,或y ≠0,则x +y ≠0”,为假命题; 命题②的否命题是“若一个四边形不是正方形,则它不是矩形”,为假命题; 命题③的逆命题是“若x2=1,则x =1”,为假命题;命题④为真命题,当m >2时,方程x2-2x +m =0的判别式Δ<0,对应二次函数图象开口向上且与x 轴无交点,所以函数值恒大于0.【答案】 B3.已知命题“若m -1<x <m +1,则1<x <2”的逆命题为真命题,则m 的取值范围是________. 【导学号:26160009】【解析】 由已知得,若1<x <2成立,则m -1<x <m +1也成立.∴⎩⎪⎨⎪⎧ m -1≤1,m +1≥2,∴1≤m ≤2. 【答案】 [1,2]4.判断命题:“若b ≤-1,则关于x 的方程x2-2bx +b2+b =0有实根”的逆否命题的真假.【解】 (利用原命题)因为原命题与逆否命题真假性一致,所以只需判断原命题真假即可.方程判别式为Δ=4b2-4(b2+b)=-4b ,因为b ≤-1,所以Δ≥4>0,故此方程有两个不相等的实根,即原命题为真,故它的逆否命题也为真.高考数学高三模拟试卷试题压轴押题统考数学理试卷第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)复数313ii+=- (A )i (B )i - (C )2i (D )2i -(2)已知()f x 是定义在R 上的奇函数,且当0x >时,()23xf x =-,则(2)f -=(A )1 (B )1- (C )14 (D )114- (3)已知数列{}n a 为等差数列,若23a =,1612a a +=,则789a a a ++=(A )27 (B )36 (C )45 (D )63(4)已知抛物线24x y =上一点A 的纵坐标为4,则点A 到抛物线焦点的距离为(A )10 (B )4 (C )15 (D )5 (5)给出下列四个命题:①,sin cos 1R ααα∀∈+>-②3,sin cos 2R ααα∃∈+=③1,sin cos 2R ααα∀∈≤④3,sin cos 4R ααα∃∈=其中正确命题的序号是①②③④(A )①② (B )①③ (C )③④ (D )②④(6)如图是一个容量为200的样本频率分布直方图,则样本数据落在范围[13,17)的频数为(A )81 (B )36 (C )24 (D )12(7)已知椭圆221:12x y C m n +=+与双曲线222:1x y C m n-=共焦点,则椭圆1C 的离心率e 的取值范围为(A )2(,1) (B )2(0,) (C )(0,1) (D )1(0,)2(8)已知O为坐标原点,A,B两点的坐标均满足不等式组3103010x yx yx-+≤⎧⎪+-≤⎨⎪-≥⎩,则tan AOB∠的最大值等于(A)12(B)34(C)47(D)94(9)设函数()3cos(2)sin(2)(||)2f x x xπϕϕϕ=+++<,且其图象关于直线0x=对称,则(A)()y f x=的最小正周期为π,且在(0,)2π上为增函数(B)()y f x=的最小正周期为π,且在(0,)2π上为减函数(C)()y f x=的最小正周期为2π,且在(0,)4π上为增函数(D)()y f x=的最小正周期为2π,且在(0,)4π上为减函数(10)某几何体的三视图入图所示,则此几何体对应直观图中△PAB的面积是(A)7(B)2 (C)3(D)5(11)根据如图所示程序框图,若输入2146m=,1813n=,则输出m的值为(A)1 (B)37 (C)148 (D)333(12)已知函数|21|,2()3,21x xf xxx⎧-<⎪=⎨≥⎪-⎩,若方程()0f x a-=有三个不同的实数根,则实数a的取值范围为(A )(1,3) (B )(0,3) (C )(0,2) (D )(0,1)第Ⅱ卷本卷包括必考题和选考题两部分。
高考数学高三模拟试卷试题压轴押题学业水平训练4
高考数学高三模拟试卷试题压轴押题学业水平训练一、填空题1.已知△ABC 的面积为14(a2+b2-c2),其中边a ,b ,c 为角A ,B ,C 所对的边,则C =________.解析:S =14(a2+b2-c2)=12abcosC ,又S =12absinC ,所以sinC =cosC ,而C ∈(0,π),故C =π4.答案:π42.在△ABC 中,若a2=bc ,则角A 是________.(填“锐角”、“直角”或“钝角”)解析:cosA =b2+c2-a22bc =b2+c2-bc 2bc =(b -c )2+bc2bc>0.答案:锐角3.在△ABC 中,已知A =30°,且3a =3b =12,则c =________.解析:a =4,b =43,cosA =48+c2-162×43c=32,解得c =4或c =8.答案:4或84.在△ABC 中,已知c =2acosB ,则△ABC 是________三角形.解析:由余弦定理及已知条件知a2+c2-b22ac =cosB =c2a,∴a2+c2-b2=c2,即a2=b2,亦即a =b. 答案:等腰5.在△ABC 中,若A =2B ,且2a =3b ,则sinB =________. 解析:由正弦定理得2sinA =3sinB ,又∵A =2B ,∴2sin2B =3sinB ,∴cosB =34,∴sinB =74.答案:746.在△ABC 中,若a =5,b =3,C =120°,则sinA 的值为________.解析:由余弦定理,求得c =7,再由正弦定理sinA =asinC c ,可得sinA =5314.答案:53147.已知锐角三角形的三边长分别为2,3,x ,则x 的取值范围为________.解析:若x 为最大的边,则4+9-x2>0,解得x2<13;若3为最大的边,则4+x2-9>0,解得x2>5,故5<x<13,即x 的取值范围是(5,13).答案:(5,13) 二、解答题8.在△ABC 中,若(a -c ·cosB)·sinB =(b -c ·cosA)·sinA ,判断△ABC 的形状. 解:法一:由正弦定理及余弦定理,知原等式可化为: ⎝ ⎛⎭⎪⎫a -c ·a2+c2-b22ac ·b =⎝ ⎛⎭⎪⎫b -c ·b2+c2-a22bc ·a ,整理,得(a2-b2)(a2+b2+c2)=0. ∴a2+b2-c2=0或a2=b2,故△ABC 为等腰三角形或直角三角形. 法二:由正弦定理,原等式可化为(sinA -sinCcosB)·sinB =(sinB -sinC ·cosA)·sinA , ∴sinBcosB =sinAcosA ,∴sin2B =sin2A , ∴2B =2A 或2B +2A =π.即A =B 或A +B =π2.故△ABC 为等腰三角形或直角三角形.9.在△ABC中,A ,B ,C 所对的边长分别为a ,b ,c.设a ,b ,c 满足b2+c2-bc =a2和c b =12+3,求A 和tanB 的值.解:由余弦定理,得cosA =b2+c2-a22bc =12,∴A =60°.在△ABC 中,C =180°-A -B =120°-B ,由正弦定理得12+3=c b =sinC sinB =sin (120°-B )sinB=sin120°cosB -cos120°sinB sinB=32tanB +12,∴tanB =12. [高考水平训练]一、填空题1.在△ABC 中,若a =6,b =4,A =30°,则满足条件的三角形有________个. 解析:如图,bsinA =4×12=2<a ,且a<b.再由余弦定理a2=b2+c2-2bccosA ,解得c 有两个值.答案:22.在△ABC 中,若A =60°,b =1,S △ABC =3,则asinA的值为________.解析:S =12bcsinA =12×1×c ×32=3,解出c =4.a2=b2+c2-2bccosA =13, a sinA =1332=2393. 答案:2393二、解答题3.在△ABC 中,a ,b ,c 分别是角A 、B 、C 的对边,已知2sinA =3cosA. (1)若a2-c2=b2-mbc ,求实数m 的值.(2)若a =3,求△ABC 面积的最大值. 解:(1)由2sinA =3cosA 两边平方得: 2sin2A =3cosA ,即2cos2A +3cosA -2=0,解得cosA =12或-2(舍),∵a2-c2=b2-mbc , ∴m 2=b2+c2-a22bc,由余弦定理的推论得 cosA =b2+c2-a22bc,∴m 2=12,∴m =1, (2)∵cosA =12,∴sinA =32,S △ABC =12bcsinA =34bc.又∵a2=b2+c2-bc ,∴3=b2+c2-bc =(b -c)2+bc ≥bc ,∴S △ABC =34bc ≤334,故△ABC 面积的最大值为334.4.已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,且tanBtanC -3(tanB +tanC)=1.(1)求角A 的大小; (2)现给出三个条件: ①a =1; ②b =2sinB ;③2c -(3+1)b =0.试从中选择两个条件求△ABC 的面积.解:(1)由tanBtanC -3(tanB +tanC)=1, 得tanB +tanC 1-tanBtanC =-33. 所以tan(B +C)=-33. 则tanA =-tan(B +C)=33,所以A =π6. (2)方案一:选择①③.∵A =30°,a =1,2c -(3+1)b =0,所以c =3+12b ,则根据余弦定理,得12=b2+(3+12b)2-2b ·3+12b ·32, 解得b =2,则c =6+22.∴S△ABC=12bcsinA=12×2×6+22×12=3+14.方案二:选择②③.可转化为选择①③解决,类似也可.(注:选择①②不能确定三角形)高考数学高三模拟试卷试题压轴押题统考数学理试卷第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)复数313ii+=- (A )i (B )i - (C )2i (D )2i -(2)已知()f x 是定义在R 上的奇函数,且当0x >时,()23xf x =-,则(2)f -=(A )1 (B )1- (C )14 (D )114- (3)已知数列{}n a 为等差数列,若23a =,1612a a +=,则789a a a ++=(A )27 (B )36 (C )45 (D )63(4)已知抛物线24x y =上一点A 的纵坐标为4,则点A 到抛物线焦点的距离为(A )10 (B )4 (C )15 (D )5 (5)给出下列四个命题:①,sin cos 1R ααα∀∈+>-②3,sin cos 2R ααα∃∈+=③1,sin cos 2R ααα∀∈≤④3,sin cos 4R ααα∃∈=其中正确命题的序号是①②③④(A )①② (B )①③ (C )③④ (D )②④(6)如图是一个容量为200的样本频率分布直方图,则样本数据落在范围[13,17)的频数为(A )81 (B )36 (C )24 (D )12(7)已知椭圆221:12x y C m n +=+与双曲线222:1x y C m n-=共焦点,则椭圆1C 的离心率e 的取值范围为(A )2(,1) (B )2(0,) (C )(0,1) (D )1(0,)2(8)已知O为坐标原点,A,B两点的坐标均满足不等式组3103010x yx yx-+≤⎧⎪+-≤⎨⎪-≥⎩,则tan AOB∠的最大值等于(A)12(B)34(C)47(D)94(9)设函数()3cos(2)sin(2)(||)2f x x xπϕϕϕ=+++<,且其图象关于直线0x=对称,则(A)()y f x=的最小正周期为π,且在(0,)2π上为增函数(B)()y f x=的最小正周期为π,且在(0,)2π上为减函数(C)()y f x=的最小正周期为2π,且在(0,)4π上为增函数(D)()y f x=的最小正周期为2π,且在(0,)4π上为减函数(10)某几何体的三视图入图所示,则此几何体对应直观图中△PAB的面积是(A)7(B)2 (C)3(D)5(11)根据如图所示程序框图,若输入2146m=,1813n=,则输出m的值为(A)1 (B)37 (C)148 (D)333(12)已知函数|21|,2()3,21x xf xxx⎧-<⎪=⎨≥⎪-⎩,若方程()0f x a-=有三个不同的实数根,则实数a的取值范围为(A )(1,3) (B )(0,3) (C )(0,2) (D )(0,1)第Ⅱ卷本卷包括必考题和选考题两部分。
高考数学高三模拟试卷试题压轴押题学业水平训1
高考数学高三模拟试卷试题压轴押题[学业水平训练]一、填空题1.边长为5、7、8的三角形的最大角与最小角的和是________.解析:设中间角为θ,则cos θ=52+82-722×5×8=12, θ=60°,180°-60°=120°即为所求.答案:120°2.在△ABC 中,若a =6,b =63,A =30°,则c =________.解析:由余弦定理a2=b2+c2-2bccosA ,得c2-18c +72=0,从而c =6或12. 答案:6或123.(·高考湖北卷)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c.若(a +b -c)(a +b +c)=ab ,则角C =________.解析:由(a +b -c)(a +b +c)=ab ,得a2+b2-c2=-ab ,则cosC =a2+b2-c22ab=-12. 又因为角C 为△ABC 的内角,所以C =2π3. 答案:2π34.已知三角形三边的比为2∶3∶4,则三角形的形状为________三角形.解析:由题设,记a =2k ,b =3k ,c =4k(k>0),则cosC =a2+b2-c22ab =-312=-14<0. 答案:钝角5.在△ABC 中,sinA ∶sinB ∶sinC =3∶2∶3,则cosC 的值为________.解析:由正弦定理得a ∶b ∶c =sinA ∶sinB ∶sinC =3∶2∶3,设a =3x ,b =2x ,c =3x ,则cosC =a2+b2-c22ab =9x2+4x2-9x22×3x ×2x =13. 答案:136.(·铜陵高一检测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos2A 2=b +c 2c,则△ABC 是________三角形. 解析:在△ABC 中,∵cos2A 2=b +c 2c, ∴1+cosA 2=b 2c +12,∴cosA =b c, ∴由余弦定理知cosA =b2+c2-a22bc, ∴b2+c2-a22bc =b c,∴b2+c2-a2=2b2. 即a2+b2=c2.则△ABC 是直角三角形.7.已知向量a 和b 的模分别为2和3,且|a -b|=19,则a ,b 的夹角为________. 解析:a ,b ,a-b 可构成三角形,由余弦定理,得cos 〈a ,b 〉=4+9-192×2×3=-12. ∴〈a ,b 〉=23π. 答案:23π 二、解答题8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且tanC =37.(1)求cosC ;(2)若CB →·CA →=52,且a +b =9,求c. 解:(1)∵tanC =37,∴sinC cosC=37. 又∵sin2C +cos2C =1,解得cosC =±18. ∵tanC>0,∴C 是锐角.∴cosC =18. (2)∵CB →·CA →=52,∴ab ·cosC =52.∴ab =20. 又∵a +b =9,∴a2+2ab +b2=81.∴a2+b2=41.∴c2=a2+b2-2abcosC =36.∴c =6.9.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为126nmile ,在A 处看灯塔C 在货轮的北偏西30°,距离为83nmile ,货轮由A 处向正北航行到D 处,再看灯塔B 在货轮的南偏东60°.求:(1)A 处与D 处的距离;(2)灯塔C 与D 处的距离.解:(1)在△ABD 中,AB =126,∠ADB =60°,∠B =45°,由正弦定理得AD =ABsinB sin ∠ADB =126×2232=24(海里), 所以A 处与D 处的距离为24海里.(2)在△ACD 中,AC =83,AD =24,∠CAD =30°,由余弦定理得CD2=AD2+AC2-2·AD ·ACcos30°=242+(83)2-2×24×83×32=192, 所以CD =83(海里).所以灯塔C 与D 处的距离为83海里.[高考水平训练]1.△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,当a2+c2≥b2+ac 时,角B 的取值范围为________.解析:cosB =a2+c2-b22ac ≥12,又B ∈(0,π),故B ∈(0,π3]. 答案:(0,π3] 2.在△ABC 中,若acos2C 2+ccos2A 2=32b ,那么a ,b ,c 的关系是________. 解析:cos2C 2=1+cosC 2,cos2A 2=1+cosA 2, 代入已知等式得:a +c +acosC +ccosA =3b ,∴a +c +a ·b2+a2-c22ab +c ·b2+c2-a22bc=3b , 整理得a +c =2b.答案:a +c =2b二、解答题3.在△ABC 中,已知A>B>C ,且A =2C ,b =4,a +c =8,求a ,c 的长.解:由正弦定理a sinA =c sinC 及A =2C ,得cosC =a 2c =a2+b2-c22ab =a2-c2+168a. 