2015年荆楚理工学院普通专升本《数学分析》考试大纲

合集下载

2015年湖北理工学院普通专升本《工程力学》考试大纲

2015年湖北理工学院普通专升本《工程力学》考试大纲

2015年湖北理工学院普通专升本《工程力学》考试大纲一、参考教材王明斌、庞永平主编.工程力学.2011年第1版. 北京:北京大学出版社二、考试范围1.静力学基础静力学的基本概念,静力学公理的内容及应用,物体的受力分析。

2.平面汇交力系与平面力偶力和力偶的合成与平衡,力、力矩、力偶的定义及性质,力对轴之矩的计算。

3.平面力系平面一般力系的简化,合力矩定理,平面力系的平衡条件,物体系统的平衡计算,平面桁架平衡问题应用。

4.空间一般力系空间力系的平衡方程,重心的计算。

5.拉伸与压缩轴向拉伸或压缩的内力及内力图,横截面与斜截面上的应力,轴向拉伸或压缩时的变形,材料受轴向拉压时的力学性能,强度条件,拉压超静定问题,剪切和挤压的实用计算。

6.扭转圆轴扭转时的内力及内力图,横截面上的应力,圆轴扭转变形,扭转超静定问题。

7.弯曲内力弯曲变形的内力计算及内力图作法。

8.弯曲应力纯弯曲和横力弯曲的正应力、切应力,与应力分析相关的截面图形几何性质计算(形心、静矩、惯性矩)。

9.弯曲变形挠曲线近似微分方程,用积分法求弯曲变形,叠加法求弯曲变形,刚度校核,简单超静定梁。

10.应力状态分析和强度理论平面应力状态分析及应用,解析法,图解法,广义虎克定律,四种常用的强度理论内容及应用。

11.组合变形组合变形分析,斜弯曲,拉伸(压缩)与弯曲组合,偏心压缩(拉伸),扭转与弯曲组合。

12.压杆稳定细长压杆的临界应力,欧拉公式适用范围,压杆稳定的校核,提高压杆稳定的措施。

三、试题类型试题分为四类,即:填空题或名词解释,选择题或判断题,作图题和计算题,具体题型及比例由制卷教师选择决定。

1、填空题或名词解释:要求概念清楚,表达清楚。

2、选择题:要求概念清楚,在三个供选择的答案中选出正确答案;判断题:要求根据题意判断对错。

3、作图题:要求图面清洁,标出图形中相应的数值或符号。

4、计算题:要求概念清楚,写出主要的计算步骤,作出相应的计算图形。

荆楚理工学院普通专升本考试数学与应用数学专业招生人数、考试科目、复习教材和试题及录取分数线

荆楚理工学院普通专升本考试数学与应用数学专业招生人数、考试科目、复习教材和试题及录取分数线

荆楚理工学院普通专升本考试数学与应用数学专业招生人数、考试科目、复习教材和试题及录取分数线招生院校:荆楚理工学院招生人数:102013年荆楚理工学院专升本数学与应用数学专业考试科目大学英语+数学分析+高等代数2013年荆楚理工学院专升本数学与应用数学专业参考教材《新视野大学英语》读写教程(1-2册)(第二版),郑树棠主编,外语教学与研究出版社, 2008年7月版2013年荆楚理工学院专升本数学与应用数学专业录取分数线及要求数据暂未整理招生院校:荆楚理工学院招生人数:102012年荆楚理工学院专升本数学与应用数学专业考试科目正在整理...2012年荆楚理工学院专升本数学与应用数学专业参考教材正在整理...2012年荆楚理工学院专升本数学与应用数学专业录取分数线及要求总分最低录取分数线: 191招生院校:荆楚理工学院招生人数:102010年荆楚理工学院专升本数学与应用数学专业考试科目大学英语+数学分析+高等代数2010年荆楚理工学院专升本数学与应用数学专业参考教材高等代数:1、北京大学数学系几何与代数教研室前代数小组编著,《高等代数》,高等教育出版社,2003年第3版。

2、张禾瑞,郝炳新编著,《高等代数》,高等教育出版社,2007年第5版。

3、丘维声编著,《高等代数》(上),高等教育出版社,2002年第2版。

4、丘维声编著,《高等代数》(下),高等教育出版社,2003年第2版数学分析: 1、华东师范大学数学系编著,《数学分析》(上、下册),高等教育出版社,2001年第3版。

2、中国科学技术大学数学系常庚哲史济怀编著,《数学分析教程》(上、下册),高等教育出版社,2003年第1版。

3、苏州大学数学系谢惠民恽自求易法槐钱定边编著,《数学分析习题课讲义》(上下册),高等教育出版社,2003年第1版。

2010年荆楚理工学院专升本数学与应用数学专业录取分数线及要求数据暂未整理更多关于:荆楚理工学院专升本/ptzsb/Channel/jclgxyzsb/ 信息(点击进入)。

2015年荆楚理工学院普通专升本《计算机基础》考试大纲

2015年荆楚理工学院普通专升本《计算机基础》考试大纲

2015年荆楚理工学院普通专升本《计算机基础》考试大纲一、考试性质“高职升本科”《计算机基础》考试是为选拔高等职业教育应届优秀毕业生进入本科学习,在计算机应用基础、操作技能上的必要基础考试,以尽快适应本科学习对计算机应用的知识和技能要求。

二、考试目的本次考试的目的主要是测试考生在计算机基础知识和基础能力方面是否具有本科学习的能力。

三、考试内容根据《计算机基础》课程大纲的要求,并考虑高职高专教育的教学实际,特制定本课程考试内容。

第一部分计算机基础知识【要求】了解计算机的基本概念;了解计算机的发展史和应用领域;掌握计算机数制转换方法;掌握微型计算机的基本组成和主要技术指标;掌握计算机病毒的概念和防范病毒的措施。

【考试内容】(一)计算机基础知识1.计算机的发展史2.计算机的特点和应用领域3.计算机系统的基本组成(二)数制与计算机编码1.计算机数制的基本概念2.二进制、八进制、十进制、十六进制数3.各种数制间的转换4.计算机中的字符编码5.计算机中汉字的编码(三)计算机系统1.计算机系统的概述2.计算机的硬件组成及其主要功能3.计算机的系统软件和应用软件4.计算机基本工作原理5.计算机的主要技术指标(四)计算机病毒防范及安全使用1.计算机病毒的基本概念2.计算机病毒的防范方法第二部分中文Windows XP操作系统【要求】了解微型计算机操作系统的基本概念;了解中文Windows XP的基本功能和特点;掌握Windows XP的基本操作和Windows XP资源管理器的各种功能;掌握Windows XP系统环境的设置;掌握一种汉字输入方法。

【考试内容】(一)中文Windows XP操作系统的基本知识1.计算机操作系统的基本知识及发展史2.Windows XP操作系统基本功能和主要特点3.Windows XP的运行环境(二)中文Windows XP的基本操作1.Windows XP的启动和退出2.鼠标、键盘、快捷键和热键的使用3.窗口的基本组成和基本操作4.对话框的使用5.剪贴板的概念及使用(三)资源管理器的使用1.建立、删除和恢复文件夹2.复制、移动文件夹或文件3.文件和文件夹的重新命名4.设置文件和文件夹属性5.Windows XP “资源管理器”的使用(四)中文Windows XP 系统环境设置1.显示属性的设置2.键盘和鼠标的设置3.日期、时间、区域的设置4.开始菜单中的设置5.汉字输入法的安装、删除与使用(五)附件的使用1.记事本、写字板、计算器使用2.画图程序的功能及使用3.磁盘清理程序和磁盘碎片整理程序的功能及使用第三部分文字处理软件Word 2003【要求】了解Word 2003 的基本知识;掌握Word 2003文档的输入方法和对文档的管理;掌握Word 2003基本编辑功能、字符和段落的格式化;掌握“格式刷”的使用;掌握视图的概念;掌握Word 2003 的表格和图片处理操作。

数学专升本考试大纲

数学专升本考试大纲

数学专升本考试大纲一般包括以下内容:
一、考试科目与内容
1. 科目:高等数学
2. 内容:
(1)函数、极限、连续
(2)一元函数微分学
(3)一元函数积分学
(4)多元函数微分学
(5)多元函数积分学
(6)无穷级数
(7)常微分方程
二、考试形式与试卷结构
1. 考试形式:闭卷、笔试。

2. 试卷结构:
(1)题型:选择题、填空题、计算题、证明题等。

(2)题量:根据实际情况而定。

(3)难易比例:基础题占70%左右,中等难度题占20%左右,难题占10%左右。

三、考试时间与分值
1. 考试时间:一般为120分钟。

2. 分值:满分一般为100分或150分。

四、考试范围与要求
1. 考试范围:一般涵盖高等数学的主要内容,但也有一些差异,具体应根据不同学校的考试大纲来确定。

2. 考试要求:要求学生掌握基本的数学概念、理论和方法,能够运用所学知识解决实际问题,具备一定的逻辑思维和推理能力。

五、参考教材与资料
1. 教材:一般使用本科数学教材,如《高等数学》等。

2. 资料:可参考一些数学参考书籍、习题集等。

需要注意的是,不同学校的数学专升本考试大纲可能会有所不同,具体应以学校发布的官方信息为准。

2014级数学与应用数学专业转入考试《数学分析》考试大纲

2014级数学与应用数学专业转入考试《数学分析》考试大纲

荆楚理工学院课程考试大纲课程名称:数学分析一课程编号:B1309034-1课程类别:专业基础总学时数:84学分数:5一、考试对象数学与应用数学专业所有学生二、考试目的《数学分析一》课程考试的目的是考察学生数学分析的基本理论知识;严格的逻辑思维能力与推理论证能力;熟练的运算能力与技巧;建立数学模型,并应用微积分这一工具解决实际应用问题的能力。

本门课程考核要求由低到高共分为“了解”、“理解”、“掌握”三个层次。

“了解”是指学生对要求了解的内容,应该知道所涉及理论及其证明,并能对它们进行简单解释,还应知道与问题直接有关的物理或几何含义和简单计算。

“理解”是指学生对要求理解的内容,包括理论部分和计算部分的定理与公式,都应明了、并能在函数的角度用以分析和计算。

“掌握”是指学生能较为深刻理解所学知识,包括它们的证明,在此基础上能够准确、熟练地使用它们进行有关推导和计算,以及分析解决较为简单的实际问题。

三、考试方法和考试时间1、考试方法:闭卷。

2、记分方式:百分制,满分为100分。

3、考试时间:100分钟4、命题的指导思想和原则全面考查学生对本课程的基本原理、基本概念和主要知识点学习、理解和掌握的情况作为命题的指导思想。

命题的原则是题目数量多、范围广,最基本的知识一般要占70%左右,稍微灵活一点的题目要占20%左右,较难的题目要占10%左右。

客观性的题目约占80%。

5、题目类型(1)选择题(本大题共5小题,每小题3分,共15 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)(2)填空题(本大题共10小题,每小题2分,共20分。

