高三基础知识天天练 数学7-3人教版
高三基础知识天天练 数学7-6人教版

第7模块 第6节[知能演练]一、选择题1.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式: ①(A 1D 1→-A 1A →)-AB →; ②(BC →+BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→; ④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→的是( )A .①②B .②③C .③④D .①④解析:①(A 1D 1→-A 1A →)-AB →=AD 1→-AB →=BD 1→; ②(BC →+BB 1→)-D 1C 1→=BC 1→-D 1C 1→=BD 1→; ③(AD →-AB →)-2DD 1→=BD →-2DD 1→≠BD 1→;④中(B 1D 1→+A 1A →)+DD 1→=B 1D →+DD 1→=B 1D 1→≠BD 1→, 所以选A. 答案:A2.如右图,在四棱锥S —ABCD 中,底面ABCD 是边长为1的正方形,S 到A 、B 、C 、D 的距离都等于2,给出以下结论:①SA →+SB →+SC →+SD →=0; ②SA →+SB →-SC →-SD →=0; ③SA →-SB →+SC →-SD →=0; ④SA →·SB →=SC →·SD →; ⑤SA →·SC →=0.其中正确结论的个数是( )A .1B .2C .3D .4解析:容易推出:SA →-SB →+SC →-SD →=BA →+DC →=0, 所以③正确;又因为底面ABCD 是边长为1的正方形, SA =SB =SC =SD =2, 所以SA →·SB →=2·2·cos ∠ASB ,SC →·SD →=2·2·cos ∠CSD ,而∠ASB =∠CSD ,于是SA →·SB →=SC →·SD →,因此④正确;其余三个都不正确,故选B. 答案:B3.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E 、F 分别是BC 、AD 的中点,则AE →·AF →的值为( )A .a 2 B.12a 2 C.14a 2D.34a 2 解析:AE →·AF →=12(AB →+AC →)·12AD →=14(AB →·AD →+AC →·AD →)=14(a 2cos60°+a 2cos60°)=14a 2.答案:C4.正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1→上且AM →=121→,N 为B 1B 的中点,则|MN →|为( )A.216aB.66aC.156aD.153a 解析:以D 为原点建立如右图所示的空间直角坐标系D -xyz ,则A (a,0,0),C 1(0,a ,a ), N (a ,a ,a2).设M (x ,y ,z )∵点M 在AC 1→上且AM →=12MC 1→,∴(x -a ,y ,z )=12(-x ,a -y ,a -z )∴x =23a ,y =a 3,z =a 3得M (2a 3,a 3,a 3),∴|MN →|=(a -23a )2+(a -a 3)2+(a 2-a 3)2=216a . 答案:A 二、填空题5.下列命题中不.正确的所有命题的序号是________. ①若A 、B 、C 、D 是空间任意四点,则有AB →+BC →+CD →+DA →=0; ②|a |-|b |=|a +b |是a 、b 共线的充要条件; ③若a 、b 共线,则a 与b 所在直线平行;④对空间任意点O 与不共线的三点A 、B 、C ,若OP →=xOA →+yOB →+zOC →(其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面.解析:①正确;②不正确,因为a ,b 共线,不一定有|a |-|b |=|a +b |成立;③不正确,因为a 、b 共线,也可得a 与b 所在直线重合;④不正确;若O ∉平面ABC ,则OA →、OB →、OC →不共面,由空间向量基本定理知,P 可为空间任一点,所以P 、A 、B 、C 四点不一定共面.答案:②③④6.已知三点A (1,0,0),B (3,1,1),C (2,0,1),则 (1)CB →与CA →的夹角等于________; (2)CB →在CA →方向上的投影等于________. 解析:CB →=(1,1,0),CA →=(-1,0,-1). (1)cos 〈CB →,CA →〉=CB →·CA →|CB →||CA →|=-1+0+02·2=-12,∴〈CB →,CA →〉=2π3;(2)CB →在CA →方向上的投影=CB →·CA →|CA →|=-1+0+02=-22.答案:(1)2π3 (2)-22三、解答题7.已知向量a =(1,-3,2),b =(-2,1,1),O 为原点,点A (-3,-1,4),B (-2,-2,2). (1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b? 解:(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5), 故|2a +b |=02+(-5)2+52=5 2. (2)假设存在一点E 满足题意OE →=OA →+AE →=OA →+tAB →=(-3,-1,4)+t (1,-1,-2) =(-3+t ,-1-t,4-2t ), 若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95,因此存在点E ,使得OE →⊥b , 此时点E 的坐标为(-65,-145,25).8.如右图,在棱长为a 的正方体OABC -O 1A 1B 1C 1中,E 、F 分别是棱AB 、BC 上的动点,且AE =BF =x ,其中0≤x ≤a ,以O 为原点建立空间直角坐标系O -xyz .(1)写出点E 、F 的坐标; (2)求证:A 1F →⊥C 1E →;(3)若A 1、E 、F 、C 1四点共面,求证:A 1F →=12A 1C 1→+A 1E →.解:(1)E (a ,x,0),F (a -x ,a,0). (2)证明:∵A 1(a,0,a )、C 1(0,a ,a ),∴A 1F →=(-x ,a ,-a ),C 1E →=(a ,x -a ,-a ). ∴A 1F →·C 1E →=-ax +a (x -a )+a 2=0. ∴A 1F →⊥C 1E →.(3)证明:∵A 1、E 、F 、C 1四点共面, ∴A 1E →、A 1C 1→、A 1F →共面.视A 1E →与A 1C 1→为一组基向量,则存在唯一实数对λ1、λ2,使A 1F →=λ1A 1C 1→+λ2A 1E →, 即(-x ,a ,-a )=λ1(-a ,a,0)+λ2(0,x ,-a )=(-aλ1,aλ1+xλ2,-aλ2), ∴⎩⎪⎨⎪⎧-x =-aλ1,a =aλ1+xλ2,-a =-aλ2,解得λ1=12,λ2=1.于是A 1F →=12A 1C 1→+A 1E →.[高考·模拟·预测]1.如右图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则下列向量中与B 1M →相等的向量是( )A .-12a +12b +cB.12+12b +c C.12a -12b +cD .-12a -12b +c解法一:B 1M →=B 1B →+BM →=A 1A →+12(BA →+BC →)=c +12(-a +b )=-12+12b +c ,∴选A.解法二:∵B 1M →=B 1A 1→+A 1A →+AM →=(-a )+c +a +b 2=-12a +12b +c .答案:A2.已知直线AB 、CD 是异面直线,AC ⊥CD ,BD ⊥CD ,且AB =2,CD =1,则异面直线AB 与CD 所成角的大小为( )A .30°B .45°C .60°D .75°解析:∵AB →·CD →|AB →|·|CD →|=(AC →+CD →+DB →)·CD →2×1=CD →22=12.∴AB →与CD →所成角为60°.答案:C3.在四面体O -ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________(用a ,b ,c 表示).解析:OE →=12(OD →+OA →)=12[12(OC →+OB →)+OA →]=12a +14b +14c .答案:12a +12b +14c4.如右图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为________.解析:以D 为原点,DA 、DC 、DD 1为x 、y 、z 轴正半轴建立空间直角坐标系, 则A (1,0,0),A 1(1,0,1), B 1(1,1,1),B (1,1,0),C (0,1,0), ∴M (1,12,1),N (1,1,12),∴AM →=(0,12,1),CN →=(1,0,12),∴cos 〈AM →,CN →〉=AM →·CN →|AM →|·|CN →|=12(12)2+12×12+(12)2=25. 答案:255.在▱ABCD 中,AB =AC =CD =a ,∠ACD =90°,现将它沿对角线AC 折成60°的二面角.(1)求B 、D 两点间的距离;(2)求异面直线AC 与BD 所成角的大小. 解:(1)∵AB =AC =CD =a , ∴|AB →|=|AC →|=|CD →|=a . ∵AB ∥CD ,∠ACD =90°. ∴∠BAC =90°, ∴AB ⊥AC ,AC ⊥CD .由于二面角B -AC -D 的度数为60°,∴〈AB →,CD →〉=60°. ∴AB →·AC →=0,AC →·CD →=0, BA →·CD →=a ·a ·cos120°=-12a 2.∵BD →=BA →+AC →+CD →,∴|BD →|2=(BA →+AC →+CD →)2=|BA →|2+|AC →|2+ |CD →|2+2(BA →·AC →+AC →·CD →+CD →·BA →) =a 2+a 2+a 2+2(0+0-12a 2)=2a 2.∴|BD →|=2a .故B 、D 两点间的距离为2a . (2)设异面直线AC 与BD 所成的角为θ, 则cos θ=|cos 〈AC →,BD →〉|=|AC →·BD →|AC →||BD →||.由于AC →·BD →=AC →·(BA →+AC →+CD →)=AC →·BA →+AC →2+AC →·CD →=0+a 2+0=a 2, ∴cos θ=|AC →·BD →|AC →||BD →||=|a 2a ·2a |=22.由于0°<θ≤90°,∴θ=45°.故异面直线AC 与BD 所成角的大小为45°.[备选精题]6.如右图所示,在五面体ABCDEF 中,FA ⊥平面ABCD ,AD ∥BC ∥FE ,AB ⊥AD ,M 为EC 的中点,AF =AB =BC =FE =12AD .(1)求异面直线BF 与DE 所成的角的大小; (2)证明平面AMD ⊥平面CDE ; (3)求二面角A -CD -E 的余弦值.解:如题图所示,建立空间直角坐标系,点A 为坐标原点.设AB =1,依题意得B (1,0,0),C (1,1,0),D (0,2,0),E (0,1,1),F (0,0,1),M (12,1,12).(1)解:BF →=(-1,0,1),DE →=(0,-1,1), 于是cos 〈BF →,DE →〉=BF →·DE →|BF →||DE →|=0+0+12·2=12.所以异面直线BF 与DE 所成的角的大小为60°.(2)证明:由AM →=(12,1,12),CE →=(-1,0,1),AD →=(0,2,0),可得CE →·AM →=0,CE →·AD →=0.因此,CE ⊥AM ,CE ⊥AD .又AM ∩AD =A ,故CE ⊥平面AMD .而CE ⊆平面CDE ,所以平面AMD ⊥平面CDE .(3)解:设平面CDE 的法向量为u =(x ,y ,z ),则⎩⎪⎨⎪⎧u ·CE →=0,u ·DE →=0.于是⎩⎪⎨⎪⎧-x +z =0,-y +z =0.令x =1,可得u =(1,1,1).又由题设,平面ACD 的一个法向量为v =(0,0,1). 所以,cos 〈u ,v 〉=u ·v |u ||v |=0+0+13·1=33.因为二面角A -CD -E 为锐角,所以其余弦值为33.。
