菱形的性质与判定练习题

合集下载

菱形的性质与判定

菱形的性质与判定

菱形的性质与判定一.选择题1.若菱形的周长为100cm,有一条对角线为48cm,则菱形的面积为()A.336cm2B.480cm2C.300cm2D.168cm22.如图,在菱形ABCD中,对角线AC,BD分别为16和12,DE⊥AB于点E,则DE=()A.B.C.10D.83.如图,▱ABCD对角线AC,BD交于点O,请添加一个条件:____使得▱ABCD是菱形()A.AB=AC B.AC⊥BD C.AB=CD D.AC=BD4.如图,在菱形ABCD中,对角线AC、BD交于点O,已知AO=2,OB=4,则菱形ABCD的面积是()A.4B.8C.16D.205.如图,菱形ABCD中,对角线AC,BD交于点O,点E在边BC上,连接AE,OE.若∠CAE=∠OBE,OE=2,CE=,则边AB的长为()A.B.C.D.56.已知菱形的面积为120cm2,一条对角线长为10cm,则这个菱形的周长为()cm.A.13B.24C.52D.607.如图,菱形ABCD对角线AC、BD相交于点O,点E在AC上,CE=CD,AC=16,CD=10,则DE的长为()A.2B.4C.D.48.如图,在菱形ABCD中,AC与BD相交于点O,AB的垂直平分线EF交AC 于点F,连接DF,若∠BAD=80°,则∠CDF的度数为()A.60°B.80°C.85°D.100°9.如图,一个木制的活动衣帽架由3个全等的菱形构成.已知菱形的边长为13cm,当挂钩B、D间的距离是30cm时,则挂钩A、C间的距离是()cm.A.B.C.12D.2410.已知菱形ABCD,E、F是动点,边长为5,BE=AF,∠BAD=120°,则下列命题中正确的是()①△BEC≌△AFC;②△ECF为等边三角形;③△ECF的边长最小值为3;④若AF=2,则S△FGC =S△EGC.A.①②B.①③C.①②④D.①②③二.填空题11.如图,在菱形ABCD中,∠A=40°,则∠CBD的度数为.12.如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴上,顶点B,C的坐标分别为(﹣6,0),(4,0),则点D的坐标是.13.如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥BC于点H,连接OH,若OA=4,S菱形ABCD=24,则OH的长为.14.菱形的边长为10厘米,一条对角线为16厘米,它的面积是平方厘米.15.如图,菱形ABCD中,∠A=100°,点E、G分别是AB、BC边上的中点,过点E作EF⊥CD交CD于点F,连接GE、GF,则∠GFC=.三.解答题16.如图.P是菱形ABCD的对角线AC上一点,PE⊥AB于点E,PF ⊥AD于点F.(1)若∠BAD=60°,PE=1,求AE的长;(2)若∠BAD=90°,判断四边形AEPF的形状,并说明理由.17.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD 的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=24,BD=10,求△ADE 的周长.18.如图,在四边形ABCD中,AC与BD相交于点O.且AO=CO,点E在BD 上,满足∠EAO=∠DCO.(1)求证:△AOE≌△COD;(2)若AB=BC,求证:四边形AECD是菱形.19.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,请直接写出△AOE的面积为.20.在△ABC中,过A作AD∥BC,交∠ACB的平分线于点D,点E是BC上,连接DE,交AB于点F,∠EFB=∠CAB.(1)如图1,求证:四边形ACED是菱形;(2)如图2,G是AD的中点,H是边AC的中点,连接CG、EG、EH,若∠ACB=90°,BC=2AC,在不添加任何辅助线的情况下,请直接写出图2中与△CEH全等的三角形(不含△CEH本身).21.已知,在菱形ABCD 中,∠ADC=60°,点H 为CD 上任意一点(不与C 、D 重合),过点H 作CD 的垂线,交BD 于点E ,连接AE .(1)如图1,线段EH 、CH 、AE 之间的数量关系是________;(2)如图2,将∠DHE 绕点D 顺时针旋转,当点E 、H 、C 在一条直线上时,求证:AE+EH=CH .22.如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(﹣3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H ,连接BM.(1)菱形ABCO 的边长________(2)求直线AC 的解析式;(3)动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设∠PMB 的面积为S (S≠0),点P 的运动时间为t 秒,①当0<t < 25时,求S 与t 之间的函数关系式;②在点P 运动过程中,当S=3,请直接写出t 的值.。

菱形的性质和判定经典试题综合训练(含解析)

菱形的性质和判定经典试题综合训练(含解析)

