2014年普通高等学校招生全国统一考试新课标II卷(数学文带答案、解析)
普通高等学校招生全国统一考试文科数学 新课标II卷 含答案 解析
2014年普通高等学校招生全国统一考试文科数学注意事项1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A=﹛-2,0,2﹜,B=﹛x |2x -x -20=﹜,则A I B=(A) ∅ (B ){}2 (C ){}0 (D) {}2-【答案】B 【解析】把M={0,1,2}中的数,代入等式,经检验x=2满足。
所以选B.(2)131ii+=- (A )12i + (B )12i -+ (C )1-2i (D) 1-2i -【答案】B【解析】.∴21-242-2)1)(31(-131B i ii i i i 选+=+=++=+Θ(3)函数()f x 在0x=x 处导数存在,若p :f ‘(x 0)=0;q :x=x 0是()f x 的极值点,则(A )p 是q 的充分必要条件(B )p 是q 的充分条件,但不是q 的必要条件 (C )p 是q 的必要条件,但不是 q 的充分条件 (D) p 既不是q 的充分条件,也不是q 的必要条件【答案】C 【解析】.,.∴0)(,;,0)(0000C q p x f x q p x x f 选所以的必要条件是命题则是极值点若的充分条件不是命题不一定是极值点则若=′∴=′ΘΘ(4)设向量a ,b 满足a ·b=(A )1 (B ) 2 (C )3 (D) 5【答案】A 【解析】..1.62-∴6|-|.102∴10||2222A 选两式相减,则==+==++=+ΘΘ(5)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S =(A ) ()1n n + (B )()1n n - (C )()12n n + (D)()12n n -【答案】A 【解析】...6.2,4),6()2(,,,221222228224842A A S a a d a a d a a a a a a a d 选正确经验证,仅解得,即成等比=∴==+=+=∴=Θ(6)如图,网格纸上正方形小格的边长为1(表示1cm ), 图中粗线画出的是某零件的三视图,该零件 由一个底面半径为3cm ,高为6c m 的圆柱 体毛坯切削得到,则切削掉部分的体积与 原来毛坯体积的比值为(A )1727 (B ) 59 (C )1027(D) 13【答案】 C 【解析】..2710π54π34-π54π.342π944.2342π.546π96321C v v 故选积之比削掉部分的体积与原体体积,高为径为,右半部为大圆柱,半,高为小圆柱,半径加工后的零件,左半部体积,,高加工前的零件半径为==∴=•+•=∴=•=∴πΘΘ(7)正三棱柱111ABC A B C -的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥11DC B A -的体积为(A )3 (B )32 (C )1 (D )3 【答案】 C【解析】..13322131,//∴//111111---111111C V V V C AB D B C AB BD BD C B ABB C C AB B C AB D 故选的距离相等到面和点面=••••===∴Θ(8)执行右面的程序框图,如果如果输入的x ,t均为2,则输出的S=(A )4(B )5 (C )6 (D )7【答案】 D 【解析】.3 7 22 5 2 13 1 ,2,2D K S M t x 故选变量变化情况如下:==(9)设x ,y 满足的约束条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1【答案】 B 【解析】..7,2).1,0(),2,3(),0,1(.B y x z 故选则最大值为代入两两求解,得三点坐标,可以代值画可行区域知为三角形+=(10)设F 为抛物线2:y =3x C 的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB = (A(B )6 (C )12 (D) 【答案】 C 【解析】..1222.6∴),3-2(23),32(233-4322,34322).0,43(2,2C n m BF AF AB n m n m n n m m F n BF m AF 故选,解得角三角形知识可得,则由抛物线的定义和直,设=+=+==+=+=•=+•===(11)若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞ 【答案】 D【解析】.),∞,1[.11≥.0≥1-)(ln -)(0)(),1()(D k xk xk x f x kx x f x f x f 选所以即恒成立上递增,在+∈>=′∴=≥′∴+∞ΘΘ(12)设点0(x ,1)M ,若在圆22:x y =1O +上存在点N ,使得°45OMN ∠=,则0x 的取值范围是(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C)⎡⎣ (D )22⎡-⎢⎣⎦,【答案】 A【解析】.].1,1-[∈x .,1)M(x 1,y O 00A 故选形外角知识,可得由圆的切线相等及三角在直线上其中和直线在坐标系中画出圆=第Ⅱ卷本卷包括必考题和选考题两部分。
2014年高考新课标全国2卷数学(文)
2014年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学试题卷(文史类)注意事项1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的、号填写在本试卷和答题卡相应位置上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合A={2-,0,2},B={x |022=--x x },则A B= (A )∅ (B ){}2 (C ){}0 (D ){}2-(2)131ii+=- (A )12i + (B )12i -+ (C )12i - (D )12i --(3)函数()f x 在0x x =处导数存在.若p :0'()0f x =;q :0x x =是()f x 的极值点,则 (A )p 是q 的充分必要条件(B )p 是q 的充分条件,但不是q 的必要条件 (C )p 是q 的必要条件,但不是q 的充分条件 (D )p 既不是q 的充分条件,也不是q 的必要条件(4)设向量a ,b 满足||a b +=,||a b -=,则a b =(A )1 (B )2 (C )3 (D )5(5)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S =(A )()1n n + (B )()1n n -(C )()12n n + (D )()12n n -(6)如图,网格纸上正方形小格的边长为1(表示1cm ), 图中粗线画出的是某零件的三视图,该零件由一个 底面半径为3cm ,高为6c m 的圆柱体毛坯切削得 到,则切削掉部分的体积与原来毛坯体积的比值为 (A )1727 (B )59 (C )1027 (D )13(7)正三棱柱的底面边长为2,D 为BC 中点,则三棱锥11DC B A -的体积为(A )3 (B )32(C )1 (D)2(8)执行右面的程序框图,如果如果输入的x ,t 均为2,则输出的S = (A )4 (B )5 (C )6 (D )7(9)设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1(10)设F 为抛物线C :23y x =的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB =(A(B )6 (C )12 (D)(11)若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值围是(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞(12)设点0(,1)M x ,若在圆O :221x y +=上存在点N ,使得°45OMN ∠=,则0x 的取值围是(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C)⎡⎣ (D)⎡⎢⎣⎦ 第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个考试考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大概题共4小题,每小题5分.(13)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为________.(14)函数()sin()2sin cos f x x x ϕϕ=+-的最大值为________.(15)偶函数)(x f y =的图像关于直线x =2对称,3)3(=f ,则(1)f -=________. (16)数列{}n a 满足111n na a +=-,82a =,则1a =________.三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)四边形ABCD 的角A 与C 互补,AB =1,BC =3,CD =DA =2. (Ⅰ)求C 和BD ;(Ⅱ)求四边形ABCD 的面积.(18)(本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA 平面ABCD ,E 为PD 的点. (Ⅰ)证明:PB //平面AEC ;(Ⅱ)设AP=1,AD =3,三棱锥P-ABD 的体积V =43,求A 到平面PBC 的距离.(19)(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(Ⅰ)分别估计该市的市民对甲、乙部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙部门的评分高于90的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.(20)(本小题满分12分)设F 1,F 2分别是椭圆C :12222=+by a x (0>>b a )的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为43,求C 的离心率; (Ⅱ)若直线MN 在y 轴上的截距为2且|MN |=5|F 1N |,求a ,b .(21)(本小题满分12分)已知函数()f x =3232x x ax -++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-.(Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.4 97 97665332110 98877766555554443332100 6655200 632220 甲部门 乙部门 59 0448 122456677789 011234688 00113449 123345 011456 000 3 4 56 7 8910请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号. (22)(本小题满分10分)选修4-1:几何证明选讲如图,P 是⊙O 外一点,PA 是切线,A 为切点,割线PBC 与⊙O 相交于点B ,C ,PC =2PA ,D 为PC 的中点,AD 的延长线交⊙O 于点E .证明: (Ⅰ)BE =EC ; (Ⅱ)AD ·DE =2PB 2.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cosθ,θ∈[0,2π].(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l:2y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.(24)(本小题满分10分)选修4-5:不等式选讲 设函数()f x =|x +a1|+|x a -|(a >0). (Ⅰ)证明:()f x ≥2;(Ⅱ)若(3)5f <,求a 的取值围.2014年普通高等学校招生全国统一考试(课标卷Ⅱ卷)数学(文科)参考答案一、选择题 1.B解析:把2-,0,2代入202x x --=验证,只有2满足不等式.故选B . 考点:考查集合的知识.简单题. 2.B 解析:13(13)(1)121(1)(12)42i i i i i i i i+++===-+---++.故选B . 考点:考查复数的基本知识.简单题.3.C解析:函数()f x 在0x=x 处导数存在,则极值点必为导函数的根,而导函数的根不一定是极值点,即,q p p q ⇒⇒/,从而p 是q 的必要但不充分的条件.故选C .考点:考查充要条件与极值的基础知识.简单题. 4.A解析:222210,226,a a b b a a b b ⋅-+++=⋅=44a b ∴⋅=,1a b ∴⋅=.故选A . 考点:考查平面向量的数量积.中等题. 5.A解析:∵数列{}n a 是等差数列,公差等于2,∴2141812,6,14a a a a a a =+=+=+.∵248,,a a a 成等比数列,∴22428111()6)214()(a a a a a a ⋅⇒=++=+,解得122(221)n a a n n ==+-⇒⋅=,∴(1)(222)=n n nS n n ⋅=++.故选A . 考点:考查等差数列的通项公式与求和公式.中等题. 6.C解析:毛胚的体积23654V ππ⋅⋅==,制成品的体积221322434V πππ⋅⋅+⋅⋅==,∴切削掉的体积与毛胚体积之比为134********V V ππ-=-=.故选C . 考点:考查三视图于空间几何体的体积.中等题. 7.C解析:∵正三棱柱的底面边长为2,D 为BC 中点,∴AD ==∵1112,BC CC ==1111111222B DC B C S C C ⋅=⋅⋅==,∴111111133AB C B DC V S AD ⋅⋅===.故选C . 考点:考查空间点,线,面关系和棱锥体积公式.中等题. 8.D解析:第1次循环M=2,S=5,k=1. 第2次循环,M=2,S=7,k=2.第3次循环k=3>2,故输出S=7.故选D . 考点:考查算法的基本知识.简单题. 9.B解析:作图即可.考点:考查二元一次不等式组的应用.中等题. 10.C解析:∵23y x =,∴抛物线C 的焦点的坐标为()3,04F ,所以直线AB 的方程为330an )t (4y x ︒-=,故23),343,y x y x ⎧=-⎪⎨⎪=⎩从而2122161689012x x x x -+=+=⇒, ∴弦长12||=3122x x AB ++=.故选C . 考点:考查抛物线的几何性质,弦长计算以及分析直线和圆锥曲线位置关系的能力.中等题. 11.D 解析:()ln f x kx x =-,1()(0)f x k x x∴'=->.()f x 在区间(1,)+∞上递增,()f x ∴在区间(1,)+∞上恒大于等于0,11()0((1,))x k k x x f x∴'=-≥⇒≥∀∈+∞,1k ∴≥.故选D . 考点:考查导数与函数单调性的关系.中等题. 12.A解析:过点M 作圆O 的切线,切点为N .设θ=∠OMN ,则︒≥45θ,22sin ≥θ,即22≥OM ON ,2120≤+x ,011x -≤≤.故选A . 考点:三角不等式,两点间距离公式.难题. 二、填空题 13.13解析:1.3333P =⋅=考点:考查古典概型的概念.简单题. 14.1解析:因为()f x si s n in cos s n c (o i )s x x x ϕϕϕ==--,所以最大值为1. 考点:考查和差角公式.简单题. 15.3解析:因()f x 是偶函数,所以(1)(1)f f -=.因()f x 图像关于2x =,所以(1)(2)(332)1f f f ⋅-===. 考点:考查偶函数的概念,轴对称的概念.简单题. 16.12解析:∵111n na a +=-,122111111(1)111n n n n n a a a a a +----∴==-=--=--, 822a a ∴==,12111112112a a a a =⇒-==⇒-. 考点:考查递推数列的概念.简单题. 三、解答题17.解析:(Ⅰ)由题设及余弦定理得222cos 1312c s 2o BD C BC CD BC D C C =+⋅=--, ① 2222cos 54cos AD AB BD AB AD A C =⋅=++-. ② 由①,②得1cos 2C =,故60C =︒,BD =(Ⅱ)四边形ABCD 的面积S =11sin sin 22AB DA A BC CD C ⋅+⋅111232)sin 6022(⨯⨯+⨯︒==⨯ 考点:考查余弦定理的应用.中等题.18.解析:(Ⅰ)设BD 与AC 的交点为O ,连结EO .因为四边形ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB .EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥AEC .(Ⅱ)616PA AB A V AD B ⋅⋅⋅==.由V =,可得32AB =.作AH ⊥PB 交PB 于H . 由题设知BC ⊥平面PAB ,所以BC AH ⊥,故AH ⊥平面PBC .又PA AB AH PB ⋅==A 到面PBC考点:考查空间点线面的位置关系与空间距离.中等题.19.解析:(Ⅰ)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的数是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计数是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的数是66,68,故样本中位数为6668627+=,所以该市的市民对乙部门评分的中位数的估计数是67. (Ⅱ)由所给茎叶图知,50位市民对甲、乙两部门的评分高于90的比率分别为50.150=,850=0.16,故该市的市民对甲、乙两部门的评分高于90的概率的估计值分别为0.1,0.16.(Ⅲ)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异大.(注:考生利用其他统计量进行分析,结论合理的同样给分)考点:考查使用茎叶图及样本的数字特征估计总体的能力.中等题.20.解析:(Ⅰ)根据c =2(,)b M c a,223b ac =.将222b a c =-代入223b ac =,解得12c a =,2c a =-(舍去).故C 的离心率为12.(Ⅱ)由题意,原点O 为12F F 的中点,2MF ∥y 轴,所以直线1MF 与y 轴的交点(0,2)D 是线段1MF 的中点,故24b a=,即24b a =. ① 由1||5||MN NF =得11||2||DF F N =.设11(,)N x y ,由题意知10y <,则112(),22,c x c y --=⎧⎨-=⎩即113,21.x c y ⎧=-⎪⎨⎪=-⎩代入C 的方程,得222911c a b+=. ②将①及c =229(4)1144a a a a-+=. 解得7a =,2428b a ==.故7a =,b =考点:考查椭圆的几何性质以及直线与椭圆的位置关系.难题. 21.解析:(Ⅰ)26()3f x x x a =-'+,'(0)f a =. 曲线()y f x =在点(0,2)处的切线方程为2y ax =+. 由题设得22a-=-,∴1a =. (Ⅱ)由(Ⅰ)知,32()32f x x x x =-++. 设32()()(2)3(1)4g x f x kx x x k x =--=-+-+. 由题设知10k ->.当0x ≤时,2()36(1)x g x x k -+-'=0>,()g x 单调递增,(1)10g k -=-<,(0)4g =,所以()g x =0在(,0]-∞有唯一实根.当0x >时,令32()34h x x x =-+,则()()(1)()g x h x k x h x =+->.2'()363(2)h x x x x x =-=-,()h x 在(0,2)单调递减,在(2,)+∞单调递增,所以()()(2)0g x h x h >≥=,所以()g x =0在(0,)+∞没有实根.综上,()0g x =在R 上有唯一实根,即曲线()y f x =与直线2y kx =-只有一个交点. 考点:考查利用导数综合研究函数性质的能力.难题. 22.解析:(Ⅰ)连结AB ,AC . 由题设知PA PD =,故PAD PDA ∠=∠. 因为PDA DAC DCA ∠=∠+∠,.. .... .. .. PAD BAD PAB ∠=∠+∠,DCA PAB ∠=∠,所以DAC BAD ∠=∠,从而BE EC =,因此BE EC =.(Ⅱ)由切割线定理得2PA PB PC =⋅.因为PA PD DC ==,所以2DC PB =,BD PB =.由相交弦定理得AD DE BD DC ⋅=⋅,所以22AD DE PB ⋅=.考点:考查与圆有关的角的知识和圆幂定理的应用.中等题.23.解析:(Ⅰ)C 的普通方程为2201)1(1()x y y -+=≤≤. 可得C 的参数方程为,n 1i cos s y x tt =+⎧⎨=⎩(t 为参数,0t π≤≤).(Ⅱ)设D (1cos n ),si t t +.由(Ⅰ)知C 是以(1,0)G 为圆心,1为半径的上半圆. 因为C 在D 处的切线与l 垂直,所以直线GD 与l的斜率相同,tan t =3t π=,故D 的直角坐标为(1cos ,sin )33ππ+,即3(2. 考点:本题考查园的极坐标方程参数方程以及参数方程的简单应用.中等题.24.解析:(Ⅰ)由0a >,有111()|||||()|2f x x x a x x a a a a a =++-≥+--=+≥, ∴()2f x ≥. (Ⅱ)1(3)|3||3|f a a=++-. 当3a >时,1(3)f a a=+,由(3)5f <得523a <<+. 当03a <≤时,(3)61a f a =-+,由(3)5f <3a <≤. 综上,a的取值围是15(22++. 考点:考查带有绝对值的不等式的应用能力,考查函数与不等式的关系.中等题.。