高考数学天天练带答案

高考数学天天练五1.若集合2{|90}A x x x =-<,⎭⎬⎫⎩⎨⎧∈∈=*Z yZ y y B 4|且,则集合AB 的元素个数为 .2.已知a b ∈R 、,i 是虚数单位,若(2)a i i b i +=+,则a +b 的值是 . 3.某校高一、高二、高三共有3600名学生,其中高一学生1400名,高二学生1200名,高三学生1000名,现用分层抽样的方法抽取样本,已知抽取高一学生数为21,则每个学生被抽到的概率为 . 4.各项都是正数的等比数列{}n a 的公比1≠q ,且653,,a a a 成等差数列,则6453a a a a ++= ____. 5.若不等式102x m x m-+<-成立的一个充分非必要条件是1132x <<,则实数m 的取值范围是 .6.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c,且tan B =则角B 的大小是 .7.已知x ,y 满足⎪⎩⎪⎨⎧≤++≤+≥041c by ax y x x 且目标函数y x z +=2的最大值为7,最小值为1,则=++acb a . 8(第8题图)9.在棱长为a 的正方体1111ABCD A B C D -内任取一点P ,则点P 到点A 的距离小于或等于a 的概率为 .10. 已知P 是△ABC 内任一点,且满足AP xAB yAC =+,x 、y R ∈,则2y x +的取值范围是 .11.若过点(,)A a a 可作圆2222230x y ax a a +-++-=的两条切线,则实数a 的取值范围是 .12.设首项不为零的等差数列{}n a 前n 项之和是n S ,若不等式22212n n S a a nλ+≥对任意{}n a 和正整数n 恒成立,则实数λ的最大值为 .13.定义在R 上的函数f (x )的图象关于点(43-,0)对称,且满足f (x )= -f (x +23),f (1)=1,f (0)=-2,则f (1)+f (2)+f (3)+…+f (2009)的值为 .14. 己知:函数()f x 满足()()()()f x y f x f y xy x y +=+++,又()'01f =.则函数()f x 的解析式为 .1.3; 2.1-; 3.3200; 4.3; 5.3441≤≤m ; 6.3π或32π; 7.35;8.(4,8); 9.21; 10.6π; 11.(0,2); 123312a a <-<<或.; 13. 15; 14.2.。
高三基础知识天天练 数学5-3人教版

第5模块 第3节[知能演练]一、选择题1.若数列{a n }的前n 项和S n =3n -a ,数列{a n }为等比数列,则实数a 的值是( )A .3B .1C .0D .-1解析:可用特殊值法,由S n 得a 1=3-a ,a 2=6,a 3=18,由等比数列的性质可知a =1.答案:B2.设a 1,a 2,a 3,a 4 成等比数列,其公比为2,则2a 1+a 22a 3+a 4的值为( )A.14B.12C.18D .1解析:由题意得a 2=2a 1,a 3=4a 1,a 4=8a 1. ∴2a 1+a 22a 3+a 4=2a 1+2a 18a 1+8a 1=14.答案:A3.等比数列{a n }前n 项的积为T n ,若a 3a 6a 18是一个确定的常数,那么数列T 10,T 13,T 17,T 25中也是常数的项是( )A .T 10B .T 13C .T 17D .T 25解析:a 3a 6a 18=a 31q 2+5+17=(a 1q 8)3=a 39,即a 9为定值,所以下标和为9的倍数的两项积为定值,可知T 17为定值.答案:C4.已知等比数列{a n }中,a 1+a 2=30,a 3+a 4=120,则a 5+a 6等于( )A .240B .±240C .480D .±480解析:∵{a n }为等比数列,∴数列a 1+a 2,a 3+a 4,a 5+a 6也成等比数列,∴(a 3+a 4)2=(a 1+a 2)(a 5+a 6),∴a 5+a 6=120230=480.答案:C 二、填空题5.等比数列{a n }中,a 1+a 3=10,a 4+a 6=54,则数列{a n }的通项公式为________.解析:由a 4=a 1q 3,a 6=a 3q 3得 a 4+a 6a 1+a 3=q 3=54×110=18,∴q =12,又a 1(1+q 2)=10,∴a 1=8.∴a n =a 1q n -1=8×(12)n -1=24-n .答案:a n =24-n6.在等差数列{a n }中,a 1=1,a 7=4,数列{b n }是等比数列,已知b 2=a 3,b 3=1a 2,则满足b n <1a 80的最小自然数n 是________.解析:{a n }为等差数列a 1=1,a 7=4,6d =3,d =12.∴a n =n +12,{b n }为等比数列,b 2=2,b 3=23,q =13.∴b n =6×(13)n -1,b n <1a 80=281,∴81<26×⎝⎛⎭⎫13n -1,即3n -2>81=34.∴n >6,从而可得n min =7. 答案:7 三、解答题7.设数列{a n }的前n 项和S n =2a n -2n . (1)求a 3,a 4;(2)证明:{a n +1-2a n }是等比数列; (3)求{a n }的通项公式. (1)解:因为a 1=S 1,2a 1=S 1+2, 所以a 1=2,S 1=2. 由2a n =S n +2n 知2a n +1=S n +1+2n +1=a n +1+S n +2n +1,得a n +1=S n +2n +1,①所以a 2=S 1+22=2+22=6,S 2=8, a 3=S 2+23=8+23=16,S 3=24. a 4=S 3+24=40.(2)证明:由题设和①式知a n +1-2a n =(S n +2n +1)-(S n +2n )=2n +1-2n =2n .所以{a n +1-2a n }是首项为2,公比为2的等比数列.(3)a n =(a n -2a n -1)+2(a n -1-2a n -2)+…+2n -2(a 2-2a 1)+2n -1a 1=(n +1)·2n -1.8.设各项均为正数的数列{a n }和{b n }满足5a n ,5b n ,5a n +1成等比数列,lg b n ,lg a n +1,lg b n +1成等差数列,且a 1=1,b 1=2,a 2=3,求通项a n 、b n .解:∵5a n ,5b n ,5a n +1成等比数列, ∴(5b n )2=5a n ·5a n +1,即2b n =a n +a n +1.① 又∵lg b n ,lg a n +1,lg b n +1成等差数列, ∴2lg a n +1=lg b n +lg b n +1,即a 2n +1=b n ·b n +1.② 由②及a i >0,b j >0(i 、j ∈N *)可得 a n +1=b n b n +1.③ ∴a n =b n -1b n (n ≥2).④将③④代入①可得2b n =b n -1b n +b n b n +1(n ≥2), ∴2b n =b n -1+b n +1(n ≥2). ∴数列{b n }为等差数列.∵b 1=2,a 2=3,a 22=b 1b 2,∴b 2=92. ∴b n =2+(n -1)( 92-2) =12(n +1)(n =1也成立). ∴b n =(n +1)22.∴a n =b n -1·b n =n 22·(n +1)22=n (n +1)2(n ≥2). 又当n =1时,a 1=1也成立.∴a n =n (n +1)2.[高考·模拟·预测]1.已知等比数列{a n }的公比为正数,且a 3·a 9=2a 25,a 2=1,则a 1=( )A.12B.22C. 2 D .2解析:因为a 3·a 9=2a 25,则由等比数列的性质有:a 3·a 9=a 26=2a 25,所以a 26a 25=2,即(a 6a 5)2=q 2=2,因为公比为正数,故q = 2.又因为a 2=1,所以a 1=a 2q =12=22.答案:B2.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1=( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2解析:设等比数列{a n }的首项为a 1公比为q ,∵a 5·a 2n -5=a 1q 4·a 1q 2n -6=22n ,即a 21·q 2n -2=22n ⇒(a 1·q n -1)2=22n ⇒(a n )2=(2n )2,∵a n >0,∴a n =2n ,∴a 2n -1=22n -1,∴log 2a 1+log 2a 3+…+log 2a 2n -1=log 22+log 223+…+log 222n -1=1+3+…+(2n -1)=1+(2n -1)2·n =n 2,故选C.答案:C3.已知数列{a n }共有m 项,定义{a n }的所有项和为S (1),第二项及以后所有项和为S (2),第三项及以后所有项和为S (3),…,第n 项及以后所有项和为S (n ).若S (n )是首项为2,公比为12的等比数列的前n 项和,则当n <m 时,a n 等于( )A .-12n -2B.12n -2 C .-12n -1D.12n -1 解析:∵n <m ,∴m ≥n +1.又S (n )=2(1-12n )1-12=4-12n -2,∴S (n +1)=4-12n -1,故a n =S (n )-S (n +1)=12n -1-12n -2=-12n -1.答案:C4.设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则6q =________.解析:由a n =b n -1,且数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则{a n }有连续四项在集合{-54,-24,18,36,81}中.