2020中考复习有理数的乘方

合集下载

2.3 有理数的乘方(第2课时)(课件)七年级数学上册(青岛版2024)

2.3 有理数的乘方(第2课时)(课件)七年级数学上册(青岛版2024)

归纳与总结
①因为一个整数的科学记数法中,10的指数比原数的整
数位数小1,所以原数的整数位比10的指数多1;
②要写出用科学记数法a×10n表示的数的原数时,一定
要记住去掉数a中的小数点。
思考与交流
日常生活中,我们经常接触各种数。
例如,小亮的身高是1.63m;截至2023年2月,中国湿地面积达到5635万
6
(4) -4.2×10 =-4 200 000。
6
(4)-4.2×10 。
课堂检测
能力提升
1.(2023·山东潍坊·一模)下列关于近似数的说法中正确的是( C )
A.近似数精确到百位
B.近似数. 万精确到百分位
C.近似数. × 精确到千位
D.近似数. 精确到千分位
课堂检测
能力提升
2.用四舍五入法对0.06045取近似值,错误的是( C )
A.0.1(精确到0.1)
B.0.06(精确到百分位)
C.0.061(精确到千分位)
D.0.0605(精确到0.0001)
课堂检测
能力提升
3.(2024·山东淄博·一模)“防控疫情,从水开始”,我国启动实施了农
村饮水安全巩固提升工程,据统计各地已累计完成投资. ×
(3)世界文化遗产长城总长约6.7×106 m。_____________
670000
新知巩固
下列用科学记数法表示的数,原来各是什么数?
(1) -6×103;(2) 8.5×106;(3) -3.96×104。
解:(1) -6×103=-6000;
(2) 8.5×106=8500000;
(3) -3.96×104=-39600。
20.1亿精确到千万位。

人教版七年级上册有理数 有理数的乘方

人教版七年级上册有理数 有理数的乘方
可以记为 (-3)5
例2: 1.在74中,底数是 7 ,指数是 4 ;
2.在(-5)3中,底数是 -5 ,指数是 3 .
3.在(-
1 3
)5中,底数是-
1 3
,指数是
5
.
2020/12/13
5
注意:(1)负数的乘方,在书写 时一定要把整个负数(连同 符号),用小括号括起来,这 也是辨认底数的方法.
负数的偶次幂和正数的偶次幂均 为正数
2. 一个数的平方为它本身,这
个数是什么?一个数的立方为它
本身,这个数是什么? 2020/12/13
15
小结:
(1)负数的乘方,在书写时一定要把整个 负数(连同符号),用小括号括起来.分数 的乘方,在书写的时一定要把整个分数
用小括号括起来.
(2)正数的任何次幂都是正数;负数的奇 次幂是负数,负数的偶次幂是正数.负数
有理数的乘方(一)
2020/12/13
1
某种细胞经过30分钟便由一个 分裂成2个,经过5个小时,这种细胞由 1个能分裂成多少个?
2020/12/13
2
2020/12/13
0.5小时后 分裂1次 1个小时后 分裂2次
1.5个小时 3次
2个 2×2个
2×2×2个
2个小时
4次 2×2×2×2个
5个小时
(3) (
1 2
)3=
(
1 2
)×(
1 )×(
2
1 2
)=
1 8
(4)(-1)11=-1
ห้องสมุดไป่ตู้
2020/12/13
8
例4:计算
(1)- 32 (2)3 23
(3)(3 2)3 (4)8 (2)3

初中七年级数学上册辅导资料:有理数的乘方

初中七年级数学上册辅导资料:有理数的乘方

初中七年级数学上册辅导资料:有理数的乘方大家一定要在平时的练习中注意积累,查字典数学网为大家推荐了七年级数学上册辅导资料,希望大家在学习中不断取得进步。

22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2与7叫做底数(base),2与3叫做指数(exponent)。

这种求n个相同因数a的积运算叫做乘方(power),乘方的结果叫做幂(power),a叫做底数(base number),n叫指数(exponent)。

任何数的0次方都是1,例:3o=1(注:0o无意义)同底数幂法则同底数幂相乘除,原来的底数作底数,指数的和或差作指数。

推导:设a^m*a^n中,m=2,n=4,那么a^2*a^4=(a*a)*(a*a*a*a)=a*a*a*a*a*a=a^6=a^(2+4)所以代入:a^m*a^n=a^(m+n)用字母表示为:a^m·a^n=a^(m+n) 或a^m÷a^n=a^(m-n) (m、n均为自然数) 1)15^2×15^3; 2)3^2×3^4×3^8; 3)5×5^2×5^3×5^4×…×5^901)15^2×15^3=15^(2+3)=15^52)3^2×3^4×3^8=3^(2+4+8)=3^143)5×5^2×5^3×5^4×…×5^90=5^(1+2+3+…+90)=5^4095[1] 正整数指数幂法则a^k=a*a*....*a(k个a),其中k∈N*(即k为正整数)指数为0幂法则a^0=1 ,其中a≠0 ,k∈N*推导:a^0=a^(1-1)=(a^1)/(a^1)=a/a=1负整数指数幂法则a^(-k)=1/(a^k) ,其中a≠0,k∈N*推导:a^(-k)=a^(0-k)=(a^0)/(a^k)=1/(a^k)[2]正分数指数幂法则a^(m/n)=,其中n≠0 ,m/n>0,m,n∈N*(即m,n为正整数)负分数指数幂法则a^[-(m/n)]=,其中,a^m≠0(≠0,a≠0),m/n>0,n≠0,m,n∈N*推导:a^[-(m/n)]=a^(0-m/n)=(a^0)/[a^(m/n)]=1/[a^(m/n)]与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。

2.3 有理数的乘方(第1课时)(课件)七年级数学上册(青岛版2024)

2.3 有理数的乘方(第1课时)(课件)七年级数学上册(青岛版2024)
(3)- =-1×1×1×1×1×1=-1。





(4)(− ) =(- )×(- )×(- )=- 。





新知巩固
4. 分别比较下列各组数的大小:
(1) - 与 (-) ;
(2) (-. ) 与(-. ) ;
解:(1)∵-32=-3×3=-9, (2)∵(-0.2)2=0.04,
(4)∵ - =27,(-3)3=-27,
9>-9,
27>-27,
∴(-3)2>-32。
∴ - >(-3)3。
1.有理数乘方的意义。
2.会求有理数的正整数指数幂。
3.幂的符号与底数、指数的关系。
课堂检测
基础过关
1.(2021·河北·二模)
A.



C.
− × − × −

×


D. 表示2个-3相乘
课堂检测
基础过关
6. (2024江苏南京期中)下列说法正确的是( D )
A. 倒数等于它本身的数只有1
B. 平方等于它本身的数只有1
C. 立方等于它本身的数只有1
D. 正数的绝对值是它本身
课堂检测
基础过关

3
(-11)
7. 底数是-11,指数是3时,要写成
;底数是 ,指数是2时,
要写成
2
( )



8.(2023泰州泰兴期末)一个数的平方等于81,则这个数是 ±9 。
9. (2024常州金坛三中期中)计算:(-1)100+(-1)101=_____。
0
课堂检测
基础过关
10.

专题04 有理数乘方(知识点串讲)(解析版)

专题04 有理数乘方(知识点串讲)(解析版)

此时 mห้องสมุดไป่ตู้=n2,|m|=|n|,
所以,m↯ ከ n↯ ከ ↯䁐m䁐 ከ ↯䁐n䁐=m↯ ከ n↯ ከ ↯ 䁐m䁐 ከ 䁐n䁐 =0.
故选:A.
知识点二 科学记数法
a 10 把一个大于 10 的数记成
a 1 n 的形式,其中 是整数数位只有一位的数(即
a
10 ),n 是
正整数,这样的记数方法叫科学记数法。(用科学记数法表示一个数时,10 的指数比原数的整数位数少 1.)
A. ჈ ↯⸴↯⸴
B. ჈ ↯⸴
C. ჈ ↯⸴
D.⸴჈ ↯⸴
【答案】A
【详解】解:将 450 亿用科学记数法表示为:4.5×1010.
故选:A
典例 3 (2018 春 福州市期末)宇宙船使用的陀螺仪直径要求误差不能超过 0.00000012 米.用科学记数法
表示为( )
A.1.2×10﹣7 米
B.1.2×107 米
专题 04 有理数乘方 知识网络
重难突破
知识点一 乘方(重点)
n a 乘方的概念:一般地, 个相同的因数 相乘,即

个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
,记作 an ,读作 a 的 n 次方。求 n
在 an 中, a 叫做底数, n 叫做指数。 an 读作 a 的 n 次方,也可以读作 a 的 n 次幂。
C.1.2×10﹣6 米
D.1.2×106 米
【答案】A
【详解】解:0.00000012 米=1.2×10﹣7 米,故答案为 A。
知识点三 近似数和有效数字 近似数概念:在实际问题中,由“四舍五入”得到的数或大约估计的数都是近似数。(近似数小数点后的末 位数是 0 的,不能去掉 0.) 【识别近似数与准确数的方法】 ①语句中带有“约”“左右”等词语,里面出现的数据是近似数。 ②描述“温度”“身高”“体重”的数据是近似数。 ③准确数字与实际相符 有效数字概念:一个近似数从左边第一位非 0 的数字起,到末位数字止,所有的数字都是这个数的有效数 字。一个近似数有几个有效数字,就称这个近似数保留几个有效数字。 精确度:表示一个近似数与准确数的接近程度。一个近似数,四舍五入到哪一位,就称这个数精确到哪一

初一数学有理数的乘方知识点总结

初一数学有理数的乘方知识点总结

初一数学有理数的乘方知识点总结
人教版初一数学有理数的乘方知识点总结
在平平淡淡的学习中,大家最熟悉的就是知识点吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。

为了帮助大家更高效的学习,以下是店铺为大家收集的人教版初一数学有理数的乘方知识点总结,欢迎阅读,希望大家能够喜欢。

1.5.1乘方
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

负数的`奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数,0的任何正整数次幂都是0。

有理数混合运算的运算顺序:
(1)先乘方,再乘除,最后加减;
(2)同级运算,从左到右进行;
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行
1.5.2科学记数法
把一个大于10的数表示成a10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。

用科学记数法表示一个n位整数,其中10的指数是n-1。

1.5.3近似数和有效数字
接近实际数目,但与实际数目还有差别的数叫做近似数。

精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。

从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。

对于用科学记数法表示的数a10n,规定它的有效数字就是a中的有效数字。

七年级数学上册《有理数的乘方》复习资料浙教版【DOC范文整理】

七年级数学上册《有理数的乘方》复习资料浙教版【DOC范文整理】

七年级数学上册《有理数的乘方》复习资料浙教版求相同因数的积的运算叫做乘方.乘方运算的结果叫幂.一般地,记作,读作:a的n次方,表示n个a相乘;其中,a是底数,n是指数,称为幂。