从而有a2-c2+168a =a 2c, ∴4a2=a2c -c3+16c ,整理得a2(c -4)=c(c2-16).∵B>C ,∴b>c. ∴c ≠4,∴a2=c(c +4).又a +c =8,∴a =245,c =165. 4.在△ABC 中,若已知三边的长为连续正整数,最大的角为钝角.(1)求最大的角的余弦值;(2)求以此最大的角为内角,夹此角两边之和为4的平行四边形的最大面积.解:(1)设这三个数为n ,n +1,n +2,最大的角为θ,则cos θ=n2+(n +1)2-(n +2)22·n ·(n +1)<0, 化简得n2-2n -3<0⇒-1<n<3.∵n ∈N*且n +(n +1)>n +2, ∴n =2.∴cos θ=4+9-162×2×3=-14. (2)设此平行四边形的一边长为a ,则夹θ角的另一边长为4-a ,平行四边形的面积为S =a(4-a)·sin θ=154(4a -a2)=154[-(a -2)2+4]≤15.当且仅当a =2时,Smax =15.高考数学高三模拟试卷试题压轴押题重庆市高考数学试卷(文科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一个选项是符合题目要求的.1.(5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x02<0 B.对任意x∈R,使得x2<0C.存在x0∈R,都有D.不存在x∈R,使得x2<03.(5分)函数y=的定义域为()A.(﹣∞,2)B.(2,+∞)C.(2,3)∪(3,+∞)D.(2,4)∪(4,+∞)4.(5分)设P是圆(x﹣3)2+(y+1)2=4上的动点,Q是直线x=﹣3上的动点,则|PQ|的最小值为()A.6 B.4 C.3 D.25.(5分)执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.66.(5分)如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为()A.0.2 B.0.4 C.0.5 D.0.67.(5分)关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1,x2),且:x2﹣x1=15,则a=()A.B.C.D.8.(5分)某几何体的三视图如图所示,则该几何体的表面积为()A.180 B.200 C.220 D.2409.(5分)已知函数f(x)=ax3+bsinx+4(a,b∈R),f(lg(log210))=5,则f(lg (lg2))=()A.﹣5 B.﹣1 C.3 D.410.(5分)设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是()A.B.C.D.二.填空题:本大题共5小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.(5分)已知复数z=1+2i(i是虚数单位),则|z|=.12.(5分)若2、a、b、c、9成等差数列,则c﹣a=.13.(5分)若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为.14.(5分)OA为边,OB为对角线的矩形中,,,则实数k=.15.(5分)设0≤α≤π,不等式8x2﹣(8sinα)x+cos2α≥0对x∈R恒成立,则α的取值范围为.三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(13分)设数列{an}满足:a1=1,an+1=3an,n∈N+.(Ⅰ)求{an}的通项公式及前n项和Sn;(Ⅱ)已知{bn}是等差数列,Tn为前n项和,且b1=a2,b3=a1+a2+a3,求T20.17.(13分)从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得,,,.(Ⅰ)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;(Ⅱ)判断变量x与y之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y=bx+a中,,,其中,为样本平均值,线性回归方程也可写为.18.(13分)在△ABC中,内角A、B、C的对边分别是a、b、c,且a2=b2+c2+bc.(Ⅰ)求A;(Ⅱ)设a=,S为△ABC的面积,求S+3cosBcosC的最大值,并指出此时B的值.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=2,BC=CD=2,∠ACB=∠ACD=.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若侧棱PC上的点F满足PF=7FC,求三棱锥P﹣BDF的体积.20.(12分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(Ⅰ)将V表示成r的函数V(r),并求该函数的定义域;(Ⅱ)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.21.(12分)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.(Ⅰ)求该椭圆的标准方程;(Ⅱ)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP'Q的面积S的最大值,并写出对应的圆Q的标准方程.重庆市高考数学试卷(文科)参考答案与试题解析一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一个选项是符合题目要求的.1.(5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}【分析】根据A与B求出两集合的并集,由全集U,找出不属于并集的元素,即可求出所求的集合.【解答】解:∵A={1,2},B={2,3},∴A∪B={1,2,3},∵全集U={1,2,3,4},∴∁U(A∪B)={4}.故选:D.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x02<0 B.对任意x∈R,使得x2<0C.存在x0∈R,都有D.不存在x∈R,使得x2<0【分析】根据全称命题“∀x∈M,p(x)”的否定为特称命题:“∃x0∈M,¬p(x)”即可得出.【解答】解:根据全称命题的否定是特称命题可得:命题“对任意x∈R,都有x2≥0”的否定为“∃x0∈R,使得”.故选:A.【点评】熟练掌握全称命题“∀x∈M,p(x)”的否定为特称命题“∃x0∈M,¬p(x)”是解题的关键.3.(5分)函数y=的定义域为()A.(﹣∞,2)B.(2,+∞)C.(2,3)∪(3,+∞)D.(2,4)∪(4,+∞)【分析】根据“让解析式有意义”的原则,对数的真数大于0,分母不等于0,建立不等式,解之即可.【解答】解:要使原函数有意义,则,解得:2<x<3,或x>3所以原函数的定义域为(2,3)∪(3,+∞).故选:C.【点评】本题主要考查了函数的定义域及其求法,求定义域常用的方法就是根据“让解析式有意义”的原则,属于基础题.4.(5分)设P是圆(x﹣3)2+(y+1)2=4上的动点,Q是直线x=﹣3上的动点,则|PQ|的最小值为()A.6 B.4 C.3 D.2【分析】过圆心A作AQ⊥直线x=﹣3,与圆交于点P,此时|PQ|最小,由此能求出|PQ|的最小值.【解答】解:过圆心A作AQ⊥直线x=﹣3,与圆交于点P,此时|PQ|最小,由圆的方程得到A(3,﹣1),半径r=2,则|PQ|=|AQ|﹣r=6﹣2=4.故选:B.【点评】本题考查线段的最小值的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.5.(5分)执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.6【分析】模拟执行程序框图,依次写出每次循环得到的a,k的值,当a=时满足条件a <,退出循环,输出k的值为4.【解答】解:模拟执行程序框图,可得k=0,a=3,q=a=,k=1不满足条件a<,a=,k=2不满足条件a<,a=,k=3不满足条件a<,a=,k=4满足条件a<,退出循环,输出k的值为4.故选:B.【点评】本题主要考查了循环结构的程序框图,属于基础题.6.(5分)如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为()A.0.2 B.0.4 C.0.5 D.0.6【分析】由茎叶图10个原始数据数据,数出落在区间[22,30)内的个数,由古典概型的概率公式可得答案.【解答】解:由茎叶图10个原始数据,数据落在区间[22,30)内的共有4个,包括2个22,1个27,1个29,则数据落在区间[22,30)内的概率为=0.4.故选:B.【点评】本题考查古典概型及其概率公式,涉及茎叶图的应用,属基础题.7.(5分)关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1,x2),且:x2﹣x1=15,则a=()A.B.C.D.【分析】利用不等式的解集以及韦达定理得到两根关系式,然后与已知条件化简求解a的值即可.【解答】解:因为关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1,x2),所以x1+x2=2a…①,x1•x2=﹣8a2…②,又x2﹣x1=15…③,①2﹣4×②可得(x2﹣x1)2=36a2,代入③可得,152=36a2,解得a==,因为a>0,所以a=.故选:A.【点评】本题考查二次不等式的解法,韦达定理的应用,考查计算能力.8.(5分)某几何体的三视图如图所示,则该几何体的表面积为()A.180 B.200 C.220 D.240【分析】由三视图可知:该几何体是一个横放的直四棱柱,高为10;其底面是一个等腰梯形,上下边分别为2,8,高为4;据此可求出该几何体的表面积.【解答】解:由三视图可知:该几何体是一个横放的直四棱柱,高为10;其底面是一个等腰梯形,上下边分别为2,8,高为4.∴S表面积=2××(2+8)×4+2×5×10+2×10+8×10=240.故选:D.【点评】本题考查由三视图还原直观图,由三视图求面积、体积,由三视图正确恢复原几何体是解决问题的关键.9.(5分)已知函数f(x)=ax3+bsinx+4(a,b∈R),f(lg(log210))=5,则f(lg (lg2))=()A.﹣5 B.﹣1 C.3 D.4【分析】由题设条件可得出lg(log210)与lg(lg2)互为相反数,再引入g(x)=ax3+bsinx,使得f(x)=g(x)+4,利用奇函数的性质即可得到关于f(lg(lg2))的方程,解方程即可得出它的值【解答】解:∵lg(log210)+lg(lg2)=lg1=0,∴lg(log210)与lg(lg2)互为相反数则设lg(log210)=m,那么lg(lg2)=﹣m令f(x)=g(x)+4,即g(x)=ax3+bsinx,此函数是一个奇函数,故g(﹣m)=﹣g (m),∴f(m)=g(m)+4=5,g(m)=1∴f(﹣m)=g(﹣m)+4=﹣g(m)+4=3.故选:C.【点评】本题考查函数奇偶性的运用及求函数的值,解题的关键是观察验证出lg (log210)与lg(lg2)互为相反数,审题时找准处理条件的方向对准确快速做题很重要10.(5分)设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是()A.B.C.D.【分析】不妨令双曲线的方程为,由|A1B1|=|A2B2|及双曲线的对称性知A1,A2,B1,B2关于x轴对称,由满足条件的直线只有一对,得,由此能求出双曲线的离心率的范围.【解答】解:不妨令双曲线的方程为,由|A1B1|=|A2B2|及双曲线的对称性知A1,A2,B1,B2关于x轴对称,如图,又∵满足条件的直线只有一对,当直线与x轴夹角为30°时,双曲线的渐近线与x轴夹角大于30°,双曲线与直线才能有交点A1,A2,B1,B2,若双曲线的渐近线与x轴夹角等于30°,则无交点,则不可能存在|A1B1|=|A2B2|,当直线与x轴夹角为60°时,双曲线渐近线与x轴夹角大于60°,双曲线与直线有一对交点A1,A2,B1,B2,若双曲线的渐近线与x轴夹角等于60°,也满足题中有一对直线,但是如果大于60°,则有两对直线.不符合题意,∴tan30°,即,∴,∵b2=c2﹣a2,∴,∴,∴,∴双曲线的离心率的范围是.故选:A.【点评】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件.二.填空题:本大题共5小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.(5分)已知复数z=1+2i(i是虚数单位),则|z|=.【分析】直接利用复数的模的求法公式,求解即可.【解答】解:复数z=1+2i(i是虚数单位),则|z|==.故答案为:.【点评】本题考查复数的模的求法,考查计算能力.12.(5分)若2、a、b、c、9成等差数列,则c﹣a=.【分析】由等差数列的性质可得2b=2+9,解之可得b值,再由等差中项可得a,c的值,作差即可得答案.【解答】解:由等差数列的性质可得2b=2+9,解得b=,又可得2a=2+b=2+=,解之可得a=,同理可得2c=9+=,解得c=,故c﹣a=﹣==故答案为:【点评】本题考查等差数列的性质和通项公式,属基础题.13.(5分)若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为.【分析】甲、乙两人相邻,可以把两个元素看做一个元素同其他元素进行排列,然后代入古典概率的求解公式即可求解【解答】解:记甲、乙两人相邻而站为事件A甲、乙、丙三人随机地站成一排的所有排法有=6,则甲、乙两人相邻而站,把甲和乙当做一个整体,甲和乙的排列有种,然后把甲乙整体和丙进行排列,有种,因此共有=4种站法∴=故答案为:【点评】本题考查排列组合及简单的计数问题及古典概率的求解,本题解题的关键是把相邻的问题作为一个元素同其他的元素进行排列,本题是一个基础题.14.(5分)OA为边,OB为对角线的矩形中,,,则实数k= 4.【分析】由题意可得OA⊥AB,故有=0,即==0,解方程求得k的值.【解答】解:由于OA为边,OB为对角线的矩形中,OA⊥AB,∴=0,即==(﹣3,1)•(﹣2,k)﹣10=6+k﹣10=0,解得k=4,故答案为 4.【点评】本题主要考查两个向量的数量积的运算,两个向量垂直的性质,两个向量的加减法及其几何意义,属于基础题.15.(5分)设0≤α≤π,不等式8x2﹣(8sinα)x+cos2α≥0对x∈R恒成立,则α的取值范围为[0,]∪[,π].【分析】由题意可得,△=64sin2α﹣32cos2α≤0即2sin2α﹣(1﹣2sin2α)≤0,解不等式结合0≤α≤π可求α的取值范围.【解答】解:由题意可得,△=64sin2α﹣32cos2α≤0,得2sin2α﹣(1﹣2sin2α)≤0∴sin2α≤,﹣≤sinα≤,∵0≤α≤π∴α∈[0,]∪[,π].故答案为:[0,]∪[,π].【点评】本题主要考查了一元二次不等式的解法、二次函数的恒成立问题,属于中档题.三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(13分)设数列{an}满足:a1=1,an+1=3an,n∈N+.(Ⅰ)求{an}的通项公式及前n项和Sn;(Ⅱ)已知{bn}是等差数列,Tn为前n项和,且b1=a2,b3=a1+a2+a3,求T20.【分析】(Ⅰ)由题意可得数列{an}是以1为首项,以3为公比的等比数列,则其通项公式与前n项和可求;(Ⅱ)由b1=a2=3,b3=a1+a2+a3=1+3+9=13,可得等差数列{bn}的公差,再由等差数列的前n项和求得T20.【解答】解:(Ⅰ)由an+1=3an,得,又a1=1,∴数列{an}是以1为首项,以3为公比的等比数列,则,;(Ⅱ)∵b1=a2=3,b3=a1+a2+a3=1+3+9=13,∴b3﹣b1=10=2d,则d=5.故.【点评】本题考查数列递推式,考查等比关系的确定,训练了等差数列和等比数列前n项和的求法,是中档题.17.(13分)从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得,,,.(Ⅰ)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;(Ⅱ)判断变量x与y之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y=bx+a中,,,其中,为样本平均值,线性回归方程也可写为.【分析】(Ⅰ)由题意可知n,,,进而可得,,代入可得b值,进而可得a值,可得方程;(Ⅱ)由回归方程x的系数b的正负可判;(Ⅲ)把x=7代入回归方程求其函数值即可.【解答】解:(Ⅰ)由题意可知n=10,===8,===2,故lxx==720﹣10×82=80,lxy==184﹣10×8×2=24,故可得b=═=0.3,a==2﹣0.3×8=﹣0.4,故所求的回归方程为:y=0.3x﹣0.4;(Ⅱ)由(Ⅰ)可知b=0.3>0,即变量y随x的增加而增加,故x与y之间是正相关;(Ⅲ)把x=7代入回归方程可预测该家庭的月储蓄为y=0.3×7﹣0.4=1.7(千元).【点评】本题考查线性回归方程的求解及应用,属基础题.18.(13分)在△ABC中,内角A、B、C的对边分别是a、b、c,且a2=b2+c2+bc.