第7讲线索二叉树

合集下载

数据结构树的知识点总结

数据结构树的知识点总结

数据结构树的知识点总结一、树的基本概念。

1. 树的定义。

- 树是n(n ≥ 0)个结点的有限集。

当n = 0时,称为空树。

在任意一棵非空树中:- 有且仅有一个特定的称为根(root)的结点。

- 当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1、T2、…、Tm,其中每个集合本身又是一棵树,并且称为根的子树(sub - tree)。

2. 结点的度、树的度。

- 结点的度:结点拥有的子树个数称为结点的度。

- 树的度:树内各结点的度的最大值称为树的度。

3. 叶子结点(终端结点)和分支结点(非终端结点)- 叶子结点:度为0的结点称为叶子结点或终端结点。

- 分支结点:度不为0的结点称为分支结点或非终端结点。

- 除根结点之外,分支结点也称为内部结点。

4. 树的深度(高度)- 树的层次从根开始定义起,根为第1层,根的子结点为第2层,以此类推。

树中结点的最大层次称为树的深度(或高度)。

二、二叉树。

1. 二叉树的定义。

- 二叉树是n(n ≥ 0)个结点的有限集合:- 或者为空二叉树,即n = 0。

- 或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成。

2. 二叉树的特点。

- 每个结点最多有两棵子树,即二叉树不存在度大于2的结点。

- 二叉树的子树有左右之分,次序不能颠倒。

3. 特殊的二叉树。

- 满二叉树。

- 一棵深度为k且有2^k - 1个结点的二叉树称为满二叉树。

满二叉树的特点是每一层上的结点数都是最大结点数。

- 完全二叉树。

- 深度为k的、有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从1至n的结点一一对应时,称之为完全二叉树。

完全二叉树的叶子结点只可能在层次最大的两层上出现;对于最大层次中的叶子结点,都依次排列在该层最左边的位置上;如果有度为1的结点,只可能有一个,且该结点只有左孩子而无右孩子。

三、二叉树的存储结构。

1. 顺序存储结构。

- 二叉树的顺序存储结构就是用一组地址连续的存储单元依次自上而下、自左至右存储完全二叉树上的结点元素。

线索二叉树

线索二叉树

6.4 线索化二叉树从前面的讨论可知,遍历二叉树就是将非线性结构的二叉树线性化,即按一定规则将二叉树中的结点排列成一个线性序列依次访问。

如图6.20(a)所示的二叉树,经中序遍历得到线性序列:BADEC,经前序遍历得到线性序列:ABCDE,经后序遍历得到线性序列:BEDCA。

在这些线性序列中,二叉树中的每个结点(除第一个和最后一个外)有且仅有唯一的一个前趋和唯一的一个后继,很容易找到各个结点的直接前驱和直接后继。

但当以二叉链表作为二叉树的存储结构时,只能找到结点的左、右孩子,而不能直接找到前驱和后继,只有在遍历的动态过程中得到这些信息。

如果将这些信息在第一次遍历时保存起来,在需要再次对二叉树进行“遍历”时就可以将二叉树视为线性结构进行访问,从而简化遍历操作。

那么,如何存储遍历中得到的结点前驱和后继的信息呢?一个简单的办法是在每个结点上增加两个指针域fwd和bkwd,分别指向存储遍历中得到的结点前驱和后继。

fwd L child data R child bkwd这是采用多重链表来表示二叉树。

这种方法虽简单易行,但这种结构的存储密度将大大降低,浪费存储空间。

另一种方法,是利用原有链域L child 和R child的空链域。

在n个结点的二叉链表中有2n个孩子链域,其中仅有n-1个链域是用来指示结点的左右孩子,而另外n+1个链域是空链域。

现在把这些空链域利用起来,使其指向结点的前驱或后继;对那些原来就不为空的链域,则仍然指向左或右孩子。

如果把指向前驱和后继的指针称为线索(Thread),那么,如何区分指向左、右孩子的指针和指向前驱、后继的线索呢?在原结点结构上增加标志域定义为:0 Lchild为左指针,指向左孩子0 Rchild为右指针,指向右孩子ltag=rtag=1 Lchild为左线索,指向前驱 1 Rchild为右线索,指向后继以这种结点构成的二叉链表作为二叉树的存储结构,叫做线索链表,其C语言类型说明如下:Typedef struct ThreadTNode{enum{0,1} ltag, rtag;Elem Type data;Struct ThreadTNode *Lchild, *Rchild;}ThreadTNode, *ThreadTree;为了节省内存空间,我们用C语言的位段方法将结点中的左标志域和右标志域与数据域合并在一个存储单元中(即各用一位表示左标志和右标志,其余各位表示结点值)。

线索二叉树+习题(2学时)

线索二叉树+习题(2学时)