正数的任何次幂都是正数.负数的奇数次幂是负数,负数的偶数次幂是正数.一个数的平方为它本身,这个数是0和1;一个数的立方为它本身,这个数是0、1和-1。

课后练习下列语句中的各数不是近似数的是.A.印度洋海啸死亡和失踪总人数已超28万人B.生物圈中已知的绿色植物,大约有30万种c.光明学校有1148人D.我国人均森林面积不到世界的公顷分析:根据精确数和近似数对各选项中的数进行判断.解答:A、印度洋海啸死亡和失踪总人数已超28万,28为近似数,所以A选项错误;B、生物圈中已知的绿色植物,大约有30万种,30万为近似数,所以A选项错误;c、光明学校有1148人,1148为精确数,所以c选项正确;D、我国人均森林面积不到世界的0.25公顷,0.25为近似数,所以D选项错误.故选c.点评:本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.用四舍五入法按要求对0.05019取近似值,其中错误的是A.0.1B.0.05c.0.05D.0.0502【分析】根据近似数的精确度把0.05019精确到0.1得到0.1,精确度千分位得0.050,精确到百分位得0.05,精确到0.0001得0.0502,然后依次进行判断.【解答】A、0.05019≈0.1,所以A选项正确;B、0.05019≈0.050,所以B选项错误;c、0.05019≈0.05,所以c选项正确;D、0.05019≈0.0502,所以D选项正确.故选:B.。

有理数的乘方(4种题型)-2023年新七年级数学(浙教版)(解析版)

有理数的乘方(4种题型)-2023年新七年级数学(浙教版)(解析版)

有理数的乘方(4种题型)【知识梳理】一、有理数的乘方1、求n 个相同因数a 的积的运算叫乘方,乘方的结果叫幂。

a 叫底数,n 叫指数,na 读作:a 的n 次幂(a 的n 次方)。

2、乘方的意义:n a 表示n 个a 相乘。

n a n a a a a a =⨯⨯⨯⨯ 个 3、写法的注意:当底数是负数或分数时,底数一定要打括号,不然意义就全变了.4、n a 与-na 的区别.(1)n a 表示n 个a 相乘,底数是a ,指数是n ,读作:a 的n 次方.如:3)2(−底数是2−,指数是3,读作(-2)的3次方,表示3个(-2)相乘. 3)2(−=(-2)×(-2)×(-2)=-8.32−底数是2,指数是3,读作2的3次方的相反数.32−=-(2×2×2)=-8. 注:3)2(−与32−的结果虽然都是-8,但表示的含义并不同。

5、乘方运算的符号规律. (1)正数的任何次幂都是正数.(2)负数的奇次幂是负数.(3)负数的偶次幂是正数.(4)0的奇数次幂,偶次幂都是0.所以,任何数的偶次幂都是正数或0。

二、有理数的混合运算1、有理数的混合运算顺序:先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的,再算括号外面的。