把答案填在题中空格的横线上。

)(3)计算题(本大题共6小题、每小题4分,共24分。

要求写出必要的演算步骤。

)(4)证明题(本大题共4小题、每小题10-11分,共41分。

要求写出必要的推理步骤。

)根据学生知识掌握的不同可作适当调整。

四、考试内容、要求及各部分内容所占分值(一) 实数集与函数此部分内容所占分值约为15分1、掌握实数的基本性质,掌握确界原理,建立起实数确界的清晰概念。

数学分析专升本考试大纲

数学分析专升本考试大纲

《数学分析》专升本考试大纲一、课程名称:数学分析二、适用专业:数学与应用数学三、考试方法:闭卷考试四、考试时间:120分钟五、试卷结构:总分:100分;判断题:10分;填空题20分;选择题15分;计算证明应用题:55分六、参考教材:1、林元重著,新编数学分析(上、下册),武汉大学出版社,2015年3月第1版2、陈纪修、於崇华、金路编,数学分析(上、下册),高等教育出版社,2004年6月第二版3、华东师范大学数学系编,数学分析(上、下册),高等教育出版社,2011年5月第四版七、考试内容及基本要求第1章极限论1.1引言(一) 考核要求1. 了解数学分析是什么.2. 掌握实数的性质(有序性,稠密性,阿基米德性.实数的四则运算),掌握实数的基本概念和最常见的不等式.3.掌握函数概念和函数的不同的表示方法.4. 掌握函数的有界性,单调性,奇偶性和周期性.(二) 考核范围1. 数学分析是什么.2. 实数的基本性质和绝对值的不等式,区间与邻域,集合的上下界.3. 函数的定义与表示法,复合函数与反函数,初等函数.4. 函数的有界性,单调性,奇偶性和周期性.1.2 数列极限概念(一) 考核要求ε-定义证明极限,学会证明1. 深刻理解并掌握数列极限概念,学会用数列极限的N数列极限的基本方法.2. 掌握数列极限的基本性质,掌握四则运算法则.3. 掌握夹逼准则,理解数集确界及确界原理,掌握单调有界准则,理解柯西收敛准则.(二) 考核范围1. 数列极限概念.2. 数列极限的唯一性,有界性,保号性,保不等式性,四则运算法则.3. 数列极限的夹逼准则和单调有界准则,数集的确界及确界原理,数列的子列及相关定理(包括致密性定理),柯西收敛准则.1.3 函数极限概念及性质(一) 考核要求1. 正确理解和掌握函数极限的M ε-定义、εδ-定义,掌握极限与左右极限的关系,能够用定义证明和计算函数的极限.2. 理解并掌握函数极限的基本性质(唯一性,有界性,保号性,保不等式性,四则运算法则),会用这些性质计算函数的极限.(二) 考核范围1. 函数极限的M ε-定义、εδ-定义,左右极限.2. 函数极限的唯一性,有界性,保号性,保不等式性,四则运算法则.1.4 函数极限存在的准则与两个重要极限(一) 考核要求1. 理解并掌握函数极限的归结原则,了解函数极限的单调有界定理,理解函数极限的柯西准则.能够写出函数极限的归结原理和柯西准则.2. 熟练掌握两个重要极限.(二) 考核范围1. 函数极限的归结,函数极限的单调有界定理,函数极限的柯西准则.2. 两个重要极限.1.5 无穷小量与无穷大量(一) 考核要求掌握无穷小量与无穷大量以及它们的阶数的概念.(二) 考核范围无穷小量与无穷大量,高阶无穷小,同阶无穷小,等价无穷小,无穷大.1.6 连续性概念(一) 考核要求深刻理解并掌握函数连续性概念.(二) 考核范围1. 函数连续,函数左右连续,区间上函数连续的概念.2. 间断点及其分类.1.7 连续函数的局部性质与初等函数的连续性(一) 考核要求掌握连续函数的局部性质和和初等函数的连续性.(二) 考核范围1. 连续函数的局部有界性,局部保号性,四则运算.2. 复合函数的连续性,反函数的连续性,初等函数的连续性.1.8 闭区间上连续函数的性质(一) 考核要求1. 理解闭区间上连续函数的最大最小值定理,介值性定理.2. 理解并掌握一致连续性概念,理解一致连续性定理.(二) 考核范围1. 连续函数的最大最小值定理,介值性定理.2. 一致连续性概念,一致连续性定理.1.9 实数的连续性与上(下)极限(一)考核要求1. 理解区间套定理、聚点定理,了解上(下)极限及其性质.2. 理解有限覆盖定理,了解几个基本定理的等价性.(二)考核范围1. 区间套定理、聚点定理,上(下)极限及其性质.2. 有限覆盖定理,几个基本定理的等价性.第2章一元函数微分学2.1 导数的概念(一) 考核要求1. 理解并掌握导数的定义,掌握导数的几何意义,了解导数的物理意义.2. 了解增量——微分公式,掌握可导与连续的关系.了解费马定理、达布定理.(二) 考核范围1. 变化率——导数,单侧导数,导函数,几个基本导数公式,几何意义.2. 增量——微分公式,可导与连续的关系.2.2 导数的运算法则(一) 考核要求1. 熟练掌握导数的四则运算法则,理解反函数的求导法则.2. 熟练掌握复合函数的求导法则及基本导数公式.3. 知道求分段函数在分段点处的导数.(二) 考核范围1.导数的四则运算法则,反函数的求导法则.2. 复合函数的求导法则,对数求导法,基本导数公式.2.3 参变量函数和隐函数的导数(一) 考核要求掌握参变量函数的求导法则,知道求隐函数的导数,会运用求导法则求相关变化率.(二) 考核范围参变量函数的求导法则,隐函数的求导法,相关变化率.2.4 微分(一) 考核要求1. 深刻理解并掌握微分的概念,掌握微分的运算方法,了解微分在近似计算中的应用.2. 理解微分与导数的关系,会利用微分法则求参变量函数和隐函数的导数.(二) 考核范围1. 微分的概念,微分的运算法则,一阶微分形式的不变性,微分在近似计算中的应用.2. 利用微分法则求参变量函数和隐函数的导数.2.5 高阶导数与高阶微分(一) 教学目的1. 掌握高阶导数的概念和计算,掌握高阶导数的莱布尼茨公式.2. 了解高阶微分及其计算,知道高阶导数与高阶微分的关系.(二) 考核范围1. 高阶导数及其计算,高阶导数的莱布尼茨公式.2. 高阶微分及其计算.2.6 拉格朗日定理和函数的单调性、极值(一) 考核要求1. 掌握罗尔定理和拉格朗日中值定理的条件、结论及证明方法,会应用中值定理证明一些不等式和一些中值公式,了解达布定理和导数极限定理.2. 掌握求函数的单调区间和极值及最值的一般方法.(二) 考核范围1. 极值概念与费马定理.2. 罗尔定理,拉格朗日中值定理,应用中值定理证明不等式和中值公式举例,达布定理,导数极限定理.3. 函数的单调性与极值,函数的最值,最值应用题举例.2.7 柯西中值定理和不定式极限(一) 考核要求掌握柯西中值定理,掌握罗比达法则,会求各种形式的不定式极限.(二) 考核范围柯西中值定理及其简单应用举例,洛必达法则,不定式极限计算举例.2.8 泰勒公式(一) 考核要求理解带两种余项形式的泰勒公式,掌握基本初等函数的麦克劳林公式(熟记六个),会利用它们求不定式极限,了解泰勒公式在求高阶导数、函数极值以及近似计算方面的应用.(二) 考核范围1. 带佩亚诺余项和带拉格朗日余项的泰勒公式和麦克劳林公式,几个基本初等函数的麦克劳林公式.2. 泰勒公式应用举例(不定式极限,高阶导数,函数极值,近似计算).2.9其它应用(一) 考核要求1. 掌握函数凸性与拐点的概念,会求函数凹凸区间与拐点,了解函数凸性在证明不等式方面的应用.2.会求曲线的渐近线,了解函数作图的一般步骤,会描绘函数的图像.f x=近似解的牛顿切线法.3. 了解求方程()0(二) 考核范围f x=的近似解.函数的凸性与拐点,凸性的判定,渐近线,函数作图,方程()0第3章一元函数积分学3.1 不定积分的概念与线性运算(一) 考核要求理解原函数与不定积分的概念,熟练掌握基本积分公式及不定积分的线性运算法则,了解不定积分的几何意义,了解连续分段函数的原函数的求法.(二) 考核范围原函数与不定积分的概念,基本积分公式与线性运算法则,不定积分的几何意义.3.2 换元积分法与分部积分法(一) 考核要求理解并熟练掌握第一、二换元积分法与分部积分法.(二) 考核范围第一、二换元积分法,分部积分法.3.3 有理函数和三角函数有理式的不定积分(一) 考核要求掌握有理函数不定积分的计算方法,会计算一些三角函数有理式的不定积分,会计算一些简单无理函数的不定积分,了解欧拉变换法.(二) 考核范围有理函数的不定积分,三角函数有理式的不定积分,两类无理函数的不定积分.3.4 定积分的概念与牛顿——莱布尼茨公式(一) 考核要求-定义,了解定积分的几何1. 深刻理解并掌握定积分的概念,知道定积分概念的εδ意义和物理意义.2. 熟练掌握牛顿——莱布尼茨公式,会利用牛顿——莱布尼茨公式计算一些特殊的和式极限.(二) 考核范围-定义),牛顿—定积分的几何背景和物理背景,定积分的定义(极限形式的定义和εδ—莱布尼茨公式.3.5 可积函数类与定积分的性质(一) 考核要求1. 理解函数可积的必要条件,函数可积的充要条件(可积准则),掌握三类可积函数,对这些定理的证明及其证明思路只要求读懂,不作其它较高要求.2. 理解并掌握定积分的若干基本性质,能证明一些简单的积分不等式.(二) 考核范围1. 可积的必要条件,上(下)和与上(下)积分,可积的充要条件(可积准则),可积函数类.2. 定积分的基本性质,积分第一中值定理.3.6 微积分学基本定理、定积分的计算(续)(一) 考核要求1. 掌握微积分学基本定理,会求变上(下)限的定积分的导数.2. 熟练掌握换元积分法与分部积分法.3. 理解积分第二中值定理,理解泰勒公式的积分型余项,了解定积分近似计算.(二) 考核范围变上(下)限的定积分,微积分学基本定理,换元积分法与分部积分法,积分第二中值定理,泰勒公式的积分型余项,定积分近似计算.3.7 (3.8)定积分的应用(一) 考核要求1. 领会微元法的要领,掌握平面图形面积、由平行截面面积求体积、平面曲线弧长的计算公式,了解曲线的曲率,旋转曲面的面积.2. 领会定积分在物理应用方面的基本方法.(二)考核范围1. 微元法概述.2. 平面图形的面积,由平行截面面积求体积,平面曲线的弧长与曲率,旋转曲面面积.3. 功,液体静压力,引力.3.9 无穷积分与瑕积分(一) 考核要求1. 掌握无穷积分与瑕积分的定义和计算.2. 理解无穷积分的基本性质,掌握非负函数无穷积分的收敛性判别的比较判别法,掌握绝对收敛和条件收敛的概念,理解狄利克雷判别法和阿贝尔判别法(不作其它较高要求).3. 了解瑕积分与无穷积分的关系,了解瑕积分的收敛性判别法.(二) 考核范围1. 无穷积分与瑕积分的定义和计算.2. 无穷积分的基本性质,比较判别法(包括极限形式及特殊形式),绝对收敛与条件收敛,狄利克雷判别法与阿贝尔判别法.3. 瑕积分的收敛性判别法.第4章 级数论4.1 数项级数的基本概念及性质(一) 考核要求1. 理解数项级数收敛与发散的定义,掌握收敛级数的基本性质,能够根据定义或性质判别一些简单简单级数的敛散性.2. 掌握等比级数与调和级数.3. 理解级数收敛的柯西准则,对应用柯西准则判别级数的敛散性不作较高要求.(二) 考核范围数项级收敛与发散的定义和基本性质,等比级数,调和级数,柯西准则.4.2 正项级数(一) 考核要求1. 掌握判别正项级数敛散性的基本方法:比较判别法,比式判别法和根式判别.2. 了解积分判别法和拉贝判别法.(二) 考核范围1. 比较判别法,比式判别法,根式判别法.2. 积分判别法,拉贝判别法.4.3 变号级数(一) 考核要求1. 掌握交错级数的莱布尼茨判别法,掌握绝对收敛与条件收敛概念.2. 理解狄利克雷判别法与阿贝尔判别法,对其应用一般不作较高要求.3. 理解绝对收敛级数的两条重要性质,对其应用不作较高要求.(二) 考核范围1. 交错级数及其莱布尼茨判别法,绝对收敛与条件收敛.2. 狄利克雷判别法与阿贝尔判别法.3. 绝对收敛级数的重排,绝对收敛级数的乘积.4.4 函数项级数及其一致收敛性(一) 考核要求1. 深刻理解并掌握函数列和函数项级数一致收敛性的定义,理解一致收敛的柯西准则.2. 掌握一致收敛的另一充要条件(即lim sup ()()0n n x D f x f x →∞∈-=lim sup ()0n n x DR x →∞∈=),掌握判别函数项级数的魏尔斯特拉斯判别法即优级数判别法.3. 理解判别函数项级数收敛性的狄利克雷判别法和阿贝尔判别法,对其应用不作较高要求.(二) 考核范围1. 函数列与函数项级数一致收敛性的定义,一致收敛的柯西准则.2. 一致收敛的另一充要条件,魏尔斯特拉斯判别法.3. 函数项级数收敛性的狄利克雷判别法和阿贝尔判别法.4.5 一致收敛函数序列与函数项级数的性质(一) 考核要求理解并掌握一致收敛函数列和函数项级数的连续性,逐项积分与逐项求导法则.(二) 考核范围一致收敛函数列与函数项级数的连续性,逐项积分与逐项求导法则.4.6 幂级数及其性质(一) 考核要求掌握幂级数的收敛半径及收敛域的求法,掌握幂级数的基本性质和运算法则.(二) 考核范围幂级数的收敛半径,收敛半径的计算公式,收敛区间和收敛域的概念.4.7 函数的幂级数展开(一) 考核要求掌握泰勒级数和麦克劳林级数,熟记一些初等函数的幂级数展开式,掌握初等函数的幂级数展开.(二) 考核范围泰勒级数,麦克劳林级数,五种基本初等函数的幂级数展开式,初等函数的幂级数展开(直接法和间接法).4.8 傅里叶级数(一) 考核要求1. 理解三角级数和傅里叶级数定义,掌握傅里叶级数的收敛定理,能够按照收敛定理将比较简单的函数展开成傅里叶级数.2. 掌握以2l为周期的函数的展开式,掌握偶函数和奇函数的傅里叶级数的展开,掌握正弦级数,余弦级数.3. 了解收敛定理的证明,了解傅里叶级数的一致收敛性.(二) 考核范围1. 三角级数;正交函数系,傅里叶级数,收敛定理,傅里叶级数的展开式举例.2. 以2l为周期的函数的展开式,掌握偶函数和奇函数的傅里叶级数的展开式,函数的奇延拓与偶延拓及正弦级数与余弦级数.3.黎曼引理,收敛定理的证明,贝塞尔不等式,一致收敛性定理.第5章多元函数微分学5.1多元函数与极限(6)(一) 考核要求1. 理解二元及多元函数的定义.了解平面中邻域,开域,闭域的定义.-定义,知道二元函数极限存在的充要条件,了解方向2. 理解二元函数重极限的εδ极限与累次极限,了解重极限与累次极限的区别与联系.(二) 考核范围1. 二元函数及多元函数,平面中的邻域,开域,闭域.2. 二元函数重极限定义,二元函数极限存在的充要条件,方向极限与累次极限.5.2 二元函数的连续性(一) 考核要求1. 理解二元函数的连续性的定义,知道二元初等函数的连续性.R上的完备性定理,知道有界闭区域上连续函数的整体性质.2. 了解有关二维空间2(二) 考核范围1. 二元函数的连续性的定义,二元初等函数的连续性.R中的聚点定理,致密性定理,闭区域套定理,有限覆盖定理.2. 23. 有界闭域上连续函数的最大最小值定理,介值性定理和一致连续性.(1) 基本要求:掌握二元函数的连续性的定义,了解有界闭域上连续函数的性质.(2) 较高要求:掌握有界闭域上连续函数性质的证明要点.5.3 偏导数与全微分(一) 考核要求1. 理解并掌握多元函数偏导数的定义,知道偏导数的几何意义,能够熟练的求出初等函数的偏导数和高阶偏导数,能够求二元函数在一些特殊的导数,知道混合偏导数与求导顺序无关的条件.2. 理解并掌握二元函数可微和全微分的定义,掌握微分法则,掌握可微的必要条件,理解可微的充分条件,了解高阶全微分及其运算.(二) 考核范围1. 多元函数偏导数与高阶偏导数,偏导数的几何意义,混合偏导数与求导顺序无关的条件.2. 二元函数可微和全微分的定义,微分法则,可微的必要条件,可微的充分条件,高阶全微分及其运算.5.4 复合函数微分法与方向导数(一) 考核要求理解并熟练掌握复合函数求导的链式法则,掌握方向导数与梯度的定义及其运算,了解二元函数的梯度的几何意义.(二) 考核范围1. 复合函数链式法则,复合函数的全微分,一阶全微分形式不变性.2. 方向导数与梯度5.5 多元函数的泰勒公式(一) 考核要求理解并掌握多元函数的泰勒公式,了解泰勒公式的一个推论——中值定理.(二) 考核范围泰勒公式与中值定理,泰勒公式的计算与应用举例.5.6 隐函数及其微分法(一) 考核要求1. 理解隐函数定理和可微性定理,掌握隐函数微分法.2. 了解隐函数组及其可微性定理,知道求隐函数组的偏导数.(二) 考核范围1. 隐函数存在性定理,隐函数可微性定理.2. 隐函数组及其可微性定理,反函数组定理.5.7 多元函数偏导数的几何应用(一) 考核要求1. 理解空间曲线(两种表示形式)的切线方程的推导,掌握空间曲线的切线与法平面方程的求法,理解曲面(两种表示形式)的切平面方程的推导,掌握曲面的切平面与法线的求法.2. 了解二元函数全微分的几何意义,了解三元函数梯度的几何意义.(二) 考核范围1. 空间曲线的切线与法平面方程,曲面的切平面与法线方程.2. 二元函数全微分的几何意义,、三元函数梯度的几何意义.5.8多元函数的极值与条件极值(一) 考核要求1. 掌握二元函数的极值的必要条件与充分条件.2. 了解拉格朗日乘数法,会用拉格朗日乘数法求条件极值.(二) 考核范围1. 二元函数的极值,必要条件与充分条件.2. 条件极值,拉格朗日乘数法,用条件极值的方法证明不等式.第6章多元函数积分学6.1 二重积分(一) 考核要求1. 了解平面点集的面积定义及其性质,理解二重积分的定义和性质,理解有界闭区域上的连续函数可积的结论,理解并熟练掌握化二重积分为累次积分的计算公式.2. 理解二重积分变量变换公式的证明,掌握用极坐标计算二重积分.(二) 考核范围1. 二重积分的定义和性质,化二重积分为累次积分的计算公式.2. 二重积分的变量变换公式,用极坐标计算二重积分.6.2 三重积分(一) 考核要求1. 掌握三重积分的定义,了解三重积分的性质,熟练掌握化三重积分为累次积分的计算公式(柱体法和截面法).2. 了解三重积分变量变换公式,掌握用球坐标和柱坐标计算三重积分.(二) 考核范围1. 三重积分的定义,化三重积分为累次积分的计算公式(柱体法和截面法).2. 三重积分变量变换公式,柱坐标变换公式,球坐标变换公式.6.3 n重积分和广义重积分(一) 考核要求了解n重积分和广义二重积分的概念和性质,了解广义二重积分的收敛性判别.(二) 考核范围n重积分的定义,计算公式,广义二重积分的性质,收敛性判别.6.4 重积分的应用(一) 考核要求掌握用重积分计算计算面积和体积,掌握曲面面积的计算公式,了解物体的重心,转动惯量与引力及其计算公式.(二) 考核范围平面区域的面积,立体的体积,曲面的面积,物体重心,转动惯量,引力.6.5 第一型曲线积分(一) 考核要求理解并掌握第一型曲线积分的定义,性质和计算公式.(二) 考核范围第一型曲线积分的定义,性质和计算公式.6.6 第二型曲线积分(一) 考核要求1. 理解并掌握第二型曲线积分的定义,性质,坐标形式和计算公式.2. 了解两类曲线积分之间的联系.(二) 考核范围1. 第二型曲线积分的定义,性质,坐标形式和计算公式.2. 两类曲线积分之间的联系.6.7 格林公式(一) 考核要求理解并掌握格林公式以及曲线积分与路线无关的条件.(二) 考核范围格林公式,曲线积分与路线无关的条件.6.8 第一型曲面积分(一) 考核要求理解并掌握第一型曲面积分的定义和计算公式.(二) 考核范围第一型曲面积分的定义和计算公式.6.9 第二型曲面积分(一) 考核要求理解并掌握第二型曲面积分的定义、性质,了解两类曲面积分的联系,掌握第二型曲面积分的计算公式.(二) 考核范围有向曲面的概念,第二型曲面积分的定义、性质,两类曲面积分的联系,第二型曲面积分的计算公式.6.10 高斯公式与斯托克斯公式(一) 考核要求理解并掌握高斯公式和斯托克斯公式.(二) 考核范围高斯公式,斯托克斯公式,沿空间曲线的第二型积分与路径无关的条件.*6.11 含参变量的积分(一) 考核要求1. 理解并掌握含参变量的定积分的连续性,可微性和可积性定理,掌握计算含参变量的定积分基本方法.2. 了解含参变量的广义积分的一致收敛性概念和性质,了解一致收敛性判别法(魏尔斯特拉斯判别法,狄里克雷判别法和阿贝尔判别法.3. 了解含参变量的广义积分的连续性,可微性与可积性定理,了解含参变量的定积分基本方法.4. 了解Γ函数与β函数的定义、性质及其联系.(二) 考核范围1. 含参变量的定积分的连续性,可微性和可积性定理的证明,定理的应用.2. 含参变量的广义积分的一致收敛性概念和性质,一致收敛性判别法.3. 连续性,可微性与可积性定理,定理的应用.4.Γ函数与β函数的定义、性质及其联系,余元公式.萍乡学院工程与管理学院2019年3月20日。

