2017届人教A版 函数的奇偶性与周期性 精品演练(1)
人教A版高中同步学案数学必修第一册精品课件 第五章 三角函数 第1课时 周期性、奇偶性
故该函数既是奇函数又是偶函数.
探究点三 函数奇偶性与周期性的综合问题
【例3】定义在上的函数()既是偶函数,又是周期函数,若()的最小正周期为π,
π
5π
∵ (−) = |sin(−)| + cos(−) = |sin | + cos = (),∴函数()是偶函数.
(2)() =
解 () =
3
sin(
4
3
sin(
4
+
3
4
+
3π
);
2
3π
)
2
=
3
−cos ,
4
3
4
∈ .
∵ (−) = −cos(− ) = −cos = (),
第五章 三角函数
5.4 三角函数的图象与性质
5.4.2 正弦函数、余弦函数的性质
第1课时 周期性、奇偶性
1
基础落实·必备知识全过关
2
重难探究·能力素养全提升
【课标要求】1.理解周期函数、周期、最小正周期的定义.2.会求正弦函数、余弦函数的
周期,并会应用.3.掌握正弦函数、余弦函数的奇偶性,会判断简单三角函数的奇偶性.
1
3
(4) = |cos |, ∈ .
解 函数 = |cos |的图象如图(实线部分)所示.
由图象可知, = |cos |的最小正周期为π.
规律方法求三角函数的最小正周期的常用方法
(1)公式法,即先将函数化为 = sin( + ) + 或 = cos( + ) +
高考数学(人教a版,理科)题库:函数的奇偶性与周期性(含答案)
第3讲 函数的奇偶性与周期性一、选择题1.设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)等于( ).A .3B .1C .-1D .-3 解析 由f (-0)=-f (0),即f (0)=0.则b =-1,f (x )=2x +2x -1,f (-1)=-f (1)=-3. 答案 D2.已知定义在R 上的奇函数,f (x )满足f (x +2)=-f (x ),则f (6)的值为 ( ). A .-1 B .0 C .1 D .2 解析 (构造法)构造函数f (x )=sin π2x ,则有f (x +2)=sin ⎣⎢⎡⎦⎥⎤π2x +2=-sin π2x =-f (x ),所以f (x )=sin π2x 是一个满足条件的函数,所以f (6)=sin 3π=0,故选B. 答案 B3.定义在R 上的函数f (x )满足f (x )=f (x +2),当x ∈[3,5]时,f (x )=2-|x -4|,则下列不等式一定成立的是( ).A .f ⎝ ⎛⎭⎪⎫cos 2π3>f ⎝ ⎛⎭⎪⎫sin 2π3B .f (sin 1)<f (cos 1)C .f ⎝ ⎛⎭⎪⎫sin π6<f ⎝ ⎛⎭⎪⎫cos π6D .f (cos 2)>f (sin 2)解析 当x ∈[-1,1]时,x +4∈[3,5],由f (x )=f (x +2)=f (x +4)=2-|x +4-4|=2-|x |,显然当x ∈[-1,0]时,f (x )为增函数;当x ∈[0,1]时,f (x )为减函数,cos 2π3=-12,sin 2π3=32>12,又f⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12>f ⎝ ⎛⎭⎪⎫32,所以f ⎝ ⎛⎭⎪⎫cos 2π3>f ⎝ ⎛⎭⎪⎫sin 2π3. 答案 A4.已知函数f (x )=⎩⎨⎧1-2-x,x ≥0,2x -1,x <0,则该函数是( ).A .偶函数,且单调递增B .偶函数,且单调递减C .奇函数,且单调递增D .奇函数,且单调递减解析 当x >0时,f (-x )=2-x -1=-f (x );当x <0时,f (-x )=1-2-(-x )=1-2x =-f (x ).当x =0时,f (0)=0,故f (x )为奇函数,且f (x )=1-2-x 在[0,+∞)上为增函数,f (x )=2x -1在(-∞,0)上为增函数,又x ≥0时1-2-x ≥0,x <0时2x -1<0,故f (x )为R 上的增函数. 答案 C5.已知f (x )是定义在R 上的周期为2的周期函数,当x ∈[0,1)时,f (x )=4x-1,则f (-5.5)的值为( )A .2B .-1C .-12 D .1解析 f (-5.5)=f (-5.5+6)=f (0.5)=40.5-1=1. 答案 D6.设函数D (x )=⎩⎨⎧1,x 为有理数,0,x 为无理数,则下列结论错误的是( ).A .D (x )的值域为{0,1}B .D (x )是偶函数C .D (x )不是周期函数D .D (x )不是单调函数解析 显然D (x )不单调,且D (x )的值域为{0,1},因此选项A 、D 正确.若x 是无理数,-x ,x +1是无理数;若x 是有理数,-x ,x +1也是有理数.∴D (-x )=D (x ),D (x +1)=D (x ).则D (x )是偶函数,D (x )为周期函数,B 正确,C 错误. 答案 C 二、填空题7.若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.解析 由题意知,函数f (x )=x 2-|x +a |为偶函数,则f (1)=f (-1),∴1-|1+a |=1-|-1+a |,∴a =0. 答案 08.已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________.解析 因为y =f (x )+x 2是奇函数,且x =1时,y =2,所以当x =-1时,y =-2,即f (-1)+(-1)2=-2,得f (-1)=-3,所以g (-1)=f (-1)+2=-1. 答案 -19.设奇函数f (x )的定义域为[-5,5],当x ∈[0,5]时,函数y =f (x )的图象如图所示,则使函数值y <0的x 的取值集合为________.解析 由原函数是奇函数,所以y =f (x )在[-5,5]上的图象关于坐标原点对称,由y =f (x )在[0,5]上的图象,得它在[-5,0]上的图象,如图所示.由图象知,使函数值y <0的x 的取值集合为(-2,0)∪(2,5).答案 (-2,0)∪(2,5)10. 设f (x )是偶函数,且当x >0时是单调函数,则满足f (2x )=f ⎝⎛⎭⎪⎫x +1x +4的所有x 之和为________.解析 ∵f (x )是偶函数,f (2x )=f ⎝⎛⎭⎪⎫x +1x +4, ∴f (|2x |)=f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪x +1x +4, 又∵f (x )在(0,+∞)上为单调函数, ∴|2x |=⎪⎪⎪⎪⎪⎪x +1x +4, 即2x =x +1x +4或2x =-x +1x +4, 整理得2x 2+7x -1=0或2x 2+9x +1=0,设方程2x 2+7x -1=0的两根为x 1,x 2,方程2x 2+9x +1=0的两根为x 3,x 4.则(x1+x2)+(x3+x4)=-72+⎝⎛⎭⎪⎫-92=-8.答案-8三、解答题11.已知f(x)是定义在R上的不恒为零的函数,且对任意x,y,f(x)都满足f(xy)=yf(x)+xf(y).(1)求f(1),f(-1)的值;(2)判断函数f(x)的奇偶性.解(1)因为对定义域内任意x,y,f(x)满足f(xy)=yf(x)+xf(y),所以令x=y =1,得f(1)=0,令x=y=-1,得f(-1)=0.(2)令y=-1,有f(-x)=-f(x)+xf(-1),代入f(-1)=0得f(-x)=-f(x),所以f(x)是(-∞,+∞)上的奇函数.12.已知函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0,f(1)=-2.(1)求证f(x)是奇函数;(2)求f(x)在[-3,3]上的最大值和最小值.(1)证明令x=y=0,知f(0)=0;再令y=-x,则f(0)=f(x)+f(-x)=0,所以f(x)为奇函数.(2)解任取x1<x2,则x2-x1>0,所以f(x2-x1)=f[x2+(-x1)]=f(x2)+f(-x1)=f(x2)-f(x1)<0,所以f(x)为减函数.而f(3)=f(2+1)=f(2)+f(1)=3f(1)=-6,f(-3)=-f(3)=6.所以f(x)max=f(-3)=6,f(x)min=f(3)=-6.13.已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x-1,(1)求证:f(x)是周期函数;(2)当x∈[1,2]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2013)的值.解析(1)证明函数f(x)为奇函数,则f(-x)=-f(x),函数f(x)的图象关于x=1对称,则f(2+x)=f(-x)=-f(x),所以f(4+x)=f[(2+x)+2]=-f(2+x)=f(x),所以f(x)是以4为周期的周期函数.(2) 当x∈[1,2]时,2-x∈[0,1],又f(x)的图象关于x=1对称,则f(x)=f(2-x)=22-x-1,x∈[1,2].(3) ∵f(0)=0,f(1)=1,f(2)=0,f(3)=f(-1)=-f(1)=-1又f(x)是以4为周期的周期函数.∴f(0)+f(1)+f(2)+…+f(2013)=f(2 012)+f(2 013)=f(0)+f(1)=1.14.已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).(1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=12x,求使f(x)=-12在[0,2 014]上的所有x的个数.(1)证明∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),∴f(x)是以4为周期的周期函数.(2)解当0≤x≤1时,f(x)=12x,设-1≤x≤0,则0≤-x≤1,∴f(-x)=12(-x)=-12x.∵f(x)是奇函数,∴f(-x)=-f(x),∴-f(x)=-12x,即f(x)=12x.故f(x)=12x(-1≤x≤1).又设1<x<3,则-1<x-2<1,∴f(x-2)=12(x-2).又∵f(x)是以4为周期的周期函数∴f(x-2)=f(x+2)=-f(x),∴-f(x)=12(x-2),∴f (x )=-12(x -2)(1<x <3). ∴f (x )=⎩⎪⎨⎪⎧12x ,-1≤x ≤1,-12(x -2),1<x <3.由f (x )=-12,解得x =-1. ∵f (x )是以4为周期的周期函数, ∴f (x )=-12的所有x =4n -1(n ∈Z ).令0≤4n -1≤2 014,则14≤n ≤2 0154. 又∵n ∈Z ,∴1≤n ≤503(n ∈Z ), ∴在[0,2 014]上共有503个x 使f (x )=-12.。
人教A版必修第一册 3-2-2 第2课时 函数奇偶性的应用(习题课) 课件(25张)
又f(x)为偶函数,g(x)为奇函数,
所以f(x)-g(x)=x2-x-2,②
联立①②可得f(x)=x2-2,g(x)=x.
[例3] 偶函数f(x)的定义域为R,当x∈(-∞,0)时,f(x)单调递增,则f(-π),
f(2),f(3)的大小关系是(
)
A.f(-π)>f(2)>f(3)
B.f(-π)>f(3)>f(2)
C.f(-π)<f(2)<f(3)
D.f(-π)<f(3)<f(2)
解析:因为f(x)是定义域为R的偶函数,当x∈(-∞,0)时,f(x)单调递增,
解析:(2)定义在R上的奇函数f(x)在区间(-∞,0)上单调递增,且f(3)=0,
则f(x)在(0,+∞)上单调递增,
且f(-3)=-f(3)=0,
由f(x)>0得,-3<x<0或x>3.故选C.
当堂检测
1.偶函数y=f(x)在区间[0,4]上单调递减,则有(
A
A.f(-1)>f(2)>f(-3)
所以函数的图象关于原点对称,且关于 x=1 对称,
( )-( )
当 x1,x2∈[0,1],且 x1≠x2 时,
f(-2)=0,
其大致图象如图所示,
-
>0,即函数在[0,1]上单调递增,f(2)=f(0)=
< ≤ , - ≤ < ,
则当-3≤x≤1 时,不等式 xf(x)>0 可转化为
意分类讨论.