经分析判断知{a n }的四项应为-24,36,-54,81.又|q |>1,所以数列{a n }的公比为q =-32,则6q =-9.答案:-95.等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n )均在函数y =b x +r (b >0且b ≠1,b ,r 均为常数)的图象上.(Ⅰ)求r 的值;(Ⅱ)当b =2时,记b n =n +14a n (n ∈N *),求数列{b n }的前n 项和T n .解:(Ⅰ)由题意,S n =b n +r , 当n ≥2时,S n -1=b n -1+r ,所以a n =S n -S n -1=b n -1(b -1),由于b >0且b ≠1,所以当n ≥2时,{a n }是以b 为公比的等比数列, 又a 1=b +r ,a 2=b (b -1), a 2a 1=b ,即b (b -1)b +r=b ,解得r =-1. (Ⅱ)由(Ⅰ)知,n ∈N *,a n =(b -1)b n -1,当b =2时,a n =2n -1,所以b n =n +14×2n -1=n +12n +1. T n =222+323+424+…+n +12n +1.12T n =223+324+…+n2n +1+n +12n +2, 两式相减得12T n =222+123+124+…+12n +1-n +12n +2=12+123×(1-12n -1)1-12-n +12n +2 =34-12n +1-n +12n +2, 故T n =32-12n -n +12n +1=32-n +32n +1. [备选精题]6.已知数列{a n }满足a 1=a (a ≠0且a ≠1),前n 项和为S n ,且S n =a1-a (1-a n ).(1)求证:{a n }是等比数列;(2)记b n =a n lg|a n |(n ∈N *),当a =-73时,是否存在正整数m ,使得对于任意正整数n ,都有b n ≥b m ?如果存在,求出m 的值;如果不存在,说明理由.解:(1)当n ≥2时,S n =a 1-a (1-a n ),S n -1=a 1-a(1-a n -1), a n =S n -S n -1=a 1-a [(1-a n )-(1-a n -1)]=a1-a (a n -1-a n ),即a n =aa n -1.又a 1=a ≠0,所以a na n -1=a ,所以{a n }是首项和公比都为a 的等比数列. (2)由(1)知,a n =a n ,则b n =a n lg|a n |=na n lg|a |. 又a =-73∈(-1,0),则lg|a |<0. 所以当n 为偶数时,b n =na n lg|a |<0;当n 为奇数时,b n >0. 可见,若存在满足条件的正整数m ,则m 为偶数. b 2k +2-b 2k =[(2k +2)a 2k+2-2ka 2k ]lg|a |=2a 2k [(k +1)a 2-k ]lg|a |=2a 2k [k (a 2-1)+a 2·a 2-1a 2-1]lg|a |=2a 2k (a 2-1)(k -a 21-a2)lg|a |(k ∈N *). 当a =-73时,a 2-1=-29,∴2a 2k (a 2-1)lg|a |>0.又a 21-a 2=72, 当k >72时,b 2k +2>b 2k ,即b 8<b 10<b 12<…;当k <72时,b 2k +2<b 2k ,即b 8<b 6<b 4<b 2.故存在正整数m =8使得对于任意正整数n ,都有b n ≥b m .。
高三基础知识天天练2-3. 数学 数学doc人教版

第2模块第3节[知能演练]一、选择题1.函数y=-x2(x∈R)是() A.左减右增的偶函数B.左增右减的偶函数C.减函数、奇函数D.增函数、奇函数解析:∵y=-x2是开口向下的一条抛物线,∴y=-x2在(-∞,0)上为增函数,(0,+∞)上为减函数,不妨设y=f(x)=-x2,则f(-x)=-(-x)2=-x2=f(x),∴f(x)为偶函数.答案:B2.已知函数f(x)在R上是奇函数,且当x>0时,f(x)=x2-2x,则f(x)在R上的解析式是() A.f(x)=x·(x-2)B.f(x)=|x|(x-2)C.f(x)=|x|(|x|-2)D.f(x)=x(|x|-2)答案:D3.f(x)、g(x)都是定义在R上的奇函数,且F(x)=3f(x)+5g(x)+2,若F(a)=b,则F(-a)等于() A.-b+4 B.-b+2C.b-2 D.b+2解析:依题设F(-x)=3f(-x)+5g(-x)+2=-3f(x)-5g(x)+2,∴F(x)+F(-x)=4,则F(a)+F(-a)=4,F(-a)=4-F(a)=4-b.答案:A4.定义在R上的函数f(x)既是奇函数又是周期函数,T是它的一个正周期.若将方程f(x)=0在闭区间[-T,T]上的根的个数记为n,则n可能为() A.0 B.1C.3 D.5解析:定义在R上的函数f(x)是奇函数,则f(0)=0,又f(x)是周期函数,T是它的一个正周期,∴f (T )=f (-T )=0,f (-T 2)=-f (T 2)=f (-T 2+T )=f (T2).∴f (-T 2)=f (T2)=0,则n 可能为5,选D.答案:D 二、填空题5.设函数f (x )=(x +1)(x +a )x 为奇函数,则a =________.解析:∵f (1)+f (-1)=0⇒2(1+a )+0=0, ∴a =-1. 答案:-16.已知函数f (x )=x 2-cos x ,对于[-π2,π2]上的任意x 1,x 2,有如下条件:①x 1>x 2;②x 21>x 22;③|x 1|>x 2.其中能使f (x 1)>f (x 2)恒成立的条件序号是________.解析:函数f (x )=x 2-cos x 显然是偶函数,其导数y ′=2x +sin x 在0<x <π2时,显然也大于0,是增函数,想象其图象,不难发现,x 的取值离对称轴越远,函数值就越大,②满足这一点.当x 1=π2,x 2=-π2时,①③均不成立.答案:② 三、解答题7.已知f (x )=px 2+23x +q 是奇函数,且f (2)=53.(1)求实数p ,q 的值;(2)判断函数f (x )在(-∞,-1)上的单调性,并加以证明. 解:(1)∵f (x )是奇函数,∴f (-x )=-f (x ),即px 2+2-3x +q =-px 2+23x +q .从而q =0,因此f (x )=px 2+23x .又∵f (2)=53,∴4p +26=53.∴p =2.(2)f (x )=2x 2+23x,任取x 1<x 2<-1,则f (x 1)-f (x 2)=2x 21+23x 1-2x 22+23x 2=2(x 2-x 1)(1-x 1x 2)3x 1x 2.∵x 1<x 2<-1,∴x 2-x 1>0,1-x 1x 2<0,x 1x 2>0. ∴f (x 1)-f (x 2)<0.∴f (x )在(-∞,-1)上是单调增函数.8.已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (x )在[-1,1]上的解析式; (2)证明f (x )在(0,1)上是减函数.(1)解:只需求出f (x )在x ∈(-1,0)和x =±1,x =0时的解析式即可,因此,要注意应用奇偶性和周期性,当x ∈(-1,0)时,-x ∈(0,1).∵f (x )是奇函数,∴f (x )=-f (-x )=-2-x4-x +1=-2x4x +1,由f (0)=f (-0)=-f (0),且f (1)=f (-2+1)=f (-1)=-f (1), 得f (0)=f (1)=f (-1)=0. ∴在区间[-1,1]上有f (x )=⎩⎨⎧2x4x +1x ∈(0,1),-2x 4x+1x ∈(-1,0),0 x ∈{-1,0,1}.(2)证明:当x ∈(0,1)时,f (x )=2x4x +1.设0<x 1<x 2<1, f (x 1)-f (x 2)=2x 14x 1+1-2x 24x 2+1=(2x 2-2x 1)(2x 1+x 2-1)(4x 1+1)(4x 2+1).∵0<x 1<x 2<1.∴2x 2-2x 1>0,2x 1+x 2-1>0. ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),故f (x )在(0,1)上单调递减.[高考·模拟·预测]1.已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2008)+f (2009)的值为( )A .-2B .-1C .1D .2解析:f (-2008)+f (2009)=f (0)+f (1)=log 21+log 22=1.答案:C2.已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )·f (x ),则f (52)的值是( )A .0 B.12 C .1D.52解析:令g (x )=f (x )x ,则g (-x )=f (-x )-x =-f (x )x =-g (x ),∴g (x )为奇函数.又g (x +1)=f (x +1)x +1=f (x )x =g (x ).∴g (52)=f (52)52=g (12)=g (-12)=-g (12),∴g (12)=0,∴f (52)=0.故选A. 答案:A3.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:∵f (x -4)=-f (x ),∴f (x +4)=-f (x ),∴f (x +8)=f (x ).∴f (-25)=f (-1)=-f (1),f (11)=f (3)=-f (-1)=f (1),f (80)=f (0)=0.而f (x )在[0,2]上是增函数,∴f (1)≥f (0)=0.∴f (-25)<f (80)<f (11).故选D.答案:D4.函数f (x )的定义域为R ,若f (x +1)与f (x -1)都是奇函数,则( ) A .f (x )是偶函数 B .f (x )是奇函数 C .f (x )=f (x +2) D .f (x +3)是奇函数解析:由题意f (-x +1)=-f (x +1),f (-x -1)=-f (x -1),即f (x )=-f (2-x )且f (x )=-f (-2-x ).∴f (x )=-f (2-x )=f [-2-(2-x )]=f (x -4),∴f (-x +3)=f (-x -1)=-f [2-(-x -1)]=-f (x +3),故选D. 答案:D5.定义在R 上的增函数y =f (x )对任意x ,y ∈R 都有f (x +y )=f (x )+f (y ). (1)求f (0);(2)求证:f (x )为奇函数;(3)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围. 解:(1)令x =y =0,得f (0+0)=f (0)+f (0),即f (0)=0. (2)令y =-x ,得f (x -x )=f (x )+f (-x ),又f (0)=0,则有 0=f (x )+f (-x ).