2、括号前带负号,去掉括号后括号内各项要变号,即a+−b−)(a−=+bab(,ba−−)=−三.科学记数法—表示较大的数(1)科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【科学记数法形式:a×10n,其中1≤a<10,n为正整数.】(2)规律方法总结:①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n.②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.【考点剖析】一.有理数的乘方(共11小题)1.(2022秋•南浔区期末)下列各组数中,运算结果相等的是()A.(﹣5)3与﹣53B.23与32C.﹣22与(﹣2)2D.与【分析】利用乘方运算法则计算后判断即可.【解答】解:A、(﹣5)3=﹣125,﹣53=﹣125,故相等,符合题意;B、23=8,32=9,故不相等,不符合题意;C、﹣22=﹣4,(﹣2)2=4,故不相等,不符合题意;D、,,故不相等,不符合题意;故选:A.【点评】本题考查了有理数的乘方,关键是掌握有理数的乘方的意义.2.(2022秋•苍南县期中)把写成幂的形式是.【分析】根据有理数的乘方得出结论即可.【解答】解:=()5,故答案为:()5.【点评】本题主要考查有理数的乘方,熟练掌握有理数的乘方计算是解题的关键.3.(2022秋•柯桥区月考)如果a,b,c是整数,且a c=b,那么我们规定一种记号(a,b)=c,例如32=9,那么记作(3,9)=2,根据以上规定,求(﹣3,﹣27)=.【分析】利用规定记号的意义将式子表示出乘方的形式,利用有理数乘方的意义解答即可.【解答】解:设(﹣3,﹣27)=x,∵ac=b,那么我们规定一种记号(a,b)=c,∴(﹣3)x=﹣27.∵(﹣3)3=﹣27,∴x=3.故答案为:3.【点评】本题主要考查了有理数的乘方,本题是新定义型题目,理解题干中的新规定并列出算式是解题的关键.4.(2023•西湖区校级二模)﹣33=()A.﹣9B.9C.﹣27D.27【分析】运用乘方知识进行计算、求解.【解答】解:﹣33=﹣27,故选:C.【点评】此题考查了实数的立方运算能力,关键是能准确理解并运用该知识进行计算.5.(2022秋•青田县期末)一张纸的厚度为0.09mm,假设连续对折始终都是可能的,那么至少对折n次后,所得的厚度可以超过厚度为0.9cm的数学课本.则n的值为()A.5B.6C.7D.8【分析】一张纸的厚度为0.09mm,对折1次后纸的厚度为0.09×2mm;对折2次后纸的厚度为0.09×2×2=0.09×22mm;对折3次后纸的厚度为0.09×23mm;对折n次后纸的厚度为0.09×2nmm,据此列出不等式,求出n的取值范围即可.【解答】解:∵折一次厚度变成这张纸的2倍,折两次厚度变成这张纸的22倍,折三次厚度变成这张纸的23倍,折n次厚度变成这张纸的2n倍,设对折n次后纸的厚度超过9mm,则0.09×2n>9,解得2n>100.而26<100<27.∴n为7.故选:C.【点评】本题考查从实际中寻找规律的能力,乘方是乘法的特征,乘方的运算可以利用乘法的运算来进行,乘方的意义就是多少个某个数字的乘积.6.(2022秋•文成县期中)下面的计算错在哪里?指出错误步骤的序号,并给出正确的解答过程.﹣3=……①=9÷1……②=9……③错误步骤的序号:;正确解答:;【分析】根据有理的乘除法则及运算顺序进行判断,并计算便可.【解答】解:∵﹣32=﹣9,∴步骤①错误;正确的解答如下:﹣3=﹣9÷(﹣8)×=﹣9×=﹣.故答案为:①;﹣.【点评】本题考查了有理数的乘除法,关键是熟记运算法则与运算顺序.7.(2019秋•萧山区期中)计算:23=.【分析】根据有理数的乘方计算即可【解答】解:23=8.故答案为:8.【点评】本题主要考查有理数的乘方,解题的关键是掌握有理数的乘方的定义.8.(2020秋•义乌市校级月考)定义:如果10b=n,那么称b为n的劳格数,记为b=d(n).(1)根据劳格数的定义,可知:d(10)=1,d(102)=2,那么:d(103)=.(2)劳格数有如下运算性质:若m,n为正数,则d(mn)=d(m)+d(n);d()=d(m)﹣d(n).若d(3)=0.48,d(4)=0.6,根据运算性质,填空:d(12)=,d()=,d()=.【分析】(1)根据劳格数的定义,可知:d(103)求得是10b=103中的b值;(2)由劳格数的运算性质可知,两数积的劳格数等于这两个数的劳格数的和;两数商的劳格数等于这两个数的劳格数的差,据此可解.【解答】解:(1)根据劳格数的定义,可知:d(103)=3;故答案为:3.(2)由劳格数的运算性质:若d(3)=0.48,d(4)=0.6,则d(12)=d(3)+d(4)=0.48+0.6=1.08,则d()=d(3)﹣d(4)=0.48﹣0.6=﹣0.12,∵d(4)=d(2×2)=d(2)+d(2)=0.6,∴d(2)=0.3,d()=d(9)﹣d(2)=d(3×3)﹣d(2)=d(3)+d(3)﹣d(2)=0.48+0.48−0.3=0.66,故答案为:1.08,﹣0.12,0.66.【点评】本题考查了有理数的乘方,定义新运算,读懂题中的定义及运算法则是解题的关键.9.(2021秋•吴兴区期中)已知三个互不相等有理数a,b,c,既可以表示为1,a,a+b的形式,又可以表示为0,,b的形式,则a2020b2021值是.【分析】由有意义,则a≠0,则应有a+b=0,=﹣1,故只能b=1,a=﹣1了,再代入代数式求解.【解答】解:因为三个互不相等的有理数1,a,a+b分别与0,,b对应相等,为有理数,∴a≠0,a+b=0,∴=﹣1,b=1,∴a=﹣1,∴a2020b2021=(﹣1)2020×12021=1,故答案为:1.【点评】本题主要考查了实数的运算,属于探索性题目,关键是根据已知条件求出未知数的值再计算.10.(2020秋•吴兴区校级期中)请你研究以下分析过程,并尝试完成下列问题.13=1213+23=9=32=(1+2)213+23+33=36=62=(1+2+3)213+23+33+43=100=102=(1+2+3+4)2(1)13+23+33+ (103)(2)13+23+33+ (203)(3)13+23+33+…+n3=(4)计算:113+123+133+…3的值.【分析】根据已知一系列等式,得出一般性规律,计算即可得到结果.【解答】解:(1)13+23+33+…+103=3025;(2)13+23+33+…+203=44100;(3)13+23+33+…+n3=;(4)113+123+133+…+203=44100﹣3025=41075.故答案为:(1)3025;(2)44100;(3);(4)41075.【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.11.(2020秋•萧山区期中)阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4….回答下列三个问题:①验证:(2×)100=,2100×()100=;②通过上述验证,归纳得出:(a•b)n=;(a•b•c)n=;③请应用上述性质计算:(﹣0.125)2019×22018×42017.【分析】①根据有理数的乘法法则、有理数的乘方解决此题.②通过猜想归纳解决此题.③根据积的乘方、有理数的乘法法则、有理数的乘方解决此题.【解答】解:①=1100=1,==1.故答案为:1,1.②(a•b)n=anbn,(a•b•c)n=anbncn.故答案为:anbn,anbncn.③(﹣0.125)2019×22018×42017=×22018×42017====.【点评】本题主要考查有理数的乘法、积的乘方,熟练掌握有理数的乘法法则、积的乘方是解决本题的关键.二.非负数的性质:偶次方(共5小题)12.(2022秋•丽水期中)已知a,b满足|a+3|+(b﹣2)2=0,则a+b的值为()A.1B.5C.﹣1D.﹣5【分析】直接利用偶次方的性质以及绝对值的性质得出a,b的值,进而得出答案.【解答】解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得:a=﹣3,b=2,故a+b=﹣3+2=﹣1.故选:C.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.13.(2022秋•青田县期中)若|m+1|+(n﹣3)2=0,则m n的值为()A.1B.﹣1C.3D.﹣3【分析】利用非负数的性质求出m与n的值,代入所求式子计算即可得到结果.【解答】解:∵|m+1|+(n﹣3)2=0,|m+1|≥0,(n﹣3)2≥0,∴m+1=0,n﹣3=0,即m=﹣1,n=3,则mn=(﹣1)3=﹣1.故选:B.【点评】此题主要考查了非负数的性质,正确得出m,n的值是解题关键.14.(2021秋•兰山区校级月考)若|x﹣2|+(y+3)2=0,则y x=.【分析】根据非负数的性质可求出x、y的值,再将它们代入yx中求解即可.【解答】解:∵x、y满足|x﹣2|+(y+3)2=0,∴x﹣2=0,x=2;y+3=0,y=﹣3;则yx=(﹣3)2=9.故答案为:9.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.15.(2022秋•兰溪市期中)已知(a﹣2)2与|b+1|互为相反数,求(a﹣b)a+b的值.【分析】根据偶次方的非负性、绝对值的非负性、有理数的乘方解决此题.【解答】解:由题意得:(a﹣2)2+|b+1|=0.∵(a﹣2)2≥0,|b+1|≥0,∴a﹣2=0,b+1=0.∴a=2,b=﹣1.∴(a﹣b)a+b=[2﹣(﹣1)]2+(﹣1)=31=3.【点评】本题主要考查偶次方的非负性、绝对值的非负性、有理数的乘方,熟练掌握偶次方的非负性、绝对值的非负性、有理数的乘方是解决本题的关键.16.(2022秋•衢州期中)已知,则(ab)2022=.【分析】根据绝对值和偶次方是非负数的性质列式求出a、b的值然后代入代数式计算即可.【解答】解:∵,∴,b+2=0,∴,b=﹣2,∴,故答案为:1.【点评】本题考查了非负数的性质:根据几个非负数的和等于零,则每一个算式都等于零求出a、b的值是解此类题的关键.三.科学记数法—表示较大的数(共9小题)17.(2022秋•临海市期末)我国倡议的“一带一路”惠及约为4400000000人,用科学记数法表示该数为.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:4400000000=4.4×109,故答案为:4.4×109.【点评】本题考查了科学记数法的表示方法,用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,解题的关键是要正确确定a和n的值.18.(2023•杭州)杭州奥体中心体育场又称“大莲花”,里面有80800个座位.数据80800用科学记数法表示为()A.8.8×104B.8.08×104C.8.8×105D.8.08×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:80800=8.08×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.19.(2023•路桥区校级二模)2022年12月28日,台州市域铁路S1线开通运营,标志着台州城市发展迈入轨道时代台州市域铁路S1线全长约52.4公里,总投资约228.19亿元,是连接椒江区、路桥区及温岭市之间重要的城市快速通道.其中数据228.19亿用科学记数法表示为()A.0.22819×1010B.0.22819×1011C.2.2819×1010D.2.2819×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:228.19亿=22819000000=2.2819×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.20.(2023•郧阳区模拟)2022年5月10日凌晨,长征7号火箭托举着天舟四号货运飞船发射升空,在距地面390000米的高度,与空间站完成自主交会对接任务.390000用科学记数法表示为.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:390000=3.9×105.故答案为:3.9×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a n的值.21.(2022秋•拱墅区月考)北京冬奥会标志性场馆国家速滑馆“冰丝带”近12000平方米的冰面采用分模块控制技术.可根据不同项目分区域、分标准制冰.将数据12000用科学记数法表示为.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:12000=1.2×104.故答案为:1.2×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,正确确定a的值以及n的值是解决问题的关键.22.(2023•余姚市二模)中国空间站2022年建成,轨道高度为400~450千米.“450千米”用科学记数法表示是()A.4.5×105米B.0.45×107米C.45×105米D.4.5×107米【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数,当原数绝对值<1时,n是负整数.【解答】解:“450千米”等于“450000米”,用科学记数法表示是4.5×105米.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.23.(2021秋•越城区校级月考)一次自然灾害导致大约20万人受困,急需准备一批帐篷和粮食进行援助.估计每顶帐篷可以住10人,平均每人每天需要粮食0.4千克,共维持15天,那么有关部门需要筹集多少顶帐篷?多少吨粮食?(结果用科学记数法表示)【分析】根据题意列式计算,并用科学记数法表示结果即可.【解答】解:根据题意得:20万=200000,所以有关部门需要筹集200000÷10=20000(顶)帐篷,即2×104顶帐篷;需要筹集200000×0.4×15=1200000(千克)粮食,1200000千克=1200吨即1200=1.2×103吨粮食.a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.24.(2022秋•慈溪市期中)在宇宙之中,光速是目前知道的最快的速度,可以达到3×108m/s,如果我们用光速行驶3.6×103s,请问我们行驶的路程为多少m?【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3×108×3.6×103=3×3.6×108×103=10.8×1011=1.08×1012(m).答:行驶的路程为1.08×1012m.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.25.(2022秋•永嘉县校级月考)已知一个U盘的名义内存为10GB,平均每个视频的内存为512MB,平均每首音乐的内存为10.24MB,平均每篇文章的内存为10.24KB.现该U盘已存16个视频,50首音乐.若该U盘的内存的实际利用率为90%,求还可以存文章的最多篇数(用科学记数法表示).(注:已知1GB =1024MB,1MB=1024KB)【分析】根据题意列式求解,最后化成科学记数法.【解答】解:(10×1024×1024×0.9﹣512×1024×16﹣10.24×50×1024)÷10.24=5.12×104,答:还可以存文章的最多篇数是5.12×104.【点评】本题考查了科学记数法,掌握科学记数法的形式是解题的关键.四.科学记数法—原数(共1小题)26.(2021秋•平阳县期中)用科学记数法表示的数为4.315×103,这个数原来是()A.4315B.431.5C.43.15D.4.315【分析】将小数点向右移动3位即可得出原数.【解答】解:用科学记数法表示的数为4.315×103,这个数原来是4315,故选:A.【点评】本题主要考查科学记数法—原数,科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.若科学记数法表示较小的数a×10﹣n,还原为原来的数,需要把a的小数点向左移动n位得到原数.【过关检测】一、单选题1.(2023·浙江·七年级假期作业)()23−的相反数为()A.3−B.3C.9−D.9【答案】C【分析】根据乘方运算以及相反数的定义进行计算即可得到答案.【详解】解:()239−=,根据相反数的定义可知:9的相反数是9−.故选:C.【点睛】本题考查了乘方运算以及相反数的定义,一个数的相反数就是在这个数前面添上“-”号;正数的相反数是负数,负数的相反数是正数,0的相反数是0.2.(2022秋·浙江·七年级期末)32的意义是( ) A .2×3 B .2+3 C .2+2+2 D .2×2×2【答案】D【分析】根据幂的意义即可得出答案.【详解】解:,32222=⨯⨯故选:D .【点睛】本题考查了有理数的乘方,掌握na 表示n 个a 相乘是解题的关键. 3.(2023·浙江·七年级假期作业)代数式22222n ⨯⨯⨯⋅⋅⋅⨯个可以表示为( )A .2n +B .2nC .2nD .n2【答案】C【分析】根据有理数乘方的意义解答即可得.【详解】解:代数式22222n ⨯⨯⨯⋅⋅⋅⨯个可以表示为2n; 故选:C.【点睛】本题考查了有理数的乘方,理解乘方的意义是关键.【答案】C【分析】由相反数的定义和非负数的性质求出a 、b 的值,代入计算即可. 【详解】解:∵5a +与6b −互为相反数,560a b ∴++−=,50a ∴+=,60b −=,解得5a =−,6b =,202120212021()(56)11a b ∴+=−+==.故选C .【点睛】本题考查了相反数的定义和非负数的性质,解题的关键是求出a 、b 的值.5.(2022春·浙江金华·七年级统考期末)下列对于式子()23−的说法,错误的是( ) A .指数是2 B .底数是3− C .幂为3− D .表示2个3−相乘【答案】C【分析】根据乘方的定义解答即可. 【详解】A .指数是2,正确; B .底数是3−,正确; C .幂为9,故错误;D .表示2个3−相乘,正确;. 故选C .【点睛】此题考查了乘方的意义,熟练掌握乘方的意义是解本题的关键.乘方的定义为:求n 个相同因数a 的积的运算叫做乘方,乘方运算的结果叫做幂.在na 中,它表示n 个a 相乘,其中a 叫做底数,n 叫做指数.6.(2023·浙江·七年级假期作业)观察下列等式:071=,177=,2749=,37343=,472401=,5716807=,…,根据其中的规律可得30122027777++++的结果的个位数字是( )A .0B .1C .7D .8【答案】A【分析】由已知可得尾数1,7,9,3的规律是4个数一循环,则30122027777++++的结果的个位数字与01237777+++的个位数字相同,即可求解.【详解】解:∵071=,177=,2749=,37343=,472401=,5716807=,…,∴尾数1,7,9,3的规律是4个数一循环, ∵179320+++=,∴01237777+++的个位数字是0,又∵20244506÷=,∴30122027777++++的结果的个位数字与01237777+++的个位数字相同, ∴30122027777++++的结果的个位数字是0.故选:A .【点睛】本题考查数的尾数特征,能够通过所给数的特点,确定尾数的循环规律是解题的关键. 7.(2022秋·浙江绍兴·七年级校联考期中)某种细胞每过15秒便由1个分裂成2个.经过3分钟,这种细胞由2个分裂成( )个. A .102 B .112 C .122 D .132【答案】C【分析】根据题意可得3分钟有12个15秒,进而根据有理数乘方的意义即可求解. 【详解】解:∵3分钟3601215=⨯=⨯秒, ∴经过3分钟,这种细胞由2个分裂成122个, 故选:C .【点睛】本题考查了有理数乘方的应用,理解题意是解题的关键. 8.(2023·浙江·七年级假期作业)已知n 为正整数,计算()()22111nn +−−−的结果是( )A .1B .-1C .0D .2【答案】D【分析】根据有理数乘方运算法则进行计算即可.【详解】解:()()22111112nn +−−−=+=,故选:D .【点睛】本题考查了有理数的乘方,熟练掌握有理数的乘方运算法则以及乘方的符号规律是解本题的关键. 9.(2023·浙江·七年级假期作业)已知28.6274.3044=,若20.743044x =,则x 的值( ) A .86.2 B .0.862 C .0.862± D .86.2±【答案】C【分析】根据两式结果相差2位小数点,利用乘方的意义即可求出x 的值.【详解】解:∵28.6273.96=,20.7396x =,∴220.862x =,则0.862x =±. 故选C .【点睛】本题考查了有理数的乘方,熟练掌握乘方的意义是解题的关键.二、填空题10.(2022秋·浙江·七年级专题练习)计算:()3232−⨯−=_____. 【答案】72【分析】直接利用有理数的乘方运算法则计算得出答案. 【详解】解:()()32329872−⨯−=−⨯−=.故答案为:72.【点睛】此题主要考查了有理数的乘方运算,正确化简各数是解题关键.11.(2022秋·浙江绍兴·七年级校考期中)把22222⨯⨯⨯⨯写成幂的形式是____________. 【答案】52【分析】根据有理数的乘方的定义及幂的定义解答即可. 【详解】解:22222⨯⨯⨯⨯写成幂的形式为:52. 故答案为:52.【点睛】本题考查了有理数的乘方及幂的定义,是基础题,熟记概念是解题的关键.【分析】先根据()2320a b −++=求出a 和b 的值,再把a 和b 的值代入()2022a b +即可求解.【详解】解:∵()2320a b −++=,∴,a b −=+=3020,解得:3,2a b ==−,∴()()a b =−=+20222022132,故答案为:1.【点睛】本题主要考查了绝对值与偶次幂的非负性,幂的运算,熟练掌握绝对值与偶次幂的非负性是解题的关键.【答案】 34 3 ﹣2764【分析】根据有理数的乘方的定义和意义,在na 中,a 叫做底数,n 叫做指数;na 表示n 个a 相乘,即可.【详解】∵在na 中,a 叫做底数,n 叫做指数∴334⎛⎫− ⎪⎝⎭的底数是34,指数是3∵na 表示n 个a 相乘∴3332744464⎛⎫−⨯⨯=−⎪⎝⎭故答案为:34;3;﹣2764.【点睛】本题考查了有理数的乘方,解题的关键是掌握有理数的乘方的定义和意义. 14.(2023·浙江·七年级假期作业)已知24m =,则m =______________. 【答案】2【分析】把4写成22即可求出m 的值.【详解】解:∵24m =且24=2,∴222m =,∴2m =, 故答案为:2.【点睛】本题主要考查了乘方的意义,正确把4写成22是解答本题的关键.【答案】243【分析】根据题意可求出第一次截去全长的13,剩下213⨯米,第二次截去余下的13,剩下2123⨯,从而即可得出第五次截去余下的13,剩下532133224⨯=米.【详解】解:第一次截去全长的13,剩下1111332⎛⎫⨯−=⨯⎪⎝⎭米,第二次截去余下的13,剩下2911111133432⎛⎫⎛⎫⨯−⨯−=⨯=⎪ ⎪⎝⎭⎝⎭米,…第五次截去余下的13,剩下532133224⨯=米.故答案为:32 243.【点睛】本题考查有理数乘方的应用,数字类规律探索.理解乘方的定义是解题关键.三、解答题【答案】(1)正(2)负(3)负(4)负【分析】根据有理数乘方的符号规律解答即可.【详解】(1)解:∵12(6)−的指数是12,为偶数,负数的偶次幂是正数,∴12(6)−的结果为正;(2)解:∵9(0.0033)−的指数是9,为奇数,负数的奇次幂是负数,∴9(0.0033)−的结果为负;(3)解:∵85−表示的是85的相反数,正数的任何次幂都是正数, 85的结果为正,所以85−的结果为负;(4)解:∵1125⎛⎫− ⎪⎝⎭的指数是11,为奇数,负数的奇次幂是负数, ∴1125⎛⎫− ⎪⎝⎭的结果为负.【点睛】本题主要考查了有理数乘方的符号规律,掌握负数的偶次幂为正、奇次幂为负成为解答本题的关键.【答案】(1)625(2)85−(3)0.027【分析】(1)4(5)−表示4个5−相乘,即可得出答案;(2)先计算2的立方,即可得出答案;(3)根据在一个数的前面加上负号就是这个数的相反数,乘方是几个相同因数的简便运算,可得答案.【详解】(1)4(5)(5)(5)(5)(5)625−=−⨯−⨯−⨯−=;(2)322228555⨯⨯−=−=−; (3)[]3(0.3)(0.3)(0.3)(0.3)(0.027)0.027−−=−−⨯−⨯−=−−=.【点睛】本题考查了乘方的定义,理解乘方的意义是解题的关键. 18.(2023·浙江·七年级假期作业)(1)计算下面两组算式: ①2(35)⨯与2235⨯;②2[(2)3]−⨯与222)3⨯(-;(2)根据以上计算结果想开去:3()ab 等于什么?(直接写出结果)(3)猜想与验证:当n 为正整数时, ()n ab 等于什么? 请你利用乘方的意义说明理由. (4)利用上述结论,求20202021(4)0.25−⨯的值. 【答案】(1)①225,225,2(35)⨯=2235⨯;②36,36,2[(2)3]−⨯=222)3⨯(-,(2)33a b(3)见详解 (4)0.25.【分析】(1)①先算括号内的数,再算平方;先算平方,再计算乘法即可,比较计算结果, ②先算括号内的数,再算平方;先算平方,再计算乘法即可,比较计算结果, (2)直接按(1)写结果即可,(3)利用乘方()nab 的意义写成n 个数相乘,利用交换律转化为n a aa 个与n b bb个乘积即可.(4)利用积的乘方的逆运算把202120200.250.250.25=⨯,然后20202021(4)0.25−⨯=()202040.250.25−⨯⨯,再简便运算即可.【详解】(1)①2(35)⨯=152=225,2235⨯=9×25=225,2(35)⨯=2235⨯,②2[(2)3]−⨯=(-6)2=36,222)3⨯(-=4×9=36, 2[(2)3]−⨯=222)3⨯(-,(2)333()ab a b =(3)()()()()=n n n n n n ab ab ab ab a a a b b b a b ⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭个个个.(4)20202021(4)0.25−⨯=()202040.250.2510.250.25−⨯⨯=⨯=.【点睛】本题考查有理数乘法法则问题,先通过不同形式的计算,验证结果相同,达到初步认证,再次认证结果,通过证明先算计积再算乘法,与先算每个数的乘方再算积,验证结论成立,会逆用积的乘方运算来简便运算是解题关键.【答案】(1)1,1;(2)ab ,anbn ,abc ,anbncn ;(3)﹣0.125【分析】(1)先算括号内的,再算乘方;先乘方,再算乘法.(2)根据有理数乘方的定义求出即可;(3)根据根据阅读材料可得(﹣0.125×2×4)2014×(﹣0.125),再计算,即可得出答案.【详解】(1)解:(4×0.25)100=1100=1;4100×0.25100=1,故答案为:1,1. (2)解:(ab )n =anbn ,(abc )n =anbncn ,故答案为:ab ,anbn ,abc ,(3)解:原式=(﹣0.125)2014×22014×42014×(﹣0.125)=(﹣0.125×2×4)2014×(﹣0.125)=(﹣1)2014×(﹣0.125)=1×(﹣0.125)=﹣0.125【点睛】本题考查了有理数乘方的应用,主要考查学生的计算能力,理解阅读材料是解题的关键. 20.(2022秋·浙江·七年级专题练习)先阅读下列材料,再解答后面的问题材料:一般地,n 个相同的因数a 相乘n a a a ⋅个,记为an . 如322228⨯⨯==,此时,3叫做以2为底8的对数,记为2log 8(即2log 83=).一般地,若n a b =(0a >且10a b ≠>,),则n 叫做以a 为底b 的对数,记为log a b (即log a b n =). 如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814=).问题:(1)计算以下各对数的值:2log 4=_________,2log 16=_________,2log 64=_________.(2)通过观察(1),思考:2log 4、2log 16、2log 64之间满足怎样的关系式?(3)由(2)的结果,你能归纳出一个一般性的结论吗?log log a a M N +=______(0a >且100a M N ≠>>,,).(4)利用(3)的结论计算44log 2log 32+=______.【答案】(1)2,4,6(2)222log 4log 16log 64+=(3)()log a MN(4)3【分析】(1)根据对数的定义求解;(2)认真观察,即可找到规律:41664⨯=,222log 4log 16log 64+=; (3)由特殊到一般,得出结论:()log log log a a a M N MN +=(4)根据(3【详解】(1)解:(1)∵24624216264===,, ∴222log 42log 164log 646===,,,故答案为:2,4,6;(2)∵41664⨯=,2log 42=,2log 164=,2log 646=, ∴222log 4log 16log 64+=, 故答案为:222log 4log 16log 64+=;(3)观察(2)的结果,我们发现,底数不变,后面两个数相乘.则()log log log a a a M N MN +=, 故答案为:()log a MN .(4)44log 2log 32+()4log 232=⨯4log 64=3=. 故答案为:3.【点睛】本题考查了有理数的乘方运算,对数,类比、归纳,推测出对数应有的性质是解题的关键.【答案】(1)710,8a(2)m n a +(3)2023x ,31n y +(4)18【分析】(1)根据题目中给出的信息进行运算即可;(2)总结题目信息得出同底数幂的运算法则;(3)根据同底数幂的运算法则进行运算即可;(4)逆用同底数的乘法公式进行运算即可.【详解】(1)257101010⨯=,358a a a ⨯=,故答案为710,8a ;(2)m n mn a a a ⨯=(m 、n 都是正整数),故答案为m n a +;(3)220201*********x x x x x ++=⋅=⋅,212131n n n n n y y y y ++++⋅==,故答案为2023x ,31n y +;(4)∵3,6a b x x ==,∴3618a b a b x x x +=⋅=⨯=,故答案为18.【点睛】本题主要考查了乘方的定义和意义,得到同底数幂的运算法则:同底数幂相乘,底数不变,指数相加,是解题的关键. ,一般地,把n a a a aa a ÷÷÷个(a ≠02⎝⎭深入思考【答案】(1)12,8− (2)213,415,82 (3)21n a −(4)1−【分析】(1)(2)根据新定义内容列出算式,然后将除法转化为乘法,再根据乘法和乘方的运算法则进行化简计算;(3)根据(1)(2)得出规律21n a a −=ⓝ;(4)根据(3)的规律求解即可.【详解】(1)解:122222=÷÷=③, 1111118222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫−=−÷−÷−÷−÷−=− ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⑤, 故答案为:12,8−;(2)解:(3)−=④21(3)(3)(3)(3)3−÷−÷−÷−=, 4155555555÷÷÷=÷÷=⑥, 1111111111122222222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫−−−−−−−−−−− ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎝=÷⎭÷÷÷÷÷÷÷÷⎭⎝⎭⎭⎝⎝⎭⎝⎭⑩82=; 故答案为:213,415,82;(3)解:21n a a a a a a −=÷÷⋯⋯÷=ⓝ, 故答案为:21n a −;(4)解:3242(16)2÷+−⨯④21248(16)2=÷+−⨯ 13(16)4=+−⨯34=−1=−.【点睛】本题属于新定义题型,考查有理数乘除运算法则及对有理数乘方运算的理解,理解新定义内容,掌握有理数乘除法和有理数乘方的运算法则是解题关键.。