针对训练 4:(1)设 f(x)是定义在(-1,1)上的偶函数,且 f(x)在[0,1)上单调递减,f(- )=1,
2017-2018学年高中数学课时作业171.3.2.1函数的奇偶性(第1课时)新人教A版必修
C.f(x ) • f( — x) < 0D.f (x) • f( — x)>0答案 B解析 F( — x) = f( — x) + f(x) = F(x).又x € ( — a , a)关于原点对称,• F(x)是偶函数.答案 由f(x)是偶函数,可得f( — x) = f(x).由g(x)是奇函数,可得 g( — x) =— g(x).T |g(x)|为偶函数,••• f(x) + |g(x)|为偶函数.6.对于定义域为R 的任意奇函数f(x)都恒成立的是()课时作业(十七)1.321函数的奇偶性(第1课时)1.下列函数中既是奇函数,又在定义域上是增函数的是 A.y = 3x + 1 B.f(x) 1 C.y = 1 — x D.f(x)答案 D 2.若函数 f(x) = J ,x>°, —1, x <0,则 f(x) A.偶函数 B.奇函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数 答案 B 3.已知 y = f(x) , x € ( — a , a), F(x) = f(x) + f( — x),则 F(x)是( ) 4 J JB.偶函数 A.奇函数C.既是奇函数又是偶函数D.非奇非偶函数4.(2015 •辽宁)已知函数f(x)是定义在R 上的奇函数,则下列函数中为奇函数的是① y = f(|x|) ② y = f( — x)③ y = xf(x)A.①③ C.①④④ y = f(x) + xB.②③ D.②④答案 D5.设函数f(x)和g(x)分别是R 上的偶函数和奇函数,则下列结论恒成立的是 (+ |g(x)|是偶函数B.f(x) — |g(x)|是奇函数 A.f(x)C.|f(x)| + g(x)是偶函数D.|f(x)|— g(x)是奇函数解析A. f( x) —B. f(x) —f( —x) <0C.f(x ) • f( —x) < 0D.f (x) • f( —x)>0--3 + a = — 5,…a = — 8. 10. 下列命题正确的是①对于函数y = f(x),若f( — 1) =— f(1),贝U f(x)是奇函数; ②若f(x)是奇函数,则f(0) = 0;③若函数f(x)的图像不关于y 轴对称,则f(x) 一定不是偶函数. 答案③11.设f(x)是定义在R 上的奇函数,当 x W0时,f(x) = 2x 2 — x ,贝U f(1)= 答案 —3答案 C解析 由f( — X )=- f(x)知f( — x)与f(x)互为相反数,•••只有C 成立.7.若f(x)为R 上的奇函数,给出下列四个说法:① f(x) + f( — x) = 0; ② f(x) — f( — x) = 2f(x);③f (x) • f( — x)<0 ; =—1.其中一定正确的个数为(A.OB.1C.2D.3答案 解析 ••• f(x)在R 上为奇函数,. ■- f( — x) =— f(x).•f(x)+ f( — x) = f(x) — f(x) = 0,故①正确.f(x) — f( — x) = f(x) + f(x) = 2f(x),故②正确.当x = 0时, f(x) • f( — x) = 0,故③不正确. 当x = 0时,严)=0无意义,故④不正确.8.函数f(x) 的图像关于(A.y 轴对称 C.原点对称答案 D.直线y = x 对•••定乂域为(—m , 0) U (0 , +m )关于原点对称,f( — x) = — f(x) , • f(x) 的图像关于原点对称.9.如果定义在区间[3 + a , 5]上的函数f(x)为奇函数,那么a 的值为 __________________ .J r X I答案 —8解析 • f(x)定义域为[3 + a , 5],且为奇函数,解析 •f(x)奇函数,12. _________________________________________________ 若函数f(x) = x2—|x + a|为偶函数,则实数a = ___________________________________________答案 013. 定义在R 上的奇函数f(x)为增函数,偶函数g(x)在区间[0 ,+^)上的图像与f(x)的图 像重合,设a>b>0,给出下列不等式: ①f(b) — f( — a)>g(a) — g( — b); ②f(b) — f( — a)<g(a) — g(b); ③f(a)— f( — b)>g(b) — g( — a);④f(a) — f( — b)<g(b) — g( — a).其中成立的是 ___________ .答案①③ 解析 —f( — a) = f(a) , g( — b) = g(b),•••a>b>0,「. f(a)>f(b) , g(a)>g(b). ••• f(b) — f( — a) = f(b) + f(a) = g(b) + g(a) >g(a) — g(b) = g(a) — g( — b),•①成立.又••• g(b) — g( — a) = g(b) — g(a),•③成立解析 由条件知f( — x) + f(x) = 0,2 “ax +1=0, • c = 0. c — bx又 f(1) = 2,「. a + 1= 2b.4a + 1 4a +1 A H亠••• f(2)<3 ,•<3,「. <3,解得—1<a<2,「. a = 0 或 1. 2b a + 1b = j 或 1,由于 b € Z ,「. a = 1, b = 1,c = 0.1.已知f(x)是定义在[—2, 0) U (0 , 2]上的奇函数,f(x)的部分图像如图所示,那么f(x)的值域是 ___________答案 {y| — 3< y<— 2 或 2<y W 3}2.下面四个结论:①偶函数的图像一定与 y 轴相交;②奇函数的图像一定通过原点; ③偶函数的图像关于 y 轴对称;④既是奇函数,又是偶函数的函数一定是 f(x) = 0(x € R ).其中正确命题的个数是()B.2C.3答案 A14.设函数f(x) 2 “ax+1 是 bx + c奇函数(a , b , c € Z),且 f(1) = 2, f(2)<3,求a , b , c 的值.2 “ax + 1bx + c A.1 D.43.若对一切实数 x , y 都有 f(x + y) = f(x) + f(y).⑴求f(0),并证明:f(x)为奇函数; ⑵若 f(1) = 3,求 f( — 3).解析 ⑴令 x = y = 0 ,••• f(0) = 2f(0) ,••• f(0) = 0. 令 y =— x , f(0) = f(x) + f( — x) , • f( — x) =— f(x). • f(x)为奇函数.⑵•/f(1) = 3,令 x = y = 1,得 f(2) = 2f(1) = 6. • f(3) = f(1) + f(2) = 9.由①得f(x)为奇函数,• f( — 3) =— f(3) =— 9.24. 已知函数f(x) = p3x^是奇函数,且f(2) = 3,求实数p , q 的值.解析 ••• f(x)是奇函数,• f( — x) =— f(x),/ 、 2 2 2 2即p (— X )+ 2 = _ px + 2 即 px + 2 = px + 2 3 (— x ) + q 3x + q ' — 3x + q — 3x — q .…—3x + q = — 3x — q ,解得 q = 0,…f(x)又f(2) = |, 4p + 2 I 6 = 3 • 4p + 2= 10,得 p = 2. px 2+ 2 3x。
高中数学 三角函数正弦函数余弦函数的周期性与奇偶性讲义 新人教A版必修一第一册
第1课时正弦函数、余弦函数的周期性与奇偶性知识点一周期函数1.周期函数状元随笔关于最小正周期(1)并不是所有的周期函数都有最小正周期,如常数函数f(x)=C,对于任意非零常数T,都有f(x+T)=f(x),即任意常数T都是函数的周期,因此没有最小正周期.(2)对于函数y=A sin(ωx+φ)+B,y=A cos(ωx+φ)+B,可以利用公式T=2π|ω|求最小正周期.知识点二正弦函数、余弦函数的周期性和奇偶性状元随笔关于正、余弦函数的奇偶性(1)正弦函数是奇函数,余弦函数是偶函数,反映在图象上,正弦曲线关于原点(0,0)对称,余弦曲线关于y轴对称.(2)正弦曲线、余弦曲线既是中心对称图形又是轴对称图形.提醒:诱导公式三是正弦函数、余弦函数的奇偶性的另一种表示形式.[教材解难]1.教材P202思考函数的周期性与解析式中x的系数有关.2.教材P202思考知道了一个函数的周期性和奇偶性能更容易画出函数的图象,从而得到函数的性质. [基础自测]1.下列函数中,周期为π2的是( )A .y =sin x 2B .y =sin 2xC .y =cos x4D .y =cos 4x解析:对于A ,T =2π12=4π,对于B ,T =2π2=π,对于C ,T =2π14=8π,对于D ,T =2π4=π2.答案:D2.函数f (x )=sin(-x )的奇偶性是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数解析:由于x ∈R ,且f (-x )=sin x =-sin(-x )=-f (x ),所以f (x )为奇函数,故选A.答案:A3.下列函数中是偶函数的是( ) A .y =sin 2x B .y =-sin x C .y =sin|x | D .y =sin x +1解析:A 、B 是奇函数,D 是非奇非偶函数,C 符合f (-x )=sin|-x |=sin|x |=f (x ),∴y =sin|x |是偶函数.答案:C 4.函数y =sin ⎝⎛⎭⎪⎫π2-x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线x =π2对称解析:因为y =sin ⎝ ⎛⎭⎪⎫π2-x =cos x , 又因为cos(-x )=cos x ,为偶函数,所以根据余弦函数的图象和性质可知其图象关于y 轴对称. 答案:B题型一 求三角函数的周期[教材P 201例2] 例1 求下列函数的周期: (1)y =3sin x ,x ∈R ; (2)y =cos 2x ,x ∈R ;(3)y =2sin ⎝ ⎛⎭⎪⎫12x -π6,x ∈R .【解析】 (1)∀x ∈R ,有3sin(x +2π)=3sin x . 由周期函数的定义可知,原函数的周期为2π.(2)令z =2x ,由x ∈R 得z ∈R ,且y =cos z 的周期为2π,即cos(z +2π)=cos z ,于是cos(2x +2π)=cos 2x ,所以cos 2(x +π)=cos 2x ,x ∈R .由周期函数的定义可知,原函数的周期为π.(3)令z =12x -π6,由x ∈R 得z ∈R ,且y =2sin z 的周期为2π,即2sin(z +2π)=2sinz ,于是2sin ⎝ ⎛⎭⎪⎫12x -π6+2π=2sin ⎝ ⎛⎭⎪⎫12x -π6,所以2sin ⎣⎢⎡⎦⎥⎤12(x +4π)-π6=2sin ⎝ ⎛⎭⎪⎫12x -π6.由周期函数的定义可知,原函数的周期为4π.状元随笔 通常可以利用三角函数的周期性,通过代数变形,得出等式f(x +T)=f(x)而求出相应的周期.对于(2),应从余弦函数的周期性出发,通过代数变形得出cos 2(x +T)=cos 2x ,x∈R ; 对于(3),应从正弦函数的周期性出发,通过代数变形得出sin ⎣⎢⎡⎦⎥⎤12(x +T )-π6=sin ⎝ ⎛⎭⎪⎫12x -π6,x ∈R .教材反思求函数周期的方法(1)定义法:紧扣周期函数的定义,寻求对任意实数x 都满足f (x +T )=f (x )的非零常数T .该方法主要适用于抽象函数.(2)公式法:对形如y =A sin(ωx +φ)和y =A cos(ωx +φ)(其中A ,ω,φ是常数,且A ≠0,ω>0),可利用T =2πω来求.(3)图象法:可画出函数的图象,借助于图象判断函数的周期,特别是对于含绝对值的函数一般采用此法.跟踪训练1 (1)下列函数中,不是周期函数的是( ) A.y =|cos x | B .y =cos|x | C .y =|sin x | D .y =sin|x |(2)函数y =2sin ⎝ ⎛⎭⎪⎫x 3-π6的周期为________. 解析:(1)画出y =sin|x |的图象,易知y =sin|x |不是周期函数.(2)方法一 因为2sin ⎝ ⎛⎭⎪⎫x 3-π6+2π=2sin ⎝ ⎛⎭⎪⎫x 3-π6, 即2sin ⎣⎢⎡⎦⎥⎤13(x +6π)-π6=2sin ⎝ ⎛⎭⎪⎫x 3-π6. 所以y =2sin ⎝ ⎛⎭⎪⎫x 3-π6的最小正周期是6π.方法二 函数的周期T =2π|ω|=2π13=6π.答案:(1)D (2)6π(1)作出函数的图象,根据周期的定义判断.(2)利用周期的定义,需要满足f(x +T)=f(x) ;也可利用公式T =2π|ω|计算周期.题型二 正、余弦函数的奇偶性问题[经典例题] 例2 判断下列函数的奇偶性. (1)f (x )=cos ⎝ ⎛⎭⎪⎫2x +5π2; (2)f (x )=sin(cos x ).【解析】 (1)函数的定义域为R .且f (x )=cos ⎝ ⎛⎭⎪⎫π2+2x =-sin 2x .因为f (-x )=-sin(-2x )=sin 2x =-f (x ),所以函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +5π2是奇函数.(2)函数的定义域为R .且f (-x )=sin[cos(-x )]=sin(cos x )=f (x ), 所以函数f (x )=sin(cos x )是偶函数.先用诱导公式化简,再利用定义法判断函数的奇偶性.方法归纳利用定义判断函数奇偶性的三个步骤注意:若函数f (x )的定义域不关于原点对称,无论f (-x )与f (x )有何关系,f (x )仍然是非奇非偶函数.跟踪训练2 判断下列函数的奇偶性: (1)f (x )=|sin x |+cos x ; (2)f (x )=1-cos x +cos x -1. 解析:(1)函数的定义域为R ,又f (-x )=|sin(-x )|+cos(-x )=|sin x |+cos x =f (x ),所以f (x )是偶函数. (2)由1-cos x ≥0且cos x -1≥0,得cos x =1,从而x =2k π,k ∈Z ,此时f (x )=0,故该函数既是奇函数又是偶函数. (1)利用定义法判断函数的奇偶性.(2)由偶次根式被开方数大于等于0求出cos x 的值以及x 的值,最后判断函数的奇偶性.题型三 三角函数的奇偶性与周期性的综合应用[经典例题]例3 定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,求f ⎝ ⎛⎭⎪⎫5π3的值.【解析】 因为f (x )的最小正周期是π, 所以f ⎝⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫5π3-2π=f ⎝ ⎛⎭⎪⎫-π3, 因为f (x )是R 上的偶函数, 所以f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32.利用周期性 f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫53π-2π=f ⎝ ⎛⎭⎪⎫-π3,再利用奇偶性f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3,最后代入求值.方法归纳三角函数周期性与奇偶性的解题策略(1)探求三角函数的周期,常用方法是公式法,即将函数化为y =A sin(ωx +φ)或y =A cos(ωx +φ)的形式,再利用公式求解.(2)判断函数y =A sin(ωx +φ)或y =A cos(ωx +φ)是否具备奇偶性,关键是看它能否通过诱导公式转化为y =A sin ωx (A ω≠0)或y =A cos ωx (A ω≠0)其中的一个.跟踪训练3 若本例中函数的最小正周期变为π2,其他条件不变,求f ⎝ ⎛⎭⎪⎫-176π的值.解析:因为f (x )的最小正周期是π2,所以f ⎝ ⎛⎭⎪⎫-176π=f ⎝ ⎛⎭⎪⎫-3π+π6=f ⎝ ⎛⎭⎪⎫-6×π2+π6=f ⎝ ⎛⎭⎪⎫π6=sin π6=12利用周期性f ⎝ ⎛⎭⎪⎫-176π=f ⎝ ⎛⎭⎪⎫-3π+π6=f ⎝ ⎛⎭⎪⎫π6代入求值.课时作业 34一、选择题1.函数y =-5cos(3x +1)的最小正周期为( ) A.π3B .3π C.2π3 D.3π2解析:该函数的最小正周期T =2πω=2π3.答案:C2.函数f (x )=2sin 2x 的奇偶性为( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数解析:因为f (x )的定义域是R ,且f (-x )=2sin 2(-x )=-2sin 2x =-f (x ), 所以函数f (x )为奇函数. 答案:A3.函数f (x )=sin ⎝⎛⎭⎪⎫2 0112π-2 010x 是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数 解析:f (x )=sin ⎝⎛⎭⎪⎫2 0112π-2 010x=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π2-2 010x +1 005π=-sin ⎝ ⎛⎭⎪⎫π2-2 010x =-cos 2 010x , f (x )定义域为R ,且f (-x )=-cos(-2 010x )=-cos 2010x =f (x ), 所以函数f (x )为偶函数. 答案:B4.函数f (x )=x sin ⎝⎛⎭⎪⎫π2-x ( )A .是奇函数B .是非奇非偶函数C .是偶函数D .既是奇函数又是偶函数解析:由题,得函数f (x )的定义域为R ,关于原点对称,又f (x )=x sin ⎝⎛⎭⎪⎫π2-x =x cosx ,所以f (-x )=(-x )·cos(-x )=-x cos x =-f (x ),所以函数f (x )为奇函数.答案:A 二、填空题5.f (x )=sin x cos x 是________(填“奇”或“偶”)函数.解析:x ∈R 时,f (-x )=sin(-x )cos(-x )=-sin x cos x =-f (x ),即f (x )是奇函数.答案:奇6.函数y =cos (1-x )π2的最小正周期是________.解析:∵y =cos ⎝ ⎛⎭⎪⎫-π2x +π2,∴T =2ππ2=2π×2π=4.答案:47.函数f (x )是以2为周期的函数,且f (2)=3,则f (8)=________. 解析:∵f (x )的周期为2, ∴f (x +2)=f (x ),∴f (8)=f (2+3×2)=f (2)=3.答案:3 三、解答题8.求下列函数的最小正周期: (1)y =cos ⎝ ⎛⎭⎪⎫-2x +π6;(2)y =|sin x 2|. 解析:(1)利用公式T =2π|ω|,可得函数y =cos ⎝⎛⎭⎪⎫-2x +π6的最小正周期为T =2π|-2|=π. (2)易知函数y =sin x 2的最小正周期为T =2π12=4π,而函数y =⎪⎪⎪⎪⎪⎪sin x 2的图象是由函数y =sin x 2的图象将在x 轴下方部分翻折到上方后得到的,此时函数周期减半,即y =⎪⎪⎪⎪⎪⎪sin x 2的最小正周期为2π.9.判断下列函数的奇偶性. (1)f (x )=3cos 2x ;(2)f (x )=sin ⎝ ⎛⎭⎪⎫3x 4+3π2;(3)f (x )=x ·cos x . 解析:(1)因为x ∈R ,f (-x )=3cos(-2x )=3cos 2x =f (x ),所以f (x )=3cos 2x 是偶函数. (2)因为x ∈R ,f (x )=sin ⎝⎛⎭⎪⎫3x 4+3π2=-cos 3x 4,所以f (-x )=-cos 3(-x )4=-cos 3x 4=f (x ),所以函数f (x )=sin ⎝ ⎛⎭⎪⎫3x 4+3π2是偶函数.(3)因为x ∈R ,f (-x )=-x ·cos(-x )=-x ·cos x =-f (x ), 所以f (x )=x cos x 是奇函数. [尖子生题库]10.已知函数y =12cos x +12|cos x |.(1)画出函数的图象;(2)这个函数是周期函数吗?如果是,求出它的最小正周期.解析:(1)y =12cos x +12|cos x |=⎩⎪⎨⎪⎧cos x ,x ∈⎝⎛⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),0,x ∈⎝ ⎛⎦⎥⎤2k π+π2,2k π+3π2(k ∈Z ),函数图象如图所示.(2)由图象知这个函数是周期函数,且最小正周期是2π.。
最新人教A版高中数学必修一课件:5.4.2 第一课时 正弦函数、余弦函数的周期性与奇偶性
(3)由11-+ssiinn
x>0, x>0,
得-1<sin x<1,
解得定义域为xx∈R
且x≠kπ+π2
,k∈Z ,
∴f(x)的定义域关于原点对称.