2015年荆楚理工学院普通专升本《护理学基础》考试大纲

2015年荆楚理工学院普通专升本《护理学基础》考试大纲

2015年荆楚理工学院普通专升本《护理学基础》考试大纲课程名称:护理学基础一、考试对象2015年护理学专升本学生二、考试目的《基础护理学》是高等院校护理专业的主干课程之一,也是护理专业的核心专业基础课程。

课程考试的目的是考察学生对基本理论、基本知识、基本技能的掌握程度及能将所学的《基础护理学》知识运用于临床护理实践,考核其分析和解决问题的能力。

本门课程考核要求由低到高共分为“了解”、“熟悉”、“掌握”、“学会”四个层次。

“了解”是指学生对一些涉及到护理的一些其他学科的相关内容有所了解;“熟悉”是指学生对要求熟悉的内容(包括护理操作的目的、意义、的影响因素等的内容)都应明了;“掌握”是指学生必须要理解并记住的知识点(包括护理措施、操作步骤、注意事项等);“学会”则是技能目标,因本门课程实践性较强,特别强调学生动手能力的培养,故要求学生必须加强技能的考核。

三、考试方法和考试时间1、考试方法:闭卷考试。

2、记分方式:满分为150分,3、考试时间:100分钟4、命题的指导思想和原则全面考查学生对本课程的基本理论、基本知识和基本技能的学习、理解和掌握的情况作为命题的指导思想。

笔试命题的原则是题目数量多、范围广,最基本的知识一般要占60%左右,稍微灵活一点的题目要占20%左右,较难的题目要占20%左右。

客观性的题目约占60%。

5、题目类型(笔试)(1)名词解释(本大题共5小题,每小题3分,共15分)(2)填空题(本大题共10小题,每小题4分,共40分。

把答案填在题中空格的横线上。

)(3)选择题(本大题共20小题,每小题2分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)(4)判断改错题(本大题共5小题,每小题2分,共10分。