菱形的性质和判定经典试题综合训练(含解析)一.选择题(共15小题)1.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC2.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②3.下列性质中菱形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形4.如图,菱形ABCD的对角线AC、BD的长分别是6cm、8cm,AE⊥BC于点E,则AE的长是()A.cm B.cm C.cm D.5cm5.如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是菱形,则四边形ABCD需满足的条件是()A.AB=AD B.AC=BD C.AD=BC D.AB=CD6.如图,菱形ABCD的周长为16,面积为12,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于()A.6 B.3 C.1.5 D.0.757.若菱形的周长为52cm,面积为120cm2,则它的对角线之和为()A.14cm B.17cm C.28cm D.34cm8.如图,作菱形ABCD的高AE,E为CD的中点.AE=cm,则菱形ABCD的周长是()A.4cm B.4cm C.4cm D.8cm9.如图,菱形ABCD中,过A作BD的平行线交CD的延长线于点E,下列结论:(1)∠EAC=90°,(2)DA=DE,(3)∠ABC=2∠E,其中正确的有()A.0个B.1个C.2个D.3个10.如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、△BCE、△ACF,当△ABC 满足什么条件时,四边形ADEF是菱形?()A.AB=AC B.∠BAC=90°C.∠BAC=120°D.∠BAC=150°11.已知菱形的周长为4,两条对角线的和为6,则菱形的面积为()A.2 B.C.3 D.412.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC,这五个条件中任选三个,能使四边形ABCD是菱形的选法有()A.1种B.2种C.3种D.4种13.已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论不正确的是()A.DF⊥AB B.CG=2GA C.CG=DF+GE D.S四边形BFGC=﹣114.如图,O是菱形ABCD的对角线AC、BD的交点,E、F分别是OA、OC的中点.下列结论:①S△ADE=S;②四边形BFDE也是菱形;③四边形ABCD的面积为EF×BD;④∠ADE=∠EDO;⑤△DEF是轴对称△EOD图形.其中正确的结论有()A.5个B.4个C.3个D.2个15.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC 翻折,点P的对应点为点P′.设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为()A.B.2 C. D.3二.填空题(共9小题)16.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为cm.17.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD ∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是(只填写序号)18.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件.19.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是(只填写序号).20.如图,菱形ABCD的周长为40,面积为25,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于.21.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于度.22.如图,菱形ABCD和菱形ECGF的边长分别为3和4,∠A=120°,则图中阴影部分的面积.23.如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足条件时,四边形EFGH是菱形.24.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为正方形,则t的值为.三.解答题(共9小题)25.如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于E,交AC于F,求证:四边形AEDF是菱形.26.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.27.如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求证:四边形ABFE是菱形.28.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(2)若∠ADB=30°,BD=6,求AD的长.29.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.30.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,若BE⊥CD,试证明∠EFD=∠BCD.31.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.32.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(2)若AF=8,CF=6,求四边形BDFG的面积.33.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.菱形的性质和判定经典试题综合训练参考答案与试题解析一.选择题(共15小题)1.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC【分析】当BE平分∠ABC时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE 即可解决问题.【解答】解:当BE平分∠ABC时,四边形DBFE是菱形,理由:∵DE∥BC,∴∠DEB=∠EBC,∵∠EBC=∠EBD,∴∠EBD=∠DEB,∴BD=DE,∵DE∥BC,EF∥AB,∴四边形DBEF是平行四边形,∵BD=DE,∴四边形DBEF是菱形.其余选项均无法判断四边形DBEF是菱形,故选D.2.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②【分析】根据菱形是特殊的平行四边形以及等腰三角形的性质证明即可.【解答】证明:∵四边形ABCD是菱形,∴AB=AD,∵对角线AC,BD交于点O,∴BO=DO,∴AO⊥BD,即AC⊥BD,∴证明步骤正确的顺序是③→④→①→②,故选B.3.下列性质中菱形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形【分析】根据菱形的性质解答即可得.【解答】解:A、菱形的对角线互相平分,此选项正确;B、菱形的对角线互相垂直,此选项正确;C、菱形的对角线不一定相等,此选项错误;D、菱形既是轴对称图形又是中心对称图形,此选项正确;故选:C.4.如图,菱形ABCD的对角线AC、BD的长分别是6cm、8cm,AE⊥BC于点E,则AE的长是()A.cm B.cm C.cm D.5cm【分析】根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,∴S菱形ABCD==×6×8=24cm2,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=cm.故选:B.5.如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是菱形,则四边形ABCD需满足的条件是()A.AB=AD B.AC=BD C.AD=BC D.AB=CD【分析】由点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,根据三角形中位线的性质,可得EF=GH=AB,EH=FG=CD,又由当EF=FG=GH=EH时,四边形EFGH是菱形,即可求得答案.【解答】解:∵点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,∴EF=GH=AB,EH=FG=CD,∵当EF=FG=GH=EH时,四边形EFGH是菱形,∴当AB=CD时,四边形EFGH是菱形.故选:D.6.如图,菱形ABCD的周长为16,面积为12,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于()A.6 B.3 C.1.5 D.0.75【分析】连AP,由菱形ABCD的周长为16,根据了菱形的性质得AB=AD=4,并且S菱形ABCD=2S△ABD,则S△=×12=6,由于S△ABD=S△APB+S△APD,再根据三角形的面积公式得到•PE•AB+•PF•AD=6,即可得到ABDPE+PF的值.【解答】解:连AP,如图,∵菱形ABCD的周长为16,∴AB=AD=4,∴S菱形ABCD=2S△ABD,∴S△ABD=×12=6,而S△ABD=S△APB+S△APD,PE⊥AB,PF⊥AD,∴•PE•AB+•PF•AD=6,∴2PE+2PF=6,∴PE+PF=3.故选B.7.若菱形的周长为52cm,面积为120cm2,则它的对角线之和为()A.14cm B.17cm C.28cm D.34cm【分析】作出图形,根据菱形的对角线互相垂直平分可得AC⊥BD,AO=CO=AC,BO=DO=BD,然后根据菱形的面积等于对角线乘积的一半列式整理可得AO•BO=60,根据菱形的周长求出AB=13,再利用勾股定理可得AO2+BO2=169,然后利用完全平方公式整理并求出AO+BO,再求解即可.【解答】解:如图,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=AC,BO=DO=BD,∵菱形的面积为120cm2,∴AC•BD=120,即×2AO•2BO=120,所以,AO•BO=60,∵菱形的周长为52cm,∴AB=13cm,在Rt△AOB中,由勾股定理得,AO2+BO2=AB2=132=169,所以,(AO+BO)2=AO2+2AO•BO+BO2=169+60×2=289,所以,AO+BO=17,所以,AC+BD=2(AO+BO)=2×17=34cm.故选D.8.如图,作菱形ABCD的高AE,E为CD的中点.AE=cm,则菱形ABCD的周长是()A.4cm B.4cm C.4cm D.8cm【分析】通过解直角三角形ADE得到边AD的长度,然后由菱形的周长公式进行解答.【解答】解:在菱形ABCD中,AD=CD.∵E为CD的中点,AE⊥CD,∴ED=CD=AD,∴∠DAE=30°,∵AE=cm,∴AD===2(cm),∴菱形ABCD的周长=4AD=8cm.故选:D.9.如图,菱形ABCD中,过A作BD的平行线交CD的延长线于点E,下列结论:(1)∠EAC=90°,(2)DA=DE,(3)∠ABC=2∠E,其中正确的有()A.0个B.1个C.2个D.3个【分析】根据菱形的性质、平行线的性质、平行四边形的判定和性质等知识一一判断即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,AB=AD,∠ABC=2∠ABD,∵AE∥BD,∴AE⊥AC,∴∠EAC=90°,故①正确,∵AB∥DE,AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE,∠E=∠ABD,∴AD=DE,故②正确,∴∠ABC=2∠E,故③正确,故选D.10.如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、△BCE、△ACF,当△ABC 满足什么条件时,四边形ADEF是菱形?()A.AB=AC B.∠BAC=90°C.∠BAC=120°D.∠BAC=150°【分析】根据等边三角形性质得出BD=AB,BE=BC,∠DBA=∠EBC=60°,求出∠DBE,证△DBE≌△ABC,推出DE=AC=AF,同理AD=EF得出平行四边形ADEF,根据菱形的判定判断即可.【解答】解:∵△ABD和△BCE是等边三角形,∴BD=AB,BE=BC,∠DBA=∠EBC=60°,∴∠DBE=∠CBA=60°﹣∠EBA,在△DBE和△ABC中,,∴△DBE≌△ABC(SAS),∴DE=AC,∵△AFC是等边三角形,∴AF=AC,∴AF=DE,同理AD=EF,∴四边形ADEF是平行四边形,当AB=AC时,∵AD=AB,AC=AF,∴AD=AF,∴四边形ADEF是菱形,故选A.11.已知菱形的周长为4,两条对角线的和为6,则菱形的面积为()A.2 B.C.3 D.4【分析】由菱形的性质和勾股定理得出AO+BO=3,AO2+BO2=AB2,(AO+BO)2=9,求出2AO•BO=4,即可得出答案.【解答】解:如图四边形ABCD是菱形,AC+BD=6,∴AB=,AC⊥BD,AO=AC,BO=BD,∴AO+BO=3,∴AO2+BO2=AB2,(AO+BO)2=9,即AO2+BO2=5,AO2+2AO•BO+BO2=9,∴2AO•BO=4,∴菱形的面积=AC•BD=2AO•BO=4;故选:D.12.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC,这五个条件中任选三个,能使四边形ABCD是菱形的选法有()A.1种B.2种C.3种D.4种【分析】由平行四边形的判定方法和菱形的判定方法得出能使四边形ABCD是菱形的选法有4种,即可得出结论.【解答】解:∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴①②③能使四边形ABCD是菱形;∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴①③⑤能使四边形ABCD是菱形;∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴③④⑤能使四边形ABCD是菱形;∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴②③④能使四边形ABCD是菱形;∴能使四边形ABCD是菱形的选法有4种.故选:D.13.已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论不正确的是()A.DF⊥AB B.CG=2GA C.CG=DF+GE D.S四边形BFGC=﹣1【分析】A、由四边形ABCD是菱形,得出对角线平分对角,求得∠GAD=∠2,得出AG=GD,AE=ED,由SAS证得△AFG≌△AEG,得出∠AFG=∠AEG=90°,即可得出A正确;B、由DF⊥AB,F为边AB的中点,证得AD=BD,证出△ABD为等边三角形,得出∠BAC=∠1=∠2=30°,由AC=2AB•cos∠BAC,AG=,求出AC,AG,即可得出B正确;C、由勾股定理求出DF=,由GE=tan∠2•ED求出GE,即可得出C正确;D、由S四边形BFGC=S△ABC﹣S△AGF求出数值,即可得出D不正确.【解答】解:∵四边形ABCD是菱形,∴∠FAG=∠EAG,∠1=∠GAD,AB=AD,∵∠1=∠2,∴∠GAD=∠2,∴AG=GD,∵GE⊥AD,∴GE垂直平分AD,∴AE=ED,∵F为边AB的中点,∴AF=AE,在△AFG和△AEG中,,∴△AFG≌△AEG(SAS),∴∠AFG=∠AEG=90°,∴DF⊥AB,∴A正确;∵DF⊥AB,F为边AB的中点,∴AF=AB=1,AD=BD,∵AB=AD,∴AD=BD=AB,∴△ABD为等边三角形,∴∠BAD=∠BCD=60°,∴∠BAC=∠1=∠2=30°,∴AC=2AB•cos∠BAC=2×2×=2,AG===,∴CG=AC﹣AG=2﹣=,∴CG=2GA,∴B正确;∵GE垂直平分AD,∴ED=AD=1,由勾股定理得:DF===,GE=tan∠2•ED=tan30°×1=,∴DF+GE=+==CG,∴C正确;∵∠BAC=∠1=30°,∴△ABC的边AC上的高等于AB的一半,即为1,FG=AG=,S四边形BFGC=S△ABC﹣S△AGF=×2×1﹣×1×=﹣=,∴D不正确;故选:D.14.如图,O是菱形ABCD的对角线AC、BD的交点,E、F分别是OA、OC的中点.下列结论:①S△ADE=S;②四边形BFDE也是菱形;③四边形ABCD的面积为EF×BD;④∠ADE=∠EDO;⑤△DEF是轴对称△EOD图形.其中正确的结论有()A.5个B.4个C.3个D.2个【分析】①正确,根据三角形的面积公式可得到结论.②根据已知条件利用菱形的判定定理可证得其正确.③正确,根据菱形的面积等于对角线乘积的一半即可求得.④不正确,根据已知可求得∠FDO=∠EDO,而无法求得∠ADE=∠EDO.⑤正确,由已知可证得△DEO≌△DFO,从而可推出结论正确.【解答】解:①正确∵E、F分别是OA、OC的中点.∴AE=OE.∵S△ADE=×AE×OD=×OE×OD=S△EOD∴S△ADE=S△EOD.②正确∵四边形ABCD是菱形,E,F分别是OA,OC的中点.∴EF⊥OD,OE=OF.∵OD=OD.∴DE=DF.同理:BE=BF∴四边形BFDE是菱形.③正确∵菱形ABCD的面积=AC×BD.E、F分别是OA、OC的中点.∴EF=AC.∴菱形ABCD的面积=EF×BD.④不正确,由已知可求得∠FDO=∠EDO,而无法求得∠ADE=∠EDO.⑤正确∵EF⊥OD,OE=OF,OD=OD.∴△DEO≌△DFO.∴△DEF是轴对称图形.∴正确的结论有四个,分别是①②③⑤,故选B.15.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC 翻折,点P的对应点为点P′.设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为()A.B.2 C. D.3【分析】首先连接PP′交BC于O,根据菱形的性质可得PP′⊥CQ,可证出PO∥AC,根据平行线分线段成比例可得=,再表示出AP、AB、CO的长,代入比例式可以算出t的值.【解答】解:连接PP′交BC于O,∵若四边形QPCP′为菱形,∴PP′⊥QC,∴∠POQ=90°,∵∠ACB=90°,∴PO∥AC,∴=,∵设点Q运动的时间为t秒,∴AP=t,QB=t,∴QC=6﹣t,∴CO=3﹣,∵AC=CB=6,∠ACB=90°,∴AB=6,∴=,解得:t=2,故选:B.二.填空题(共9小题)16.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为4cm.【分析】根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【解答】解:根据作图,AC=BC=OA,∵OA=OB,∴OA=OB=BC=AC,∴四边形OACB是菱形,∵AB=2cm,四边形OACB的面积为4cm2,∴AB•OC=×2×OC=4,解得OC=4cm.故答案为:4.17.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD ∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是①②③④(只填写序号)【分析】根据轴对称图形的性质,结合菱形的判定方法以及全等三角形的判定方法分析得出答案.【解答】解:因为l是四边形ABCD的对称轴,AB∥CD,则AD=AB,∠1=∠2,∠1=∠4,则∠2=∠4,∴AD=DC,同理可得:AB=AD=BC=DC,所以四边形ABCD是菱形.根据菱形的性质,可以得出以下结论:所以①AC⊥BD,正确;②AD∥BC,正确;③四边形ABCD是菱形,正确;④在△ABD和△CDB中∵∴△ABD≌△CDB(SSS),正确.故答案为:①②③④.18.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件AC=BD.【分析】添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG 和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形.【解答】解:添加的条件应为:AC=BD.证明:∵E,F,G,H分别是边AB、BC、CD、DA的中点,∴在△ADC中,HG为△ADC的中位线,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,则HG∥EF且HG=EF,∴四边形EFGH为平行四边形,又AC=BD,所以EF=EH,∴四边形EFGH为菱形.故答案为:AC=BD19.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是③(只填写序号).【分析】首先利用对角线互相平分的四边形是平行四边形判定该四边形为平行四边形,然后结合菱形的判定得到答案即可.【解答】解:由题意得:BD=CD,ED=FD,∴四边形EBFC是平行四边形,①BE⊥EC,根据这个条件只能得出四边形EBFC是矩形,②BF∥CE,根据EBFC是平行四边形已可以得出BF∥CE,因此不能根据此条件得出菱形,③AB=AC,∵,∴△ADB≌△ADC,∴∠BAD=∠CAD∴△AEB≌△AEC(SAS),∴BE=CE,∴四边形BECF是菱形.故答案为:③.20.如图,菱形ABCD的周长为40,面积为25,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于 2.5.【分析】直接利用菱形的性质得出AB=AD=10,S△ABD=12.5,进而利用三角形面积求法得出答案.【解答】解:∵菱形ABCD的周长为40,面积为25,∴AB=AD=10,S△ABD=12.5,∵分别作P点到直线AB、AD的垂线段PE、PF,∴×AB×PE+×PF×AD=12.5,∴×10(PE+PF)=12.5,∴PE+PF=2.5.故答案为:2.5.21.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于75度.【分析】连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故答案为:75.22.如图,菱形ABCD和菱形ECGF的边长分别为3和4,∠A=120°,则图中阴影部分的面积.【分析】作BM⊥FG于M,交EC于N,如图,根据菱形的性质得BC=CD=3,CG=GF=4,AB∥CE∥GF,∠ABC=∠BCD=∠CGF=120°,则∠BCN=∠BGM=60°,再根据含30度的直角三角形三边的关系,在Rt△BCN中可计算出BN=CN=,在Rt△BMG中可计算出BM=GM=,则MN=BM﹣BN=﹣=2,然后根据三角形面积公式和梯形面积公式,利用S阴影部分=S△BCD+S梯形CDFG﹣S△BGF进行计算即可.另一种解法为把阴影部分的面积转化为△BCD的面积进行计算.【解答】解:连接CF,如图,∵四边形ABCD和四边形CGFE为菱形,∠A=120°,∴∠DBC=∠FCG=30°,∴BD∥CF,∴S△FDB=S△CDB=S菱形ABCD=•2••32=.故答案为.23.如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足AB=CD条件时,四边形EFGH是菱形.【分析】首先利用三角形的中位线定理证出EF∥AB,EF=AB,HG∥AB,HG=AB,可得四边形EFGH是平行四边形,再根据邻边相等的平行四边形是菱形,添加条件AB=CD后,证明EF=EH即可.【解答】解:需添加条件AB=CD.∵E,F是AD,DB中点,∴EF∥AB,EF=AB,∵H,G是AC,BC中点,∴HG∥AB,HG=AB,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形,∵E,H是AD,AC中点,∴EH=CD,∵AB=CD,∴EF=EH,∴四边形EFGH是菱形.故答案为:AB=CD.24.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为正方形,则t的值为2.【分析】根据正方形的判定定理得到BQ=BP时,四边形QPBP′为正方形进行解答即可.【解答】解:由题意得,当△BPQ为等腰直角三角形时,四边形QPBP′为正方形,则BQ=BP,即6﹣t=×t,解得t=2.故答案为:2.三.解答题(共9小题)25.如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于E,交AC于F,求证:四边形AEDF是菱形.【分析】由已知易得四边形AEDF是平行四边形,由角平分线和平行线的定义可得∠FAD=∠FDA,∴AF=DF,∴四边形AEDF是菱形;【解答】证明:∵AD是△ABC的角平分线,∴∠EAD=∠FAD,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EAD=∠ADF,∴∠FAD=∠FDA∴AF=DF,∴四边形AEDF是菱形.26.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【分析】(1)连结DB 、DF .根据菱形四边相等得出AB=AD=FA ,再利用SAS 证明△BAD ≌△FAD ,得出DB=DF ,那么D 在线段BF 的垂直平分线上,又AB=AF ,即A 在线段BF 的垂直平分线上,进而证明AD ⊥BF ;(2)设AD ⊥BF 于H ,作DG ⊥BC 于G ,证明DG=CD .在直角△CDG 中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解答】(1)证明:如图,连结DB 、DF .∵四边形ABCD ,ADEF 都是菱形,∴AB=BC=CD=DA ,AD=DE=EF=FA .在△BAD 与△FAD 中,,∴△BAD ≌△FAD ,∴DB=DF ,∴D 在线段BF 的垂直平分线上, ∵AB=AF ,∴A 在线段BF 的垂直平分线上,∴AD 是线段BF 的垂直平分线,∴AD ⊥BF ;(2)如图,设AD ⊥BF 于H ,作DG ⊥BC 于G ,则四边形BGDH 是矩形,∴DG=BH=BF .∵BF=BC ,BC=CD ,∴DG=CD .在直角△CDG 中,∵∠CGD=90°,DG=CD ,∴∠C=30°,∵BC ∥AD ,∴∠ADC=180°﹣∠C=150°.27.如图,△ABC 中,AB=AC ,∠BAC=40°,将△ABC 绕点A 按逆时针方向旋转100°.得到△ADE ,连接BD ,CE 交于点F .(1)求证:△ABD ≌△ACE ;(2)求证:四边形ABFE 是菱形.【分析】(1)根据旋转角求出∠BAD=∠CAE ,然后利用“边角边”证明△ABD 和△ACE 全等.(2)根据对角相等的四边形是平行四边形,可证得四边形ABFE 是平行四边形,然后依据邻边相等的平行四边形是菱形,即可证得.【解答】(1)证明:∵ABC绕点A按逆时针方向旋转100°,∴∠BAC=∠DAE=40°,∴∠BAD=∠CAE=100°,又∵AB=AC,∴AB=AC=AD=AE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS).(2)证明:∵∠BAD=∠CAE=100°AB=AC=AD=AE,∴∠ABD=∠ADB=∠ACE=∠AEC=40°.∵∠BAE=∠BAD+∠DAE=140°,∴∠BFE=360°﹣∠BAE﹣∠ABD﹣∠AEC=140°,∴∠BAE=∠BFE,∴四边形ABFE是平行四边形,∵AB=AE,∴平行四边形ABFE是菱形.28.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=6,求AD的长.【分析】(1)由平行线的性质和角平分线定义得出∠ABD=∠ADB,证出AB=AD,同理:AB=BC,得出AD=BC,证出四边形ABCD是平行四边形,即可得出结论;(2)由菱形的性质得出AC⊥BD,OD=OB=BD=3,再由三角函数即可得出AD的长.【解答】(1)证明:∵AE∥BF,∴∠ADB=∠CBD,又∵BD平分∠ABF,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,同理:AB=BC,∴AD=BC,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,BD=6,∴AC⊥BD,OD=OB=BD=3,∵∠ADB=30°,∴cos∠ADB==,∴AD==2.29.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.【分析】(1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)设EF=x,AD=y,则x+y=7,进而得到x2+2xy+y2=49,再根据Rt△AOE中,AO2+EO2=AE2,得到x2+y2=36,据此可得xy=,进而得到菱形AEDF的面积S.【解答】解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=AB=AE,Rt△ACD中,DF=AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形;(2)如图,∵菱形AEDF的周长为12,∴AE=3,设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49,①∵AD⊥EF于O,∴Rt△AOE中,AO2+EO2=AE2,∴(y)2+(x)2=32,即x2+y2=36,②把②代入①,可得2xy=13,∴xy=,∴菱形AEDF的面积S=xy=.30.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,若BE⊥CD,试证明∠EFD=∠BCD.【分析】(1)先判断出△ABC≌△ADC得到∠BAC=∠DAC,再判断出△ABF≌△ADF得出∠AFB=∠AFD,最后进行简单的推算即可;(2)先由平行得到角相等,用等量代换得出∠DAC=∠ACD,最后判断出四边相等;(3)由(2)得到判断出△BCF≌△DCF,结合BE⊥CD即可.【解答】证明:(1)在△ABC和△ADC中.∴△ABC≌△ADC,∴∠BAC=∠DAC,在△ABF和△ADF中,∴△ABF≌△ADF,∴∠AFB=∠AFD,∵∠CFE=∠AFB,∴∠AFD=∠CFE,∴∠BAC=∠DAC,∠AFD=∠CFE;(2)∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠EFD=∠BCD.31.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.32.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:四边形BDFG是菱形;(2)若AF=8,CF=6,求四边形BDFG的面积.【分析】(1)首先可判断四边形BDFG是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD,则可证明四边形BDFG是菱形;(2)首先过点B作BH⊥AG于点H,由AF=8,CF=6,可利用勾股定理求得AC的长,即可求得DF的长,然后由菱形的性质求得BG=GF=DF=5,再求出EF的长即可解决问题.【解答】证明:(1)∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CE⊥BD,∴CE⊥AG,又∵BD为AC的中线,∴BD=DF=AC,∴四边形BDFG是菱形,(2)∵AF=8,CF=6,CF⊥AG,∴AC==10,∴DF=AC=5,∵四边形BDFG是菱形,∴BD=GF=DF=5,∵DE∥AG,CD=AD,∴CE=EF=3∴S菱形BDFG=GF•EF=15.33.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.【分析】(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE ≌△ACF,即可求得BE=CF;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.【解答】(1)证明:连接AC,如下图所示,∵四边形ABCD为菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD为等边三角形,∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF(ASA).∴BE=CF;(2)解:四边形AECF的面积不变,△CEF的面积发生变化.理由:由(1)得△ABE≌△ACF,则S△ABE=S△ACF,故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC=BC•AH=BC•=4,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大.∴S△CEF=S四边形AECF﹣S△AEF=4﹣×2×=.答:最大值是.。