2014年全国高考新课标Ⅱ数学(文)试卷及答案【精校版】
2014年普通高等学校招生全国统一考试(课标II 卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合2{2,0,2},{|20}A B x x x =-=--=,则AB =( )A. ∅B. {}2C. {0}D. {2}- (2)131i i+=-( ) A.12i + B. 12i -+ C. 12i - D. 12i -- (3)函数()f x 在0x x =处导数存在,若0:()0p f x =:0:q x x =是()f x 的极值点,则A .p 是q 的充分必要条件B. p 是q 的充分条件,但不是q 的必要条件C. p 是q 的必要条件,但不是q 的充分条件D. p 既不是q 的充分条件,学科 网也不是q 的必要条件(4)设向量,a b 满足a b +=a b -=a b ⋅=( )A. 1B. 2C. 3D. 5(5)等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A. (1)n n +B. (1)n n -C. (1)2n n +D. (1)2n n - (6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,学科 网高为6cm 的圆柱体毛坯切削得到, 则切削的部分的体积与原来毛坯体积的比值为( ) A.2717 B.95 C.2710 D.31(7)正三棱柱111ABC A B C -的底面边长为2,D 为BC 中点,则三棱锥 11A B DC -的体积为(A )3 (B )32(C )1 (D(8)执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =(A )4 (B )5 (C )6 (D )7(9)设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1(10)设F 为抛物线2:+3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB = (A(B )6 (C )12 (D)(11)若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞(12)设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取 值范围是(A )[]1,1-- (B )11,22⎡⎤-⎢⎥⎣⎦ (C)⎡⎣ (D),22⎡-⎢⎣⎦二、填空题:本大题共4小题,每小题5分.(13)甲,乙两名运动员各自等可能地从红、学科 网白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.(14) 函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.(15) 偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________.(16) 数列}{n a 满足2,1181=-=+a a a n n ,则=1a ________. 三、解答题:(17)(本小题满分12分)四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB .(1)求C 和BD ;(2)求四边形ABCD 的面积.(18)(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的重点.(1)证明:PB //平面AEC ;(2)设1,AP AD ==P ABD 的体积4V =,求A 到平面PBC 的距离.(19)(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机 访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙 两部门的评价.(20)(本小题满分12分)设12,F F 分别是椭圆C:22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MNF N =,求,a b .(21)(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-.(1)求a ;(2)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.请考生在第22,23,24题中任选一题做答,如多做,则按所做的第一题记分。
2014年(全国卷II)(含答案)高考文科数学
2014年普通高等学校招生全国统一考试(2 新课标Ⅱ卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合2{2,0,2},{|20}A B x x x =-=--=,则A ∩B=( ) A. ∅ B. {}2 C. {0} D. {2}-2.131ii+=-( ) A.12i + B. 12i -+ C. 12i - D. 12i --3.函数()f x 在0x x =处导数存在,若0:()0p f x =:0:q x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件 B. p 是q 的充分条件,但不是q 的必要条件 C. p 是q 的必要条件,但不是q 的充分条件 D. p 既不是q 的充分条件,学科 网也不是q 的必要条件4.设向量,a b 满足10a b +=,6a b -=,则a b ⋅=( ) A. 1 B. 2 C. 3 D. 55.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A. (1)n n + B. (1)n n - C.(1)2n n + D. (1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( ) A.2717 B.95 C.2710 D.317.正三棱柱111ABC A B C -的底面边长为2,,D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.28.执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =( ) A.4 B.5 C.6 D.79.设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为( )A.8B.7C.2D.110.设F 为抛物线2:+3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则AB =( )A.3B.6C.12D.11.若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是( )A.(],2-∞-B.(],1-∞-C.[)2,+∞D.[)1,+∞12.设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )A.[-1,1]B.11,22⎡⎤-⎢⎥⎣⎦C.⎡⎣D.22⎡-⎢⎣⎦二、填空题:本大题共4小题,每小题5分.13.甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.14. 函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.15. 偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________. 16.数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________. 三、解答题:17.(本小题满分12分)四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB . (1)求C 和BD ;(2)求四边形ABCD 的面积.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点.(1)证明:PB //平面AEC ;(2)设1,3AP AD ==,三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.19.(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两—部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(本小题满分12分)设12,F F 分别是椭圆C:22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .21.(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (1)求a ;(2)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.22.(本小题满分10分)选修4-1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于,B C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E .证明:(1)BE EC =; (2)22AD DE PB ⋅=23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ,[0,]2πρθθ=∈.(1)求C 得参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4-5:不等式选讲 设函数1()||||(0)f x x x a a a=++-> (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.2014年普通高等学校招生全国统一考试(2 新课标Ⅱ卷)数学(文)试题参考答案:参考答案1.B 【解析】试题分析:由已知得,{}21B =,-,故{}2A B =,选B . 考点:集合的运算. 2.B 【解析】试题分析:由已知得,131i i+-(13)(1i)2412(1i)(1i)2i ii ++-+===-+-+,选B . 考点:复数的运算.3.C 【解析】试题分析:若0x x =是函数()f x 的极值点,则'0()0f x =;若'0()0f x =,则0x x =不一定是极值点,例如3()f x x =,当0x =时,'(0)0f =,但0x =不是极值点,故p 是q 的必要条件,但不是q 的充分条件,选C .考点:1、函数的极值点;2、充分必要条件. 4.A 【解析】试题分析:由已知得,22210a a b b +⋅+=,2226a a b b -⋅+=,两式相减得,44a b ⋅=,故1a b ⋅=.考点:向量的数量积运算. 5.A 【解析】试题分析:由已知得,2428a a a =⋅,又因为{}n a 是公差为2的等差数列,故2222(2)(6)a d a a d +=⋅+,22(4)a +22(12)a a =⋅+,解得24a =,所以2(2)n a a n d =+-2n =,故1()(n 1)2n n n a a S n +==+.【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n 项和. 6.C 【解析】 试题分析:由三视图还原几何体为一个小圆柱和大圆柱组成的简单组合体.其中小圆柱底面半径为2、高为4,大圆柱底面半径为3、高为2,则其体积和为22243234πππ⨯⨯+⨯⨯=,而圆柱形毛坯体积为23654ππ⨯⨯=,故切削部分体积为20π,从而切削的部分的体积与原来毛坯体积的比值为20105427ππ=. 考点:三视图. 7.C 【解析】 试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B =,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以111111133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积. 8.D 【解析】试题分析:输入2,2x t ==,在程序执行过程中,,,M S k 的值依次为1,3,1M S k ===;2,5,2M S k ===;2,7,3M S k ===,程序结束,输出7S =. 考点:程序框图. 9.B 【解析】试题分析:画出可行域,如图所示,将目标函数2z x y =+变形为122zy x =-+,当z 取到最大值时,直线122z y x =-+的纵截距最大,故只需将直线12y x =-经过可行域,尽可能平移到过A 点时,z 取到最大值. 10330x y x y --=⎧⎨-+=⎩,得(3,2)A ,所以max z 3227=+⨯=.考点:线性规划. 10.C 【解析】试题分析:由题意,得3(,0)4F .又因为0k tan 30==故直线AB 的方程为3y )4=-,与抛物线2=3y x 联立,得21616890x x -+=,设1122(x ,y ),(x ,y )A B ,由抛物线定义得,12x x AB p =++= 168312162+=,选C . 考点:1、抛物线的标准方程;2、抛物线的定义. 11.D 【解析】试题分析:'1()f x k x =-,由已知得'()0f x ≥在()1,x ∈+∞恒成立,故1k x≥,因为1x >,所以101x<<,故k 的取值范围是[)1,+∞. 【考点】利用导数判断函数的单调性.12.A【解析】试题分析:依题意,直线MN 与圆O 有公共点即可,即圆心O 到直线MN 的距离小于等于1即可,过O 作OA ⊥MN ,垂足为A ,在Rt OMA ∆中,因为OMA ∠045=,故0sin 45OA OM ==1≤,所以OM ≤≤011x -≤≤.考点:1、解直角三角形;2、直线和圆的位置关系.13.13 【解析】试题分析:甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种有9种不同的结果,分别为(红,红),(红,白),(红,蓝),(白,红),(白,白),(白,蓝),(蓝,红),(蓝,白),(蓝,蓝).他们选择相同颜色运动服有3种不同的结果,即(红,红),(白,白),(蓝,蓝),故他们选择相同颜色运动服的概率为3193P ==. 考点:古典概型的概率计算公式.14.1【解析】试题分析:由已知得,()sin cos cos sin 2cos sin f x x x x ϕϕϕ=+-sin cos cos sin x x ϕϕ=-sin()x ϕ=-1≤,故函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为1.考点:1、两角和与差的正弦公式;2、三角函数的性质.15.3【解析】试题分析:因为)(x f y =的图像关于直线2=x 对称,故(3)(1)3f f ==,又因为)(x f y =是偶函数,故(1)(1)3f f -==.考点:1、函数图象的对称性;2、函数的奇偶性.16.12. 【解析】试题分析:由已知得,111n n a a +=-,82a =,所以781112a a =-=,67111a a =-=-,56112a a =-=, 451112a a =-=,34111a a =-=-,23112a a =-=,121112a a =-=.三、解答题(17)解:(I )由题设及余弦定理得2222cos BD BC CD BC CD C =+-⋅=1312cos C - , ①2222cos BD AB DA AB DA A =+-⋅54cos C =+. ②由①,②得1cos 2C =,故060C =,7BD = (Ⅱ)四边形ABCD 的面积11sin sin 22S AB DA A BC CD C =⋅+⋅ 011(1232)sin 6022=⨯⨯+⨯⨯ 23=(18)解:(I )设BD 与AC 的交点为O ,连结EO.因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以EO ∥PB.EO ⊂平面AEC ,PB ⊄平面AEC,所以PB ∥平面AEC.(Ⅱ)V 166PA AB AD AB =⋅⋅=.由4V =,可得32AB =.作AH PB ⊥交PB 于H 。
2014年高考全国2卷文科数学试题(含解析)