P=T->lchild; While (p!=T) {
while (p->ltag=Link) p=p->lchild; if (!visit(p->data)) return ERROR; while ((p->rtag=Thread)
&&(p->rchild!=T)) { p=p->rchild; visit(p->data); } p=p->rchild; } Return OK;
T
01
0A0
1B0
1 C1
1 D1
作业:
• 线索:指向前驱或后继的指针 要求:带箭头的虚线,左右分明!
• 线索链表:含线索的存储结构 • 线索二叉树:用线索链表作为存储结构,相应
的二叉树.
2. 二叉树线索链表存储结构(利用n+1个空链域)
lchild ltag data rtag rchild
ltag=0时,lchild指向左孩子; ltag=1时, lchild指向前驱
rtag=0时,rchild指向右孩子; rtag=1时, rchild指向后继
用C语言描述如下:
Typedef enum PointerTag {Link,Thread};//Link=0; Thread=1 Typedef struct BiThrNode {
TElemType data; struct BiThrNode *lchild,*rchild; PointerTag ltag,rtag; } BiThrNode ,*BiThrTree
知识回顾
遍历二叉树结果是: 求得结点的一个线性序列(前驱 后继), 前驱或后继在二叉树上体现线性关系?

二叉树前驱后继的查找

二叉树前驱后继的查找

线索二叉树的运算1.查找某结点*p在指定次序下的前趋和后继结点(1)在中序线索二叉树中,查找结点*p的中序后继结点在中序线索二叉树中,查找结点*p的中序后继结点分两种情形:①若*p的右子树空(即p->rtag为Thread),则p->rchild为右线索,直接指向*p的中序后继。

【例】下图的中序线索二叉树中,结点D的中序后继是A。

②若*p的右子树非空(即p->rtag为Link),则*p的中序后继必是其右子树中第一个中序遍历到的结点。

也就是从*p的右孩子开始,沿该孩子的左链往下查找,直至找到一个没有左孩子的结点为止,该结点是*p的右子树中"最左下"的结点,即*P的中序后继结点。

【例】上图的中序线索二叉树中:A的中序后继是F,它有右孩子;F的中序后继是H,它无右孩子;B的中序后继是D,它是B的右孩子。

在中序线索二叉树中求中序后继结点的过程可【参见动画演示】,具体算法如下:BinThrNode *InorderSuccessor(BinThrNode *p){//在中序线索树中找结点*p的中序后继,设p非空BinThrNode *q;if (p->rtag==Thread) //*p的右子树为空Return p->rchild;//返回右线索所指的中序后继else{q=p->rchild;//从*p的右孩子开始查找while (q->ltag==Link)q=q->lchild;//左子树非空时,沿左链往下查找return q;//当q的左子树为空时,它就是最左下结点} //end if}该算法的时间复杂度不超过树的高度h,即O(h)。

(2)在中序线索二叉树中查找结点*p的中序前趋结点中序是一种对称序,故在中序线索二叉树中查找结点*p的中序前趋结点与找中序后继结点的方法完全对称。

具体情形如下:①若*p的左子树为空,则p->1child为左线索,直接指向*p的中序前趋结点;【例】上图所示的中序线索二叉树中,F结点的中序前趋结点是A②若*p的左子树非空,则从*p的左孩子出发,沿右指针链往下查找,直到找到一个没有右孩子的结点为止。

二叉树的几种基本形态

二叉树的几种基本形态

二叉树的几种基本形态二叉树是一种重要的数据结构,在计算机科学和数据结构领域有着广泛的应用。

它由节点和边组成,每个节点最多有两个子节点。

根据节点和边的组合方式,我们可以将二叉树分为几种基本形态。

一、满二叉树满二叉树是指一个二叉树的每个节点都有两个子节点,除了叶子节点。

叶子节点是指没有子节点的节点。

满二叉树是一种特殊的完全二叉树,它的深度为h,节点个数为2^h - 1。

满二叉树具有以下特点:1. 每个节点都有两个子节点,除了叶子节点;2. 所有叶子节点都在同一层;3. 每个非叶子节点都有两个子节点;4. 节点个数为2^h - 1,其中h为深度。

满二叉树的应用非常广泛,例如在堆排序中,堆通常就是满二叉树。

二、完全二叉树完全二叉树是指除了最后一层节点可能不满外,其他层节点都是满的二叉树。

在最后一层,所有的节点都集中在左边。

完全二叉树具有以下特点:1. 最后一层的节点都集中在左边;2. 其他层节点都是满的;3. 如果一个节点有右子节点,则一定有左子节点;4. 节点个数最少为2^(h-1),最多为2^h - 1,其中h为深度。

完全二叉树的应用也非常广泛,例如在二叉堆中,堆通常就是完全二叉树。

三、二叉搜索树二叉搜索树是一种特殊的二叉树,它的左子树中所有节点的值都小于根节点的值,右子树中所有节点的值都大于根节点的值。

同样的规则也适用于每个子树。

二叉搜索树具有以下特点:1. 左子树中所有节点的值都小于根节点的值;2. 右子树中所有节点的值都大于根节点的值;3. 每个子树都符合上述规则;4. 不存在相同节点。