菱形的性质及判定典型题(精选)

菱形的性质及判定典型题(精选)

板块一、菱形的性质【例1】 菱形的两条对角线将菱形分成全等三角形的对数为【例2】 在平面上,一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是【例3】 如图2,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离16cm AB BC ==,则1∠= 度.图21CBA【例4】 如图,在菱形ABCD 中,60A ∠=︒,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD的边长是______.【例5】 如图,E 是菱形ABCD 的边AD 的中点,EF AC ⊥于H ,交CB 的延长线于F ,交AB 于P ,证明:AB 与EF 互相平分.E FDBCA菱形的性质 及判定P HFE DCBA【例6】 如图1所示,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 .图1HO DC BA【例7】 如图,已知菱形ABCD 的对角线8cm 4cm AC BD DE BC ==⊥,,于点E ,则DE 的长为【例8】 菱形周长为52cm ,一条对角线长为10cm ,则其面积为 .【例9】 菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较短的对角线的长度为【例10】 如图2,在菱形ABCD 中,6AC =,8BD =,则菱形的边长为( )A .5B .10C .6D .8图2DCBA【例11】 如图3,在菱形ABCD 中,110A ∠=︒,E 、F 分别是边AB 和BC 的中点,EP CD ⊥于点P ,则FPC ∠=( )A .35︒B .45︒C .50︒D .55︒图3E DP CF BA【例12】 如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒的菱形,剪口与折痕所成的角α的度数应为( )A .15︒或30︒B .30︒或45︒C .45︒或60︒ D .30︒或60︒【例13】 菱形ABCD 中,E 、F 分别是BC 、CD 的中点,且AE BC ⊥,AF CD ⊥,那么EAF ∠等于 .【例14】 已知菱形的一个内角为60︒,一条对角线的长为,则另一条对角线的长为________.【例15】 如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )A .210cmB .220cmC .240cm D.280cm图1DCBA【例16】 已知菱形ABCD 的两条对角线AC BD ,的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是【例17】 如图,菱形花坛ABCD 的周长为20m ,60ABC ∠=︒,•沿着菱形的对角线修建了两条小路AC 和BD ,求两条小路的长和花坛的面积.图2【例18】 如图,在菱形ABCD 中,4AB a E =,在BC 上,2120BE a BAD P =∠=︒,,点在BD 上,则PE PC+的最小值为DB【例19】 已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,若AE AF EF AB ===,求C ∠的度数.FEDCBA【例20】 已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBA板块二、菱形的判定【例21】 如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是 .DCAB【例22】 如图,在ABC ∆中,BD 平分ABC ∠,BD 的中垂线交AB 于点E ,交BC 于点F ,求证:四边形BEDF 是菱形FEDCBA【例23】 如图,在ABC ∆中,AB AC =,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE .当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由.EDCB A【例24】 已知:如图,平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于E 、F .求证:四边形AFCE 是菱形.ODEFCAB【例25】 如图,在梯形纸片ABCD 中,//AD BC ,AD CD >,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C E '.求证:四边形CDC E '是菱形.C'DCB A E【例26】 如图,E 是菱形ABCD 的边AD 的中点,EF AC ⊥于H ,交CB 的延长线于F ,交AB 于P ,证明:AB 与EF 互相平分AB CDEF P PF EDC B A【例27】 已知:如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ABE ∆沿BC 方向平移,使点E 与点C 重合,得GFC ∆.若60B ∠=︒,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.GF E DCBA【例28】 如图,在ABC ∆中,AB AC =,M 是BC 的中点.分别作MD AB ⊥于D ,ME AC ⊥于E ,DF AC ⊥于F ,EG AB ⊥于G .DF EG 、相交于点P .求证:四边形DM EP 是菱形.PMF E DG CBA【例29】 如图,ABC ∆中,90ACB ∠=︒,AD 是BAC ∠的平分线,交BC 于D ,CH 是AB 边上的高,交AD于F ,DE AB ⊥于E ,求证:四边形CDEF 是菱形.H F DECBA【例30】 如图,M 是矩形ABCD 内的任意一点,将M AB ∆沿AD 方向平移,使AB 与DC 重合,点M 移动到点'M 的位置⑴画出平移后的三角形;⑵连结'MD MC MM ,,,试说明四边形'MDM C 的对角线互相垂直,且长度分别等于AB AD ,的长;⑶当M 在矩形内的什么位置时,在上述变换下,四边形'MDM C 是菱形?为什么?M'MDC BA【例31】 如图,ACD ∆、ABE ∆、BCF ∆均为直线BC 同侧的等边三角形.已知AB AC =.⑴ 顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.⑵ 当BAC ∠为 度时,四边形ADFE 为正方形.FEDCBA三、与菱形相关的几何综合题【例32】 已知等腰ABC △中,AB AC =,AD 平分BAC ∠交BC 于D 点,在线段AD 上任取一点P (A 点除外),过P 点作EF AB ∥,分别交AC 、BC 于E 、F 点,作PM AC ∥,交AB 于M 点,连结ME .⑴求证四边形AEPM 为菱形⑵当P 点在何处时,菱形AEPM 的面积为四边形EFBM 面积的一半?MPFABCDE【例33】 问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段DF 的中点,连结PG PC ,.若60ABC BEF ∠=∠=︒,探究PG 与PC 的位置关系及PGPC的值.小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决. 请你参考小聪同学的思路,探究并解决下列问题:⑴ 写出上面问题中线段PG 与PC 的位置关系及PGPC的值;⑵ 将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在⑴中得到的两个结论是否发生变化?写出你的猜想并加以证明.⑶ 若图1中()2090ABC BEF αα∠=∠=︒<<︒,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题中的其他条件不变,求PGPC的值(用含α的式子表示). 图2AB CDEFG P四、中位线与平行四边形【例34】 顺次连结面积为20的矩形四边中点得到一个四边形,再顺次连结新四边形四边中点得到一个 ,其面积为 .【例35】 如图,在四边形ABCD 中,AB CD ≠,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还满足的一个条件是 ,并说明理由.HGFE D CBA【例36】 在四边形ABCD 中,AB CD =,P ,Q 分别是AD 、BC 的中点,M ,N 分别是对角线AC ,BD中点,证明:PQ 与MN 互相垂直.Q PMNCB D A【例37】 四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是AP 、RP 的中点,当点P 在CD上从C 向D 移动而点R 不动时,那么下列结论成立的是 ( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐减小 C .线段EF 的长不变D .线段EF 的长与点P 的位置有关P FREDCBA【例38】 如图,ABC ∆中,AD 是BAC ∠的平分线,CE AD ⊥于E ,M 为BC 的中点,14cm AB =,10cm AC =,则ME 的长为 .M EDCBA【例39】 如图,四边形ABCD 中,AB CD =,E F ,分别是BC AD ,的中点,连结EF 并延长,分别交BA CD ,的延长线于点G H ,,求证:BGE CHE ∠=∠ ABH G FEDCBA【例40】 如图,已知BE 、CF 分别为ABC ∆中B ∠、C ∠的平分线,AM BE ⊥于M ,AN CF ⊥于N ,求证:MN BC ∥.NMEFCBA【例41】 如图,四边形ABCD 中,E F ,分别是边AB CD ,的中点,则AD BC ,和EF 的关系是( ) A .2AD BC EF +> B .2AD BC EF +≥ C .2AD BC EF +< D .2AD BC EF +≤ADFEDCBA【例42】 已知如图所示,E 、F 、G 、H 分别是四边形ABCD 的四边的中点,求证:四边形EFGH 是平行四边形.HGFDC BA【例43】 如图,在四边形ABCD 中,E 为AB 上一点,AD E ∆和BCE ∆都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,证明四边形PQMN 为平行四边形且PQ PN =.QEP NMDCBA【例44】 如图,四边形ABCD 中,AB CD E F G H =,,,,分别是AD BC BD AC ,,,的中点,求证:EF GH ,相互垂直平分ABGH GFEDCBA【例45】ABC ∆的三条中线分别为AD 、BE 、CF ,H 为BC 边外一点,且BHCF 为平行四边形,求证:AD EH ∥.ABCDE FH【例46】 在平行四边形ABCD 的对角线BD 上取一点E ,使13B E D E =,连接AE 并延长与DC 的延长线交于F ,则2CF AB =.图1CAEDBF【例47】 如图,ABC ∆中,E 、F 分别是AB 、BC 的中点,G 、H 是AC 的三等分点,连结并延长EG 、FH 交于点D .求证:四边形ABCD 是平行四边形.HGFEDCBA【例48】 如图,在四边形ABCD 中,M 、N 分别为AD 、BC 的中点,BD AC =,BD 和AC 相交于点O ,MN 分别与AC 、BD 相交于E 、F ,求证:OE OF =.FE ONM D CBA【例49】 如图,线段AB CD ,相交于点O ,且A B C D =,连结AD BC ,,E F ,分别是AD BC ,的中点,EF 分别交AB CD ,于M N ,,求证:OM ON = ACFEO N M DCB A【例50】 如图,梯形ABCD 中,AD BC AB CD =∥,,对角线AC BD ,相交于点O ,60AOD ∠=︒,E F G ,,分别是OA OB CD ,,的中点,求证:EFG ∆是等边三角形A BEFO GFE DCBA【例51】 如图,求证:四边形两组对边中点连线与两对角线中点连结这三条线共点.OE FLHNMDCB A【例52】 如图,O 是平行四边形ABCD 内任意一点,E F G H ,,,分别是OA OB OC OD ,,,的中点.若DE ,CF 交于P ,DG ,AF 交于Q ,AH ,BG 交于R ,BE ,CH 交于S ,求证:PQ SR .SR QPH GOEFDCB A。