又∵f(x)=lg(1-sin x)-lg(1+sin x),
∴f(-x)=lg[1-sin(-x)]-lg[1+sin(-x)]
=lg(1+sin x)-lg(1-sin x)=-f(x),∴f(x)为奇函数.
(二)基本知能小试 1.判断正误
(1)若 sin23π+π6=sinπ6,则23π是函数 y=sin x 的一个周期. (2)所有的周期函数都有最小正周期. (3)函数 y= sin x是奇函数.
答案:(1)× (2)× (3)×
() () ()
2.函数 y=2cos2x+π2是 A.周期为 π 的奇函数 C.周期为 2π 的奇函数
二、应用性——强调学以致用
2.[好题共享——选自人教B版新教材]若弹簧振子相对平衡位置的位移x(单位: cm)与时间t(单位:s)之间的函数关系如图所示.
(1)求该函数的周期;
A.-12
1 B.2
C.-
3 2
3 D. 2
()
[解析] (1)y=cos|2x|是偶函数,y=|sin 2x|是偶函数,y=sinπ2+2x=cos 2x 是偶函数,y=cos32π-2x=-sin 2x 是奇函数,根据公式得其最小正周期 T=π.
(2)f53π=f53π-π=f23π
=f23π-π=f-π3=fπ3=sinπ3=
由图象可知 T=π.
[方法技巧] 求三角函数最小正周期的常用方法
(1)公式法:将函数化为 y=Asin(ωx+φ)+B 或 y=Acos(ωx+φ)+B 的形式, 再利用 T=|2ωπ|求得.
人教A版必修时函数奇偶性的定义及判定课件1
(
)
A.y=-f(x)
B.y=f(3x)
C.y=f(-x)
D.y=f(x2)
解析:由偶函数的定义知,函数的定义域一定关于原点对称,
因为 y=f(x)的定义域为[0,1],所以 y=-f(x)的定义域是[0,1],故不是偶函数;
y=f(3x)的定义域是[0, ],不是偶函数;y=f(-x)的定义域是[-1,0],不是偶函数;由
所以只要将 y=f(2x+1)的图象向右平移 个单位长度即可得到 y=f(2x)的图象,
因为 y=f(2x+1)是偶函数,
所以其图象关于 y 轴对称,而 y=f(2x)的图象则关于直线 x= 对称.
故选 C.
当堂检测
1.函数 f(x)= +2x 的图象(
C
)
A.关于 y 轴对称
B.关于直线 x=1 对称
[例3] 已知函数f(x)=mx2+nx+3m+n是偶函数,且其定义域为[m-1,2m].
(2)求函数f(x)在其定义域上的最大值.
2
解:(2)由(1)得 f(x)=x +1,
定义域为[-,],
其图象是开口方向向上,且以 y 轴为对称轴的抛物线,当 x=±时,f(x)取最大
值.
+
-
解得 p=2,
所以所求解析式为 f(x)=
+
-
.
=-,
法二
因为奇函数 f(x)的定义域为 I={x|x≠ }关于原点对称,故 =0,所以 q=0.
2016-2017学年人教A版必修一 单调性与奇偶性的综合应用 习题课 课件(17张)
首页
X 新知导学 D答疑解惑
INZHIDAOXUE
AYIJIEHUO
D当堂检测
ANGTANGJIANCE
1.函数的奇偶性是函数定义域上的概念,而函数的单调性是区间上的 概念,因此在判断函数的单调性的时候,一定要指出函数的单调区间. 2.在定义域关于原点对称的前提下,f(x)=x2n-1(n∈Z)型函数都是奇函 数;f(x)=x2n(n∈Z)型函数及常数函数都是偶函数. 3.如果f(x),g(x)的定义域分别是D1,D2,那么在它们定义域中的公共区 间上,满足奇+奇=奇,偶+偶=偶,奇×奇=偶,奇×偶=奇,偶×偶=偶. 4.若f(x)为奇函数,且在区间[a,b](a<b)上是增(减)函数,则f(x)在区间[b,-a]上是增(减)函数;若f(x)为偶函数,且在区间[a,b](a<b)上是增(减) 函数,则f(x)在区间[-b,-a]上是减(增)函数,即奇函数在关于原点对称 的两个区间上的单调性相同;偶函数在关于原点对称的两个区间上 的单调性相反. 5.若f(x)为奇函数,且在x=0处有定义,则f(0)=0;若f(x)为偶函数,则 f(x)=f(-x)=f(|x|).
习题课——单调性与奇偶性的综合应用
-1-
首页
X 新知导学 D答疑解惑
INZHIDAOXUE
AYIJIEHUO
D当堂检测
ANGTANGJIANCE
学习目标 思维脉络 1.掌握利用函数 奇偶性求函数 解析式的方法. 2.理解并运用函 数的单调性与 奇偶性解决比 较大小、求最 值、解不等式 等综合问题.
首页
X 新知导学 D答疑解惑
INZHIDAOXUE
AYIJIEHUO
D当堂检测
ANGTANGJIANCE
(人教版A版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)
(人教版A 版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)第一章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,则下列关系正确的是( )A .AB =B .A B ⊆C .B A ⊆D .A B =∅∩2.已知集合{}2|320A x ax x =-+=中有且只有一个元素,那么实数a 的取值集合是( )A .98⎧⎫⎨⎬⎩⎭B .908⎧⎫⎨⎬⎩⎭,C .{}0D .203⎧⎫⎨⎬⎩⎭, 3.已知函数()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩,>,,≤,则()2f 的值等于( )A .4B .3C .2D .无意义4.已知函数()f x 的定义域为R ,则实数k 的取值范围是( )A .()()00-∞+∞,∪,B .[]04,C .[)04,D .()04,5.已知两个函数()f x 和()g x 的定义域和值域都是集合{}123,,,其定义如表所示,则()()f g x 对应的三个值依次为( )A .2,1,3B .1,2,3C .3,2,1D .1,3,26.已知函数()221x f x x =+,则()()()()1111234234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .3B .4C .72D .927.设全集为R ,函数()01x f x +=定义域为M ,则M =R ð( )A .{}|2x x ≥B .{}|21x x x -<且≠C .{}|21x x x -≥或=D .{}|21x x x ->或=8.若函数()()221341x x x f x a x a x ⎧-+⎪=⎨-+⎪⎩,<,,≥满足对任意实数12x x ≠,都有()()12120f x f x x x -->成立,则实数a 的取值范围是( )A .()1+∞,B .[)13,C .233⎡⎫-⎪⎢⎣⎭, D .()3-∞,9.已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于( ) A .4B .3C .2D .110.已知()22f x x ax =-+与()ag x x=在区间[]12,上都是减函数,则a 的取值范围为( )A .()01,B .(]01,C .()()1001-,∪, D .[)(]1001-,∪, 11.已知(){}2min 26f x x x x x =--,,,则()f x 的值域是( )A .(]2-∞,B .(]3-∞,C .[]02,D .[)2+∞,12.已知定义域为R 的函数()f x 在区间()4+∞,上为减函数,且函数()4y f x =+为偶函数,则( ) A .()()23f f >B .()()25f f >C .()()35f f >D .()()36f f >二、填空题:本大题共4小题,每小题5分,共20分.13.设集合{}24A t =-,,集合{}591B t t =--,,,若9A B ∈∩,则实数t =________.14.)13fx =+,则()f x =________.15.若函数y =的定义域为R ,则a 的取值范围为________. 16.已知函数()y f x =在()()00-∞+∞,∪,上为奇函数,且在()0+∞,上为增函数,()20f -=,则不等式()x f x ⋅<0的解集为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知函数()mf x x x=+,且()13f =. (1)求m ;(2)判断函数()f x 的奇偶性.18.(本小题满分12分)设全集U =R ,{}|13A x x =≤≤,{}|23B x a x a =+<<. (1)当1a =时,求()U A B ∩ð;(2)若()U A B B =∩ð,求实数a 的取值范围.19.(本小题满分12分)设函数()()21f x ax bx a b =++,为实数,()()()00.f x x F x f x x ⎧⎪=⎨-⎪⎩,>,,<(1)若()10f -=,且对任意实数x 均有()0f x ≥成立,求()F x 的表达式;(2)在(1)的条件下,当[]22x ∈-,时,()()g x f x kx =-是单调函数,求实数k 的取值范围.20.(本小题满分12分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2千克/年;当420x <≤时,v 是x 的一次函数;当20x >时,因缺氧等原因,v 的值为0千克/年. (1)当020x <≤时,求v 关于x 的函数表达式.(2)当养殖密度x 为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.21.(本小题满分12分)定义在()11-,上的函数()f x 满足()()f x f x -=-,且()()1120f a f a -+-<.若()f x 是()11-,上的减函数,求实数a 的取值范围.22.(本小题满分12分)已知()f x 是二次函数,()()050f f ==,且()112f -=. (1)求()f x 的解析式;(2)求()f x 在[]0m ,上的最小值()g m ;(3)对(2)中的()g m ,求不等式()()21g t g t -<的解集.第一章综合测试答案解析一、 1.【答案】C【解析】由集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,得{}101B =-,,.又因为集合{}21,0,1,2A =--,,所以B A ⊆,故选C .2.【答案】B【解析】Q 集合{}2|320A x ax x =-+=中有且只有一个元素,0a ∴=或0980a a ⎧⎨∆=-=⎩≠,,解得0a =或98a =,∴实数a 的取值集合是908⎧⎫⎨⎬⎩⎭,. 3.【答案】C【解析】()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩Q ,>,,≤,()()5125252f f +∴===-.故选C .4.【答案】B【解析】()f x Q 的定义域为R ,∴不等式210kx kx ++≥的解集为R .①当0k =时,10≥恒成立,满足题意;②当0k ≠时,2040k k k ⎧⎨∆=-⎩>,≤,解得04k <≤.综上,04k ≤≤.故选B . 5.【答案】A【解析】当1x =时,()11g =,()()()112f g f ==;当2x =时,()23g =,()()()231f g f ==;当3x =时,()32g =,()()()323f g f ==,故选A . 6.【答案】C【解析】因为()221x f x x =+,所以222111111x f x x x ⎛⎫⎪⎛⎫⎝⎭== ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,所以()11f x f x ⎛⎫+= ⎪⎝⎭, 故()()()()1111712343234112f f f f f f f ⎛⎫⎛⎫⎛⎫++++++=+= ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭.故选C . 7.【答案】C【解析】要使函数有意义,则120x x +⎧⎨-⎩≠0,>,得2x <且1x -≠,所以{}|21M x x x =<且≠-,所以{}|2M x x x ==R ≥或-1ð.故选C . 8.【答案】C【解析】Q 对任意实数12x x ≠,都有()()12120f x f x x x -->成立,()f x ∴在R 上是增函数,()230314121a a a -⎧⎪∴⎨-⨯+-+⨯⎪⎩>,≥,解得233a -≤<.故选C . 9.【答案】B【解析】()f x Q 是奇函数,()()11f f -=-. 又()g x Q 是偶函数,()()11g g ∴-=.()()()()112112f g g f -+=∴-=Q ,.① ()()()()114114f g f g +-=∴+=Q ,.②由①②,得()13g =. 10.【答案】B【解析】()()2222f x x ax x a a =-+=--+,其单调递减区间为()a ∞,+,()f x 在区间[]12,上是减函数,则1a ≤.又()ag x x=在区间[]12,上是减函数,则0a >.01a ∴<≤.11.【答案】B【解析】(){}2min 26f x x x x x =--Q ,,,的同一平面直角坐标系中分别作出22y x x =-,6y x =-,y x =的图像,并取其函数值较小的部分,如图所示.则由图像可知函数(){}2min 26f x x x x x =--,,的值域为(]3-∞,,故选B . 12.【答案】D【解析】()4y f x =+Q 为偶函数,()()44f x f x ∴-+=+.令2x =,得()()()()224246f f f f =-+=+=,同理,()()35f f =.又知()f x 在()4+∞,上为减函数,56Q <,()()56f f ∴>.()()23f f ∴<,()()()265f f f =<,()()()356f f f =>.故选D . 二、13.【答案】3-【解析】{}24A t =-Q ,,{}591B t t =--,,,且9A B ∈∩,29t ∴=,解得3t =或3t =-,当3t =时,根据集合元素互异性知不符合题意,舍去;当3t =-时,符合题意.14.【答案】()()2131x x -+≥【解析】由题设1t =,()21x t ∴=-,1t ≥,()()213f t t ∴=-+,()()()2131f x x x ∴=-+≥. 15.【答案】[]19,【解析】Q函数y =的定义域为R ,()()2221101a x a x a ∴-+-++≥恒成立. 当210a -=时,1a =±,当1a =时,不等式恒成立,当1a =-时,无意义;当210a -≠时,()()22210214101a a a a ⎧-⎪⎨∆=---⋅⎪+⎩>,≤,解得19a <≤.综上所述,a 的取值范围为[]19,. 16.【答案】()()2002-,∪, 【解析】根据题意画出()f x 的大致图像,如图所示.由图像可知当20x -<<或02x <<时,()0x f x ⋅<. 三、17.【答案】解(1)()13f =Q ,13m ∴+=,2m ∴=. (2)由(1)知,()2f x x x=+,其定义域是{}|0x x x ∈R ≠,,关于原点对称. 又()()22f x x x f x x x ⎛⎫-=--=-+=- ⎪⎝⎭Q ,∴函数()f x 是奇函数. 18.【答案】解(1)当1a =时,{}|24B x x =<<.{}|13A x x =Q ≤≤,{}|13U A xx x ∴=<或>ð,(){}|34U A B x x ∴=∩<<ð.(2)若()U A B B =∩ð,则U B A ⊆ð. ①B =∅时,23a a +≥,则3a ≥;②B ∅≠时,2331a a a +⎧⎨+⎩<,≤或2323a a a +⎧⎨⎩<,≥,则2a -≤或332a ≤<.综上,实数a 的取值范围是(]322⎡⎫-∞-+∞⎪⎢⎣⎭,∪,. 19.【答案】解(1)()10f -=Q ,1b a ∴=+,由()0f x ≥恒成立,知0a >且()()22241410b a a a a ∆=-=+-=-≤,1a ∴=,从而()221f x x x =++,()()()221010.x x F x x x ⎧+⎪∴=⎨-+⎪⎩,>,,< (2)由(1)可知()221f x x x =++,()()()221g x f x kx x k x ∴=-=+-+. ()g x Q 在[]22-,上是单调函数, 222k -∴--≤或222k--≥,解得2k -≤或6k ≥. 即实数k 的取值范围是(][)26-∞-+∞,∪,. 20.【答案】解(1)由题意得当04x <≤时,2v =. 设当420x <≤时,v ax b =+,由已知得20042a b a b +=⎧⎨+=⎩,,解得1852a b ⎧=-⎪⎪⎨⎪=⎪⎩,,所以1582v x =-+.故函数20415420.82x v x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤ (2)设鱼的年生长量为()f x 千克/立方米,依题意,由(1)可得()220415420.82x x f x x x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤当04x <≤时,()f x 为增函数,故()()max 4428f x f ==⨯=;当420x <≤时,()()2215125108282f x x x x =-+=--+,()()max 1012.5f x f ==.