判断1分;改错1分)(5)简答题(本大题共3小题,每小题5分,共15分)(6)论述题(本大题共2小题,每小题15分,共30分。

)根据实际课程的不同可作适当调整。

操作考核则抽签定操作项目。

数学分析专升本考试大纲

数学分析专升本考试大纲

数学分析专升本考试大纲对于很多想要通过专升本提升学历的小伙伴来说,数学分析这门课可是个不小的挑战。

但别担心,咱们一起来瞅瞅这考试大纲,心里有底就不怕啦!先来说说函数。

函数可是数学分析里的“常客”,就像咱们日常生活中离不开手机一样。

函数的概念、性质,比如单调性、奇偶性、周期性,那都得弄得明明白白。

还记得我之前辅导过一个学生,他老是搞不清楚函数的单调性。

我就给他举了个例子,说咱们爬山,往上爬的时候越来越高,这就是单调递增;要是往下走越来越低,那就是单调递减。

他一下子就明白了!极限也是重点中的重点。

极限的定义、计算方法,那都得熟练掌握。

比如说数列的极限、函数的极限,可别小瞧这些,稍微一走神就容易出错。

我曾经观察过一些同学做极限的题目,明明思路是对的,可就是在计算过程中粗心大意,结果丢了不少分,多可惜呀!连续函数也不能忽视。

连续的定义、间断点的类型,都得心里有数。

这就好比我们走路,连续的路走起来顺顺当当,要是有间断点,那就像路上突然有个大坑,得小心别掉进去。

再来说说导数和微分。

导数的定义、几何意义,还有各种求导法则,那都得烂熟于心。

微分呢,要知道它和导数的关系,能熟练进行计算。

有一次我在课堂上讲导数的应用,讲到利用导数求函数的极值和最值,同学们听得那叫一个认真,眼睛都不眨一下。

积分更是重中之重啦!不定积分、定积分,还有各种积分方法,像换元积分法、分部积分法,都得熟练运用。

就像我们存钱,一点一点积累,最后才能有一笔“大财富”。

多元函数的部分也不简单。

偏导数、全微分、重积分,每一个概念都要理解透彻。

记得有个同学在做多元函数的题目时,总是把偏导数和全微分搞混,经过反复练习和讲解,终于不再出错了。

无穷级数这一块,要清楚级数的收敛和发散的判别方法。

级数就像是一群人排队,有的队伍能一直排下去,有的排着排着就乱了,我们得知道怎么判断。

最后,关于数学分析的考试,大家一定要多做练习题,熟悉各种题型,提高解题速度和准确率。

2015年专升本高数内部考试资料

2015年专升本高数内部考试资料

2015年专升本高数内部考试资料第一章函数、极限与连续 (1)一、函数定义域的求法 (1)二、函数相等的判定 (1)三、函数表达式的求法 (2)四、函数的基本性质 (3)五、反函数的求法 (4)六、数列极限的求法 (4)七、函数存在极限的充要条件 (4)八、函数极限的求法 (5)九、无穷小量阶的比较 (7)十、关于函数极限的反问题 (8)十一、函数在一点处的连续性 (8)十二、求函数的间断点及其类型 (9)十三、闭区间上连续函数的性质 (11)第二章一元函数微分学及其应用 (12)一、根据导数的定义求极限或函数在某一点的导数 (12)二、利用导数的几何意义求切线或法线方程 (12)三、可导与连续的关系以及函数在一点可导性的判定 (13)四、求导法则及复合函数的导数与微分 (14)五、函数的高阶导数 (15)六、参数方程或隐函数方程的导数 (16)七、幂指函数的导数求法 (16)八、关于中值定理条件的验证 (16)九、利用拉格朗日中值定理证明不等式 (17)十、利用拉格朗日中值定理证明恒等式 (18)十一、关于中值命题的证明 (18)十二、利用洛必达法则求极限 (18)十三、单调性的判定与单调区间的求法 (19)十四、利用单调性证明不等式,以及数值不等式的证法 (20)十五、利用单调性判定根的存在性或唯一性 (20)十六、关于函数的极值问题 (20)十七、函数的最值问题 (21)十八、曲线凹凸性的判定 (22)十九、曲线的拐点求法 (23)二十、曲线的渐近线求法 (24)第三章一元函数积分学及其应用 (25)一、原函数与不定积分的概念及性质 (25)二、不定积分的直接积分法 (27)三、不定积分的第一类换元积分法(凑微分法) (27)四、不定积分的第二类换元积分法 (29)五、不定积分的分部积分法 (29)六、有理分式的不定积分 (30)七、定积分的概念与性质 (30)八、积分上限函数的导数 (31)九、定积分的常规计算 (32)十、使用定积分的性质和一些重要结果计算定积分 (34)十一、广义积分的计算与敛散性的判定 (35)十二、含定积分的函数表达式求法 (36)十三、利用定积分的几何意义求平面图形的面积 (36)十四、利用定积分求特殊的空间立体的体积 (38)第四章向量代数与空间解析几何 (39)一、向量代数 (39)二、空间直线与平面的方程求法 (40)三、两点间的距离、点到平面的距离以及空间中对称点的求法 (41)四、位置关系的判定及其夹角计算 (42)五、二次曲面与旋转曲面的特征 (43)六、旋转曲面与投影曲线的求法 (44)第五章多元函数微分学 (45)一、二元函数的表达式与定义域的求法 (45)二、二元函数的极限与函数的连续性 (45)三、二元函数的偏导数与全微分 (46)四、二元复合函数的偏导数与全微分 (47)五、可微、连续、偏导数之间的关系 (47)六、高阶偏导数 (48)七、多元抽象函数的偏导数与全微分 (48)八、多元隐函数的偏导数与全微分 (49)九、方向导数与梯度 (49)十、空间曲线的切线与曲面的切平面求法 (49)十一、二元函数的极值 (50)十二、多元函数的最值问题 (51)第六章多元函数积分学 (51)一、二重积分的概念与性质 (51)二、直角坐标系下二重积分的计算 (52)三、特殊被积函数的二重积分计算 (53)四、极坐标系下的二重积分计算 (54)五、含二重积分的函数表达式求法 (55)六、两坐标系下二重积分的相互转化与交换二重积分的积分次序 (55)七、利用二重积分计算空间立体的体积 (56)八、第一类曲线积分的计算 (56)九、利用定积分计算第二类曲线积分 (57)十、格林公式与曲线积分与路径无关 (57) 第七章无穷级数 (58)一、利用定义判定级数的敛散性 (58)二、利用级数的一般性质判定级数的敛散性 (59)三、利用级数收敛的必要条件判定级数敛散性 (60)四、正项级数的敛散性判别法 (60)五、交错级数与一般项级数的敛散性判定 (62)六、阿贝尔第一定理及其应用 (63)七、幂级数的收敛半径、收敛区间以及收敛域的求法 (64)八、幂级数的和函数与数项级数和的求法 (65)九、函数f(x)展开成幂级数的方法 (65)十、由函数的幂级数展开式,求函数的高阶导数 (66)第八章常微分方程 (66)一、微分方程的基本概念 (66)二、可分离变量的微分方程与一阶线性齐次微分方程的解法 (67)三、齐次方程的解法 (68)四、一阶线性非齐次微分方程的解法 (68)五、可降阶的高阶微分方程的解法 (69)六、线性微分方程解的结构定理应用 (70)七、二阶常系数线性齐次微分方程的解法 (71)八、二阶常系数线性非齐次微分方程的解法 (72)九、常系数线性微分方程的反问题 (73)十、已知一个变限积分方程,求函数表达式 (74)参考答案 (74)第一章函数、极限与连续 (74)第二章函数、极限与连续 (77)第三章一元函数积分学及其应用 (82)第四章向量代数与空间解析几何 (86)第五章多元函数微分学 (88)第八章常微分方程 (94) 第一章函数、极限与连续一、函数定义域的求法1.已知函数的表达式,求函数的定义域例1函数y=ln(x-1)+arcsin(x-3)的定义域是()A.[2,+∞)B.(2,4)C.[2,4)D.[2,4]例2函数f(x)=ln(x-1)x+1的定义域是()A.(-1,1)B.(-∞,-1)C.(1,+∞)D.(-∞,-1)∪(-1,1)∪(1,+∞)例3函数f(x)=16-x2ln(x+2)的定义域是.例4函数f(x)=2+x2-x的定义域是.例5函数y=x2-9x-3的定义域是.2.分段函数的定义域是各分段区间的并集.3.抽象函数定义域的求法例6设f(x)的定义域为(0,1),则函数f(lnx)的定义域为.例7设f(x)的定义域为[0,4],则函数f(x+1)+f(x-1)的定义域为.例8设f(x+1)的定义域为[0,1],则函数f(2x+3)的定义域为.例9设f(x)的定义域为(0,1),则f(ex)的定义域为()A.(-∞,0)B.(1,e)C.(-∞,1)D.(-∞,e)二、函数相等的判定例1下列函数相同的是()A.f(x)=x2,g(x)=xB.f(x)=ddx∫x0sintdt,g(x)=sinxC.f(x)=lnx2,g(x)=2lnxD.y=x,y=sin(arcsinx)例2下列函数相同的是()A.y=1,y=xxB.y=x2-4,y=x-2·x+2C.y=x,y=cos(arccosx)D.y=x2,y=|x|例3下列函数相等的是()A.y=x2-x-2x-2与y=x+1B.y=sin2x与y=sinxC.f(x)=x2+sin2x+cos2x与g(t)=t2+1D.f(x)=sec2x-tan2x与f(x)=1三、函数表达式的求法1.已知f(x)和g(x)的表达式,求f[g(x)]或g[f(x)]的表达式例1f(x)=xx-1,则f1f(x)-1=.例2设f(x)=x,x≤0,x+x2,x>0,则f[f(x)]=.例3设g(x)=2-x,x≤0,x+2,x>0,f(x)=x2,x<0,-x,x≥0,则g[f(x)]=.例4设f(x)=x1+x2,求f[f……f(x)]n个f的表达式.2.已知f[g(x)]和g(x),求f(x)的表达式例5设fx-2x=1+x,则f(x)=.例6设f(ex+1)=e2x+ex+x,则f(x)=.例7设fx-1x=x3-xx4+1(x≠0),求f(x).例8设f(lnx)=x3+1,则f(x)=.例9若函数fsinx2=1+cosx,则fcosx2=.3.已知f(x)和f[g(x)]的表达式,求g(x)的表达式例10已知f(x)=ln(1+x),f[g(x)]=x,求g(x).例11已知f(x)=3lnx,f[g(x)]=ln(1-2lnx),求g(x). 四、函数的基本性质掌握函数的单调性、奇偶性、有界性、周期性的概念及其性质.例1设f(x)为增函数,g(x)为减函数,则下列函数中为减函数的是()A.f[-g(x)]B.f[g(x)]C.f[f(x)]D.g[g(x)]例2函数f(x)=11+2x-12在其定义域内()A.奇函数B.偶函数C.非奇非偶函数D.无法判定例3函数f(x)=x7arcsin(tanx)在其定义域内()A.偶函数B.奇函数C.非奇非偶函数D.无法判定例4函数f(x)=cotx·3x-13x+1是()A.偶函数B.奇函数C.非奇非偶函数D.无法判定例5若f(x)在(-∞,+∞)内为奇函数,则F(x)=f(x)ln(x+x2+1)在(-∞,+∞)内为()A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数例6设f(x)是奇函数,且处处可导,则f′(x)是()A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数例7函数y=1-arctanx是()A.单调增加且有界函数B.单调减少且有界函数C.奇函数D.偶函数例8函数f(x)在(-∞,+∞)上是奇函数,当x≤0时,f(x)=x2-x,则当x>0时,f(x)的表达式是()A.x2-xB.-x2+xC.x2+xD.-x2-x例9函数y=1x在定义域内是()A.周期函数B.单调函数C.有界函数D.无界函数例10下列函数不是周期函数的是()A.y=3sin(x+π)B.y=sin2xC.y=1+sin5xD.y=xsinx例11设函数f(x)的定义域为(-∞,+∞),若对x∈(-∞,+∞),有f(x+k)=1f(x)(k为常数)则函数f(x)具有()A.单调性B.奇偶性C.周期性D.有界性 五、反函数的求法例1设函数f(x)=log2x+8(x≥2),则其反函数的定义域为()A.(-∞,+∞)B.[2,+∞)C.(0,2]D.[9,+∞)例2y=ax-bcx-d的反函数是()A.y=ax-bcx-dB. y=ax-dcx-bC.y=cx-dax-bD.y=dx-bcx-a六、数列极限的求法例1求下列极限:(1)limn→∞1n2+2n2+…+nn2;(2)limn→∞12n3+22n3+…+n2n3;(3)limn→∞11·2+12·3+…+1n(n+1);(4)limn→∞1n2+1+1n2+2+…+1n2+n;(5)limn→∞1n2+n+1+2n2+n+2+…+nn2+n+n.例2极限limn→∞1+2+…+n2+n-n2的值为()A.14B.12C.-12D.-∞七、函数存在极限的充要条件1.函数f(x)在x→∞时极限存在的充要条件常见的几个极限式:limx→-∞arctanx=-π2,limx→+∞arctanx=π2,limx→+∞arccotx=0,limx→-∞arccotx=π,limx→-∞ex=0,limx→+∞ex=+∞(及其二者的推广)例1下列极限不存在的是:()A.limx→∞(2x-1)20(3x+2)30(5x+3)50B.limx→∞sinxnxnC. limx→∞xsin1xD.limx→∞ex2.函数f(x)且x→x0时极限存在的充要条件例2下列函数中,limx→0f(x)存在的是()A.f(x)=12-x,x<00,x=0 x+12,x>0B.f(x)=|x|x,x≠0x,x=0C.f(x)=x2+2,x<03,x=0sinx2x,x>0D.f(x)=e1x,x≠00,x=0例3函数f(x)=21x在x=0处()A.有定义B.极限存在C.左极限存在D.右极限存在例4下列极限存在的是()A.limx→∞4xB.limx→∞x3+13x3-1C.limx→0+lnxD.limx→1sin1x-1八、函数极限的求法1.利用极限的运算法则求极限例1求下列极限:(1)limx→-∞2x-3x2x+3x;(2)limx→+∞2x-3x2x+3x;(3)limx→∞(x+1)10(2x-1)20(3x+2)30;(4)limx→0x-sinxx+sinx.例2对任意x总有φ(x)≤f(x)≤g(x),且limx→∞[g(x)-φ(x)]=0,则limx→∞f(x)() A.存在且一定为0 B.存在且一定不为0C.一定不存在D.不一定存在例3已知limx→0xf(4x)=1,求limx→0f(2x)x.2.无理分式极限的求法例4求极限:(1)limx→02x+1-3x+2-2; (2)limx→0x+1-1x;(3)limx→∞nn2+1+n2-1; (4)limx→∞x4-3x2+1-12x2-3x.3.“∞-∞”型分式极限的求法例5求极限:(1)limx→01x-1ex-1;(2)limx→21x-2-1x2-4; (3)limx→01sin2x-cos2xx2;(4)limx→01+x1-e-x-1x.4.x→x0与x→∞时,有理分式极限的求法例6求极限:(1)limx→0ex2cosxarcsin(1+x); (2)limx→0x2+2x2+x;(3)limx→1x2-3x+21-x2.例7求极限:(1)limx→∞3x2+x-82x2+5x+1; (2)limx→∞3x2+x-82x3+5x+1;(3)limx→∞3x3+x-82x2+5x+1.5.利用重要极限求极限例8求极限:(1)limx→01-cosxxsinx; (2)limx→πsinxπ-x;(3)limn→∞nsinπn; (4)limx→1sin(x2-1)x-1.例9求极限:(1)limx→∞1-1x4x+3; (2)limx→03x1+2x;(3)limx→π2(1+cosx)3secx; (4)limn→∞1+1n+1n2n;(5)limx→∞x2-1x2+1x2; (6)limx→∞1+sin2x2x;(7)limx→0(1+x2)11-cosx; (8)limn→∞(1+2n+3n)1n(洛必达).例10设f(x)=limt→0x(1+3t)xt,则f′(x)=.6.利用无穷小量的性质求极限例11求下列极限:(1)limn→∞x2+x-sinxx3-4x+5(sinx+cosx);(2)limx→+∞x3+x2+12x+x3(sinx+cosx).(3)limx→∞(sinn2+1π);(4)limx→+∞(sinx2+1-sinx).例12当x→∞时,下列变量不是无穷小量的是()A.x2sinx2x3-1B.(x2+1)sinxx2+1C.(x3+2x)sin1x3-2xD.11-x3sin1+x32x7.利用无穷小替换求极限 例13求下列极限:(1)limx→01-e3xtan2x; (2)limx→0ln(1+4x2)sinx2;(3)limx→∞x(e2x-1); (4)limx→∞x(e2sin1x-1);(5)limx→01+xsinx-1arctanx; (6)limx→0+1-cosxx(1-cosx);(7)limx→1x2-1lnx; (8)limx→01+tanx-1+xarcsinxarctanx2.九、无穷小量阶的比较例1当x→0+时,与x等价的无穷小量是()A.1-exB.ln(1+x)C.1+x-1D.1-cosx例2当x→0时,下列无穷小量中是其他三个高阶无穷小的是()A.x2B.1-cosxC.1-x2-1D.x-tanx例3当x→0时,函数eax-1与1+x-1是等价无穷小量,则常数a的值为()A.2B.12C.-2D.-12例4设f(x)=∫1-cosx0sint2dt,g(x)=x55+x66,则当x→0时,f(x)是g(x)的()A.低阶无穷小量B.高阶无穷小量C.等价无穷小量D.同阶但不等价无穷小量例5当x→0时,函数f(x)=sinax与g(x)=ln(1-2x)为等价无穷小,则常数a的值为() A.-1 B.1 C.-2 D.2例6设f(x)=e-x2-1,g(x)=xtanx,当x→0时()A.f(x)是g(x)的高阶无穷小B.f(x)是g(x)的低阶无穷小C.f(x)与g(x)为同阶无穷小,但非等价无穷小D.f(x)与g(x)为等价无穷小例7当x→0时,无穷小量1-cosx2是x4()A.等价无穷小B.同阶无穷小C.较高阶无穷小D.较低阶无穷小例8下列陈述中正确的是()A.sinx22与x22是等价无穷小量(x→0)B.sinx22与x2sinx2是等价无穷小量(x→∞)C.sin2x2与1x2是等价无穷小量(x→∞) D.sin2x2与2xsin2x是等价无穷小量(x→∞)例9当x→0时,4x+5x-2是x的()A.等价无穷小B.同阶非等价无穷小C.高阶无穷小D.低阶无穷小例10当x→0时,与e-sinx-1比较是同阶非等价无穷小的是()A.-xB.x2C.x2D.-sinx例11当x→0时,ex-ax2-x-1是x2的高阶无穷小量,则a=.例12当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比ex2-1高阶的无穷小,则正整数n=()A.1B.2C.3D.4例13当x→0时,1+x2-ex2是x的阶无穷小量.例14当x→0+时,下列函数为无穷大量的是()A.2-x-1B.sinx1+secxC.e-xD.e1x十、关于函数极限的反问题例1若limx→01bx-sinx∫x0t2a+t2dt=1,则()A.a=4,b=1B.a=2,b=1C.a=4,b=0D.a=2,b=1例2已知limx→∞x2x+1-ax-b=0,求常数a,b.例3设limx→0ln(1+x)-(ax+bx2)x2=2,求常数a,b.十一、函数在一点处的连续性例1极限limx→x0f(x)存在是函数f(x)在x=x0处连续的()A.必要而非充分条件B.充分而非必要条件C.充要条件D.无关条件例2极限limx→x0f(x)存在是函数f(x)在x=x0处可导的()A.必要而非充分条件B.充分而非必要条件C.充要条件D.无关条件例3设f(x)=1+xsinx-cosxx2,当x≠0时,F(x)=f(x),且F(x)在x=0处连续,则F(0)=() A.-1 B.0 C.1 D.2例4函数f(x)=2x,x≥1,x2,x<1在点x=1处()A.不可导B.连续C.可导且f′(1)=2D.无法判断是否可导例5设f(x)=|x2-1|x-1,x≠1,2,x=1则f(x)在点x=1处()A.不连续B.连续但不可导C.可导但导数不连续D.可导且导数连续例6设函数f(x)=ex,x<0,x2+2a,x≥0在点x=0处连续,则a=()A.0B.1C.-1D.12例7设f(x)=sin3xx+b,x<0,a,x=0,2x,x>0在x=0处连续,则常数a与b的值为()A.a=0,b=-3B.a=-3,b=0C.a=0,b=3D.a=0,b=-13例8已知函数f(x)=a+bx2,x≤0,sinbxx,x>0在x=0处连续,则常数a和b满足()A.a>bB.a<bC.a=bD.a与b为任意实数十二、求函数的间断点及其类型例1x=0是函数f(x)=xsin1x的()A.可去间断点B.跳跃间断点C.振荡间断点D.无穷间断点例2x=0是函数f(x)=21x-1的()A.连续点B.可去间断点C.跳跃间断点D.第二类间断点例3设f(x)=1x-1x+11x-1-1x,则f(x)的可去间断点的个数为()A.3B.2C.1D.0 例4设f(x)=xsin1x,x≠0,0,x=0,则x=0是()A.可去间断点B.跳跃间断点C.第二类间断点D.连续点例5设函数f(x)=sinxx-x2,x≠0,0,x=0,则f(x)的间断点为()A.x=0B.x=1C.x=0和x=1D.不存在例6设函数f(x)在[-1,1]上连续,则x=0是函数g(x)=∫x0f(t)dtx的()A.连续点B.第二类间断点C.可去间断点D.跳跃间断点例7设函数f(x)=e1x-1,x<1,lnx,x≥1,则x=1是f(x)的()A.可去间断点B.跳跃间断点C.无穷间断点D.连续点例8函数f(x)=e1x,x>0,ln(x+1),-1<x≤0则x=0是()A.连续点B.可去间断点C.无穷间断点D.跳跃间断点例9设f(x)=x1+e1x2,x≠0,0,x=0则x=0是()A.连续点B.可去间断点C.跳跃间断点D.无穷间断点例10对于函数y=x2-4x(x-2),下列结论中正确的是()A.x=0是第一类间断点,x=2是第二类间断点B.x=0是第二类间断点,x=2是第一类间断点C.x=0是第一类间断点,x=2是第一类间断点D.x=0是第二类间断点,x=2是第二类间断点例11设函数f(x)=1exx-1-1,则()A.x=0,x=1都是第一类间断点B.x=0,x=1都是第二类间断点C.x=0是第一类间断点,x=1是第二类间断点D.x=0是第二类间断点,x=1是第一类间断点例12函数f(x)=1e-e1x的第二类间断点的个数()A.0B.1C.2D.3 例13函数f(x)=x2-2x|x|(x2-4)的第一类间断点的个数()A.0B.1C.2D.3十三、闭区间上连续函数的性质例1设函数f(x)在[a,b]上连续,且f(a)=f(b),但f(x)不恒等于常数,则函数f(x)在(a,b)内()A.必有最大值或最小值B.既有最大值又有最小值C.既有极大值又有极小值D.至少存在一点ξ,使f′(ξ)=0例2下列方程在(0,1)内至少有一个实根的为()A.arctanx+x2+1=0B.x3-4x2+1=0C.x5-3x=1D.sinx+x+1=0例3下列区间中,使方程x4-x-1=0至少有一个根的区间是()A.(1,2)B.(2,3)C.12,1D.0,12例4已知函数f(x)在[0,+∞)上可导,且f′(x)<0,f(0)>0,则方程f(x)=0在(0,+∞)上()A.