初中数学二元一次方程组的应用题型分类汇编——方案决策问题2(附答案)
人教版七年级数学下册期考经典题型汇总:列二元一次方程组解应用题(附答案与全解全析)
人教版七年级数学下册期考经典题型汇总:列二元一次方程组解应用题知识网络重难突破知识点一列二元一次方程组解应用题列二元一次方程组解应用题的一般步骤:1.审:审题,明确各数量之间的关系。
2.设:设未知数3.找:找题中的等量关系4.列:根据等量关系列出两个方程,组成方程组5.解:解方程组,求出未知数的值6.答:检验方程组的解是否符合题意,写出答案。
题型一二元一次方程组的应用- 方案问题典例1 (2020·监利县期中)1400元奖金要分给22名获奖员工,其中一等奖每人200元,二等奖每人50元。
试问经理,该怎样分发这1400元奖金?变式1-1(2018·大石桥市期末)已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b 辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:①1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?②请你帮该物流公司设计租车方案.变式1-2(2019·贵港市期末)某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:(1)春游学生共多少人,原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算.题型二二元一次方程组的应用–行程问题典例2(2018·广州市期末)从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地用54分钟,从乙地到甲地用42分钟,甲地到乙地的全程是多少.变式2-1(2020·辉县市期中)一列快车长230米,一列慢车长220米,若两车同向而行,快车从追上慢车时开始到离开慢车,需90秒钟;若两车相向而行,快车从与慢车相遇时到离开慢车,只需18秒钟,问快车和慢车的速度各是多少?变式2-2(2019·许昌市期末)为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.题型三二元一次方程组的应用–工程问题典例3(2020·甘南县期中)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲,乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可贏利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)变式3-1(2020·成都市期末)某汽车制造厂生产一款电动汽车,计划一个月生产200辆.由于抽调不出足够的熟练工来完成电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)若工厂现在有熟练工人30人,求还需要招聘多少新工人才能完成一个月的生产计划?变式3-2(2019·成都市期末)某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此旄工进度,能够比原来少用多少天完成任务?题型四二元一次方程组的应用–数字问题典例4(2019·靖远县期末)一个两位数,个位数字与十位数字的和为8,个位数字与十位数字互换位置后,所得的两位数比原两位数小18,则原两位数是多少?变式4-1(2020·海淀区期末)小明和小亮做加减法游戏,小明在一个加数后面多写了一个0,得到的和为242,而小亮在另一个加数后面多写了一个0,得到的和为341。
二元一次方程组解应用题专题分类常见十三类
二元一次方程组解应用题专题分类常见十三类常见十三类二元一次方程组解应用题专题分类讲解要点突破:应用领域二元一次方程组化解实际问题的基本步骤总结:(1)认知问题(审题,厘清未知和未明,分析数量关系)(2)制订计划(考量如何根据等量关系设元,列举方程组)(3)继续执行计划(列举方程组并解,获得答案)(4)回顾(检查和反思解题过程,检验答案的正确性以及是否符合题意)列于方程组思想:找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.(1)行程问题:(2)工程问题;(3)销售中的盈亏问题;(4)储蓄问题;(5)产品配套问题;(6)增长率问题;(7)和差倍分问题;(8)数字问题;(9)浓度问题;(10)几何问题;(11)年龄问题;(12)优化方案问题.一、行程问题(1)三个基本量的关系:路程s=速度v×时间t时间t=路程s÷速度v速度v=路程s÷时间t(2)三大类型:①碰面问题:慢行距+慢行距=原距②赴援问题:慢行距-慢行距=原距③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度顺速c逆速=2水速;顺速+逆速=2船速顺水的路程=逆水的路程相遇问题:两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类..问题叫作碰面问题。