(Ⅰ)求A;(Ⅱ)设a=,S为△ABC的面积,求S+3cosBcosC的最大值,并指出此时B的值.【分析】(Ⅰ)由余弦定理表示出cosA,将依照等式变形后代入求出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数;(Ⅱ)由(Ⅰ)求出sinA的值,由三角形的面积公式及正弦定理列出关系式,表示出S,代入已知等式中提取3变形后,利用两角和与差的余弦函数公式化为一个角的余弦函数,由余弦函数的图象与性质即可求出S+3cosBcosC的最大值,以及此时B的值.【解答】解:(Ⅰ)由余弦定理得:cosA===﹣,∵A为三角形的内角,∴A=;(Ⅱ)由(Ⅰ)得sinA=,由正弦定理得:b=,csinA=asinC及a=得:S=bcsinA=••asinC=3sinBsinC,则S+3cosBcosC=3(sinBsinC+cosBcosC)=3cos(B﹣C),则当B﹣C=0,即B=C==时,S+3cosBcosC取最大值3.【点评】此题考查了正弦、余弦定理,三角形的面积公式,以及余弦函数的图象与性质,熟练掌握定理及公式是解本题的关键.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=2,BC=CD=2,∠ACB=∠ACD=.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若侧棱PC上的点F满足PF=7FC,求三棱锥P﹣BDF的体积.【分析】(Ⅰ)由等腰三角形的性质可得BD⊥AC,再由PA⊥底面ABCD,可得PA⊥BD.再利用直线和平面垂直的判定定理证明BD⊥平面PAC.(Ⅱ)由侧棱PC上的点F满足PF=7FC,可得三棱锥F﹣BCD的高是三棱锥P﹣BCD的高的.求出△BCD的面积S△BCD,再根据三棱锥P﹣BDF的体积V=VP﹣BCD﹣VF﹣BCD=﹣,运算求得结果.【解答】解:(Ⅰ)∵BC=CD=2,∴△BCD为等腰三角形,再由,∴BD⊥AC.再由PA⊥底面ABCD,可得PA⊥BD.而PA∩AC=A,故BD⊥平面PAC.(Ⅱ)∵侧棱PC上的点F满足PF=7FC,∴三棱锥F﹣BCD的高是三棱锥P﹣BCD的高的.△BCD的面积S△BCD=BC•CD•sin∠BCD==.∴三棱锥P﹣BDF的体积V=VP﹣BCD﹣VF﹣BCD=﹣=×==.【点评】本题主要考查直线和平面垂直的判定定理的应用,用间接解法求棱锥的体积,属于中档题.20.(12分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(Ⅰ)将V表示成r的函数V(r),并求该函数的定义域;(Ⅱ)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.【分析】(I)由已知中侧面积和底面积的单位建造成本,结合圆柱体的侧面积及底面积公式,根据该蓄水池的总建造成本为12000π元,构造方程整理后,可将V表示成r的函数,进而根据实际中半径与高为正数,得到函数的定义域;(Ⅱ)根据(I)中函数的定义值及解析式,利用导数法,可确定函数的单调性,根据单调性,可得函数的最大值点.【解答】解:(Ⅰ)∵蓄水池的侧面积的建造成本为200•πrh元,底面积成本为160πr2元,∴蓄水池的总建造成本为200•πrh+160πr2元即200•πrh+160πr2=12000π∴h=(300﹣4r2)∴V(r)=πr2h=πr2•(300﹣4r2)=(300r﹣4r3)又由r>0,h>0可得0<r<5故函数V(r)的定义域为(0,5)(Ⅱ)由(Ⅰ)中V(r)=(300r﹣4r3),(0<r<5)可得V′(r)=(300﹣12r2),(0<r<5)∵令V′(r)=(300﹣12r2)=0,则r=5∴当r∈(0,5)时,V′(r)>0,函数V(r)为增函数当r∈(5,5)时,V′(r)<0,函数V(r)为减函数且当r=5,h=8时该蓄水池的体积最大【点评】本题考查的知识点是函数模型的应用,其中(Ⅰ)的关键是根据已知,求出函数的解析式及定义域,(Ⅱ)的关键是利用导数分析出函数的单调性及最值点.21.(12分)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.(Ⅰ)求该椭圆的标准方程;(Ⅱ)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP'Q的面积S的最大值,并写出对应的圆Q的标准方程.【分析】(Ⅰ)设椭圆方程为,将左焦点横坐标代入椭圆方程可得y=,则,又②,a2=b2+c2③,联立①②③可求得a,b;(Ⅱ)设Q(t,0)(t>0),圆的半径为r,直线PP′方程为:x=m(m>t),则圆Q的方程为:(x﹣t)2+y2=r2,联立圆与椭圆方程消掉y得x的二次方程,则△=0①,易求P 点坐标,代入圆的方程得等式②,由①②消掉r得m=2t,则,变为关于t的函数,利用基本不等式可求其最大值及此时t 值,由对称性可得圆心Q在y轴左侧的情况;【解答】解:(Ⅰ)设椭圆方程为,左焦点F1(﹣c,0),将横坐标﹣c代入椭圆方程,得y=,所以①,②,a2=b2+c2③,联立①②③解得a=4,,所以椭圆方程为:;(Ⅱ)设Q(t,0)(t>0),圆的半径为r,直线PP′方程为:x=m(m>t),则圆Q的方程为:(x﹣t)2+y2=r2,由得x2﹣4tx+2t2+16﹣2r2=0,由△=0,即16t2﹣4(2t2+16﹣2r2)=0,得t2+r2=8,①把x=m代入,得,所以点P坐标为(m,),代入(x﹣t)2+y2=r2,得,②由①②消掉r2得4t2﹣4mt+m2=0,即m=2t,=×(m﹣t)=×t=≤×=2,当且仅当4﹣t2=t2即t=时取等号,此时t+r=+<4,椭圆上除P、P′外的点在圆Q外,所以△PP'Q的面积S的最大值为,圆Q的标准方程为:.当圆心Q、直线PP′在y轴左侧时,由对称性可得圆Q的方程为,△PP'Q 的面积S的最大值仍为为.【点评】本题考查圆、椭圆的标准方程,考查椭圆的几何性质,考查方程组的解法,考查学生的计算能力,难度较大.高考数学高三模拟试卷试题压轴押题重庆市高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0D.存在x0∈R,使得x02<03.(5分)(﹣6≤a≤3)的最大值为()A.9 B.C.3 D.4.(5分)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,85.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.200 D.2406.(5分)若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x ﹣a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(﹣∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(﹣∞,a)和(c,+∞)内7.(5分)已知圆C1:(x﹣2)2+(y﹣3)2=1,圆C2:(x﹣3)2+(y﹣4)2=9,M,N 分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.﹣1 B.5﹣4 C.6﹣2D.8.(5分)执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是()A.k≤6B.k≤7C.k≤8D.k≤99.(5分)4cos50°﹣tan40°=()A.B.C.D.2﹣110.(5分)在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是()A.(0,] B.(,] C.(,] D.(,]二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分,把答案填写在答题卡相应位置上.11.(5分)已知复数z=(i是虚数单位),则|z|=.12.(5分)已知{an}是等差数列,a1=1,公差d≠0,Sn为其前n项和,若a1,a2,a5成等比数列,则S8=.13.(5分)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是(用数字作答).14,15,16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分:14.(5分)如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为.15.(5分)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A,B两点,则|AB|=.16.若关于实数x的不等式|x﹣5|+|x+3|<a无解,则实数a的取值范围是.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(13分)设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.18.(13分)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级摸出红、蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).19.(13分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.(1)求PA的长;(2)求二面角B﹣AF﹣D的正弦值.20.(12分)在△ABC中,内角A,B,C的对边分别是a,b,c,且a2+b2+ab=c2.(1)求C;(2)设cosAcosB=,=,求tanα的值.21.(12分)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.(Ⅰ)求该椭圆的标准方程;(Ⅱ)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.22.(12分)对正整数n,记In={1,2,3…,n},Pn={|m∈In,k∈In}.(1)求集合P7中元素的个数;(2)若Pn的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使Pn能分成两个不相交的稀疏集的并集.重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}【分析】根据A与B求出两集合的并集,由全集U,找出不属于并集的元素,即可求出所求的集合.【解答】解:∵A={1,2},B={2,3},∴A∪B={1,2,3},∵全集U={1,2,3,4},∴∁U(A∪B)={4}.故选:D.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0D.存在x0∈R,使得x02<0【分析】直接利用全称命题的否定是特称命题,写出命题的否定命题即可.【解答】解:因为全称命题的否定是特称命题,所以命题“对任意x∈R,都有x2≥0”的否定为.存在x0∈R,使得x02<0.故选:D.【点评】本题考查命题的否定,全称命题与特称命题的否定关系,基本知识的考查.3.(5分)(﹣6≤a≤3)的最大值为()A.9 B.C.3 D.【分析】令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,利用二次函数的性质求得函数f(a)的最大值,即可得到所求式子的最大值.【解答】解:令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,由此可得当a=﹣时,函数f(a)取得最大值为,故(﹣6≤a≤3)的最大值为=,故选:B.【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.4.(5分)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,8【分析】求乙组数据的平均数就是把所有乙组数据加起来,再除以5.找甲组数据的中位数要把甲组数据按从小到大的顺序排列,位于最中间的一个数为中位数.据此列式求解即可.【解答】解:乙组数据平均数=(9+15+18+24+10+y)÷5=16.8;∴y=8;甲组数据可排列成:9,12,10+x,24,27.所以中位数为:10+x=15,∴x=5.故选:C.【点评】本题考查了中位数和平均数的计算.平均数是指在一组数据中所有数据之和再除以数据的个数.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫。
高考数学高三模拟试卷试题压轴押题学业分层测评0043
高考数学高三模拟试卷试题压轴押题学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.过抛物线y2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,它们的横坐标之和等于5,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在【解析】由定义,知|AB|=5+2=7,因为|AB|min =4,所以这样的直线有且仅有两条.【答案】B2.过点(1,0)作斜率为-2的直线,与抛物线y2=8x 交于A ,B 两点,则弦AB 的长为( )A .213B .215C .217D .219【解析】 设A ,B 两点坐标分别为(x1,y1),(x2,y2),由直线AB 斜率为-2,且过点(1,0)得直线AB 的方程为y =-2(x -1),代入抛物线方程y2=8x 得4(x -1)2=8x ,整理得x2-4x +1=0,则x1+x2=4,x1x2=1,|AB|=5x1+x22-4x1x2=516-4=215.故选B.【答案】 B3.(·全国卷Ⅰ)已知抛物线C :y2=x 的焦点为F ,A(x0,y0)是C 上一点,|AF|=54x0,则x0=( )A .1B .2C .4D .8【解析】由y2=x 得2p =1,即p =12,因此焦点F ⎝ ⎛⎭⎪⎫14,0,准线方程为l :x =-14,设A 点到准线的距离为d ,由抛物线的定义可知d =|AF|,从而x0+14=54x0,解得x0=1,故选A.【答案】A4.已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-2【解析】设A(x1,y1),B(x2,y2),由A ,B 两点在抛物线上,得y21=2px1,① y22=2px2,②由①-②,得(y1-y2)(y1+y2)=2p(x1-x2).又线段AB 的中点的纵坐标为2,即y1+y2=4,直线AB 的斜率为1,故2p =4,p =2,因此抛物线的准线方程为x =-p2=-1. 【答案】B5.设O 为坐标原点,F 为抛物线y2=4x 的焦点,A 为抛物线上一点,若OA →·AF →=-4,则点A 的坐标为( ) 【导学号:26160061】A .(2,±22)B .(1,±2)C .(1,2)D .(2,22)【解析】设A(x ,y),则y2=4x ,①OA →=(x ,y),AF →=(1-x ,-y),OA →·AF →=x -x2-y2=-4,② 由①②可解得x =1,y =±2. 【答案】B 二、填空题6.抛物线y2=4x 上的点到直线x -y +4=0的最小距离为________. 【解析】 可判断直线y =x +4与抛物线y2=4x 相离, 设y =x +m 与抛物线y2=4x 相切,则由⎩⎪⎨⎪⎧y =x +m ,y2=4x ,消去x 得y2-4y +4m =0.∴Δ=16-16m =0,m =1.又y =x +4与y =x +1的距离d =|4-1|2=322, 则所求的最小距离为322. 【答案】3227.已知抛物线y2=4x ,过点P(4,0)的直线与抛物线相交于A(x1,y1),B(x2,y2)两点,则y21+y21的最小值是________.【解析】 设AB 的方程为x =my +4,代入y2=4x 得y2-4my -16=0,则y1+y2=4m ,y1y2=-16,∴y21+y22=(y1+y2)2-2y1y2=16m2+32, 当m =0时,y21+y22最小为32. 【答案】 328.过抛物线y2=2x 的焦点F 作直线交抛物线于A ,B 两点,若|AB|=2512,|AF|<|BF|,则|AF|=________.【解析】 设过抛物线焦点的直线为y =k ⎝ ⎛⎭⎪⎫x -12, 联立得⎩⎪⎨⎪⎧y2=2x ,y =k ⎝ ⎛⎭⎪⎫x -12,整理得k2x2-(k2+2)x +14k2=0, x1+x2=k2+2k2,x1x2=14. |AB|=x1+x2+1=k2+2k2+1=2512,得k2=24, 代入k2x2-(k2+2)x +14k2=0 得12x2-13x +3=0,解之得x1=13,x2=34,又|AF|<|BF|, 故|AF|=x1+12=56. 【答案】56三、解答题9.求过定点P(0,1),且与抛物线y2=2x 只有一个公共点的直线方程. 【解】如图所示,若直线的斜率不存在,则过点P(0,1)的直线方程为x =0,由⎩⎪⎨⎪⎧x =0,y2=2x ,得⎩⎪⎨⎪⎧ x =0,y =0,即直线x =0与抛物线只有一个公共点. 若直线的斜率存在,则设直线为y =kx +1,代入y2=2x 得: k2x2+(2k -2)x +1=0,当k =0时,直线方程为y =1,与抛物线只有一个交点.当k ≠0时,Δ=(2k -2)2-4k2=0⇒k =12.此时,直线方程为y =12x +1. 可知,y =1或y =12x +1为所求的直线方程. 