二叉搜索树的应用也非常广泛,例如在数据库中,索引通常就是基于二叉搜索树实现的。

四、平衡二叉树平衡二叉树也称为AVL树,它是一种特殊的二叉搜索树,它的左子树和右子树的高度差不超过1。

这种平衡可以保证二叉树的查找、插入、删除等操作的时间复杂度都是O(log n)。

平衡二叉树具有以下特点:1. 左子树和右子树的高度差不超过1;2. 每个子树都符合上述规则;3. 它是一种特殊的二叉搜索树。

数据结构教程李春葆课后答案第7章树和二叉树

数据结构教程李春葆课后答案第7章树和二叉树
第 7 章 树和二叉树
教材中练习题及参考答案
1. 有一棵树的括号表示为 A(B,C(E,F(G)),D),回答下面的问题: (1)指出树的根结点。 (2)指出棵树的所有叶子结点。 (3)结点 C 的度是多少? (4)这棵树的度为多少? (5)这棵树的高度是多少? (6)结点 C 的孩子结点是哪些? (7)结点 C 的双亲结点是谁? 答:该树对应的树形表示如图 7.2 所示。 (1)这棵树的根结点是 A。 (2)这棵树的叶子结点是 B、E、G、D。 (3)结点 C 的度是 2。 (4)这棵树的度为 3。 (5)这棵树的高度是 4。 (6)结点 C 的孩子结点是 E、F。 (7)结点 C 的双亲结点是 A。
12. 假设二叉树中每个结点值为单个字符,采用二叉链存储结构存储。设计一个算法 计算一棵给定二叉树 b 中的所有单分支结点个数。 解:计算一棵二叉树的所有单分支结点个数的递归模型 f(b)如下:
f(b)=0 若 b=NULL
6 f(b)=f(b->lchild)+f(b->rchild)+1 f(b)=f(b->lchild)+f(b->rchild)
表7.1 二叉树bt的一种存储结构 1 lchild data rchild 0 j 0 2 0 h 0 3 2 f 0 4 3 d 9 5 7 b 4 6 5 a 0 7 8 c 0 8 0 e 0 9 10 g 0 10 1 i 0
答:(1)二叉树bt的树形表示如图7.3所示。
a b c e h j f i d g e h j c f i b d g a
对应的算法如下:
void FindMinNode(BTNode *b,char &min) { if (b->data<min) min=b->data; FindMinNode(b->lchild,min); //在左子树中找最小结点值 FindMinNode(b->rchild,min); //在右子树中找最小结点值 } void MinNode(BTNode *b) //输出最小结点值 { if (b!=NULL) { char min=b->data; FindMinNode(b,min); printf("Min=%c\n",min); } }

线索二叉树

线索二叉树

0 A0 0 B1
0 C0
1 D0
1 E1
1F1
1 G1
(b) root
0
1
ห้องสมุดไป่ตู้
0 A0
0 B1
0 C0
0 A0
0 B1
0 C0
1 D0
1 E1
1F1
1 D0
1 E1
1F1
1 G1
1 G1
(c)
(d)
线索二叉树 b—中序 c—前序 d—后序
一旦建立了某种方式的线索二叉树后,用户程序就可以 像操作双向链表一样操作该线索二叉树。
if(tree->current == tree->root) tree->nextComplete = 1;
}
int EndOfNext(ThreadBiTree *tree) //判断是否已到中序线索二叉树的最后一个结点 { return tree->nextComplete; }
例8-3 编写一个程序,首先建立如图8-10(a)所示的不带头结点的二叉树, 然后中序线索化该二叉树,最后用循环结构输出该中序线索化二叉树各结 点的序列信息。
这种算法设计要求分别设计三个函数: First():定位在第一个结点位置; Next():移动到下一个结点位置; End():是否已经到最后下一个结点位置; 当然,还需要一个根据二叉树构造线索二叉树的函数。
typedef struct { ThreadBiNode *root;
ThreadBiNode *current; int nextComplete; }ThreadBiTree;
规定:当某结点的左指针为空时,令该指针指向按某种方法遍历二叉树时 得到的该结点的前驱结点;当某结点的右指针为空时,令该指针指向按某种 方法遍历二叉树时得到的该结点的后继结点。仅仅这样做会使我们不能区分 左指针指向的结点到底是左孩子结点还是前驱结点,右指针指向的结点到底 是右孩子结点还是后继结点。因此我们再在结点中增加两个线索标志位来区 分这两种情况。

在线索二叉树中如何求先序

在线索二叉树中如何求先序

1在线索二叉树中如何求先序、中序的前驱、后继,为什么后续线索二叉树是不完备的?先序前驱:若左标志为1,则左链为线索,指示其前驱;否则a) 若该结点是二叉树的根,则其前驱为空;b) 若该结点是其双亲的左孩子或是其双亲的右孩子且其双亲没有左子树,则其前驱为其双亲;c) 若该结点是其双亲的右孩子且其双亲有左子树,则其前驱为其双亲的左子树中的先序遍历列出的最后一个结点。