即f (-x )=-f (x )对任意x ∈R 成立, 所以f (x )是奇函数.(3)证法一:因为f (x )在R 上是增函数,又由(2)知f (x )是奇函数.f (k ·3x )<-f (3x -9x -2)=f (-3x +9x +2), 所以k ·3x <-3x +9x +2,32x -(1+k )·3x +2>0对任意x ∈R 成立.令t =3x >0,问题等价于t 2-(1+k )t +2>0对任意t >0恒成立. 令f (t )=t 2-(1+k )t +2,其对称轴为x =1+k 2,当1+k2<0即k <-1时,f (0)=2>0,符合题意; 当1+k2≥0即k ≥-1时,对任意t >0,f (t )>0恒成立⇔⎩⎪⎨⎪⎧1+k 2≥0,Δ=(1+k )2-4×2<0,解得-1≤k <-1+2 2. 综上所述,当k <-1+22时,f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立. 解法二:由k ·3x <-3x +9x +2, 得k <3x +23x -1.u =3x +23x -1≥22-1,即u 的最小值为22-1,要使对x ∈R 不等式k <3x +23x -1恒成立,只要使k <22-1.所以满足题意的k 的取值范围是(-∞,22-1)[备选精题]6.已知函数f (x )=x 2+ax (x ≠0,常数a ∈R ).(1)讨论函数f (x )的奇偶性,并说明理由;(2)若函数f (x )在x ∈[2,+∞)上为增函数,求a 的取值范围. 解:(1)当a =0时,f (x )=x 2,对任意x ∈(-∞,0)∪(0,+∞), f (-x )=(-x )2=x 2=f (x ),∴f (x )为偶函数. 当a ≠0时,f (x )=x 2+ax (a ≠0,x ≠0),取x =±1,得f (-1)+f (1)=2≠0,f (-1)-f (1)= -2a ≠0.∴f (-1)≠-f (1),f (-1)≠f (1).∴函数f (x )既不是奇函数,也不是偶函数.(2)解法一:要使函数f (x )在x ∈[2,+∞)上为增函数, 等价于f ′(x )≥0在x ∈[2,+∞)上恒成立,即f ′(x )=2x -ax 2≥0在x ∈[2,+∞)上恒成立,故a ≤2x 3在x ∈[2,+∞)上恒成立.∴a ≤(2x 3)min =16.∴a 的取值范围是(-∞,16]. 解法二:设2≤x 1<x 2,f(x1)-f(x2)=x21+ax1-x22-ax2=(x1-x2)x1x2[x1x2(x1+x2)-a],要使函数f(x)在x∈[2,+∞)上为增函数,必须f(x1)-f(x2)<0恒成立,∵x1-x2<0,即a<x1x2(x1+x2)恒成立,又∵x1+x2>4,x1x2>4,∴x1x2(x1+x2)>16.∴a的取值范围是(-∞,16].。
高三基础知识天天练3-3. 数学 数学doc人教版

第3模块 第3节[知能演练]一、选择题1.函数y =xsin x,x ∈(-π,0)∪(0,π)的图象可能是下列图象中的()解析:∵y =xsin x 是偶函数,排除A ,当x =2时,y =2sin2>2,排除D. 当x =π6时,y =π6sin π6=π3>1,排除B.答案:C2.函数f (x )=tan ωx (ω>0)图象的相邻的两支截直线y =π4所得线段长为π4,则f (π4)的值是( )A .0B .1C .-1D.π4解析:由题意知T =π4,由πω=π4得ω=4,∴f (x )=tan4x ,∴f (π4)=tan π=0.答案:A3.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是( )A .[-π,-5π6]B .[-5π6,-π6]C .[-π3,0]D .[-π6,0]解析:f (x )=sin x -3cos x =2sin(x -π3)∵-π≤x ≤0,∴-4π3≤x -π3≤-π3当-π2≤x -π3≤-π3时,即-π6≤x ≤0时,f (x )递增.答案:D4.对于函数f (x )=sin x +1sin x(0<x <π),下列结论中正确的是( )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值解析:f (x )=sin x +1sin x =1+1sin x ,∵0<x <π,∴0<sin x ≤1,∴1sin x ≥1,∴1+1sin x≥2.∴f (x )有最小值而无最大值. 答案:B 二、填空题 5.函数y =lgsin x + cos x -12的定义域为____________,函数y =12sin(π4-23x )的单调递增区间为________.解析:(1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0cos x ≥12,解得⎩⎪⎨⎪⎧2kπ<x <π+2kπ-π3+2kπ≤x ≤π3+2kπ(k ∈Z ), ∴2kπ<x ≤π3+2kπ,k ∈Z ,∴函数的定义域为{x |2kπ<x ≤π3+2kπ,k ∈Z }.(2)由y =12sin(π4-23x )得y =-12sin(23x -π4),由π2+2kπ≤23x -π4≤32π+2kπ,得 98π+3kπ≤x ≤21π8+3kπ,k ∈Z ,故函数的单调递增区间为 [98π+3kπ,21π8+3kπ](k ∈Z ). 答案:{x |2kπ<x ≤π3+2kπ,k ∈Z }[98π+3kπ,21π8+3kπ](k ∈Z ) 6.对于函数f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≤cos x cos x ,sin x >cos x ,给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x =π+kπ(k ∈Z )时,该函数取得最小值-1; ③该函数的图象关于x =5π4+2kπ(k ∈Z )对称;④当且仅当2kπ<x <π2+2kπ(k ∈Z )时,0<f (x )≤22.其中正确命题的序号是________.(请将所有正确命题的序号都填上) 解析:画出f (x )在一个周期[0,2π]上的图象.由图象知,函数f (x )的最小正周期为2π,在x =π+2kπ(k ∈Z )和x =32π+2kπ(x ∈Z )时,该函数都取得最小值-1,故①②错误,由图象知,函数图象关于直线x =54π+2kπ(k ∈Z )对称,在2kπ<x <π2+2kπ(k ∈Z )时,0<f (x )≤22.故③④正确.答案:③④ 三、解答题7.已知函数y =f (x )=2sin x1+cos 2x -sin 2x.(1)求函数定义域;(2)用定义判断f (x )的奇偶性; (3)在[-π,π]上作出f (x )的图象; (4)写出f (x )的最小正周期及单调区间. 解:(1)∵f (x )=2sin x 2cos 2x=sin x|cos x |, ∴函数的定义域是{x |x ≠kπ+π2,k ∈Z }.(2)由(1)知f (-x )=sin(-x )|cos(-x )|=-sin x|cos x |=-f (x ),∴f (x )是奇函数. (3)f (x )=⎩⎨⎧tan x (-π2<x <π2)-tan x (-π≤x <-π2或π2<x ≤π),y =f (x )(x ∈[-π,π])的图象如图所示.(4)f (x )的最小正周期为2π,单调递增区间是(-π2+2kπ,π2+2kπ)(k ∈Z ),单调递减区间是(π2+2kπ,3π2+2kπ)(k ∈Z ).8.已知a >0,函数f (x )=-2a sin(2x +π6)+2a +b ,当x ∈[0,π2]时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f (x +π2)且lg[g (x )]>0,求g (x )的单调区间.解:(1)∵x ∈[0,π2],∴2x +π6∈[π6,7π6],∴sin(2x +π6)∈[-12,1],∴-2a sin(2x +π6)∈[-2a ,a ],∴f (x )∈[b,3a +b ],又-5≤f (x )≤1.∴⎩⎪⎨⎪⎧ b =-53a +b =1,解得⎩⎪⎨⎪⎧a =2b =-5. (2)f (x )=-4sin(2x +π6)-1,g (x )=f (x +π2)=-4sin(2x +7π6)-1=4sin(2x +π6)-1,又由lg[g (x )]>0,得g (x )>1, ∴4sin(2x +π6)-1>1,∴sin(2x +π6)>12,∴π6+2kπ<2x +π6<56π+2kπ,k ∈Z ,由π6+2kπ<2x +π6≤2kπ+π2,得 kπ<x ≤kπ+π6,k ∈Z .由π2+2kπ≤2x +π6<56π+2kπ得 π6+kπ≤x <π3+kπ,k ∈Z . ∴函数g (x )的单调递增区间为(kπ,π6+kπ](k ∈Z ),单调递减区间为[π6+kπ,π3+kπ)(k ∈Z ).[高考·模拟·预测]1.若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为( )A .1B .2 C.3+1D.3+2解析:因为f (x )=(1+3tan x )cos x =cos x +3sin x =2cos(x -π3),当x =π3时,函数取得最大值为2.故选B.答案:B2.若将函数y =tan(ωx +π4)(ω>0)的图象向右平移π6个单位长度后,与函数y =tan(ωx +π6)的图象重合,则ω的最小值为( )A.16 B.14 C.13D.12解析:将函数y =tan(ωx +π4)的图象向右平移π6个单位后,得到的函数为y =tan[ω(x -π6)+π4]=tan(ωx -πω6+π4),这个函数的图象与函数y =tan(ωx +π6)的图象重合,根据正切函数的周期是kπ,故其充要条件是-πω6+π4=kπ+π6(k ∈Z ),即ω=-6k +12(k ∈Z ),当k =0时,ω的最小值为12,故选D.答案:D3.已知函数f (x )=sin(x -π2)(x ∈R ),下面结论中错误的是( )A .函数f (x )的最小正周期为2πB .函数f (x )在区间[0,π2]上是增函数C .函数f (x )在图象关于直线x =0对称D .函数f (x )是奇函数解析:∵f (x )=-cos x ,∴f (x )为偶函数,故选D. 答案:D4.已知α∈(0,π4),a =(sin α)cos α,b =(sin α)sin α,c =(cos α)sin α,则a 、b 、c 的大小关系是________.解析:α∈(0,π4),1>cos α>sin α>0,y =(sin α)x 为减函数,∴a <b .而y =x sin α在(0,+∞)上为增函数,∴c >b .故c >b >a .答案:a <b <c5.已知函数f (x )=3(sin 2x -cos 2x )-2sin x cos x . (1)求f (x )的最小正周期;(2)设x ∈[-π3,π3],求f (x )的值域和单调递增区间.解:(1)∵f (x )=-3(cos 2x -sin 2x )-2sin x cos x =-3cos2x -sin2x =-2sin(2x +π3)∴f (x )的最小正周期为π.