1.1 菱形的性质与判定 北师大版九年级数学上册同步练习(含解析)

1.1 菱形的性质与判定 北师大版九年级数学上册同步练习(含解析)

北师大版九上1.1菱形的性质与判定同步练习一、选择题(共10题)1. 菱形不具备的性质是( )A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形2. 菱形ABCD中,∠A:∠B=1:5,若其周长为8,则菱形ABCD的高为( )B.4C.1D.2 A.123. 菱形ABCD中,AB=2,∠D=120∘,则对角线AC的长为( )A.1B.3C.2D.234. 菱形ABCD中,AC=10,BD=24,则该菱形的周长等于( )A.13B.52C.120D.2405. 如图,菱形ABCD中,E,F分别是AB,AC的中点,若EF=3,则菱形ABCD的周长是( )A.12B.16C.20D.246. 已知O为平行四边形ABCD对角线的交点,下列条件能使平行四边形ABCD成为菱形的是( )A.AB=BC B.AC=BDC.OA=OC,OB=OD D.∠A=∠B=∠C=90∘7. 如图,B,C分别是锐角∠A两边上的点,AB=AC,分别以点B,C为圆心,以AB的长为半径画弧,两弧相交于点D,连接BD,CD,则根据作图过程判定四边形ABDC 是菱形的依据是( )A.一组邻边相等的四边形是菱形B.四条边都相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线平分一组对角的四边形是菱形8. 点E,F,G,H分别是四边形ABCD的边AB,BC,CD,AD的中点,AC,BD交于点O,当四边形ABCD的对角线满足( )条件时,四边形EFGH是菱形.A.AC⊥BD B.AC=BDC.OA=OC,OB=OD D.OA=OB9. 平面直角坐标系中,四边形ABCD的顶点坐标分别是A(―3,0),B(0,2),C(3,0),D(0,―2),则四边形ABCD是( )A.矩形B.菱形C.正方形D.平行四边形10. 如图,四边形ABCD的对角线AC,BD互相垂直,则下列条件能判定四边形ABCD为菱形的是( )A.BA=BC B.AC,BD互相平分C.AC=BD D.AB∥CD二、填空题(共10题)11. 如图,菱形ABCD的周长是8 cm,AB的长是cm.12. 已知菱形两条对角线的长分别为4和6,则菱形的边长为.13. 已知菱形的周长为20 cm,一条对角线长为6 cm,则这个菱形的面积是cm2.14. 如图,若菱形的边长为4,∠BAD=120∘,则较短对角线AC长为.15. 如图,菱形ABCD的对角线AC,BD交于点O,E为DC的中点,若OE=3,则菱形的周长为.16. 如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥AD于点E,反向延长交BC于点F,则EF的长为.17. 如图,菱形ABCD的对角线AC,BD相交于点O,已知OB=4,菱形ABCD的面积为24,则AC的长为.18. 如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②AB=AC;③BF∥CE.从中选择条件可使四边形BECF是菱形.19. 如图,在四边形ABCD中,AB≠CD,E,F,G,H分别是AB,BD,CD,AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是.20. 如图,在△ABC中,AD⊥BC于点D,点E,F分别是AB,AC边的中点,请你在△ABC中添加一个条件:,使得四边形AEDF是菱形.三、解答题(共7题)21. 【测试4】如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD,BC分别相交于点M,N.(1) 求证:四边形BNDM是菱形;(2) 若BD=24,MN=10,求菱形BNDM的周长.22. 已知:如图,在平行四边形ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1) 求证:△ABE≌△CDF;(2) 连接DG,若DG=BG,则四边形BECF是什么特殊四边形?请说明理由.23. 如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1) ∠CEB=∠CBE;(2) 四边形BCED是菱形.24. 如图,AC是平行四边形ABCD的对角线,∠BAC=∠DAC.(1) 求证AB=BC;(2) 若AB=2,AC=23,求平行四边形ABCD的面积.25. 在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF,求证:(1) △ABF≌△DAE.(2) DE=BF+EF.26. 在正方形ABCD中,对角线BD所在的直线上有两点E,F满足BE=DF,连接AE,AF,CE,CF,如图所示.(1) 求证:△ABE≌△ADF;(2) 试判断四边形AECF的形状,并说明理由.27. 如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC,AC=8,BD=6.(1) 求证:四边形ABCD是平行四边形;(2) 若AC⊥BD,求平行四边形ABCD的面积.答案一、选择题(共10题)1. 【答案】B2. 【答案】C3. 【答案】D4. 【答案】B5. 【答案】D6. 【答案】A7. 【答案】B8. 【答案】B9. 【答案】B10. 【答案】B二、填空题(共10题)11. 【答案】212. 【答案】1313. 【答案】2414. 【答案】415. 【答案】2416. 【答案】24517. 【答案】618. 【答案】②19. 【答案】AD=BC20. 【答案】如:AB=AC,答案不唯一三、解答题(共7题)21. 【答案】(1) ∵AD∥BC,∴∠DMO=∠BNO,∵MN 是对角线 BD 的垂直平分线,∴OB =OD ,MN ⊥BD ,在 △MOD 和 △NOB 中,∠DMO =∠BNO,∠MOD =∠NOB,OD =OB,∴△MOD ≌△NOB (AAS),∴OM =ON ,∵OB =OD ,∴ 四边形 BNDM 是平行四边形,∵MN ⊥BD ,∴ 四边形 BNDM 是菱形.(2) ∵ 四边形 BNDM 是菱形,BD =24,MN =10,∴BM =BN =DM =DN ,OB =12BD =12,OM =12MN =5,在 Rt △BOM 中,由勾股定理得:BM =OM 2+OB 2=52+122=13, ∴ 菱形 BNDM 的周长 =4BM =4×13=52.22. 【答案】(1) ∵ 四边形 ABCD 是平行四边形,∴AB =CD ,∠BAE =∠DCF ,在 △ABE 和 △CDF 中,AB =CD,∠BAE =∠DCF,AE =CF,∴△ABE ≌△CDF (SAS);(2) 四边形 BEDF 是菱形;理由如下:如图所示:∵ 四边形 ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∵AE =CF ,∴DE =BF ,∴ 四边形 BEDF 是平行四边形,∴OB =OD ,∵DG =BG ,∴EF ⊥BD ,∴ 四边形 BEDF 是菱形.23. 【答案】(1) ∵ △ABC ≌△ABD ,∴ ∠ABC =∠ABD .∵ CE ∥BD ,∴ ∠CEB =∠DBE ,∴ ∠CEB =∠CBE .(2) ∵ △ABC ≌△ABD ,∴ BC =BD .∵ ∠CEB =∠CBE ,∴ CE =CB ,∴ CE =BD .∵ CE ∥BD ,∴ 四边形 CEDB 是平行四边形.∵ BC =BD ,∴ 四边形 CEDB 是菱形.24. 【答案】(1) 因为四边形 ABCD 是平行四边形,所以 AD ∥BC ,所以 ∠DAC =∠BCA ,因为 ∠BAC =∠DAC ,所以 ∠BAC =∠BCA ,所以 AB =BC .(2) 连接 BD 交 AC 于点 O ,因为四边形 ABCD 是平行四边形,AB =BC ,所以四边形 ABCD 是菱形,所以 AC ⊥BD ,OA =OC =12AC =3,OB =OD =12BD ,所以 OB =AB 2―OA 2=22―(3)2=1,所以 BD =2OB =2,所以 S 平行四边形ABCD =12AC ⋅BD =12×23×2=23.25. 【答案】(1) ∵ 四边形 ABCD 是菱形,∴AB =AD ,AD ∥BC ,∴∠BOA =∠DAE ,∵∠ABC =∠AED ,∴∠BAF =∠ADE ,∵∠ABF =∠BPF ,∠BPA =∠DAE ,∴∠ABF =∠DAE ,∵AB =DA ,∴△ABF ≌△DAE (ASA).(2) ∵△ABF ≌△DAE ,∴AE =BF ,DE =AF ,∵AF =AE +EF =BF +EF ,∴DE =BF +EF .26. 【答案】(1) ∵ 正方形 ABCD ,∴AB =AD ,∠ABE =∠ADF =135∘,在 △ABE 和 △ADF 中,AB =AD,∠ABE =∠ADF,BE =DF,∴△ABE ≌△ADF (SAS).(2) 四边形 AECF 为菱形.证明:连接 AC ,∵△ABE ≌△ADF ,∴AE =AF ,∵正方形ABCD,∴EF垂直平分AC,∴EA=EC,FA=FC,∴EA=EC=FA=FC,∴四边形AECF是菱形.27. 【答案】(1) ∵O是AC的中点,∴OA=OC,∵AD∥BC,∴∠ADO=∠CBO.在△AOD和△COB中,∠ADO=∠CBO,∠AOD=∠COB,OA=OC,∴△AOD≌△COB,∴OD=OB,∴四边形ABCD是平行四边形.(2) ∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,∴平行四边形ABCD的面积=1AC⋅BD=24.2。