绝密★启用前2014年高考全国2卷文科数学试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题(题型注释)1.设集合2{2,0,2},{|20}A B x x x =-=--=,则A B =I ( ) A .∅ B .{}2 C .{0} D .{2}-2.131ii+=-( ) A .12i + B .12i -+ C .12i - D .12i --3.函数()f x 在0x x =处导数存在,若0:()0p f x =;0:q x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件4.设向量b a ρρ,满足10||=+b a ρρ,6||=-b a ρρ,则=⋅b a ρρ( )A .1B .2C .3D .55.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A .(1)n n + B .(1)n n - C .(1)2n n + D .(1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( )A .2717 B .95 C .2710 D .317.正三棱柱111ABC A B C -的底面边长为23,D 为BC 中点,则三棱锥11A B DC -的体积为(A )3 (B )32(C )1 (D 31A8.执行右面的程序框图,如果输入的x,t均为2,则输出的S=()(A)4(B)5(C)6(D)79.设x,y满足约束条件10,10,330,x yx yx y+-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y=+的最大值为()(A)8(B)7(C)2(D)110.设F为抛物线2:=3C y x的焦点,过F且倾斜角为30︒的直线交C于A,B两点,则AB=()(A)3(B)6(C)12(D)11.若函数()f x kx Inx=-在区间()1,+∞单调递增,则k的取值范围是()(A)(],2-∞-(B)(],1-∞-(C)[)2,+∞(D)[)1,+∞12.设点(),1M x,若在圆22:+1O x y=上存在点N,使得45OMN∠=︒,则x的取值范围是()(A)[]1,1--(B)11,22⎡⎤-⎢⎥⎣⎦(C)⎡⎣(D),22⎡-⎢⎣⎦。
2014年高考数学新课标2卷(文科)答案word版
2014年普通高等学校招生全国统一考试(新课标II卷)文科数学试题答案与解析1.解析 因为集合{}2,0,2A =-,{}{}2202,1B x x x =--==-,所以{}2AB =,故选B. 2. 解析()()()()13i 1i 13i 24i12i1i 1i 1i 2+++-+===-+--+,故选B. 3. 解析 因为()f x 在0x x =处可导,所以若0x x =是()f x 的极值点,则()00f x '=,所以q p ⇒,故p 是q 的必要条件;反之,以()3f x x =为例,()00f '=,但0x =不是极值点,所以p q ⇒/,故p 不是q 的充分条件.故选C.4. 解析 因为+=a b ,所以22210+⋅+=a a b b .①又-=a b ,所以2226-⋅+=a a b b .②-①②,得44⋅=a b ,即1⋅=a b ,故选A.5. 解析 因为248,,a a a 成等比数列,所以2428a a a =⋅,即()()()211137a d a d a d +=++,将2d =代入上式,解得12a =,所以()()12212n n n S n n n -⋅=+=+.故选A. 6. 解析 该零件是两个圆柱体构成的组合体,其体积为22π24π3234π⨯⨯+⨯⨯=3cm ,圆柱体毛坯的体积为2π3654π⨯⨯=3cm ,所以切削掉部分的体积为54π34π20π-=3cm ,所以切削掉部分的体积与原来毛坯体积的比值为20π1054π27=,故选C.7. 解析 在正三棱柱111ABC A B C -中,因为AD BC ⊥,所以AD ⊥平面11B DC ,所以111111121332A B DC B DC V S AD -=⋅=⨯⨯=△,故选C.8. 解析 1k =时,12…成立,此时2M =,235S =+=;2k =时,22…成立,此时2M =,257S =+=;3k =时,32>,终止循环,输出7S =.故选D.9. 解析 约束条件表示的平面区域如图中阴影部分所示,由2z x y =+,得122zy x =-+,2z 为直线122z y x =-+在轴上的截距,要使z 最大,则需2z 最大,所以当直线122z y x =-+经过点()3,2B 时,z 最大,最大值为3227+⨯=,故选B.10. 解析 焦点F 的坐标为3,04⎛⎫⎪⎝⎭,直线AB的斜率为,所以直线AB的方程为334y x ⎛⎫=- ⎪⎝⎭,即y =,代入23y x =,得217303216x x -+=,设()11,A x y ,()22,B x y ,则12212x x +=,所以12321312222AB x x =++=+=,故选C. C 1B 1A 1DC BA11. 解析 依题意得()10f x k x '=-…在()1,+∞上恒成立,即1k x…在()1,+∞上恒成立,因为1x >,所以101x<<,所以1k …,故选D. 12. 解析 解法一:过M 作圆O 的两条切线,MA MB ,切点分别为,A B ,若在圆O 上存在点N ,使45OMN ∠=,则45OMB OMN ∠∠=…,所以90AMB ∠…, 所以011x -剟,故选A.解法二:过O 作OP MN ⊥于P ,则sin 451OP OM =…,所以OM …201x …,即011x -剟,故选A.评注 本题考查直线与圆的位置关系,体现了数形结合的思想方法.13. 解析甲、乙的选择方案有红红、红白、红蓝、白红、白白、白蓝、蓝红、蓝白、蓝蓝9种,其中颜色相同的有3种,所以所求的概率为3193=. 14. 解析 ()()sin 2sin cos sin cos cos sin 2sin cos f x x x x x x ϕϕϕϕϕ=+-=+-=()sin cos cos sin sin 1x x x ϕϕϕ-=-…,所以()max 1f x =.15. 解析 因为函数()y f x =的图像关于直线2x =对称,所以()()22f x f x +=-对任意x 恒成立,令1x =,得()()133f f ==,所以()()113f f -==.16. 解析 由111n n a a +=-,得111n n a a +=-,因为82a =,所以711122a =-=,67111a a =-=-,56112a a =-=,,所以{}n a 是以3为周期的数列,所以1712a a ==.17. 解析 (1)由题设及余弦定理得2222cos 1312cos BD BC CD BC CD C C =+-⋅=-,①2222cos 54cos BD AB DA AB DA A C =+-⋅=+.②由①,②得1cos 2C =,故60C =,BD (2)四边形ABCD 的面积1111sin sin 1232sin 60232222S AB DA A BC CD C ⎛⎫=⋅+⋅=⨯⨯+⨯⨯= ⎪⎝⎭评注 本题考查余弦定理的应用和四边形面积的计算,考查运算求解能力和转化的思想,把四边形分割成两个三角形是求面积的常用方法.18. 解析 (I )设BD 与AC 的交点为O ,连接EO .因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD的中点,所以//EO PB .EO ⊂平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC . (II )166V PA AB AD AB =⋅⋅=.由4V =,可得32AB =.作AH PB ⊥交PB 于H . 由题设知BC ⊥平面PAB ,所以BC AH ⊥,故AH ⊥平面PBC . 又PA AB AH PB ⋅==A 到平面PBC .评注 本题考查直线和平面平行、垂直的判定方法以及空间距离的计算,考查了空间想象能力.19. 解析(1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为6668672+=,所以该市的市民对乙部门评分的中位数的估计值是67. (2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为50.150=,80.1650=,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16. (3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.评注 本题考查利用茎叶图进行中位数,概率的相关计算,考查用样本的数字特征估计总体的数字特征,运用统计与概率的知识与方法解决实际问题的能力,考查数据处理能力及应用意识.20. 解析 (I)根据c =2,b M c a ⎛⎫ ⎪⎝⎭,223b ac =.将222b ac =-代入223b ac =,解得12c a =或2c a=-(舍去).故C 的离心率为12.(II )由题意,知原点O 为12F F 的中点,2//MF y 轴,所以直线1MF 与y 轴的交点()0,2D HEOPDCBA是线段1MF 的中点,故24b a=,即24b a =,① 由15MN F N =得112DF F N=.设()11,N x y ,由题意知10y <, 则()11222c x c y ⎧--=⎪⎨-=⎪⎩,即11321x c y ⎧=-⎪⎨⎪=-⎩,代入C 的方程为,得2229114c a b +=.②将①及c =()22941144a a a a-+=.解得7a =,2428b a ==. 故7a =,b =评注 本题主要考查椭圆的标准方程和几何性质,直线与椭圆的位置关系等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力,以及用方程思想解决问题的能力. 21. 解析(1)()236f x x x a '=-+,()0f a '=,曲线()y f x =在点()0,2处的切线方程为2y ax =+.由题设得22a-=-,所以1a =. (2)由(1)知,()3232f x x x ax =-++.设()()()322314g x f x kx x x k x =-+=-+-+.由题设知10k ->.当0x …时,()23610g'x x x k =-+->,()g x 单调递增,()110g k -=-<,()04g =,所以()0g x =在(],0-∞上有唯一实根.当0x >时,令()3234h x x x =-+,则()()()()1g x h x k x h x =+->.()()23632h'x x x x x =-=-,()h x 在()0,2上单调递减,在()2,+∞上单调递增,所以()()()20g x h x h >=….所以()0g x =在()0,+∞上没有实根.综上,()0g x =在R 上有唯一实根,即曲线()y f x =与直线2y kx =-只有一个交点. 评注 本题主要考查导数的几何意义及导数的应用,考查了分类讨论、函数与方程、等价转化等思想方法.把曲线()y f x =与直线2y kx =-只有一个交点的问题转化为研究函数()()32314g x x x k x =-+-+在R 上有唯一实根问题是解决问题的关键.22. 解析 (I )连接AB ,AC ,由题设知PA PD =,故PAD PDA ∠=∠.因为PDA DAC DCA ∠=∠+∠,PAD BAD PAB ∠=∠+∠,DCA PAB ∠=∠,所以DAC BAD ∠=∠,从而BE EC =,因此BE EC =.(II )由切割线定理得2PA PB PC =⋅.因为PA PD DC ==,所以2DC PB =,BD PB =,由相交弦定理得AD DE BD DC ⋅=⋅,所以22AD DE PB ⋅=.23. 解析 (I )C 的普通方程为()()221101x y y-+=剟.可得C 的参数方程为1cos sin x ty t=+⎧⎨=⎩(t 为参数,0πt 剟).(II )设()1c o s ,sin D t t +.由(I )知C 是以()1,0G 为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同. tan t =π3t =.故D 的直角坐标为ππ1cos,sin 33⎛⎫+ ⎪⎝⎭.即32⎛ ⎝⎭. 24. 解析 (I )由0a >,有()()1112f x x x a x x a a a a a=++-+--=+厖,所以()2f x ….(II )()1333f a a=++-.当3a >时,()13f a a =+,由()35f <得532a +<<.当03a <…时,()136f a a =-+,由()35f <得132a +<….综上,a 的取值范围是⎝⎭.。
2014年全国统一高考数学试卷(文科)(新课标Ⅱ)解析版
2014年全国统一高考数学试卷(文科)(新课标Ⅱ)解析版参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合{2A =-,0,2},2{|20}B x x x =--=,则(A B = )A .∅B .{2}C .{0}D .{2}-【考点】1E :交集及其运算 【专题】5J :集合【分析】先解出集合B ,再求两集合的交集即可得出正确选项. 【解答】解:{2A =-,0,2},2{|20}{1B x x x =--==-,2},{2}AB ∴=.故选:B .【点评】本题考查交的运算,理解好交的定义是解答的关键. 2.(5分)13(1ii+=- ) A .12i + B .12i -+ C .12i - D .12i --【考点】5A :复数的运算 【专题】5N :数系的扩充和复数【分析】分子分母同乘以分母的共轭复数1i +化简即可. 【解答】解:化简可得213(13)(1)13424121(1)(1)12i i i i ii i i i i +++-+-+====-+--+- 故选:B .【点评】本题考查复数代数形式的化简,分子分母同乘以分母的共轭复数是解决问题的关键,属基础题.3.(5分)函数()f x 在0x x =处导数存在,若00:()0::p f x q x x '==是()f x 的极值点,则()A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件 【考点】29:充分条件、必要条件、充要条件 【专题】5L :简易逻辑【分析】根据可导函数的极值和导数之间的关系,利用充分条件和必要条件的定义即可得到结论.【解答】解:函数3()f x x =的导数为2()3f x x '=,由0()0f x '=,得00x =,但此时函数()f x 单调递增,无极值,充分性不成立.根据极值的定义和性质,若0x x =是()f x 的极值点,则0()0f x '=成立,即必要性成立, 故p 是q 的必要条件,但不是q 的充分条件, 故选:C .【点评】本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.4.(5分)设向量a ,b 满足||10a b +=,||6a b -=,则(a b = ) A .1B .2C .3D .5【考点】9O :平面向量数量积的性质及其运算 【专题】5A :平面向量及应用【分析】将等式进行平方,相加即可得到结论. 【解答】解:||10a b +=,||6a b -=,∴分别平方得22210a a b b ++=,2226a a b b -+=,两式相减得41064a b =-=, 即1a b =, 故选:A .【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础. 5.(5分)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和(n S =)A .(1)n n +B .(1)n n -C .(1)2n n + D .(1)2n n - 【考点】83:等差数列的性质【专题】54:等差数列与等比数列【分析】由题意可得2444(4)(8)a a a =-+,解得4a 可得1a ,代入求和公式可得. 【解答】解:由题意可得2428a a a =, 即2444(4)(8)a a a =-+, 解得48a =, 14322a a ∴=-⨯=,1(1)2n n n S na d -∴=+, (1)22(1)2n n n n n -=+⨯=+, 故选:A .【点评】本题考查等差数列的性质和求和公式,属基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1)cm ,图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727B .59C .1027 D .13【考点】!L :由三视图求面积、体积 【专题】5F :空间位置关系与距离【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可. 【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:22322434πππ+=.底面半径为3cm ,高为6cm 的圆柱体毛坯的体积为:23654ππ⨯= 切削掉部分的体积与原来毛坯体积的比值为:5434105427πππ-=. 故选:C .【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,则三棱锥11A B DC -的体积为( )A .3B .32C .1D 【考点】LF :棱柱、棱锥、棱台的体积 【专题】5F :空间位置关系与距离【分析】由题意求出底面11B DC 的面积,求出A 到底面的距离,即可求解三棱锥的体积.【解答】解:正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,∴底面11B DC 的面积:122⨯A三棱锥11A B DC -的体积为:113.故选:C .【点评】本题考查几何体的体积的求法,求解几何体的底面面积与高是解题的关键. 8.(5分)执行如图所示的程序框图,若输入的x ,t 均为2,则输出的(S = )A .4B .5C .6D .7【考点】EF :程序框图 【专题】5K :算法和程序框图【分析】根据条件,依次运行程序,即可得到结论. 【解答】解:若2x t ==,则第一次循环,12…成立,则1221M =⨯=,235S =+=,2k =,第二次循环,22…成立,则2222M =⨯=,257S =+=,3k =,此时32…不成立,输出7S =, 故选:D .【点评】本题主要考查程序框图的识别和判断,比较基础.9.(5分)设x ,y 满足约束条件1010330x y x y x y +-⎧⎪--⎨⎪-+⎩………,则2z x y =+的最大值为( )A .8B .7C .2D .1【考点】7C :简单线性规划 【专题】59:不等式的解法及应用【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解答】解:作出不等式对应的平面区域, 由2z x y =+,得122zy x =-+,平移直线122z y x =-+,由图象可知当直线122z y x =-+经过点A 时,直线122zy x =-+的截距最大,此时z 最大. 由10330x y x y --=⎧⎨-+=⎩,得32x y =⎧⎨=⎩,即(3,2)A ,此时z 的最大值为3227z =+⨯=, 故选:B .【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法. 10.(5分)设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为30︒的直线交于C 于A ,B 两点,则||(AB = )A B .6 C .12 D .