所以当020x <≤时,()f x 的最大值为12.5,即当养殖密度x 为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米. 21.【答案】解:由()()1120f a f a -+-<, 得()()112f a f a ---<.()()f x f x -=-Q ,()11x ∈-,, ()()121f a f a ∴--<. 又()f x Q 是()11-,上的减函数, 1111211121,a a a a --⎧⎪∴--⎨⎪--⎩<<,<<,>解得203a <<. 故实数a 的取值范围是203⎛⎫⎪⎝⎭,.22.【答案】解(1)因为()f x 是二次函数,且()()050f f ==, 所以设()()()50f x ax x a =-≠. 又因为()1612f a -==,所以2a =,所以()()225210f x x x x x =-=-.(2)由(1)知()f x 的对称轴为52x =, 当502m <≤时,()f x 在区间[]0m ,上单调递减,所以()f x 的最小值为()2210f m m m =-;当52m >时,()f x 在区间502⎡⎤⎢⎥⎣⎦,上单调递减,在区间52m ⎡⎤⎢⎥⎣⎦,上单调递增,所以()f x 的最小值为52522f ⎛⎫=- ⎪⎝⎭.综上所述,()()2min521002255.22m m m f x g m m ⎧-⎪⎪==⎨⎪-⎪⎩,<≤,,>(3)因为()()21g t g t -<,所以210215212t t t t ⎧⎪-⎪-⎨⎪⎪-⎩>,<,<,解得112t <<,即不等式()()21g t g t -<的解集为1|12t t ⎧⎫⎨⎬⎩⎭<<.第二章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列等式一定正确的是( ) A .()lg lg lg xy x y =+B .222m n m n ++=C .222m n m n +⋅=D .2ln 2ln x x =2.若函数()12122m y m m x -=+-是幂函数,则m =( )A .1B .3-C .3-或1D .23.下列函数既是增函数,图像又关于原点对称的是( ) A .y x x =B .x y e =C .1y x=-D .2log y x =4.函数()ln 3y x =- )A .[)23,B .[)2+∞,C .()3-∞,D .()23,5.下列各函数中,值域为()0∞,+的是( ) A .22xy -= B.y C .21y x x =++D .113x y +=6.已知()x f x a =,()()log 01a g x x a a =>,且≠,若()()330f g <,那么()f x 与()g x 在同一坐标系内的图像可能是( )ABCD7.已知0.2log 2.1a =, 2.10.2b =,0.22.1c =则( ) A .c b a <<B .c a b <<C .a b c <<D .a c b <<8.已知()()221122x a x x f x x ⎧-⎪=⎨⎛⎫-⎪ ⎪⎝⎭⎩,≥,,<是R 上的减函数,则实数a 的取值范围是( )A .()2-∞,B .138⎛⎤-∞ ⎥⎝⎦,C .()02,D .1328⎡⎫⎪⎢⎣⎭, 9.已知函数()y f x =是定义在R 上的偶函数,当0x ≥时,()2x f x e x =+,则()ln 2f -=( ) A .12ln 22- B .12ln 22+ C .22ln2-D .22ln2+10.已知函数()()()x xf x x e ae x -=+∈R ,若()f x 是偶函数,记a m =;若()f x 是奇函数,记a n =.则2m n +的值为( ) A .0B .1C .2D .1-11.已知实数a ,b 满足等式20172018a b =,则下列关系式不可能成立的是( ) A .0a b << B .0a b << C .0b a <<D .a b =12.已知函数()221222log x mx m x m f x x x m ⎧-++⎪=⎨⎪⎩,≤,,>,其中01m <<,若存在实数a ,使得关于x 的方程()f x a =恰有三个互异的实数解,则实数m 的取值范围是( )A .104⎛⎫ ⎪⎝⎭,B .102⎛⎫ ⎪⎝⎭,C .114⎛⎫ ⎪⎝⎭,D .112⎛⎫ ⎪⎝⎭, 二、填空题:本大题共4小题,每小题5分,共20分.13.满足31164x -⎛⎫⎪⎝⎭>的x 的取值范围是________.14.若函数()212log 35y x ax =-+在[)1-+∞,上是减函数,则实数a 的取值范围是________.15.如图,矩形ABCD 的三个顶点A ,B ,C分别在函数y x =,12y x =,xy =⎝⎭的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.16.定义新运算⊗:当m n ≥时,m n m ⊗=;当m n <时,m n n ⊗=.设函数()()()2221log 2xx f x x ⎡⎤⊗-⊗⋅⎣⎦,则函数()f x 在()02,上的值域为________. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)计算下列各式的值: (1)7015log 243210.06470.250.58--⎛⎫--++⨯ ⎪⎝⎭;(2)()2235lg5lg2lg5lg20log 25log 4log 9+⨯++⨯⨯.18.(本小题满分12分)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-. (1)求()f x 的解析式;(2)若对任意的t ∈R ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.19.(本小题满分12分)已知实数x 满足9123270x x -⋅+≤,函数()2log 2xf x =⋅. (1)求实数x 的取值范围;(2)求函数()f x 的最值,并求此时x 的值.20.(本小题满分12分)已知函数()x f x a =,()2x g x a m =+,其中0m >,0a >且1a ≠.当[]11x ∈-,时,()y f x =的最大值与最小值之和为52. (1)求a 的值;(2)若1a >,记函数()()()2h x g x mf x =-,求当[]0x ∈,1时,()h x 的最小值()H m .21.(本小题满分12分)以德国数学家狄利克雷(l805-1859)命名的狄利克雷函数定义如下:对任意的x ∈R ,()10.x D x x ⎧=⎨⎩,为有理数,,为无理数研究这个函数,并回答如下问题:(1)写出函数()D x 的值域;(2)讨论函数()D x 的奇偶性;(3)若()()()212xx D x x f x D x x ⎧-⎪=⎨⎪⎩+,为有理数,+,为无理数,,求()f x 的值域.22.(本小题满分12分)若函数()f x 满足()()21log 011a a f x x a a a x ⎛⎫=⋅- ⎪-⎝⎭>,且≠. (1)求函数()f x 的解析式,并判断其奇偶性和单调性;(2)当()2x ∈-∞,时,()4f x -的值恒为负数,求a 的取值范围.第二章综合测试答案解析一、 1.【答案】C【解析】对于A ,D ,若x ,y 为非正数,则不正确;对于B ,C ,根据指数幂的运算性质知C 正确,B 错误.故选C . 2.【答案】B【解析】因为函数()12122m y m n x -=+-是幂函数,所以22211m m m +-=且≠,解得3m =-. 3.【答案】A【解析】2200x x y x x x x ⎧⎪==⎨-⎪⎩,≥,,<为奇函数且是R 上的增函数,图像关于原点对称;x y e =是R上的增函数,无奇偶性;1y x=-为奇函数且在()0-∞,和()0+∞,上单调递增,图像关于原点对称,但是函数在整个定义域上不是增函数;2log y x =在()0+∞,上为增函数,无奇偶性.故选A . 4.【答案】A【解析】函数()ln 3y x =-x 满足条件30240x x -⎧⎨-⎩>,≥,解得32x x ⎧⎨⎩<,≥,即23x ≤<,所以函数的定义域为[)23,,故选A . 5.【答案】A【解析】对于A,222xxy -⎛== ⎝⎭的值域为()0+∞,;对于B ,因为120x -≥,所以21x ≤,0x ≤,y (]0-∞,,所以021x <≤,所以0121x -≤<,所以y 的值域是[)01,;对于C ,2213124y x x x ⎛⎫=++=++ ⎪⎝⎭的值域是34⎡⎫+∞⎪⎢⎣⎭,;对于D ,因为()()1001x ∈-∞+∞+,∪,,所以113x y +=的值域是()()011+∞,∪,. 6.【答案】C【解析】由指数函数和对数函数的单调性知,函数()x f x a =与()()log 01a g x x a a =>,且≠在()0+∞,上的单调性相同,可排除B ,D .再由关系式()()330f g ⋅<可排除A ,故选C . 7.【答案】C【解析】 2.100.200.20.2log 2.1log 1000.20.21 2.1 2.1 1.a b c a b c ======∴Q <,<<,><<.故选C . 8.【答案】B【解析】由题意得,函数()()221122x a x x f x x ⎧-⎪=⎨⎛⎫-⎪ ⎪⎝⎭⎩,≥,,<是R 上的减函数,则()2201122,2a a -⎧⎪⎨⎛⎫--⨯⎪⎪⎝⎭⎩<,≥解得138a ≤,故选B .9.【答案】D【解析】Q 函数()y f x =是定义在R 上的偶函数,且当0x ≥时,()2x f x e x =+,()()ln 2ln 2ln 22ln 222ln 2f f e ∴-==+=+.故选D .10.【答案】B【解析】当()f x 是偶函数时,()()f x f x =-,即()()x x x x x e ae x e ae --+=-⋅+,即()()10x x a e e x -++=.因为上式对任意实数x 都成立,所以1a =-,即1m =-.当()f x 是奇函数时,()()f x f x =--,即()()x x x xx e ae x e ae --+=+,即()()10x x a e e x ---=.因为上式对任意实数x 都成立,所以1a =,即1n =.所以21m n +=.11.【答案】A【解析】分别画出2017x y =,2018x y =的图像如图所示,实数a ,b 满足等式20172018a b =,由图可得0a b >>或0a b <<或0a b ==,而0a b <<不成立.故选A .12.【答案】A【解析】当01m <<时,函数()221222log x mx m x m f x x x m ⎧-++⎪=≤⎨⎪⎩,≤,,>,的大致图像如图所示.Q 当x m ≤时,()()2222222f x x mx m x m =-++=-+≥,∴要使得关于x 的方程()f x a =有三个不同的根,则12log 2m >.又01m <<,解得104m <<.故选A .二、13.【答案】()1-∞,【解析】由题可得,321144x --⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭>,则32x --<,解得1x <.14.【答案】(]86--,【解析】令()235g x x ax =-+,其图像的对称轴为直线6a x =.依题意,有()1610ag ⎧-⎪⎨⎪-⎩≤,>,即68.a a -⎧⎨-⎩≤,>故(]86a ∈--,. 15.【答案】1124⎛⎫ ⎪⎝⎭,【解析】由图像可知,点()2A A x ,在函数y x =的图像上,所以2A x =,2122A x ⎛== ⎝⎭.点()2B B x ,在函数12y x =的图像上,所以122B x =,4B x =.点()4,C C y在函数2x y ⎛= ⎝⎭的图像上,所以4124C y ==⎝⎭.又因为12D A x x ==,14D C y y ==,所以点D 的坐标为1124⎛⎫ ⎪⎝⎭,. 16.【答案】()112,【解析】根据题意,当22x ≥,即1x ≥时,222x x ⊗=;当22x <,即1x <时,222x ⊗=.当2log 1x ≤,即02x <≤时,21log 1x ⊗=;当21log x <,即2x >时,221log log x x ⊗=. ()()2220122122log 2 2.x x x x xx f x x x x ⎧⎪⎪∴=-⎨⎪-⋅⎪⎩,<<,,≤≤,,> ∴①当01x <<时,()2x f x =是增函数,()12f x ∴<<; ②当12x ≤<,()221122224xxx f x ⎛⎫=-=-- ⎪⎝⎭,1222 4.x x ∴Q ≤<,≤<()221111242424f x ⎛⎫⎛⎫∴---- ⎪ ⎪⎝⎭⎝⎭≤<,即()212f x ≤<.综上,()f x 在()02,上的值域为()112,. 三、17.【答案】解(1)70515log 244321510.06470.250.51224822--⎛⎫⎛⎫--++⨯=-++⨯= ⎪ ⎪⎝⎭⎝⎭.(2)()()22352lg52lg 22lg3lg5lg 2lg5lg 20log 25log 4log 9lg5lg5lg 2lg 21lg 2lg3lg5+⨯++⨯⨯=++++⨯⨯11810=++=.18.【答案】解(1)Q 定义域为R 的函数()f x 是奇函数,()00f ∴=.Q 当0x <时,0x ->,()23x xf x --∴-=-. 又Q 函数()f x 是奇函数,()()f x f x ∴-=-,()23x xf x -∴=+. 综上所述,()2030020.3xx x x f x x xx -⎧-⎪⎪==⎨⎪⎪+⎩,>,,,,<(2)()()51003f f -==Q >,且()f x 为R 上的单调函数,()f x ∴在R 上单调递减.由()()22220f t t f t k -+-<得()()2222f t t f t k ---<. ()f x Q 是奇函数,()()2222f t t f k t ∴--<.又()f x Q 是减函数,2222t t k t ∴-->, 即2320t t k -->对任意t ∈R 恒成立,4120k ∴∆=+<,解得13k -<,即实数k 的取值范围为13⎛⎫-∞- ⎪⎝⎭,. 19.【答案】解(1)由9123270x x -⋅+≤,得()23123270xx -⋅+≤,即()()33390x x --≤,所以339x ≤≤,所以12x ≤≤,满足02x>0.所以实数x 的取值范围为[]12,.(2)()()()()2222222231log log 1log 2log 3log 2log 224x f x x x x x x ⎛⎫=⋅=--=-+=-- ⎪⎝⎭.因为12x ≤≤,所以20log 1x ≤≤.所以2log 1x =,即2x =时,()min 0f x =; 当2log 0x =,即1x =时,()max 2f x =.故函数()f x 的最小值为0,此时2x =,最大值为2,此时1x =.20.【答案】解(1)()f x Q 在[]11-,上为单调函数,()f x ∴的最大值与最小值之和为152a a -+=,2a ∴=或12a =. (2)1a Q >,2a ∴=.()2222x x h x m m =+-⋅,即()()2222xx h x m m =-⋅+.令2x t =,则()h x 可转化为()22k t t mt m =-+,其图像对称轴为直线t m =. []01x ∈Q ,,[]12t ∴∈,,∴当01m <<时,()()11H m k m ==-+;当12m ≤≤时,()()2H m k m m m ==-+; 当2m >时,()()234H m k m ==-+.综上所述,()21011234 2.m m H m m m m m m -+⎧⎪=-+⎨⎪-+⎩,<<,,≤≤,,>21.【答案】解(1)函数()D x 的值域为{}01,.(2)当x 为有理数时,则x -为无理数,则()()1D x D x -==; 当x 为无理数时,则为x -为无理数,则()()0D x D x -==. 故当x ∈R 时,()()D x D x -=,所以函数()D x 为偶函数.(3)由()D x 的定义知,()22xx x f x x ⎧⎪=⎨⎪⎩,为有理数,,为无理数.即当x ∈R 时,()2x f x =.故()f x 的值域为()0+∞,.22.【答案】解(1)令log a x t =,则t x a =,()()21t t af t a a a -∴=--. ()()()21x x af x a a x a -∴=-∈-R .()()()()2211x x x x a af x a a a a f x a a ---=-=--=---Q ,()f x ∴为奇函数.当1a >时,xy a =为增函数,xy a -=-为增函数,且2201a a ->,()f x ∴为增函数.当01a <<时,x y a =为减函数,xy a -=-为减函数,且2201a a -<,()f x ∴为增函数.()f x ∴在R 上为增函数.(2)()f x Q 是R 上的增函数,()4y f x ∴=-也是R 上的增函数.由2x <,得()()2f x f <,要使()4f x -在()2-∞,上恒为负数,只需()240f -≤,即()22241a a a a ---≤. 