先序后继:若右标志为1,则右链为线索,指示其后继;否则,如果有左子树则遍历左子树第一个访问的结点,为其后继;如果没有左子树则遍历右子树第一个访问的结点,为其后继;中序前驱:若左标志为1,则左链为线索,指示其前驱;否则,遍历其左子树最后访问的结点,为其前驱中序后继:若右标志为1,则右链为线索,指示其后继;否则,遍历其右子树第一个访问的结点,为其后继后续后继:a) 若该结点是二叉树的根,则其后继为空;b) 若该结点是其双亲的右孩子或是其双亲的左孩子且其双亲没有右子树,则其后继为其双亲;c) 若该结点是其双亲的左孩子且其双亲有右子树,则其后继为其双亲的右子树中的后序遍历列出的第一个结点。

求后续后继需要知道双亲结点,而二叉链表无法找到双亲,因此不完备:5如果只想得到一个序列中前k(k>=5)个最小元素的部分排序序列,可以采用哪些排序方法,最好采用哪种排序方法?1插入、快速、归并需要全体排序不合适2起泡、简单选择、堆可以。

堆完成查找总时间:4n+klogn,起泡和简单选择总时间kn,因此堆较好。

5荷兰国旗问题分析:这个问题我们可以将这个问题视为一个数组排序问题,这个数组分为前部,中部和后部三个部分,每一个元素(红白蓝分别对应0、1、2)必属于其中之一。

由于红、白、蓝三色小球数量并不一定相同,所以这个三个区域不一定是等分的,也就是说如果我们将整个区域放在[0,1]的区域里,由于三色小球之间数量的比不同(此处假设1:2:2),可能前部为[0,0.2),中部为[0.2,0.6),后部为[0.6,1]。

遍历二叉树与线索二叉树PPT

遍历二叉树与线索二叉树PPT
A B C X Y D E
作业:P217-218
后序列:DGJHEBIFCA, 中序列:DBGEHJACIF, 求:1、画出该二叉树; 2、先序; 3、画出该二叉树对应的森林。
由此可以看出:
(1)遍历操作实际上是将非线性结构线性化的过程, 其结果为线性序列; (2)遍历操作是一个递归的过程,因此,这三种遍历 操作的算法可以用递归函数实现。 先序遍历递归算法: DLR ( BiTree T ) { if (T) //非空二叉树 { printf(“%d”,T->data); //访问根结点D DLR(T->lchild); //递归遍历左子树 DLR(T->rchild); //递归遍历右子树 } return(0); }
这就是线索二叉树(Threaded Binary Tree)
如何预存这类信息?有两种解决方法: 缺点:空间效 ① 每个结点增加两个域:fwd和bwd; 率太低! fwd lchild data rchild bwd ② 与原有的左右孩子指针域“复用”,充分利用那n+1 个空链域。 lchild data rchild 如何判断是孩 子指针还是线 规 定: 索指针? 1)若结点有左子树,则lchild指向其左 孩子;否则,lchild指向其直接前驱(即 线索); 如何区 别? 2)若结点有右子树,则rchild指向其右 孩子;否则,rchild指向其直接后继(即线索) 。
中序遍历递归算法: LDR(BiTree T) { if(T) { LDR(T->lchild); printf(“%d”,T->data); LDR(T->rchild); } return(0); }
后序遍历递归算法 LRD (BiTree T) { if(T) { LRD(T->lchild); LRD(T->rchild); printf(“%d”,T->data); } return(0);}

线索二叉树

线索二叉树

6·4 线索二叉树1、线索二叉树的结点结构二叉树的遍历本质上是将一个复杂的非线性结构转换为线性结构,使每个结点都有了唯一前驱和后继(第一个结点无前驱,最后一个结点无后继)。

对于二叉树的一个结点,查找其左右子女是方便的,其前驱后继只有在遍历中得到。

为了容易找到前驱和后继,有两种方法。

一是在结点结构中增加向前和向后的指针fwd和bkd,这种方法增加了存储开销,不可取;二是利用二叉树的空链指针。

现将二叉树的结点结构重新定义如下:其中:ltag=0 时ltag=1 时lchild指向前驱;rtag=0 时rchild指向左子女;rtag=1 时rchild指向后继;以这种结点结构构成的二叉链表作为二叉树的存储结构,叫做线索链表,指向前驱和后继的指针叫线索,加上线索的二叉树叫线索二叉树,对二叉树进行某种形式遍历使其变为线索二叉树的过程叫线索化。

学习线索化时,有三点必须注意:一是何种“序”的线索化,是先序、中序还是后序;二是要“前驱”线索化、“后继”线索化还是“全”线索化(前驱后继都要);三是只有空指针处才能加线索。