有唯一实根B.至少存在一个实根C.不能确定根D.没有根例5设a2-3b<0,则方程x3+ax2+bx+c=0的实根个数()A.1B.2C.3D.无法确实根的个数例6设函数f(x)在区间[0,1]上可导,f′(x)>0,且f(0)<0,f(1)>0,则f(x)在[0,1]内()A.至少有两个零点B.有且仅有一个零点C.没有零点D.零点的个数不能确定例7设函数f(x)在闭区间[0,2]上连续,且f(2)=0,f(1)=2,求证:存在ξ∈(1,2),使得f(ξ)=ξ.提示:令g(x)=x-f(x),∵f(x)在[0,2]上连续,所以g(x)在[0,2]上也连续,进而在[1,2]上也连续,又g(1)=1-f(1)<0,g(2)=2-f(2)>0,由零点定理,ξ∈(1,2) (0,2),使f(ξ)=ξ. 例8设函数f(x)在闭区间[0,1]上连续,且0≤f(x)≤1.证明:存在ξ∈[0,1],使f(ξ)=ξ.第二章一元函数微分学及其应用一、根据导数的定义求极限或函数在某一点的导数例1已知f(0)=0,f′(0)=1,则limx→0f(x)x=()A.2B.1C.0D.+∞例2设f(x)在x=1处可导,且f′(1)=1,则limx→1f(x)-f(1)x2-1=.例3设函数f(x)在x=0处可导,且f(0)=0,则limx→0x2f(x)-2f(x3)x3=()A.-2f′(0)B.-f′(0)C.f′(0)D.0例4设函数f(x)在x=2处可导,且f′(2)=1,则limh→0f(2+h)-f(2-h)2h=()A.-1B.1C.-2D.2例5设f(x)=(x-a)g(x),g(x)连续但不可导,且在x=a处有界,则f′(a)=()A.不存在B.0C.1D.g(a)例6设f(x)为可导的奇函数,且f′(x0)=6,则f′(-x0)=.例7设f(x)=x(x-1)(x-2)…(x-100),求f′(0),f′(50)和f′(100).例8设φ(x)在x=a处连续,f(x)=(x2-a2)φ(x),求f′(a).例9设f(x)在x=0处可导,且f(x)=f(0)-3x+α(x),limx→0α(x)x=0,求f′(0).例10设f(x)在x=0处可导,且limx→0f(x)+1x+sinx=2,求f′(0).例11设函数f(x)满足下列条件:(1)f(x+y)=f(x)f(y)对x,y∈R都成立;(2)f(x)=1+xg(x),而limx→0g(x)=1.试证明f(x)在R上处处可导,且f′(x)=f(x).二、利用导数的几何意义求切线或法线方程例1已知椭圆的参数方程为x=acost,y=bsint,(a>0,b>0),则椭圆在t=π4对应点处的切线斜率为()A.baB.abC.-baD.-ab 例2直线l与x轴平行且与曲线y=x-ex相切,则切点坐标为()A.(1,1)B.(-1,1)C.(0,-1)D.(0,1)例3已知函数f(x)为可导偶函数,且limx→0f(1+x)-f(1)2sinx=-2,则曲线y=f(x)在(-1,2)处的切线方程为()A.y=4x+6B.y=-4x-2C.y=x+3D.y=-x+1例4曲线y=∫x0(t-1)(t-2)dt在点(0,0)处的切线方程为.例5设函数y=f(x)在点x处可导且在点x0处取得极小值,则曲线y=f(x)在点(x0,f(x0))处的切线方程为.例6某曲线在任一点处的切线斜率等于该点横坐标的倒数,且通过点(e2,3),则曲线方程为.例7求曲线tanx+y+π4=ey在点(0,0)处的切线方程与法线方程.例8证明:双曲线xy=a2上任一点处的切线与两坐标轴围成的三角形面积等于常数.例9已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=0处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.三、可导与连续的关系以及函数在一点可导性的判定例1函数y=f(x)在点x0处可导是它在x0处连续的()A.充要条件B.必要条件C.充分条件D.以上都不对例2设f(x)在x0处存在左、右导数,则f(x)在x0点()A.可导B.连续C.不可导D.不一定连续例3设f(x)在x0点不连续,则()A.f′(x0)必存在B.f′(x0)必不存在C.limx→x0f(x)必不存在D.limx→x0f(x)必存在例4已知函数f(x)=ln(1+x),-1<x≤0,ex-1,0<x<1,则f(x)在x=0处()A.无极限B.有极限,但不连续C.连续但不可导D.可导例5下列函数在点x=0处可导的是() A.3x B.e-x C.|x| D.e3x2ln(1+x)例6下列函数在点x=0处可导的是()A.y=|x|B.y=x2sin1x,x≠00,x=0C.y=2xD.y=x,x≤0x2,x>0例7设f(x)=acosx+bsinx,x<0,ex-1,x≥0在点x=0处可导,则a和b的值分别为()A.a=0,b=0B.a=1,b=0C.a=1,b=1D.a=0,b=1例8若f(x)=eax,x≤0,1+sin2x,x>0在点x=0处可导,则a=.例9函数y=|x|+1在点x=0处()A.无定义B.不连续C.可导D.连续但不可导例10函数f(x)=(x2-x-2)|x3-x|的不可导点个数为()A.3B.2C.1D.0例11函数f(x)=e|x-a|在x=a处()A.不连续B.连续但不可导C.可导但导函数不连续D.导函数连续例12若f(x)在点x0处可导,则|f(x)|在点x0处()A.必可导B.连续但不一定可导C.一定不可导D.不连续例13设函数f(x)=|x2-1|φ(x),其中φ(x)在x=1处连续,则φ(1)=0是f(x)在x=1处可导的()A.充分必要条件B.必要条件C.充分条件D.既非充分也非必要条件四、求导法则及复合函数的导数与微分例1设f(x)=sinx,则f′(x)=.例2设函数y=11+cosx,则y′=. 例3设函数f(x)=(x+1)1x-1,则f′(x)=.例4若f(x-1)=x2-1,则f′(x)=()A.2x+2B.x(x+1)C.x(x-1)D.2x-2例5已知ddxf1x2=1x,f′12=()A.22B.-22C.-1D.1例6设f′(lnx)=x,则ddxf(sinx)=()A.esinxcosxB.ecosxsinxC.esinxD. e cosx例7某企业每月生产Q(单位:t)产品时,总成本C是产量Q的函数,即C(Q)=Q2-10Q+20,则每月生产产品8 t时的边际成本是()A.4B.6C.10D.20例8设y=lncos(ex),求dydx.例9设y=e(arctanx)2,求y′.例10若y=sine-x,则有()A.dy=cose-xdxB.dy=e-xsine-xdxC.dy=-e-xcose-xdxD.dy=e-xcose-xdx例11设y=f(sec2x),求dy.五、函数的高阶导数例1设函数f(x)=e2x-1,则函数f(x)在x=0处的二阶导数f″(0)等于()A.0B.e-1C.4e-1D.e例2设函数y=xlnx,则y10=()A.-1x9B.1x9C.8!x9D.-8!x9例3设函数f(x)=sinx,则f(2013)(x)=()A.sinxB.cosxC.-sinxD.-cosx例4设f(2013)(x)=x2+lnx,则f(2015)(x)=()A.2-1x2B.2+1x3C.1x2D.-1x2例5设函数f(x)在x=2的某邻域内可导,且f′(x)=ef(x),f(2)=1,则f(2)=.例6设f(x)=x3-cosx+lnx,n>3,则f(n)(x)=.例7设f(x)=x(x+1)(2x-1)(3x+1)(4x-1),求f(5)(0),f(6)(x). 例8设f(x)=sin4x+cos4x,求f(n)(x).例9设函数y=13x+5,则y(n)(0)=.六、参数方程或隐函数方程的导数例1设x=ln(1+t2),y=arctant,则dydx=()A.12tB.2tC.1D.t例2设x=t-1t,y=12t2+lnt,则d2ydx2=()A.tB.t+1tC.1t2+1D.t2t2+1例3已知x=sint+1,y=∫t0cosudu,则d2ydx2=.例4设y=xey+1,则dydx=()A. ey2+yB.eyy-2C.eyxey+1D.ey1-xey例5y=y(x)是由方程arctanyx=lnx2+y2确定的隐函数,则dydx=()A.y-xy+xB.y+xy-xC.x-yx+yD.x+yx-y例6设y是由方程∫y0etdt+∫xπ2sintdt=0所确定的x的函数,则dydx=()A.sinxeyB.-sinxeyC.cosxeyD.-cosxey例7已知ex-x3ey=cos(xy),且y=f(x),求y′.七、幂指函数的导数求法例1设y=xxlnx-x,求dydx.例2设y=xsinx,求dydx.例3求函数y=x-1x+2·(3-x)4·3xln(1+x)的导数.八、关于中值定理条件的验证例1下列函数在闭区间[-1,1]上满足罗尔定理条件的是()A.y=|x|B.y=x3C.y=x2D.y=1x例2下列函数在指定区间上满足罗尔定理条件的是() A.f(x)=1x ,x∈[-2,0] B.f(x)=(x-4)2,x∈[-2,4]C.f(x)=sinx,x∈-3π2,π2D.f(x)=|x|,x∈[-1,1]例3下列函数在给定的区间上满足罗尔定理条件的是()A.y=|x-1|,[0,2]B.y=13(x-2)2,[0,2]C.y=x3-3x+2,[1,2]D.y=xarcsinx,[0,1]例4下列函数在[1,e]上满足拉格朗日中值定理条件的是()A.ln[lnx]B.lnxC.1lnxD.ln(2-x)例5函数y=sinx在闭区间[0,2π]上符合罗尔定理条件的ξ=()A.0B.π2C.πD.2π例6若函数y=x3在闭区间[0,1]上满足拉格朗日中值定理的条件,则ξ=()A.33B.-33C.±33D.±3例7设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则()A.至少存在一点ξ∈(a,b),使f′(ξ)=0B.当ξ∈(a,b)时,必有f′(ξ)=0C.至少存在一点ξ∈(a,b),使得f′(ξ)=f(b)-f(a)b-a成立D.当ξ∈(a,b)时,必有f′(ξ)=f(b)-f(a)b-a例8函数f(x)在开区间(a,b)上可导,且a<x1<x2<b,则至少存在一点ξ,使下式成立的是()A.f(b)-f(a)=f′(ξ)(b-a)(a<ξ<b)B.f(b)-f(x1)=f′(ξ)(b-x1)(x1<ξ<b)C.f(x2)-f(x1)=f′(ξ)(x2-x1)(x1<ξ<x2)D.f(x2)-f(a)=f′(ξ)(x2-a)(a<ξ<x2)例9不求函数f(x)=(x-2)(x-4)(x-7)的导数,说明方程f′(x)=0有几个实根,并指明其所在的区间.例10设f(x)=(x2-9)(x2-16),则f′(x)=0的实根个数是()A.1B.2C.3D.4九、利用拉格朗日中值定理证明不等式例1证明:当x>0时,11+x<ln1+xx<1x. 例2证明不等式x1+x2<arctanx<x(x>0).例3证明不等式nan-1(b-a)<bn-an<nbn-1(b-a)(0<a<b,n>1).例4证明不等式|arctana-arctanb|≤|a-b|.十、利用拉格朗日中值定理证明恒等式例1证明下列恒等式:(1)sin2x+cos2x=1;(2)1+tan2x=sec2x;(3)1+cot2x=csc2x.例2证明:当x≥1时,arctanx+12arccos2x1+x2=π4.例3设f(x)在(-∞,+∞)内满足关系式f′(x)=f(x),且f(0)=1,则f(x)=ex.例4证明:对于任意的实数a,有∫a+Taf(x)dx=∫T0f(x)dx,其中T为连续周期函数f(x)的周期.十一、关于中值命题的证明例1设函数f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(b)-f(a)=g(b)-g(a),试证明,在(a,b)内至少有一点c,使f′(c)=g′(c).例2设函数F(x)=∫x1sinx·f(t)dt,其中f(t)在[1,π]上连续,求F′(x),并证明在(1,π)内至少存在一点ε,使得cosε·∫ε1f(x)dx+sinε·f(ε)=0.例3设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明在(a,b)内至少存在一点ξ,使得f′(ξ)=f(ξ).例4设函数f(x)在[0,1]上有二阶导数,且f(0)=f(1)=0,又F(x)=x2f(x),证明:至少存在一点ξ∈(0,1),使得F″(ξ)=0.例5设a<c<b,f(x)和g(x)都在[a,b]上连续,在(a,b)内二阶可导,且f(a)=g(a),f(c)=g(c),f(b)=g(b),则在(a,b)内至少有一点ξ,使f″(ξ)=g″(ξ).十二、利用洛必达法则求极限例1极限limx→0∫x0tan2tdtx3等于() A.+∞B.16C.0D.13例2limx→0∫x0ln(1+t3)tdtx-sinx=.例3求极限limx→0∫x0et2sintdtln(1+x2).例4limx→∞ln1+x2+xx=.例5求极限limx→+∞x+x-x-x.例6求极限limx→∞xsin5x-15sin5x.例7求极限limx→0ax+bx+cx31x(a>0,b>0,c>0).例8下列极限问题,不能使用洛必达法则的是()A.limx→0x2sin1xsinxB.limx→+∞xπ2-arctanxC.limx→∞1+kxxD.limx→∞x-sinxxsinx例9设F(x)=x2x-a∫xaf(t)dt,其中f(x)为连续函数,则limx→aF(x)=()A.a2B.a2f(a)C.0D.不存在例10求极限limx→0+1xtanx.例11若limx→01bx-sinx∫x0t2a+t2dt=1,则()A.a=4,b=1B.a=2,b=1C.a=4,b=0D.a=2,b=1十三、单调性的判定与单调区间的求法例1函数f(x)=x-ex+1在(0,+∞)内()A.是单调增加函数B.是单调减少函数C.有极大值D.有极小值例2函数f(x)=xlnx的单调增加区间是.例3设函数f(x)在[a,b]上连续,且单调增加,求证:F(x)=1x-a∫xaf(t)dt在[a,b]上单调增加.例4设在[0,1]上f″(x)>0,则f′(0),f′(1),f(1)-f(0)或f(0)-f(1)几个数的大小顺序为()A.f′(1)>f′(0)>f(1)-f(0)B.f′(1)>f(1)-f(0)>f′(0)C.f(1)-f(0)>f′(1)>f′(0)D.f′(1)>f(0)-f(1)>f′(0)例5函数F(x)=∫x0dt1+t2在(-∞,+∞)范围内()A.单调增加B.有无数多条铅直渐近线 C.图像是凹的 D.没有拐点十四、利用单调性证明不等式,以及数值不等式的证法例1证明:当x>0时,ln(x+1+x2)>x1+x2.例2证明:当0<x<1时,1-x2arcsinx<(1+x)ln(1+x).例3证明:当x>0时,(x2-1)lnx≥(x-1)2.例4证明:当x>0时,1x>arctanx-π2.例5证明:当x>0时,有(1+x)ln(1+x)>arctanx.例6证明:当0<a<b时,lnba>2(b-a)a+b.例7求证:当0<a<b<π时,bsinb+2cosb+πb>asina+2cosa+πa.例8设f(x),g(x)都是可导函数,且|f′(x)|<g′(x),证明:当x>a时,f(x)-f(a)<g(x)-g(a).十五、利用单调性判定根的存在性或唯一性例1已知函数f(x)在[0,+∞)上可导,且f′(x)<0,f(0)>0,则方程f(x)=0在(0,+∞)上()A.有唯一根B.至少存在一个根C.不能确定有根D.没有根例2设函数f(x)在区间[0,1]上可导,f′(x)>0,且f(0)<0,f(1)>0,则f(x)在[0,1]内()A.至少有两个零点B.有且仅有一个零点C.没有零点D.零点的个数不能确定例3证明:方程ex-32-∫x0dt1+t2=0在开区间(0,1)内有唯一的实根.例4设f(x)在区间[0,1]上连续,且f(x)<1,证明:方程2x-∫x0f(t)dt=1在区间(0,1)内有且仅有一个实根.十六、关于函数的极值问题例1下列结论中正确的是()A.若x0是f(x)的驻点,则一定是f(x)的极值点B.若x0是f(x)的极值点,则一定是f(x)的驻点C.若f(x)在x0处可导,则一定在x0处连续D.若f(x)在x0处连续,则一定在x0处可导例2函数f(x)=xe-x2的极大值点为()A.x=22B.x=-22C.22,22e-12D.-22,22e-12例3函数f(x)=∫x0(1+t)arctantdt的极小值为.例4函数y=x3-3x2+1的单调增加区间是,单调减少区间是,极小值点是,极大值点是.例5设一个函数的导数为x2-2x-8,则该函数的极大值与极小值之差是()A.-36B.12C.36D.-1713例6设f(x)=xsinx+cosx,则正确的是()A.f(0)是极大值,fπ2是极小值B.f(0)是极小值,fπ2是极大值C.f(0)是极大值,fπ2是极大值D.f(0)是极小值,fπ2是极小值例7设f(x)的导数在x=2处连续,又limx→2f′(x)x-2=-1,则()A.x=2是f(x)的极小值点B.x=2是f(x)的极大值点C.(2,f(2))是曲线y=f(x)的拐点D.x=2不是f(x)的极值点,(2,f(2))也不是曲线y=f(x)的拐点例8设f(x)的导数在x=a处连续,且limx→af′(x)x-a=1,则()A.x=a是f(x)的极小值点B.x=a是f(x)的极大值点C.(a,f(a))是曲线f(x)的拐点D.x=a不是f(x)的极值点例9若f(1)=0,limx→1f(x)(x-1)2=5,则f(x)在x=1处()A.导数不存在B.不连续C.取得极大值D.取得极小值例10求f(x)=(x-1)eπ2+arctanx的单调区间和极值.例11利用第二充分条件求函数f(x)=x3-3x2-9x-5的极值.十七、函数的最值问题例1设函数f(x)在[a,b]上连续,且f(a)=f(b),但f(x)不恒为常数,则函数f(x)在(a,b)内() A.必有最大值或最小值 B.既有最大值又有最小值C.既有极大值又有极小值D.至少存在一点ξ,使f′(ξ)=0例2设函数f(x)=13x3-x,则x=1为f(x)在[-2,2]上的()A.极小值点,但不是最小值点B.极小值点,也是最小值点C.极大值点,但不是最大值点D.极大值点,也是最大值点例3函数y=x+1-x在[-5,1]上的最大值为()A.6-5B.54C.6+5D.45例4函数f(x)=x+9x(x>0)的最小值为.例5函数y=x·2x的最小值点为.例6函数f(x)=x4-2x2在区间[0,2]上的最小值为.例7函数y=∫x02t-1t2-t+1dt在[0,1]上的最小值是.例8在斜边长为L的直角三角形中,求最大周长的直角三角形.例9一房地产公司有50套公寓要出租,当月租金每套定为2000元时,公寓会全部租出去,当月租金每增加100元时,就会多一套公寓租不出去,而租出去的公寓每套每月需花费200元的维修费,试问租金定为多少可获得最大收入?最大收入是多少?例10某厂生产某种产品,其固定成本为100元,每多生产一件产品成本增加6元,又知该产品的需求函数为Q=1000-100P.问产量为多少时可使利润最大,最大利润是多少?例11已知生产某零件Q单位时,总收入的变化率为R′(Q)=100-Q10.求:(1)求生产Q单位时的总收入R(Q);(2)如果已经生产了200个单位,求再生产200个单位时的总收入R(单位:万元).十八、曲线凹凸性的判定例1函数y=e-x在区间(-∞,+∞)内()A.单调递增且图像是凹的曲线B.单调递增且图像是凸的曲线C.单调递减且图像是凹的曲线D.单调递减且图像是凸的曲线例2曲线y=xe-x+3x+1的凹区间为()A.(-∞,2)B.(2,+∞)C.(-∞,-2)D.(-2,2)例3y=xarctanx的图形()A.在(-∞,+∞)内是凹的B.在(-∞,+∞)内是凸的C.在(-∞,0)内是凸的,在(0,+∞)内是凹的D.在(-∞,0)内是凹的,在(0,+∞)内是凸的例4下列曲线在其定义域内为凹的是()A.y=e-xB.y=ln(1+x2)C.y=arctanxD.y=sin(x2+2)例5设f(x)在(a,b)内二阶可导,且f′(x)>0,f″(x)<0,则f(x)在(a,b)内()A.单调增加且是凸的B.单调增加且是凹的C.单调减少且是凸的D.单调减少且是凹的例6在闭区间[-1,1]上有f′(x)=(x-1)2,则曲线f(x)在闭区间[-1,1]内是()A.单调减少且凹的B.单调减少且凸的C.单调增加且凸的D.单调增加且凹的例7下列函数对应的曲线在区间(0,+∞)内是凸函数的为()A.y=x3B.y=ln(1+x2)C.y=cos2xD.y=lnx十九、曲线的拐点求法例1曲线y=(x-2)53的拐点是()A.(0,2)B.(2,0)C.(1,0)D.(2,1)例2曲线y=x3-3x2的拐点为()A.(1,-2)B.(1,2)C.(0,0)D.(2,-4)例3设函数y=f(x)在区间(a,b)内有二阶导数,则()成立时,点(c,f(c))(a<c<b)是曲线y=f(x)的拐点.A.f″(c)=0B.f″(x)在(a,b)内单调增加C.f″(x)在(a,b)内单调减少D.f″(c)=0且f″(x)在(a,b)内单调增加例4曲线y=x+2xx2-1的拐点坐标为.例5设f(x)=x3-3x2+2,则曲线y=f(x)的拐点是.例6已知f(x)=∫x0e-12t2dt(-∞<x<+∞),则曲线y=f(x)的拐点是. 例7已知点(0,1)是曲线y=x3+ax2+b的拐点,则a=,b=.例8点(1,2)是曲线y=ax3+bx2的拐点,则()A.a=-1,b=3B.a=0,b=1C.a为任意实数,b=3D.a=-1,b为任意实数例9若曲线y=x3+ax2+bx+1有拐点(-1,0),则a=,b=.例10曲线y=e-x2的拐点是.例11设f′(x0)=f″(x0)=0,f(x0)>0,则下列正确的是()A.f′(x0)是f′(x)的极大值B.f(x0)是f(x)的极大值C.f(x0)是f(x)的极小值D.(x0,f(x0))是曲线f(x)的拐点例12设函数f(x)有连续的二阶导数,且f′(0)=0,limx→0f″(x)x=2,则()A.f(0)是函数的极大值B.f(0)是函数的极小值C.(0,f(0))是曲线f(x)的拐点D.f(0)不是f(x)的极值例13f″(x0)=0是曲线f(x)的图形在x=x0处有拐点的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.既非充分也非必要条件二十、曲线的渐近线求法例1下列曲线有水平渐近线的是()A.y=x2-3x+4xB.y=e1xC.y=ex1+xD.y=ln(1+x2)例2曲线y=x2+1x-1()A.有水平渐近线,无垂直渐近线B.无水平渐近线,有垂直渐近线C.无水平渐近线,也无垂直渐近线D.有水平渐近线,也有垂直渐近线例3曲线f(x)=2xsin13x()A.有且仅有水平渐近线B.有且仅有垂直渐近线C.既有水平渐近线又有垂直渐近线D.没有渐近线例4曲线y=ln(1+x)x()A.有水平渐近线,无垂直渐近线B.有水平渐近线,也有垂直渐近线C.无水平渐近线,有垂直渐近线D.无水平渐近线,也无垂直渐近线。