菱形的性质与判定练习

菱形的性质与判定练习

菱形的性质与判定练习1、一个菱形的周长为52cm,一条对角线长为10cm,则其面积为 cm2.2、已知菱形的周长为40cm,两条对角线之比3:4,则菱形面积为______________cm2.3、如图,菱形ABCD的周长为8,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO= ,菱形ABCD的面积S= .4、如图,在菱形ABCD中,已知AB=10,AC=16,那么菱形ABCD的面积为_______.5、如图,正方形ABCD中,以对角线AC为一边作菱形AEFC,则∠FAB= .6、如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=120°,CE∥BD,DE∥AC,若AD=4,则四边形CODE的周长.7、已知菱形的周长为 40 cm ,两条对角线之比为3:4,则菱形的面积为_________.8、如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为24,则OH的长等于 .9、如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是____________(写出一个即可).10、如图,菱形ABCD中,对角线AC交BD于O, E是CD的中点,且OE=2,则菱形ABCD的周长等于.11、如图,在菱形ABCD中,点E、F分别是BD、CD的中点,EF=6 cm,则AB=________cm.12、两对角线分别是6cm和8cm的菱形面积是 cm2,周长是 cm.13、如图,在RtΔABC中,∠ACB=90°,AC=4,BC=3,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD= 时,平行四边形CDEB为菱形。

14、如图,在菱形ABCD中,∠B=60°,对角线BD=22,则点D到直线AB的距离DE= ,点D到直线BC的距离等于.15、如图,在菱形ABCD中,AB=5,对角线AC=6,若过点A作AE⊥BC,垂足为E,则AE的长为.16、如图,连接四边形ABCD各边中点,得到四边形EFGH,只要添加条件,就能保证四边形EFGH是菱形.17、如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD.DA的中点,则四边形EFGH的周长等于 cm.18、如图,在菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于.19、如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE ⊥BC,垂足为点E,则OE= .20、.如图,菱形ABCD中,E、F分别是BC、CD的中点,过点E作EG⊥AD 于G,连接GF.若∠A=80°,则∠DGF的度数为.21、如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=120°,则∠AOE= .22、如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D 的坐标为(0,2),则点C的坐标为.23、如图,点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE= 度.24、在如图的方格纸中有一个菱形ABCD(A、B、C、D四点均为格点),若方格纸中每个最小正方形的边长为1,则该菱形的面积为.25、如图,已知菱形ABCD的对角线AC、BD的长分别为10cm,24cm,AE⊥BC于点E,则AE的长是 cm.26、将矩形纸片ABCD,按如图所示的方式折叠,点A、点C恰好落在对角线BD上,得到菱形BEDF.若BC=6,则AB的长为.27、如图,在菱形ABCD中,AB=4,线段AD的垂直平分线交AC于点N,△CND的周长是10,则AC的长为.28、如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为.29、如图,在菱形ABCD中,∠BAD=80º,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于.30、如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B 为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2 cm,四边形OACB的面积为4 cm2.则OC的长为________cm.31、把两张宽为2 cm的矩形纸片重叠在一起,然后将其中的一张任意旋转一个角度,则重叠部分(图中的阴影部分)的四边形ABCD的形状为________,其面积的最小值为________cm2.32、如图,将两张长为9,宽为3的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的面积有最小值9,那么菱形面积的最大值是.33、如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.34、如图,菱形ABCD中,AB=4,∠B=60°,E,F分别是BC,DC上的点,∠EAF=60°,连接EF,则△AEF的面积最小值是.35、已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值= .36、如图,菱形ABCD中,AB=4,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为.37、如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是_________.38、如图,在平面直角坐标系中有一菱形OABC且∠A=120°,点O、B在y 轴上,OA=1,现在把菱形向右无滑动翻转,每次翻转60°,点B的落点依次为B1、B2、B3……,连续翻转2017次,则B2017的坐标为__ ______.39、如图,菱形AB1C1D1的边长为1,∠B1=60°;作AD2⊥B1C1于点D2,以AD2为一边,做第二个菱形AB2C2D2,使∠B2=60°;作AD3⊥B2C2于点D3,以AD3为一边做第三个菱形AB3C3D3,使∠B3=60°…依此类推,这样做的第n个菱形AB n C n D n的边AD n的长是.40、已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第4个图形中直角三角形的个数有_____________个;第2014个图形中直角三角形的个数有_____________个.参考答案1、答案为:120.2、答案为:243、答案为:1:2,.4、答案为:96.°.6、答案为:16.7、答案为:96 cm 28、答案为:3;9、答案为:AB=AD(答案不唯一)10、答案为:1611、答案为:1212、答案为:24,20.13、答案为:1.4;14、答案为:11,11.15、答案为:4.8;16、答案为:AC=BD.17、答案为:16.18、答案为:3.5;19、答案为:2.4.20、答案为:50°.21、答案为:60°.22、答案为:(4,4);23、答案为:45;24、答案为:12.25、答案为:.26、答案为:2.27、答案为:6.28、答案为:2.5;29、答案为:60度30、答案为:431、答案为:菱形,432、答案为:15.33、答案为:2.34、答案为:.35、答案为:5.36、答案为:2.37、答案为:38、答案为:(1345.5,)39、答案为:()n﹣1.40、答案为:8, 4028。

专题:菱形的性质与判定

专题:菱形的性质与判定

专题:菱形的性质与判定菱形的性质11、菱形具有而一般平行四边形不具有的性质是()A. 对角相等B. 对边相等C. 对角线互相垂直D. 对角线相等2、菱形的周长为100cm,一条对角线长为14cm,它的面积是()A. 168cm2B. 336cm2C. 672cm2D. 84cm23、下列语句中,错误的是()A. 菱形是轴对称图形,它有两条对称轴B. 菱形的两组对边可以通过平移而相互得到C. 菱形的两组对边可以通过旋转而相互得到D. 菱形的相邻两边可以通过旋转而相互得到4、菱形的两条对角线分别是6 cm,8 cm,则菱形的边长为_____,面积为______.5、四边形ABCD是菱形,点O是两条对角线的交点,已知AB=5, AO=4,求对角线BD 和菱形ABCD的面积.6、如图,在菱形ABCD中,∠ADC=120°,则BD:AC等于().(A)3:2 (B)3:3(C)1:2 (D)3:17、菱形ABCD的周长为20cm,两条对角线的比为3∶4,求菱形的面积。

8、如左下图,菱形ABCD的对角线AC、BD交于点O,且AC=16cm,BD=12cm,求菱形ABCD的高DH。

9、如右上图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数为.10、在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.11、如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4)B.M(4,0),N(8,4)C.M(5,0),N(7,4)D.M(4,0),N(7,4)12、菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1B.4:1C.5:1D.6:113、如左下图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_________.14、如右上图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.15、如图,在菱形ABCD中,顶点A到边BC、CD的距离AE、AF都为5,EF=6,那么,菱形ABCD的边长是_____菱形的性质2一、选择题1.下列命题中,真命题是()A.对角线互相垂直且相等的四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线互相平分且相等的四边形是菱形D.对角线相等的四边形是菱形2.菱形的周长为12cm,相邻两角之比为5:1,那么菱形对边间的距离是()A.6cm B.1.5cm C.3cm D.0.75cm3.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图1)则∠E AF 等于( )A .75°B .60°C .45°D .30°图1 图24.已知菱形ABCD 中,AE ⊥BC 于E ,若S 菱形ABCD =24,且AE =6,则菱形的边长为( ) A .12B .8C .4D .25.菱形的边长是2 cm ,一条对角线的长是2 cm ,则另一条对角线的长约是( ) A .4cmB .1cmC .3.4cmD .2cm二、判断正误:(对的打“√”错的打“×”) 1.两组邻边分别相等的四边形是菱形.( ) 2.一角为60°的平行四边形是菱形.( ) 3.对角线互相垂直的四边形是菱形.( ) 4.菱形的对角线互相垂直平分.( ) 三、填空题1.如图3,菱形ABCD 中,AC 、BD 相交于O ,若OD =21A D ,则四个内角为________.图3 图42.若一条对角线平分平行四边形的一组对角,且一边长为a 时,如图4,其他三边长为________;周长为________.3.菱形ABCD 中,AC 、BD 相交于O 点,若∠OBC =21∠BAC ,则菱形的四个内角的度数为____________.4.若菱形的两条对角线的比为3:4,且周长为20cm ,则它的一组对边的距离等于_________cm ,它的面积等于________cm 2.5.菱形ABCD 中,如图5,∠BAD =120°,AB =10cm ,则AC =________cm ,BD =________cm.图5 图6四、解答题∠如图,在菱形ABCD中,AE⊥BC,E为垂足.且BE=CE,AB=2.求:(1)BAD的度数;(2)对角线AC的长及菱形ABCD的周长.菱形的性质3一.选择题(共4小题)1.(如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4)B.M(4,0),N(8,4)C.M(5,0),N(7,4)D.M(4,0),N(7,4)2.菱形的周长为4,一个内角为60°,则较短的对角线长为()A.2B.C.1D.3.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1B.4:1C.5:1D.6:14.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为()A.15B.C.7.5D.二.填空题(共15小题)5.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是_________cm2.6.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_________.7.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.6题图7题图8题图9题图8.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∠AC交BC的延长线于点E,则∠BDE的周长为_________.9.如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO=_________度.10.如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1=_________度.10题图12题13题图14题图11.已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为_________.12.如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按A﹣>B﹣>C ﹣>D﹣>E﹣>F﹣>C﹣>G﹣>A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在_________点.13.如图,P为菱形ABCD的对角线上一点,PE∠AB于点E,PF∠AD于点F,PF=3cm,则P点到AB的距离是_________cm.14.已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为_________.15.已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为_________cm2.16.已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是_________cm2.17.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∠BC交AB于E,PF∠CD交AD于F,则阴影部分的面积是_________.17题图18题图19题图18.如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是_________.19.如图:点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE=_________度.三.解答题(共7小题)20.如图,四边形ABCD为菱形,已知A(0,4),B(﹣3,0).(1)求点D的坐标;(2)求经过点C的反比例函数解析式.21.如图所示,在菱形ABCD中,∠ABC=60°,DE∠AC交BC的延长线于点E.求证:DE=BE.22.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE∠AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.23.如图,四边形ABCD是菱形,BE∠AD、BF∠CD,垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.24.如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E连接BE.(1)证明:∠APD=∠CBE;(2)若∠DAB=60°,试问P点运动到什么位置时,∠ADP的面积等于菱形ABCD面积的,为什么?25.已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).(1)连接_________;(2)猜想:_________=_________;(3)证明:(说明:写出证明过程的重要依据)26.如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C运动,点P、Q的速度都是1cm/s.(1)在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?(2)分别求出菱形AQCP的周长、面积.菱形的判定11、能够判别一个四边形是菱形的条件是()A. 对角线相等且互相平分B. 对角线互相垂直且相等C. 对角线互相平分D. 一组对角相等且一条对角线平分这组对角2、平行四边形ABCD的两条对角线AC、BD相交于点O, AB=5, AO=2, OB=1. 四边形ABCD 是菱形吗?为什么?EOBCF DA3、 如图,AD 是△ABC 的角平分线。

菱形的性质和判定练习题(精.选)

菱形的性质和判定练习题(精.选)