(2)∵x ∈[-π3,π3],∴-π3≤2x +π3≤π,∴-32≤sin(2x +π3)≤1. ∴f (x )的值域为[-2,3].∵当y =sin(2x +π3)递减时,f (x )递增,令2kπ+π2≤2x +π3≤2kπ+3π2,则kπ+π12≤x ≤kπ+7π12,k ∈Z ,又x ∈[-π3,π3],∴π12≤x ≤π3.故f (x )的递增区间为[π12,π3].[备选精题]6.设函数f (x )=sin(π4x -π6)-2cos 2π8x +1.(1)求f (x )的最小正周期;(2)若函数y =g (x )与y =f (x )的图象关于直线x =1对称,求当x ∈[0,43]时y =g (x )的最大值.解:(1)f (x )=sin π4x cos π6-cos π4x sin π6-cos π4x =32sin π4x -32cos π4x =3sin(π4x -π3),故f (x )的最小正周期为T =2ππ4=8.(2)解法一:在y =g (x )的图象上任取一点(x ,g (x )),它关于x =1的对称点为(2-x ,g (x )).由题设条件,点(2-x ,g (x ))在y =f (x )的图象上,可知g (x )=f (2-x )=3sin[π4(2-x )-π3]=3sin(π2-π4x -π3)=3cos(π4x +π3).当0≤x ≤43时,π3≤π4x +π3≤2π3,因此y =g (x )在区间[0,43]上的最大值为g (x )max =3cos π3=32.解法二:因区间[0,43]关于x =1的对称区间为[23,2],且y =g (x )与y =f (x )的图象关于x=1对称,故y =g (x )在[0,43]上的最大值即为y =f (x )在[23,2]上的最大值.由(1)知f (x )=3sin(π4x -π3),当23≤x ≤2时,-π6≤π4x -π3≤π6. 因此y =g (x )在[0,43]上的最大值为g (x )max =3sin π6=32.。
高三基础知识天天练 数学8-9人教版

第8模块 第9节一、选择题1.若直线y =a 与椭圆x 23+y 24=1恒有两个不同的交点,则a 的取值范围是( )A .(-3,3)B .(-3,3)C .(-2,2)D .(-4,4) 解析:如右图,作出图形,即可求出结果. 答案:C2.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-12,12] B .[-2,2]C .[-1,1]D .[-4,4]解析:设直线方程为y =k (x +2),与抛物线联立方程组,整理得ky 2-8y +16k =0.当k =0时,直线与抛物线有一个交点.当k ≠0时,由Δ=64-64k 2≥0,解得-1≤k ≤1且k ≠0.所以-1≤k ≤1.答案:C3.已知点P (4,2)是直线l 被椭圆x 2+4y 2=λ所截得的线段AB 的中点,若AB =10,则λ等于( )A .4B .9C .16D .36 答案:D4.斜率为1的直线l 与椭圆x 24+y 2=1相交于A 、B 两点,则|AB |的最大值为( )A .2 B.455C.4105D.8105解析:设直线l 的方程为y =x +t ,代入x 24+y 2=1,消去y 得54x 2+2tx +t 2-1=0,由题意得Δ=(2t )2-5(t 2-1)>0,即t 2<5.弦长|AB |=2·4·5-t 25≤4105.答案:C 二、填空题5.如果过两点A (a,0)和B (0,a )的直线与抛物线y =x 2-2x -3没有交点,那么实数a的取值范围是__________.解析:过A 、B 两点的直线为:x +y =a 与抛物线y =x 2-2x -3联立得:x 2-x -a -3=0,因为直线与抛物线没有交点,则方程无解.即Δ=1+4(a +3)<0,解之:a <-134.答案:(-∞,-134)6.过椭圆x 25+y24=1的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为坐标原点,则△OAB 的面积为__________.解析:易知直线AB 方程为y =2(x -1),与椭圆方程联立解得A (0,-2),B (53,43),故S △ABC =S △AOF +S △BOF =12×1×2+12×1×43=53.答案:53三、解答题7.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1)、B (x 2,y 2)两点,求y 21+y 22的最小值.解:(1)当过P 点的直线垂直于x 轴,即x =4时易得y 21=16,y 22=16,此时y 21+y 22=32. (2)当过P 点的直线与x 轴不垂直时,设其斜率为k , 则直线方程为y =k (x -4),代入抛物线方程y 2=4x , 消去y 整理得k 2x 2-(8k 2+4)x +16k 2=0. 由题意知x 1,x 2就是该方程的两根,∴x 1+x 2=8k 2+4k 2,x 1·x 2=16.于是y 21+y 22=[k (x 1-4)]2+[k (x 2-4)]2. =k 2[(x 1+x 2)2-8(x 1+x 2)-2x 1x 2+32] =16k2+32>32,此时无最小值. 综上所述,y 21+y 22的最小值为32.8.抛物线的顶点在原点,以x 轴为对称轴.经过焦点且倾斜角为135°的直线,被抛物线所截得的弦长为8,试求抛物线方程.解:如右图,依题意设抛物线方程为y 2=2px (p >0),则直线方程为y =-x +12p .设直线交抛物线于A (x 1,y 1)、B (x 2,y 2),则由抛物线定义得 |AB |=|AF |+|FB |=|AC |+|BD |=x 1+p 2+x 2+p 2,即x 1+x 2+p =8.①又A (x 1,y 1)、B (x 2,y 2)是抛物线和直线的交点,由⎩⎪⎨⎪⎧y =-x +12p ,y 2=2px ,消去y 得x 2-3px +p 24=0,∴x 1+x 2=3p .将其代入①得p =2, ∴所求抛物线方程为y 2=4x .当抛物线方程设为y 2=-2px 时,同理可求得抛物线方程为y 2=-4x . ∴抛物线方程为y 2=4x 或y 2=-4x .[高考·模拟·预测]1.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A .2B .3 C.115 D.3716解析:∵直线l 2:x =-1恰为抛物线y 2=4x 的准线,∴P 到l 2的距离d 2=|PF |(F (1,0)为抛物线焦点),所以P 到l 1、l 2距离之和最小值为F 到l 1距离|4×1-3×0+6|32+42=2,故选A.答案:A2.点P 在直线l :y =x -1上,若存在过P 的直线交抛物线y =x 2于A 、B 两点,且|P A |=|AB |,则称点P 为“A 点”.那么下列结论中正确的是( )A .直线l 上的所有点都是“A 点”B .直线l 上仅有有限个点是“A 点”C .直线l 上的所有点都不是“A 点”D .直线l 上有无穷多个点(但不是所有的点)“A 点”解析:分别作出直线l :y =x -1及抛物线y =x 2.如右图,取直线l 上任一点P 都存在过点P 的直线(直线可绕P 点任意旋转)交抛物线y =x 2于A ,B 两点,则|AB |的取值范围是(0,+∞),那么一定存在一个值,使得|P A |=|AB |.故选A.答案:A3.设抛物线y 2=2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A 、B 两点,与抛物线的准线相交于点C ,|BF |=2,则△BCF 与△ACF 的面积之比S △BCFS △ACF=( )A.45B.23C.47D.12解析:如右图过A 、B 作准线l :x =-12的垂线,垂足分别为A 1、B 1,由于F 到直线AB的距离为定值.∴S △BCF S △ACF =|BC ||CA |.又∵△B 1BC ~△A 1AC .∴|BC ||CA |=|BB 1||AA 1|,由抛物线定义|BB 1||AA 1|=|BF ||AF |=2|AF |. 由|BF |=|BB 1|=2知x B =32,y B =-3,∴l AB :y -0=33-32(x -3).把x =y 22代入上式,求得y A =2,x A =2,∴|AF |=|AA 1|=52.故S △BCF S △ACF =|BF ||AF |=252=45.故选A. 答案:A4.已知,椭圆C 经过点A (1,32),两个焦点为(-1,0),(1,0).(1)求椭圆C 的方程;(2)E 、F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.解:(1)由题意,c =1,可设椭圆方程为x 21+b 2+y 2b2=1.因为A 在椭圆上,所以11+b 2+94b2=1,解得b 2=3,b 2=-34(舍去). 所以椭圆方程为x 24+y23=1.(2)设直线AE 方程为y =k (x -1)+32,代入x 24+y23=1得(3+4k 2)x 2+4k (3-2k )x +4(32-k )2-12=0.设E (x E ,y E ),F (x F ,y F ).因为点A (1,32)在椭圆上,所以x E =4(32-k )2-123+4k 2,y E =kx E +32-k .又直线AF 的斜率与AE 的斜率互为相反数,在上式中以-k 代k ,可得x F =4(32+k )2-123+4k2,y F =-kx F +32+k . 所以直线EF 的斜率k EF =y F -y Ex F -x E=-k (x E +x F )+2k x F -x E=12.即直线EF 的斜率为定值,其值为12.[备选精题]5.已知动圆C 过点A (-2,0),且与圆M :(x -2)2+y 2=64相内切. (1)求动圆C 的圆心的轨迹方程.(2)设直线l :y =kx +m (其中k ,m ∈Z )与(1)所求轨迹交于不同两点B 、D ,与双曲线x 24-y 212=1交于不同两点E ,F ,问是否存在直线l ,使得向量DF →+BE →=0?若存在,指出这样的直线有多少条;若不存在,请说明理由.解:(1)圆M :(x -2)2+y 2=64,圆心M 的坐标为(2,0),半径R =8. ∵|AM |=4<R ,∴点A (-2,0)在圆M 内.设动圆C 的半径为r ,圆心为C ,依题意得r =|CA |,且 |CM |=R -r ,即|CM |+|CA |=8>|AM |,∴圆心C 的轨迹是中心在原点,以A ,M 两点为焦点,长轴长为8的椭圆,设其方程为x 2a 2+y 2b2=1(a >b >0),则a =4,c =2, ∴b 2=a 2-c 2=12.∴所求动圆C 的圆心的轨迹方程为x 216+y 212=1.(2)由⎩⎪⎨⎪⎧y =kx +m ,x 216+y212=1消去y 化简整理得: (3+4k 2)x 2+8kmx +4m 2-48=0,设B (x 1,y 1),D (x 2,y 2),则x 1+x 2=-8km3+4k 2.Δ1=(8km )2-4(3+4k 2)(4m 2-48)>0.①由⎩⎪⎨⎪⎧y =kx +m ,x 24-y 212=1消去y 化简整理得:(3-k 2)x 2-2kmx -m 2-12=0, 设E (x 3,y 3),F (x 4,y 4),则x 3+x 4=2km3-k 2.Δ2=(-2km )2+4(3-k )2(m 2+12)>0.② ∵DF →+BE →=0,∴(x 4-x 2)+(x 3-x 1)=0,即x 1+x 2=x 3+x 4,∴-8km 3+4k 2=2km 3-k 2. ∴2km =0或-43+4k 2=13-k 2, 解得k =0或m =0.当k =0时,由①②得-23<m <23, ∵m ∈Z ,∴m 的值为-3,-2,-1,0,1,2,3; 当m =0时,由①②得-3<k <3,∵k ∈Z ,∴k =-1,0,1.∴满足条件的直线共有9条.。