它的特点就是两个运动物体共同步上整个路程。
a车路程b车路程-1-a车路程+b车路程=距离路程总路程=(甲速+乙速)×碰面时间碰面时间=总路程÷(甲速+乙速)..............另一个速度=甲乙速度和-已知的一个速度甲、乙两人在距离18千米的两地同时启程,并肩而行,1小时48分后碰面,如果甲比乙晚启程40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度.练:学校距活动东站670米,小明从学校前往活动东站每分钟行80米,2分钟后,小丽从活动东站往学校跑,每分钟行90米,小明启程多少分钟后和小丽碰面?碰面时二人各行了多少米?追及问题:两物体速度不同向同一方向运动,两物体同时运动,一个在前,一个在后,前后相隔的路程若把它叫作“赴援的路程”,那么,在后的冲上前一个的时间叫做“赴援时间”.迎击b车追击路程a车先行路程a车后行路程关系式就是:赴援的路程÷速度差=赴援时间..............顺速c逆速=2水速;顺速+逆速=2船速顺水的路程=逆水的路程a、b两地距离28千米,甲乙两车同时分别从a、b两地同一方向送出,甲车每小时行32千米,乙车每小时行25千米,乙车在前,甲车在后,几小时后甲车能甩开乙车?甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。
初中数学二元一次方程组应用2含答案
二元一次方程组应用2一.解答题(共25小题)1.(列二元一次方程组求解)班长安排小明购买运动会的奖品,下面对话是小明买回奖品时与班长的对话情境:小明说:“买了两种不同的笔记本共50本,单价分别是5元和9元,我给了400元,现在找回88元.”班长说:“你肯定搞错了.”小明说:“我把自己口袋里的18元一起当作找回的钱款了.”班长说:“这就对啦!”请根据上面的信息,求两种笔记本各买了多少本?2.列二元一次方程组解决问题:某校八年级师生共466人准备参加社会实践活动,现已预备了A,B两种型号的客车共10辆,每辆A种型号客车坐师生49人,每辆B种型号客车坐师生37人,10辆客车刚好坐满,求A,B两种型号客车各多少辆?3.列一元一次方程解应用题:某校为了开展“阳光体育运动,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.若购买这两类球的总金额为4600元,求篮球、足球各买了多少个?4.列二元一次方程组解应用题:学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.求A,B两种奖品的单价.5.为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元.(1)求文具袋和圆规的单价.(2)学校准备购买文具袋20个,圆规100个,文具店给出两种优惠方案:方案一:每购买一个文具袋赠送1个圆规.方案二:购买10个以上圆规时,超出10个的部分按原价的八折优惠,文具袋不打折.学校选择哪种方案更划算?请说明理由.6.某校的大学生自愿者参与服务工作,计划组织全校自愿者统一乘车去某地.若单独调配36座客车若干辆,则空出6个座位.若只调配22座客车若干辆,则用车数量将增加3辆,并有12人没有座位.(1)计划调配36座客车多少辆?该大学共有多少名自愿者?(列方程组解答)(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?7.已知,从小明家到学校,先是一段上坡路,然后是一段下坡路,且小明走上坡路的平均速度为每分钟走60m,下坡路的平均速度为每分钟走90m,他从家里走到学校需要21min,从学校走到家里需要24min,求小明家到学校有多远.8.学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:黄瓜的种植成本是1元/kg,售价为1.5元/kg;茄子的种植成本是1.2元/kg,售价是2元/kg.(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?9.(列二元一次方程组解应用题)为了保护环境,某公交公司决定购买A、B两种型号的全新混合动力公交车共10辆,其中每辆A型车每年节省油量2.4万升;每辆B型车每年节省油量2.2万升;若购买这批混合动力公交车每年能节省22.6万升汽油,求购买A、B两种型号公交车各多少辆?10.