菱形检测题二1.菱形的两条对角线长分别为16cm,12cm,那么这个菱形的高是_______.2.已知菱形两邻角的比是1:2,周长是40cm,则较短对角线长是________.3.菱形的面积为50cm2,一个内角为30°,则其边长为______.4.菱形一边与两条对角线所构成两角之比为2:7,则它的各角为______.5.如图,在四边形ABCD中,AB=CD,AD=BC,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是__________(写出一个即可).6、已知在菱形ABCD中,下列说法错误的是().A. 两组对边分别平行B. 菱形对角线互相平分C. 菱形的对边相等D. 菱形的对角线相等7、菱形具有而矩形不一定具有的性质是().A.对边相等B.对角相等C.对角线互相垂直D.对角线相等8、能够找到一点使该点到各边距离相等的图形为().A.平行四边形B.菱形C.矩形D.不存在9、下列说法不正确的是().A.菱形的对角线互相垂直B.菱形的对角线平分各内角C.菱形的对角线相等D.菱形的对角线交点到各边等距离10、菱形的两条对角线分别是12cm、16cm,则菱形的周长是().A.24cm B.32cm C.40 cm D.60cm11.菱形ABCD,若∠A:∠B=2:1,∠CAD的平分线AE和边CD之间的关系是().A.相等B.互相垂直且不平分C.互相平分且不垂直D.垂直且平分12.在菱形ABCD中,AE⊥BC于E,菱形ABCD面积等于24cm2,AE=6cm,则AB长为().A.12cm B.8cm C.4cm D.2cm13.如图,在菱形ABCD中,E是AB的中点,作EF∥BC,交AC•于点F,如果EF=4,那么CD的长为().A.2 B.4 C.6 D.814.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是( )A.1B.3C.2D.2315.菱形的两条对角线长分别是6和8,则此菱形的边长是( )A.10B.8C.6D.516.如图所示,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边的中点,菱形ABCD 的周长为28,则OH 的长等于( )A.3.5B.4C.7D.1417.若菱形的周长20 cm,则它的边长是__________cm.18.如图,菱形ABCD 的周长是20,对角线AC ,BD 相交于点O ,若BD=6,则菱形ABCD 的面积是( )A.6B.12C.24D.4819、菱形ABCD 中,AB=15,∠ADC=120°,则B 、D 两点之间的距离为( ).A .15B .3215C .7.5D .315 20、菱形的两邻角之比为1:2,如果它的较短对角线为3cm ,则它的周长为( ).A .8cmB .9cmC .12cmD .15cm21、菱形的周长为8cm ,高为1cm ,则该菱形两邻角度数比为( ).A .3:1B .4:1C .5:122.如图,已知AC ,BD 是菱形ABCD 的对角线,那么下列结论一定正确的是( )A.△ABD 与△ABC 的周长相等B.△ABD 与△ABC 的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍23.如图,在菱形ABCD 中,AC ,BD 是对角线,若∠BAC =50°,则∠ABC 等于( )A.40°B.50°C.80°D.100°24.已知一个菱形的周长是20 cm ,两条对角线的比是4∶3,则这个菱形的面积是( )A.12 cm 2B.24 cm 2C.48 cm 2D.96 cm2 25.如图,在菱形ABCD 中,AB=5,对角线AC=6,过点A 作AE ⊥BC ,垂足为E ,则AE 的长为( )A.4B.125C.245D.526.如图,菱形ABCD 中,AB=4,∠B=60°,AE ⊥BC ,AF ⊥CD ,垂足分别为点E ,F ,连接EF ,则△AEF 的面积是__________.27.如图,将菱形纸片ABCD折叠.使点A恰好落在菱形的对称中心O处,折痕为EF.若菱形ABCD的边长为2 cm,∠A=120°,则EF=__________cm.28.如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.29.如图,已知四边形ABCD是菱形,点E,F分别是边CD,AD的中点.求证:AE=CF.30、如图,菱形ABCD中,E是AB中点,DE⊥AB,AB=4.求(1)∠ABC的度数;(2)AC的长;(3)菱形ABCD的面积.31.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.32、如图,在ABC ∆中,BD 平分ABC ∠,BD 的中垂线交AB 于点E ,交BC 于点F ,求证:四边形BEDF 是菱形33、如图,在四边形ABCD 中,点E ,F 分别是AD ,BC 的中点,G ,H 分别是BD ,AC的中点,AB ,CD 满足什么条件时,四边形EGFH 是菱形?请证明你的结论.34.如图,点O 是菱形ABCD 对角线的交点,DE ∥AC ,CE ∥BD ,连接OE.求证:OE =BC.35.如图所示,等边三角形CEF 的边长与菱形ABCD 的边长相等.(1)求证:∠AEF=∠AFE ;(2)求∠B 的度数.A B C D EG H最新文件仅供参考已改成word文本。

菱形性质与判定练习题

菱形性质与判定练习题

菱形练习题一、判断题1.一组邻边相等,且对角线互相垂直的四边形是菱形.()2.一条对角线平分一组对角的四边形是菱形.()3.菱形是轴对称图形,它的对称轴只有一条.()4.菱形的对角线互相垂直平分,且平分各内角.()二、填空题5.菱形ABCD的AC交BD于O,AB=13,BO=12,AO=5,求菱形的周长=_____,面积=•____.6.O为菱形ABCD的对角线交点,E、F、G、H分别是菱形各边的中点,若OE=3cm,•则OF=_____,OG=_______,OH=______.7.一个菱形两条对角线之比为1︰2,一条较短的对角线长为4cm,那么菱形的边长为______8...已知菱形的周长为96㎝,两个邻角的比是1︰2,这个菱形的较短对角线的长是9. 菱形的两个邻角的度数之比是1:3,边长是25,则高为10. 已知菱形的周长为96㎝,两个邻角的比是1︰2,这个菱形的较短对角线的长是11.如图所示,已知在菱形ABCD中,AE⊥CD于E,∠ABC=60°,∠CAE=。

三、解答题12.菱形的两条对角线长度分别为a、b,请将此菱形周长和面积用含有a、b的式子表示出来。

13.已知:如图,在菱形ABCD中,点E,F分别在CD,BC上,且CE=CF,求证:AE=AF.14.如图,在已知平行四边形ABCD中,AE平分∠BAD,与BC相交于点E,EF//AB,与AD相交于点F.求证:四边形ABEF是菱形.15.如图,在△ABC中,AB=BC,D、E、F分别是BC、AC、AB上的中点,(1)求证四边形BDEF是菱形。

(2)若AB=12cm,求菱形BDEF的周长?15.如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点 E、F分别是CD的中点,过点A作AG∥BD,交CB的延长线于点G.(1)求证:四边形DEBF是菱形;(2)请判断四边形AGBD是什么特殊四边形?并加以证明.。

菱形的性质与判定练习题

菱形的性质与判定练习题

菱形的性质与判定练习题一、填空、选择题:1、(2010•肇庆)菱形的周长为4,一个内角为60°,则较短的对角线长为()A.2 B.C.1 D.2、(2010•襄阳)菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:13、已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为__________cm2.4、已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是__________cm2.5、如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是_______.5题图6题图7题图6、2003•温州)如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是__________.7、如图:点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE=__________度.8、(2013南京)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF= __________8题图9题图10题图9、(2013•黔西南州)如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为__________10、(2013•临沂)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是__________11、如图:菱形ABCD的对角线AC、BD相较于点O,且AC=8,BD=6,过点O作OH ⊥AB,垂足为H.试求点O到边AB的距离OH__________12、如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件____________,使ABCD成为菱形.(只需添加一个即可)13、如图:在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则∠CDF的度数=____________,。

人教版八年级下册数学《菱形的性质与判定》同步练习(含答案)

人教版八年级下册数学《菱形的性质与判定》同步练习(含答案)

菱形的性质与判定一 、填空题(本大题共6小题)1.如图,在菱形ABCD 中,60A ∠=︒,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD 的边长是 .2.如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是 .3.如图2,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离16cm AB BC ==,则1∠= 度.4.已知菱形的一个内角为60︒,一条对角线的长为23,则另一条对角线的长为________.5.菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较短的对角线的长度为6.已知菱形ABCD 的两条对角线AC BD ,的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是二 、解答题(本大题共7小题)DCAB 图21CBAE F DBCA7.如图,ACD ∆、ABE ∆、BCF ∆均为直线BC 同侧的等边三角形.已知AB AC =.⑴ 顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应 的条件.⑵ 当BAC ∠为 度时,四边形ADFE 为正方形.8.如图,在梯形纸片ABCD 中,//AD BC ,AD CD >,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C E '.求证:四边形CDC E '是菱形.9.如图,在四边形ABCD 中,E 为AB 上一点,ADE ∆和BCE ∆都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,证明四边形PQMN 为平行四边形且PQ PN =.10.已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBAC'DCB A EQEP NMDCBA11.如图,四边形ABCD 中,AB CD E F G H =,,,,分别是AD BC BD AC ,,,的中点,求证:EF GH ,相互垂直平分12.已知:如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ABE ∆沿BC 方向平移,使点E 与点C 重合,得GFC ∆.若60B ∠=︒,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.13.已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBACDH GFEBAGF E DCBAFEDCBA菱形的性质与判定答案解析一 、填空题 1.42.AB AD AC BD =⊥,3.120︒;由题意可知:构成三角形为等边三角形4.2或65.56.150°;如图,过点A 作AE BC ⊥于E ,则12AC BD BC AE ⋅=⋅,又2AC BD AB ⋅=,得1302AE AB ABC =∠=︒,,150BAD ∠=︒二 、解答题7.⑴ 构成的图形有两类,一类是菱形,一类是线段.当图形为菱形时,∠ BAC ≠60°(或A 与F 不重合、△ABC 不为正三角形)(若写出图形为平行四边形时,不给分)当图形为线段时,∠BAC = 60°(或A 与F 重合、△ABC 为正三角形). ⑵ 150︒.8.根据题意可知则. ∵, ∴. ∴, ∴.∴, ∴四边形为菱形. 9.如图,连结AC 、BD .∵PQ 为ABC ∆的中位线EDCBA'CDE C DE ∆≅∆'''CD C D C DE CDE CE C E =∠=∠=,,//AD BC C DE CDE '∠=∠CDE CED ∠=∠CD CE =CD C D C E CE ''===CDC E 'QNMD C∴PQ AC ∥且12PQ AC = 同理MN AC ∥且12MN AC = ∴MN PQ ∥且MN PQ = ∴四边形PQMN 为平行四边形. 在AEC ∆和DEB ∆中AE DE =,EC EB =,60AED CEB ∠=︒=∠即AEC DEB ∠=∠ ∴AEC DEB ∆∆≌ ∴AC BD =∴1122PQ AC BD PN ===. 10.连接AC ,∵四边形ABCD 为菱形∴AB BC CD AD ===∴ABC △和ACD △为等边三角形 ∴60AB AC B ACD BAC =∠=∠=∠=︒, ∵60EAF ∠=︒ ∴BAE CAF ∠=∠ ∴ABE ACF △≌△ ∴AE AF = ∵60EAF ∠=︒ ∴AEF △为等边三角形 ∴60AEF ∠=︒∵AEC B BAE AEF CEF ∠=∠+∠=∠+∠ ∴18CEF ∠=︒在矩形、菱形的定理题中,有时也常连对角线,把四边形问题转化为三角形问题.11.连结EG GF FH HE ,,,,根据题意,EG HF ,分别是DAB CAB ∆∆,的中位线,所以12EG HF AB ==,同理可证:12GF EH CD ==,因为AB CD =,所以ABCDEFEG HF GF EH ===,则四边形EGFH 是菱形,所以EF GH ,相互垂直12.当32BC AB =时,四边形ABFC 是菱形.∵AB GF ∥,AG BF ∥ ∴四边形ABFG 是平行四边形 ∵Rt ABE ∆中,60B ∠=︒ ∴30BAE ∠=︒ ∴12BE AB =∵BE CF =,32BC AB = ∴12EF AB = ∴AB BF =∴四边形ABFG 是菱形.13.连接AC ,∵四边形ABCD 为菱形∴AB BC CD AD ===∴ABC △和ACD △为等边三角形 ∴60AB AC B ACD BAC =∠=∠=∠=︒, ∵60EAF ∠=︒ ∴BAE CAF ∠=∠ ∴ABE ACF △≌△ ∴AE AF = ∵60EAF ∠=︒ ∴AEF △为等边三角形 ∴60AEF ∠=︒∵AEC B BAE AEF CEF ∠=∠+∠=∠+∠ABEFGHD CABCDEF∴18∠=︒CEF分析:在矩形、菱形的定理题中,有时也常连对角线,把四边形问题转化为三角形问题.。