有理数的乘方年末复习知识点:苏版初一上册数学

有理数的乘方年末复习知识点:苏版初一上册数学

有理数的乘方年末复习知识点:苏版初一上册数学查字典数学网初中频道为您整理了有理数的乘方期末复习知识点:人教版初一上册数学,期望关心您提供多方法。

和小编一起期待学期的学习吧,加油哦!①求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。

在a的n 次方中,a叫做底数,n叫做指数。

负数的奇次幂是负数,负数的偶次幂是正数(负奇负,负偶正)。

正数的任何次幂差不多上正数,0的任何次幂差不多上0。

新- 课- 标-第-一- 网②偶次方等于一个正数的值有两个(两个互为相反数)如:a2=4,a=2或a=-2注意:|a|+b2=0 得:a=0 且b=0强记:a0=1(a≠0);(-1)2=1 ;-12=-1;(-1)3=-1;-13=-1; (-2)2 =4;-22=-4;(-2)3 =-8;-23=-8③有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

注意:12-4×5=12-20(不能把-变+)④把一个大于10的数表示成a×10的n次方的形式,使用的确实是科学计数法,注意a的范畴为1≤a n比原整数位减1。

(注意科学计数法与原数的互划。

⑤四舍五入到哪一位确实是精确到哪一位,四舍五入时望后多看一位采纳四舍五入。

比如:3.5449精确到0.01确实是3.54而不是3.55. (再如:2.40万:精确到百位;6.5×104精确到千位,有数量级和科学计数法的要还原成原数,看数量级和科学计数法的最后一个数)。