2015年荆楚理工学院普通专升本《设计色彩》考试大纲

2015年荆楚理工学院普通专升本《设计色彩》考试大纲

2015年荆楚理工学院普通专升本《设计色彩》考试大纲一、总体要求《设计色彩》是现代设计艺术专业基础课程,考试的目的主要是测试考生是否掌握对色彩正确的观察方法和对色彩基本规律的认识与掌握,熟练的描绘表现对象,体现学生的分析色彩绘画语言的能力及认识色彩造型基本规律的能力。

从而测试出学生是否具有本科学习的能力。

二、考试内容及要求内容:静物写生、静物默写、写生与默写相结合、模拟写生(根据提供的图片资料表现规定内容)。

命题画(选其一)。

要求:1、完整的构图2、能准确表达命题的内容3、对形体的结构有一定的认识和理解。

4、限用水粉或水彩表现。

不得在试卷上喷洒任何固定液体。

5、造型准确,色彩明快,构图合理,表现生动。

6、能熟练地掌握工具和材料的运用。

时间:180分钟三、考试知识点:(一)、色彩基础理论1、色彩的基本概念色彩三要素色调(色相)、饱和度(纯度)和明度2、色彩的种类3、色彩简史(二)、色彩的基本表现要素1.考生应在正确理解描绘对象形体结构的基础上,重点学习和运用色彩语言表现对象,如对色彩纯度、明暗、冷暖等方面的分析、归纳以及对整体色调的把握等。

2.考生应掌握水粉或水彩画表现工具材料的性能、特点和表现技巧,做到能较熟练地表现对象。

3.色彩训练应以写实的表现方法为主,不主张使用抽象画法。

4.除应提高写生能力以外,还应加强默写能力的训练。

5.考生应加强有关色彩基础的技法和理论知识的学习,注重从色彩画的经典作品中汲取营养,提高审美能力和表现能力。

(三)、色彩的表现技巧1、几何体与静物色彩写生2、几何体纯度色彩写生3、静物组合明暗素描写生4、静物色彩默写四、评分标准及占分比例符合试题规定及要求;有明确的色调意识和良好的色彩感觉,构图合理,色彩关系明确生动,画面富有美感;色彩与形体结合紧密,表现生动,形体刻画深入,画面整体效果好。