高三基础知识天天练 数学检测4.人教版

单元质量检测(四)一、选择题1.若复数(a 2-4a +3)+(a -1)i 是纯虚数,则实数a 的值是( )A .1B .3C .1或3D .-1解析:由题意知⎩⎪⎨⎪⎧a 2-4a +3=0a -1≠0,解得a =3.答案:B2.复数1-2+i +11-2i的虚部是( )A.15i B.15 C .-15iD .-15解析:∵1-2+i +11-2i=-2-i (-2+i )(-2-i )+1+2i(1-2i )(1+2i )=-2-i 5+1+2i 5=-15+15i , ∴虚部为15.答案:B3.平面向量a ,b 共线的充要条件是( )A .a ,b 方向相同B .a ,b 两向量中至少有一个为零向量C .∃λ∈R ,b =λaD .存在不全为零的实数λ1,λ2,λ1a +λ2b =0解析:A 中,a ,b 同向则a ,b 共线;但a ,b 共线则a ,b 不一定同向,因此A 不是充要条件.若a ,b 两向量中至少有一个为零向量,则a ,b 共线;但a ,b 共线时,a ,b 不一定是零向量,如a =(1,2),b =(2,4),从而B 不是充要条件.当b =λa 时,a ,b 一定共线;但a ,b 共线时,若b ≠0,a =0,则b =λa 就不成立,从而C 也不是充要条件.对于D ,假设λ1≠0,则a =-λ2λ1b ,因此a ,b 共线;反之,若a ,b 共线,则a =nm b ,即m a -n b =0.令λ1=m ,λ2=-n ,则λ1a +λ2b =0. 答案:D4.如下图所示,已知梯形ABCD 中,AB ∥CD ,且AB =3CD ,M ,N 分别是AB ,CD 的中点,设AB →=e 1,AD →=e 2,MN →可表示为( )A .e 2+16e 1B .e 2-12e 1C .e 2-13e 1D .e 2+131解析:MN →=12(MD →+MC →)=12(MD →+MD →+DC →)=12[2(MA →+AD →)+DC →]=12[2(-12e 1+e 2)+131]=-12e 1+e 2+16e 1=e 2-13e 1. 答案:C5.向量a ,b 满足|a |=1,|b |=2,(a +b )⊥(2a -b ),则向量a 与b 的夹角为( )A .45°B .60°C .90°D .120°解析:由(a +b )⊥(2a -b )得(a +b )·(2a -b )=0, 即2|a |2+|a |·|b |cos α-|b |2=0,把|a |=1,|b |=2代入得cos α=0,∴α=90°(其中α为两向量的夹角). 答案:C6.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且DC →=2BD →,CE →=2EA →,AF →=2FB →,则AD →+BE →+CF →与BC →( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直解析:∵DC →=2BD →,∴BC →-BD →=2BD →,∴BD →=13→.∵CE →=2EA →,∴BE →-BC →=2BA →-2BE →, ∴BE →=23BA →+13BC →.∵AF →=2FB →,∴BF →-BA →=-2BF →,∴BF →=13BA →.∴AD →+BE →+CF →=BD →-BA →+BE →+BF →-BC → =13BC →-BA →+23BA →+13BC →+13BA →-BC → =-13BC →.∴AD →+BE →+CF →与BC →反向平行. 答案:A7.已知非零向量a ,b ,若a ·b =0,则|a -2b ||a +2b |等于( )A.14 B .2 C.12D .1解析:|a -2b ||a +2b |=(a -2b )2(a +2b )2=a 2+4b 2a 2+4b 2=1.答案:D8.在△ABC 中,若BC →2=AB →·BC →+CB →·CA →+BC →·BA →,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形解析:因为AB →·BC →+CB →·CA →+BC →·BA → =BC →·(AB →-CA →+BA →)=BC →·AC →,故BC →2-BC →·AC →=BC →·(BC →-AC →)=BC →·BA →=0, 即∠B =π2.答案:B9.一质点受到平面上的三个力F 1,F 2,F 3(单位:牛顿)的作用而处于平衡状态.已知F 1,F 2成60°角,且F 1,F 2的大小分别为2和4,则F 3的大小为( )A .6B .2C .2 5D .27解析:如图,F 3的大小等于F 1、F 2的合力的大小.由平面向量加法的三角形法则知,在△OAB 中OB 的长就是F 1、F 2的合力的大小,且在△OAB 中,∠OAB =120°,OB =F 21+F 22-2F 1·F 2cos120°=28=27,即F 3为27.答案:D10.函数y =tan(π4-π2)的部分图象如下图所示,则(OA →+OB →)·AB →=( )A .-6B .-4C .4D .6解析:函数y =tan(π4x -π2)的图象是由y =tan x 的图象向右平移π2坐标扩大为原来的4π倍得到,所以点A 的坐标为(2,0),令tan(π4x -π2)=1得π4x -π2=π4,故可得B 点坐标为(3,1),所以(OA →+OB →)·AB →=(5,1)·(1,1)=6.答案:D11.设点P 为△ABC 的外心(三条边垂直平分线的交点),若AB =2,AC =4,则AP →·BC →=( )A .8B .6C .4D .2解析:我们可以采用特殊方法解答,设A (-1,0),B (1,0),C (-1,4),则外心P 为(0,2),故AP →=(1,2),BC →=(-2,4),故AP →·BC →=6.答案:B12.已知P 是△ABC 所在平面内的一点,若CB →=λPA →+PB →(其中λ∈R ),则点P 一定在( )A .△ABC 的内部B .AC 边所在的直线上 C .AB 边所在的直线上D .BC 边所在的直线上解析:CB →=PB →-PC →=λPA →+PB →化简即得-PC →=λPA →,由共线向量的充要条件可知,点P ,A ,C 三点共线,所以答案选B.答案:B 二、填空题13.若复数a +3i1+2i (a ∈R ,i 是虚数单位)是纯虚数,则实数a =________.解析:∵a +3i 1+2i =(a +3i )(1-2i )(1+2i )(1-2i )=a +65+3-2a5i , ∴⎩⎨⎧a +6503-2a 5≠0,∴a =-6.答案:-614.向量a =(cos10°,sin10°),b =(cos70°,sin70°),|a -2b |=________. 解析:|a -2b |=a 2+4b 2-4a ·b =1+4-4(cos10°cos70°+sin10°sin70°) =5-4cos60°= 3. 答案: 315.已知AD 是△ABC 的中线,AD →=λAB →+μAC →(λ,μ∈R ),那么λ+μ=________;若∠A =120°,AB →·AC →=-2,则|AD →|的最小值是________.解析:若AD 为△ABC 的中线,则有AD →=12(AB →+AC →),∴λ+μ=1.|AD →|2=14(AB →+AC →)2=14(|AB →|2+|AC →|2+2AB →·AC →)=14(|AB →|2+|AC →|2-4),∵|AB →|2+|AC →|2≥2|AB →|·|AC →|=2AB →·AC →cos120°8,所以|AD →|≥1.答案:1 116.给定两个长度为1的平面向量OA →和OB →,它们的夹角为120°.如图所示,点C 在以O 为圆心的圆弧AB 上变动.若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是________.解析:以O 为坐标原点,OA 为x 轴建立平面直角坐标系,则可知A (1,0),B (-12,32),设C (cos α,sin α)(α∈[0,2π3]),则有x =cos α+33sin α,y =233sin α,所以x +y =cos α+3sin α=2sin(α+π6),所以当α=π3时,x +y 取得最大值为2.答案:2 三、解答题17.如图,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d 表示AB →,AD →.解法一:设AB →=a ,AD →=b , 则a =AN →+NB →=d +(-12)①b =AM →+MD →=c +(-12a )②将②代入①得a =d +(-12)[c +(-12a )]⇒a =43d -23,代入②得b =c +(-12)(43d -23c )=43c -23d .解法二:设AB →=a ,AD →=b . 因M ,N 分别为CD ,BC 中点, 所以BN →=12b ,DM →=12a .因而⎩⎨⎧c =b +12a d =a +12b ⇒⎩⎨⎧a =23(2d -c )b =23(2c -d ),即AB →=23(2d -c ),AD →=23(2c -d ).18.设a =(-1,1),b =(4,3),c =(5,-2),(1)求证a 与b 不共线,并求a 与b 的夹角的余弦值; (2)求c 在a 方向上的投影; (3)求λ1和λ2,使c =λ1a +λ2b .解:(1)∵a =(-1,1),b =(4,3),且-1×3≠1×4,∴a 与b 不共线. 又a ·b =-1×4+1×3=-1,|a |=2,|b |=5, ∴cos 〈a ,b 〉=a ·b |a ||b |=-152=-210. (2)∵a ·c =-1×5+1×(-2)=-7, ∴c 在a 方向上的投影为a ·c |a |=-72=-72 2.(3)∵c =λ1a +λ2b ,∴(5,-2)=λ1(-1,1)+λ2(4,3)=(4λ2-λ1,λ1+3λ2),∴⎩⎪⎨⎪⎧4λ2-λ1=5λ1+3λ2=-2,解得⎩⎨⎧λ1=-237λ2=37.19.设△ABC 的外心为O ,则圆O 为△ABC 的外接圆,垂心为H .求证:OH →=OA →+OB →+OC →.证明:延长BO 交圆O 于D 点,连AD 、DC , 则BD 为圆O 的直径,故∠BCD =∠BAD =90°. 又∵AE ⊥BC ,DC ⊥BC , 得AH ∥DC ,同理DA ∥CH . ∴四边形AHCD 为平行四边形, ∴AH →=DC →.