要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,确实是训练幼儿的观看能力,扩大幼儿的认知范畴,让幼儿在观看事物、观看生活、观看自然的活动中,积存词汇、明白得词义、进展语言。

在运用观看法组织活动时,我着眼观看于观看对象的选择,着力于观看过程的指导,着重于幼儿观看能力和语言表达能力的提高。

事实上,任何一门学科都离不开死记硬背,关键是经历有技巧,“死记”之后会“活用”。

精选-浙教版七年级数学上册有理数的乘方知识点

精选-浙教版七年级数学上册有理数的乘方知识点

浙教版七年级数学上册有理数的乘方知识点正数的任何次幂都是正数,负数的奇数次幂是负数,负数的偶数次幂是正数。

查字典数学网为大家整理了有理数的乘方知识点,让我们一起学习,一起进步吧!知识点(1)求相同因数的积的运算叫做乘方.乘方运算的结果叫幂. 一般地,记作,读作:a的n次方,表示n个a相乘;其中,a是底数,n是指数,称为幂。

(2)正数的任何次幂都是正数.负数的奇数次幂是负数,负数的偶数次幂是正数.(3)一个数的平方为它本身,这个数是0和1;一个数的立方为它本身,这个数是0、1和-1。

课后练习1.下列语句中的各数不是近似数的是( ).A.印度洋海啸死亡和失踪总人数已超28万人B.生物圈中已知的绿色植物,大约有30万种C.光明学校有1148人D.我国人均森林面积不到世界的公顷分析:根据精确数和近似数对各选项中的数进行判断.解答:A、印度洋海啸死亡和失踪总人数已超28万,28为近似数,所以A选项错误;B、生物圈中已知的绿色植物,大约有30万种,30万为近似数,所以A选项错误;C、光明学校有1148人,1148为精确数,所以C选项正确;D、我国人均森林面积不到世界的0.25公顷,0.25为近似数,所以D选项错误.故选C.2.用四舍五入法按要求对0.05019取近似值,其中错误的是( )A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(保留两个有效数字)D.0.0502(精确到0.0001) 【分析】根据近似数的精确度把0.05019精确到0.1得到0.1,精确度千分位得0.050,精确到百分位得0.05,精确到0.0001得0.0502,然后依次进行判断.【解答】A、0.05019≈0.1(精确到0.1),所以A选项正确;B、0.05019≈0.050(精确到千分位),所以B选项错误;C、0.05019≈0.05(精确到百分位),所以C选项正确;D、0.05019≈0.0502(精确到0.0001),所以D选项正确.故选:B.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.有理数的乘方知识点的全部内容就是这些,预祝大家在新学期可以更好的学习。

七年级数学有理数的乘方知识精讲

七年级数学有理数的乘方知识精讲

七年级数学有理数的乘方【本讲主要内容】有理数的乘方(乘方、科学记数法、近似数和有效数字) 1. 理解乘方的意义,并会计算;2. 能正确使用科学记数法及近似数有效数字的取舍;3. 理解并掌握有理数的混合运算律,能进行熟练运算。

【知识掌握】 【知识点精析】1. 乘方的意义:求n 个相同因数的积的运算,叫做乘方。

即把=。

注意:(1)乘方是一种运算;(2)因数相同;(3)积的运算;(4)分数乘方时,应将分数用括号括起来,如,要注意与式的不同,因此,要特别注意:当底数是分数时,这个分数一定要加括号,不加括号的底数不是分数乘方。

计算带分数的乘方一般应化为假分数。

另外还要注意:4)5(-与45-的区别:(1)读法上的区别:4)5(-读作5-的4次方;45-读作5的4次方的相反数,或负的5的4次方;(2)结果的区别:4)5(-=625,而62554-=-;(3)底数不同:4)5(-的底数是5-,而45-的底数是5。

2. 乘方运算的符号规律:(1)负数的奇次幂是负数,负数的偶次幂是正数; (2)正数的任何次幂都是正数,0的任何次幂都是0;(3)理解乘方运算的符号规律时要结合两点知识内容:乘方运算与乘法运算的关系,乘方运算中积的符号的确定规律。

3. 有理数的混合运算顺序:做有理数的混合运算时,应注意以下运算顺序: (1)先乘方,再乘除,最后做加减; (2)同级运算,从左到右进行;(3)如果有括号,先做括号内的运算,按小括号、中括号、大括号的顺序进行运算。

例:计算下列各式:(1)--------1052313231805432(.)[()]|.|÷; (2)[()()]121243811634453-+--×÷; (3)-+---31203133122232003×÷×÷..()()()。

解析:(1)小题按“+”“-”号分为四段,再分别计算每一段;(2)小题可灵活运用乘法的分配律;(3)小题中把小数化成分数计算较为简便。

第7讲 有理数的乘方(基础)

第7讲 有理数的乘方(基础)

有理数的乘方、混合运算及科学记数法【要点梳理】要点一、有理数的乘方定义:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power).即有:n a a a a n ⋅⋅⋅=个.在na 中,a 叫做底数, n 叫做指数.要点诠释: (1)乘方与幂不同,乘方是几个相同因数的乘法运算,幂是乘方运算的结果. (2)底数一定是相同的因数,当底数不是单纯的一个数时,要用括号括起来.(3)一个数可以看作这个数本身的一次方.例如,5就是51,指数1通常省略不写. 要点二、乘方运算的符号法则(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)0的任何正整数次幂都是0;(4)任何一个数的偶次幂都是非负数,如 na ≥0.要点诠释:(1)有理数的乘方运算与有理数的加减乘除运算一样,首先应确定幂的符号,然后再计算幂的绝对值.(2)任何数的偶次幂都是非负数. 要点三、有理数的混合运算有理数混合运算的顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要点诠释:(1)有理数运算分三级,并且从高级到低级进行运算,加减法是第一级运算,乘除法是第二级运算,乘方和开方(以后学习)是第三级运算;(2)在含有多重括号的混合运算中,有时根据式子特点也可按大括号、中括号、小括号的顺序进行.(3)在运算过程中注意运算律的运用. 要点四、科学记数法把一个大于10的数表示成10n a ⨯的形式(其中a 是整数数位只有一位的数,l ≤|a |<10,n 是正整数),这种记数法叫做科学记数法,如42000000=74.210⨯. 要点诠释:(1)负数也可以用科学记数法表示,“-”照写,其它与正数一样,如-3000=3310-⨯; (2)把一个数写成10na ⨯形式时,若这个数是大于10的数,则n 比这个数的整数位数少1.【典型例题】类型一、有理数乘方1.计算:(1)3(4)- (2) (3) (4)(5)335() (6)335 (7)2⨯(23) (8)223⨯举一反三:【变式】比较(﹣4)3和﹣43,下列说法正确的是( ) A . 它们底数相同,指数也相同 B . 它们底数相同,但指数不相同C . 它们所表示的意义相同,但运算结果不相同D . 虽然它们底数不同,但运算结果相同类型二、乘方的符号法则2.不做运算,判断下列各运算结果的符号.(-2)7,(-3)24,(-1.0009)2009,553⎛⎫ ⎪⎝⎭,-(-2)2010类型三、有理数的混合运算3. 计算: (1)4×(﹣)×3﹣|﹣6|;(2)(﹣1)3×(﹣12)÷[(﹣4)2+2×(﹣5)].举一反三:【变式】计算:(1)4211(10.5)[2(3)]3---⨯---(2)2421(2)(4)12⎛⎫-÷-⨯- ⎪⎝⎭34-4(3)-43-类型四、科学记数法4. 用科学记数法表示:(1)3870000000;(2)3000亿;(3)287.6 .举一反三:【变式】据宁波市统计局公布的第六次人口普查数据,本市常住人口760.57万人,其中760.57万人用科学记数法表示为 ( ) A .7.605 7×510人 B .7.605 7×610人 C .7.605 7×710人 D . 0.760 57×710人5. 计算3.8×107﹣3.7×107,结果用科学记数法表示为( ) A .0.1×107B . 0.1×106C . 1×107D . 1×106类型五、探索规律6.你见过拉面馆的师傅拉面吗?他们用一根粗的面条,第1次把两头捏在一起抻拉得到两根面条,再把两头捏在一起抻拉,反复数次,就能拉出许多根细面条,如下图,第3次捏合抻拉得到 根面条,第5次捏合抻拉得到 根面条,第n 次捏合抻拉得到 根面条,要想得到64根细面条,需 次捏合抻拉.第1次 第2次 第3次举一反三:【变式】已知21=2,22=4,23=8,24=16,25=32,…,观察上面的规律,试猜想22008的末位数字是________.【巩固练习】一、选择题1.2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为( ) A .3×106B . 3×105C . 0.3×106D . 30×1042.下列说法中,正确的是( ).A .一个数的平方一定大于这个数B .一个数的平方一定是正数C .一个数的平方一定小于这个数D .一个数的平方不可能是负数3.式子的意义是( ).A . 4与5商的立方的相反数B .4的立方与5的商的相反数C .4的立方的相反数除5D .的立方 4.(﹣1)2016的值是( )A .1B .﹣1C .2016D .﹣2016 5.计算(-1)2+(-1)3=( )A .-2B .- 1C .0D .26.观察下列等式:71=7,72=49,73=343,74=2401,75=16807,76=117649…由此可判断7100的个位数字是( ) . A .7 B .9 C .3 D .17.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第6次后剩下的绳子的长度为( ) .A .米B .米C .米D .米二、填空题 8.在(-2)4中,指数是________,底数是________,在-23中,指数是________,底数是________,在中底数是________,指数是________. 9.计算:﹣(﹣3)2= .10. ; ;= ;. 11. ,12.6008000= (用科学记数法表示),= (把用科学记数法表示的数还原).13. , , ,……,从而猜想:345-45-312⎛⎫ ⎪⎝⎭512⎛⎫ ⎪⎝⎭612⎛⎫ ⎪⎝⎭1212⎛⎫⎪⎝⎭225()3--=52-=313⎛⎫-- ⎪⎝⎭225=3[(3)]_______---=233(2)_______-⨯-=53.00810⨯213____+=2135_____++=21357_____+++=…….三、解答题14.(﹣3)2﹣(1)3×﹣6÷|﹣|3.15.某种细菌在培养过程中,每半个小时分裂一次(由1个分裂成2个).若经过4小时,100个这样的细菌可分裂成多少个? 16.探索规律:观察下面三行数,2, -4, 8, -16, 32, -64,… ① -2, -8, 4, -20, 28, -68,… ② -1, 2, -4, 8, -16, 32,… ③ (1) 第①行第10个数是多少?(2) 第②③行数与第①行数分别有什么关系? (3) 取每行第10个数,计算这三个数的和.135+++22005_____+=。

有理数的运算-中考数学一轮复习考点专题复习大全(全国通用)

有理数的运算-中考数学一轮复习考点专题复习大全(全国通用)