422141a a a a-∴⋅-≤,214a a ∴+≤,2410a a ∴-+≤,22a ∴≤.又1a Q ≠,a ∴的取值范围为)(21,2⎡⎣.第三章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某同学用二分法求方程338=0x x +-在()12x ∈,内近似解的过程中,设()=338x f x x +-,且计算()10f <,()20f >,()1.50f >,则该同学在第二次应计算的函数值为( ) A .()0.5fB .()1.125fC .()1.25fD .()1.75f2.函数()22=log f x x x +的零点所在的区间为( )A .1142⎛⎫ ⎪⎝⎭,B .112⎛⎫ ⎪⎝⎭,C .(D .)3.有一组实验数据如表所示:下列所给函数模型较适合的是( ) A .()=log 1a y x a >B .()=1y ax b a +>C .()2=0y ax b a +>D .()=log 1a y x b a +>4.根据表中的数据,可以判定方程x 的一个根所在的区间为( )A .()10-,B .()01,C .()12,D .()23,5.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( ) A .108元B .105元C .106元D .118元6.有一个盛水的容器,由悬在它上空的一根水管匀速向容器内注水,直至把容器注满.在注水过程中,时刻t 与水面高度y 的函数关系如图所示,图中PQ 为一线段,则与之对应的容器的形状是图中的( )AB CD7.已知()()()=2f x x a x b ---,并且α,β是函数()f x 的两个零点,则实数a ,b ,α,β的大小关系可能是( )A .a b αβ<<<B .a b αβ<<<C .a b αβ<<<D .a b αβ<<<8.函数()2230=2ln 0x x x f x x x ⎧+-⎨-+⎩,≤,,>的零点个数为( )A .0B .1C .2D .39.已知函数()231=24log f x x x x-+++,若()113x ∈,,()23x ∈+∞,,则( ) A.()10f x >,()20f x < B.()10f x <,()20f x > C.()10f x <,()20f x <D.()10f x >,()20f x >10.如图所示,ABC △为等腰直角三角形,直线l 与AB 相交且l AB ⊥,直线l 截这个三角形所得的位于直线右方的图形面积为y ,点A 到直线l 的距离为x ,则()=y f x 的图像大致为四个选项中的( )AB CD11.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流()0100x x <<人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x %.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15 B .16 C .17 D .18 12.已知函数()2=e x xf x --(e 为自然对数的底数),则方程()21=0f x -的实数根的个数为( ) A .1B .2C .3D .4二、填空题:本大题共4小题,每小题5分,共20分.13.用二分法求图像连续不断的函数()f x 在区间[]15,上的近似解,验证()()150f f ⋅<,给定精确度=0.01ε,取区间()15,的中点115==32x +,计算得()()110f f x ⋅<,()()150f x f ⋅>,则此时零点0x ∈________.(填区间)14.已知函数()2=log 2x f x x m +-有唯一的零点,若它的零点在区间()12,内,则实数m 的取值范围是________.15.已知关于x 的方程210=x a -有两个不同的实根1x ,2x ,且21=2x x ,则实数=a ________. 16.某市出租车收费标准如下:起步价为8元,起步里程为3km (不超过3km 按起步价付费);超过3km 但不超过8km 时,超过部分按每千米2.15元收费;超过8km 时,超过部分按每千米2.85元收费.另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶的路程为________km .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的16%进行奖励;当销售利润超过10万元时,若超出A 万元,则超出部分按()52log 1A +万元进行奖励.记奖金为y (单位:万元),销售利润为x (单位:万元).(1)写出该公司激励销售人员的奖励方案的函数模型.(2)如果业务员老张获得5.6万元的奖金,那么他的销售利润是多少万元?18.(本小题满分12分)已知函数()=211f x x x --+. (1)请在所给的平面直角坐标系中画出函数()f x 的图像.(2)根据函数()f x 的图像回答下列问题:(回答下述3个小题都只需直接写出结果,不需给出演算步骤)①求函数()f x 的单调区间;②求函数()f x 的值域;③求关于x 的方程()=2f x 在区间[]02,上解的个数.19.(本小题满分12分)已知函数()=e 1x f x -,()3=1exg x +.(1)求函数()g x 的值域;(2)求满足方程()()=0f x g x -的x 的值.20.(本小题满分12分)《污水综合排放标准》规定:污水排放企业进排污口的污水pH 值正常范围为[)69,.某化工企业对本单位污水出水口的pH 值进行全天24小时检测,根据统计资料发现pH 值的大小y 与检测时间点x 之间的函数图像如图所示,AB ,CD 为两条直线段,曲线BC 为函数y b 图像的一部分,其中()08A ,,()46B ,,()2010C ,,()248D ,.(1)请写出pH 值的大小y 与检测时间点x 之间的函数解析式;(2)试求该化工企业在一天内排放pH 值超标污水的时长.21.(本小题满分12分)已知函数()2=283f x x x m -++为R 上的连续函数.(1)若=4m -,试判断()=0f x 在()11-,上是否有根存在.若没有,请说明理由;若有,请在精确度为0.2(即根所在区间长度小于0.2)的条件下,用二分法求出使这个根0x 存在的区间.(2)若函数()f x 在区间[]11-,上存在零点,求实数m 的取值范围.22.(本小题满分12分)已知函数()()2=log 421x x f x a a +⋅++,x ∈R . (1)若=1a ,求方程()=3f x 的解集;(2)若方程()=f x x 有两个不同的实数根,求实数a 的取值范围.第三章综合测试答案解析一、 1.【答案】C【解析】()10f Q <,()20f >,()1.50f >,∴在区间()11.5,内函数()=338x f x x +-存在一个零点,因此在第二次应计算的函数值所对应的x 值为1 1.5=1.252+,故选C . 2.【答案】B【解析】Q 函数()22=log f x x x +在0x >时是连续单调递增函数,且()21=1log 1=10f +>,21113=log =02424f ⎛⎫+- ⎪⎝⎭<,()1102ff ⎛⎫∴⋅ ⎪⎝⎭<.∴函数()22=log f x x x +的零点所的在区间是112⎛⎫ ⎪⎝⎭,. 3.【答案】C【解析】由所给数据可知y 随x 的增大而增大,且增长速度越来越快,而A ,D 中的函数增长速度越来越慢,B 中的函数增长速度保持不变,故选C . 4.【答案】C【解析】设()()=2xf x e x -+,则由题设知()1=0.280f -<,()2=3.390f >,故方程2=0x e x --的一个根在区间()12,内.故选C . 5.【答案】A【解析】由题意,132元打9折,售价为()1320.9=118.8⨯元.因为这个价格相对进货价,获利10%,也就是说它是进货价的110%,所以进货价为()110118.8=108÷%元,故选A . 6.【答案】B【解析】由题中函数图像知,水面高度y 上升的速度先是由慢到快,后来速度保持不变,结合容器形状知选B . 7.【答案】C【解析】αQ ,β是函数()f x 的两个零点,()()==0f f αβ∴.又()()==20f a f b -Q <,结合二次函数的图像(如图所示)可知a ,b 必在α,β之间.故选C .8.【答案】C【解析】当0x ≤时,令223=0x x +-,得=3x -;当0x >时,令2ln =0x -+,得2=e x .所以函数有2个零点.故选C . 9.【答案】A【解析】()()23=15log f x x x --+-Q 在()1+∞,上单调递减,且()3=0f ,()10f x ∴>,()20f x <,故选A .10.【答案】C【解析】设=AB a ,则22221111==2222y a x x a --+,其图像为抛物线的一段,开口向下,顶点在y 轴上方.故选C . 11.【答案】B【解析】由题意,分流前产品A 的年产值为100t 万元,分流x 人后,产品A 的年产值为()()1001 1.2x x t -+%万元.由题意,得()()01001001 1.2100x x x x t t ∈⎧⎪⎨-+⎪⎩N <<,≥,,%解得5003x <≤,x ∈N ,所以x 的最大值为16.故选B . 12.【答案】B【解析】由函数()2=ex xf x --,可知方程()21=0f x -,即()1=2f x ,即21e =2x x --,整理可得2=ln2x x ---,即2ln 2=0x x -+或2ln 2=0x x --.在方程2ln 2=0x x -+中,1=14ln 20∆-<,方程无实数解;在方程2ln 2=0x x --中,2=14ln 20∆+>,方程有2个不等的实数解.综上可得,方程()21=0f x -的实数根的个数为2.故选B .二、13.【答案】()13,【解析】由()()150f f ⋅<,()()110f f x ⋅<及()()150f x f ⋅>可知()1f 与()1f x 异号,()1f x 与()5f 同号,则()011x x ∈,即()013x ∈,. 14.【答案】()25,【解析】由题意得()f x 在()0+∞,上单调递增,且()()120f f ⋅<,即()()250m m --<,解得25m <<. 15.【答案】6【解析】由210=x a -得2=10x a ±,由题设知12=10x a -,22=10x a +.因为21=2x x ,所以()211222=2=2x x x ,所以()210=10a a -+,解得=15a 或=6a .因为100a ->,所以=15a 不合题意,舍去,所以=6a . 16.【答案】9【解析】设乘客每次乘坐出租车需付费用为()f x 元,则由题意得()(]()(]()()8103=93 2.153895 2.158 2.858.x f x x x x x ⎧+∈⎪+-∈⎨⎪++-∈+∞⎩⨯⨯⨯,,,,,,,,令()=22.6f x ,显然()()95 2.158 2.85=22.68x x ⨯⨯++->,解得=9x . 三、17.【答案】(1)由题意得()50.16010=1.62log 910.x x y x x ⎧⎪⎨+-⎪⎩,<≤,,>(2)由(]010x ∈,,0.16 1.6x ≤,而=5.6y 可知,10x >. ()51.62log 9=5.6x ∴+-,解得=34x .∴老张的销售利润是34万元.18.【答案】(1)当10x -≥,即1x ≥时,()()=211=1f x x x x --+-; 当10x -<,即1x <时,()()=211=33f x x x x --+-.()f x 的图像如图所示.(2)①函数()f x 的单调递增区间为[)1+∞,; 函数()f x 的单调递减区间为(]1-∞,. ②函数()f x 的值域为[)0+∞,. ③方程()=2f x 在区间[]02,上解的个数为1. 19.【答案】(1)()31=1=31e e x x g x ⎛⎫++ ⎪⎝⎭,因为0x ≥,e 1x≥,所以101e x⎛⎫ ⎪⎝⎭<≤,1033e x⎛⎫⎪⎝⎭<≤,即()14g x <≤,故()g x 的值域是(]14,. (2)由()()=0f x g x -,得3e 2=0ex x--.当0x ≤时,方程无解; 当0x >时,3e 2=0ex x--,整理得()2e 2e 3=0x x --, 即()()e 1e 3=0x x+-.因为e 0x >,所以e =3x ,即=ln3x . 故满足方程()()=0f x g x -的x 的值为ln3.20.【答案】(1)()08A Q ,,()46B ,,∴线段AB 的方程是()1=8042y x x -+≤≤.将()46B ,,()2010C ,的坐标代入y b ,得b b ⎧⎪⎨⎪⎩,,解得=4=6.a b -⎧⎨⎩,故()6420y x +≤≤.()2010C Q ,,()248D ,,∴线段CD 的方程是()1=2020242y x x -+≤≤.综上,y 与x之间的函数解析式为18042=642012020242.x x y x x x ⎧-+⎪⎪-+⎪⎩,≤≤,,≤≤,,≤≤(2)由()08A ,,()46B ,知在AB 段排放污水的pH 值不超标; 在BC6=9,解得=13x ,故[)1320x ∈,时排放污水的pH 值超标, 时长是()2013=7-小时;在CD 段,令120=92x -+,解得=22x ,故[]2022x ∈,时排放污水的pH 值超标,时长是()2220=2-小时.因此该化工企业在一天内排放pH 值超标污水9小时.21.【答案】(1)当=4m -时,()=0f x ,即()2=281=0f x x x --. 可以求出()1=9f -,()1=7f -,则()()110f f -⋅<.又()f x 为R 上的连续函数,()=0f x ∴在()11-,上必有根存在.取中点0,计算得()0=10f -<,()()100f f -⋅<,∴根()010x ∈-,,取其中点12-,计算得17=022f ⎛⎫- ⎪⎝⎭>,∴根0102x ⎛⎫∈- ⎪⎝⎭,,取其中点14-,计算得19=048f ⎛⎫- ⎪⎝⎭>, ∴根0104x ⎛⎫∈- ⎪⎝⎭,,取其中点18-,计算得11=0832f ⎛⎫- ⎪⎝⎭>, ∴根0108x ⎛⎫∈- ⎪⎝⎭,,区间长度11=0.285<,符合要求.故符合要求的根0x 存在的区间为108⎛⎫- ⎪⎝⎭,.(2)()2=283f x x x m -++为开口向上的抛物线,对称轴为8==222x ⨯--, ∴在区间[]11-,上,函数()f x 单调递减.又()f x 在区间[]11-,上存在零点,只可能()()1010f f ⎧-⎪⎨⎪⎩≥,≤,即 28302830m m +++⎧⎨-++⎩≥,≤,解得133m -≤≤. 故所求实数m 的取值范围是133m -≤≤.22.【答案】(1)当=1a 时,()()2=log 422x xf x ++.由()=3f x ,得3422=2x x ++,所以426=0x x +-,因此()()2322=0x x +-,解得=1x .所以方程()=3f x 的解集为{}1.(2)方程()2log 421=x xa a x +⋅++有两个不同的实数根,即421=2x x x a a +⋅++有两个不同的实数根.设=2x t ,则()211=0t a t a +-++在()0+∞,上有两个不同的解.令()()2=11g t t a t a +-++,由已知可得()()()200102=1410g a a a ⎧⎪-⎪-⎨⎪⎪∆--+⎩>,>,>,解得13a --<<故实数a 的取值范围为(13--,.第四章综合测试一、单项选择题1.式子 )ABC .D .2.函数()lg 3f x x x =+-的零点所在区间为( ) A .(2,3)B .(3,4)C .(1,2)D .(0,1)3.设lg 2a =,lg3b =,则12log 5=( ) A .12aa b -+ B .12aa b-+ C .12aa b++ D .12aa b++ 4. 已知2log 0.1a =,0.12b =,110.2c =,则a ,b ,c 的大小关系是( ) A .a b c <<B .b c a <<C .c a b <<D .a cb <<5.函数1()(0,1)x f x a a a a=-≠>的图象可能是( )A .B .C .D .6.已知函数2,0()21,0x a x f x x x ⎧-≤=⎨->⎩,a R ∈,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞-B .(,1]-∞-C .[1,0)-D .(0,1]7.若()2()lg 21f x x ax a =-++在区间(,1]-∞上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,)+∞D .[2,)+∞8.已知函数()|lg |f x x =。
人教A版必修一1.3.2函数的奇偶性
链接一:轴对称图形:一个图形绕一条直线翻转180°后,能与原图形重合, 则这个图形称为轴对称图形,这条直线称为这个图形的对称轴. 中心对称图形:一个图形绕一个点旋转180°后,能与原图形重合,则这个 图形称为中心对称图形,这个点称为这个图形的对称中心. 链接二:抛物线 双曲线 直线y=2x的图象(如图所示)都具有对称性.