【考点】8K :抛物线的性质【专题】5D :圆锥曲线的定义、性质与方程【分析】求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用根与系数的关系,由弦长公式求得||AB .【解答】解:由23y x =得其焦点3(4F ,0),准线方程为34x =-.则过抛物线23y x =的焦点F 且倾斜角为30︒的直线方程为33tan30())44y x x =︒--.代入抛物线方程,消去y ,得21616890x x -+=. 设1(A x ,1)y ,2(B x ,2)y 则1216821162x x +==, 所以12333321||1244442AB x x =+++=++= 故选:C .【点评】本题考查抛物线的标准方程,以及简单性质的应用,弦长公式的应用,运用弦长公式是解题的难点和关键.11.(5分)若函数()f x kx ln =- x 在区间(1,)+∞单调递增,则k 的取值范围是( ) A .(-∞,2]-B .(-∞,1]-C .[2,)+∞D .[1,)+∞【考点】6B :利用导数研究函数的单调性【专题】38:对应思想;4R :转化法;51:函数的性质及应用【分析】求出导函数()f x ',由于函数()f x kx lnx =-在区间(1,)+∞单调递增,可得()0f x '…在区间(1,)+∞上恒成立.解出即可. 【解答】解:1()f x k x'=-, 函数()f x kx lnx =-在区间(1,)+∞单调递增, ()0f x ∴'…在区间(1,)+∞上恒成立. 1k x∴…,而1y x=在区间(1,)+∞上单调递减, 1k ∴….k ∴的取值范围是:[1,)+∞.故选:D .【点评】本题考查了利用导数研究函数的单调性、恒成立问题的等价转化方法,属于中档题. 12.(5分)设点0(M x ,1),若在圆22:1O x y +=上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )A .[1-,1]B .1[2-,1]2C .[D .[ 【考点】JE :直线和圆的方程的应用 【专题】5B :直线与圆【分析】根据直线和圆的位置关系,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点0(M x ,1),要使圆22:1O x y +=上存在点N ,使得45OMN ∠=︒,则OMN ∠的最大值大于或等于45︒时一定存在点N ,使得45OMN ∠=︒, 而当MN 与圆相切时OMN ∠取得最大值, 此时1MN =,图中只有M '到M ''之间的区域满足1MN =, 0x ∴的取值范围是[1-,1].故选:A .【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.二、填空题:本大题共4小题,每小题5分.13.(5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为13. 【考点】8C :相互独立事件和相互独立事件的概率乘法公式 【专题】5I :概率与统计【分析】所有的选法共有339⨯=种,而他们选择相同颜色运动服的选法共有3种,由此求得他们选择相同颜色运动服的概率.【解答】解:所有的选法共有339⨯=种,而他们选择相同颜色运动服的选法共有3种, 故他们选择相同颜色运动服的概率为3193=,故答案为:13.【点评】本题主要考查相互独立事件的概率乘法公式,属于基础题. 14.(5分)函数()sin()2sin cos f x x x ϕϕ=+-的最大值为 1 . 【考点】GP :两角和与差的三角函数;HW :三角函数的最值 【专题】56:三角函数的求值;57:三角函数的图象与性质【分析】直接利用两角和与差三角函数化简,然后求解函数的最大值. 【解答】解:函数()sin()2sin cos f x x x ϕϕ=+- sin cos sin cos 2sin cos x x x ϕϕϕ=+- sin cos sin cos x x ϕϕ=- sin()1x ϕ=-….所以函数的最大值为1. 故答案为:1.【点评】本题考查两角和与差的三角函数,三角函数最值的求解,考查计算能力. 15.(5分)偶函数()y f x =的图象关于直线2x =对称,f (3)3=,则(1)f -= 3 . 【考点】3K :函数奇偶性的性质与判断 【专题】51:函数的性质及应用【分析】根据函数奇偶性和对称性的性质,得到(4)()f x f x +=,即可得到结论. 【解答】解:法1:因为偶函数()y f x =的图象关于直线2x =对称, 所以(2)(2)(2)f x f x f x +=-=-, 即(4)()f x f x +=,则(1)(14)f f f -=-+=(3)3=,法2:因为函数()y f x =的图象关于直线2x =对称, 所以f (1)f =(3)3=, 因为()f x 是偶函数, 所以(1)f f -=(1)3=, 故答案为:3.【点评】本题主要考查函数值的计算,利用函数奇偶性和对称性的性质得到周期性(4)()f x f x +=是解决本题的关键,比较基础.16.(5分)数列{}n a 满足111n n a a +=-,82a =,则1a = 12.【考点】8H :数列递推式 【专题】11:计算题【分析】根据82a =,令7n =代入递推公式111n na a +=-,求得7a ,再依次求出6a ,5a 的结果,发现规律,求出1a 的值. 【解答】解:由题意得,111n na a +=-,82a =, 令7n =代入上式得,8711a a =-,解得712a =; 令6n =代入得,7611a a =-,解得61a =-; 令5n =代入得,6511a a =-,解得52a =; ⋯根据以上结果发现,求得结果按2,12,1-循环, 8322÷=⋯,故112a =故答案为:12. 【点评】本题考查了数列递推公式的简单应用,即给n 具体的值代入后求数列的项,属于基础题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)四边形ABCD 的内角A 与C 互补,1AB =,3BC =,2CD DA ==. (1)求C 和BD ;(2)求四边形ABCD 的面积.【考点】HP :正弦定理;HR :余弦定理 【专题】56:三角函数的求值【分析】(1)在三角形BCD 中,利用余弦定理列出关系式,将BC ,CD ,以及cos C 的值代入表示出2BD ,在三角形ABD 中,利用余弦定理列出关系式,将AB ,DA 以及cos A 的值代入表示出2BD ,两者相等求出cos C 的值,确定出C 的度数,进而求出BD 的长; (2)由C 的度数求出A 的度数,利用三角形面积公式求出三角形ABD 与三角形BCD 面积,之和即为四边形ABCD 面积.【解答】解:(1)在BCD ∆中,3BC =,2CD =,由余弦定理得:2222cos 1312cos BD BC CD BC CD C C =+-=-①,在ABD ∆中,1AB =,2DA =,A C π+=,由余弦定理得:2222cos 54cos 54cos BD AB AD AB AD A A C =+-=-=+②, 由①②得:1cos 2C =,则60C =︒,BD (2)1cos 2C =,1cos 2A =-,sin sin C A ∴==则1111sin sin 12322222S AB DA A BC CD C =+=⨯⨯+⨯⨯=【点评】此题考查了余弦定理,同角三角函数间的基本关系,以及三角形面积公式,熟练掌握余弦定理是解本题的关键.18.(12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明://PB 平面AEC ;(Ⅱ)设1AP =,AD =,三棱锥P ABD -的体积V =,求A 到平面PBC 的距离.【考点】LF :棱柱、棱锥、棱台的体积;LS :直线与平面平行;MK :点、线、面间的距离计算【专题】5F :空间位置关系与距离【分析】(Ⅰ)设BD 与AC 的交点为O ,连结EO ,通过直线与平面平行的判定定理证明//PB 平面AEC ;(Ⅱ)通过1AP =,AD =三棱锥P ABD -的体积V =,求出AB ,作A H P B ⊥角PB于H ,说明AH 就是A 到平面PBC 的距离.通过解三角形求解即可. 【解答】解:(Ⅰ)证明:设BD 与AC 的交点为O ,连结EO , ABCD 是矩形, O ∴为BD 的中点E 为PD 的中点,//EO PB ∴.EO ⊂平面AEC ,PB ⊂/平面AEC//PB ∴平面AEC ;(Ⅱ)1AP =,AD ,三棱锥P ABD -的体积V =,136V PA AB AD AB ∴===,32AB ∴=,PB =. 作AH PB ⊥交PB 于H , 由题意可知BC ⊥平面PAB , BC AH ∴⊥,故AH ⊥平面PBC .又在三角形PAB 中,由射影定理可得:313PA AB AH PB ==A 到平面PBC .【点评】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.19.(12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数; (Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.【考点】BA :茎叶图;BB :众数、中位数、平均数;CB :古典概型及其概率计算公式 【专题】5I :概率与统计【分析】(Ⅰ)根据茎叶图的知识,中位数是指中间的一个或两个的平均数,首先要排序,然后再找,(Ⅱ)利用样本来估计总体,只要求出样本的概率就可以了.(Ⅲ)根据(Ⅰ)(Ⅱ)的结果和茎叶图,合理的评价,恰当的描述即可.【解答】解:(Ⅰ)由茎叶图知,50位市民对甲部门的评分有小到大顺序,排在排在第25,26位的是75,75,故样本的中位数是75,所以该市的市民对甲部门的评分的中位数的估计值是75.50位市民对乙部门的评分有小到大顺序,排在排在第25,26位的是66,68,故样本的中位数是6668672+=,所以该市的市民对乙部门的评分的中位数的估计值是67. (Ⅱ)由茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为580.1,0.165050==,故该市的市民对甲、乙两部门的评分高于90的概率得估计值分别为0.1,0.16,(Ⅲ)由茎叶图知,市民对甲部门的评分的中位数高于乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分标准差要小于乙部门的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.【点评】本题主要考查了茎叶图的知识,以及中位数,用样本来估计总体的统计知识,属于基础题.20.(12分)设1F ,2F 分别是2222:1(0)x y C a b a b+=>>的左,右焦点,M 是C 上一点且2MF与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求a ,b . 【考点】4K :椭圆的性质【专题】5E :圆锥曲线中的最值与范围问题【分析】(1)根据条件求出M 的坐标,利用直线MN 的斜率为34,建立关于a ,c 的方程即可求C 的离心率;(2)根据直线MN 在y 轴上的截距为2,以及1||5||MN F N =,建立方程组关系,求出N 的坐标,代入椭圆方程即可得到结论.【解答】解:(1)M 是C 上一点且2MF 与x 轴垂直,M ∴的横坐标为c ,当x c =时,2b y a=,即2(,)b M c a ,若直线MN 的斜率为34,即22123tan 224b b a MF Fc ac ∠===, 即22232b ac a c ==-,即22302c ac a +-=,则23102e e +-=,即22320e e +-= 解得12e =或2e =-(舍去), 即12e =. (Ⅱ)由题意,原点O 是12F F 的中点,则直线1MF 与y 轴的交点(0,2)D 是线段1MF 的中点, 设(,)M c y ,(0)y >,则22221c y a b +=,即422b y a =,解得2b y a=, OD 是△12MF F 的中位线,∴24b a=,即24b a =, 由1||5||MN F N =, 则11||4||MF F N =, 解得11||2||DF F N =, 即112DF F N =设1(N x ,1)y ,由题意知10y <, 则(c -,12)2(x c -=+,1)y . 即112()22x c c y +=-⎧⎨=-⎩,即11321x c y ⎧=-⎪⎨⎪=-⎩代入椭圆方程得2229114c a b+=,将24b a =代入得229(4)1144a a a a-+=,解得7a =,b =【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.【考点】6B :利用导数研究函数的单调性;6H :利用导数研究曲线上某点切线方程 【专题】53:导数的综合应用【分析】(Ⅰ)求函数的导数,利用导数的几何意义建立方程即可求a ;(Ⅱ)构造函数()()2g x f x kx =-+,利用函数导数和极值之间的关系即可得到结论. 【解答】解:(Ⅰ)函数的导数2()36f x x x a '=-+;(0)f a '=; 则()y f x =在点(0,2)处的切线方程为2y ax =+, 切线与x 轴交点的横坐标为2-, (2)220f a ∴-=-+=,解得1a =.(Ⅱ)当1a =时,32()32f x x x x =-++, 设32()()23(1)4g x f x kx x x k x =-+=-+-+, 由题设知10k ->,当0x …时,2()3610g x x x k '=-+->,()g x 单调递增,(1)1g k -=-,(0)4g =, 当0x >时,令32()34h x x x =-+,则()()(1)()g x h x k x h x =+->. 则2()363(2)h x x x x x '=-=-在(0,2)上单调递减,在(2,)+∞单调递增,∴在2x =时,()h x 取得极小值h (2)0=,(1)1g k -=-,(0)4g =,则()0g x =在(-∞,0]有唯一实根. ()()g x h x h >…(2)0=, ()0g x ∴=在(0,)+∞上没有实根.综上当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.【点评】本题主要考查导数的几何意义,以及函数交点个数的判断,利用导数和函数单调性之间的关系是解决本题的关键,考查学生的计算能力. 三、选修4-1:几何证明选讲22.(10分)如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E ,证明:(Ⅰ)BE EC =; (Ⅱ)22AD DE PB =.【考点】4N :相似三角形的判定;NC :与圆有关的比例线段 【专题】17:选作题;5Q :立体几何【分析】(Ⅰ)连接OE ,OA ,证明OE BC ⊥,可得E 是BC 的中点,从而BE EC =; (Ⅱ)利用切割线定理证明2PD PB =,PB BD =,结合相交弦定理可得22AD DE PB =. 【解答】证明:(Ⅰ)连接OE ,OA ,则OAE OEA ∠=∠,90OAP ∠=︒, 2PC PA =,D 为PC 的中点,PA PD ∴=, PAD PDA ∴∠=∠,PDA CDE ∠=∠,90OEA CDE OAE PAD ∴∠+∠=∠+∠=︒, OE BC ∴⊥,E ∴是BC 的中点,BE EC ∴=;(Ⅱ)PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C , 2PA PB PC ∴=, 2PC PA =,2PA PB ∴=, 2PD PB ∴=, PB BD ∴=,2BD DC PB PB ∴=, AD DE BD DC =,22AD DE PB ∴=.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题. 四、选修4-4,坐标系与参数方程23.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,[0θ∈,]2π(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在半圆C 上,半圆C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,求直线CD 的倾斜角及D 的坐标. 【考点】QH :参数方程化成普通方程 【专题】5S :坐标系和参数方程【分析】(1)利用222cos x y x ρρθ⎧=+⎨=⎩即可得出直角坐标方程,利用22cos sin 1t t +=进而得出参数方程.(2)利用半圆C 在D 处的切线与直线:2l y =+垂直,则直线CD 的斜率与直线l 的斜率相等,即可得出直线CD 的倾斜角及D 的坐标.【解答】解:(1)由半圆C 的极坐标方程为2cos ρθ=,[0θ∈,]2π,即22cos ρρθ=,可得C 的普通方程为22(1)1(01)x y y -+=剟. 可得C 的参数方程为1cos (sin x tt y t =+⎧⎨=⎩为参数,0)t π剟.(2)设(1cos D + t ,sin )t ,由(1)知C 是以(1,0)C 为圆心,1为半径的上半圆,直线CD 的斜率与直线l 的斜率相等,tan t ∴=3t π=.故D 的直角坐标为(1cos ,sin )33ππ+,即3(2.【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题. 五、选修4-5:不等式选讲 24.设函数1()||||(0)f x x x a a a=++->. (Ⅰ)证明:()2f x …;(Ⅱ)若f (3)5<,求a 的取值范围. 【考点】5R :绝对值不等式的解法 【专题】59:不等式的解法及应用 【分析】(Ⅰ)由0a >,1()||||f x x x a a=++-,利用绝对值三角不等式、基本不等式证得()2f x …成立.(Ⅱ)由f (3)1|3||3|5a a=++-<,分当3a >时和当03a <…时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求. 【解答】解:(Ⅰ)证明:a >,1111()|||||()()|||2f x x x a x x a a a a a a a a a=++-+--=+=+=厖, 故不等式()2f x …成立. (Ⅱ)f (3)1|3||3|5a a=++-<,∴当3a >时,不等式即15a a+<,即2510a a -+<,解得3a <<当03a <…时,不等式即165a a-+<,即210a a -->3a <….综上可得,a 的取值范围.【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。
2014年新课标2卷文科数学高考真题及答案