考向02 有理数的运算【考点梳理】考点一:有理数的四则运算:(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加为0;0与任何数相加都等于任何数(2)有理数减法法则::减去一个数等于加上这个数的相反数(3)有理数的乘法法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘; 0乘以任何一个数都等于0;②多个不为0的数相乘,积的符号由负因数的个数决定:负因数有偶数个时,积为正数,负因数有奇数个时,积为负数,再把各个因数的绝对值相乘(4)有理数的除法法则①两数相除,同号得正,异号得负,再把绝对值相除;0除以任何一个不为0的数都得0; ②除以一个不为0的数,等于乘以这个数的倒数考点二、有理数乘法的运算律:(1)乘法的交换律:ab=ba ; (2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .考点三、比较两个数的大小(1)负数< 0 < 正数,任何一个正数都大于一切负数 (2)数轴上的点表示的有理数,左边的数总比右边的数小(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小 (4)两数相乘(或相除),同号得正 > 0,异号得负 < 0考点四、有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n, 当n 为正偶数时: (-a)n=an或 (a-b)n =(b-a)n.考点五、科学记数法:一个大于10的数记成a ×10n 的形式,a 是整数数位只有一位的数,这种记数法叫科学记数法.考点六、非负数的性质:若02=++c b a ,则000===c b a 且且【题型探究】题型一:有理数的加法运算1.(2022·浙江温州·中考真题)计算9(3)+-的结果是( ) A .6B .6-C .3D .3-2.(2022·云南省昆明市第十中学三模)在《九章算术注》中用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(白色为正,黑色为负),如图1表示的是213211+-=-的计算过程,则图2表示的过程是在计算( )A .(13)(23)10-++=B .(31)(32)1-++=C .(13)(23)36+++=D .(13)(23)10++-=-3.(2022·贵州贵阳·一模)综合实践课上,同学们在如图所示的三阶幻方中,填写了一些数、式子和图案(其中每个式子或图案都表示一个数),若处于每一横行、每一竖列、两条斜对角线上的3个数之和都相等,则y x 的值为( )A .8-B .2C .16D .64题型二:有理数的减法运算4.(2022·黑龙江·哈尔滨市萧红中学校模拟预测)哈市某天的最高气温为15℃,最低气温为2-℃,则最高气温与最低气温的差为( ) A .5℃B .17℃C .17-℃D .5-℃5.(2022·山西·三模)计算()85---的结果是( ) A .3B .-3C .13D .-136.(2020·浙江温州·二模)如图是我国常年(1991~2020年)冬春两季各节气的平均气温折线统计图,根据图中的信息,各节气的平均气温最大值与最小值的差是( )A .8.75B .13.86C .18.28D .18.91题型三:有理数的加减混合运算7.(2022·湖南·长沙市中雅培粹学校二模)茶颜悦色是长沙本土知名奶茶品牌,更是被全国奶茶爱好者所知的“网红”品牌,2013年创立于长沙,目前在长沙地区有100多家直营门店.黄经理负责其中一家门店,若一杯幽兰拿铁成本是7元,卖17元,某顾客来买了一杯幽兰拿铁,给了黄经理一张50元纸币,黄经理没零钱,于是找邻居换了50元零钱.事后邻居发现那50元纸币是假的,最后黄经理又赔了邻居50元.请问黄经理一共亏了 __元.8.(2021·江苏宿迁·三模)如果△+△=★,〇=□+□,△=〇+〇+〇+〇,那么★÷□的值为_____.9.(2022·河北·邯郸市邯山区芳园实验中学一模)已知一列数2,0,﹣1.﹣12. (1)求最大的数和最小的数的差;(2)若再添上一个有理数m ,使得五个有理数的和为0,求m 的值.题型四:有理数的乘法运算律10.(2022·浙江丽水·三模)如图,运算中的( )处,填写的理由是( ) 5(12)(37)6-⨯-⨯537126=⨯⨯(乘法交换律)537126⎛⎫=⨯⨯ ⎪⎝⎭( ) 3710370=⨯=.A .乘法交换律B .乘法结合律C .分配律D .加括号11.(2022·河北唐山·一模)计算117313(24)126424⎛⎫-+-⨯- ⎪⎝⎭的结果是( )A .1B .1-C .10D .10-12.(2022·河北邯郸·二模)在简便运算时,把47249948⎛⎫⨯- ⎪⎝⎭变形成最合适的形式是( )A .12410048⎛⎫⨯-+ ⎪⎝⎭B .12410048⎛⎫⨯-- ⎪⎝⎭C .47249948⎛⎫⨯-- ⎪⎝⎭D .47249948⎛⎫⨯-+ ⎪⎝⎭题型五:有理数的除法13.(2022·山西·模拟预测)计算()62-÷的结果是( ) A .-3B .3C .-12D .1214.(2021·安徽·郎溪实验一模)两旅客坐火车外出旅游,希望座位连在一起,且有一个靠窗的座位,已知火车上的座位的排法如图所示,那么下列座位号码符合要求的是( )A .48,49B .62,63C .75,76D .84,8515.(2021·四川·绵阳外国语实验学校一模)如果□×(﹣12019)=1,则“□”内应填的实数是( ) A .12019B .2019C .﹣12019D .﹣2019题型六:有理数的乘法16.(2022·河北唐山·二模)计算222333m n ++⋅⋅⋅++⨯⨯⋅⋅⋅⨯=个个( )A .32m n +B .23+m nC .23m n +D .23n m +17.(2022·广东番禺中学三模)若2423y x x =--,则2022()x y +等于( )A .1B .5C .5-D .1-18.(2022·湖北鄂州·中考真题)生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n 来表示.即:21=2,22=4,23=8,24=16,25=32,……,请你推算22022的个位数字是( ) A .8B .6C .4D .2题型七:科学计算法19.(2022·浙江·南海实验学校三模)据国家统计局数据公报,2021年虽受“新冠疫情”影响,但全年国内生产总值仍高达1143670亿元,比上年同比增长8.1%.数据“1143670”用科学记数法可表示为( ) A .511.4367010⨯ B .61.14367010⨯C .71.14367010⨯D .80.114367010⨯20.(2022·吉林·长春市第一〇八学校二模)第24届冬季奥林匹克运动会,于2022年2月4日在我国首都北京开幕,据统计,北京冬奥会开幕式电视直播观众规模达3.16亿,是历史上收视率最高的一届冬奥会,数据3.16亿用科学记数法可以表示为( ) A .93.1610⨯ B .90.31610⨯C .731.610⨯D .83.1610⨯21.(2022·四川·威远县凤翔中学二模)据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( ) A .733.8610⨯B .83.38610⨯C .90.338610⨯D .93.38610⨯题型八:近似数22.(2022·河北沧州·一模)网聚正能量,构建同心圆.以“奋斗的人民 奋进的中国”为主题的2021中国正能量“五个一百”网络精品征集评选展播活动进入火热的展播投票阶段.截至2021年11月26日18点,“五个一百”活动投票量累计13909615次,数据13909615用科学记数法表示并精确到百万位为( ) A .80.13910⨯B .71.3910⨯C .80.1410⨯D .71.410⨯23.(2022·江苏盐城·一模)西溪天仙缘景区建筑以汉朝风格为主,美丽的传说,各式传统的小吃,吸引着无数游客心驰神往.景区游客日最大接待量为55500人,数字55500用四舍五入法精确到千位可以表示为( ) A .55.610⨯B .45.610⨯C .45610⨯D .50.5610⨯24.(2022·上海金山区世界外国语学校一模)某市参加毕业考试的学生人数约为8.63×410人.关于这里的近似数8.63×410,下列说法正确的是( ) A .精确到百分位,有3个有效数字; B .精确到百位,有3个有效数字; C .精确到百分位,有5个有效数字;D .精确到百位,有5个有效数字.题型九:有理数的混合运算25.(2022·广西·宾阳县教育局教学研究室三模)计算:()()2231524÷-+⨯-+-.26.(2022·河北沧州·一模)计算:()44881999⎛⎫-⨯-÷- ⎪.(1)解法1是从第______步开始出现错误的;解法2是从第______步开始出现错误的;(填写序号即可) (2)请给出正确解答.27.(2022·山东济宁·一模)阅读材料: 求2320212022122222++++++的值.解:设2320212022122222S =++++++①将①×2得:234202220232222222S =++++++②由②-①得:202321S =-, 即2320212022202312222221++++++=-请你仿照此法计算:2313333n +++++(其中n 为整数)【必刷基础】一、单选题28.(2022·河南洛阳·二模)今年的“两会”上,李克强总理在谈到今年需要就业的新增劳动力时,指出今年高校毕业生1076万,是历年最高.数据“1076万”用科学记数法表示为( ) A .71.07610⨯B .81.07610⨯C .610.7610⨯D .80.107610⨯29.(2022·江苏·常州市北郊初级中学二模)42-的值为( ) A .16-B .16C .8-D .830.(2022·四川·绵阳中学英才学校二模)已知点P 的坐标为(),m n ,且22440m n n n -+++=,则点P 关于x 轴的对称点坐标为( ) A .()4,2-B .()4,2-C .()4,2D .()2,4-31.(2022·广东·深圳市南山外国语学校三模)已知a 、b 互为相反数,c 、d 互为倒数,则代数式()52a b cd +-的值为( ) A .3B .2-C .3-D .032.(2022·广东·东莞市光明中学三模)在6-,12,()5--,3--,21-,0这六个数中,负数的个数有( ) A .0个B .1个C .2个D .3个33.(2022·宁夏·中考真题)已知实数a ,b 在数轴上的位置如图所示,则a ba b+的值是( )A .2-B .1-C .0D .234.(2022·内蒙古包头·中考真题)若a ,b 互为相反数,c 的倒数是4,则334a b c +-的值为( ) A .8-B .5-C .1-D .1635.(2022·黑龙江齐齐哈尔·中考真题)下列计算正确的是( ) A .2ab ab b ÷= B .222()a b a b -=- C .448235m m m +=D .33(2)6-=-a a36.(2022·安徽·三模)下列各数中,化简结果最小的是( ) A .-5B .5C .()15--D .()25-37.(2022·新疆·乌鲁木齐市第六十八中学模拟预测)计算:()()1202011322π-⎛⎫-⨯-+-+- ⎪⎝⎭.38.(2022·浙江杭州·中考真题)计算:()32623⎛⎫-⨯-- ⎪⎝⎭■.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是12,请计算()3216232⎛⎫-⨯-- ⎪⎝⎭.(2)如果计算结果等于6,求被污染的数字.【必刷培优】一、单选题39.(2022·湖南·吉首市教育科学研究所模拟预测)观察下列等式:122=,224=,328=,4216=,5232=,6264=,⋅⋅⋅,根据这个规律,则1234202222222++++⋅⋅⋅+的末尾数字是( )A .0B .2C .4D .640.(2022·江苏苏州·中考真题)下列运算正确的是( ) A .()277-=- B .2693÷= C .222a b ab += D .235a b ab ⋅=41.(2022·河北·中考真题)若x 和y 互为倒数,则112x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的值是( )A .1B .2C .3D .442.(2022·湖北武汉·中考真题)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A .9B .10C .11D .1243.(2022·湖南娄底·中考真题)在古代,人们通过在绳子上打结来计数.即“结绳计数”.当时有位父亲为了准确记录孩子的出生天数,在粗细不同的绳子上打结(如图),由细到粗(右细左粗),满七进一,那么孩子已经出生了( )A .1335天B .516天C .435天D .54天44.(2022·湖南娄底·中考真题)若10x N =,则称x 是以10为底N 的对数.记作:lg x N =.例如:210100=,则2lg100=;0101=,则0lg1=.对数运算满足:当0M >,0N >时,()lg lg lg M N MN +=,例如:lg3lg5lg15+=,则()2lg5lg5lg 2lg 2+⨯+的值为( ) A .5B .2C .1D .0二、填空题45.(2022·江苏·靖江市滨江学校三模)5-的倒数是 ____.46.(2022·重庆八中模拟预测)计算:1122-⎛⎫-+-= ⎪⎝⎭________.47.(2022·江苏·常州市北郊初级中学二模)为做好新冠疫情常态化防控,更好保护人民群众身体健康,常州市开展新冠疫苗检测工作.截至4月底,已累计新冠疫苗检测27000000剂次,数据27000000用科学记数法可表示_____ 48.(2022·江苏·盐城市初级中学三模)小余同学计划在某外卖网站点如下表所示的菜品,已知每份订单的配送费为4元,商家为了促销,对每份订单的总价(不含配送费)提供满减优惠:满30元减12元,满60元减30元,满100元减45元,如果小余在购买下表中所有菜品时,采取适当的下单方式,那么他点餐总费用最低可为____________元. 菜品单价(含包装费) 数量 水煮牛肉(小份)30元1 醋溜土豆丝(小份) 12元 1 豉汁排骨(小份) 30元1 手撕包菜(小份) 12元1 米饭 3元249.(2022·重庆文德中学校二模)计算:()2022120221212-⎛⎫⋅+-= ⎪⎝⎭______.50.(2022·广东·深圳市南山外国语学校三模)某种细菌培养过程中每半小时分裂1次,每次一分为二,若这种细菌由1个分裂到128个,那么这个过程要经过______小时. 51.(2022·西藏·中考真题)已知a ,b 都是实数,若2120220a b ,则b a =_____.三、解答题52.(2022·广西·南宁二中三模)计算:21116(2)324⎛⎫⨯---÷ ⎪⎝⎭.53.(2023·河北·九年级专题练习)对于任意的实数x ,y ,规定运算“※”如下:x y ax by =+※. (1)当3a =,4b =时,求12-※()的值; (2)若5316=※,232-=-※(),求a 与b 的值.54.(2022·河北·平泉市教育局教研室二模)在城区老旧小区改造中,为了提高居民的宜居环境,某小区规划修建一个广场(平面图如图中阴影部分所示).(1)用含m ,n 的式子表示广场(阴影部分)的面积S ;(2)若30m =米,20n =米,修建每平方米需费用200元,用科学记数法表示修建广场的总费用W 的值.55.(2022·安徽·二模)古老而悠久的民族文化宝典中,有一颗璀璨夺目的明珠一一河图洛书(如图1).人们为河图洛书神话般的传说、高深的奥义、丰富的内容、简洁的形式万分惊讶,对河图洛书与中国的思想文化、社会科学、自然科学的密切联系更是迷惑不解,然而,令我们每个人吃惊和迷惑不解的是,河图洛书只是两个简单的数字图,如图2,在33⨯的九官格中,每行每列及每条对角线上的三数之和都相等.