其中:1、图占15%2、色彩关系占35%3、色彩造型能力占25%4、色彩表现技法占25%五、参考书目1、刘胜《组合色彩静物写生》浙江人民美术出版社出版2006年1月1日2、金澜《色彩静物写生》上海人民美术出版社更多湖北专升本考试资料尽在湖北专升本网:/zsb/。

2015年荆楚理工学院电气工程及其自动化专业专升本《电路》考试大纲

2015年荆楚理工学院电气工程及其自动化专业专升本《电路》考试大纲

2015年荆楚理工学院电气工程及其自动化专业专升本《电路》考试大纲一、课程名称:《电路》二、适用专业:电气工程及其自动化三、考试方式:闭卷四、考试时间:150分钟五、试卷结构:1、总分150分,其中理论内容占100分,实验内容占50分。

2、题目类型:选择题,判断题,填空题,计算分析题。

六、参考书目1、邱关源.电路.北京.高等教育出版社.2006年.2、李瀚荪.电路分析.北京.高等教育出版社.2006年.3、董维杰,白凤仙.电路分析.北京.科学出版社.2007年.4、电路实验指导书.天煌教仪提供.2003年.七、考试的基本要求电路是电气工程及其自动化专业专升本入学考试中的考试科目,是本专业的一门重要的专业必修基础课程。

本课程主要考察考生对电路理论和电路基本知识的理解和掌握程度,及应用电路的基本理论和分析方法分析实际问题的能力。

八、考试范围第一章电路模型和电路定律第一节电路和电路模型理解电路和电路模型的概念。

第二节电流和电压的参考方向掌握电流和电压的参考方向、实际方向,参考方向与实际方向的关系。

第三节电功率和电能理解电功率和能量的概念。

第四节电路元件掌握电路元件及其约束关系。

第五节电阻元件掌握电阻元件及其约束关系。

第六节电压源和电流源掌握电压源和电流源的概念与等效变换。

第七节受控电源理解受控电源的概念并掌握受控源电路分析。

第八节基尔霍夫定律掌握基尔霍夫定理,并会用基尔霍夫定理分析电路问题。

第二章电阻电路的等效变换第一节电阻电路的等效变换掌握电阻电路的等效变换规则。

第二节电阻的串联和并联了解电阻的串联和并联的规则。

第三节电阻的Y形连接和△形连接的等效变换理解电阻的Y形连接和△形连接的等效变换。

第四节电压源、电流源的串联和并联掌握电压源、电流源的串联和并联及其等效变换规则。

第五节实际电源的两种模型及其等效变换掌握实际电源的两种模型及其等效变换规则。

第六节输入电阻理解输入电阻的概念。

第三章电阻电路的一般分析第一节电路的图了解电路的图的概念。

荆楚理工学院普通专升本考试汉语言文学专业招生人数、考试科目、复习教材和试题及录取分数线

荆楚理工学院普通专升本考试汉语言文学专业招生人数、考试科目、复习教材和试题及录取分数线

荆楚理工学院普通专升本考试汉语言文学专业招生人数、考试科目、复习教材和试题及录取分数线招生院校:荆楚理工学院招生人数:202013年荆楚理工学院专升本汉语言文学专业考试科目大学英语+现代汉语+中国古代文学史2013年荆楚理工学院专升本汉语言文学专业参考教材1、《新视野大学英语》读写教程(1-2册)(第二版),郑树棠主编,外语教学与研究出版社, 2008年7月版;2、《新视野大学英语》综合训练(1-2册)(第二版),郑树棠主编,外语教学与研究出版社, 2008年7月版2013年荆楚理工学院专升本汉语言文学专业录取分数线及要求数据暂未整理招生院校:荆楚理工学院招生人数:102012年荆楚理工学院专升本汉语言文学专业考试科目正在整理...2012年荆楚理工学院专升本汉语言文学专业参考教材正在整理...2012年荆楚理工学院专升本汉语言文学专业录取分数线及要求总分最低录取分数线: 185招生院校:荆楚理工学院招生人数:102010年荆楚理工学院专升本汉语言文学专业考试科目大学英语+现代汉语+中国古代文学史2010年荆楚理工学院专升本汉语言文学专业参考教材现代汉语:1、黄伯荣、廖序东主编,《现代汉语》(增订四版),高等教育出版社,2007年6月第四版。

2、张斌主编,《现代汉语》,中央广播电视大学出版社,2004年版。

3、邢福义、汪国胜主编,《现代汉语》,华中师范大学出版社,2006年版。

中国古代文学史:1、袁行霈主编,《中国文学史》(第二版),高等教育出版社,2005年版。

2、章培恒、骆玉明主编:《中国文学史》(新著),上海文艺出版社2000年版。

3、罗宗强主编:《中国古代文学作品选》,高等教育出版社2004年版。

2010年荆楚理工学院专升本汉语言文学专业录取分数线及要求数据暂未整理更多关于:荆楚理工学院专升本/ptzsb/Channel/jclgxyzsb/ 信息(点击进入)。

2015年荆楚理工学院普通专升本《高等数学》考试大纲

2015年荆楚理工学院普通专升本《高等数学》考试大纲

2015年荆楚理工学院普通专升本《高等数学》考试大纲一、课程名称:高等数学二、适用专业: 非数学专业三、考试方法:闭卷考试四、考试时间:100分钟五、试卷结构:总分:150分,其中选择题30,填空题30分,计算题50分,证明题40分。

六、参考书目:1、同济大学数学系主编,《高等数学》(上、下册),高等教育出版社,2007年第6版。

2、李乐成等主编,《高等数学》(上、下册),华中科技大学出版社,2004年第2版。

七、考试的基本要求:考生应理解《高等数学》中的函数、极限和连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学和常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。

应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑思维能力、运算能力、空间想象能力;有运用基本概念、基本理论和基本方法正确地推理证明和准确地计算的能力;能综合运用所学知识分析并解决简单的实际问题。

八、考试范围第一章函数与极限(一)函数(非重点)1. 考试范围(1)函数的概念:函数的定义、函数的表示法、分段函数(2)函数的简单性质:单调性、奇偶性、有界性、周期性(3)反函数:反函数的定义、反函数的图象(4)函数的四则运算与复合运算(5)基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数(6)初等函数2. 要求(1)理解函数的概念,会求函数的定义域、表达式及函数值。

会求分段函数的定义域、函数值,并会作出简单的分段函数图像。

(2)理解和掌握函数的单调性、奇偶性、有界性和周期性,会判断所给函数的类别。

(3)了解函数y=ƒ(x)与其反函数y=ƒ-1(x)之间的关系(定义域、值域、图象),会求单调函数的反函数。

(4)理解和掌握函数的四则运算与复合运算,熟练掌握复合函数的复合过程。

(5)掌握基本初等函数的简单性质及其图象。

(6)了解初等函数的概念。

(7)会建立简单实际问题的函数关系式。

本科《高等数学B1、B2》课程考试大纲.docx

本科《高等数学B1、B2》课程考试大纲.docx

纺织工程(专升本)专业课程考试大纲(2015版)目录专业必修本科《高等数学B1、B2》课程考试大纲 (1)本科《线性代数B》课程考试大纲 (5)本科《概率论与数理统计A》课程考试大纲 (7)本科《纺织材料学》课程考试大纲 (9)本科《纺纱学》课程考试大纲 (11)本科《织造学》课程考试大纲 (13)本科《针织学》课程考试大纲 (15)本科《染整工艺学》课程考试大纲 (19)本科《织物组织与结构》课程考试大纲 (23)本科《纺织专业英语》课程考试大纲 (29)本科《纺织试验设计与数据处理》课程考试大纲 (31)本科《纺织新产品开发》课程考试大纲 (33)本科《纺织品贸易》课程考试大纲 (35)本科《花式纱线》课程考试大纲 (37)专业选修本科《功能性纺织品开发》课程考试大纲 (39)本科《纺织新原料B》课程考试大纲 (41)本科《纺织近代测试技术》课程考试大纲 (43)本科《纺织商品学》课程考试大纲 (45)本科《纳米纺织工程》课程考试大纲 (49)本科《品牌建设》课程考试大纲 (51)河南工程学院本科《高等数学B1、B2》课程考试大纲课程中英文名称:高等数学Higher Mathematics课程编码:132121021,132121022课程性质:专业必修课适用专业:理工类专业学时数: 64+64 ;学分数:4+4 ;开课学期:第一、第二学期 ;编写人: 饶明贵;审定人:张学凌;一、课程简介1.高等数学是我院理工科开设的一门重要的公共基础课,是学生完成各专业课学习所必须学习的课程。

2.通过本课的学习,使学生获得数学方面的基本理论、基本概念、和基本知识,为后继课的学习和今后工作打下必要的数学基础,也为解决实际问题提供有效的数学方法。

同时通过各个教学环节,逐步培养学生的抽象概括能力,逻辑推理能力,熟练运算能力,综合运用所学知识去分析问题、解决问题的能力及自学能力。

二、考试要求1.知识要求:通过本课程的学习,要使学生获得一元函数微积分学、多元函数微积分学、无穷级数、常微分方程等方面的基本概念、基本理论和基本运算技能, 为学习后继课程和进一步获取知识奠定必要的数学基础;2.能力要求:通过教学,要求学生比较系统地理解高等数学的基本概念和基本理论,掌握高等数学的基本方法,培养学生的抽象思维能力,逻辑推理能力、空间想象能力、计算能力、分析问题和解决问题的能力,以及运用微积分知识解决实际问题的能力,为学习后续课程打下良好的基础。

数学与应用数学专业专升本考试大纲(数学分析)

数学与应用数学专业专升本考试大纲(数学分析)

数学与应用数学专业《数学分析》考试大纲一、考试科目:数学分析二、考试方式:闭卷、笔试三、考试时间:90分钟四、试卷结构:总分100分,其中单项选择题占15%,填空题占24%,计算题占37%,证明题占24%。

五、参考教材:数学分析.(上、下册)/华东师范大学数学系编.—4版.—北京:高等教育出版社,2010.7六、考试基本要求考生应按本大纲的要求,理解或掌握数学分析中的实数集与函数、数列与函数极限、函数连续性、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学及级数敛散性的基本概念和基本理论;理解或掌握上述各部分的基本方法。

考生应理解各部分知识结构及知识的内在联系。

考生应具有一定的抽象思维能力、逻辑推理能力、运算能力和空间想象能力;能运用所学知识正确地推理和证明,准确地计算;能综合运用数学分析中的基本理论、基本方法分析和解决简单的实际问题。

七、考试范围第一章实数集与函数考试内容:1.实数分类、实数的性质(对四则运算的封闭性、有序性、阿基米德性、稠密性)、绝对值与不等式;2.区间、邻域、数集、确界原理;3.函数表示法、函数四则运算、复合函数、反函数、初等函数;4.有界函数、单调函数、奇函数、偶函数、周期函数。

基本要求:1.熟练掌握实数域及性质;2.掌握绝对值不等式;3.熟练掌握邻域、上确界、下确界概念以及确界原理;4.牢固掌握函数的复合法则、基本初等函数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。

第二章数列极限考试内容:1.数列极限的定义及其几何意义、无穷小数列;2.收敛数列的唯一性、有界性、保号性、不等式性、迫敛性、四则运算法则;3.单调有界定理、柯西收敛准则。

基本要求:1.理解数列极限的定义;2.理解收敛数列的若干性质,会求数列极限;3.掌握数列收敛的条件(单调有界原理、迫敛法则、柯西准则等)。

第三章函数极限考试内容:1.函数极限的概念,单侧极限及其与极限的关系;2.函数极限的唯一性、局部有界性、局部保号性、不等式性、迫敛性、四则运算法则;3.函数极限的单调有界定理、归结原则、柯西准则;4.两个重要的极限;5.无穷小量和无穷大量的比较。

2015年全国成人高考高起点《数学(理工)》考试大纲

2015年全国成人高考高起点《数学(理工)》考试大纲

2015年全国成人高考考试大纲暂未公布,2014年全国成人高校招生统考科目复习考试大纲继续使用2011年版《全国各类成人高等学校招生复习考试大纲》。

准备参加2015年成考的考生可参照《2014年全国成人高考考试大纲》复习备考。

2014年全国成人高考高起点《数学(理工)》考试大纲一、复习考试内容第一部分代数(一)集合和简易逻辑1.了解集合的意义及其表示方法了解空集、全集、子集、交集、并集、补集的概念及其表示方法,了解符号?,=,∈,?的含义,并能运用这些符号表示集合与集台、元素与集台的关系2.理解充分条件、必要条件、充分必要条件的概念(二)函数1.理解函数概念,会求一些常见函数的定义域2.了解函数的单调性和奇偶性的概念,会判断一些常见由数的单词性和奇偶性。

3.理解一次函数、反比例函数的概念,掌握它们的图象和性质,会求它们的解析式。

4.理解二伙函数的概念,掌握它的图象和性质以及函数y=ax2÷bx+c(a≠0)与y=ax2(a≠0)的图象间的关系,会求二次函数的解析式及最大值或最小值,能灵活运用二次函数的知识解决有关问题5.了解反函数的意义,会求一些简单函数的反函数6.理解分数指数幂的概念,掌握有理指数幂的运算性质掌握指数函数的概念、图像和性质。

7.理解对数的概念,掌握对数的运算性质、掌握对散函数的概念、图象和性质。

(三)不等式和不等式组1.理解不等式的性质,会用不等式的性质和基本不等式a2+b2≥2ab(a,b∈R),|a+b|≤|a2+b2|(a,b∈R)解决一些简单的问题。

2.会解一元一次不等式、一元一次不等式组和可化为一元一次不等式组的不等式、会解一元一次不等式、会表示不等式或不等式组的解集3.了解绝对值不等式的性质,会解形如|ax+b|≥c和|ax+b|≤c的绝对值不等式(四)数列1.了解数列及其通项、前n项和的概念2.理解等差数列、等差中项的概念,会灵活运用等差数列的通项公式、前n 项和公式解决有关问题。