小明到文具店给班级买奖品,发现2本笔记本的费用比1支水笔的费用多10元;6本笔记本的费用比13支水笔的费用少10元.求小明买5本笔记本和5支水笔共需多少钱.11.某商场出售A、B两种型号的自行车,已知购买1辆A型号自行车比1辆B型号自行车少20元,购买2辆A型号自行车与3辆B型号自行车共需560元,求A、B两种型号自行车的购买价各是多少元?12.现有学生若干人,分住若干宿舍.如果每间住4人,那么还余20人;如果每间住6人,那么有一间宿舍只住了2人.试求学生人数和宿舍间数.13.学校计划在某商店购买秋季运动会的奖品,若买5个篮球和10个足球需花费1150元,若买9个篮球和6个足球需花费1170元.(1)篮球和足球的单价各是多少元?(2)实际购买时,正逢该商店进行促销.所有体育用品都按原价的八折优惠出售,学校购买了若干个篮球和足球,恰好花费1760元.请直接写出学校购买篮球和足球的个数各是多少.14.用二元一次方程组求解:某商场购进商品后,加价40%作为销售价,商场搞优惠促销,决定由顾客抽签确定折扣.某顾客购买甲、乙两种商品,分别抽到七折和九折,共付款399元.两种商品原销售价之和为490元.则两种商品进价分别为多少元?15.某天,一蔬菜经营户用60元钱从蔬菜批发市场批发了萝卜和白菜共40kg到菜市场去卖,萝卜和白菜这天每千克的批发价与零售价如下表所示:品名萝卜白菜批发价/元 1.6 1.2零售价/元 2.5 1.8问:他当天卖完这些萝卜和白菜共能赚多少钱?16.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)A B商品价格进价(元/件)12001000售价(元/件)13501200(1)该商场第1次购进A、B两种商品各多少件?(2)商场第2次以原价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?17.某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料调价前每瓶各多少元?18.“中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?19.高台县为加快新农村建设,建设美丽乡村,对A、B两类村庄进行了全面改建.根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;巷道镇建设了2个A类村庄和5个B类村庄共投入资金1140万元.(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?(2)骆驼城镇改建3个A类美丽村庄和6个B类美丽村庄共需资金多少万元?20.在元旦期间,某商场投入13800元资金购进甲、乙两种商品共500件,两种商品的成本价和销售价如下表所示:成本价销售价商品单价(元/件)甲2436乙3348(1)该商场购进两种商品各多少件?(2)这批商品全部销售完后,该商场共获利多少元?21.一个长方形的长增加4cm,宽减少1cm,面积保持不变;长减少2cm,宽增加1cm,面积仍保持不变,求这个长方形的面积.22.某车间生产瓶装罐头并装箱,封瓶和装箱生产线共26条,所有生产线保证匀速工作,罐头封瓶每小时650瓶,装箱每小时750箱(每箱一瓶),某天检测8:00﹣9:00生产线工作情况,发现有100瓶未装箱,问封瓶和装箱各有多少条生产线?23.养牛场原有的大牛和小牛一天约用饮料475kg;一周后购进一批大牛和小牛后,这时大牛数量增加为原来的3倍,小牛数量增加为原来的2倍,一天约用饮料1350kg,已知大牛一天的饮料需20kg,小牛一天的饮料需5kg,则养牛场原有大牛和小牛数量各是多少?24.某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑,如果反向而行,那么他们每隔32秒相遇一次.如果同向而行,那么每隔160秒乙就追上甲一次.甲、乙的速度分别是多少?25.学校在“我和我的祖国”快闪拍摄活动中,为学生租用服装.其中5名男生和3名女生共需服装费190元;3名男生的租服装的费用与2名女生的租服装的费用相同.求每位男生和女生的租服装费用分别为多少元?二元一次方程组应用2参考答案与试题解析一.解答题(共25小题)1.解:设两种笔记本各买x本、y本,根据题意,得解得答:两种笔记本各买30本,20本.2.解:设A种型号客车x辆,B种型号客车y辆,依题意,得解得答:A种型号客车8辆,B种型号客车2辆.3.解:设购买篮球x个,则购买足球(60﹣x)个,依题意得:70x+80(60﹣x)=4600,解得:x=20,∴60﹣x=40,答:购买篮球20个,购买足球40个;4.解:设A奖品的单价为x元,B奖品的单价为y元,依题意,得:,解得:.答:A奖品的单价为30元,B奖品的单价为15元.5.