3.既奇又偶函数的表达式是
定义域A是关于原点对称的非空数集.
4.若奇函数在原点处有定义,则有f(0)=0. 探究要点二:利用定义判断函数奇偶性的步骤 1.求函数f(x)的定义域; 2.判断函数f(x)的定义域是否关于原点对称,若不关于原点对称,则该函数既 不是奇函数,也不是偶函数,若关于原点对称,则进行下一步; 3.结合函数f(x)的定义域,化简函数f(x)的解析式; 4.求f(-x); 5.根据f(-x)与f(x)之间的关系,判断函数f(x)的奇偶性. 判断函数奇偶性时要注意: 1.{0}是关于原点对称的,如函数 定义域是{0},f(x)=0,所以该函数既是奇函数又是偶函数. 2.函数根据奇偶性分为:奇函数,偶函数,既奇又偶函数,非奇非偶函数. 3.有时也根据下面的式子判断函数f(x)的奇偶性:对于定义域内的任意一个x, 若有f(x)-f(-x)=0成立,则f(x)为偶函数;对于定义域内的任意一个x,若 有f(x)+f(-x)=0成立,则f(x)为奇函数.
变式训练2-1:已知f(x)是定义在 上的奇函数,且x>0时, 求x<0时,f(x)的解析式. 解:当x<0时,-x>0,
类型三:利用函数奇偶性作函数图象 已知函数
(1)如图,已知f(x)在区间
上的图象,请据此在该坐标系中
补全函数f(x)在定义域内的图象,请说明你的作图依据; (2)求证:f(x)+g(x)=1(x≠0).
高中数学专题17函数奇偶性的图象和性质课件新人教A版必修1
1)若函数 f(x)是定义在区间D的奇函数,则具备以下性质: a.定义域关于原点对称,即:若定义域为[a,b],则a+b=0; b.对于定义域内任意x ,都有 f(x)f(x) ; c.奇函数的图像关于原点(0, 0)对称; d.若0∈D,则 f(0)= 0; e.奇函数在关于原点对称的区间具有相同的单调性.
解:(1)由f(x+2)=-f(x)得,f(x+4)=f[(x+2)+2]=-f(x+2)=f(x), 所以f(x)是以4为周期的周期函数,所以f(3)=f(3-4)=-f(1)=-1.
(2)由f(x)是奇函数与f(x+2)=-f(x),得f[(x-1)+2]=-f(x-1)=f[-(x-1)],即f(1+x)= f(1-x).故知函数y=f(x)的图像关于直线x=1对称.
函数奇偶性的图象和性质
1.具有奇偶性的函数的图象的特征: 偶函数的图象关于y轴对称; 奇函数的图象关于原点对称.
2.应用函数奇偶性可解决的四类问题及解题方法
(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解. (2)求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求 出,或充分利用奇偶性构造关于f(x)的方程(组),从而得到f(x)的解析式.
得f (x) x2x2 2x2,xx,x0,0,, 画出函数f(x)的图像,如图:
观察图像可知,函数f(x)的图像关于原点对称,故 函数f(x)为奇函数,且在(-1,1)上单调递减.故选C.
人教a版高考数学(理)一轮课件:2.3函数的奇偶性及周期性
2.奇偶函数的性质 (1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点 对称的区间上的单调性相反(填“相同”或“相反”). (2)在公共定义域内, ①两个奇函数的和函数是奇函数,两个奇函数的积函数是偶函数; ②两个偶函数的和函数、积函数是偶函数; ③一个奇函数、一个偶函数的积函数是奇函数. (3)若 f(x)是奇函数且在 x=0 处有定义,则 f(0)=0.
a+b 对称. 2
(4)y=f(x)的图象关于直线 x=a 及 x=b 对称,则 y=f(x)的周期为 2|a-b|. (5)y=f(x)的图象关于直线 x=a 及点(b,0)对称,则 y=f(x)的周期为 4|a-b|. (6)y=f(x)的图象关于点(a,0)及点(b,0)对称,则 y=f(x)的周期为 2|a-b|. 其中最后三条可以通过类比正弦函数的图象来记忆.
2.(2012·广东卷,4)下列函数为偶函数的是( A.y=sin x C.y=ex 【答案】D B.y=x3 D.y=ln x 2 + 1
)
【解析】∵ 函数 f(x)=ln x 2 + 1的定义域是 R 且 f(x)=ln (-x)2 + 1=ln x 2 + 1=f(x),∴ f(x)是偶函数. 3.已知 f(x)=ax2+bx 是定义在[a-1,2a]上的偶函数,那么 a+b 的值是( A.1 3
5.对称性 若函数 f(x)满足 f(a-x)=f(a+x)或 f(x)=f(2a-x),则函数 f(x)关于直线 x=a 对称.
1.对任意实数 x,下列函数为奇函数的是( A.y=2x-3 C.y=ln 5x 【答案】C B.y=-3x2 D.y=-|x|cos x
)
【解析】A 为非奇非偶函数,B,D 为偶函数,C 为奇函数. 设 y=f(x)=ln 5x=xln 5, 则 f(-x)=-xln 5=-f(x).
(完整版)函数的性质练习(奇偶性、单调性、周期性、对称性)(附答案)
函数的性质练习(奇偶性,单调性,周期性,对称性)1、定义在R 上的奇函数)(x f ,周期为6,那么方程0)(=x f 在区间[6,6-]上的根的个数可能是A.0B.1C.3D.52、f (x )是定义在R 上的以3为周期的偶函数,且f (2)=0,则方程f (x )=0在区间(0,6)内解的个数至少是( )A .1B .4C .3D .23、已知)(x f 是R 上的偶函数,)(x g 是R 上的奇函数,且)(x g =)1(-x f ,那么=)3120(fA.0B.2C. 2-D.2± 4、已知112)(-+=x x x f ,那么=+++++-+-+-)8()6()4()2()0()2()4()6(f f f f f f f f A.14 B.15 C. 16- D.165、已知)(x f 的定义域为R ,若)1()1(+-x f x f 、都为奇函数,则A.)(x f 为偶函数B.)(x f 为奇函数C.)(x f =)2(+x fD.)3(+x f 为奇函数6、定义在R 上的函数)(x f 对任意的实数x 都有)1()1(--=+x f x f ,则下列结论一定成立的是A.)(x f 的周期为4B. )(x f 的周期为6C. )(x f 的图像关于直线1=x 对称D. )(x f 的图像关于点(1 , 0) 对称 7、定义在R 上的函数)(x f 满足:)()(x f x f -=-,)1()1(x f x f -=+,当∈x [1-, 1] 时,3)(x x f =,则=)2013(fA.1-B.0C.1D.28、定义在R 上的函数)(x f 对任意的实数x 都有)2()2(x f x f -=+,并且)1(+x f 为 偶函数. 若3)1(=f ,那么=)101(fA.1B.2C.3D.49、已知f (x )(x ∈R)为奇函数,f (2)=1,f (x +2)=f (x )+f (2),则f (3)等于( )A.12 B .1 C.32 D .2 10、若奇函数f (x )(x ∈R)满足f (3)=1,f (x +3)=f (x )+f (3),则f ⎝⎛⎭⎫32 等于( )A .0B .1 C.12 D .-1211、已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)12、设()f x 为定义在R 上的奇函数,满足()()2f x f x +=-,当01x ≤≤时()f x x =,则 ()7.5f 等于 ( )A .0.5B .0.5-C .1.5D . 1.5-13、设()f x 是定义在R 上的偶函数,且在(-∞,0)上是增函数,则()2f -与()223f a a -+ (a R ∈)的大小关系是 ( )A .()2f -<()223f a a -+B .()2f -≥()223f a a -+C .()2f ->()223f aa -+D .与a 的取值无关14、若函数()f x 为奇函数,且当0x >时,()1f x x =-,则当0x <时,有 ( )A .()f x 0>B .()f x 0<C .()f x ()f x -≤0D .()f x -()f x -0> 15、已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( )A .a ≤-3B .a ≥-3C .a ≤5D .a ≥317、已知函数()()221,f x x ax b b a b R =-++-+∈对任意实数x 都有()()11f x f x -=+ 成立,若当[]1,1x ∈-时,()0f x >恒成立,则b 的取值范围是 ( ) A .10b -<< B .2b >C .12b b <->或 D .不能确定 18、已知函数()()2223f x x x =+-,那么( )A .()y f x =在区间[]1,1-上是增函数B .()y f x =在区间(],1-∞-上是增函数C .()y f x =在区间[]1,1-上是减函数D .()y f x =在区间(],1-∞-上是减函数19、函数()y f x =在()0,2上是增函数,函数()2y f x =+是偶函数,则下列结论中正确的 是 ( ) A .()57122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()57122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭ C .()75122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()75122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭20、设函数()f x 是R 上的奇函数,且当0x >时,()23xf x =-,则()2f -等于( )A .1-B .114C .1D .114-21、设函数)(x f 是R 上的偶函数,且在()+∞,0上是减函数,且12210x x x x >>+,,则 A.)()(21x f x f > B.)()(21x f x f = C.)()(21x f x f < D.不能确定23、已知函数=)(x f ⎩⎨⎧<-≥-0,10,sin x e x x x x ,若)()2(2a f a f >-,则实数a 取值范围是A. (1,-∞-)),2(+∞YB. (1,2-)C. (2,1-)D. (2,-∞-)+∞,1(Y )A .0B .1C .2D .3二、填空题:24、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为25、已知()f x 为偶函数,()g x 是奇函数,且()f x ()22g x x x -=+-,则()f x 、()g x 分别为 ; 26、定义在()1,1-上的奇函数()21x mf x x nx +=++,则常数m = ,n = ;28、.已知函数(),f x 当,x y R ∈时,恒有()()()f x y f x f y +=+.(1)求证: ()f x 是奇函数;(2)若(3),(24)f a a f -=试用表示.29、若()f x 是定义在()0,+∞上的增函数,且()()x f f x f y y ⎛⎫=- ⎪⎝⎭⑴求()1f 的值;⑵若()61f =,解不等式()132f x f x ⎛⎫+-< ⎪⎝⎭.30.函数()f x 对于x>0有意义,且满足条件(2)1,()()(),()f f xy f x f y f x ==+是减函数。
人教A版高一数学必修第一册《函数的概念与性质》单元练习题卷含答案解析(60)
人教A 版高一数学必修第一册《函数的概念与性质》单元练习题卷(共22题)一、选择题(共10题)1. 已知不等式 ax 2−x +c >0 的解集为 {x∣ −2<x <1},则函数 y =ax 2+x +c 的图象大致为 ( )A .B .C .D .2. 已知函数 f (x ) 为定义在 R 上的奇函数,当 x <0 时,f (x )=x (x −1),则 f (2)= ( ) A . −6 B . 6 C . −2 D . 23. 十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若 a,b,c ∈R ,则下列命题正确的是 ( ) A .若 ab ≠0 且 a <b ,则 1a >1b B .若 a >b >0,则b+1a+1>baC .若 a +b =2,则 ab <1D .若 c <b <a 且 ac <0,则 cb 2<ab 24. 定义全集 U 的子集 A 的特征函数 f A (x )={1,x ∈A0,x ∉A ,对于任意的集合 A,B ⊆U ,下列说法错误的是 ( )A .若 A ⊆B ,则 f A (x )≤f B (x ),对于任意的 x ∈U 成立B . f A∩B (x )=f A (x )f B (x ),对于任意的 x ∈U 成立C . f A∪B (x )=f A (x )+f B (x ),对于任意的 x ∈U 成立D .若 A =∁U B ,则 f A (x )+f B (x )=1,对于任意的 x ∈U 成立5. 已知 −π2<α<0,sinα+cosα=15,则 1cos 2α−sin 2α= ( )A . 75B .257C .725D .24256. 若不等式x 2+mx +1>0的解集为R ,则m 的取值范围是( ) A .RB .(−2,2)C .(−∞,−2)∪(2,+∞)D .[−2,2]7. 设 a ,b ,c 是实数,下列条件中可以推出“a =b ”的是 ( ) A .1a=1bB . a 2=b 2C . ac =bcD . a −c =c −b8. 定义在 R 上的函数 f (x ) 满足:f (x −2) 的对称轴为 x =2,f (x +1)=4f (x )(f (x )≠0),且 f (x ) 在区间 (1,2) 上单调递增,已知 α,β 是钝角三角形中的两锐角,则 f (sinα) 和 f (cosβ) 的大小关系是 ( ) A . f (sinα)>f (cosβ) B . f (sinα)<f (cosβ) C . f (sinα)=f (cosβ)D .以上情况均有可能9. 若函数 f (x ) 为定义在 D 上的单调函数,且存在区间 [a,b ]⊆D ,使得当 x ∈[a,b ] 时,f (x ) 的取值范围恰为 [a,b ],则称函数 f (x ) 是 D 上的正函数.若函数 g (x )=x 2+m 是定义在 (−∞,0) 上的正函数,则实数 m 的取值范围为 ( ) A . (−54,−1) B . (−54,−34) C . (−1,−34)D . (−34,0)10. 定义函数 [x ] 为不大于 x 的最大整数,对于函数 f (x )=x −[x ] 有以下四个结论:① f (2019.67)=0.67;②在每一个区间 [k,k +1),k ∈Z 上,f (x ) 都是增函数; ③ f (−15)<f (15);④ y =f (x ) 的定义域是 R ,值域是 [0,1).其中正确的个数是 ( ) A . 1 B . 2 C . 3 D . 4二、填空题(共6题)11. 关于函数 f (x )=∣x∣∣∣x∣−1∣,给出以下四个命题:(1)当 x >0 时,y =f (x ) 单调递减且没有最值;(2)方程 f (x )=kx +b (k ≠0) 一定有实数解;(3)如果方程 f (x )=m ,(m 为常数)有解,则解的个数一定是偶数;(4)y =f (x ) 是偶函数且有最小值.其中假命题的序号是 .12. 已知函数 f (x )={x 2+4x −1,x ≤02x −3−k,x >0,若方程 f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解,则实数 k 的取值范围是 .13. 给出下列四个命题:① f (x )=sin (2x −π4) 的对称轴为 x =kπ2+3π8,k ∈Z ;②函数 f (x )=sinx +√3cosx 的最大值为 2; ③ ∀x ∈(0,π),sinx >cosx ;④函数 f (x )=sin (π3−2x) 在区间 [0,π3] 上单调递增. 其中正确命题的序号为 .14. 设函数 f (x )=sin2x +2cos 2x ,则函数 f (x ) 的最小正周期为 ;若对于任意 x ∈R ,都有f (x )≤m 成立,则实数 m 的最小值为 .15. 若对任意 x >3,x >a 恒成立,则 a 的取值范围是 .16. 若 log a (a +1)<log a (2√a)<0(a >0 且 a ≠1),则实数 a 的取值范围是 .三、解答题(共6题)17. 求下列函数的定义域与值域.(1) y =21x−1;(2) y =3√5x−1; (3) y =(12)x−1.18. 已知函数 f (x )=2x +2−x .(1) 求证:函数f(x)是偶函数;(2) 设a∈R,求关于x的函数y=22x+2−2x−2af(x)在x∈[0,+∞)时的值域g(a)的表达式;(3) 若关于x的不等式mf(x)≤2−x+m−1在x∈(0,+∞)时恒成立,求实数m的取值范围.19.定义:若函数f(x)的定义域为R,且存在实数a和非零实数k(a,k都是常数),使得f(2a−x)=k⋅f(x)对x∈R都成立,则称函数f(x)是具有“理想数对(a,k)”的函数.