掌门1对1教育 高考真题2014年普通高等学校招生全国统一考试文科数学一.选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合2{2,0,2},{|20}A B x x x =-=--=,则A B = ( ) A. ∅ B. {}2 C. {0} D. {2}- (2)131ii+=-( ) A.12i + B. 12i -+ C. 12i - D. 12i --(3)函数()f x 在0x x =处导数存在,若0:()0p f x =;0:q x x =是()f x 的极值点,则 A .p 是q 的充分必要条件 B. p 是q 的充分条件,但不是q 的必要条件 C. p 是q 的必要条件,但不是q 的充分条件 D. p 既不是q 的充分条件,也不是q 的必要条件(4)设向量b a ,满足10||=+b a ,6||=-b a,则=⋅b a ( )A. 1B. 2C. 3D. 5(5)等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A. (1)n n + B. (1)n n - C.(1)2n n + D. (1)2n n - (6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( ) A.2717 B.95 C.2710 D.31(7)正三棱柱111ABC A B C -的底面边长为2,3D 为BC 中点,则三棱锥11A B DC -的体积为是否SM S +=1k k +=S输出结束x kMM =?t k ≤开始tx ,输入3S ,1==M 1=k(A )3 (B )32(C )1 (D 3 (8)执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =(A )4 (B )5 (C )6 (D )7(9)设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1(10)设F 为抛物线2:+3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB =(A 30(B )6 (C )12 (D )73 (11)若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞ (12)设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是(A )[]1,1-- (B )11,22⎡⎤-⎢⎥⎣⎦ (C )2,2⎡⎣ (D )22⎡⎢⎣ 二、填空题:本大题共4小题,每小题5分.(13)甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.(14) 函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.(15) 偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________. (16) 数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________. 三、解答题:(17)(本小题满分12分)四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB . (1)求C 和BD ;(2)求四边形ABCD 的面积.(18)(本小题满分12分) 如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的重点. (1)证明:PB //平面AEC ; (2)设1,3AP AD ==,三棱锥P ABD -的体积3V =A 到平面PBC 的距离.(19)(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数; (2)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (3)根据茎叶图分析该市的市民对甲、乙两部门的评优.PABCDE(20)(本小题满分12分)设12,F F 分别是椭圆22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .(21)(本小题满分12分) 已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (1)求a ; (2)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.(24)(本小题满分10分)选修4-5:不等式选讲 设函数1()||||(0)f x x x a a a=++-> (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.绝密★启用前2014年普通高等学校招生全国统一考试(新课标II 适用省:贵州 甘肃 青海 西藏 黑龙江 吉林 宁夏 内蒙古 新疆 云南 海南语数外 辽宁综合)文科数学参考答案一、选择题 (1)B (2)B (3)C (4)A (5)A (6)C(7)C (8)D(9)B(10)C(11)D(12)A二、填空题(13)31 (14)1 (15)3 (16)21 三、解答题(17)解:(I)由题意及余弦定理,C cos C CD BC CD BC BD 1213cos 2222-=∙-+= ① C cos A DA AB DA AB BD 45cos 2222+=∙-+= ②由①,②得 21=C cos ,故7600==BD ,C (II )四边形ABCD 的面积 C sin CD BC A sin DA AB S ∙+∙=21213260232121210=⨯⨯+⨯⨯=sin )((18) 解:(I )设BD 交AC 于点O ,连结EO 。
2014年普通高等学校招生全国统一考试(新课标II)文科数学 word版
2014年普通高等学校招生全国统一考试(课标II 卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合2{2,0,2},{|20}A B x x x =-=--=,则AB =( )A. ∅B. {}2C. {0}D. {2}- (2)131i i+=-( ) A.12i + B. 12i -+ C. 12i - D. 12i -- (3)函数()f x 在0x x =处导数存在,若0:()0p f x =:0:q x x =是()f x 的极值点,则A .p 是q 的充分必要条件B. p 是q 的充分条件,但不是q 的必要条件C. p 是q 的必要条件,但不是q 的充分条件D. p 既不是q 的充分条件,也不是q 的必要条件(4)设向量,a b 满足a b +=a b -=a b ⋅=( )A. 1B. 2C. 3D. 5(5)等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A. (1)n n +B. (1)n n -C. (1)2n n +D. (1)2n n - (6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( ) A.2717 B.95 C.2710 D.31(7)正三棱柱111ABC A B C -的底面边长为2,D 为BC 中点,则三棱锥 11A B DC -的体积为(A )3 (B )32(C )1 (D(8)执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =(A )4 (B )5 (C )6 (D )7(9)设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1(10)设F 为抛物线2:+3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB = (A(B )6 (C )12 (D)(11)若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞(12)设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取 值范围是(A )[]1,1-- (B )11,22⎡⎤-⎢⎥⎣⎦ (C)⎡⎣ (D),22⎡-⎢⎣⎦二、填空题:本大题共4小题,每小题5分.(13)甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.(14) 函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.(15) 偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________.(16) 数列}{n a 满足2,1181=-=+a a a n n ,则=1a ________. 三、解答题:(17)(本小题满分12分)四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB .(1)求C 和BD ;(2)求四边形ABCD 的面积.(18)(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的重点.(1)证明:PB //平面AEC ;(2)设1,AP AD ==三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.(19)(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.(20)(本小题满分12分)设12,F F 分别是椭圆C:22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MNF N =,求,a b .(21)(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-.(1)求a ;(2)证明:当1k<时,曲线()y f x =与直线2y kx =-只有一个交点.请考生在第22,23,24题中任选一题做答,如多做,则按所做的第一题记分。
2014年普通高等学校招生全国统一考试 全国卷2 数学试卷含答案(文科)
2014年普通高等学校招生全国统一考试(课标全国卷Ⅱ)文数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=()A.⌀B.{2}C.{0}D.{-2}=( )2.-A.1+2iB.-1+2iC.1-2iD.-1-2i3.函数f(x)在x=x0处导数存在.若p:f '(x0)=0;q:x=x0是f(x)的极值点,则( )A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件4.设向量a,b满足|a+b|=,|a-b|=,则a·b=()A.1B.2C.3D.55.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=( )A.n(n+1)B.n(n-1)C.()D.(-)6.如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm,高为6 cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A. B. C. D.7.正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A-B1DC1的体积为( )A.3B.C.1D.8.执行下面的程序框图,如果输入的x,t均为2,则输出的S=( )A.4B.5C.6D.79.设x,y满足约束条件----则z=x+2y的最大值为( )A.8B.7C.2D.110.设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,则|AB|=( )A. B.6 C.12 D.711.若函数f(x)=kx-ln x在区间(1 +∞)单调递增,则k的取值范围是( )A.(-∞ -2]B.(-∞ -1]C.[2 +∞)D.[1 +∞)12.设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45° 则x0的取值范围是( )A.[-1,1]B.-C.[-,]D.-第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.14.函数f(x)=sin(x+φ)-2sin φcos x的最大值为.15.偶函数y=f(x)的图象关于直线x=2对称, f(3)=3,则f(-1)= .,a8=2,则a1= .16.数列{a n}满足a n+1=-三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(Ⅰ)求C和BD;(Ⅱ)求四边形ABCD的面积.18.(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为矩形 PA⊥平面ABCD,E为PD的中点. (Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P-ABD的体积V=,求A到平面PBC的距离.某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(本小题满分12分)设F1,F2分别是椭圆C:+=1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直.直线MF1与C的另一个交点为N.(Ⅰ)若直线MN的斜率为,求C的离心率;(Ⅱ)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2. (Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.请从下面所给的22、23、24三题中选定一题作答,多答按所答第一题评分.22.(本小题满分10分)选修4—1:几何证明选讲如图,P是☉O外一点,PA是切线,A为切点,割线PBC与☉O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交☉O于点E.证明:(Ⅰ)BE=EC;(Ⅱ)AD·DE=2PB2.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cos θ,θ∈.(Ⅰ)求C的参数方程;(Ⅱ)设点D在C上,C在D处的切线与直线l:y=x+2垂直,根据(Ⅰ)中你得到的参数方程,确定D的坐标.24.(本小题满分10分)选修4—5:不等式选讲设函数f(x)=+|x-a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年普通高等学校招生全国统一考试(课标全国卷Ⅱ)一、选择题1.B ∵集合A={-2,0,2},B={x|x 2-x-2=0}={2,-1}, ∴A∩B={2} 故选B. 2.B1 3 1-=(1 3 )(1 )(1- )(1 )=-2 4 2=-1+2i,故选B.3.C ∵f(x)在x=x 0处可导 ∴若x=x 0是f(x)的极值点,则f '(x 0)=0 ∴q ⇒p,故p 是q 的必要条件;反之,以f(x)=x 3为例, f '(0)=0,但x=0不是极值点 ∴p ⇒ /q,故p 不是q 的充分条件.故选C.4.A ∵|a+b|= 10 ∴a 2+2a·b+b 2=10.① 又|a-b|= ∴a 2-2a·b+b 2= .② ①-② 得4a·b=4 即a·b=1 故选A. 5.A ∵a 2,a 4,a 8成等比数列,∴ 42=a 2·a 8,即(a 1+3d)2=(a 1+d)(a 1+7d),将d=2代入上式,解得a 1=2, ∴S n =2n+( -1)·22=n(n+1),故选A.6.C 该零件是两个圆柱体构成的组合体,其体积为π×22×4+π×32×2=34π cm 3, 圆柱体毛坯的体积为π×32× =54π cm 3, 所以切削掉部分的体积为54π-34π=20π cm 3,所以切削掉部分的体积与原来毛坯体积的比值为20 54 =102 ,故选C. 7.C 在正三棱柱ABC-A 1B 1C 1中 ∵AD⊥BC ∴AD⊥平面B 1DC 1,∴ - 1D 1=131D 1·AD =13×12×2× 3× 3=1,故选C. 8.D k=1时 1≤2成立, 此时M=2,S=2+3=5;k=2时 2≤2成立, 此时M=2,S=2+5=7;k=3时,3>2,终止循环,输出S=7.故选D.9.B 约束条件表示的平面区域如图中阴影部分所示,由z=x+2y,得y=-12x+ 2, 2为直线y=-12x+ 2在y 轴上的截距,要使z 最大,则需2最大,所以当直线y=-12x+2经过点B(3,2)时,z 最大,最大值为3+2×2= 故选B.10.C 焦点F 的坐标为 34 0 ,直线AB 的斜率为 33,所以直线AB 的方程为y= 33 -34 ,即y= 33x- 34,代入y 2=3x,得13x 2- 2x+31 =0, 设A(x 1,y 1),B(x 2,y 2), 则x 1+x 2=212,所以|AB|=x 1+x 2+32=212+32=12,故选C.11.D 依题意得f '(x)=k-1≥0在(1 +∞)上恒成立,即k≥1在(1 +∞)上恒成立, ∵x>1 ∴0<1<1, ∴k≥1 故选D.12.A 解法一:过M 作圆O 的两条切线MA 、MB,切点分别为A 、B,若在圆O 上存在点N,使∠OMN=45° 则∠OMB≥∠OMN=45° 所以∠AMB≥90° 所以-1≤x 0≤1 故选A.解法二:过O 作OP⊥MN 于P,则|OP|=|OM|s n 45°≤1 ∴|OM|≤ 2,即 02 1≤ 2, ∴ 02≤1 即-1≤x 0≤1 故选A.评析 本题考查直线与圆的位置关系,体现了数形结合的思想方法. 二、填空题 13.答案 13解析 甲、乙的选择方案有红红、红白、红蓝、白红、白白、白蓝、蓝红、蓝白、蓝蓝9种,其中颜色相同的有3种,所以所求概率为39=13. 14.答案 1解析 f(x)=sin(x+φ)-2sin φcos x =sin xcos φ+cos xsin φ-2sin φcos x =sin xcos φ-cos xsin φ =sin(x-φ)≤1 所以f(x)max =1. 15.答案 3解析 ∵函数y=f(x)的图象关于直线x=2对称, ∴f(2+x)=f(2-x)对任意x 恒成立, 令x=1,得f(1)=f(3)=3, ∴f(-1)=f(1)=3. 16.答案 12解析 由a n+1=11-,得a n =1-11,∵a 8=2 ∴a 7=1-12=12, a 6=1-1=-1,a 5=1-1=2 …∴{a n }是以3为周期的数列 ∴a 1=a 7=12. 三、解答题17.解析 (Ⅰ)由题设及余弦定理得 BD 2=BC 2+CD 2-2BC·CDcos C =13-12cos C ①BD 2=AB 2+DA 2-2AB·DAcos A =5+4cos C.②由① ②得cos C=12,故C= 0° BD= .(Ⅱ)四边形ABCD 的面积 S=12AB·DAs n A+12BC·CDs n C= 121 2 123 2 s n 0°=2 3.评析 本题考查余弦定理的应用和四边形面积的计算,考查运算求解能力和转化的思想,把四边形分割成两个三角形是求面积的常用方法. 18.解析 (Ⅰ)设BD 与AC 的交点为O,连结EO. 因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO∥PB.又EO ⊂平面AEC,PB ⊄平面AEC,所以PB∥平面AEC. (Ⅱ)V=1PA·AB·AD= 3AB. 由V= 34,可得AB=32. 作AH⊥PB 交PB 于H.由题设知BC⊥平面PAB,所以BC⊥AH 故AH⊥平面PBC.又AH= · =3 1313, 所以A 到平面PBC 的距离为3 13.评析 本题考查直线和平面平行、垂直的判定方法以及空间距离的计算,考查了空间想象能力.19.解析 (Ⅰ)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为 2=67,所以该市的市民对乙部门评分的中位数的估计值是67.