2、对二叉树进行中序线索化的算法bithptr *pre; /* 全程变量*/void INTHREAD(bithptr *p){if(p!=NULL){ INTHREAD(p->lchild); /* 左子树线索化*/if(p->lchild==NULL) { p->ltag=1;p->lchild=pre;}if(p->rchild==NULL) p->rtag=1;if(pre!=NULL && pre->rtag==1) pre->rchild=p;pre=p; /* 前驱指向当前结点*/INTHREAD(p->rchild); /* 右子树线索化*/}3、在线索二叉树上查找前驱和后继(1)中序线索二叉树:若结点的ltag=1,lchild指向其前驱;否则,该结点的前驱是以该结点为根的左子树上按中序遍历的最后一个结点。

简述二叉树的五种形态

简述二叉树的五种形态

简述二叉树的五种形态二叉树是一种常用的数据结构,它由节点组成,每个节点最多有两个子节点。

根据节点的分布情况,二叉树可以分为五种形态,分别是满二叉树、完全二叉树、平衡二叉树、搜索二叉树和线索二叉树。

一、满二叉树满二叉树是指除了叶子节点外,每个节点都有两个子节点的二叉树。

也就是说,满二叉树的所有层都是满的,并且最后一层的叶子节点都靠左排列。

满二叉树的节点数可以通过公式计算得到,假设树的高度为h,则节点数为2^h - 1。

满二叉树的特点是结构简单,查找速度快。

在满二叉树中,任意两个节点的路径长度都相同。

二、完全二叉树完全二叉树是指除了最后一层之外,其他层都是满的,并且最后一层的叶子节点都靠左排列的二叉树。

完全二叉树的特点是节点数较少,结构相对简单。

完全二叉树通常用数组来表示,因为它的节点之间的关系可以通过数组的下标来表示。

在完全二叉树中,任意一个节点的左子节点的下标为2i,右子节点的下标为2i+1。

三、平衡二叉树平衡二叉树是指左右子树的高度差不超过1的二叉树。

平衡二叉树的特点是查找、插入和删除的时间复杂度都为O(logn),其中n是节点的数量。

平衡二叉树的高度可以通过节点的平衡因子来计算,平衡因子定义为左子树的高度减去右子树的高度。

平衡因子的取值范围为-1、0和1,当平衡因子的绝对值大于1时,需要通过旋转操作来调整树的平衡性。

四、搜索二叉树搜索二叉树,也称为二叉搜索树或排序二叉树,是一种特殊的二叉树。

它的特点是对于树中的任意一个节点,其左子树中的所有节点都小于它,右子树中的所有节点都大于它。

搜索二叉树的中序遍历结果是一个递增的有序序列。

搜索二叉树的特点是可以快速地查找某个节点,时间复杂度为O(logn),其中n是节点的数量。

但是,如果搜索二叉树不平衡,即左子树或右子树过深,则会导致查找的时间复杂度退化为O(n)。

五、线索二叉树线索二叉树是对二叉树进行了优化的数据结构,它通过添加指向前驱和后继节点的线索,使得遍历操作更加高效。

计算机数据结构知识点梳理 线索二叉树的基本概念和构造

计算机数据结构知识点梳理		线索二叉树的基本概念和构造
解答:D。
[题2] 一棵左子树为空的二叉树在先序线索化后,其中空链域的个数是( )。
A.不确定 B.0
C.1
D.2
分析:左子树为空的二叉树的根结点的左线索为空(无前驱),先序序列的最后 结点的右线索为空(无后继),共2个空链域。
解答:D。
这样,在线索二叉树(特别是中序线索二叉树)上遍历就消除了递归,也不使用栈(其 中后序线索二叉树中查找后继仍需要栈)。
2、由于序列可由不同的遍历方法得到,因此,线索树有先序线索二叉树、中 序线索二叉树和后序线索二叉树三种。在先序、中序和后序线索二叉树中所位取值也完全 相同,只是当标志位取1时,不同的线索二叉树将用不同的虚线表示,即不 同的线索树中线索指向的前驱结点和后继结点不同。
知识点7: 线索二叉树的基本概念和构造
1、在二叉链表表示的二叉树中,引入线索的目的主要是便于查找结点的前驱和后继。因 为若知道各结点的后继,二叉树的遍历就变得非常简单。
二叉链表结构查找结点的左、右孩子非常方便,但其前驱和后继是在遍历中形成的。为 了将非线性结构二叉树的结点排成线性序列,利用具有n个结点的二叉树的二叉链表中 的n+1个空指针域,可以利用某结点空的左指针域(lchild)指出该结点在某种遍历序 列中的直接前驱结点的存储地址,利用结点空的右指针域(rchild)指出该结点在某种 遍历序列中的直接后继结点的存储地址;对于那些非空的指针域,则仍然存放指向该结 点左、右孩子的指针。
C.线索二叉树是利用二叉树的n+1个空指针来存放结点前驱和后继信息的
D.每个结点通过线索都可以直接找到它的前驱和后继
分析:不是每个结点通过线索都可以直接找到它的前驱和后继。在先序线索 二叉树中查找一个结点的先序后继很简单,而查找先序前驱必须知道该结 点的双亲结点。同样,在后序线索二叉树中查找一个结点的后序前驱也很 简单,而查找后序后继也必须知道该结点的双亲结点。二叉链表中没有存 放双亲的指针。