故所求的直线方程为x =0或y =1或y =12x +1. 10.已知抛物线的焦点F 在x 轴上,直线l 过F 且垂直于x 轴,l 与抛物线交于A ,B 两点,O 为坐标原点,若△OAB 的面积等于4,求此抛物线的标准方程.【解】 由题意,抛物线方程为y2=2px(p ≠0), 焦点F ⎝ ⎛⎭⎪⎫p 2,0,直线l :x =p 2, ∴A ,B 两点坐标为⎝ ⎛⎭⎪⎫p 2,p ,⎝ ⎛⎭⎪⎫p 2,-p , ∴|AB|=2|p|. ∵△OAB 的面积为4, ∴12·⎪⎪⎪⎪⎪⎪p 2·2|p|=4,∴p =±2 2. ∴抛物线方程为y2=±42x.[能力提升]1.(·全国卷Ⅱ)设F 为抛物线C :y2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB|=( )A.303B .6C .12D .73【解析】 ∵F 为抛物线C :y2=3x 的焦点,∴F ⎝ ⎛⎭⎪⎫34,0, ∴AB 的方程为y -0=tan 30°⎝ ⎛⎭⎪⎫x -34, 即y =33x -34. 联立⎩⎪⎨⎪⎧y2=3x ,y =33x -34,得13x2-72x +316=0.∴x1+x2=--7213=212,即xA +xB =212. 由于|AB|=xA +xB +p ,所以|AB|=212+32=12. 【答案】 C2.已知AB 是抛物线y2=2px(p>0)上的两点,O 为原点,若|OA →|=|OB →|,且抛物线的焦点恰好为△AOB 的垂心,则直线AB 的方程是( )A .x =pB .x =32pC .x =52pD .x =3p【解析】∵|OA →|=|OB →|, ∴A ,B 关于x 轴对称.设A(x0,2px0),B(x0,-2px0).∵AF ⊥OB ,F ⎝ ⎛⎭⎪⎫p 2,0, ∴2px0x0-p 2·⎝ ⎛⎭⎪⎫-2px0x0=-1, ∴x0=52p. 【答案】C3.(·湖南高考)平面上一机器人在行进中始终保持与点F(1,0)的距离和到直线x =-1的距离相等.若机器人接触不到过点P(-1,0)且斜率为k 的直线,则k 的取值范围是________.【解析】 由题意知机器人行进轨迹为以F(1,0)为焦点,x =-1为准线的抛物线,其方程为y2=4x.设过点(-1,0)且斜率为k 的直线方程为y =k(x +1).代入y2=4x ,得k2x2+(2k2-4)x +k2=0.∵机器人接触不到该直线,∴Δ=(2k2-4)2-4k4<0,∴k2>1.∴k>1或k<-1.【答案】 (-∞,-1)∪(1,+∞)4.已知直线l :y =12x +54,抛物线C :y2=2px(p>0)的顶点关于直线l 的对称点在该抛物线的准线上.(1)求抛物线C 的方程;(2)设A ,B 是抛物线C 上两个动点,过A 作平行于x 轴的直线m ,直线OB 与直线m 交于点N ,若OA →·OB →=0(O 为原点,A ,B 异于原点),试求点N 的轨迹方程. 【导学号:26160062】【解】(1)直线l :y =12x +54.① 过原点且垂直于l 的直线方程为y =-2x.② 由①②,得x =-12. ∵抛物线的顶点关于直线l 的对称点在该抛物线的准线上, ∴-p 2=-12×2,∴p =2. ∴抛物线C 的方程为y2=4x. (2)设A(x1,y1),B(x2,y2),N(x ,y). 由OA →·OB →=0,得x1x2+y1y2=0. 又y21=4x1,y22=4x2, 解得y1y2=-16.③ 直线ON :y =y2x2x ,即y =4y2x.④ 由③④及y =y1,得点N 的轨迹方程为x =-4(y ≠0).高考数学高三模拟试卷试题压轴押题重庆市高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0D.存在x0∈R,使得x02<03.(5分)(﹣6≤a≤3)的最大值为()A.9 B.C.3 D.4.(5分)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,85.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.200 D.2406.(5分)若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x ﹣a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(﹣∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(﹣∞,a)和(c,+∞)内7.(5分)已知圆C1:(x﹣2)2+(y﹣3)2=1,圆C2:(x﹣3)2+(y﹣4)2=9,M,N 分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.﹣1 B.5﹣4 C.6﹣2D.8.(5分)执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是()A.k≤6B.k≤7C.k≤8D.k≤99.(5分)4cos50°﹣tan40°=()A.B.C.D.2﹣110.(5分)在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是()A.(0,] B.(,] C.(,] D.(,]二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分,把答案填写在答题卡相应位置上.11.(5分)已知复数z=(i是虚数单位),则|z|=.12.(5分)已知{an}是等差数列,a1=1,公差d≠0,Sn为其前n项和,若a1,a2,a5成等比数列,则S8=.13.(5分)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是(用数字作答).14,15,16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分:14.(5分)如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为.15.(5分)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A,B两点,则|AB|=.16.若关于实数x的不等式|x﹣5|+|x+3|<a无解,则实数a的取值范围是.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(13分)设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.18.(13分)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级摸出红、蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).19.(13分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.(1)求PA的长;(2)求二面角B﹣AF﹣D的正弦值.20.(12分)在△ABC中,内角A,B,C的对边分别是a,b,c,且a2+b2+ab=c2.(1)求C;(2)设cosAcosB=,=,求tanα的值.21.(12分)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.(Ⅰ)求该椭圆的标准方程;(Ⅱ)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.22.(12分)对正整数n,记In={1,2,3…,n},Pn={|m∈In,k∈In}.(1)求集合P7中元素的个数;(2)若Pn的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使Pn能分成两个不相交的稀疏集的并集.重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}【分析】根据A与B求出两集合的并集,由全集U,找出不属于并集的元素,即可求出所求的集合.【解答】解:∵A={1,2},B={2,3},∴A∪B={1,2,3},∵全集U={1,2,3,4},∴∁U(A∪B)={4}.故选:D.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0D.存在x0∈R,使得x02<0【分析】直接利用全称命题的否定是特称命题,写出命题的否定命题即可.【解答】解:因为全称命题的否定是特称命题,所以命题“对任意x∈R,都有x2≥0”的否定为.存在x0∈R,使得x02<0.故选:D.【点评】本题考查命题的否定,全称命题与特称命题的否定关系,基本知识的考查.3.(5分)(﹣6≤a≤3)的最大值为()A.9 B.C.3 D.【分析】令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,利用二次函数的性质求得函数f(a)的最大值,即可得到所求式子的最大值.【解答】解:令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,由此可得当a=﹣时,函数f(a)取得最大值为,故(﹣6≤a≤3)的最大值为=,故选:B.【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.4.(5分)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,8【分析】求乙组数据的平均数就是把所有乙组数据加起来,再除以5.找甲组数据的中位数要把甲组数据按从小到大的顺序排列,位于最中间的一个数为中位数.据此列式求解即可.【解答】解:乙组数据平均数=(9+15+18+24+10+y)÷5=16.8;∴y=8;甲组数据可排列成:9,12,10+x,24,27.所以中位数为:10+x=15,∴x=5.故选:C.【点评】本题考查了中位数和平均数的计算.平均数是指在一组数据中所有数据之和再除以数据的个数.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.5.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.200 D.240【分析】如图所示,该几何体是棱长分别为4,8,10的长方体砍去两个小三棱柱得到一个四棱柱,据此即可计算出体积.【解答】解:如图所示,该几何体是棱长分别为4,8,10的长方体砍去两个小三棱柱得到一个四棱柱,由图知V==200.故选:C.【点评】由三视图正确恢复原几何体是解题的关键.6.(5分)若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x ﹣a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(﹣∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(﹣∞,a)和(c,+∞)内【分析】由函数零点存在判定定理可知:在区间(a,b),(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,即可判断出.【解答】解:∵a<b<c,∴f(a)=(a﹣b)(a﹣c)>0,f(b)=(b﹣c)(b﹣a)<0,f(c)=(c﹣a)(c﹣b)>0,由函数零点存在判定定理可知:在区间(a,b),(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内.故选:A.【点评】熟练掌握函数零点存在判定定理及二次函数最多有两个零点的性质是解题的关键.7.(5分)已知圆C1:(x﹣2)2+(y﹣3)2=1,圆C2:(x﹣3)2+(y﹣4)2=9,M,N 分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.﹣1 B.5﹣4 C.6﹣2D.【分析】求出圆C1关于x轴的对称圆的圆心坐标A,以及半径,然后求解圆A与圆C2的圆心距减去两个圆的半径和,即可求出|PM|+|PN|的最小值.【解答】解:如图圆C1关于x轴的对称圆的圆心坐标A(2,﹣3),半径为1,圆C2的圆心坐标(3,4),半径为3,由图象可知当P,M,N,三点共线时,|PM|+|PN|取得最小值,|PM|+|PN|的最小值为圆C3与圆C2的圆心距减去两个圆的半径和,即:|AC2|﹣3﹣1=﹣4=﹣4=5﹣4.故选:B.【点评】本题考查圆的对称圆的方程的求法,两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力.8.(5分)执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是()A.k≤6B.k≤7C.k≤8D.k≤9【分析】根据程序框图,写出运行结果,根据程序输出的结果是S=3,可得判断框内应填入的条件.【解答】解:根据程序框图,运行结果如下:S k第一次循环 log23 3第二次循环log23•log34 4第三次循环log23•log34•log45 5第四次循环log23•log34•log45•log56 6第五次循环log23•log34•log45•log56•log67 7第六次循环log23•log34•log45•log56•log67•log78=log28=3 8故如果输出S=3,那么只能进行六次循环,故判断框内应填入的条件是k≤7.故选:B.【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题.9.(5分)4cos50°﹣tan40°=()A.B.C.D.2﹣1【分析】原式第一项利用诱导公式化简,第二项利用同角三角函数间的基本关系切化弦,通分后利用同分母分式的减法法则计算,再利用诱导公式及两角和与差的正弦函数公式化简,整理后利用两角和与差的余弦函数公式化为一个角的余弦函数,约分即可得到结果.【解答】解:4cos50°﹣tan40°=4sin40°﹣tan40°======.故选:C.【点评】此题考查了两角和与差的正弦、余弦函数公式,同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握公式是解本题的关键.10.(5分)在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是()A.(0,] B.(,] C.(,] D.(,]【分析】建立坐标系,将向量条件用等式与不等式表示,利用向量模的计算公式,即可得到结论.【解答】解:根据条件知A,B1,P,B2构成一个矩形AB1PB2,以AB1,AB2所在直线为坐标轴建立直角坐标系,设|AB1|=a,|AB2|=b,点O的坐标为(x,y),则点P的坐标为(a,b),由=1,得,则∵||<,∴∴∴∵(x﹣a)2+y2=1,∴y2=1﹣(x﹣a)2≤1,∴y2≤1同理x2≤1∴x2+y2≤2②由①②知,∵||=,∴<||≤故选:D.【点评】本题考查向量知识的运用,考查学生转化问题的能力,考查学生的计算能力,属于难题.二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分,把答案填写在答题卡相应位置上.11.(5分)已知复数z=(i是虚数单位),则|z|=.【分析】通过复数的分子与分母同时求模即可得到结果.【解答】解:|z|===.故答案为:.【点评】本题考查复数的模的求法,考查计算能力.12.(5分)已知{an}是等差数列,a1=1,公差d≠0,Sn为其前n项和,若a1,a2,a5成等比数列,则S8=64.【分析】依题意,a1=1,=a1•(a1+4d),可解得d,从而利用等差数列的前n项和公式即可求得答案.【解答】解:∵{an}是等差数列,a1,a2,a5成等比数列,∴=a1•(a1+4d),又a1=1,∴d2﹣2d=0,公差d≠0,∴d=2.∴其前8项和S8=8a1+×d=8+56=64.故答案为:64.【点评】本题考查等差数列的前n项和,考查方程思想与运算能力,属于基础题.13.(5分)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是590(用数字作答).【分析】不同的组队方案:选5名医生组成一个医疗小组,要求其中骨科、脑外科和内科医生都至少有1人,方法共有6类,他们分别是:3名骨科、1名脑外科和1名内科医生;1名骨科、3名脑外科和1名内科医生,…,在每一类中都用分步计数原理解答.【解答】解:直接法:3名骨科、1名脑外科和1名内科医生,有C33C41C51=20种,1名骨科、3名脑外科和1名内科医生,有C31C43C51=60种,1名骨科、1名脑外科和3名内科医生,有C31C41C53=120种,2名骨科、2名脑外科和1名内科医生,有C32C42C51=90种,1名骨科、2名脑外科和2名内科医生,有C31C42C52=180种,2名骨科、1名脑外科和2名内科医生,有C32C41C52=120种,共计20+60+120+90+180+120=590种间接法:﹣﹣﹣+1=590故答案为:590.【点评】本题主要考查了排列、组合及简单计数问题,解答关键是利用直接法:先分类后分步.14,15,16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分:14.(5分)如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为5.【分析】利用直角△ABC的边角关系即可得出BC,利用弦切角定理可得∠BCD=∠A=60°.