(Ⅱ)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1, 50=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(Ⅲ)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.评析 本题考查利用茎叶图进行中位数,概率的相关计算,考查用样本的数字特征估计总体的数字特征,运用统计与概率的知识与方法解决实际问题的能力,考查数据处理能力及应用意识.20.解析 (Ⅰ)根据c= 2- 2及题设知M 2,2b 2=3ac. 将b 2=a 2-c 2代入2b 2=3ac,解得 =12或 =-2(舍去).故C 的离心率为12.(Ⅱ)由题意,知原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D(0,2)是线段MF 1的中点,故 2 =4,即b 2=4a ①由|MN|=5|F 1N|得|DF 1|=2|F 1N|.设N(x 1,y 1),由题意知y 1<0,则2(--1) c -21 2 即1-32c-.代入C的方程,得+=1.②将①及c=-代入②得(-)+=1.解得a=7,b2=4a=28.故a=7,b=2.评析本题主要考查椭圆的标准方程和几何性质,直线与椭圆的位置关系等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力,以及用方程思想解决问题的能力. 21.解析(Ⅰ)f '(x)=3x2-6x+a, f '(0)=a,曲线y=f(x)在点(0,2)处的切线方程为y=ax+2.由题设得-=-2,所以a=1.(Ⅱ)由(Ⅰ)知, f(x)=x3-3x2+x+2.设g(x)=f(x)-kx+2=x3-3x2+(1-k)x+4.由题设知1-k>0.当x≤0时,g'(x)=3x2-6x+1-k>0,g(x)单调递增,g(-1)=k-1<0,g(0)=4,所以g(x)=0在(-∞ 0]上有唯一实根.当x>0时,令h(x)=x3-3x2+4,则g(x)=h(x)+(1-k)x>h(x).h'(x)=3x2-6x=3x(x-2),h(x)在(0,2)上单调递减,在(2 +∞)上单调递增,所以g(x)>h(x)≥h(2)=0.所以g(x)=0在(0 +∞)上没有实根.综上,g(x)=0在R上有唯一实根,即曲线y=f(x)与直线y=kx-2只有一个交点.评析本题主要考查导数的几何意义及导数的应用,考查了分类讨论、函数与方程、等价转化等思想方法.把曲线y=f(x)与直线y=kx-2只有一个交点的问题转化为研究函数g(x)=x3-3x2+(1-k)x+4在R上有唯一实根问题是解决问题的关键.22.解析(Ⅰ)连结AB,AC,由题设知PA=PD,故∠PAD=∠PDA.因为∠PDA=∠DAC+∠DCA∠PAD=∠BAD+∠PAB∠DCA=∠PAB所以∠DAC=∠BAD 从而=,因此BE=EC.(Ⅱ)由切割线定理得PA2=PB·PC.因为PA=PD=DC,所以DC=2PB,BD=PB,由相交弦定理得AD·DE=BD·DC所以AD·DE=2PB2.23.解析(Ⅰ)C的普通方程为(x-1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数 0≤t≤π).(Ⅱ)设D(1+cos t,sin t).由(Ⅰ)知C是以G(1,0)为圆心,1为半径的上半圆.因为C在点D处的切线与l垂直,所以直线GD与l的斜率相同.tan t=,t=. 故D的直角坐标为,即.24.解析(Ⅰ)由a>0,有f(x)=+|x-a|≥-(-) =+a≥2所以f(x)≥2.(Ⅱ)f(3)=+|3-a|.当a>3时, f(3)=a+,由f(3)<5得3<a<.当0<a≤3时, f(3)=6-a+,由f(3)<5得<a≤3.综上,a的取值范围是.。
2014年高考新课标2文科数学真题及答案
2014年普通高等学校招生全国统一考试(新课标全国卷Ⅱ)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分,考试时间120分钟。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合A ={-2,0,2},B ={x |x 2-x -2=0},则A ∩B =A .B .{2}C .{0}D .{-2} (2)1+3i 1-i=A .1+2iB .-1+2iC .1-2iD .-1-2i (3)函数f (x )在x =x 0处导数存在.若p :f ′(x 0)=0,q :x =x 0是f (x )的极值点,则A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件 (4)设向量a ,b 满足|a +b |=10,|a -b |=6,则a •b =A .1B .2C .3D .5(5)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =A .n (n +1)B .n (n -1) C.n (n +1)2 D.n (n -1)2(6)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为A.1727 B.59 C.1027 D.13(7)正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A -B 1DC 1的体积为A .3 B.32 C .1 D.32(8)执行如图所示的程序框图,如果输入的x ,t 均为2,则输出的S =A .4B .5C .6D .7(9)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -1≥0,x -y -1≤0,x -3y +3≥0,则z =x +2y 的最大值为A .8B .7C .2D .1(10)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=A.303 B .6 C .12 D .7 3(11)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)(12)设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是A. [-1,1]B.11,22⎡⎤-⎢⎥⎣⎦ C. [-2,2] D. ⎡⎢⎣第Ⅱ卷二、填空题:本大题共4小题,每小题5分.(13)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________. (14)函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________.(15)偶函数y=f(x)的图像关于直线x=2对称,f(3)=3,则f(-1)=________.(16)数列{a n}满足a n+1=11-a n,a8=2,则a1=________.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2. (Ⅰ)求C和BD;(Ⅱ)求四边形ABCD的面积.(18)(本小题满分12分)如图,四棱锥PABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=3,三棱锥PABD的体积V=34,求A到平面PBC的距离.PAB C DE(19)(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数; (Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.(20)(本小题满分12分)设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .(21)(本小题满分12分)已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x 轴交点的横坐标为-2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.请考生在第(22)、(23)、(24)题中任选一题作答,如果多做,则按所做的第一题记分,解答时请写清题号.(22)(本小题满分10分)选修41:几何证明选讲如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E.证明:(Ⅰ)BE=EC;(Ⅱ)AD ·DE =2PB 2.(23)(本小题满分10分)选修44:坐标系与参数方程 在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.(24)(本小题满分10分)选修45:不等式选讲 设函数f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |(a >0).(Ⅰ)证明:f (x )≥2;(Ⅱ)若f (3)<5,求a 的取值范围.2014·新课标全国卷Ⅱ(文科数学)答案1.B [解析] 因为B ={-1,2},所以A ∩B ={2}.2.B [解析] 1+3i 1-i =(1+3i )(1+i )(1-i )(1+i )=1+4i +3i 22=-1+2i.3.C [解析] 函数在x =x 0处有导数且导数为0,x =x 0未必是函数的极值点,还要看函数在这一点左右两边的导数的符号,若符号一致,则不是极值点;反之,若x =x 0为函数的极值点,则函数在x =x 0处的导数一定为0 ,所以p 是q 的必要不充分条件.4.A [解析] 由已知得|a +b |=10,|a -b |2=b ,两式相减,得a ·b =1.5.A [解析] 由题意,得a 2,a 2+4,a 2+12成等比数列,即(a 2+4)2=a 2(a 2+12),解得a 2=4,即a 1=2,所以S n =2n +n (n -1)2×2=n (n +1).6.C [解析] 该零件是一个由两个圆柱组成的组合体,其体积V =π×32×2+π×22×4=34π(cm 3),原毛坯的体积V 毛坯=π×32×6=54π(cm 3),被切部分的体积V 切=V 毛坯-V =54π-34π=20π(cm 3),所以V 切V 毛坯=20π54π=1027. 7.C [解析] 因为D 为BC 的中点,所以AD ⊥BC ,故AD ⊥平面BCC 1B 1,且AD =3,所以V 三棱锥A - B 1DC 1=13S △B 1DC 1×AD =13×12B 1C 1×BB 1×AD =13×12×2×3×3=1.8.D [解析] 当x =2,t =2时,依次可得:M =1,S =3,k =1≤2;M =2,S =5,k =2≤2;M =2,S =7,k =3>2,输出S =7.9.B [解析] 作出约束条件表示的可行域(略),可知该可行域为一三角形区域,当目标函数通过可行域的一个顶点(3,2)时,目标函数取得最大值,z max =3+2×2=7.10.C [解析] 抛物线的焦点坐标为F ⎝ ⎛⎭⎪⎫34,0,直线AB 的斜率k =tan 30°=33,所以直线AB 的方程为y =33x -34.由⎩⎨⎧y =33x -34,y 2=3x 得13x 2-72x +316=0,故x 1+x 2=212,x 1x 2=916.所以|AB |=1+k 2·|x 1-x 2|=1+13·⎝ ⎛⎭⎪⎫2122-4×916=12.11.D [解析] f ′(x )=k -1x =kx -1x ,且x >0,由题可知f ′(x )≥0,即得kx -1≥0,得x ≥1k (k <0时不满足),因为函数f (x )在区间(1,+∞)上单调递增,所以1k ≤1,解得k ≥1.12.A [解析] 点M (x 0,1)在直线y =1上,而直线y =1与圆x 2+y 2=1相切.据题意可设点N (0,1),如图,则只需∠OMN ≥45°即可,此时有tan ∠OMN=|ON ||MN |≥tan 45°,得0<|MN |≤|ON |=1,即0<|x 0|≤1,当M 位于点(0,1)时,显然在圆上存在点N 满足要求,综上可知-1≤x 0≤1.13.13 [解析] 甲有3种选法,乙也有3种选法,所以他们共有9种不同的选法.若他们选择同一种颜色,则有3种选法,所以其对应的概率P =39=13. 14.1 [解析] f (x )=sin(x +φ)-2sin φcos x =sin x cos φ+cos x sin φ-2sin φcos x =sin x cos φ-cos x sin φ=sin(x -φ),其最大值为1.15.3 [解析] 因为函数图像关于直线x =2对称,所以f (3)=f (1),又函数为偶函数,所以f (-1)=f (1),故f (-1)=3.16.12 [解析] 由题易知a 8=11-a 7=2,得a 7=12;a 7=11-a 6=12,得a 6=-1;a 6=11-a 5=-1,得a 5=2,于是可知数列{a n }具有周期性,且周期为3,所以a 1=a 7=12.17.解:(1)由题设及余弦定理得 BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .②由①②得cos C =12,故C =60°,BD =7. (2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C=⎝ ⎛⎭⎪⎫12×1×2+12×3×2sin 60°=2 3.18.解:(1)证明:设BD 与AC 的交点为O ,连接EO .因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB . EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥平面AEC .(2)V =13×12×PA ×AB ×AD =36AB ,由V =34,可得AB =32. 作AH ⊥PB 交PB 于点H .由题设知BC ⊥平面PAB ,所以BC ⊥AH , 因为PB ∩BC =B ,所以AH ⊥平面PBC .又AH =PA ·AB PB =31313,所以点A 到平面PBC 的距离为31313.19.解:(1)由所给茎叶图知,将50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本的中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.(注:考生利用其他统计量进行分析,结论合理的同样给分.)20.解:(1)根据c =a 2-b 2及题设知M ⎝ ⎛⎭⎪⎫c ,b 2a ,2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,ca =-2(舍去).故C 的离心率为12.(2)由题意知,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a =4,即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎨⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a =1,解得a =7,b 2=4a =28,故a =7,b =27.21.解:(1)f ′(x )=3x 2-6x +a ,f ′(0)=a .曲线y =f (x )在点(0,2)处的切线方程为y =ax +2.由题设得-2a =-2,所以a =1.(2)证明:由(1)知,f (x )=x 3-3x 2+x +2.设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4, 由题设知1-k >0.当x ≤0时,g ′(x )=3x 2-6x +1-k >0, g (x )单调递增,g (-1)=k -1<0,g (0)=4, 所以g (x )=0在(-∞,0]上有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4, 则g (x )=h (x )+(1-k )x >h (x ).h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)上单调递减,在(2,+∞)上单调递增,所以g (x )>h (x )≥h (2)=0,所以g (x )=0在(0,+∞)上没有实根. 综上,g (x )=0在R 有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点.22.证明:(1)连接AB ,AC .由题设知PA =PD , 故∠PAD =∠PDA .因为∠PDA =∠DAC +∠DCA , ∠PAD =∠BAD +∠PAB , ∠DCA =∠PAB ,所以∠DAC =∠BAD ,从而BE =EC . 因此BE =EC .(2)由切割线定理得PA 2=PB ·PC .因为PA =PD =DC ,所以DC =2PB ,BD =PB . 由相交弦定理得AD ·DE =BD ·DC , 所以AD ·DE =2PB 2.23.解:(1)C 的普通方程为 (x -1)2+y 2=1(0≤y ≤1). 可得C 的参数方程为⎩⎨⎧x =1+cos t ,y =sin t ,(t 为参数,0≤t ≤π). (2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝ ⎛⎭⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭⎪⎫32,32.24.解:(1)证明:由a >0 ,有f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |≥⎪⎪⎪⎪⎪⎪x +1a -(x -a )=1a+a ≥2,所以f (x )≥2.(2)f (3)=⎪⎪⎪⎪⎪⎪3+1a +|3-a |.当a >3时,f (3)=a +1a ,由f (3)<5得3<a <5+212. 当0<a ≤3时,f (3)=6-a +1a ,由f (3)<5得1+52<a ≤3. 综上,a 的取值范围是⎝ ⎛⎭⎪⎫1+52,5+212.。
2014年高考新课标Ⅱ卷数学(文)试卷解析(精编版)(原卷版)