2015年湖北理工学院普通专升本《电路》考试大纲

2015年湖北理工学院普通专升本《电路》考试大纲

2015年湖北理工学院普通专升本《电路》考试大纲一、基本要求1、掌握电路的基本概念和基本定理。

2、掌握电阻性电路的分析计算。

3、理解正弦交流电路的基本概念,掌握正弦交流电路和三相正弦交流电路的稳态分析。

4、掌握非正弦周期交流电路的分析。

5、掌握线性动态电路的时域分析。

6、熟悉双口网络四种参数基本定义、求取方法以及其等效电路、联接方式。

7、熟悉线性电路的复频域分析。

二、考核内容1、电路的基本概念和基本定律重点掌握:电路的基本物理量;电量参考方向;欧姆定律;基尔霍夫定律;电阻、电感、电容、电压源、电流源元件的参数和电压电流关系;受控源的伏安关系和基本性质;电功率的计算;理想运算放大器的两个基本性质;电位概念与计算。

2、电阻性电路的分析计算重点掌握:电阻的串、并联;两种电源模型的等效变换;星形和三角形连接电路的等效互换;支路法、网孔法(或回路法)、结点法;戴维南定理和诺顿定理;具有理想运算放大器电阻电路的分析。

3、正弦交流电路重点掌握:正弦量及其相量表示;相量形式的基尔霍夫定律;电阻、电感、电容的电压电流关系;复阻抗、复导纳及其等效互换;功率的计算;正弦交流电路的相量法计算;串、并联谐振电路;具有耦合电感的正弦交流电路的计算。

4、三相正弦交流电路重点掌握:对称三相正弦量;三相电源和负载的联接;三相电路中的相、线电压、电流关系;对称三相正弦交流电路的特点和计算;三相电路的功率计算。

5、非正正弦周期性电流电路重点掌握:周期量的有效值、平均值;非正弦周期性电流电路的计算;非正弦周期性电流电路的功率。

6、线性动态电路的时域分析重点掌握:换路定则;初始值的计算;一阶电路的三要素法。

7、双口网络重点掌握:双口网络的Z、Y、H、T参数;双口网络的等效电路;双口网络的联接。

8、线性电路的复频域分析重点掌握:拉普拉斯变换的定义、基本性质;用部分分式展开法求拉普拉斯反变换;基尔霍夫定律及常用元件伏安关系的复频域形式;线性电路的复频域分析法;网络函数的定义、性质及其计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年荆楚理工学院普通专升本《数学分析》考试大纲一、课程名称:数学分析二、适用专业: 数学与应用数学三、考试方法:闭卷考试四、考试时间:100分钟五、试卷结构:总分:150分,选择题30分,填空题30分,计算题50分,证明题40分。

六、参考书目:1、华东师范大学数学系编著,《数学分析》(上、下册),高等教育出版社,2010年第4版。

2、中国科学技术大学常庚哲史济怀编著,《数学分析教程》(上、下册),高等教育出版社,2003年第1版。

七、考试的基本要求:数学分析是数学与应用数学专业专升本入学考试中专业课考试内容,考生应理解和掌握《数学分析》中函数、极限、连续、微分学、积分学和级数的基本概念、基本理论、基本方法。

应具有抽象思维能力、逻辑推理能力、运算能力和空间想象能力,能运用所学知识正确拙推理证明,准确、简捷地计算。

能综合运用数学分析中的基本理论、基本方法分析和解决实际问题。

八、考试范围第一章实数集与函数(一)考核内容实数及其性质,绝对值与不等式。

区间与邻域,有界集与确界原理。

函数概念,函数的表示法。

函数的四则运算,复合函数,反函数,初等函数。

具有某些特性的函数:有界函数、单调函数、奇函数与偶函数、周期函数。

(二)考核知识点1、实数:实数的概念,实数的性质,绝对值与不等式;2、数集、确界原理:区间与邻域,有界集与无界集,上确界与下确界,确界原理;3、函数概念:函数的定义,函数的表示法(解析法、列表法、和图象法),分段函数;4、具有某些特征的函数:有界函数,单调函数,奇函数与偶函数,周期函数。

(三)考核要求1、了解实数域及性质;2、掌握几种不等式及应用;3、熟练掌握数域,上确界,下确界,确界原理;4、牢固掌握函数复合、基本初等函数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。

第二章数列极限(一)考核内容数列。

数列极限的定义,无穷小数列。

收敛数列性质:唯一性、有界性、保号性、不等式性质、迫敛性、四则运算法则。

子列及子列定理。

数列极限存在的条件:数列极限的单调有界定理、柯西收敛准则。

(二)考核知识点1、极限概念;2、收敛数列的性质:唯一性,有界性,保号性,单调性;3、数列极限存在的条件:单调有界准则,迫敛性法则,柯西准则。

(三)考核要求1、熟练掌握数列极限定义;2、掌握收敛数列的若干性质;3、掌握数列收敛的条件(单调有界原理、迫敛法则、柯西准则等)。

第三章函数极限(一)考核内容求函数的极限,单侧极限。

函数极限的性质:唯一性、局部有界性、局部保号性、不等式性质、迫敛性和四则运算法则。

函数极限存在的条件:归结原则、函数极限的单调有界定理和柯西准则。

两个重要极限。

无穷小量及其阶的比较,无穷大量,曲线的渐近线。

(二)考核知识点1、函数极限的概念,单侧极限的概念;2、函数极限的性质:唯一性,局部有界性,局部保号性,不等式性,迫敛性;3、函数极限存在的条件:归结原则(Heine定理),柯西准则;4、两个重要极限;5、无穷小量与无穷大量,阶的比较。

(三)考核要求1、熟练掌握使用语言,熟练叙述各类型函数极限;2、掌握函数极限的若干性质;3、掌握函数极限存在的条件。

(归结原则,柯西准则,左、右极限,单调有界等);4、熟练应用两个特殊极限;5、牢固掌握无穷小(大)的定义、性质、阶的比较。

第四章函数连续性(一)考核内容函数在一点的连续性,左、右连续,间断点及其分类,区间上的连续函数。

连续函数的局部性质:局部有界性、局部保号性、四则运算、复合函数的连续性,闭区间上连续函数的性质:最值定理、介值性定理、根的存在定理,反函数的连续性,一致连续与一致连续性定理。

指数函数的连续性,初等函数连续性。

(二)考核知识点1、函数连续的概念:一点连续的定义,区间连续的定义,单侧连续的定义,间断点及其分类;2、连续函数的性质:局部性质及运算,闭区间上连续函数的性质(最大最小值性、有界性、介值性、一致连续性),复合函数的连续性,反函数的连续性;3、初等函数的连续性。

(三)考核要求1、熟练掌握在点连续的定义,等价定义;2、掌握间断点及其类型;3、了解在区间上连续的定义;4、掌握在一点连续的性质及闭区间上连续函数的性质;5、了解初等函数的连续性。

第五章导数与微分(一)考核内容导数的定义,导函数,导数的几何意义,极值,费马定理。

导数的四则运算法则,反函数的导数, 复合函数的导数,基本求导法则与公式。

参变量函数的导数,隐函数的导数,初等函数的导数。

高阶导数。

微分概念,微分的几何意义,微分的运算法则,一阶微分形式的不变性,高阶微分,微分在近似计算中的应用。

(二)考核知识点1、导数概念:导数的定义、单侧导数、导函数、导数的几何意义;2、求导法则:导数公式、导数的运算(四则运算)、求导法则(反函数的求导法则,复合函数的求导法则,隐函数的求导法则,参数方程的求导法则);3、微分:微分的定义,微分的运算法则,微分的应用;4、高阶导数与高阶微分。

(三)考核要求1、熟练掌握导数的定义及其几何意义;2、牢固记住求导法则、求导公式;3、会求各类函数的导数(复合函数、含参变量函数、隐函数、幂指函数、高阶导数(莱布尼兹公式));4、掌握微分的概念,并会用微分进行近似计算;5、理解连续、可导、可微的关系。

第六章微分中值定量、不定式极限(一)考核内容罗尔中值定理,拉格朗日中值定理,单调函数。

柯西中值定理。

不定式极限,罗比塔法则。

带有皮亚诺型余项、拉格朗日型余项的泰勒公式,泰勒公式在近似计算上的应用(二)考核知识点1、中值定理:罗尔中值定理、拉格朗日中值定理、柯西中值定理;2、几种特殊类型的不定式极限与罗比塔法则;3、泰勒公式。

(三)考核要求1、牢固掌握微分中值定理及应用(包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理);2、会用洛比达法则求极限(将其他类型的不定型转化为等类型)。

第七章导数的应用(一)考核内容函数单调性与极值。

最大值与最小值。

函数的凸性与曲线的拐点。

函数图象的讨论。

方程的近似解。

极值的判别法;函数的升降、凸性讨论的有关理论及结果;画函数草图的基本要素和方法。

(二)考核知识点1、函数的单调性与极值;2、函数凹凸性与拐点.(三)考核要求1、掌握单调与导数符号的关系,并用它证明单调,不等式、求单调区间、极值等;2、利用的二阶导数判定凹凸性及拐点;3、了解凸函数及性质;4、会求曲线各种类型的渐近线性.第八章极限与连续(续)(一)考核内容关于实数集完备性的基本定理:闭区间套定理、柯西收敛准则、聚点定理、有限覆盖定理与致密性定理,实数完备性基本定理的等价性。

闭区间上连续函数性质的证明。

(二)考核知识点1、实数完备性六个等价定理:闭区间套定理、单调有界定理、柯西收敛准则、确界存在定理、聚点定理、有限覆盖定理;2、闭区间上连续函数整体性质的证明:有界性定理的证明,最大小值性定理的证明,介值性定理的证明,一致连续性定理的证明;(三)考核要求1、掌握下列基本概念:区间套、覆盖、有限覆盖、聚点、予列;2、了解刻划实数完备性的六个定理的等价性,并掌握各定理的条件与结论;3、学会用六个定理证明其他问题,如连续函数性质定理等.第九章不定积分(一)考核内容原函数与不定积分概念,基本积分表,线性运算法则。

换元积分法,分部积分法。

有理函数的不定积分,三角函数有理式的不定积分,某些无理函数的不定积分。

(二)考核知识点1、不定积分概念;2、换元积分法与分部积分法;3、几类可化为有理函数的积分;(三)考核要求1、掌握原函数与不定积分的概念;2、记住基本积分公式;3、熟练掌握换元法、分部积分法;4、了解有理函数积分步骤,并会求可化为有理函数的积分。

第十章定积分(一)考核内容概念引入(曲边梯形面积与变力作功),定积分定义,定积分的几何意义。

牛顿-莱布尼兹公式。

可积的必要条件,可积的充要条件,可积函数类:闭区间上的连续函数、只有有限个间断点的有界函数、单调函数。

定积分的基本性质,积分中值定理。

变限积分与原函数的存在性,微积分学基本定理、定积分的换元积分法和分部积分法。

可积性理论补叙.(二)考核知识点1、定积分的概念:概念的引入、黎曼积分定义,函数可积的必要条件;2、可积性条件:可积的必要条件和充要条件,达布上和与达布下和,可积函数类(连续函数,只有有限个间断点的有界函数,单调函数);3、微积分学基本定理:可变上限积分,牛顿-莱布尼兹公式;4、非正常积分:无穷积分收敛与发散的概念,审敛法(柯西准则,比较法,狄利克雷与阿贝尔判别法);瑕积分的收敛与发散的概念,收敛判别法。

(三)考核要求1、掌握定积分定义、性质;2、了解可积条件,可积函数类;3、深刻理解微积分基本定理,并会熟练应用;4、熟练计算定积分;5、掌握广义积分收敛定义及判别法,会计算广义积分。

第十一章定积分应用(一)考核内容微元法。

平面图形的面积。

由平行截面面积求体积,旋转体体积。

平面曲线的弧长、曲率。

旋转曲面的面积。

定积分的近似计算.(二)考核知识点1、定积分的几何应用:平面图形的面积,微元法,已知截面面积函数的立体体积,旋转体的体积平面曲线的弧长与微分,曲率;(三)考核要求1、熟练计算各种平面图形面积;2、会求旋转体或已知截面面积的体积;3、会利用定积分求孤长、曲率、旋转体的侧面积.第十二章数项级数(一)考核内容数项级数极其收敛与和的定义,柯西收敛准则,收敛级数的基本性质。

正顶级数收敛性的一般判别原则(比较原则),比式判别法与根式判别法,积分判别法。

拉贝判别法。

交错级数,莱布尼兹判别法,绝对收敛级数与性质,条件收敛,阿贝尔判别法与狄利克雷判别法。

(二)考核知识点1、级数的敛散性:无穷级数收敛,发散等概念,柯西准则,收敛级数的基本性质;2、正项级数:比较原理,达朗贝尔判别法,柯西判别法,积分判别法;3、一般项级数:交错级数与莱布尼兹判别法,绝对收敛级数与条件收敛级数及其性质,阿贝尔判别法与狄利克雷判别法。

(三)考核要求1、掌握数项级数敛散的定义、性质;2、熟练掌握正项级数的敛、散判别法;3、掌握条件、绝对收敛及莱布尼兹定理。

第十三章函数列与函数项级数(一)考核内容函数列与函数项级数的收敛、一致收敛性以及一致收敛的柯西准则,函数项级数的维尔斯特拉斯优级数判别法(M判别法),阿贝尔判别法与狄利克雷判别法。

函数列极限函数与函数项级数和函数的连续性、可积性与可微性。

(二)考核知识点1、一致收敛性及一致收敛判别法(柯西准则,优级数判别法,狄利克雷与阿贝尔判别法);2、一致收敛的函数列与函数项级数的性质(连续性,可积性,可微性)。

(三)考核要求1、掌握函数列及函数项级数的一致收敛定义;2、掌握函数列、函数项级数一致收敛的判别法;;3、函数列的极限函数,函数项级数的和函数的性质。

第十四章幂级数(一)考核内容阿贝尔第一定理, 幂级数的收敛半径与收敛区间,内闭一致收敛性,幂级数的性质,幂级数的四则运算。

相关文档
最新文档