完整版)菱形的性质和判定练习题

完整版)菱形的性质和判定练习题

完整版)菱形的性质和判定练习题1.这个菱形的高为9cm。

2.较短对角线长为10cm。

3.边长为5cm。

4.各角分别为72°和108°。

5.添加的条件可以是AB=AD或BC=CD。

6.错误的说法是A,即两组对边分别平行。

7.对角线互相垂直。

8.菱形。

9.不正确的说法是B,即菱形的对角线平分各内角。

10.周长为40cm。

11.互相垂直且不平分。

12.AB长为8cm。

13.CD的长为4.14.对角线BD的长为2.15.边长为5.16.OH的长为7.17.若菱形的周长为20cm,则它的边长为4cm。

18.在菱形ABCD中,由对角线AC和BD相交于点O可知,菱形的对角线相等,即AC=BD。

又已知BD=6,则AC=6.设菱形ABCD的边长为a,则2a=20,即a=10.由菱形对角线的长度公式可得。

$AC=\sqrt{a^2+a^2}=a\sqrt{2}$,代入AC=6可得a=6/$\sqrt{2}$,因此菱形ABCD的面积为36.19.在菱形ABCD中,由$\angle ADC=120^\circ$可知,$\angle ADB=60^\circ$。

设$\angle ABD=\theta$,则$\angle ADB=120^\circ-\theta$。

由余弦定理可得,$BD^2=15^2+15^2-2\times15\times15\times\cos\theta$,化简可得$\cos\theta=1/2$,因此$\sin\theta=\sqrt{3}/2$。

由正弦定理可得,$BD/\sin\theta=2a$,其中a为菱形的边长。

又已知BD=15,代入可得$a=15\sqrt{3}/4$。

设B、D两点之间的距离为h,则$h=\sqrt{(15\sqrt{3}/4)^2-(15/2)^2}=15\sqrt{3}/4$,因此选项D 正确。

20.设菱形的较长对角线为2x,较短对角线为x,则菱形的面积为$x^2$。

菱形的性质和判定(含解析)

菱形的性质和判定(含解析)

菱形的性质和判定一、选择题1、如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为( )A 。

5B 。

7C .8D .二、解答题2、如图,菱形ABCD,对角线AC、BD交于点O,DE//AC,CE//BD,求证:OE=BC3、如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△的位置,AB与相交于点D,AC与、分别交于点E、F.(1)求证:△BCF≌△.(2)当∠C=α度时,判定四边形的形状并说明理由.4、如图,矩形ABCD 中,对角线AC 的垂直平分线交AD 、BC 于点E 、F,AC 与EF 交于点O ,连结AF 、CE .(1)求证:四边形AFCE 是菱形;(2)若AB=3,AD=4,求菱形AFCE 的边长。

5、如图,CD 是△ABC 的中线,点E 是AF 的中点,CF∥AB. (1)求证:CF=AD ;(2)若∠ACB=90°,试判断四边形BFCD 的形状,并说明理由.6、如图,将矩形A 1B 1C 1D 1沿EF 折叠,使B 1点落在A 1D 1边上的B 点处;再将矩形A 1B 1C 1D 1沿BG 折叠,使D 1点落在D 点处且BD 过F 点.(1)求证:四边形BEFG 是平行四边形;(2)当∠B 1FE 是多少度时,四边形BEFG 为菱形?试说明理由.菱形的性质和判定的答案和解析一、选择题1、答案:B试题分析:作CH⊥AB于H,如图,根据菱形的性质可判断△ABC为等边三角形,则CH=AB=4,AH=BH=4,再利用勾股定理计算出CP=7,再根据折叠的性质得点A′在以P点为圆心,PA为半径的弧上,利用点与圆的位置关系得到当点A′在PC上时,CA′的值最小,然后证明CQ=CP即可。

解:作CH⊥AB于H,如图,∵菱形ABCD的边AB=8,∠B=60°,∴△ABC为等边三角形,∴CH=AB=4,AH=BH=4,∵PB=3,∴HP=1,在Rt△CHP中,CP= =7,∵梯形APQD沿直线PQ折叠,A的对应点A′,∴点A′在以P点为圆心,PA为半径的弧上,∴当点A′在PC上时,CA′的值最小,∴∠APQ=∠CPQ,而CD∥AB,∴∠APQ=∠CQP,∴∠CQP=∠CPQ,∴CQ=CP=7.故选:B.二、解答题2、答案:证明见解析试题分析:先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED 是矩形,利用勾股定理即可求出BC=OE.证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴∠COD=90°,∴四边形OCED是矩形,∴DE=OC,∵OB=OD,∠BOC=∠ODE=90°,∴BC===OE3、答案:(1)见解答过程(2)见解答过程试题分析:(1)根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到=AB=BC,∠A=∠=∠C,∠BD=∠,根据全等三角形的判定定理得到△BCF≌△(2)由旋转的性质得到∠=∠A,根据平角的定义得到∠DEC=180°-α,根据四边形的内角和得到∠ABC=360°—∠—∠C—∠=180°-α,证的四边形是平行四边形,由于=BC,即可得到四边形是菱形。

菱形的性质与判定典型例题

菱形的性质与判定典型例题

《菱形的性质及判定》典型例题例1 如图,在菱形ABCD 中,E 是AB 的中点,且a AB AB DE =⊥,,求:(1)ABC ∠的度数;(2)对角线AC 的长;(3)菱形ABCD 的面积.例2 已知:如图,在菱形ABCD 中,AB CE ⊥于AD CF E ⊥,于 F .求证:.AF AE =例3 已知:如图,菱形ABCD 中,E ,F 分别是BC ,CD 上的一点,︒=∠=∠60EAF D ,︒=∠18BAE ,求CEF ∠的度数.例 4 如图,已知四边形ABCD 和四边形BEDF 都是长方形,且DF AD =.求证:GH 垂直平分CF .例 5 如图,ABCD中,AB=,E、F在直线CD上,且AD2=.DE=CFCD求证:AFBE⊥.例6 如图,在Rt△ABC中,∠ACB,E为AB的中点,四边形=90BCDE是平行四边形.求证:AC及DE互相垂直平分参考答案例1 分析 (1)由E 为AB 的中点,AB DE ⊥,可知DE 是AB 的垂直平分线,从而DB AD =,且AB AD =,则ABD ∆是等边三角形,从而菱形中各角都可以求出.(2)而OC AO BD AC =⊥,,利用勾股定理可以求出AC .(3)由菱形的对角线互相垂直,可知解 (1)连结BD ,∵四边形ABCD 是菱形,∴.AB AD =E 是AB 的中点,且AB DE ⊥,∴.DB AD =∴ABD ∆是等边三角形,∴DBC ∆也是等边三角形.∴.120260︒=⨯︒=∠ABC(2)∵四边形ABCD 是菱形,∴AC 及BD 互相垂直平分, ∴.212121a AB BD OB === ∴a a a OB AB OA 23)21(2222=-=-=,∴.32a AO AC == (3)菱形ABCD 的面积.23321212a a a BD AC S =⋅⋅=⋅= 说明:本题中的菱形有一个内角是60°的特殊的菱形,这个菱形有许多特点,通过解题应该逐步认识这些特点.例2 分析 要证明AF AE =,可以先证明DF BE =,而根据菱形的有关性质不难证明DCF BCE ∆≅∆,从而可以证得本题的结论.证明 ∵四边形ABCD 是菱形,∴D B CD BC ∠=∠=,,且︒=∠=∠90DFC BEC ,∴DCF BCE ∆≅∆,∴DF BE =,AD AB = ,∴DF=-,AB-BEAD∴.AE=AF例3 解答:连结AC.∵四边形ABCD为菱形,∴︒BCAB=CD=.==∠B,AD=∠60D∴ABC∆为等边三角形.∆及CDA∴︒,BACACDB=60ABAC=∠∠==∠∵︒EAF,=∠60∴CAF∠=BAE∠∴ACF∆ABE∆≅∴AFAE=∵︒EAF,=∠60∴EAF∆为等边三角形.∴︒=AEF∠60∵CEF∠+∠,==∠BAE∠BAEFAEC∠+∴CEF+60︒18︒60=∠+︒∴︒∠18CEF=说明本题综合考查菱形和等边三角形的性质,解题关键是连AC,证∆≅ACFABE∆例4 分析由已知条件可证明四边形BGDH是菱形,再根据菱形的对角线平分对角以及等腰三角形的“三线合一”可证明GH垂直平分CF.证明:∵四边形ABCD、BEDF都是长方形∴BF DE //,CD AB //, 90=∠=∠BCD DFH ,BC AD = ∴四边形BGDH 是平行四边形∵DF AD =,∴BC DF =在△DFH 和△BCH 中∴△DFH ≌△BCH ∴BH DH =,HC HF = ∵四边形BGDH 是平行四边形∴四边形BGDH 是菱形∴GH 平分BHD ∠ ∴GH 平分FHC ∠ ∵HC HF = ∴GH 垂直平分FC .例5 分析 要证AF BE ⊥,关键是要证明四边形ABHG 是菱形,然后利用菱形的性质证明结论.证明 ∵四边形ABCD 是平行四边形∴CD AB //,CD AB =,BH AG //,∴E ∠=∠1 ∵ED CD =,∴ED AB =在△ABG 和△EDG 中∴△ABG ≌△DEG ∴GD AG =∵AB AD 2= ∴AB AG =同理:BH AB = ∴BH AG =∵BH AG //∴四边形ABHG 是平行四边形∵BH AB = ∴四边形ABHG 是菱形∴BEAF⊥.例6 分析要证明AC及DE互相垂直平分,只要证明四边形ADCE是菱形.所以要连结AD证明∵在Rt△ABC中,E为AB的中点∴BEAE==CE∵四边形BCDE是平行四边形∴ABCD=CD//,BE∴AECD//,∴四边形ABCE是平行四边形∵ECAE=∴ADCE是菱形∴AC及DE互相垂直平分.。