线索二叉树的应用场景

线索二叉树的应用场景

线索二叉树的应用场景
线索二叉树是一种特殊类型的二叉树,其主要特点是在二叉树的空闲指针中存储指向前驱节点和后继节点的线索,从而可以方便地访问任意节点的前驱和后继。

这种数据结构在实际应用中具有多种使用场景,尤其是在需要频繁遍历二叉树或快速查找节点前驱和后继的情况下。

遍历优化:线索二叉树可以大大提高二叉树的遍历效率。

在传统的二叉树遍历中,如果需要访问某个节点的前驱或后继节点,通常需要重新从根节点开始遍历。

而线索二叉树则可以直接通过线索找到前驱或后继节点,无需重新遍历,从而大大提高了遍历效率。

路径总和问题:在解决路径总和问题时,线索二叉树可以提供一种高效的解决方案。

通过存储前驱和后继节点的线索,可以快速地回溯到之前的节点,从而方便地计算路径总和。

数据压缩与存储:在某些需要压缩存储数据的情况下,线索二叉树也可以发挥作用。

由于线索二叉树充分利用了空闲指针,因此可以在不增加额外存储空间的情况下,存储更多的信息。

图形渲染与优化:在计算机图形学中,线索二叉树也被广泛应用于场景图、渲染树等数据结构的优化。

通过利用线索二叉树的特性,可以更加高效地遍历和渲染场景中的对象。

总的来说,线索二叉树是一种非常实用的数据结构,特别适用于需要频繁遍历二叉树或快速查找节点前驱和后继的情况。

在实际应用中,可以根据具体需求选择合适的遍历方法和存储策略,以实现最佳的性能和效率。

数据结构C语言版_线索二叉树

数据结构C语言版_线索二叉树
// 中序遍历二叉线索树T(头结点)的非递归算法。
int InOrderTraverse_Thr(BiThrTree T,int(*Visit)(TElemType))
{
BiThrTree p;
p=T->lchild; // p指向根结点
while(p!=T)
{ // 空树或遍历结束时,p==T
// 空格(字符型)表示空结点
int CreateBiThrTree(BiThrTree *T)
{
TElemType h;
scanf("%c",&h);
if(h==Nil)
*T=NULL;
else
{
*T=(BiThrTree)malloc(sizeof(BiThrNode));
if(!p->lchild) // 没有左孩子
{ Biblioteka p->LTag=Thread; // 前驱线索
p->lchild=pre; // 左孩子指针指向前驱
}
if(!pre->rchild) // 前驱没有右孩子
{
pre->RTag=Thread; // 后继线索
"b为左子树的二叉树)\n");
CreateBiThrTree(&T); // 按先序产生二叉树
InOrderThreading(&H,T); // 中序遍历,并中序线索化二叉树
printf("中序遍历(输出)二叉线索树:\n");
InOrderTraverse_Thr(H,vi); // 中序遍历(输出)二叉线索树

二叉树

二叉树

7.1.2
二叉树的五种基本形态
Ф
左子树
(a) (b) (c)
右子树
(d)
左子树
(e)
右子树
7.1.3
两种特殊形态的二叉树
结点拥有的子树数称为该结点的度(degree)。度为零的结点称 为叶子(leaf),其余结点称为分支结点(branch)。树中结点的最大的 度称为树的度。显然,二叉树结点的度可能为0、1或2。 根结点的层次(level)为1,其余结点的层次等于该结点的双亲结 点的层次加1。树中结点的最大层次称为该树的高度或深度。 1.满二叉树 2.完全二叉树
7.6
本章小结
本章讨论了二叉树数据类型的定义以及实现方法。二叉树是 以两个分支关系定义的层次结构,结构中的数据元素之间存在着一 对多的关系,因此它为计算机应用中出现的具有层次关系或分支关 系的数据,提供了一种自然的表示方法。 二叉树是有明确的左子树和右子树的树形结构,因此当用二 叉树来描述层次关系时,其左孩子表示下属关系,而右孩子表示的 是同一层次的关系。 二叉树的遍历算法是实现各种操作的基础。遍历的实质是按 某种规则将二叉树中的数据元素排列成一个线性序列,二叉树的线 索链表便可看成是二叉树的一种线性存储结构,在线索链表上可对 二叉树进行线性化的遍历,即不需要递归,而是从第一个元素起, 逐个访问后继元素直至后继为空止。因此,线索链表是通过遍历生 成的,即在遍历过程中保存结点之间的前驱和后继的关系。
7.1.4
二叉树的几个特性
由二叉树的定义、形态,我们很容易的得出下面二叉树的 一些特性。 性质1 在二叉树的第i 层上至多有 2i-1 个结点(i≥1)。 性质2 深度为k的二叉树中至多含有2k-1 个结点(k≥1)。 性质3 对任何一棵二叉树 T,如果其终端结点数为,度为 2的结点数为,则。 性质4 具有n个结点的完全二叉树的深度为 log2n+1。 性质5 如果对一棵有 n 个结点的完全二叉树(其深度为 log2n+1)的结点按层序(从第1层到第 log2n+1 层,每层从左到 右)从1起开始编号。