比如,函数f(x)有理想数对(2,−1),即f(4−x)=−f(x),f(4−x)+f(x)=0,可知函数图象关于点(2,0)成中心对称图形.设集合M是具有理想数对(a,k)的函数的全体.(1) 已知函数f(x)=2x−1,x∈R,试判断函数f(x)是否为集合M的元素,并说明理由;(2) 已知函数g(x)=2x,x∈R,证明:g(x)∉M;(3) 数对(2,1)和(1,−1)都是函数ℎ(x)的理想数对,且当−1≤x≤1时,ℎ(x)=1−x2.若正比例函数y=mx(m>0)的图象与函数ℎ(x)的图象在区间[0,12]上有且仅有5个交点,求实数m的取值范围.20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,∣φ∣<π2)的部分图象如图所示.(1) 求函数f(x)的解析式;(2) 设π12<x<11π12,且方程f(x)=m有两个不同的实数根,求实数m的取值范围和这两个根的和.21.某广告公司要为客户设计一幅周长为l(单位:m)的矩形广告牌,如何设计这个广告牌可以使广告牌的面积最大?22.化简1−cos4α−sin4α.1−cos6α−sin6α答案一、选择题(共10题) 1. 【答案】C【解析】因为 不等式 ax 2−x +c >0 的解集为 {x∣ −2<x <1}, 所以 a <0,故 x 2−1ax +ca<0 的解集为 {x∣ −2<x <1},所以 −2 和 1 是方程 x 2−1ax +c a=0 的两个根,故 −2+1=1a,−2×1=ca,解得 a =−1,c =2.故函数 y =ax 2+x +c =−x 2+x +2=−(x +1)(x −2),其图象大致为 C . 【知识点】二次函数的性质与图像2. 【答案】A【知识点】函数的奇偶性3. 【答案】B【解析】对于A ,取 a =−2,b =1,可知1a>1b不成立,因此选项A 不正确;对于B ,因为 a >b >0,所以 b+1a+1−ba =a−ba (a+1)>0,所以 b+1a+1>ba ,因此选项B 正确; 对于C ,取 a =b =1 时,ab =1,因此选项C 不正确; 对于D ,取 b =0 时,cb 2<ab 2 不正确,因此选项D 不正确. 【知识点】不等式的性质4. 【答案】C【知识点】函数的表示方法5. 【答案】B【解析】因为 sinα+cosα=15, 所以 1+2sinαcosα=125,所以 2sinαcosα=−2425,(cosα−sinα)2=1+2425=4925,又因为 −π2<α<0, 所以 cosα>0>sinα, 所以 cosα−sinα=75, 所以1cos 2α−sin 2α=1(cosα+sinα)(cosα−sinα)=115×75=257.故选B .【知识点】同角三角函数的基本关系6. 【答案】B【解析】【分析】利用一元二次不等式的解法即可得出.【解析】解:∵不等式x 2+mx +1>0的解集为R ,∴△=m 2−4<0,解得−2<m <2. ∴m 的取值范围是(−2,2). 故选:B .【点评】熟练掌握一元二次不等式的解法是解题的关键.7. 【答案】A【知识点】充分条件与必要条件8. 【答案】A【知识点】抽象函数、函数的单调性9. 【答案】C【解析】因为函数 g (x )=x 2+m 是定义在 (−∞,0) 上的正函数,所以存在 a <b <0,使得当 x ∈[a,b ] 时,g (x )∈[a,b ],且函数单调递减, 则 g (a )=b ,g (b )=a , 即 a 2+m =b ,b 2+m =a , 两式左右分别相减得 a 2−b 2=b −a , 即 b =−(a +1),代入 a 2+m =b 得 a 2+a +m +1=0, 因为 a <b <0,且 b =−(a +1), 所以 a <−(a +1)<0, 解得 −1<a <−12.故关于 a 的方程 a 2+a +m +1=0 在区间 (−1,−12) 内有实数根,把新定义的正函数问题转化为方程有解问题,采用了转化与化归思想.记 ℎ(a )=a 2+a +m +1,则 ℎ(−1)=1−1+m +1>0 且 ℎ(−12)=14−12+m +1<0,解得 m >−1 且 m <−34,即 −1<m <−34. 【知识点】函数的单调性、抽象函数10. 【答案】C【解析】 f (2019.67)=2019.67−2019=0.67,故①正确;设 k ≤x 1≤x 2<k +1,则 f (x 1)−f (x 2)=x 1−k −x 2+k =x 1−x 2<0, 所以 f (x 1)<f (x 2),所以 f (x ) 在 [k,k +1),k ∈Z 上是增函数,故②正确; 因为 f (−15)=−15−(−1)=45,f (15)=15−0=15,所以 f (−15)>f (15),故③错误; 因为 x −[x ]∈[0,1), 所以④正确. 故选C .【知识点】函数的值域的概念与求法、函数的单调性二、填空题(共6题) 11. 【答案】(1)、(3)【解析】(1)当 x >1 时,y =f (x )=xx−1=1+1x−1 在区间 (1,+∞) 上是单调递减函数,当 0<x <1 时,y =f (x )=−xx−1=−1−1x−1 在区间 (0,1) 上是单调增函数.所以(1)是假命题. (2)函数 f (x )=∣x∣∣∣x∣−1∣ 是偶函数,当 x >0 时,y =f (x ) 在区间 (0,1) 上单调递增,在 (1,+∞) 上单调递减.当 k >0 时,函数 y =f (x ) 与 y =kx 的图象在第一象限内有交点,由对称性可知,当 x <0 且 k <0 时,函数 y =f (x ) 与 y =kx 的图象在第二象限内有交点.所以,方程 f (x )=kx +b (k ≠0) 一定有解.所以(2)是真命题.(3)因为函数 f (x )=∣x∣∣∣x∣−1∣ 是偶函数,且最小值 f (0)=0,举例:当 m =0 时,函数 y =f (x ) 与 y =m 的图象只有一个交点.此时方程 f (x )=m 的解是奇数.所以(3)是假命题. (4)函数 f (x )=∣x∣∣∣x∣−1∣ 是偶函数,y =f (x )=∣x∣∣∣x∣−1∣ 在区间 (0,1) 上单调递增,(1,+∞) 上单调递减.且 f (0)=0,x >0 时,f (x )>0 恒成立,由对称性可知,函数 f (x ) 有最小值 f (0)=0.所以( 4 )是真命题.【知识点】函数的零点分布、函数的最大(小)值、函数的单调性12. 【答案】 (−2,−32]∪(−1,2)【解析】当 x ≤0 时,f (x )−k ∣x −1∣=x 2+4x −1−k (1−x )=x 2+(4+k )x −k −1, 当 0<x <1 时,f (x )−k ∣x −1∣=2x −3−k −k (1−x )=(k +2)x −3−2k ,当 x ≥1 时,f (x )−k ∣x −1∣=2x −3−k −k (x −1)=(2−k )x −3,设 g (x )=f (x )−k ∣x −1∣,则 g (x )={x 2+(4+k )x −k −1,x ≤0(k +2)x −3−2k,0<x <1(2−k )x −3,x ≥1,f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解等价于g (x ) 有且仅有 2 个零点, 若 g (x ) 一个零点位于 (0,1),即 0<2k+3k+2<1⇒k ∈(−32,−1),若 g (x ) 一个零点位于 [1,+∞),即 {2−k >0,22−k≥1⇒k ∈[−1,2),可知 g (x ) 在 (0,1),[1,+∞) 内不可能同时存在零点,即当 k ∈(−32,2) 时,g (x ) 在 (0,+∞)上有一个零点;当 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, ① 当 g (x ) 在 (−∞,0] 上有且仅有一个零点时,(1)当 Δ=(4+k )2+4(k +1)=0 时,k =−2 或 k =−10, 此时 g (x ) 在 (0,+∞) 上无零点, 所以不满足 g (x ) 有两个零点;(2)当 Δ=(4+k )2+4(k +1)>0,即 k <−10 或 k >−2 时, 只需 g (0)=−k −1<0,即 k >−1,所以当 k >−1 时,g (x ) 在 (−∞,0] 上有且仅有一个零点, 因为 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点, 所以 k ∈(−1,2) 时,g (x ) 有且仅有 2 个零点; ② 当 g (x ) 在 (−∞,0] 上有两个零点时,只需 {Δ=(4+k )2+4(k +1)>0,−4+k 2<0,g (0)=−k −1≥0⇒k ∈(−2,−1],因为 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, 所以 k ∈(−2,−32] 时,g (x ) 有且仅有 2 个零点, 综上所述:k ∈(−2,−32]∪(−1,2).【知识点】函数的零点分布13. 【答案】①②【解析】① y =sinx 的对称轴为 x =kπ+π2(k ∈Z ),故 f (x )=sin (2x −π4) 的对称轴由 2x −π4=kπ+π2(k ∈Z ),解得 x =kπ2+3π8(k ∈Z ),故①正确;②函数f(x)=sinx+√3cosx=2sin(x+π3),故该函数的最大值为2,故②正确;③ ∀x∈(0,π),sinx>cosx;当x=π4时,sinx=cosx,故③错误;④函数f(x)=sin(π3−2x)在区间[0,π3]上单调递减,故④错误.故答案为:①②.【知识点】Asin(ωx+ψ)形式函数的性质14. 【答案】π;√2+1【知识点】Asin(ωx+ψ)形式函数的性质15. 【答案】a≤3【知识点】恒成立问题16. 【答案】(14,1)【解析】当0<a<1时,函数y=log a x单调递减,由题意得{a+1>2√a,2√a>1,解得a>14,所以14<a<1;当a>1时,函数y=log a x单调递增,由题意得{a+1<2√a,2√a<1,无解.综上可知,实数a的取值范围是(14,1).【知识点】对数函数及其性质三、解答题(共6题)17. 【答案】(1) 由x−1≠0,得x≠1.所以函数的定义域为{x∣ x∈R且x≠1}.又1x−1≠0,所以21x−1>0,且21x−1≠1.所以函数的值域为{y∣ y>0且,y≠1}.(2) 由5x−1≥0,得x≥15.所以函数的定义域为{x∣ x≥15}.因为 5x −1≥0,所以 3√5x−1≥1.所以函数的值域为 {y∣ y ≥1}.(3) y =(12)x−1 的定义域是 R ,值域是 {y∣ y >−1}.【知识点】函数的定义域的概念与求法、函数的值域的概念与求法18. 【答案】(1) 函数 f (x ) 的定义域为 R ,对任意 x ∈R ,f (−x )=2−x +2x =f (x ), 所以函数 f (x ) 是偶函数.(2) y =22x +2−2x −2a (2x +2−x )=(2x +2−x )2−2a (2x +2−x )−2, 令 2x +2−x =t ,因为 x ≥0,所以 2x ≥1,故 t ≥2, 原函数可化为 y =t 2−2at −2,t ∈[2,+∞),y =t 2−2at −2=(t −a )2−a 2−2 图象的对称轴为直线 t =a ,当 a ≤2 时,函数 y =t 2−2at −2 在 t ∈[2,+∞) 时是增函数,值域为 [2−4a,+∞);当 a >2 时,函数 y =t 2−2at −2 在 t ∈[2,a ] 时是减函数,在 t ∈[a,+∞) 时是增函数,值域为 [−a 2−2,+∞).综上,g (a )={[2−4a,+∞),a ≤2[−a 2−2,+∞),a >2.(3) 由 mf (x )≤2−x +m −1 得 m [f (x )−1]≤2−x −1,当 x >0 时,2x >1,所以 f (x )=2x +2−x >2,所以 f (x )−1>1>0, 所以 m ≤2−x −1f (x )−1=2−x −12x +2−x −1=1−2x 22x +1−2x恒成立.令 t =1−2x ,则 t <0,1−2x 22x +1−2x=t (1−t )2+t=t t 2−t+1=1t+1t−1,由 t <0 得 t +1t≤−2,所以 t +1t−1≤−3,−13≤1t+1t−1<0.所以 m ≤−13,即 m 的取值范围为 (−∞,−13].【知识点】函数的奇偶性、指数函数及其性质、函数的值域的概念与求法19. 【答案】(1) 依据题意,知 f (x )=2x −1,若 f (2a −x )=k ⋅f (x ),即 2(2a −x )−1=k (2x −1). 化简得 −2x +4a −1=2kx −k ,此等式对 x ∈R 都成立,则 {2k =−2,4a −1=−k,解得 {k =−1,a =12.于是,函数 f (x )=2x −1 有理想数对 (12,−1).所以,函数 f (x )∈M . (2) 用反证法证明 g (x )∉M . 假设 g (x )∈M ,则存在实数对 (a,k )(k ≠0) 使得 g (2a −x )=k ⋅g (x ) 成立. 又 g (x )=2x ,于是,22a−x =k ⋅2x , 即 22a =k ⋅22x .一方面,此等式对 x ∈R 都成立;另一方面,该等式左边是正的常数,右边是随 x 变化而变化的实数.两方面互相矛盾,故假设不成立.因此,函数 g (x ) 不存在理想数对 (a,k )(k ≠0) 使 g (x )∈M , 即 g (x )∉M .(3) 因为数对 (2,1) 和 (1,−1) 都是函数 ℎ(x ) 的理想数对, 所以 ℎ(4−x )=ℎ(x ),ℎ(2−x )=−ℎ(x ),x ∈R , 所以ℎ(4+x )=ℎ(4−(4+x ))=ℎ(2−(2+x ))=−ℎ(2+x )=−ℎ(4−(2−x ))=−ℎ(2−x )=ℎ(x ).所以函数 ℎ(x ) 是以 4 为周期的周期函数.由 ℎ(2−x )=−ℎ(x ),ℎ(2−x )+ℎ(x )=0,x ∈R ,可知函数 ℎ(x ) 的图象关于点 (1,0) 成中心对称图形.又 −1≤x ≤1 时,ℎ(x )=1−x 2,所以 1<x ≤3 时,−1≤2−x <1,则 ℎ(x )=−ℎ(2−x )=(2−x )2−1.先画出函数 ℎ(x ) 在 [−1,3] 上的图象,再根据周期性,可得到函数 ℎ(x ) 的图象如图: 所以 ℎ(x )={1−(x −2k )2,k 为偶数,2k −1≤x <2k +1(x −2k )2−1,k 为奇数,2k −1≤x <2k +1,所以 ℎ(x )=1−(x −8)2,7≤x ≤9;ℎ(x )=1−(x −12)2,11≤x ≤13.由 {ℎ(x )=1−(x −8)2,y =mx (7≤x ≤9) 有且仅有一个交点,解得 m =16−6√7(m =16+6√7,舍去).由 {ℎ(x )=1−(x −12)2,y =mx (11≤x ≤13) 有且仅有一个交点,解得 m =24−2√143(m =24+2√143,舍去).所以函数 y =mx (m >0) 的图象与函数 ℎ(x ) 的图象在区间 [0,12] 上有且仅有 5 个交点时,实数 m 的取值范围是 24−2√143<m <16−6√7.【知识点】恒成立问题、函数的零点分布、反证法、函数的周期性20. 【答案】(1) 由函数图象知,A =2.因为图象过点 (0,1),所以 f (0)=1,所以 sinφ=12. 又因为 ∣φ∣<π2,所以 φ=π6. 由函数图象知T 2=2π3−π6=π2,所以 T =π,得 ω=2.所以函数 f (x ) 的解析式为 f (x )=2sin (2x +π6).(2) 由(1)知,函数 y =2sin (2x +π6),若 π12<x <11π12,在原图中标出 (π12,√3) 和 (11π12,0),如图所示: 当 −2<m <0 或 √3<m <2 时,直线 y =m 与曲线 y =2sin (2x +π6) 有两个不同的交点,即原方程有两个不同的实数根. 所以 m 的取值范围为 (−2,0)∪(√3,2). 由对称性可知,当 −2<m <0 时,两根和为 4π3;当 √3<m <2 时,两根和为 π3.【知识点】Asin(ωx+ψ)形式函数的性质21. 【答案】设矩形的一边长为 x ,广告牌面积为 S ,则 S =−(x −l 4)2+l 216,x ∈(0,l 2). 当 x =l4 时,S 取得最大值,且 S max =l 216,所以当广告牌是边长为 l4 的正方形时,广告牌的面积最大.【知识点】函数模型的综合应用22. 【答案】 1−cos 4α−sin 4α1−cos 6α−sin 6α=(sin 2α+cos 2α)2−cos 4α−sin 4α(sin 2α+cos 2α)3−cos 6α−sin 6α=2sin 2αcos 2α3sin 4αcos 2α+3sin 2αcos 4α=2sin 2αcos 2α3sin 2αcos 2α=23.【知识点】同角三角函数的基本关系。
人教A版高中数学必修第一册第5章5-4-2第1课时周期性与奇偶性课件
3.你能归纳一下正弦函数与余弦函数的奇偶性和对称性吗? [提示] 正弦函数为奇函数,其图象关于原点对称;余弦函数为偶 函数,其图象关于y轴对称. 正弦曲线、余弦曲线既是中心对称图形又是轴对称图形.