利用直角△BCD的边角关系即可得出CD,BD.再利用切割线定理可得CD2=DE•DB,即可得出DE.【解答】解:在△ABC中,∠C=90°,∠A=60°,AB=20,∴BC=AB•sin60°=.∵CD是此圆的切线,∴∠BCD=∠A=60°.在Rt△BCD中,CD=BC•cos60°=,BD=BC•sin60°=15.由切割线定理可得CD2=DE•DB,∴,解得DE=5.故答案为5.【点评】熟练掌握直角三角形的边角关系、弦切角定理、切割线定理是解题的关键.15.(5分)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A,B两点,则|AB|=16.【分析】先将直线极坐标方程ρcosθ=4化成直角坐标方程,再代入曲线(t为参数)中得A,B两点的直角坐标,最后利用两点间的距离公式即可得出|AB|.【解答】解:将直线极坐标方程ρcosθ=4化成直角坐标方程为x=4,代入曲线(t为参数)中得A,B两点的直角坐标为(4,8),(4,﹣8),则|AB|=16.故答案为:16.【点评】本题考查参数方程、极坐标方程、直角坐标方程间的转化,两点间的距离公式,考查转化、计算能力.16.若关于实数x的不等式|x﹣5|+|x+3|<a无解,则实数a的取值范围是(﹣∞,8].【分析】利用绝对值的意义求得|x﹣5|+|x+3|最小值为8,由此可得实数a的取值范围.【解答】解:由于|x﹣5|+|x+3|表示数轴上的x对应点到5和﹣3对应点的距离之和,其最小值为8,再由关于实数x的不等式|x﹣5|+|x+3|<a无解,可得a≤8,故答案为:(﹣∞,8].【点评】本题主要考查绝对值的意义,绝对值不等式的解法,求得|x﹣5|+|x+3|最小值为8,是解题的关键,属于中档题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(13分)设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.【分析】(1)先由所给函数的表达式,求导数fˊ(x),再根据导数的几何意义求出切线的斜率,最后由曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6)列出方程求a的值即可;(2)由(1)求出的原函数及其导函数,求出导函数的零点,把函数的定义域分段,判断导函数在各段内的符号,从而得到原函数的单调区间,根据在各区间内的单调性求出极值点,把极值点的横坐标代入函数解析式求得函数的极值.【解答】解:(1)因f(x)=a(x﹣5)2+6lnx,故f′(x)=2a(x﹣5)+,(x>0),令x=1,得f(1)=16a,f′(1)=6﹣8a,∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣16a=(6﹣8a)(x﹣1),由切线与y轴相交于点(0,6).∴6﹣16a=8a﹣6,∴a=.(2)由(I)得f(x)=(x﹣5)2+6lnx,(x>0),f′(x)=(x﹣5)+=,令f′(x)=0,得x=2或x=3,当0<x<2或x>3时,f′(x)>0,故f(x)在(0,2),(3,+∞)上为增函数,当2<x<3时,f′(x)<0,故f(x)在(2,3)上为减函数,故f(x)在x=2时取得极大值f(2)=+6ln2,在x=3时取得极小值f(3)=2+6ln3.【点评】本小题主要考查利用导数研究曲线上某点切线方程、利用导数研究函数的单调性、函数的极值及其几何意义等基础知识,考查运算求解能力,考查分类讨论思想、化归与转化思想.属于中档题.18.(13分)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级摸出红、蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).【分析】(1)从7个小球中取3的取法为,若取一个红球,则说明第一次取到一红2白,根据组合知识可求取球的种数,然后代入古典概率计算公式可求(2)先判断随机变量X的所有可能取值为200,50,10,0根据题意求出随机变量的各个取值的概率,即可求解分布列及期望值【解答】解:(1)设Ai表示摸到i个红球,Bi表示摸到i个蓝球,则Ai与Bi相互独立(i=0,1,2,3)∴P(A1)==(2)X的所有可能取值为0,10,50,200P(X=200)=P(A3B1)=P(A3)P(B1)=P(X=50)=P(A3)P(B0)==P(X=10)=P(A2)P(B1)==P(X=0)=1﹣=∴X的分布列为x 0 10 50 200PEX==4元【点评】本题主要考查了古典概型及计算公式,互斥事件、离散型随机变量的分布列及期望值的求解,考查了运用概率知识解决实际问题的能力.19.(13分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.(1)求PA的长;(2)求二面角B﹣AF﹣D的正弦值.【分析】(I)连接BD交AC于点O,等腰三角形BCD中利用“三线合一”证出AC⊥BD,因此分别以OB、OC分别为x轴、y轴建立空间直角坐标系如图所示.结合题意算出A、B、C、D各点的坐标,设P(0,﹣3,z),根据F为PC边的中点且AF⊥PB,算出z=2,从而得到=(0,0,﹣2),可得PA的长为2;(II)由(I)的计算,得=(﹣,3,0),=(,3,0),=(0,2,).利用垂直向量数量积为零的方法建立方程组,解出=(3,,﹣2)和=(3,﹣,2)分别为平面FAD、平面FAB的法向量,利用空间向量的夹角公式算出、夹角的余弦,结合同角三角函数的平方关系即可算出二面角B﹣AF﹣D的正弦值..【解答】解:(I)如图,连接BD交AC于点O∵BC=CD,AC平分角BCD,∴AC⊥BD以O为坐标原点,OB、OC所在直线分别为x轴、y轴,建立空间直角坐标系O﹣xyz,则OC=CDcos=1,而AC=4,可得AO=AC﹣OC=3.又∵OD=CDsin=,∴可得A(0,﹣3,0),B(,0,0),C(0,1,0),D(﹣,0,0)由于PA⊥底面ABCD,可设P(0,﹣3,z)∵F为PC边的中点,∴F(0,﹣1,),由此可得=(0,2,),∵=(,3,﹣z),且AF⊥PB,∴•=6﹣=0,解之得z=2(舍负)因此,=(0,0,﹣2),可得PA的长为2;(II)由(I)知=(﹣,3,0),=(,3,0),=(0,2,),设平面FAD的法向量为=(x1,y1,z1),平面FAB的法向量为=(x2,y2,z2),∵•=0且•=0,∴,取y1=得=(3,,﹣2),同理,由•=0且•=0,解出=(3,﹣,2),∴向量、的夹角余弦值为cos<,>===因此,二面角B﹣AF﹣D的正弦值等于=【点评】本题在三棱锥中求线段PA的长度,并求平面与平面所成角的正弦值.着重考查了空间线面垂直的判定与性质,考查了利用空间向量研究平面与平面所成角等知识,属于中档题.20.(12分)在△ABC中,内角A,B,C的对边分别是a,b,c,且a2+b2+ab=c2.(1)求C;(2)设cosAcosB=,=,求tanα的值.【分析】(1)利用余弦定理表示出cosC,将已知等式变形后代入求出cosC的值,由C为三角形的内角,利用特殊角的三角函数值即可求出C的度数;(2)已知第二个等式分子两项利用两角和与差的余弦函数公式化简,再利用同角三角函数间的基本关系弦化切,利用多项式乘多项式法则计算,由A+B的度数求出sin(A+B)的值,进而求出cos(A+B)的值,利用两角和与差的余弦函数公式化简cos(A+B),将cosAcosB的值代入求出sinAsinB的值,将各自的值代入得到tanα的方程,求出方程的解即可得到tanα的值.【解答】解:(1)∵a2+b2+ab=c2,即a2+b2﹣c2=﹣ab,∴由余弦定理得:cosC===﹣,又C为三角形的内角,则C=;(2)由题意==,∴(cosA﹣tanαsinA)(cosB﹣tanαsinB)=,即tan2αsinAsinB﹣tanα(sinAcosB+cosAsinB)+cosAcosB=tan2αsinAsinB﹣tanαsin(A+B)+cosAcosB=,∵C=,A+B=,cosAcosB=,∴sin(A+B)=,cos(A+B)=cosAcosB﹣sinAsinB=﹣sinAsinB=,即sinAsinB=,∴tan2α﹣tanα+=,即tan2α﹣5tanα+4=0,解得:tanα=1或tanα=4.【点评】此题考查了余弦定理,两角和与差的余弦函数公式,同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.21.(12分)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.(Ⅰ)求该椭圆的标准方程;(Ⅱ)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.【分析】(Ⅰ)利用点A(﹣c,2)在椭圆上,结合椭圆的离心率,求出几何量,即可求得椭圆的标准方程;(Ⅱ)设出圆Q的圆心坐标及半径,由PQ⊥P'Q得到P的坐标,写出圆的方程后和椭圆联立,化为关于x的二次方程后由判别式等于0得到关于t与r的方程,把P点坐标代入椭圆方程得到关于t与r的另一方程,联立可求出t与r的值,经验证满足椭圆上的其余点均在圆Q外,结合对称性即可求得圆Q的标准方程.【解答】解:(Ⅰ)由题意知点A(﹣c,2)在椭圆上,则,即①∵离心率,∴②联立①②得:,所以b2=8.把b2=8代入②得,a2=16.∴椭圆的标准方程为;(Ⅱ)设Q(t,0),圆Q的半径为r,则圆Q的方程为(x﹣t)2+y2=r2,不妨取P为第一象限的点,因为PQ⊥P'Q,则P()(t>0).联立,得x2﹣4tx+2t2+16﹣2r2=0.由△=(﹣4t)2﹣4(2t2+16﹣2r2)=0,得t2+r2=8又P()在椭圆上,所以.整理得,.代入t2+r2=8,得.解得:.所以,.此时.满足椭圆上的其余点均在圆Q外.由对称性可知,当t<0时,t=﹣,.故所求圆Q的标准方程为.【点评】本题考查椭圆的标准方程,考查椭圆的几何性质,考查方程组的解法,考查学生的计算能力,属于中档题.22.(12分)对正整数n,记In={1,2,3…,n},Pn={|m∈In,k∈In}.(1)求集合P7中元素的个数;(2)若Pn的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使Pn能分成两个不相交的稀疏集的并集.【分析】(1)对于集合P7 ,有n=7.当k=4时,根据Pn中有3个数与In={1,2,3…,n}中的数重复,由此求得集合P7中元素的个数.(2)先用反证法证明证当n≥15时,Pn不能分成两个不相交的稀疏集的并集,再证P14满足要求,从而求得n的最大值.【解答】解:(1)对于集合P7 ,有n=7.当k=1时,m=1,2,3…,7,Pn={1,2,3…,7},7个数,当k=2时,m=1,2,3…,7,Pn对应有7个数,当k=3时,m=1,2,3…,7,Pn对应有7个数,当k=4时,Pn={|m∈In,k∈In}=Pn={,1,,2,,3,}中有3个数(1,2,3)与k=1时Pn中的数重复,当k=5时,m=1,2,3…,7,Pn对应有7个数,当k=6时,m=1,2,3…,7,Pn对应有7个数,当k=7时,m=1,2,3…,7,Pn对应有7个数,由此求得集合P7中元素的个数为 7×7﹣3=46.(2)先证当n≥15时,Pn不能分成两个不相交的稀疏集的并集.假设当n≥15时,Pn可以分成两个不相交的稀疏集的并集,设A和B为两个不相交的稀疏集,使A∪B=Pn⊇In .不妨设1∈A,则由于1+3=22,∴3∉A,即3∈B.同理可得,6∈A,10∈B.又推出15∈A,但1+15=42,这与A为稀疏集相矛盾.再证P14满足要求.当k=1时,P14={|m∈I14,k∈I14}=I14,可以分成2个稀疏集的并集.事实上,只要取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},则A1和B1都是稀疏集,且A1∪B1=I14.当k=4时,集合{|m∈I14}中,除整数外,剩下的数组成集合{,,,…,},可以分为下列3个稀疏集的并:A2={,,,},B2={,,}.当k=9时,集合{|m∈I14}中,除整数外,剩下的数组成集合{,,,,…,,},可以分为下列3个稀疏集的并:A3={,,,,},B3={,,,,}.最后,集合C═{|m∈I14,k∈I14,且k≠1,4,9 }中的数的分母都是无理数,它与Pn中的任何其他数之和都不是整数,因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,则A和B是不相交的稀疏集,且A∪B=P14.综上可得,n的最大值为14.【点评】本题主要考查新定义,集合间的包含关系,体现了分类讨论的数学思想,属于中档题.高考数学高三模拟试卷试题压轴押题综合测评(四) 框图(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.要描述一工厂某产品的生产工艺,应用( )A.程序框图B.工序流程图C.知识结构图D.组织结构图【解析】这是设计生产过程,应为工序流程图,选B.【答案】B2.在下面的图示中,是结构图的是( )A.Q⇐P1→P1⇐P2→P2⇐P3→得到一个明显成立的条件C.D.【解析】A是流程图;C是图表;D是图示;B是知识结构图.【答案】BA.图象变换B.奇偶性C.对称性D.解析式【解析】函数的性质包括单调性、奇偶性、周期性等,故选B.。
高考数学高三模拟试卷试题压轴押题高三11月月考理数试题
高考数学高三模拟试卷试题压轴押题高三11月月考理数试题一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知i 为虚数单位,(2i)12z i +=-+则复数z =( )A. iB. i -C.43i +D.43i - 2.已知集合{}2M y y x ==,2212x N x y ⎧⎫=+=⎨⎬⎩⎭,则MN =( ) A.(){}1,1,(1,1)- B. {}1 C. 0,2⎡⎤⎣⎦ D. []0,13.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师 和2名学生组成,不同的安排方案共有( )A .12种B .10种C .9种D .8种4.已知2:,x 10p m R mx ∀∈--=有解,2000:,x 210q x N x ∃∈--≤则下列选项中是假命题的是( ) A .p q ∧ B. (q)p ∧⌝ C.q p ∨ D.(q)p ∨⌝5.已知抛物线2:x 2(p 0)C py =>的焦点为F ,直线4x =与x 轴的交点为P ,与C 的交点为Q ,且54QF PQ =,则抛物线C 的方程为( ) A.22x y = B.24x y = C. 28x y = D.216x y =6. 设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是( )A .若//,m n αβ⊥且m n ⊥则αβ⊥B .若,m n αβ⊥⊥且//m n 则//αβC .若,////m n m n αβαβ⊥⊥且则D .若,m n αβ⊂⊂且//m n 则//αβ7.对任意实数若a b ⊗的运算规则如图所示,则25(2cos)(log 4)3π⊗的值为( ) A.4 B.5 C.6 D.78.已知2sin()35πα-=-,则2015cos(2)3a π-=( ) A .78B .78-C .1725D .1725- 9. 已知向量,a b 满足2,1,22a b a b ==-≤则b 在a 上的投影的取值范围是( )A.1,22⎡⎤⎢⎥⎣⎦B.1,22⎛⎫ ⎪⎝⎭C.1,12⎡⎤⎢⎥⎣⎦ D.1,12⎛⎫ ⎪⎝⎭10.在长方体1111ABCD A B C D -中,12,1AB BC AA ===,若1,E F BD 为的两个三分点,G 为这个长方 体表面上的动点,则EGF ∠的最大值是( )A .30︒B .45︒C .60︒D .90︒11.已知12,F F 分别为双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点,过1F 的直线l 与双曲线C 的左右两支 分别交于,A B 两点,若22::3:4:5AB BF AF =,则双曲线的离心率为( )A 1315.2 D 312.设定义域为R 的函数1,11()1,11,11x x f x x x x⎧>⎪-⎪==⎨⎪⎪<-⎩,若关于x 的方程2()bf(x)c 0f x ++=有三个不同的解123,,x x x ,则222123x x x ++的值是( )A.1B. 3C.5D.10开始输入a,b输出a(ab) ?a b ≥否输出b(a+1)(第7题图)结束第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分.)13.某中学共有学生2000人,其中高一年级学生共有650人,现从全校学生中随机抽取1人,抽到高二年 级学生的概率是0.40,估计该校高三年级学生共有______人.14.设k 是一个正整数,(1)k x k +的展开式中第三项的系数为38,任取[][]0,4,0,16x y ∈∈,则点(x,y)满足条件y kx ≤的概率是.15.已知函数2(x)sin 1x f x e =++,其导函数记为/(x)f ,则//(2016)(2016)(2016)(2016)f f f f +-+--的值为______.16.已知函数1()ln +f x x x= ,若对任意的)1+1,2x ⎡⎡⎤⎣⎣⎦∈∞∈,及m ,不等式2()m 22f x tm ≥-+恒成 立,则实数t 的取值范围是_____.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且*11122(n 2,n N )n n n n S a S a +---=+≥∈.(1)证明:数列{21}n a -为等差数列;(2)若131361,3,(21)(21)n n n a a b a a +===++,求数列{}n b 的前n 项和为n T .18.(本小题满分12分)每逢节假日,在微信好友群发红包逐渐成为一种时尚,还能增进彼此的感情。