解:(1)设文具袋的单价为x元,圆规的单价为y元.依题意,得解得答:文具袋的单价为15元,圆规的单价为3元.(2)选择方案一的总费用为20×15+3×(100﹣20)=540(元),选择方案二的总费用为20×15+10×3+3×80%×(100﹣10)=546(元),∵540<546,∴选择方案一更划算.6.解:(1)设计划调配36座新能源客车x辆,该大学共有y名自愿者,则根据题意得,解得:答:计划调配36座新能源客车6辆,该大学共有210名自愿者.(2)设需调配36座新能源客车m辆,22座新能源客车n辆,根据题意得:36m+22n=210,∴又∵m、n为正整数∴,答:需调配36座新能源客车4辆,22座新能源客车3辆.7.解:设小明家上坡路有xm,下坡路有ym.依题意,得:,解得:,∴540+1080=1620(m).答:小明家到学校有1620m.8.解:(1)设采摘黄瓜x千克,采摘茄子y千克,依题意,得:,解得:.答:采摘黄瓜30千克,采摘茄子10千克.(2)(1.5﹣1)×30+(2﹣1.2)×10=23(元).答:这些采摘的黄瓜和茄子可赚23元.9.解:设购买A型公交车x辆,B型公交车y辆,根据题意,得:,解得:,答:购买A型公交车3辆,B型公交车7辆.10.解:设每本笔记本x元,每支水笔y元,依题意,得:,解得:,∴5x+5y=55.答:小明买5本笔记本和5支水笔共需55元钱.11.解:设A型号自行车的购买价为x元,B型号自行车的购买价为y元,依题意,得:,解得:.答:A型号自行车的购买价为100元,B型号自行车的购买价为120元.12.解:设学生有x人,宿舍有y间,依题意,得:,解得:.答:学生有68人,宿舍有12间.13.解:(1)设篮球的单价为x元,足球的单价为y元,依题意,得:,解得:.答:篮球的单价为80元,足球的单价为75元.(2)设学校购买篮球m个,足球n个,依题意,得:0.8(80m+75n)=1760,∴m=.∵m,n均为非负整数,∴或.答:学校购买篮球20个、足球8个或者篮球5个、足球24个.14.解:设甲种商品进价为a元,乙种商品进价为b元,,解得,,答:甲乙两种商品进价分别为150元、200元.15.解:设白菜的重量是xkg,萝卜的重量是ykg,依题意有解得:,10×(1.8﹣1.2)+30×(2.5﹣1.6)=33(元)答:他当天卖完这些白菜和萝卜能赚33元.16.解:(1)设第1次购进A商品x件,B商品y件.根据题意得:,解得:.答:商场第1次购进A商品200件,B商品150件.(2)设B商品打m折出售.根据题意得:200×(1350﹣1200)+150×2×(1200×﹣1000)=54000,解得:m=9.答:B种商品打9折销售的.17.解:设碳酸饮料在调价前每瓶的价格为x元,果汁饮料调价前每瓶的价格为y元,根据题意得:,解得:.答:调价前碳酸饮料每瓶的价格为3元,果汁饮料每瓶的价格为4元.18.解:设A型号的空调购买价为x元,B型号的空调购买价为y元,依题意得:,解得:.答:A型号的空调购买价为2120元,B型号的空调购买价为2320元.19.解:(1)设建设一个A类美丽村庄所需的资金为x万元,建设一个B类美丽村庄所需的资金为y万元,,解得,,答:建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是120万元、180万元;(2)由题意可得,3×120+6×180=1440(万元),答:骆驼城镇改建3个A类美丽村庄和6个B类美丽村庄共需资金1440万元.20.解:(1)设商场购进甲种商品x件,购进乙种商品y件,由题意得:,解得:,答:商场购进甲种商品300件,购进乙种商品200件.(2)根据题意得:300×(36﹣24)+200×(48﹣33)=3600+3000=6600(元).答:该商场共获得利润6600元.21.解:设这个长方形的长与宽分别为acm和bcm则:整理得:∴∴ab=8×3=24(cm2).22.解:设封瓶生产线有x条,装箱生产线有y条,依题意,得:,解得:.答:封瓶生产线有14条,装箱生产线有12条.23.解:设原来大牛x头,小牛y头,根据题意,得解得x=20,y=15.答:养牛场原有大牛和小牛数量各是20头,15头.24.解:设甲的速度是x米/秒,乙的速度是y米/秒,依题意,得:,解得:.答:甲的速度是5米/秒,乙的速度是7.5米/秒.25.解:设每位男生的租服装费用为x元,每位女生的租服装费用为y元,依题意,得:,解得:.答:每位男生的租服装费用为20元,每位女生的租服装费用为30元.。
初中数学二元一次方程组的应用题型分类汇编——方案决策问题2(附答案)
3.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位,要求租用的车辆不留空座,也不能超载.租车方案共有()种.