(1)将图2九宫格中的数改为如图3的形式,则九宫格中n= ,e= ;(2)若用-5,-4,-3,-2,-1,0,1,2,3这九个数填在如图4的九宫格中,试求图中m的值.参考答案:1.A【分析】根据有理数的加法法则计算即可.【详解】解:9(3)+-(93)=+-=6故选:A .【点睛】本题考查了有理数的加法,掌握绝对值不相等的异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值时解题的关键.2.A【分析】根据图1可知,一横表示10,一竖表示1,白色为正,黑色为负,由此即可得出答案.【详解】解:由图1可知,一横表示10,一竖表示1,白色为正,黑色为负,则图2表示的过程是在计算()()132310-++=,故选:A .【点睛】本题考查了有理数的加减法,掌握理解每个算筹所表示的数是解题关键.3.D【分析】根据幻方的特点列出算式-2+y +6=2y +y +0=x -2+0,再根据法则计算可得.【详解】解:根据题意知-2+y +6=2y +y +0=x -2+0,则y +4=3y ,3y =x -2,∴y =2,x =3y +2=8,∴y x =82=64,故选:D .【点睛】本题主要考查有理数的加法和乘方,解题的关键是掌握有理数的加减运算法则及幻方的特点.4.B【分析】用该市当天的最高气温减去最低气温,即可求出结果.【详解】解:最高气温与最低气温的差为:()--=15217℃故选:B .【点睛】本题考查了有理数的减法,熟练掌握有理数的运算法则是解决本题的关键.5.C【分析】根据绝对值的意义和有理数的减法运算法则计算即可.【详解】解:原式=8+5=13.故选:C .【点睛】本题考查绝对值的意义,有理数的减法运算,熟练掌握这些知识点是解题关键.6.D【分析】观察折线统计图可得各节气的平均气温最大值为13.86℃,最小值为-5.05℃,即可求解.【详解】解:根据题意得:各节气的平均气温最大值为13.86℃,最小值为-5.05℃,∴各节气的平均气温最大值与最小值的差是()13.86 5.0518.91--=℃.故选:D【点睛】本题主要考查了折线统计图,准确从统计图获取信息是解题的关键.7.40【分析】首先算出黄经理总的支出,再求出他的总收入,进而得出黄经理的亏损.【详解】解:根据题意可得:总支出:幽兰拿铁成本是7元,找零钱()5017-元,赔邻居50元,共()750175090+-+=(元),总收入:和邻居换钱得50元,总共50元,剩余:509040-=-(元),即黄经理一共亏了40元.故答案为:40.【点睛】本题考查有理数加减运算的实际应用,读懂题意,计算出总的收入和总的支出是解题的关键.8.16【分析】根据题意可知★=2个△=8个〇=16个□,再代入★÷□即可计算求解.【详解】解:∵△+△=★,∴★=2个△,∵△=〇+〇+〇+〇,∴★=8个〇,∵〇=□+□,∴★=16个□,∴★÷□=16.故答案为:16.【点睛】本题考查了等式的性质与有理数的混合运算,由题得出★=16个□是解题关键.9.(1)3;(2)m =-12.【分析】(1)首先得出最大数和最小数,进而得出答案;(2)根据题意列出方程,解方程即可求解.(1)解:∵最大的数是2,最小的数是-1,∴最大的数与最小的数之差为2-(-1)=2+1=3;(2)解:根据题意得:2+0+(-1)+(-12)+m =0, 解得:m =-12. 【点睛】本题考查有理数的运算,一元一次方程的应用;熟练掌握解一元一次方程的方法和步骤是解本题的关键.10.B【分析】根据运算过程可知是根据乘法结合律.【详解】解:()()512376-⨯-⨯ 537126=⨯⨯(乘法交换律) 537126⎛⎫=⨯⨯ ⎪⎝⎭(乘法结合律) 3710=⨯=370故选:B .【点睛】本题考查了有理数的乘法运算律,熟练掌握和运用有理数的乘法运算律是解决本题的关键.11.A【分析】原式利用乘法分配律计算即可求出值【详解】解:原式=117313(24)(24)(24)(24) 126424⨯--⨯-+⨯--⨯-=-22+28-18+13=6-18+13=-12+13=1,故选:A【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.A【分析】根据乘法分配律即可求解.【详解】47249948⎛⎫⨯-⎪⎝⎭=12410048⎛⎫⨯-+⎪⎝⎭计算起来最简便,故选A.【点睛】此题主要考查有理数的运算,解题的关键是熟知乘法分配律的运用.13.A【分析】根据有理数的除法法则即可解答.【详解】解:−6÷2=-3,故选A.【点睛】本题考查了有理数的除法,解决本题的关键是熟记有理数的除法法则.14.D【分析】根据图形中的数据变化,可得被5除余1的数,和能被5整除的座位号靠窗,座位连在一起,且有一个靠窗的座位,通过分析选项即可得结论.【详解】解:由已知图形中座位的排列顺序,可得:被5除余1的数,和能被5整除的座位号靠窗,由于两位旅客希望座位连在一起,且有一个靠窗的座位,48593÷=,故A选项不符合;625122÷=,故B选项不符合;75515÷=,故C选项不符合;85517÷=,故D符合,故选:D.【点睛】本题考查了数据的变化规律,对数据的处理,并能正确找出其中的规律是解题的关键.15.D【分析】根据乘除互逆运算的关系求解可得.【详解】解:1÷(﹣12019 )=﹣2 019 故选:D .【点睛】本题主要考查有理数的除法,解题的关键是掌握有理数的乘法与除法是互逆的运算关系.16.D【分析】根据乘法的含义,可得:222m ++⋅⋅⋅+=个2m ,根据乘方的含义,可得:333n ⨯⨯⋅⋅⋅⨯=个3n ,据此求解即可.【详解】解:222333m n ++⋅⋅⋅++⨯⨯⋅⋅⋅⨯=个个2m +3n .故选:D .【点睛】此题主要考查了有理数的乘法、有理数的乘方,解答此题的关键是要明确乘法、乘方的含义.17.A【分析】直接利用二次根式中被开方数是非负数,得出x 的值,进而得出y 的值,再利用有理数的乘方运算法则计算即可. 【详解】解:由题意可得:20420x x -≥⎧⎨-≥⎩, 解得:x =2,故y =-3,∴20222022()(213)=x y +=-.故选:A .【点睛】此题主要考查了二次根式有意义的条件以及有理数的乘方运算,正确掌握被开方数为非负数是解题关键.18.C【分析】利用已知得出数字个位数的变化规律进而得出答案.【详解】解:∵21=2,22=4,23=8,24=16,25=32,…,∴尾数每4个一循环,∵2022÷4=505……2,∴22022的个位数字应该是:4.故选:C .【点睛】此题主要考查了尾数特征,根据题意得出数字变化规律是解题关键.19.B【分析】直接利用科学记数法表示即可得到答案.【详解】解:61.143611436707010⨯=,故选B .【点睛】本题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数,解题关键是确定a 和n 的值.20.D【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:3.16亿8316000000 3.1610==⨯.故选:D .【点睛】此题考查科学记数法的表示方法,解题的关键是掌握科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.21.B【分析】科学记数法要表示成()n 1010⨯<<0a a .【详解】解:数字338 600 000用科学记数法可简洁表示为83.38610⨯,故选B .【点睛】本题主要考查科学记数法的运用,能够熟练根据要求转化数字是解题关键.22.D【分析】首先精确到百万位,再用科学记数法表示.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:原数精确到百万位为:13909615≈14000000,再用科学记数法表示为:14000000=1.4×107,故选D .【点睛】本题考查取近似数和科学记数法的综合应用,熟练掌握精确度的意义和四舍五入的方法、科学记数法的意义和算法是解题关键.23.B【分析】先用科学记数法表示出所给的数,再按精确度的要求进行四舍五入即可得到答案.【详解】解:用科学记数法表示:455500 5.5510=⨯,四舍五入法精确到千位得:445.551015.60≈⨯⨯.故选:B .【点睛】本题考查了近似数和科学记数法.解题的关键是先用科学记数法表示出所给的数,再按精确度的要求进行四舍五入,注意近似数末尾有意义的0.24.B【分析】在标准形式a ×10n 中a 的部分中,从左边第一个不为0的数字数起,共有3个有效数字是8,6,3,且其展开后可看出精确到的是百位.【详解】解:8.63×104=86300,所以有3个有效数字,8,6,3,精确到百位.故选:B .【点睛】此题主要考查科学记数法与有效数字,解答的关键是明确用科学记数法表示的数的有效数字的确定方法.25.3【详解】解:原式()91104=÷+-+()9104=+-+3=.【点睛】本题考查了有理数的混合运算,解题关键是熟记有理数混合运算顺序和法则,准确进行计算.26.(1)①;③(2)解答过程见详解【分析】(1)根据有理数运算法则判断即可;(2)按照运算法则,先进行乘除运算,再进行加减运算即可.【详解】(1)解:解法1,步骤①中“先算加减后算乘除”不符合有理数混合运算法则,故步骤①错误; 解法2,11363622-+≠-,步骤③不符合有理数加法法则,故步骤③错误. 故答案为:①;③.(2)解:原式()44981998⎛⎫=-⨯-⨯- ⎪⎝⎭ 1236=-+ 1235=- 【点睛】本题主要考查了有理数的混合运算,解题关键在于熟练掌握有理数混合运算的运算法则.27.1312n -+ 【分析】仿照材料中的方法解答即可.【详解】解:设231133333n n S -=+++++①,将等式两边同时乘3,得231333333n n S +=+++++②, ②−①,得3S −S =131n -+,即2S =131n -+,则S =1312n -+, 所以23113312333n n+++++=-+. 【点睛】本题主要考查数字的变化规律,解答的关键是理解清楚所给的解答方式,并灵活运用. 28.A【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正整数;当原数的绝对值1<时,n 是负整数,由此即可得到答案.【详解】解:7107610760000 1.07610==⨯万.故选:A .【点睛】本题主要考查了科学记数法,解题的关键是熟练掌握科学记数法的定义.29.A【分析】根据乘方定义计算即可.【详解】422222=16-=-⨯⨯⨯.故选:A .【点睛】本题主要考查了乘方的运算,理解定义是解题的关键. 30.A【分析】根据二次根式的非负性和完全平方公式求出m ,n 的值,进而即可求解.【详解】解:2440n n ++=,()220n+=,∴20,20m n n-=+=,解得:4,2m n=-=-,∴P的坐标为()4,2--,∴点P关于x轴的对称点坐标为()4,2-.故选:A.【点睛】本题主要考查二次根式与平方的非负性,点的坐标,轴对称变换,根据非负数的性质,求出m,n 的值是关键.31.B【分析】根据a,b互为相反数,c,d互为倒数,可以得到a+b=0,cd=1,然后代入所求式子计算即可.【详解】解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴5(a+b)﹣2cd=5×0﹣2×1=0﹣2=﹣2,故选:B.【点睛】本题考查了相反数和倒数,有理数的混合运算,解答本题的关键是求出a+b、cd的值.32.D【分析】先利用相反数、绝对值和乘方的意义计算出()55--=,33--=-,211-=-,然后根据实数的分类求解.【详解】解:()55--=,33--=-,211-=-,所以这六个数中,负数为6-,3--,21-.故选:D.【点睛】本题考查了有理数的分类,有理数乘方:求n个相同因数积的运算,叫做乘方.也考查了绝对值和相反数,熟知相关知识是解题的关键.33.C【分析】根据数轴上点的位置可得a<0,0b>,据此化简求解即可.【详解】解:由数轴上点的位置可得a<0,0b >, ∴110a b a b a b a b+=+=-+=-, 故选:C .【点睛】本题主要考查了化简绝对值,根据数轴上点的位置判断式子符号,有理数的除法,正确得到a<0,0b >是解题的关键.34.C【分析】根据a ,b 互为相反数,可得0a b +=,c 的倒数是4,可得14c =,代入即可求解. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c 的倒数是4, ∴14c =, ∴334a b c +-()34a b c =+-130414=⨯-⨯=-, 故选:C 【点睛】本题考查了代数式的求值问题,利用已知求得0a b +=,14c =是解题的关键. 35.A 【分析】根据单项式除以单项式,完全平方公式,合并同类项,有理数的乘方的运算法则进行计算求解即可.【详解】解:A 中2ab ab b ÷=,正确,故符合题意;B 中()222222-=-+≠-a b a ab b a b ,错误,故不符合题意;C 中44482355m m m m +=≠,错误,故不符合题意;D 中()333286a a a -=-≠-,错误,故不符合题意;故选A .【点睛】本题考查了单项式除以单项式,完全平方公式,合并同类项以及有理数的乘方.解题的关键在于熟练掌握运算法则并正确的计算.36.A【分析】分别计算绝对值,负整数指数幂,乘方运算,再比较各数的大小,从而可得答案. 【详解】解:12155,5,525,5而15525,5 125555, 所以最小的数是5,-故选:A【点睛】本题考查的是绝对值的含义,负整数指数幂的含义,有理数的乘方运算,有理数的大小比较,掌握以上基础知识是解本题的关键.37.1【分析】根据()1n -运算、零指数幂、负整数指数幂及绝对值运算分别求解后,利用有理数的混合运算法则求解即可得到结论 【详解】解:()()12020011322π-⎛⎫-⨯-+-+- ⎪⎝⎭ 1122=⨯-+1=. 【点睛】本题考查有理数混合运算,涉及到()1n-运算、零指数幂、负整数指数幂及绝对值运算等知识,熟练掌握运算法则及运算顺序是解决问题的关键.38.(1)-9(2)3【分析】(1)根据有理数混合运算法则计算即可;(2)设被污染的数字为x ,由题意,得()326263x ⎛⎫-⨯--= ⎪⎝⎭,解方程即可; 【详解】(1)解:()()32116268326⎛⎫-⨯--=-⨯- ⎪⎝⎭189=--=-; (2)设被污染的数字为x ,由题意,得()326263x ⎛⎫-⨯--= ⎪⎝⎭,解得3x =, 所以被污染的数字是3.【点睛】本题主要考查有理数的混合运算、一元一次方程的应用,掌握相关运算法则和步骤是接替的关键.39.D【分析】通过观察发现2n 的个位数字是2、4、8、6四个数字依次不断循环,直接填空即可;【详解】解:通过观察发现2n的个位数字是2、4、8、6四个数字依次不断循环,且2+4+8+6=20,尾数为02022÷4=500……2,则尾数为2+4=6,故选D.【点睛】此题考查幂的乘方末尾的数字规律,注意观察循环的数字规律,利用规律解决问题.40.Ba=,判断A选项不正确;C选项中2a、2b不是同类项,不能合并;D选项中,单项式与单项式法则:把单项式的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式;B 选项正确.【详解】A.7,故A不正确;B.2366932÷=⨯=,故B正确;C. 222a b ab+≠,故C不正确;D. 236a b ab⋅=,故D不正确;故选B.【点睛】本题考查二次根式的性质、有理数的除法及整式的运算,灵活运用相应运算法则是解题的关键.41.B【分析】先将112x yy x⎛⎫⎛⎫+-⎪⎪⎝⎭⎝⎭化简,再利用互为倒数,相乘为1,算出结果,即可【详解】112111 221212121x yy xxy x yx y xyxyxyxyxy⎛⎫⎛⎫+-⎪⎪⎝⎭⎝⎭=-⋅+⋅-=-+-=-+∵x和y互为倒数∴1xy=。