高考数学高三模拟试卷复习试题调研考试压轴押题学业水平训练010
高考数学高三模拟试卷复习试题调研考试压轴押题[学业水平训练]数学试题一、填空题1.已知集合{|22},{|1}A x x B x x =-<<=≤,则A B =.2.已知23(,,ia bi ab R i i+=+∈为虚数单位),则a b +=. 3.已知函数()sin()5f x kx π=+的最小正周期是3π,则正数k 的值为.4.某课题组进行城市空气质量监测,按地域将24个城市分成甲、乙、丙三组,对应区域城市数分别为4、12、8.若用分层抽样抽取6个城市,则乙组中应该抽取的城市数为. 5.已知等差数列{}n a 中,4610a a +=,若前5项的和55S =,则其公差为. 6.运行如图所示的流程图,如果输入1,2a b ==, 则输出的a 的值为.7.以抛物线24y x =的焦点为顶点,顶点为中心, 离心率为2的双曲线标准方程为.8.设{1,1},{2,0,2}x y ∈-∈-,则以(,)x y 为坐标 的点落在不等式21x y +≥所表示的平面区域内的 概率为.9.已知函数()lg(1)2x a f x =-的定义域是1(,)2+∞, 则实数a 的值为.10.已知一个圆锥的母线长为2,侧面展开是半圆,则该圆锥的体积为. 11.如图,在ABC ∆中,已知4,6,60AB AC BAC ==∠=︒, 点,D E 分别在边,AB AC 上,且2,3AB AD AC AE ==, 点F 为DE 中点,则BF DE 的值为. 12.已知函数24,()43,f x x x ⎧=⎨+-⎩,.x m x m ≥<若函数()()2g x f x x =-恰有三个不同的零点,则实数m 的取值范围是.13.已知圆22:(1)(1)4M x y -+-=,直线:60,l x y A +-=为直线l 上一点,若圆M 上存在A DFEB C两点,B C ,使得60BAC ∠=︒,则点A 的横坐标的取值范围是.14.已知,a b 为正实数,且2a b +=,则2221a b a b +++的最小值为. 二、解答题15.已知向量(sin ,2),(cos ,1)a b θθ==,且,a b 共线,其中(0,)2πθ∈.(1)求tan()4πθ+的值;(2)若5cos(),02πθϕϕϕ-=<<,求ϕ的值.16.如图,在正方体1111ABCD A B C D -中,,E F 分别是1,AD DD 中点. 求证:(1)EF ∥平面1C BD ; (2)1A C ⊥平面1C BD .ABCDA 1B 1C 1D 117.如图,某生态园将一三角形地块ABC 的一角APQ 开辟为水果园种植桃树,已知角A 为120,,AB AC ︒的长度均大于200米,现在边界AP ,AQ 处建围墙,在PQ 处围竹篱笆.(1)若围墙AP,AQ 总长度为200米,如何围可使得三角形地块APQ 的面积最大?(2)已知AP 段围墙高1米,AQ 段围墙高 1.5米,造价均为每平方米100元.若围围墙用了20000元,问如何围可使竹篱笆用料最省?18.如图,已知椭圆22:1124x y C +=,点B 是其下顶点,过点B 的直线交椭圆C 于另一点A (A 点在x 轴下方),且线段AB 的中点E 在直线y x =上.(1)求直线AB 的方程;(2)若点P 为椭圆C 上异于A 、B 的动点,且直线AP,BP 分别交直线y x =于点M 、N ,证明:OM ON 为定值.APQBC19.已知函数()(1)xf x e a x =--,其中,a R e ∈为自然对数底数. (1)当1a =-时,求函数()f x 在点(1,(1))f 处的切线方程; (2)讨论函数()f x 的单调性,并写出相应的单调区间;(3)已知b R ∈,若函数()f x b ≥对任意x R ∈都成立,求ab 的最大值.20.已知数列{}n a 中1111,33n n n a n a a a n+⎧+⎪==⎨⎪-⎩((n n 为奇数)为偶数).(1)是否存在实数λ,使数列2{-}n a λ是等比数列?若存在,求λ的值;若不存在,请说明理由;(2)若n S 是数列{}n a 的前n 项和,求满足0n S >的所有正整数n .数学 数学Ⅱ 附加题部分注意事项1.本试卷共2页,均为解答题(第21题~第23题,共4题).本卷满分为40分,考试时间为30分钟。
高考数学高三模拟试卷复习试题调研考试压轴押题学业水平训练033
高考数学高三模拟试卷复习试题调研考试压轴押题[学业水平训练]16、设向量()()3sin ,sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦ (I )若a b =,求x 的值;(II )设函数()f x a b =⋅,求()x f 的最大值。
17、从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(Ⅱ)求频率分布直方图中的a ,b 的值;(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)18、如图,在四棱锥ABCD P -中,底面ABCD 是正方形,侧棱ABCD PD 底面⊥,2,PD DC E ==是PC 的中点.(Ⅰ)证明EDB PA 平面//; (Ⅱ)求三棱锥ABDP 的体积.19、已知圆2221)1r y x F =++:(与圆)40-4)1-2222<<=+r r y x F ()(:(的公共点的轨迹为曲线E ,且曲线E 与y 轴的正半轴相交于点M.若曲线E 上相异两点A,B,满足直线MA,MB 的斜率之积为41. (1)、求E 的方程;(2)、证明:直线AB 恒过定点,并求定点的坐标;(3)、求ABM ∆的面积的最大值.高考理科数学试卷普通高等学校招生全国统一考试注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷(2)选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m=(A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2 (5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18(C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为 (A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12(k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图, 若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34(9)若cos(π4–α)=35,则sin 2α= (A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2mn (11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β.(2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
高考数学高三模拟试卷试题压轴押题全国高中数学联赛试题
高考数学高三模拟试卷试题压轴押题全国高中数学联赛试题【第一试】一、选择题(本题满分36分,每小题6分)1.已知a为给定的实数,那么集合M={x|x2-3x-a2+2=0,x∈R}的子集的个数为().A.1B.2C.4D.不确定2.命题1:长方体中,必存在到各顶点距高相等的点.命题2:长方体中,必存在到各条棱距离相等的点;命题3:长方体中,必存在到各个面距离相等的点.以上三个命题中正确的有().A.0个B.1个C.2个D.3个3.在四个函数y=sin|x|、y=cos|x|、y=|ctgx|、y=lg|sinx|中,以π为周期、在(0,π/2)上单调递增的偶函数是().A.y=sin|x|B.y=cos|x|C.y=|ctgx|D.y=lg|sinx|4.如果满足∠ABC=60°,AC=12,BC=k的△ABC恰有一个,那么k的取值范围是().A.B.0<k≤12C.k≥12D.0<k≤12或5.若(1+x+x2)1000的展开式为a0+a1x+a2x2+…+a2000x2000,则a0+a3+a6+a9+…+a1998的值为().A.3333B.3666C.3999D.36.已知6枝玫瑰与3枝康乃馨的价格之和大于24,而4枝攻瑰与5枝康乃馨的价格之和小于22元,则2枝玫瑰的价格和3枝康乃馨的价格比较,结果是().A.2枝玫瑰价格高B.3枝康乃馨价格高C.价格相同D.不确定二、填空题(本题满分54分,每小题9分)7.椭圆ρ=1/(2-cosθ)的短轴长等于______________.8.若复数z1、z2满足|z1|=2,|z3|=3,3z1-2z2=(3/2)-i,则z1·z2=______________.9.正方体ABCD-A1B1C11的棱长为1,则直线A1C1与BD1的距离是______________.10.不等式|(1/log1/2x)+2|>3/2的解集为______________. 11.函数的值域为______________.图312.在一个正六边形的六个区域栽种观赏植物(如图3),要求同一块中种同一种植物,相邻的两块种不同的植物.现有4种不同的植物可供选择,则有______________种栽种方案.三、解答题(本题满分60分,每小题20分)13.设{an}为等差数列,{bn}为等比数列,且b1=a12,b2=a22,b3=a32(a1<a2=.又 试求{an}的首项与公差.14.设曲线C1:1222=+y a x (a 为正常数)与C2:y2=2(x+m )在x 轴上方仅有一个公共点P .⑴求实数m 的取值范围(用a 表示);⑵O 为原点,若C1与x 轴的负半轴交于点A ,当0<a<21时,试求ΔOAP 的面积的最大值(用a 表示).15.用电阻值分别为a1、a2、a3、a4、a5、a6 (a1>a2>a3>a4>a5>a6) 的电阻组装成一个如图的组件,在组装中应如何选取电阻,才能使该组件总电阻值最小?证明你的结论.【第二试】 一.(本题满分50分)如图,△ABC 中,O 为外心,三条高AD 、BE 、CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N . 求证:(1) OB ⊥DF ,OC ⊥DE ;(2) OH ⊥MN . 二.(本题满分50分)设≥i x (i=1,2,…,n )且12112=+∑∑≤<≤=nj k j k ni ix x j kx,求∑=ni i x 1的最大值与最小值.三.(本题满分50分)将边长为正整数m ,n 的矩形划分成若干边长均为正整数的正方形.每个正方形的边均平行于矩形的相应边.试求这些正方形边长之和的最小值.参考答案一. 选择题:1.C 2.B 3.D 4.D 5.C 6.A 二.填空题:7.332 8.i 13721330+-9.6610.),4()2,1()1,0(72∞+ 11.),2[)23,1[∞+ 12. 732三.解答题:13.设所求公差为d ,∵a1<a2,∴d >0.由此得412121)()2(d a d a a +=+ 化简得:0422121=++d d a a 解得:1)22(a d ±-= ……………………………………………………… 5分而022<±-,故a1<0若1)22(a d --=,则22122)12(+==a a q若1)22(a d +-=,则22122)12(-==a a q ……………………………… 10分但12)(21+=++++∞→n n b b b lim 存在,故| q |<1,于是2)12(+=q 不可能.从而2)12)(222(12)12(121221=+-=⇒+=--a a所以222)22(,211-=+-=-=a d a ……………………………… 20分14.解:(1)由⎪⎩⎪⎨⎧+==+)(212222m x y y ax 消去y 得:0222222=-++a m a x a x ①设222222)(a m a x a x x f -++=,问题(1)化为方程①在x ∈(-a ,a)上有唯一解或等根.只需讨论以下三种情况:1°△=0得:212+=a m ,此时xp =-a2,当且仅当-a <-a2<a ,即0<a <1时适合;2°f (a)f (-a)<0,当且仅当-a <m <a ; 3°f (-a)=0得m =a ,此时xp =a -2a2,当且仅当-a <a -2a2<a ,即0<a <1时适合.f (a)=0得m =-a ,此时xp =-a -2a2,由于-a -2a2<-a ,从而m≠-a .综上可知,当0<a <1时,212+=a m 或-a <m≤a ; 当a≥1时,-a <m <a .……………………………………………… 10分(2)△OAP 的面积p ay S 21=∵0<a <21,故-a <m≤a 时,0<m a a a 2122-++-<a ,由唯一性得ma a a x p 2122-++-=显然当m =a 时,xp 取值最小.由于xp >0,从而yp =221a x p-取值最大,此时22a a y p -=,∴2a a a S -=.当212+=a m 时,xp =-a2,yp =21a -,此时2121a a S -=.下面比较2a a a -与2121a a -的大小:令22121a a a a a -=-,得31=a 故当0<a≤31时,2a a a -≤2121a a -,此时2121a a S max -=.当2131<<a 时,22121a a a a a ->-,此时2a a a S max -=.……… 20分15.解:设6个电阻的组件(如图3)的总电阻为RFG ,当R i =a i ,i =3,4,5,6,R1、R2是a1、a2的任意排列时,RFG 最小 ……………………………………… 5分证明如下:1.设当两个电阻R1、R2并联时,所得组件阻值为R ,则21111R R R +=.故交换二电阻的位置,不改变R 值,且当R1或R2变小时,R 也减小,因此不妨取R1>R2.2.设3个电阻的组件(如图1)的总电阻为RAB2132312132121R R R R R R R R R R R R R R AB +++=++=显然R1+R2越大,RAB 越小,所以为使RAB 最小必须取R3为所取三个电阻中阻值最小的—个.3.设4个电阻的组件(如图2)的总电阻为RCD43243142142324131214111R R R R R R R R R R R R R R R R R R R R R R AB CD ++++++=+=若记∑≤<≤=411,j i jiRR S∑≤<<≤=412k j i kj i R R R S ,则S1、S2为定值,于是4313212R R S R R R S R CD --=只有当R3R4最小,R1R2R3最大时,RCD 最小,故应取R4<R3,R3<R2,R3<Rl ,即得总电阻的阻值最小 …………………………………………………………………… 15分 4°对于图3把由R1、R2、R3组成的组件用等效电阻RAB 代替.要使RFG 最小,由3°必需使R6<R5;且由1°应使RCE 最小.由2°知要使RCE 最小,必需使R5<R4,且应使RCD 最小. 而由3°,要使RCD 最小,应使R4<R3<R2且R4<R3<R1,这就说明,要证结论成立………………………………………………………………20分全国高中数学联合竞赛加试参考答案及评分标准一.证明:(1)∵A 、C 、D 、F 四点共圆 ∴∠BDF =∠BAC又∠OBC =21(180°-∠BOC)=90°-∠BAC∴OB ⊥DF .(2)∵CF ⊥MA∴MC2-MH2=AC2-AH2 ① ∵BE ⊥NA∴NB2-NH2=AB2-AH2 ② ∵DA ⊥BC∴BD2-CD2=BA2-AC2 ③ ∵OB ⊥DF∴BN2-BD2=ON2-OD2 ④ ∵OC ⊥DE∴CM2-CD2=OM2-OD2 ⑤ …………………………………… 30分 ①-②+③+④-⑤,得NH2-MH2=ON2-OM2 MO2-MH2=NO2-NH2∴OH ⊥MN …………………………………………………………………… 50分另证:以BC 所在直线为x 轴,D 为原点建立直角坐标系,设A(0,a),B(b ,0),C(c ,0),则b a kc a k AB AC -=-=,∴直线AC 的方程为)(c x c a y --=,直线BE 的方程为)(b x a cy -=由⎪⎪⎩⎪⎪⎨⎧--=-=)()(c x c a y b x a c y 得E 点坐标为E(2222222,c a abc ac ca bc c a +-++) 同理可得F(2222222,b a abcab ba cb b a +-++) 直线AC 的垂直平分线方程为)2(2cx a c a y -=-直线BC 的垂直平分线方程为2c b x +=由⎪⎪⎩⎪⎪⎨⎧+=-=-2)2(2c b x c x a c a y 得O(a a bc c b 2,22++)bca ac abc b b a abc ab k abac a bc b c b a a bc k DFOB+-=+-=-+=-++=222222,22∵1-=DF OB k k ∴OB ⊥DF 同理可证OC ⊥DE .