A.2B.3C.4D.5
4.为安置200名因暴风雪受灾的灾民,需要同时搭建可容纳12人和8人的两种帐篷,则搭建方案共有( )
(2)如果购买乙种花木的数量不少于甲种花木的数量,请设计一种购买方案使所需费用最低,并求出该购买方案所需总费用.
30.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车,恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.
(1)求每辆大客车和每辆小客车的乘客座位数;
18.有三种物品,每件的价格分别是2元、4元和6元.现在用60元买这三种物品,总共买了16件,而钱恰好用完,则价格为6元的物品最多买___件.
19.小威到小吃店买水饺,他身上带的钱恰好等于15粒虾仁水饺或20粒韭菜水饺的价钱,若小威先买了9粒虾仁水饺,则他身上剩下的钱恰好可买________粒韭菜水饺.
A.6台B.7台C.8台D.9台
6.5月22-23日,在川汇区教育局组织部分学生参加市举办的“唱响红歌”庆祝活动中,分别给每位男、女生佩戴了白、红颜色的太阳帽,当大家坐在一起时,发现一个有趣的现象,每名男生看到白色的帽子比红色的帽子多 个,每名女生看到的红色帽子是白色帽子数量的 ,设这些学生中男生有 人,女生有 人,依题意可列方程().
初中数学二元一次方程组的应用题型分类汇编——方案决策问题2(附答案)
1.为推进课改,王老师把班级里60名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案( )
A.4B.3C.2D.1
2.小聪去商店购买笔记本和钢笔,共用了60元钱,已知每本笔记本2元,每支钢笔5元,若笔记本和钢笔都需购买,且笔记本的数量多于钢笔的数量,则小聪的购买方案有( )
(完整word版)二元一次方程组常考题型分类总结(超全面),
二元一次方程组常有题型二元一次方程组应用题(分派调运问题)某校师生到甲、乙两个工厂参加劳动,假如从甲厂抽两厂的人数同样;假如从乙厂抽 5 人到甲厂,则甲厂的人数是乙厂的数各是多少?9 人到乙厂,则2 倍,到两个工厂的人解:设到甲工厂的人数为x 人,到乙工厂的人数为y 人题中的两个相等关系:1、抽 9 人后到甲工厂的人数=到乙工厂的人数可列方程为:x- 9=2、抽 5 人后到甲工厂的人数=可列方程为:(行程问题)甲、乙二人相距6km ,二人同向而行,甲时相遇。
二人的均匀速度各是多少?解:设甲每小时走3 小时可追上乙;相向而行,x 千米,乙每小时走y 千米1 小题中的两个相等关系:1、同向而行:甲的行程=乙的行程+可列方程为:2、相向而行:甲的行程+=可列方程为:(百分数问题)某市现有厂1.1 % , 这样全市人口将增添42 万人口,计划一年后城镇人口增添%,乡村人口增添工1%,求这个市此刻的城镇人口与乡村人口?解:这个市此刻的城镇人口有题中的两个相等关系:1、此刻城镇人口+可列方程为:x 万人,乡村人口有=此刻全市总人口y 万人2、明年增添后的城镇人口+=明年全市总人口可列方程为:(%) x+=(分派问题)某少儿园分萍果,若每人 3 个,则剩 2 个,若每人 4 个,则有一个少问少儿园有几个小朋友?解:设少儿园有x 个小朋友,萍果有y 个题中的两个相等关系: 1 、萍果总数 =每人分 3 个 +1 个,可列方程为:2、萍果总数=可列方程为:(浓度分派问题)要配浓度是 45%的盐水 12 千克,现有 10%的盐水与 85%的盐水,这两种盐水各需多少?解:设含盐10%的盐水有x 千克,含盐85%的盐水有 y 千克。
1、含盐 10%的盐水中盐的重量+含盐 85%的盐水中盐的重量=题中的两个相等关系:可列方程为:10%x+=2、含盐 10%的盐水重量 +含盐 85%的盐水重量 =可列方程为: x+y=(金融分派问题)需要用多少每千克售 4.2 元的糖果才能与每千克售 3.4 元的糖果混淆成每千克售 3.6 元的杂拌糖200 千克?解:设每千克售 4.2 元的糖果为x 千克,每千克售元的糖果为y 千克题中的两个相等关系:1、每千克售 4.2 元的糖果销售总价可列方程为:2、每千克售 4.2 元的糖果重量 +可列方程为:+==(几何分派问题)如图:用长方形的长和宽分别是多少?8 块同样的长方形拼成一个宽为48 厘米的大长方形,每块小解:设小长方形的长是x 厘米,宽是y 厘米题中的两个相等关系1、小长方形的长+:=大长方形的宽可列方程为:2、小长方形的长=可列方程为:(资料分派问题)一张桌子由桌面和四条脚构成, 1 立方米的木材可制成桌面作桌脚 300 条,现有 5 立方米的木材,问应怎样分派木材,能够使桌面和桌脚配套?50 张或制解:设题中的两个相等关系: 1、制作桌面的木材+=可列方程为:2、全部桌面的总数:全部桌脚的总数=可列方程为:(和差倍问题)一个两位数,十位上的数字比个位上的数字大5,假如把十位上的数字与个位上的数字互换地点,那么获得的新两位数比本来的两位数的一半还少9,求这个两位数?解:设个位数字为x,十位数字为题中的两个相等关系:列方程为:2、新两位数 =y。