二叉树的基本概念

二叉树的基本概念

二叉树的基本概念一、引言二叉树是计算机科学中最基础的数据结构之一,它是由节点和边组成的树形结构,其中每个节点最多有两个子节点。

在计算机科学中,二叉树被广泛应用于搜索、排序、编译器等领域。

本文将详细介绍二叉树的基本概念。

二、定义二叉树是一种特殊的树形结构,其中每个节点最多有两个子节点。

通常将左子节点称为左子树,右子节点称为右子树。

三、基本术语1. 根节点:二叉树的顶层节点称为根节点。

2. 叶子节点:没有任何子节点的节点称为叶子节点。

3. 父节点和子节点:一个父亲可以有多个儿子,但是一个儿子只能有一个父亲。

4. 兄弟:具有相同父亲的两个或多个儿子称为兄弟。

5. 深度:从根到某个节点所经过的边数称为该节点的深度。

6. 高度:从某个节点到其所有后代中深度最大者加一(即包括该结点)称为该结点所在的二叉树的高度。

四、分类1. 满二叉树:一棵深度为k且有2^k-1个节点的二叉树称为满二叉树。

2. 完全二叉树:对于一棵深度为k的,有n个节点的二叉树,当且仅当其每一个节点都与深度为k的满二叉树中编号从1至n的节点一一对应时,称之为完全二叉树。

3. 平衡二叉树:平衡二叉树也称为AVL树,是一种自平衡的排序二叉搜索树。

它具有以下性质:左右子树高度差不超过1,并且左右子树也是平衡二叉树。

五、遍历遍历是指按照某种顺序访问每个节点。

常见的遍历方式有三种:1. 前序遍历(Pre-order):先访问当前节点,再依次遍历左子树和右子树。

2. 中序遍历(In-order):先依次遍历左子树,再访问当前节点,最后遍历右子树。

3. 后序遍历(Post-order):先依次遍历左子树和右子树,最后访问当前节点。

六、应用1. 搜索算法:在搜索算法中,二叉树被广泛应用于二分查找。

2. 排序算法:在排序算法中,二叉树被广泛应用于堆排序和快速排序。

3. 编译器:在编译器中,二叉树被广泛应用于语法分析和代码生成。

七、总结本文介绍了二叉树的基本概念、术语、分类、遍历以及应用。

2020年智慧树知道网课《数据结构(西安理工大学)》课后章节测试满分答案

2020年智慧树知道网课《数据结构(西安理工大学)》课后章节测试满分答案

第一章测试1【单选题】(2分)研究数据结构就是研究()。

A.数据的逻辑结构B.数据的逻辑结构、存储结构及其数据在运算上的实现C.数据的逻辑结构和存储结构D.数据的存储结构2【单选题】(2分)关于算法的说法,的是()。

A.算法的可行性是指指令不能有二义性B.其他三项都是的C.为解决某问题的算法和为该问题编写的程序含义是相同的D.算法最终必须由计算机程序实现3【单选题】(2分)数据的()包括集合、线性、树和图4种基本类型。

A.基本运算B.算法描述C.存储结构D.逻辑结构4【单选题】(2分)数据的存储结构包括顺序、链式、散列和()4种基本类型。

A.数组B.向量C.集合D.索引5【单选题】(2分)下面算法的时间复杂度为()。

for(i=0;i<m;i++)for(j=0;j<n;j++)A[i][j]=i*j;A.O(m2)B.O(m+n)C.O(m×n)D.O(n2)6【多选题】(2分)以下()属于设计一个“好”的算法应考虑达到的目标。

A.健壮性B.效率与低存储量要求C.可读性D.正确性7【多选题】(2分)依据所有数据成员之间的逻辑关系的不同,数据结构分为()。

A.线性结构B.物理结构C.非线性结构D.逻辑结构8【判断题】(2分)在存储数据时,不仅要考虑存储各数据元素的值,而且还要存储数据元素之间的关系。

A.对B.错9【判断题】(2分)在逻辑结构定义的操作与具体实现有关。

A.对B.错10【判断题】(2分)算法是对解题方法和步骤的描述。

A.对B.错11【判断题】(2分)算法分析的两个主要方面是时间复杂度和空间复杂度的分析。

A.错B.对第二章测试1【单选题】(2分)线性表是()。

A.一个无限序列,可以为空。

B.一个无限序列,不能为空。

C.一个有限序列,可以为空。

D.一个有限序列,不能为空。

2【单选题】(2分)若某线性表中最常用的操作是取第i个元素和查找第i个元素的前驱,则采用()存储方法最节省时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7讲 线索二叉树
冯广慧 讲授
第6章 树
6.1 树的概念及操作 6.2 二叉树