在直线BE 的方程)(b x a cy -=中令x =0得H(0,a bc -)∴ac ab bc a c b a bc a a bc k OH++=+++=32222直线DF 的方程为xbc a acab y +-=2由⎪⎪⎩⎪⎪⎨⎧--=+-=)(2c x c a y x bc a ac ab y 得N (22222222,2c bc a ac abc c bc a bc c a -+--++) 同理可得M (22222222,2b bc a ab abc bbc a c b b a -+--++) ∴bc a acab bc a bc a b c bc a c b a k MN3)3)()(())((222222++-=++-+-=∵kOH ·kMN =-1,∴OH ⊥MN .二.解:先求最小值,因为∑∑∑∑=≤<≤==⇒≥+=ni inj k j k ni i n i i xx x jkx x 11122112)(≥1等号成立当且仅当存在i 使得xi =1,xj =0,j =i∴∑=ni ix1最小值为1. …………………………………………………………… 10分再求最大值,令k k y k x =∴∑∑=≤<≤=+nk nj k jkkyky ky11212①设∑∑====n k nk kk y k x M 11,令⎪⎪⎩⎪⎪⎨⎧==++=+++nn n n a y a y y a y y y 22121则①⇔122221=+++n a a a …………………………………………………… 30分 令1-n a =0,则∑=+-=nk k k a a k M 11)(∑∑∑∑∑=====+--=--=-=nk nk nk nk nk kk k k k a k k a k a k a k a k 111111)1(1由柯西不等式得:212121])1([)(])1([121212∑∑∑===--=--≤nk nk k nk k k a k k M等号成立⇔222221)1()1(1--==--==n n a k k a a n k222222221)1()1()12(1--=--++-++++⇔k k a n n a a a kn21])1([112∑=----=⇔nk k k k k k a (k=1,2,…,n)由于a1≥a2≥…≥an,从而])1([)11(221121≥---++-=-=∑=+nkkkkkkkkkaay,即xk≥0所求最大值为21])1([12∑=--nkkk…………………………………………… 50分三.解:记所求最小值为f (m,n),可义证明f (m,n)=rn+n-(m,n) (*)其中(m,n) 表示m和n的最大公约数………………………………………… 10分事实上,不妨没m≥n(1)关于m归纳,可以证明存在一种合乎题意的分法,使所得正方形边长之和恰为rn+n -(m,n)当用m=1时,命题显然成立.假设当,m≤k时,结论成立(k≥1).当m=k+1时,若n=k+1,则命题显然成立.若n <k+1,从矩形ABCD中切去正方形AA1D1D(如图),由归纳假设矩形A1BCD1有一种分法使得所得正方形边长之和恰为m—n+n—(m-n,n)=m-(m,n),于是原矩形ABCD有一种分法使得所得正方形边长之和为rn+n-(m,n) ………………………… 20分(2)关于m归纳可以证明(*)成立.当m=1时,由于n=1,显然f (m,n)=rn+n-(m,n)假设当m≤k时,对任意1≤n≤m有f (m,n)=rn+n-(m,n)若m=k+1,当n=k+1时显然f (m,n)=k+1=rn+n-(m,n).当1≤n≤k时,设矩形ABCD按要求分成了p个正方形,其边长分别为al,a2,…,ap 不妨a1≥a2≥…≥ap显然a1=n或a1<n.若a1<n,则在AD与BC之间的与AD平行的任一直线至少穿过二个分成的正方形 (或其边界).于是a1+a2+…+ap不小于AB与CD之和.所以a1+a2+…+ap≥2m>rn+n-(m,n)若a1=n,则一个边长分别为m-n和n的矩形可按题目要求分成边长分别为a2,…ap 的正方形,由归纳假设a2+…+ap≥m-n+n-(m-n,n))=rn-(m,n)从而a1+a2+…+ap≥rn+n-(m,n)于是当rn=k+1时,f (m,n)≥rn+n-(m,n)再由(1)可知f (m,n)=rn+n-(m,n).………………………………………… 50分高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
高考数学高三模拟试卷试题压轴押题调研考试数学统一考试试卷
高考数学高三模拟试卷试题压轴押题调研考试数学统一考试试卷一、填空题:(本大题共14小题,每小题5分,共70分.把每小题的答案填在答题纸相应的位置上)1.已知,1,121i z i z -=+=且12111z z z-=,则=z ▲.(i ) 2.已知等比数列{}n a 中,各项都是正数,且2312,21,a a a 成等差数列,则87109a a a a ++=▲.(223+)3.函数x x x f sin cos 3)(+=)22(ππ<<-x 的值域为▲.(]2,1-4.下图是一个算法的流程图,则输出n 的值是▲.(5)5.观察x x 2)(2=',344)(x x =',x x sin )(cos -=',由归纳推理可得:若定义在R 上的函数)(x f 满足)()(x f x f =-,记()g x 为)(x f 的导函数,则)(x g -与()g x 的关系是▲.()(x g -+()g x =0)6.已知α、β表示两个不同的平面,m 是平面α内的一条直线,则“βα⊥”是“β⊥m ”的▲条件.(填“充分不必要”、“必要不充分”、“既不充分也不必要”、“充要”之一)“必要不充分”7.用数字1,2,3作为函数c bx ax y ++=2的系数,则该函数有零点的概率为▲.(31) 8.已知点),(b a M 在由不等式组⎪⎩⎪⎨⎧≤+≥≥200y x y x 所确定的平面区域内,则),(b a b a N +-所在的平面区域的面积为▲.(4)9.给出下列四个命题:①函数)32sin(3)(π-=x x f 的图象关于点)0,6(π-对称;②若1->≥b a ,则bba a +≥+11;③存在实数x ,使0123=++x x ;④设),(11y x P 为圆9:221=+y x O 上任意一点,圆1)()(:222=-+-b y a x O ,当1)()(2121=-+-b y a x 时,两圆相切.其中正确命题的序号是▲.(把你认为正确的都填上)(②③)10.在ABC ∆中,2,4==AC AB ,M 是ABC ∆内一点,且满足02=++MC MB MA ,则BC AM ⋅=▲.(3)11.在直角坐标系中,过双曲线1922=-y x 的左焦点F 作圆122=+y x 的一条切线(切点为T )交双曲线右支于P ,若M 为线段FP 的中点,则MT OM -=▲.(2)12.在斜三角形ABC 中,角C B A ,,所对的边分别为c b a ,,,若1tan tan tan tan =+BCA C ,则=+222c b a ▲.(3) 13.在等差数列{}n a 中,n S 表示其前n 项,若m n S n =,)(n m nm S m ≠=,则m n S +的取值范围是▲.(4,∞+) 14.设函数||1)(x xx f +-=)(R x ∈,区间[])(,b a b a M <=,集合{}M x x f y y N ∈==),(|,则使N M =成立的实数对),(b a 有▲对.(0)天一中学高三调研考试数学试卷答卷一、填空题:本大题共14小题,每小题5分,共70分. 1. 2. 3. 4. 5. 6.7. 8. 9. 10. 11. 12. 13. 14.二、解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)A 是单位圆与x 轴正半轴的交点,点P 在单位圆上,,),0(,OP OA OQ AOP +=<<=∠πθθ 四边形OAQP 的面积为S⑴求S +⋅的最大值及此时θ的值0θ;⑵设点,),54,53(α=∠-AOB B 在⑴的条件下求)cos(0θα+.16.(本小题满分14分)如图,在四棱锥A —BCDE 中,底面BCDE 是直角梯形, 90=∠BED ,BE ∥CD ,AB=6,BC=5,31=BE CD ,侧面ABE ⊥底面BCDE ,︒=∠90BAE . ⑴求证:平面ADE ⊥平面ABE ;⑵过点D 作面α∥平面ABC ,分别于BE ,AE 交于点F ,G ,求DFG ∆的面积.17.(本小题满分14分)如图所示,一科学考察船从港口O 出发,沿北偏东α角的射线OZ 方向航行,而在离港口a 13(a 为正常数)海里的北偏东β角的A 处有一个供给科考船物资的小岛,其中31tan =α,132cos =β.现指挥部需要紧急征调沿海岸线港口O 正东m 海里的B 处的补给船,速往小岛A 装运物资供给科考船,该船沿BA 方向全速追赶科考船,并在C 处相遇.经测算当两船运行的航向与海岸线OB 围成的三角形OBC 的面积最小时,这种补给最适宜.⑴ 求S 关于m 的函数关系式)(m S ;⑵ 应征调m 为何值处的船只,补给最适宜.EB CD A 第16题图18.(本小题满分16分)如图,已知椭圆12:22=+y x C 的左、右焦点分别为21,F F ,下顶点为A ,点P 是椭圆上任一点,圆M 是以2PF 为直径的圆.⑴当圆M 的面积为8π,求PA 所在的直线方程; ⑵当圆M 与直线1AF 相切时,求圆M 的方程; ⑶求证:圆M 总与某个定圆相切.19.(本小题满分16分) 在数列{}n a 中,121,411,111-=-==+n n n n a b a a a ,其中*∈N n . ⑴求证:数列{}n b 为等差数列;⑵设n b n c 2=,试问数列{}n c 中是否存在三项,它们可以构成等差数列?若存在,求出这三项;若不存在,说明理由.⑶已知当*∈N n 且6≥n 时,mn n m )21()31(<+-,其中n m ,2,1=,求满足等式n b n n n n b n )3()2(43+=++++ 的所有n 的值.20.(本小题满分16分)已知函数1)(+=x ax ϕ,a 为正常数. ⑴若)(ln )(x x x f ϕ+=,且a 29=,求函数)(x f 的单调增区间;⑵在⑴中当0=a 时,函数)(x f y =的图象上任意不同的两点()11,y x A ,()22,y x B ,线段AB 的中点为),(00y x C ,记直线AB 的斜率为k ,试证明:)(0x f k '>.⑶若)(ln )(x x x g ϕ+=,且对任意的(]2,0,21∈x x ,21x x ≠,都有1)()(1212-<--x x x g x g ,求a 的取值范围.附加题21.已知⊙1O 与⊙2O 的极坐标方程分别为θρθρsin 4,cos 4-==. (1)写出⊙1O 和⊙2O 的圆心的极坐标;(2)求经过⊙1O 和⊙2O 交点的直线的极坐标方程.22.若2011201122102011)21(x a x a x a a x ++++=- (R x ∈),求20112011221222aa a +++ 的值.23.如图所示,在四棱锥P —ABCD 中,侧面PAD 是正三角形,且垂直于底面ABCD ,底面ABCD 是边长为2的菱形,︒=∠60BAD ,M 为PC 上一点,且PA ∥平面BDM . ⑴求证:M 为PC 中点;⑵求平面ABCD 与平面PBC 所成的锐二面角的大小.24.已知抛物线L 的方程为()022>=p py x ,直线x y =截抛物线L 所得弦24=AB . ⑴求p 的值;⑵抛物线L 上是否存在异于点A 、B 的点C ,使得经过A 、B 、C 三点的圆和抛物线L 在点C 处有相同的切线.若存在,求出点C 的坐标;若不存在,请说明理由.AP BCDM第23题图三校联考数学试卷及评分标准填空题答案 :i ; 223+; (]2,1-; 5; )(x g -+()g x =0; 必要不充分;31; 4; ②③; 3; 2; 3; (4,∞+); 0二、解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)A 是单位圆与x 轴正半轴的交点,点P 在单位圆上,),0(,OP AOP +=<<=∠πθθ四边形OAQP 的面积为S⑴求S OQ OA +⋅的最大值及此时θ的值0θ;⑵设点,),54,53(α=∠-AOB B 在⑴的条件下求)cos(0θα+. 答案:解:⑴由已知)sin ,(cos ),0,1(θθP A (3)+= ,)sin ,cos 1(θθ+=∴又,sin θ=S 1)4sin(21cos sin ++=++=+⋅∴πθθθS OQ OA )0(πθ<<故S +⋅的最大值是12+,此时40πθ=, (8)⑵,),54,53(α=∠-AOB B 54sin ,53cos =-=∴αα……………………………………10 )cos(0θα+=1027)cos (sin 22)4cos(-=+=+ααπα. (14)16.(本小题满分14分)如图,在四棱锥A —BCDE 中,底面BCDE 是直角梯形, 90=∠BED ,BE ∥CD ,AB=6,BC=5,31=BE CD ,侧面ABE ⊥底面BCDE ,︒=∠90BAE . ⑴求证:平面ADE ⊥平面ABE ;⑵过点D 作面α∥平面ABC ,分别于BE ,AE 交于点F ,G ,求DFG ∆的面积.答案:(1)证明:因为侧面ABE ⊥底面BCDE , 侧面ABE∩底面BCDE=BE ,DE ⊂底面BCDE , DE ⊥BE ,所以DE ⊥平面ABE ,所以AB ⊥DE , 又因为AE AB ⊥,所以AB ⊥平面ADE ,所以平面ADE ⊥平面ABE ; (7)(2)因为平面α∥平面ABC ,所以DF ∥BC ,同理FG ∥AB ………………………………………………9 所以四边形BCDF 为平行四边形. 所以BF CD BC DF ===,5,因为31=BE CD ,所以32=EB EF所以432==AB FG (11)由⑴易证:⊥FG 平面ADE ,所以DG FG ⊥,所以3=DG所以DFG ∆的面积6=S . (14)17.(本小题满分14分)如图所示,一科学考察船从港口O 出发,沿北偏东α角的射线OZ 方向航行,而在离港口EB C D A 第16题图E BC D A GFa 13(a 为正常数)海里的北偏东β角的A 处有一个供给科考船物资的小岛,其中31tan =α,132cos =β.现指挥部需要紧急征调沿海岸线港口O 正东m 海里的B 处的补给船,速往小岛A 装运物资供给科考船,该船沿BA 方向全速追赶科考船,并在C 处相遇.经测算当两船运行的航向与海岸线OB 围成的三角形OBC 的面积最小时,这种补给最适宜.⑴ 求S 关于m 的函数关系式)(m S ;⑵ 应征调m 为何值处的船只,补给最适宜.答案:解 ⑴以O 为原点,OB 所在直线为x 轴,建立平面直角坐标系,则直线OZ 方程为x y 3=. …………………………………………………………………2 设点()00,y x A , 则a a a x 313313sin 130=⋅==β,a a a y 213213cos 130=⋅==β,即()a a A 2,3,又()0,m B ,所以直线AB 的方程为()m x ma ay --=32.上面的方程与x y 3=联立得点)736,732(am ama m am C -- (5))37(733||21)(2a m a m am y OB m S C >-=⋅=∴ (8)⑵328)3149492(314)37(949)37()(222a a a a a a m a a m a m S =+≥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-=…………………12 当且仅当)37(949372a m a a m -=-时,即a m 314=时取等号, (14)18.(本小题满分16分)如图,已知椭圆12:22=+y x C 的左、右焦点分别为21,F F ,下顶点为A ,点P 是椭圆上任一点,圆M 是以2PF 为直径的圆.⑴当圆M 的面积为8π,求PA 所在的直线方程;⑵当圆M 与直线1AF 相切时,求圆M 的方程; ⑶求证:圆M 总与某个定圆相切.答案:解 ⑴易得()0,11-F ,()0,12F ,()1,02-A ,设()11,y x P ,则()()()2121212121222212111-=-+-=+-=x x x y x PF ,∴()22222112≤≤--=x x PF , (2)又圆M 的面积为8π,∴()21288-=x ππ,解得11=x , ∴⎪⎪⎭⎫ ⎝⎛22,1P 或⎪⎪⎭⎫ ⎝⎛-22,1, ∴PA 所在的直线方程为1221-⎪⎪⎭⎫ ⎝⎛+=x y 或1221-⎪⎪⎭⎫ ⎝⎛-=x y ;…………………………4 ⑵∵直线1AF 的方程为01=++y x ,且⎪⎭⎫⎝⎛+2,2111y x M 到直线1AF 的距离为111422221221x y x -=+++, 化简得1211--=x y ,…………………………6 联立方程组⎪⎩⎪⎨⎧=+--=1212212111y x x y ,解得01=x 或981-=x . …………………………8 当01=x 时,可得⎪⎭⎫⎝⎛-21,21M , ∴ 圆M 的方程为21212122=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-y x ;………9 当981-=x 时,可得⎪⎭⎫⎝⎛187,181M , ∴ 圆M 的方程为16216918718122=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y x ; (10)⑶圆M 始终与以原点为圆心,半径21=r (长半轴)的圆(记作圆O )相切.