(完整版)菱形的性质和判定练习题

(完整版)菱形的性质和判定练习题

(完整版)菱形的性质和判定练习题菱形检测题⼆1.菱形的两条对⾓线长分别为16cm,12cm,那么这个菱形的⾼是_______.2.已知菱形两邻⾓的⽐是1:2,周长是40cm,则较短对⾓线长是________.3.菱形的⾯积为50cm2,⼀个内⾓为30°,则其边长为______.4.菱形⼀边与两条对⾓线所构成两⾓之⽐为2:7,则它的各⾓为______.5.如图,在四边形ABCD中,AB=CD,AD=BC,添加⼀个条件使四边形ABCD是菱形,那么所添加的条件可以是__________(写出⼀个即可).6、已知在菱形ABCD中,下列说法错误的是().A. 两组对边分别平⾏B. 菱形对⾓线互相平分C. 菱形的对边相等D. 菱形的对⾓线相等7、菱形具有⽽矩形不⼀定具有的性质是().A.对边相等B.对⾓相等C.对⾓线互相垂直D.对⾓线相等8、能够找到⼀点使该点到各边距离相等的图形为().A.平⾏四边形B.菱形C.矩形D.不存在9、下列说法不正确的是().A.菱形的对⾓线互相垂直B.菱形的对⾓线平分各内⾓C.菱形的对⾓线相等D.菱形的对⾓线交点到各边等距离10、菱形的两条对⾓线分别是12cm、16cm,则菱形的周长是().A.24cm B.32cm C.40 cm D.60cm11.菱形ABCD,若∠A:∠B=2:1,∠CAD的平分线AE和边CD之间的关系是().A.相等B.互相垂直且不平分C.互相平分且不垂直D.垂直且平分12.在菱形ABCD中,AE⊥BC于E,菱形ABCD⾯积等于24cm2,AE=6cm,则AB长为().A.12cm B.8cm C.4cm D.2cm13.如图,在菱形ABCD中,E是AB的中点,作EF∥BC,交AC 于点F,如果EF=4,那么CD的长为().A.2 B.4 C.6 D.814.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对⾓线BD的长是( )A.1B.3C.2D.2315.菱形的两条对⾓线长分别是6和8,则此菱形的边长是( )A.10B.8C.6D.516.如图所⽰,菱形ABCD 中,对⾓线AC 、BD 相交于点O ,H 为AD 边的中点,菱形ABCD 的周长为28,则OH 的长等于( )A.3.5B.4C.7D.1417.若菱形的周长20 cm,则它的边长是__________cm.18.如图,菱形ABCD 的周长是20,对⾓线AC ,BD 相交于点O ,若BD=6,则菱形ABCD 的⾯积是( )A.6B.12C.24D.4819、菱形ABCD 中,AB=15,∠ADC=120°,则B 、D 两点之间的距离为().A .15B .3215C .7.5D .315 20、菱形的两邻⾓之⽐为1:2,如果它的较短对⾓线为3cm ,则它的周长为().A .8cmB .9cmC .12cmD .15cm21、菱形的周长为8cm ,⾼为1cm ,则该菱形两邻⾓度数⽐为().A .3:1B .4:1C .5:122.如图,已知AC ,BD 是菱形ABCD 的对⾓线,那么下列结论⼀定正确的是( )A.△ABD 与△ABC 的周长相等B.△ABD 与△ABC 的⾯积相等C.菱形的周长等于两条对⾓线之和的两倍D.菱形的⾯积等于两条对⾓线之积的两倍23.如图,在菱形ABCD 中,AC ,BD 是对⾓线,若∠BAC =50°,则∠ABC 等于( )A.40°B.50°C.80°D.100°24.已知⼀个菱形的周长是20 cm ,两条对⾓线的⽐是4∶3,则这个菱形的⾯积是( )A.12 cm 2B.24 cm 2C.48 cm 2D.96 cm2 25.如图,在菱形ABCD 中,AB=5,对⾓线AC=6,过点A 作AE ⊥BC ,垂⾜为E ,则AE 的长为( )A.4B.125C.245D.526.如图,菱形ABCD 中,AB=4,∠B=60°,AE ⊥BC ,AF ⊥CD ,垂⾜分别为点E ,F ,连接EF ,则△AEF 的⾯积是__________.27.如图,将菱形纸⽚ABCD 折叠.使点A 恰好落在菱形的对称中⼼O 处,折痕为EF.若菱形ABCD 的边长为2 cm ,∠A =120°,则EF =__________cm.28.如图,四边形ABCD是菱形,对⾓线AC与BD相交于O,AB=5,AO=4,求BD的长.29.如图,已知四边形ABCD是菱形,点E,F分别是边CD,AD的中点.求证:AE=CF.30、如图,菱形ABCD中,E是AB中点,DE⊥AB,AB=4.求(1)∠ABC的度数;(2)AC的长;(3)菱形ABCD的⾯积.31.如图,四边形ABCD是菱形,对⾓线AC,BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.32、如图,在ABC ?中,BD 平分ABC ∠,BD 的中垂线交AB 于点E ,交BC 于点F ,求证:四边形BEDF 是菱形33、如图,在四边形ABCD 中,点E ,F 分别是AD ,BC 的中点,G ,H 分别是BD ,AC的中点,AB ,CD 满⾜什么条件时,四边形EGFH 是菱形?请证明你的结论.34.如图,点O 是菱形ABCD 对⾓线的交点,DE ∥AC ,CE ∥BD ,连接OE.求证:OE =BC.35.如图所⽰,等边三⾓形CEF 的边长与菱形ABCD 的边长相等.(1)求证:∠AEF=∠AFE ;(2)求∠B 的度数.。

菱形的性质与判定综合练习题

菱形的性质与判定综合练习题

菱形的性质与判定练习题
知识点:
1、菱形的定义:
2、菱形的性质:
(1)
(2)
3、菱形的判定:
(1)
(2)
4、菱形的面积公式:
一、填空题
1、如图,在菱形ABCD中,对角线AC、BD相交于点O,则
(1)AB=AD=____=____,即菱形的_______________相等.
(2)图中△AOD≌______≌_______≌______,由此可以得出菱形的对角线_______________,每一条对角线_______________.
(3)菱形是轴对称图形,它的对称轴是_______________.
2、菱形的一个内角是120°,一条较短的对角线的长为10,则菱形的周长是________
二、选择题
1.下列条件能判定四边形是菱形的是( )
A.对角线相等的四边形
B.对角线互相垂直的四边形
C.对角线互相垂直平分的四边形
D.对角线相等且互相垂直的四边形
2.菱形的两条对角线长分别为6 cm、8 cm,则它的面积为( )
A.6 cm2
B.12 cm2
C.24 cm2
D.48 cm2
4.顺次连结菱形各边中点所得的四边形是( )
A.梯形
B.矩形
C.菱形
D.正方形
三、解答题
1、如图,在菱形ABCD中,∠ABC=60°,AC=4,求BD的长
2、如图,已知平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于E、F.
求证:四边形AFCE是菱形.
3、已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一动点,则PM+PN的最小值是___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18.2.2菱形的性质与判定练习题一、选择题1、已知在菱形ABCD 中,下列说法错误的是( ).A. 两组对边分别平行B. 菱形对角线互相平分C. 菱形的对边相等D. 菱形的对角线相等 2、菱形具有而矩形不一定具有的性质是( ).A .对边相等B .对角相等C .对角线互相垂直D .对角线相等 3、能够找到一点使该点到各边距离相等的图形为( ). A .平行四边形 B .菱形 C .矩形 D .不存在 4、下列说法不正确的是( ).A .菱形的对角线互相垂直B .菱形的对角线平分各内角C .菱形的对角线相等D .菱形的对角线交点到各边等距离 5、菱形的两条对角线分别是12cm 、16cm ,则菱形的周长是( ). A .24cm B .32cm C .40 cm D .60cm 6、菱形ABCD 的周长是16,∠A=60°,则对角线BD 的长度为( ). A .2 B .32 C .4 D .347、菱形的周长为4,一个内角为60°,则较短的对角线长为( ). A .2 B .3 C .1 D .218、菱形ABCD 中,AB=15,∠ADC=120°,则B 、D 两点之间的距离为( ). A .15 B .3215C .7.5D .3159、已知菱形ABCD 中,对角线AC 与BD 交于点O ,∠BAD=120°,AC=4,则该菱形的面积是( ).A 、16错误!未找到引用源。

B 、16C 、8错误!未找到引用第14题 F A DE B C 源。

D 、810、菱形的两邻角之比为1:2,如果它的较短对角线为3cm ,则它的周长为( ). A .8cm B .9cm C .12cm D .15cm11、菱形的周长为8cm ,高为1cm ,则该菱形两邻角度数比为( ). A .3:1 B .4:1 C .5:1 D .6:112、如图,在菱形ABCD 中,E 、F 分别是AB 、AC 的中点,如果EF =2,那么菱形ABCD 的周长是( ).A .4B .8C .12D .16第12题 第13题13、如图,菱形ABCD 的对角线交于点O ,AO=1,且∠ABC ∶∠BAD=1∶2,则下列结论中:①∠ABC=60°;②AC=2;③ BD=4;④ S 四ABCD =23;⑤ 菱形ABCD 的周长是8,其中正确的有( ).A .①②③④⑤B .①②④⑤C .②③④⑤D .①②③⑤14、如图,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,则△AEF 的周长为( ). A .32B .33C .34D .315、从菱形的钝角的顶点向对边引垂线,并且这条垂线平分对边,•则该菱形的钝角为( ).A .110°B .120°C .135°D .150° 二、填空题1、已知在菱形ABCD 中,AB =5,它的周长= .A BD O2、已知菱形的两条对角线长分别为2cm,3cm,则它的面积是_______cm2.3、已知在菱形ABCD中,∠BAC=58°,∠ABC=.4、已知在菱形ABCD中,对角线AC、BD相交于点O,∠ABO=72°,∠BAO =.5、已知在菱形ABCD中,对角线AC、BD相交于点O,∠BAO与∠ABO的度数之比为2∶1,∠ABO=.6、在菱形ABCD中,对角线AC、BD相交于点O,AB=5cm, AO=4cm,则AC= ,BD= .7、已知菱形的两对角线的比为2:3,两对角线和为20,•则这对角线长分别为.8、菱形ABCD的对角线AC与BD交于点O,AB=13,BO=12,AO=5,求菱形的周长= ,面积= .9、菱形的邻角比为1:5,它的高为1.5cm,则它的周长为_______.10、菱形的面积为24cm2,一条对角线的长为6cm, 则另一条对角线长为,边长为.11、如图,菱形ABCD的对角线AC、BD交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AD的距离为_______.12、如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD 的面积为 cm2.13、如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为_________ .D11题图12题图13题图14、O为菱形ABCD的对角线交点,E、F、G、H分别是菱形各边的中点,若OE=3cm,•则OG =_______,OH=______.15、如图,已知:菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF 的周长为______ .15题图 16题图 17题图16、如图,已知菱形ABCD,∠BAD=80°,对角线AC、BD交于点O,点E在AB 上且BE=BO,则∠BEO=_____.17、如图,在菱形ABCD中,AE⊥BC,AF⊥CD,E、F分别为BC ,CD的中点,则∠EAF的度数.18、已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为_________ .19、已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为_________ cm2.20、已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是_________ cm2.21、如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是_________ .21题图22题图20题图22、如图,菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是_________ .23、如图,点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE=度.三、解答题1、如图,已知在菱形ABCD中,AE⊥CD于E,∠ABC=60°,求∠CAE的度数.2、如图,菱形的周长为20cm,两邻角的比为1:2.求:(1)较短对角线长是多少?(2)一组对边的距离是多少?3、如图,已知E为菱形ABCD的边AD的中点,EM⊥AC交CB的延长线于点F.(1)试说明M为AB的中点.(2)若FB=2,求菱形ABCD的周长.4、如图,菱形ABCD中,E是AB中点,DE⊥AB,AB=4.求(1)∠ABC的度数;(2)AC的长;(3)菱形ABCD的面积.5、如图,□ABCD的对角线AC的垂直平分线与两边AB、CD的延长线分别相交于E、F,求证:四边形AECF为菱形.6、如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连结AE、CD.求证:四边形ADCE是菱形7、如图,在□ABCD 中,EF ∥BD ,分别交BC 、CD 于点P 、Q ,分别交AB 、AD 的延长线于点E 、F ,且BE=BP . 求证:(1)∠E=∠F ; (2)□ABCD 是菱形.8、如图,在菱形ABCD 中,∠ABC=60°,DE∥AC 交BC 的延长线于点E . 求证:DE=21BE .9、如图,四边形ABCD 为菱形,已知A (0,4),B (﹣3,0).(1)求点D 的坐标; (2)求直线AC 的解析式.10、如图,在四边形ABCD 中,点E ,F 分别是AD ,BC 的中点,G ,H 分别是BD ,AC 的中点,AB ,CD 满足什么条件时,四边形EGFH 是菱形?请证明你的结论.11、如图,在四边形ABCD 中,E 为AB 上一点,△ADE 和△BCE 都是等边三角形,AB 、 BC 、 CD 、DA 的中点分别为P 、Q 、M 、N ,试判断四边形PQMN 为怎样的四边形,并证明你的结论.12、如图,△ABC 中,AB=AC ,AD 、CD 分别是△ABC 两个外角的平分线. (1)求证:AC=AD ;(2)若∠B=60°,求证:四边形ABCD 是菱形.13、如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.14、如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,(1)求DH的长;(2)连接OH,求证:∠OHB+∠DCO=90°.15、如图,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F,求证:四边形AEFG是菱形.16、如图,已知菱形ABCD中,E、F分别在BC和CD上,且∠B=∠EAF=60°,∠BAE=15°.求∠CEF的度数.17、如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别交于E、F.(1)求证:△BOE≌△DOF;(2)当EF与AC满足什么关系时,以A、E、C、F为顶点的四边形是菱形?证明你的结论.18、如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形.19、如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.求证:(1)求∠BGD的度数。

(2)求证:DG+BG=CG。

相关文档
最新文档