2014年普通高等学校招生全国统一考试(课标II 卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合2{2,0,2},{|20}A B x x x =-=--=,则A B =( )A. ∅B. {}2C. {0}D. {2}- 2.131ii+=-( ) A.12i + B. 12i -+ C. 12i - D. 12i --3.函数()f x 在0x x =处导数存在,若0:()0p f x =;0:q x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件 B. p 是q 的充分条件,但不是q 的必要条件 C. p 是q 的必要条件,但不是q 的充分条件 D. p 既不是q 的充分条件,也不是q 的必要条件4.设向量b a ,满足10||=+b a ,6||=-b a ,则=⋅b a( )A. 1B. 2C. 3D. 55.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A. (1)n n + B. (1)n n - C.(1)2n n + D. (1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( ) A.2717 B.95 C.2710 D.317.正三棱柱111ABC A B C -的底面边长为23D 为BC 中点,则三棱锥11A B DC -的体积为 (A )3 (B )32(C )1 (D 38.执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =( ) (A )4 (B )5 (C )6 (D )79.设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为( )(A )8 (B )7 (C )2 (D )110.设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB =( )(A )3(B )6 (C )12 (D )11.若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是( ) (A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞12.设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )(A )[]1,1-- (B )11,22⎡⎤-⎢⎥⎣⎦ (C )⎡⎣ (D ),22⎡-⎢⎣⎦二、填空题:本大题共4小题,每小题5分.13.甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.14. 函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.15. 偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________. 16. 数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________. 三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB . (Ⅰ)求C 和BD ;(Ⅱ)求四边形ABCD 的面积. (18)(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点. (Ⅰ)证明:PB //平面AEC ;(Ⅱ)设1,AP AD ==P ABD -的体积4V =,求A 到平面PBC 的距离.(19)(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数; (Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评优. (20)(本小题满分12分)设12,F F 分别是椭圆22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率; (Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .(21)(本小题满分12分) 已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-.(Ⅰ)求a ; (Ⅱ)证明:当1k<时,曲线()y f x =与直线2y kx =-只有一个交点.请考生在第22,23,24题中任选一题做答,如多做,则按所做的第一题记分。
2014年高考文科数学全国卷2(含详细答案)
数学试卷 第1页(共30页)数学试卷 第2页(共30页) 数学试卷 第3页(共30页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)文科数学使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号框.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合2,{2}0,A -=,2{|20}B x x x =--=,则A B =( )A .∅B .{2}C .{0}D .{2}- 2.13i =1i+-( )A .12i +B .12i -+C .12i -D .12i --3.函数()f x 在0x x =处导数存在.若p :0()0f x '=;q :0x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件 4.设向量a ,b 满足|a +b |10=,|a -b |6=,则a b =( )A .1B .2C .3D .55.等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S = ( ) A .(1)n n +B .(1)n n -C .(1)2n n + D .(1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1 cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为 ( )A .1727B .59C .1027D .137.正三棱柱111ABC A B C -的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥11A B DC -的体积为( )A .3B .32C .1D .328.执行如图所示的程序框图,如果输入的x ,t 均为2,则输出的S =( ) A .4 B .5 C .6D .79.设x ,y 满足约束条件10,10,330,x y x y x y +-⎧⎪--⎨⎪-+⎩≥≤≥则2z x y =+的最大值为( ) A .8 B .7 C .2D .110.设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30的直线交于C 于A ,B 两点,则||AB =( )A .303B .6C .12D .7311.若函数()ln f x kx x =-在区间(1,)+∞上单调递增,则k 的取值范围是( )A .(,2]-∞-B .(,1]-∞-C .[2,)+∞D .[1,)+∞12.设点0(,1)M x ,若在圆O :221x y +=上存在点N ,使得45OMN ∠=,则0x 的取值范围是( )A .[1,1]-B .11[,]22-C .[2,2]-D .22[,]22-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为 .14.函数()sin()2sin cos f x x x ϕϕ=+-的最大值为 .15.偶函数()y f x =的图象关于直线2x =对称,(3)3f =,则(1)f -= .16.数列{}n a 满足111n n a a +=-,82a =,则1a = .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)四边形ABCD 的内角A 与C 互补,1AB =,3BC =,2CD DA ==. (Ⅰ)求C 和BD ;(Ⅱ)求四边形ABCD 的面积.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB平面AEC ;(Ⅱ)设1AP =,3AD =,三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共30页) 数学试卷 第5页(共30页) 数学试卷 第6页(共30页)19.(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数; (Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(本小题满分12分) 设1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求a ,b .21.(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.请从下面所给的22、23、24三题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.22.(本小题满分10分)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E ,证明:(Ⅰ)BE EC =; (Ⅱ)22AD DE PB =.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为2cos ρθ=,π[0,]2θ∈.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l :2y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4—5:不等式选讲设函数1()||||(0)f x x x a a a =++->.(Ⅰ)证明:()2f x ≥;(Ⅱ)若(3)5f <,求a 的取值范围.3 / 10{2}A B =,选(1+3i)(1+i)-2+4i ==-1+2ii)(1+i)2【解析】由已知得,22210a a b b ++=,2226a a b b -+=,两式相减得,44a b =,故1a b =。
2014年高考全国2卷文科数学试题(含解析)
***⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ○ 装 ⋯ ⋯ 绝密★启用前 ⋯ ⋯ ⋯ ⋯ 线 ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 内2014 年高考全国 2 卷文科数学试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 订 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 装 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯_ _ _ _ _ _ _ _ _ _ _ : 号 考 _ _ _ _ _ _ _ _ _ _ _ : 级 班 _ _ _ _ _ _ _ _ _ _ _ : 名 姓 _ _ _ _ _ _ _ _ _ _ _ : 校 学⋯ ⋯⋯ ⋯ ○ ⋯ ⋯⋯⋯ ⋯⋯⋯ ⋯ ○⋯ ⋯ ⋯⋯线⋯ ⋯ ⋯ ⋯ ○⋯ ⋯ ⋯ ⋯ 订 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 装 ⋯ ⋯ ⋯第 I 卷(选择题) 请点击修改第 I 卷的文字说明 评卷人得分 一、选择题(题型注释) 2 1.设集合A { 2,0,2}, B { x| x x 2 0}, 则 A B ( ) A . B . 2C . {0}D . { 2} 2.1 3i 1 i ( ) A .1 2i B . 1 2i C . 1 2i D . 1 2i 3.函数 f (x) 在 x x 处导数存在,若 0p : f (x ) 0; 0q : x x 是 f (x) 的极值点,则()体积为3 2C32n(n 1)D.2A.p 是q 的充分必要条件B.p 是q 的充分条件,但不是q 的必要条件C.p 是q 的必要条件,但不是q 的充分条件D.p 既不是q 的充分条件,也不是q 的必要条件4.设向量a,b 满足| a b | 10 ,| a b | 6 ,则a b ()A.1 B .2 C .3 D .5 (A)3 (B)(C)1(D)A1C1B1BA5.等差数列{a n} 的公差是2,若a a a 成等比数列,则{a } 的前n项和2, 4 , 8 S ()n nn(n 1)A.n(n 1) B .n(n 1) C .26.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm 6cm,高为的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比D8.执行右面的程序框图,如果输入的x,t 均为2,则输出的S()7.正三棱柱ABC A1B1C1 的底面边长为2,侧棱长为3 ,D为B C 中点,则三棱锥A B1DC1 的***⋯ 外 ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 值为( ) 17 A . B.2759 C .1027D .1 3⋯ ⋯ 内 ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ ○ ⋯ 第 1页共 8页◎ 第 2页共 8 页⋯ ⋯⋯ ⋯ ⋯***⋯ ⋯⋯⋯ ⋯⋯⋯ ○⋯⋯ ⋯ ⋯ ○ ⋯ 线⋯ ⋯⋯⋯ ⋯⋯ ⋯ ※※ 题 ○ ⋯⋯ 线※ ※ 答 ※ ※ ⋯ ⋯ ⋯ 内 订 ⋯ ※ ※ ⋯ 线 ⋯⋯※ ※ 订 ⋯ ⋯ (A ) 4(B ) 5(C ) 6(D ) 7⋯※ ※ ○ x y1 0, 1 0,9.设 x , y 满足约束条件F10 .设为抛物线30 3⋯ ○ ⋯ ⋯ ⋯装 ※ ※ 在 ※ ※ 要 ※ ※ 不 ※ ※ 请 ※ ※⋯ ⋯ ⋯ ⋯ 装 ⋯ ⋯ ⋯ ⋯ ○*** (A)则z x2y的最大值为()x yx3y30,(A)8(B)7(C)2(D)12C:y=3x的焦点,过F且倾斜角为30的直线交C于A,B两点,则A B()(B)6(C)12(D)7311.若函数f x kx Inx在区间1,单调递增,则k的取值范围是()⋯⋯⋯(A),2(B),1(C)2,(D)1,订⋯⋯12.设点22M x0,1,若在圆O:x+y1上存在点N,使得OMN45,则x0的取值范围是()⋯外⋯⋯(A)1,1(B)1,122(C)2,2(D)2,222⋯⋯⋯⋯○⋯第3页共8页◎第4页共8页⋯⋯⋯○⋯***⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 装 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯请点击修改第 II 卷的文字说明 评卷人得分二、填空题(题型注释) 第 II 卷(非选择题)线 ⋯ ⋯⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 订 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 装 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯_ _ _ _ _ _ _ _ _ _ _ : 号 考 _ _ _ _ _ _ _ _ _ _ _ : 级 班 _ _ _ _ _ _ _ _ _ _ _ : 名 姓 _ _ _ _ _ _ _ _ _ _ _ : 校 学⋯ 内 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 线 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 订 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 装 ⋯ ⋯ ⋯13.甲,乙两名运动员各自等可能地从红、白、蓝3 种颜色的运动服中选择1 种,则他们选择相同颜 色运动服的概率为 _______. 14.函数 f (x) sin( x ) 2 sin cos x 的最大值为 ________.15.偶函数 yf (x) 的图像关于直线 x 2对称, f (3) 3,则 f ( 1) =________.116.数列 { } n ,则 a 1________.a a 满足1 ,a 2 n 8 1 an评卷人得分三、解答题(题型注释) 17.四边形 ABCD 的内角 A 与 C 互补, AB 1, BC 3, CDDA2 .(1)求 C 和 BD ;(2)求四边形 ABCD 的面积. 18.如图,四棱锥P ABCD 中,底面 ABCD 为矩形, PA 平面 ABCD , E 是 PD 的中点.(1)证明: PB // 平面 AEC ; (2)设A P1, AD3 ,三棱锥P ABD 的体积3 V,求 A 到平面PBC 的距离.4PEAD(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于 90 的概率; (3)根据茎叶图分析该市的市民对甲、乙两部门的评优.22xyF F 分别是椭圆1, 2 221(a b0)20.设a b的左右焦点, M 是 C 上一点且MF与x轴垂直,2直线 M F 与 C 的另一个交点为N .1(1)若直线MN 的斜率为 3 4,求 C 的离心率;(2)若直线MN 在 y 轴上的截距为 2 ,且 | MN | 5| F N |,求a,b .121.已知函数32f (x) x3xax 2,曲线 y f (x) 在点 (0,2) 处的切线与 x轴交点的横坐***标为2.(1)求a;(2)证明:当k1时,曲线y f(x)与直线y kx2只有一个交点.22.如图,P是O外一点,PA是切线,A为切点,割线PBC与O相交于B,C,PC2PA,D为PC的中点,AD的延长线交O于点E.证明:(1)BE EC;2AD DE2PB(2)⋯外⋯⋯⋯○⋯⋯⋯⋯B C⋯⋯内⋯⋯19.某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:○⋯⋯⋯⋯○⋯第5页共8页◎第6页共8页⋯⋯⋯⋯⋯⋯⋯A⋯○⋯⋯⋯⋯PBD O○⋯⋯线⋯⋯E C⋯⋯⋯23.在直角坐标系x Oy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标⋯※※题○⋯方程为2cos, [0,]2(1)求C得参数方程;.⋯线※※答※※内⋯⋯⋯订(2)设点D在C上,C在D处的切线与直线l:y3x2垂直,根据(1)中你得到的参数方程,⋯※※⋯确定D的坐标.24.设函数1f(x)|x||x a|(a0)a(1)证明:f(x)2;(2)若f(3)5,求a的取值范围.⋯⋯⋯○⋯线※※订※※装※※在※※要※※⋯⋯⋯○⋯⋯⋯⋯装⋯⋯不※※⋯⋯⋯请※※⋯○⋯⋯⋯⋯订⋯外⋯⋯⋯○⋯第 7页共 8页◎第 8页共 8页⋯ ⋯⋯○⋯本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
2014年高考数学课标全国Ⅱ (文科) 详细答案解析
.
【答案】3
【解析】∵f (x)为偶函数,∴f (-1)=f (1).
又 f(x)的图像关于直线 x = 2 对称,
∴f(1)=f(3).
∴f(-1)=3.
16.数列{an}满足 an+1= ,a11=2,则 a1=
.
【答案】
【解析】由 a11=2 及 an+1= ,得 a10= .
同理 a9=-1,a8=2,a7= , …
的体积为( ).
A.3
B.ᾌ
C.1
D. ᾌ
【答案】C
【解析】∵D 是等边△ABC 的边 BC 的中点,∴AD⊥BC.
又 ABC-A1B1C1 为正三棱柱,∴AD⊥平面 BB1C1C. 又四边形 BB1C1C 为矩形,
∴S△DB C
S四边形 BB C C ×2× ᾌ ᾌ.
又 AD=2× ᾌ ᾌ,
∴VA B DC
过 A 作垂直于平面 PBC 的垂线的垂足应在 PB 上,而△PAB 为直角三角形,可利用等面
积法求得斜边 PB 上的高,从而求得答案.
解:(1)设 BD 与 AC 的交点为 O,连结 EO.
因为 ABCD 为矩形,所以 O 为 BD 的中点.
又 E 为 PD 的中点,所以 EO∥PB.
EO⊂平面 AEC,PB 平面 AEC,
.
【答案】1
-4-
【解析】∵f (x)=sin(x+φ)-2sin φcos x
=sin xcos φ+cos xsin φ -2sin φcos x
=sin xcos φ - cos xsin φ
=sin(x-φ),
∴ f (x)max=1.