√
√
[跟进训练] 3.(1)设函数f (x)(x∈R)满足f (-x)=f (x),f (x+2)=f (x),则函数y =f (x)的图象是( )
A
√B
C
D
B 由f (-x)=f (x),则f (x)是偶函数,图象关于y轴对称. 由f (x+2)=f (x),则f (x)的周期为2.故选B.
【例1】 求下列函数的周期: (2)f (x)=|sin x|. [解] 法一(定义法):∵f (x)=|sin x|, ∴f (x+π)=|sin (x+π)|=|sin x|=f (x), ∴f (x)的最小正周期为π. 法二(图象法): 作出函数y=|sin x|的图象如图所示. 由图象可知T=π.
第五章 三角函数
5.4 三角函数的图象与性质 5.4.2 正弦函数、余弦函数的性质
第1课时 周期性与奇偶性
学 1.理解周期函数的概念,能熟练地求出简单三角函数的周 习 期.(数学抽象、逻辑推理) 任 2.会根据之前所学结合函数的图象研究三角函数的奇偶性,能 务 正确判断一些三角函数的变式的奇偶性.(直观想象)
1.求下列函数的最小正周期: (3)y=|cos x|,x∈R. [解] y=|cos x|的图象如图(实线部分)所示.
由图象可知,y=|cos x|的周期为π.
反思领悟 1.判断函数奇偶性应把握好的两个方面: 一看函数的定义域是否关于原点对称. 二看f (x)与f (-x)的关系. 2.对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式 化简后再判断. 提醒:研究函数性质应遵循“定义域优先”的原则.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[A 组·基础达标练]1.[2016·大连双基]已知函数f (x )为奇函数,且当x <0时,f (x )=2x 2-1,则f (1)的值为( )A .1B .-1C .2D .-2答案 B解析 因为f (-1)=1,所以f (1)=-1,选B.2.[2015·洛阳二练]若函数y =f (2x +1)是偶函数,则函数y =f (2x )的图象的对称轴方程是( )A .x =-1B .x =-12 C .x =12 D .x =1答案 C解析 ∵f (2x +1)是偶函数,其图象关于y 轴,即x =0对称,而f (2x +1)=f ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +12,∴f (2x )的图象可由f (2x +1)的图象向右平移12个单位得到,即f (2x )的图象的对称轴方程是x =12.3.[2015·沈阳质检]已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )=( )A.23 B .-23 C.43 D .-43答案 C解析 ∵f (x )=x 2+x +1x 2+1=1+xx 2+1,∴f (x )+f (-x )=2,∴f (-a )=2-f (a )=2-23=43.故选C.4.[2014·山东高考]对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=f(2a-x),则称f(x)为准偶函数.下列函数中是准偶函数的是()A.f(x)=x B.f(x)=x2C.f(x)=tan x D.f(x)=cos(x+1)答案 D解析由分析可知准偶函数即偶函数左右平移得到的.5.[2016·浙江名校联考]已知f(x)、g(x)是定义在R上的函数,h(x)=f(x)·g(x),则“f(x)、g(x)均为偶函数”是“h(x)为偶函数”的() A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案 B解析一方面,若f(x)、g(x)均为偶函数,则f(-x)=f(x),g(-x)=g(x),因此,h(-x)=f(-x)g(-x)=f(x)g(x)=h(x),∴h(x)是偶函数;另一方面,若h(x)是偶函数,但f(x)、g(x)不一定均为偶函数,事实上,若f(x)、g(x)均为奇函数,h(x)也是偶函数,因此,“f(x)、g(x)均为偶函数”是“h(x)为偶函数”的充分不必要条件,故选B.6.[2016·洛阳统考]已知定义在R上的函数f(x),对任意x∈R,都有f(x+4)=f(x)+f(2)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2014)的值为()A.2014 B.-2014C.0 D.4答案 C解析依题意得,函数y=f(x)的图象关于直线x=0对称,因此函数y=f(x)是偶函数,且f(-2+4)=f(-2)+f(2),即f(2)=f(2)+f(2),所以f(2)=0,所以f(x+4)=f(x),即函数y=f(x)是以4为周期的函数,f(2014)=f(4×503+2)=f(2)=0,选C.7.已知f (x )是定义在R 上的奇函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2]时,f (x )=e x -1,则f (2013)+f (-2014)等于( )A .1-eB .e -1C .-1-eD .e +1答案 B解析 由于f (x )是定义在R 上的奇函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2]时,f (x )=e x -1,所以f (2013)=f (1)=e -1,f (-2014)=-f (2014)=-f (0)=0,故可知f (2013)+f (-2014)=e -1.故选B.8.已知f (x )是周期为2的奇函数,当0<x <1时,f (x )=lg x ,设a=f ⎝ ⎛⎭⎪⎫65,b =f ⎝ ⎛⎭⎪⎫32,c =⎝ ⎛⎭⎪⎫52,则( ) A .c <a <b B .a <b <c C .b <a <c D .c <b <a答案 A解析 a =f ⎝ ⎛⎭⎪⎫65=f ⎝ ⎛⎭⎪⎫-45=-f ⎝ ⎛⎭⎪⎫45 =-lg 45=lg 54,b =f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-lg 12=lg 2,c =f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫12=lg 12,因为2>54>12,所以lg 2>lg 54>lg 12, 所以c <a <b .9.[2016·唐山质检]已知函数f (x ),g (x )分别是定义在R 上的偶函数与奇函数,且g (x )=f (x -1),则f (2015)的值为________.答案 0解析 g (-x )=f (-x -1),由f (x ),g (x )分别是偶函数与奇函数,得g (x )=-f (x +1),∴f (x -1)=-f (x +1),即f (x +2)=-f (x ),∴f (x+4)=f(x),故函数f(x)是以4为周期的周期函数,则f(2015)=f(504×4-1)=f(-1)=g(0)=0.10.已知定义在R上的奇函数满足f(x)=x2+2x(x≥0),若f(3-a2)>f(2a),则实数a的取值范围是________.答案(-3,1)解析由题意可得f(x)=x2+2x(x≥0)在[0,+∞)上为增函数,又f(x)为定义在R上的奇函数,所以f(x)在R上为增函数.由f(3-a2)>f(2a)得3-a2>2a,即a2+2a-3<0,解得-3<a<1.11.已知函数f(x)是定义在R上的奇函数,且它的图象关于直线x=1对称.(1)求证:f(x)是周期为4的周期函数;(2)若f(x)=x(0≤x≤1),求x∈[-5,-4]时,函数f(x)的解析式.解(1)证明:由函数f(x)的图象关于直线x=1对称,有f(1+x)=f(1-x),即有f(-x)=f(x+2).又函数f(x)是定义在R上的奇函数,故有f(-x)=-f(x).故f(x+2)=-f(x).从而f(x+4)=-f(x+2)=f(x),即f(x)是周期为4的周期函数.(2)由函数f(x)是定义在R上的奇函数,有f(0)=0.x∈[-1,0]时,-x∈[0,1],f(x)=-f(-x)=--x.故x∈[-1,0]时,f(x)=--x.x∈[-5,-4]时,x+4∈[-1,0],f(x)=f(x+4)=--x-4.从而,x∈[-5,-4]时,函数f(x)=--x-4.12.设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成图形的面积; (3)写出(-∞,+∞)内函数f (x )的单调区间. 解 (1)由f (x +2)=-f (x ),得f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ), ∴f (x )是以4为周期的周期函数. ∴f (π)=f (-1×4+π)=f (π-4) =-f (4-π)=-(4-π)=π-4.(2)由f (x )是奇函数与f (x +2)=-f (x ),得f [(x -1)+2]=-f (x -1)=f [-(x -1)],即f (1+x )=f (1-x ).从而可知函数y =f (x )的图象关于直线x =1对称.又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.设当-4≤x ≤4时,f (x )的图象与x 轴围成的图形面积为S ,则S =4S △OAB =4×⎝ ⎛⎭⎪⎫12×2×1=4. (3)函数f (x )的单调递增区间为[4k -1,4k +1](k ∈Z ), 单调递减区间为[4k +1,4k +3](k ∈Z ).[B 组·能力提升练]1.[2016·江西八校联考]已知函数f (x )=sin x +cos x +|sin x -cos x |2,则下列结论正确的是( )A .f (x )是奇函数B .f (x )在⎣⎢⎡⎦⎥⎤0,π2上递增C .f (x )是周期函数D .f (x )的值域为[-1,1] 答案 C解析 由题意得,f (x )本质上为取sin x ,cos x 中的较大值,为周期函数,一个周期T =2π,在(0,2π]上的解析式为:f (x )=⎩⎨⎧cos x ,x ∈⎝ ⎛⎭⎪⎫0,π4 sin x ,x ∈⎣⎢⎡⎦⎥⎤π4,5π4. cos x ,x ∈⎝ ⎛⎦⎥⎤5π4,2π∵f (x )为非奇非偶函数,∴A 错误;f (x )在⎝⎛⎭⎪⎫0,π4上单调递减,在⎝⎛⎭⎪⎫π4,π2上单调递增,∴B 错误;C 正确;由f (x )在(0,2π]上的解析式可知,其值域为⎣⎢⎡⎦⎥⎤-22,1,∴D 错误.2.[2015·湖北名校联考]设f (x )是定义在R 上的偶函数,对任意x∈R ,都有f (x -2)=f (x +2),且当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫12x-1.若在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0(a >1)恰有3个不同的实数根,则a 的取值范围是( )A .(1,2)B .(2,+∞)C .(1,34) D .(34,2)答案 D解析 ∵f (x )是定义在R 上的偶函数, ∴f (x )的图象关于y 轴对称. ∵对∀x ∈R ,都有f (x -2)=f (x +2), ∴f (x )是周期函数,且周期为4.∵当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫12x-1,∴f (x )在区间(-2,6]内的图象如图所示.∴在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0(a >1)恰有3个不同的实数根可转化为函数f (x )的图象与y =log a (x +2)的图象有且只有三个不同的交点,则⎩⎪⎨⎪⎧log a (2+2)<3,log a (6+2)>3, 解得a ∈(34,2).3.已知定义在R 上的函数y =f (x )满足以下三个条件:①对于任意的x ∈R ,都有f (x +1)=1f (x );②函数y =f (x +1)的图象关于y 轴对称;③对于任意的x 1,x 2∈[0,1],且x 1<x 2,都有f (x 1)>f (x 2).则f ⎝ ⎛⎭⎪⎫32,f (2),f (3)从小到大排列是________.答案 f (3)<f ⎝ ⎛⎭⎪⎫32<f (2)解析 由①得f (x +2)=f (x +1+1)=1f (x +1)=f (x ),所以函数f (x )的周期为2.因为函数y =f (x +1)的图象关于y 轴对称,将函数y =f (x +1)的图象向右平移一个单位即得y =f (x )的图象,所以函数y =f (x )的图象关于x =1对称.根据③可知函数f (x )在[0,1]上为减函数,又结合②知,函数f (x )在[1,2]上为增函数.因为f (3)=f (2+1)=f (1),在区间[1,2]上,1<32<2,所以f (1)<f ⎝ ⎛⎭⎪⎫32<f (2),即f (3)<f ⎝ ⎛⎭⎪⎫32<f (2).4.定义在R 上的函数f (x )对任意a ,b ∈R 都有f (a +b )=f (a )+f (b )+k (k 为常数).(1)判断k 为何值时,f (x )为奇函数,并证明;(2)设k =-1,f (x )是R 上的增函数,且f (4)=5,若不等式f (mx 2-2mx +3)>3对任意x ∈R 恒成立,求实数m 的取值范围.解 (1)若f (x )在R 上为奇函数,则f (0)=0, 令a =b =0,则f (0+0)=f (0)+f (0)+k ,所以k =0. 证明:由f (a +b )=f (a )+f (b ),令a =x ,b =-x , 则f (x -x )=f (x )+f (-x ),又f (0)=0,则有0=f (x )+f (-x ),即f (-x )=-f (x )对任意x ∈R 成立,所以f (x )是奇函数.(2)因为f (4)=f (2)+f (2)-1=5,所以f (2)=3. 所以f (mx 2-2mx +3)>3=f (2)对任意x ∈R 恒成立.又f (x )是R 上的增函数,所以mx 2-2mx +3>2对任意x ∈R 恒成立,即mx 2-2mx +1>0对任意x ∈R 恒成立, 当m =0时,显然成立;当m ≠0时,由{ m >0, Δ=4m 2-4m <0,得0<m <1.所以实数m 的取值范围是[0,1).。