又∵DC →=OC →-OD →=OC →+OB →, ∴AH →=OB →+OC →. 又∵OH →=OA →+AH →, ∴OH →=OA →+OB →+OC →.20.(1)如图,设点P ,Q 是线段AB 的三等分点,若OA →=a ,OB →=b ,试用a ,b 表示OP →,OQ →,并判断OP →+OQ →与OA →+OB →的关系;(2)受(1)的启示,如果点A 1,A 2,A 3,…,A n -1是AB 的n (n ≥3)等分点,你能得到什么结论?请证明你的结论.解:(1)OP →=OA →+AP →=OA →+13AB →=OA →+13OB →-OA →)=13OB →+23OA →=23a +13.同理OQ →=13a +23b ,∴OP →+OQ →=a +b =OA →+OB →.(2)OA 1→+OA n -1 =OA 2→+OA n -2 =…=OA →+OB →. 证明如下:由(1)可推出OA 1→=OA →+AA 1→=OA →+1n AB →=OA →+1n OB →-OA →)=n -1n OA →+1n OB →,∴OA 1→=n -1n a +1n b ,同理OA n -1=1n a +n -1nb ,OA 2→=n -2n a +2n b ,OA n -2=2n a +n -2n b ,…因此有OA 1→+OA n -1=OA 2→+OA n -2=…=OA →+OB →.21.已知△ABC 的面积S 满足3≤S ≤3,且AB →·BC →=6,AB →与BC →的夹角为θ. (1)求θ的取值范围;(2)求函数f (θ)=sin 2θ+2sin θ·cos θ+3cos 2θ的最小值. 解:(1)由题意知: AB →·BC →=|AB →|·|BC →|·cos θ=6① S =12|AB →|·|BC →|·sin(π-θ)=12|AB →|·|BC →|·sin θ② ②÷①得S 6=12tan θ,即3tan θ=S .由3≤S ≤3,得3≤3tan θ≤3,即33≤tan θ≤1. ∵θ为AB →与BC →的夹角,∴θ∈(0,π),∴θ∈[π6,π4].(2)f (θ)=sin 2θ+2sin θ·cos θ+3cos 2θ =1+sin2θ+2cos 2θ=2+sin2θ+cos2θ =2+2sin(2θ+π4).∵θ∈[π6,π4],∴2θ+π4∈[7π12,3π4].∴当2θ+π4=3π4,即θ=π4时,f (θ)有最小值为3.22.设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β). (1)若a 与b -2c 垂直,求tan(α+β)的值; (2)求|b +c |的最大值;(3)若tan αtan β=16,求证:a ∥b . 解:(1)因为a 与b -2c 垂直,所以a ·(b -2c )=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β=4sin(α+β)-8cos(α+β)=0, 因此tan(α+β)=2.(2)由b +c =(sin β+cos β,4cos β-4sin β),得 |b +c |=(sin β+cos β)2+(4cos β-4sin β)2 =17-15sin2β≤4 2.又当β=-π4时,等号成立,所以|b +c |的最大值为4 2.(3)由tan αtan β=16得4cos αsin β=sin α4cos β,所以a ∥b .。
高三基础知识天天练 数学8-8人教版

第8模块 第8节[知能演练]一、选择题1.若点P 到点F (0,2)的距离比它到直线y +4=0的距离小2,则P 的轨迹方程为( ) A .y 2=8x B .y 2=-8x C .x 2=8y D .x 2=-8y解析:由题意知P 到F (0,2)的距离比它到y +4=0的距离小2,因此P 到F (0,2)的距离与到直线y +2=0的距离相等,故P 的轨迹是以F 为焦点,y =-2为准线的抛物线,∴P 的轨迹方程为x 2=8y . 答案:C2.设F 为抛物线y 2=ax (a >0)的焦点,点P 在抛物线上,且其到y 轴的距离与到点F 的距离之比为1∶2,则|PF |等于( )A.a4 B .a C.a 8 D.a 2解析:设P (x 0,y 0),则y 20=ax 0,由抛物线定义知|PF |=x 0+a4,由已知得x 0x 0+a 4=12,解得x 0=a4,∴|PF |=a 4+a 4=a2.答案:D3.已知抛物线y 2=4x ,过焦点的弦AB 被焦点分成长为m 、n (m ≠n )的两段,那么( ) A .m +n =mn B .m -n =mn C .m 2+n 2=mn D .m 2-n 2=mn 解析:由题意设直线AB 的方程为y =k (x -1), 由⎩⎪⎨⎪⎧y =k (x -1)y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0, 设A (x 1,y 1),B (x 2,y 2),则x 1x 2=1, mn =(x 1+1)(x 2+1)=x 1x 2+(x 1+x 2)+1 =x 1+x 2+2=m +n . 答案:A4.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点.若F A →+FB →+FC →=0,则|F A →|+|FB →|+|FC →|等于( )A .9B .6C .4D .3解析:焦点F 坐标为(1,0),准线方程x =-1,设A 、B 、C 坐标分别为A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),A 、B 、C 在准线上的射影分别为A ′,B ′,C ′.∴F A →=(x 1-1,y 1),FB →=(x 2-1,y 2),FC →=(x 3-1,y 3) ∵F A →+FB →+FC →=0,∴x 1-1+x 2-1+x 3-1=0,∴x 1+x 2+x 3=3 ∴|F A →|+|FB →|+|FC →|=|AA ′|+|BB ′|+|CC ′| =(x 1+1)+(x 2+1)+(x 3+1)=6. 答案:B 二、填空题5.已知抛物线y =ax 2-1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为________.解析:由抛物线y =ax 2-1的焦点坐标为(0,14a -1)为坐标原点,得a =14,则y =14x 2-1与坐标轴的交点为(0,-1),(-2,0),(2,0),则以这三点围成的三角形的面积为12×4×1=2.答案:26.点P 到A (1,0)和直线x =-1的距离相等,且点P 到直线l :y =x 的距离等于22,则这样的点P 的个数为__________.解析:由抛物线定义,知点P 的轨迹为抛物线,其方程为y 2=4x ,设点P 的坐标为(y 204,y 0),由点到直线的距离公式,知|y 204-y 0|2=22,即y 20-4y 0±4=0,易知y 0有三个解,故点P个数有三个.答案:3 三、解答题 7.已知抛物线y 2=2px (p >0)有一个内接直角三角形,直角顶点在原点,斜边长为213,一直角边的方程是y =2x ,求抛物线的方程.解:因为一直角边的方程是y =2x ,所以另一直角边的方程是y =-12x .由⎩⎪⎨⎪⎧y =2x y 2=2px ,解得⎩⎪⎨⎪⎧x =p 2y =p,或⎩⎪⎨⎪⎧x =0y =0(舍去), 由⎩⎪⎨⎪⎧y =-12x y 2=2px,解得⎩⎪⎨⎪⎧ x =8p y =-4p ,或⎩⎪⎨⎪⎧x =0y =0(舍去),∴三角形的另两个顶点为(p2,p )和(8p ,-4p ).∴(p2-8p )2+(p +4p )2=213.解得p =45,故所求抛物线的方程为y 2=85x .8.抛物线顶点在原点,它的准线过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点,并与双曲线实轴垂直,已知抛物线与双曲线的一个交点为(32,6),求抛物线与双曲线方程.解:由题设知,抛物线以双曲线的右焦点为焦点,准线过双曲线的左焦点,∴p =2c .抛物线方程为y 2=4cx .∵抛物线过点(32,6),∴6=4c ·32.∴c =1,故抛物线方程为y 2=4x .又双曲线x 2a 2-y 2b 2=1过点(32,6),∴94a 2-6b 2=1.又a 2+b 2=c 2=1. ∴94a 2-61-a 2=1.∴a 2=14或a 2=9(舍). ∴b 2=34,故双曲线方程为4x 2-4y 23=1.[高考·模拟·预测]1.已知抛物线y 2=4x 的焦点为F ,准线与x 轴的交点为M ,N 为抛物线上的一点,且|NF |=32|MN |,则∠NMF =( )A.π6B.π4C.π3D.5π12解析:如右图,过点N 向准线引垂线,垂足为P ,由抛物线的定义知|NF |=|NP |,又|NF |=32|MN |,即|NP |=32|MN |,所以,在Rt △NMP 中, sin ∠NMP =|NP ||NM |=32,即∠NMP =π3,故∠NMF =π6,答案为A.答案:A2.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A .若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x解析:不论a 值正负,抛物线的焦点坐标都是(a 4,0),故直线l 的方程为y =2(x -a4),令x =0得y =-a 2,故△OAF 的面积为12×|a 4|×|-a 2|=a216=4,故a =±8.答案:B3.已知抛物线C 的顶点为坐标原点,焦点在x 轴上,直线y =x 与抛物线C 交于A ,B 两点,若P (2,2)为AB 的中点,则抛物线C 的方程为__________.解析:设抛物线的方程为y 2=ax (a ≠0),由方程组⎩⎪⎨⎪⎧y 2=ax y =x 得交点坐标为A (0,0),B (a ,a ),而点P (2,2)是AB 的中点,从而有a =4,故所求抛物线的方程为y 2=4x .答案:y 2=4x4.过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A ,B 两点,若线段AB 的长为8,则p =__________.解析:设点A 、B 的坐标分别为(x 1,y 1),(x 2,y 2),过抛物线y 2=2px (p >0)的焦点F 且倾斜角为45°的直线方程为y =x -p 2,把x =y +p2代入y 2=2px ,得y 2-2py -p 2=0,∴|AB |=8,∴|y 1-y 2|=42,∴(y 1+y 2)2-4y 1y 2=(42)2,∴(2p )2-4×(-p 2)=32,又p >0,∴p =2.答案:25.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为33,以原点为圆心、椭圆短半轴长为半径的圆与直线y =x +2相切.(1)求a 与b ;(2)设该椭圆的左、右焦点分别为F 1和F 2,直线l 1过F 2且与x 轴垂直,动直线l 2与y 轴垂直,l 2交l 1于点P .