证明:∵()()121212121422284141441x x x y x OM +=-++=++=, ……………14 又圆M 的半径1224222x MF r -==,∴21r r OM -=, ∴圆M 总与圆O 内切. (16)19.(本小题满分16分)在数列{}n a 中,121,411,111-=-==+n n n n a b a a a ,其中*∈N n . ⑴求证:数列{}n b 为等差数列;⑵设n b n c 2=,试问数列{}n c 中是否存在三项,它们可以构成等差数列?若存在,求出这三项;若不存在,说明理由.⑶已知当*∈N n 且6≥n 时,mn n m )21()31(<+-,其中n m ,2,1=,求满足等式n b n n n n b n )3()2(43+=++++ 的所有n 的值.答案:⑴证明:11211212112112111=----=---=-++n nn n n n a a a a b b ........................2 ∴数列{}n b 为等差数列 (4)⑵解:假设数列{}n c 中存在三项,它们可以够成等差数列;不妨设为第)(,,q r p q r p <<项,由⑴得n b n =,∴n n c 2=, …………………………………………5 ∴q p r 2222+=⋅, ∴p q p r --++=2121…………………………………………7 又p r -+12为偶数,p q -+21为奇数. …………………………………………9 故不存在这样的三项,满足条件. …………………………………………10 ⑶由⑵得等式n b n n n n b n )3()2(43+=++++ 可化为n n n n n n )3()2(43+=++++即1)32()34()33(=+++++++nn n n n n n ∴1)311()311()31(=+-+++--++-nn n n n n n n (12)∵当6≥n 时,mn n m )21()31(<+-,∴,21)311(<+-n n ,)21()321(2<+-n n …,)21()31(nn n n <+-∴1)21(1)21()21(21)311()311()31(2<-=++<+-+++--++-n n n n n n n n n n∴当6≥n 时,n n n n n n )3()2(43+<++++ …………………………………………14 当5,4,3,2,1=n 时,经验算3,2=n 时等号成立∴满足等式n b n n n n b n )3()2(43+=++++ 的所有3,2=n (16)20.(本小题满分16分) 已知函数1)(+=x ax ϕ,a 为正常数.⑴若)(ln )(x x x f ϕ+=,且a 29=,求函数)(x f 的单调增区间; ⑵在⑴中当0=a 时,函数)(x f y =的图象上任意不同的两点()11,y x A ,()22,y x B ,线段AB 的中点为),(00y x C ,记直线AB 的斜率为k ,试证明:)(0x f k '>.⑶若)(ln )(x x x g ϕ+=,且对任意的(]2,0,21∈x x ,21x x ≠,都有1)()(1212-<--x x x g x g ,求a 的取值范围. 答案:解:⑴222)1(1)2()1(1)(++-+=+-='x x x a x x a x x f∵a 29=,令0)(>'x f 得2>x 或210<<x∴函数)(x f 的单调增区间为),2(),21,0(+∞ (4)⑵证明:当0=a 时x x f ln )(=∴x x f 1)(='∴210021)(x x x x f +==' 又121212121212lnln ln )()(x x x x x x x x x x x f x f k -=--=--=不妨设12x x > , 要比较k 与)(0x f '的大小,即比较1212lnx x x x -与212x x +的大小,又∵12x x >,∴ 即比较12lnx x 与1)1(2)(212122112+-=+-x x x x x x x x 的大小.令)1(1)1(2ln )(≥+--=x x x x x h (8)则0)1()1()1(41)(222≥+-=+-='x x x x x x h ∴)(x h 在[)+∞,1上位增函数.又112>x x ,∴0)1()(12=>h x x h , ∴1)1(2ln 121212+->x x x x x x ,即)(0x f k '>……………………………………………10 ⑶∵1)()(1212-<--x x x g x g , ∴[]0)()(121122<-+-+x x x x g x x g由题意得x x g x F +=)()(在区间(]2,0上是减函数. (12)︒1 当x x ax x F x +++=≤≤1ln )(,21, ∴1)1(1)(2++-='x a x x F 由313)1()1(0)(222+++=+++≥⇒≤'x x x x x x a x F 在[]2,1∈x 恒成立.设=)(x m 3132+++x x x ,[]2,1∈x ,则0312)(2>+-='xx x m∴)(x m 在[]2,1上为增函数,∴227)2(=≥m a (14)︒2 当x x ax x F x +++-=<<1ln )(,10,∴1)1(1)(2++--='x a x x F 由11)1()1(0)(222--+=+++-≥⇒≤'x x x x x x a x F 在)1,0(∈x 恒成立设=)(x t 112--+xx x ,)1,0(∈x 为增函数∴0)1(=≥t a综上:a 的取值范围为227≥a (16)附加题21.已知⊙1O 与⊙2O 的极坐标方程分别为θρθρsin 4,cos 4-==. (1)写出⊙1O 和⊙2O 的圆心的极坐标;(2)求经过⊙1O 和⊙2O 交点的直线的极坐标方程. 答案:解:(1)⊙1O 和⊙2O 的圆心的极坐标分别为)23,2(),0,2(π(2)以极点为原点,极轴为x 轴正半轴建立直角坐标系,在直角坐标系下⊙1O 与⊙2O 的方程分别为04,042222=++=-+y y x x y x ……………6 则经过⊙1O 和⊙2O 交点的直线的方程为x y -= 其极坐标方程为4πθ-=(R ∈ρ). (10)22.若2011201122102011)21(x a x a x a a x ++++=- (R x ∈),求20112011221222aa a +++ 的值. 答案:解:由题意得:2011,2,1,)2(2011=-=r C a r rr , ………………………………………2 ∴201120112010201132011220111201120112011221222C C C C C a a a -++-+-=+++ ,…………………………6 ∵0201120112010201132011220111201102011=-++-+-C C C C C C …………………………8 ∴122220112011221-=+++a a a (10)23.如图所示,在四棱锥P —ABCD 中,侧面PAD 是正三角形,且垂直于底面ABCD ,底面ABCD 是边长为2的菱形,︒=∠60BAD ,M 为PC 上一点,且PA ∥平面BDM . ⑴求证:M 为PC 中点;⑵求平面ABCD 与平面PBC 所成的锐二面角的大小.证明 ⑴连接AC 与BD 交于G ,则平面PAC∩平面BDM=MG , 由PA ∥平面BDM ,可得PA ∥MG , ∵底面ABCD 是菱形,∴G 为AC 中点, ∴MG 为△PAC 中位线,∴M 为PC 中点. (4)⑵取AD 中点O ,连接PO ,BO , ∵△PAD 是正三角形,∴PO ⊥AD , 又∵平面PAD ⊥平面ABCD ,A PB CD M第23题图∴PO ⊥平面ABCD ,∵底面ABCD 是边长为2的菱形,︒=∠60BAD ,△ABD 是正三角形, ∴AD ⊥OB ,∴OA ,OP ,OB 两两垂直,以O 为原点,,分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,如右图所示,则()0,0,1A ,()0,3,1B ,()0,0,1-D ,()3,0,0P , ∴()3,0,1=,()0,3,1-=,∴()()⎪⎪⎭⎫ ⎝⎛=+=+=23,23,02121()3,3,0--=,()0,0,2==,∴023230=+-=⋅BP DM ,0000=++=⋅∴DM ⊥BP ,DM ⊥CB ,∴DM ⊥平面PBC , ∴22,cos >=<DM OP平面ABCD 与平面PBC 所成的锐二面角的大小为4π (10)24.已知抛物线L 的方程为()022>=p py x ,直线x y =截抛物线L 所得弦24=AB . ⑴求p 的值;⑵抛物线L 上是否存在异于点A 、B 的点C ,使得经过A 、B 、C 三点的圆和抛物线L 在点C 处有相同的切线.若存在,求出点C 的坐标;若不存在,请说明理由. 答案: 解:⑴由⎩⎨⎧==pyx x y 22解得)2,2(),0,0(p p B A∴p p p AB 22442422=+==,∴2=p ………………………………………4 ⑵由⑴得)4,4(),0,0(,42B A y x =假设抛物线L 上存在异于点A 、B 的点C )4,0()4,(2≠≠t t t t ,使得经过A 、B 、C 三点的圆和抛物线L 在点C 处有相同的切线令圆的圆心为),(b a N ,则由⎩⎨⎧==NC NA NB NA 得⎪⎩⎪⎨⎧-+-=+-+-=+222222222)4()()4()4(t b t a b a b a b a得⎪⎪⎩⎪⎪⎨⎧++=+-=⇒⎪⎩⎪⎨⎧+=+=+83248481244222t t b t t a t t tb a b a …………………………………………6 ∵抛物线L 在点C 处的切线斜率)0(2|≠='==t ty k t x 又该切线与NC 垂直, ∴0412212432=--+⇒-=⋅--t t bt a t t a t b ∴08204128324)84(223322=--⇒=--++⋅++-⋅t t t t t t t t t t (8)∵4,0≠≠t t ,∴2-=t故存在点C 且坐标为(2,1) (10)高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学高三模拟试卷复习试题调研考试压轴押题[学业水平训练]16、如图,以ox 为始边作角α与()παββ<<<0,它们的终边分别与单位圆交于点P 、Q ,已知点P 的坐标为)54,53(-。
(1)sin 2cos 211tan ααα+++求的值;(2)()0sin OP OQ αβ⋅=+若,求的值。
17.(满分12分)如图,在正方体ABCD 一A1B1C1D1中,AB =3, CE =2EC1.(I )若F 是AB 的中点,求证:C1F//平面BDE;(II )求三棱锥D -BEB1的体积。
19.已知正项等比数列{}n a 的前n 项和为n S )(*∈N n ,且20,2321==S a a a 。
(1)求数列{}n a 的通项公式;(2)设21222log log log n n c a a a =+++,1nc ++,求使λ>n T 对任意*∈N n 恒成立的实数λ的取值范围。
22、已知函数()xf x e ax =-(1)若函数()f x 在1x =处取得极值,求函数()y f x =在点0,(0)f ()处的切线方程 (2)当0,x ≥()()0f x f x --≥恒成立,求a 的最大值(3)当1,a =解关于x 的不等式:()(1)()(1)f x f f x f ≤⎧⎨-≤⎩16、(1)三角函数的定义,得,54sin ,53cos =-=αα……………2分则原式=2518cos2cossin1cos2cossin222==++αααααα。
……………6分(2)0,,OP OQ OP OQ→→⋅=⊥即……………7分,22ππαββα∴-==-,即53cos)2sin(sin=-=-=∴απαβ,54sin)2cos(cos==-=απαβ,……………10分257sincoscossin)sin(=+=+∴βαβαβα……………12分18、解:(I)由20,2321==Saaa可得14a=,公比q=4,…………4分∴242n nna==.……………5分(Ⅱ)21222log log log242(1)2(1) n nc a a a n n n n=+++=+++-+=+……………7分∴121111111223(1)1nnnTc c c n n n=+++=+++=⨯⨯++………10分由λ>n T 对任意*∈N n 恒成立,111+-<n λ,得21<λ22、解:(1)由题意知()(1)0xf x e a f e a a e ''=-⇒=-=⇒=,所以曲线()y f x =在(0,(0))f 处的切线方程为(1)1y e x =-+……………3分(2)令()()()2x x g x f x f x e e ax -=--=--,则()e e 2xxg x a -'=+-,(ⅰ)若1a ≤,当0x >时,()e e2220xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数,所以,0x ≥时,()(0)0g x g =≥,即()()0f x f x --≥. (ⅱ)若1a >,方程()0g x '=的正根为1ln(x a =+,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数. 所以,1(0)x x ∈,时,()(0)0g x g <=,即()()0f x f x --<,与题设()()0f x f x --≥相矛盾.综上,满足条件的a 的取值范围是(]1-∞,,所以a 的最大值为1……………7分(3)1,1,xx e x e e x e -⎧-≤-⎪⎨+≤-⎪⎩①设函数()1t g t e t e =--+,则()1tg t e '=-当0t <时,()0g t '<;当0t >时,()0g t '>,故()g t 在(,0)-∞单调递减,在(0,)+∞单调递增。
又1(1)0,(1)20g g e e -=-=+-<,故当[1,1]t ∈-时,()0g t ≤ 当[1,1]x ∈-时,()0,()0g x g x ≤-≤,即①式成立; 当1x >时,由()g t 的单调性,()0g x >,即1x e x e ->-; 当1x <-时,()0g x ->,即1x e x e -+>- 综上,x 的取值范围是[1,1] ……………12分高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是。
(16)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+2)的切线,则b=。
三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本题满分12分)n S 为等差数列{}n a 的前n 项和,且7=128.n a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg99=1,.(I )求111101b b b ,,;(II )求数列{}n b 的前1 000项和.18.(本题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数1 2 3 4 ≥5 保费0.85a a 1.25a 1.5a 1.75a 2a 一年内出险次数1 2 3 4 ≥5概率0.30 0.15 0.20 0.20 0.100. 05(II )若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (III )求续保人本年度的平均保费与基本保费的比值. 19.(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=54,EF 交BD 于点H.将△DEF 沿EF 折到△D EF '的位置,10OD '=(I )证明:D H '⊥平面ABCD ; (II )求二面角B D A C '--的正弦值.20. (本小题满分12分)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k(k>0)的直线交E 于A,M 两点,点N 在E 上,MA ⊥NA.(I )当t=4,AM AN =时,求△AMN 的面积; (II )当2AM AN =时,求k 的取值范围.(21)(本小题满分12分) (I)讨论函数xx 2f (x)x 2-=+e 的单调性,并证明当x >0时,(2)20;x x e x -++> (II)证明:当[0,1)a ∈时,函数2x =(0)x e ax a g x x -->()有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修41:集合证明选讲如图,在正方形ABCD ,E,G 分别在边DA,DC 上(不与端点重合),且DE=DG ,过D 点作DF ⊥CE ,垂足为F.(I) 证明:B,C,E,F 四点共圆;(II)若AB=1,E 为DA 的中点,求四边形BCGF 的面积.(23)(本小题满分10分)选修4—4:坐标系与参数方程 在直线坐标系xoy 中,圆C 的方程为(x+6)2+y2=25.(I )以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(II )直线l 的参数方程是(t 为参数),l 与C 交于A 、B 两点,∣AB ∣=,求l 的斜率。