初中数学专题:有理数乘方

初中数学专题:有理数乘方

专题:有理数的乘方一、知识要点1.乘方的有关概念.(1)求n 个相同因数a 的积的运算叫乘方,乘方的结果叫幂.a 叫底数,n 叫指数,a n 读作:a 的n 次幂(a 的n 次方).(2)乘方的意义:a n 表示n 个a 相乘.n a n a a a a a =⨯⨯⨯⨯ 个(3)写法的注意:当底数是负数或分数时,底数一定要打括号,不然意义就全变了.如: 232)(-=(32-)×(32-),表示两个32-相乘. 而322-=322⨯-,表示2个2相乘的积除以3的相反数. 2.a n 与-a n的区别.(1)a n 表示n 个a 相乘,底数是a ,指数是n ,读作:a 的n 次方.(2)-a n 表示n 个a 乘积的相反数,底数是a ,指数是n ,读作:a 的n 次方的相反数. 如:32)(-底数是-2,指数是3,读作(-2)的3次方,表示3个(-2)相乘. 32)(-=(-2)×(-2)×(-2)=-8.32-底数是2,指数是3,读作2的3次方的相反数32-=-(2×2×2)=-8.注: 32)(-与32-的结果虽然都是-8,但表示的含义并不同. 3.乘方运算的符号规律.(1)正数的任何次幂都是正数.(2)负数的奇次幂是负数.(3)负数的偶次幂是正数.(4)0的奇数次幂,偶次幂都是0.所以,任何数的偶次幂都是正数或0.4.乘方如何运算?乘方运算就是根据乘方的意义把它转化为乘法进行计算.如:33=3×3×3=27.5. 把一个大于 10 的数记成 a×10n 的形式,其中 a 是整数数位只有一位的数,这种记数法叫做科学记数法。

注意: 一个数的科学记数法中,10 的指数比原数的整数位数少 1,如原数有 8 位整数,指数就是7。

二、知识运用典型例题一、填空题:(1)423⎛⎫- ⎪⎝⎭的底数是 ;44()3-的底数是 ; 64.2的底数是 ; 8的底数是 。

1.6 第1课时 有理数的乘方

1.6 第1课时 有理数的乘方

练习 2.计算.
练习 2.计算.
归纳总结
根据有理数的乘法法则可以得出: 正数的任何正整数次幂都是正数. 负数的奇次幂是负数,负数的偶次幂是正数. 0的任何正整数次幂都是0.
3.含乘方的混合运算
思考:在进行有理数的加、减、乘、除以及乘
方混合运算时,应按怎样的顺序进行运算呢?
例3 计算:
1 42
知识要点
一般地,n个相同的因数a相乘,记作an,读作 “a的n次幂(或a的n次方)”,即
a×a×……×a = an
这种求n个相同n个因数的积的运算叫做乘方,乘
方的结果叫做幂.

a n 指数 因数的个数
底数 因数
(1次方可省略不写,2次方又叫平方,3次方又叫立方)
典例精析
(-3)4表示 A.4个-3的和 B.3个-4的积 C.-3与4的积 D.4个(-3)的积
(D )
解析: 根据有理数的乘方的定义可知.(-3)4表示4个(-3)的积.
练习
1.-33的意义是 A.3个-3相乘 B.3个-3相加 C.-3乘3 D.33的相反数
(D)
2.有理数乘方的运算
例1 计算:
(1) (-3)3;
(2)07;
(3)

2 5
3

;
解:(1) (-3)3=(-3)×(-3)×(-3)=-27;
捏合前 捏一次后 捏两次后
捏三次后
2 2×2
2×2×2
问题:捏合10次后可拉成几根面条?请用算式表示.
2×2×2×2×2×2×2×2×2×2 思考:捏合100次后可拉成几根面条?请用算式表示. 算式中有几个2相乘?
2×2×...×2
100个
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档