6.2.1 二叉树的概念及操作 6.2.2 二叉树的性质 6.叉树的遍历 6.4 线索二叉树 6.5 树和森林

6.5.1 树的存储结构 6.5.2 森林、树、二叉树的相互转换 6.5.3 树和森林的遍历 6.6.1 最优二叉树(哈夫曼树) 6.6.2 哈夫曼编码
重点难点

2019/2/26
3
线索二叉树
线索二叉树的提出:
1、遍历的实质:非线性结构线性化(前驱、 后继); 2、前驱和后继是在遍历中得到的; 3、知道前驱和后继,再遍历时就不需要栈; 4、可以在二叉链表结构中增加前驱和后继两 个指针域; 5、n个结点的二叉树有n+1个空指针,可以 利用。
2019/2/26 4
线索二叉树
lchild ltag data rtag rchild
0 : lchild 指向结点的左孩子 ltag= 1 : lchild 指向结点前驱 0 : rchild 指向结点的右孩子 rtag= 1 : rchild 指向结点后继
n个结点的二叉链表中含有n+1个空指针域,可以利用这 些空指针域来存放结点的前驱和后继的信息,这样的指针称 为“线索”,加上了线索的二叉链表称为线索链表,加上线 索的二叉树就是线索二叉树(Threaded Binary Tree)。将 二叉树变为线索二叉树的过程称为线索化。
2019/2/26 12
算法举例6.9
后序线索化
BiThrTree pre=null;//设置前驱 void PostOrderThreat(BiThrTree T) {if (T) {PostOrderThreat(T->lchild); //左子树后序线索化 PostOrderThreat(T->rchild); //右子树后序线索化 if (T->lchild==null) {T->ltag=1; T->lchild=pre; }//左线索为pre; if (T->rchild==null) T->rtag=1;//置右标记,为右线索作准备 if (pre!=null && pre->rtag==1) pre->rchild=T;} //给前驱加后继线索 pre=T; //前驱指针后移 } }//结束PostOrderThreat
2019/2/26 13
线索二叉树的中序非递归遍历
中序线索二叉树的中序非递归遍历
带头结点的中序线索二叉树的中序非递归 遍历
2019/2/26
14
算法举例6.10中序线索二叉树的中序遍历
NULL
1 C 0
NULL
F
1D 1
1 E1
1 F 1
为方便起见,在线索链表中增加一个头结点,令其 lchild域指向二叉树的根结点,rchild域指向访问序列的最 后一个结点,这样,就建立了一个双向线索链表。
2019/2/26 8
后序(全)线索化
A B C
A B C
D
E
null
D
E
F
G
H
F
G
H
2019/2/26
2019/2/26 5
线索二叉树
<?序> <前驱/后继/ 全> 线索化 只有空指针才能加线索
2019/2/26 6
前序前驱线索化
前序前驱线索化
A B C D G E F B A E F D G H I
2019/2/26
C
H
I
7
中序(全)线索二叉树
A B D E C
NULL
A 0 0A
0 B0
二、遍历 三、查找前驱和后继
2019/2/26 10
算法举例6.7
中序线索化
BiThrTree pre=null;//设置前驱 void InOrderThreat(BiThrTree T) {if (T) {InOrderThreat(T->lchild); //左子树中序线索化 if (T->lchild==null) {T->ltag=1; T->lchild=pre; } //左线索为pre; if (T->rchild==null) T->rtag=1; //置右标记,为右线索作准备 if (pre!=null && pre->rtag==1) pre->rchild=T;} //给前驱加后继线索 pre=T; //前驱指针后移 InOrderThreat(T->rchild); //右子树中序线索化 } }//结束InOrderThreat
6.6 哈夫曼树及其应用

*6.7算法设计举例
2019/2/26 2
主要内容
知识点

树和二叉树定义 二叉树的性质,存储结构 二叉树的遍历及遍历算法的应用 ** 线索二叉树 二叉树和树及森林的关系 Huffman树与Huffman编码
二叉树的性质及应用 二叉树的遍历算法及应用 ** 线索二叉树的算法 Huffman树的构造方法 树的算法
9
线索链表的类型定义
typedef struct BiThrNode {ElemTyte data; struct BiThrNode *lchild, *rchild;左、右孩子指针 int ltag, rtag; }BiThrNode,*BiThrTree 后面将讨论以下三方面的算法: 一、 线索化
2019/2/26 11
算法举例6.8
前序线索化
BiThrTree pre=null;//设置前驱 void PreOrderThreat(BiThrTree T) {if (T!=null) { if (T->lchild==null) { T->ltag=1; T->lchild=pre;} //设置左线索 if (T->rchild==null) T->rtag=1; //为建立右链作准备 if (pre!=null && pre->rtag==1) pre->rchild=T; //设置前驱的右线索; pre=T; //前驱后移 if (T->ltag==0) PreOrderThreat(T->lchild); //左子树前序线索化 PreOrderThreat(BT->rchild); //右子树前序线索化 } }
相关文档
最新文档