15.偶函数 y= f (x)的图像关于直线 x = 2 对称,f (3)=3,则 f (-1) =
2014年高考文科数学全国卷2-答案
{2}AB =,选(1+3i)(1+i)-2+4i ==-1+2i i)(1+i)2【解析】由已知得,22210a a b b ++=,2226a a b b -+=,两式相减得,44a b =,故1a b =。
【考点】向量的数量积运算。
2428a a a =,又因为{}n a 是公差为2的等差数列,2222)(6)d a a d =+,2(a 22(12)a +,解得,所以2)n a d =2n =,故(n 1)n =+。
【考点】等差数列通项公式,等比中项,等差数列前【答案】C 【解析】由三视图还原几何体为一个小圆柱和大圆柱组成的简单组合体。
其中小圆柱底面半径为大圆柱底面半径为1=BC B,所以11313AD=⨯⨯=。
【考点】直线和平面垂直的判断和性质,三棱锥体积。
2,2t=,在程序执行过程中,3,程序结束,输出cos BC CD C =cos AB DA A =0C 60=,BD 的面积11sin sin 22S AB DA A BC CD C =+1(2S =⨯。
在ABD ∆和CBD ∆中,利用余弦定理列等式cos BC CD C 和cos AB DA A ,且c o s c o s C A =-,代入数据得13求co s C 的值,和CBD △的面积可求,故四边形ABCD 等于的面积。
【考点】余弦定理,诱导公式,三角形的面积公式。
36PA AB AD =2BC AH ⊥,故AH AA BPB 313=13【考点】直线和平面平行的判定,点到平面的距离。
1)该市的市民对甲、乙两部门评分的中位数的估计值分别为AD DE BD DC=,所以2=AD DE PB【提示】(1)要证明BE EC,只需证明弦DAC BAD∠。
由PA PD=∠=得PAD∠+∠,从而可证明=PAD BAD PAD=,故只需证明BD DC,由切割线定理得)由结论很容易想到相交弦定理AD DE BD DCPB PC,且PA【考点】圆的切割线定理,相交弦定理。
2014年普通高等学校招生全国统一考试数学全国二卷(标准) - 文科
绝密 ★ 启用前 6月7日15:00-17:002014年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A ={-2,0,2},B ={x |x 2-x -2=0},则A ∩B =(A ) (B ){2} (C ){0} (D ){-2} (2)1+3i 1-i=(A )1+2i (B )-1+2i (C )1-2i (D )-1-2i(3)函数f (x )在x =x 0处导数存在,若p :f (x 0)=0;q :x =x 0是f (x )的极值点,则(A )p 是q 的充分必要条件(B )p 是q 的充分条件,但不是q 的必要条件 (C )p 是q 的必要条件,但不是q 的充分条件(D )p 既不是q 的充分条件,也不是q 的必要条件 (4)设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b =(A )1 (B )2 (C )3 (D )5(5)等差数列{a n }的公差是2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =(A )n (n +1)(B )n (n -1)(C )n (n +1)2(D )n (n -1)2(6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为 (A )1727(B )59(C )1027(D )13姓名______________________ 准考证号__________________________________贵文数2(7)正三棱柱ABC —A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A —B 1DC 1的体积为(A )3(B )32 (C )1(D )32 (8)执行右图程序框图,如果输入的x ,t 均为2(A )4 (B )5 (C )6(D )7(9)设x ,y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≥-+0330101y x y x y x ,则z =x +2y 的最大值为(A )8 (B )7 (C )2 (D )1(10)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |= (A )303(B )6 (C )12 (D )7 3(11)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是(A )(-∞,-2] (B )(-∞,-1] (C )[2,+∞)(D )[1,+∞)(12)设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是(A )[-1,-1] (B )[-12,12](C )[-2,2](D )[-22,22]第Ⅱ卷本卷包括必考题和选考题两部分。
2014高考全国2卷数学文科试题及答案详解解析
2014高考全国2卷数学文科试题及答案详解解析D∴Sn=na1+d,=2n+×2=n(n+1),故选: A点评:本题考查等差数列的性质和求和公式,属基础题.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6c m的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()(A)1727(B)59(C)1027 (D)13考点:由三视图求面积、体积.菁优网版权所有分析:由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.解答:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C .点评: 本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.正三棱柱111ABC A B C -的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥11DC B A -的体积为() (A )3 (B )32 (C )1 (D )32考点: 棱柱、棱锥、棱台的体积.菁优网版权所有分析: 由题意求出底面B1DC1的面积,求出A 到底面的距离,即可求解三棱锥的体积.解答: ∵正三棱柱ABC ﹣A1B1C1的底面边长为2,侧棱长为,D 为BC 中点,∴底面B1DC1的面积:=,A 到底面的距离就是底面正三角形的高:.三棱锥A ﹣B1DC1的体积为:=1.故选:C .点评: 本题考查几何体的体积的求法,求解几何体的底面面积与高是解题的关键.(8)执行右面的程序框图,如果如果输入的x,t均为2,则输出的S= ()(A)4 (B)5 (C)6 (D)7考点:程序框图.菁优网版权所有分析:根据条件,依次运行程序,即可得到结论.解答:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.点评:本题主要考查程序框图的识别和判断,比较基础.(9)设x,y满足的约束条件1010330x yx yx y+-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y=+的最大值为()(A)8 (B)7 (C)2 (D)1考点:简单线性规划.分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.解答:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点A 时,直线y=﹣的截距最大,此时z最大.由,得,即A(3,2),此时z的最大值为z=3+2×2=7,故选:B.点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法(10)设F为抛物线2:3C y x的焦点,过F且倾斜角为°30的直线交于C于,A B两点,则AB= ()(A 30(B)6 (C)12 (D)3考点:抛物线的简单性质.分析:求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用根与系数的关系,由弦长公式求得|AB|.解答: 由y2=3x 得其焦点F (,0),准线方程为x=﹣. 则过抛物线y2=3x 的焦点F 且倾斜角为30°的直线方程为y=tan30°(x ﹣)=(x ﹣).代入抛物线方程,消去y ,得16x2﹣168x+9=0.设A (x1,y1),B (x2,y2)则x1+x2=,所以|AB|=x1++x2+=++=12故答案为:12.点评: 本题考查抛物线的标准方程,以及简单性质的应用,弦长公式的应用,运用弦长公式是解题的难点和关键.(11)若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是()(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞ 考点: 函数单调性的性质.分析: 由题意可得,当x >1时,f ′(x )=k ﹣≥0,故 k ﹣1>0,由此求得k 的范围.解答: 函数f (x )=kx ﹣lnx 在区间(1,+∞)单调递增,∴当x >1时,f ′(x )=k ﹣≥0,∴k ﹣1≥0,∴k ≥1, 故选:D .点评: 本题主要考查利用导数研究函数的单调性,函数的单调性的性质,属于基础题.(12)设点0(,1)M x ,若在圆22:1O x y +=上存在点N ,使得°45OMN ∠=,则0x 的取值范围是()(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C )2,2⎡⎤-⎣⎦(D ) 22⎡⎤-⎢⎥⎣⎦,考点: 直线和圆的方程的应用.菁优网版权所有 分析: 根据直线和圆的位置关系,利用数形结合即可得到结论.解答:由题意画出图形如图:∵点M(x0,1),∴若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,∴圆上的点到MN的距离的最大值为1,要使MN=1,才能使得∠OMN=45°,图中M′显然不满足题意,当MN垂直x轴时,满足题意,∴x0的取值范围是[﹣1,1].故选:A点评:本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.第Ⅱ卷本卷包括必考题和选考题两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年普通高等学校招生全国统一考试(全国2卷)文科数学注意事项1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A=﹛-2,0,2﹜,B=﹛x |2x -x -20=﹜,则A B= (A) ∅ (B ){}2 (C ){}0 (D) {}2- 【答案】B 【解析】把M={0,1,2}中的数,代入等式,经检验x=2满足。
所以选B. (2)131ii+=- (A )12i + (B )12i -+ (C )1-2i (D) 1-2i - 【答案】B 【解析】.∴21-242-2)1)(31(-131B i ii i i i 选+=+=++=+(3)函数()f x 在0x=x 处导数存在,若p :f ‘(x 0)=0;q :x=x 0是()f x 的极值点,则(A )p 是q 的充分必要条件(B )p 是q 的充分条件,但不是q 的必要条件 (C )p 是q 的必要条件,但不是 q 的充分条件(D) p 既不是q 的充分条件,也不是q 的必要条件 【答案】C 【解析】.,.∴0)(,;,0)(0000C q p x f x q p x x f 选所以的必要条件是命题则是极值点若的充分条件不是命题不一定是极值点则若=′∴=′(4)设向量a ,b满足a ·b=(A )1 (B ) 2 (C )3 (D) 5 【答案】A 【解析】..1.62-∴6|-|.102∴10||2222A 选两式相减,则==+==++=+第一节 等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S = (A ) ()1n n + (B )()1n n - (C )()12n n + (D)()12n n -【答案】A 【解析】...6.2,4),6()2(,,,221222228224842A A S a a d a a d a a a a a a a d 选正确经验证,仅解得,即成等比=∴==+=+=∴=第二节 如图,网格纸上正方形小格的边长为1(表示1cm ), 图中粗线画出的是某零件的三视图,该零件 由一个底面半径为3cm ,高为6c m 的圆柱 体毛坯切削得到,则切削掉部分的体积与 原来毛坯体积的比值为第三节1727 (B ) 59 (C )1027(D) 13【答案】 C 【解析】..2710π54π34-π54π.342π944.2342π.546π96321C v v 故选积之比削掉部分的体积与原体体积,高为径为,右半部为大圆柱,半,高为小圆柱,半径加工后的零件,左半部体积,,高加工前的零件半径为==∴=•+•=∴=•=∴π第四节 正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,则三棱锥11DC B A -的体积为(A )3 (B )32 (C )1 (D) 【答案】 C 【解析】..13322131,//∴//111111---111111C V V V C AB D B C AB BD BD C B ABB C C AB B C AB D 故选的距离相等到面和点面=••••===∴(8)执行右面的程序框图,如果如果输入的x ,t 均为2,则输出的S=(A )4 (B )5 (C )6 (D )7 【答案】 D 【解析】.3 7 2 2 5 2 13 1 ,2,2D K S M t x 故选变量变化情况如下:==(9)设x ,y 满足的约束条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1【答案】 B 【解析】..7,2).1,0(),2,3(),0,1(.B y x z 故选则最大值为代入两两求解,得三点坐标,可以代值画可行区域知为三角形+=(10)设F 为抛物线2:y =3x C 的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB =(A(B )6 (C )12 (D) 【答案】 C 【解析】..1222.6∴),3-2(23),32(233-4322,34322).0,43(2,2C n m BF AF AB n m n m n n m m F n BF m AF 故选,解得角三角形知识可得,则由抛物线的定义和直,设=+=+==+=+=•=+•===(11)若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是 (A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞ 【答案】 D 【解析】.),∞,1[.11≥.0≥1-)(ln -)(0)(),1()(D k xk xk x f x kx x f x f x f 选所以即恒成立上递增,在+∈>=′∴=≥′∴+∞(12)设点0(x ,1)M ,若在圆22:x y =1O +上存在点N ,使得°45OMN ∠=,则0x 的取值范围是(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C)⎡⎣ (D )⎡⎢⎣⎦ 【答案】 A 【解析】.].1,1-[∈x .,1)M(x 1,y O 00A 故选形外角知识,可得由圆的切线相等及三角在直线上其中和直线在坐标系中画出圆=第Ⅱ卷本卷包括必考题和选考题两部分。
第13题~第21题为必考题,每个考试考生都必须做答。
第22题~第24题为选考题,考生根据要求做答。
第五节 填空题:本大概题共4小题,每小题5分。
第六节 甲、已两名元动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为_______.【答案】 31【解析】.313131313131313131.3131=•+•+•••率为他们选择相同颜色的概色的概率也是同理,均选择红、或蓝为甲乙均选择红色的概率第七节 函数)sin()(ϕ+=x x f —2ϕsin x cos 的最大值为_________.【答案】 1 【解析】1.1)φ-sin(φsin cos -φcos sin cos φsin 2-φsin cos φcos sin cos sin 2-)φsin()(故最大值为≤==+=+=x x x x x x x x x f φ(15)已知函数()f x 的图像关于直线x =2对称,)3(f =3,则=-)1(f _______.【答案】 3 【解析】3)1-(∴3)3()1(∴2)()1()1-()(=====∴f f f x x f f f x f 对称图像关于为偶函数(16)数列{}n a 满足1+n a =n a -11,2a =2,则1a =_________.【答案】 21【解析】.21-11-11,211212==∴==+a a a a a a n n 解得第八节 解答题:解答应写出文字说明过程或演算步骤。
第九节 (本小题满分12分)四边形ABCD 的内角A 与C 互补,AB=1,BC=3, CD=DA=2. (I )求C 和BD;(II )求四边形ABCD 的面积。
【答案】 (1) 73π==BD C , (2) 32【解析】 (1)73π,,21cos ,70cos cos ∴π.322-49cos ,22-41cos ,C A,ΔBCD ΔABD,,22=====+=+••+=•+==BD C C x C A C A x C x A BD x ,所以联立上式解得则用余弦定理中,对角分别在设(2)32.32)31(23sin 21sin 2123sin in ∴3ππ,ΔΔ面积为所以,四边形面积四边形ABCD C CD CB A AD AB S S S ABCD C A s C C A BCD ABD ABCD =+=••+••=+=====+第十节 (本小题满分12分)如图,四凌锥p —ABCD 中,底面ABCD 为矩形,PA 上面ABCD ,E 为PD 的点。
(I )证明:PP//平面AEC; (II )设置AP=1,AD=3,三凌P-ABD 的体积V=43,求A 到平面PBC 的距离。
【答案】 (1) 省略 (2) 13133【解析】 (1)设AC 的中点为G, 连接EG 。
在三角形PBD 中,中位线EG//PB,且EG 在平面AEC 上,所以PB//平面AEC. (2)1313313133∴413,,PAB -C BC PB,⊥BC PAB,⊥BC A PA AB BC,⊥BC,⊥23,13213131,43,.-BC,⊥∴⊥2--Δ--的距离为到面所以,由勾股定理解得的高为三棱锥面的距离为到面设的高是三棱锥面PBC A h PB h PB BC BC AB PA V V PA AB x x PA S V V h PBD A AB x ABD P PA PA ABCD PA PBC A ABC P ABD ABD P ABD P ==••=••=∴=∩=∴••••=•=== 第十一节(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民。
根据这50位市民(I )分别估计该市的市民对甲、乙部门评分的中位数; (II )分别估计该市的市民对甲、乙部门的评分做于90的概率; (III )根据茎叶图分析该市的市民对甲、乙两部门的评价。
【答案】 (1) 75,77 (2) 0.1,0.16 【解析】 (1)两组数字是有序排列的,50个数的中位数为第25,26两个数。
由给出的数据可知道,市民对甲部门评分的中位数为(75+75)/2=75,对乙部门评分的中位数为(66+68)/2=77所以,市民对甲、乙两部门评分的中位数分别为75,77 (2)甲部门评分数高于90共有5个、乙部门评分数高于90共有8个,部门的评分做于90的概率。
因此,估计市民对甲、乙部门的评分小于90的概率分别为16.0508,1.0505====乙甲p p 所以,市民对甲、乙部门的评分大于90的概率分别为0.1,0.16第十二节(本小题满分12分)设F 1 ,F 2分别是椭圆C :12222=+by a x (a>b>0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N 。