求线段PF 1的垂直平分线与l 2的交点M 的轨迹方程,并指明曲线类型.解:(1)由e =c a =1-b 2a 2=33,得b a =63.又由原点到直线y =x +2的距离等于圆的半径,得b =2,a = 3. (2)解法一:由c =a 2-b 2=1得F 1(-1,0),F 2(1,0). 设M (x ,y ),则P (1,y ).由|MF 1|=|MP |,得(x +1)2+y 2=(x -1)2,y 2= -4x ,此轨迹是抛物线.解法二:因为点M 在线段PF 1的垂直平分线上,所以 |MF 1|=|MP |,即M 到F 1的距离等于M 到l 1的距离.此轨迹是以F 1(-1,0)为焦点、l 1:x =1为准线的抛物线,轨迹方程为y 2=-4x .[备选精题]6.抛物线y 2=4x 的焦点为F ,A (x 1,y 1),B (x 2,y 2)(x 1>x 2,y 1>0,y 2<0)在抛物线上,且存在实数λ,使AF →+λBF →=0,|AB →|=254.(1)求直线AB 的方程;(2)求△AOB 的外接圆的方程.解:(1)抛物线y 2=4x 的准线方程为x =-1,F (1,0). ∵AF →+λBF →=0,∴A ,B ,F 三点共线.由抛物线的定义,得|AB →|=x 1+x 2+2.由题知,直线AB 的斜率存在且不为0,设直线AB :y =k (x -1),而k =y 1-y 2x 1-x 2,x 1>x 2,y 1>0,y 2<0,∴k >0.由⎩⎪⎨⎪⎧y =k (x -1)y 2=4x ,得k 2x 2-2(k 2+2)x +k 2=0. ∴⎩⎪⎨⎪⎧x 1+x 2=2(k 2+2)k 2x 1x 2=1,|AB →|=x 1+x 2+2=2(k 2+2)k 2+2=254,∴k 2=169. 从而k =43,故直线AB 的方程为y =43(x -1),即4x -3y -4=0.(2)由⎩⎪⎨⎪⎧4x -3y -4=0y 2=4x ,求得A (4,4),B (14,-1).设△AOB 的外接圆方程为x 2+y 2+Dx +Ey +H =0,则⎩⎪⎨⎪⎧H =016+16+4D +4E +H =0116+1+14D +(-E )+H =0,解得⎩⎪⎨⎪⎧D =-294E =-34,H =0故△AOB 的外接圆的方程为x 2+y 2-294x -34y =0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7模块 第3节[知能演练]一、选择题1.已知a ,b 是异面直线,直线c ∥直线a ,则c 与b( )A .一定是异面直线B .一定是相交直线C .不可能是平行直线D .不可能是相交直线解析:a ,b 是异面直线,直线c ∥直线a .因而cb , 否则,若c ∥b ,则a ∥b 与已知矛盾,因而cb . 答案:C2.四面体每相对两棱中点连一直线,则此三条直线( )A .互不相交B .至多有两条直线相交C .三线相交于一点D .两两相交有三个交点解析:利用三角形的中位线定理可知三线交于一点. 答案:C3.若P 是两条异面直线l 、m 外的任意一点,则( )A .过点P 有且仅有一条直线与l 、m 都平行B .过点P 有且仅有一条直线与l 、m 都垂直C .过点P 有且仅有一条直线与l 、m 都相交D .过点P 有且仅有一条直线与l 、m 都异面解析:对于选项A ,若过点P 有直线n 与l ,m 都平行,则l ∥m ,这与l ,m 异面矛盾; 对于选项B ,过点P 与l 、m 都垂直的直线,即过P 且与l 、m 的公垂线段平行的那一条直线;对于选项C ,过点P 与l 、m 都相交的直线有一条或零条; 对于选项D ,过点P 与l 、m 都异面的直线可能有无数条. 答案:B4.正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为( )A.15B.25C.35D.45解析:连接D 1C ,AC ,易证A 1B ∥D 1C ,∴∠AD 1C 即为异面直线A 1B 与AD 1所成的角.设AB =1,则AA 1=2,AD 1=D 1C =5,AC =2,∴cos ∠AD 1C =5+5-22×5×5=45.∴异面直线A 1B 与AD 1所成角的余弦值为45.答案:D 二、填空题5.如图所示,在三棱锥C -ABD 中,E 、F 分别是AC 和BD 的中点,若CD =2AB =4,EF ⊥AB ,则EF 与CD 所成的角是________.解析:取CB 中点G ,连接EG 、FG , ∴EG ∥AB ,FG ∥CD .∴EF 与CD 所成的角为∠EFG . 又∵EF ⊥AB ,∴EF ⊥EG . 在Rt △EFG 中,EG =12AB =1,FG =12CD =2,∴sin ∠EFG =12,∴∠EFG=30°.∴EF与CD所成的角为30°.答案:30°6.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的编号).①矩形②不是矩形的平行四边形③有三个面为等腰直角三角形,有一个面为等边三角形的四面体④每个面都是等边三角形的四面体⑤每个面都是直角三角形的四面体解析:分两种情况:4个顶点共面时,几何体一定是矩形;4个顶点不共面时,③④⑤都有可能.答案:①③④⑤三、解答题7.有一矩形纸片ABCD,AB=5,BC=2,E,F分别是AB,CD上的点,且BE=CF =1,如下图(1).现在把纸片沿EF折成图(2)形状,且∠CFD=90°.(1)求BD的距离;(2)求证:AC,BD交于一点且被该点平分.(1)解:将平面BF折起后,补成长方体AEFD-A1BCD1,则BD恰好是长方体的一条对角线.因为AE,EF,EB两两垂直,所以BD恰好是以AE、EF、EB为长、宽、高的长方体的对角线.所以BD=AE2+EF2+EB2=42+22+1=21.(2)证明:因为AD綊EF,EF綊BC,所以AD綊BC.所以点A、C、B、D在同一平面内,且四边形ABCD为平行四边形.所以AC、BD交于一点且被该点平分.8.如图,已知正方形ABCD和矩形ACEF所在平面互相垂直,AB=2,AF=1,试在线段AC上确定一点P,使得PF与BC所成的角是60°,并加以证明.解:设AP =x (0≤x ≤2),利用PF 与BC 所成的角是60°来构建以x 为元的方程,再解x 就确定了点P 的位置.如下图,∵ABCD 是边长为2的正方形,∴AC =2.设AP =x (0≤x ≤2),作PQ ⊥AB 交AB 于Q ,则PQ ∥BC ,相交直线PF 与PQ 所成的角是异面直线PF 与BC 所成的角.∵平面ABCD ⊥平面ACEF ,∴AF ⊥AC ,AF ⊥平面ABCD ,AF ⊥PQ . ∵AB ∩AF =A ,∴PQ ⊥平面ABF ,PQ ⊥FQ . 要使PF 与BC 所成角是60°,只需使∠FPQ =60°,即只需使PF =2PQ , ∵PQ =22AP =22x , ∴只需使PF =2x .又在Rt △APF 中,PF =AP 2+AF 2=x 2+1, ∴2x =x 2+1. ∴x =1.∴当P 点是线段AC 的中点时PF 与BC 所成的角为60°.[高考·模拟·预测]1.正方体ABCD -A 1B 1C 1D 1的棱上到异面直线AB ,CC 1的距离相等的点的个数为( )A .2B .3C .4D .5解析:由下图观察可知,正方体棱上到异面直线AB 、CC 1的距离相等的点为点D ,B 1,线段BC 的中点E ,线段A 1D 1中点F ,总共4个,故选C.答案:C2.已知三棱柱ABC —A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 上的射影为BC 的中点,则异面直线AB 与CC 1所成的角的余弦值为( )A.34 B.54C.74D.34解析:设棱长为2,BC 的中点为D ,由题意,得 AD = 3.在Rt △A 1AD 中,A 1D =AA 21-AD 2=22-(3)2=1. 在Rt △A 1BD 中, A 1B =A 1D 2+BD 2= 2. ∵AA 1∥CC 1,∴AB 与AA 1所成的角∠A 1AB 即为AB 与CC 1所成的角.在△A 1AB 中,由余弦定理,得cos ∠A 1AB =AA 21+AB 2-A 1B22AA 1·AB =4+4-22×2×2=34.答案:D3.已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1中点,则异面直线BE 与CD 1所成角的余弦值为( )A.1010B.15C.31010D.35解析:如下图所示,连接A 1B ,因A 1D 1綊BC ,所以四边形A 1BCD 1为平行四边形,所以A 1B ∥D 1C ,则异面直线BE 与CD 1所成的角即为BE 与BA 1所成的角. 不妨设AB =1,则AA 1=2, 设∠ABE =α,∠ABA 1=β,则sin α=12,cos α=12,sin β=25,cos β=15. ∴cos(β-α)=cos βcos α+sin βsin α =12·15+12·25=310=31010.故选C.答案:C4.在平面上,两条直线的位置关系有相交,平行,重合三种,已知α,β是两个相交平面,空间两条直线l 1,l 2在α上的射影是直线s 1,s 2;l 1,l 2在β上的射影是直线t 1,t 2,利用s 1与s 2,t 1与t 2的位置关系写出一个总能确定l 1,l 2是异面直线的充分条件________.解析:当s 1∥s 2且t 1与t 2相交时,可推得l 1与l 2总是异面直线,当l 1,l 2在α内的射影s 1,s 2平行时,我们可断定l 1与l 2一定不相交,同理当l 1,l 2在β内的射影t 1,t 2相交时,也可推得l 1,l 2一定不平行,故l 1与l 2一定是异面直线.同理当t 1∥t 2且s 1与s 2相交时,也符合题意.答案:s 1∥s 2,且t 1与t 2相交;(t 1∥t 2,且s 1与s 2相交)5.空间四边形ABCD 中,各边长均为1,若BD =1,则AC 的取值范围是________. 解析:如下图①所示,△ABD 与△BCD 均为边长为1的正三角形,当△ABD 与△CBD 重合时,AC =0,将△ABD 以BD 为轴转动,到A ,B ,C ,D 四点再共面时,AC =3,如下图②,故AC 的取值范围是0<AC < 3.答案:(0,3)6.在长方体ABCD -A 1B 1C 1D 1的面A 1C 1上有一点P (如图所示,其中P 点不在对角线B 1D 1上).(1)过P 点在空间中作一直线l ,使l ∥直线BD ,应该如何作图?并说明理由; (2)过P 点在平面A 1C 1内作一直线m ,使m 与直线BD 成α角,其中α∈(0,π2],这样的直线有几条,应该如何作图?解:(1)连接B 1D 1,在平面A 1C 1内过P 作直线l , 使l ∥B 1D 1,则l 即为所求作的直线. ∵B 1D 1∥BD ,l ∥B 1D 1,∴l ∥直线BD . (2)在平面A 1C 1内作直线m , 使直线m 与B 1D 1相交成α角, ∵BD ∥B 1D 1,∴直线m 与直线BD 也成α角, 即直线m 为所求作的直线. 由图知m 与BD 是异面直线, 且m 与BD 所成的角α∈(0,π2].当α=π2时,这样的直线m 有且只有一条,当α≠π2时,这样的直线m 有两条.。