人教版2022-2023学年七年级下册数学期末复习专题:二元一次方程组的应用(方案问题) (2)
人教版2022-2023学年七年级下册数学期末复习专题二元一次方程组的应用(方案问题)原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题:(1)初一(2)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?4.某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200吨,如用新工艺,则废水排量比环保限制的最大量少100吨,新、旧工艺的废水量之比为2:5,两种工艺的废水量各是多少?5.列二元一次方程组解应用题:学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元,购买5个A奖品和4个B奖品共需210元.求A B,两种奖品的单价.6.某同学在A,B两家网店发现他看中的随身听的单价相同,书包单价也相同.随身听和书包单价之和是492元,且随身听的单价比书包单价的3倍少108元.(1)求该同学看中的随身听和书包的单价各是多少元.(2)某一天恰好赶上商家促销,网店A所有商品打八折销售,网店B全场每购满100元减25元销售,怎样购买更省钱?写出必要的理由过程.7.已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有36吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案.8.抗击新冠肺炎疫情期间,全国上下万众一心为武汉捐赠物资.某物流公司运送捐赠物资,已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.(1)求1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)该物流公司现有31吨货物需要运送,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.若A型车每辆需租金100元/次,B型车每辆需租金120元/次,请你设计出所有租车方案并选出最省钱的租车方案,求出此时最少租车费.9.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A 型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元(1)求A B、两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?10.某运输公司有A、B两种货车,3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨.(1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?(2)目前有190吨货物需要运输,该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费500元,每辆B货车一次运货花费400元.请你列出所有运输方案并指出哪种运输方案费用最少.11.某汽车制造厂开发了一款新式电动汽车计划一年生产安装240辆,由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂抽调熟练工m名,再招聘()<<名新工人,使得招聘的新工人和n n010抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案? 12.我校组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?13.小志从甲、乙两超市分别购买了10瓶和6瓶cc饮料,共花费51元;小云从甲、乙两超市分别购买了8瓶和12瓶cc饮料,且小云在乙超市比在甲超市多花18元,在小志和小云购买cc饮料时,甲、乙两超市cc饮料价格不一样,若只考虑价格因素,到哪家超市购买这种cc饮料便宜?请说明理由.14.有大、小两种货车,2辆大车与3辆小车一次可以运货15.5吨;5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?15.某学校现有若干间学生宿舍,准备安排给若干名学生住宿.原计划每间住8人,则有10间宿舍无人居住.由于疫情防控需要,每间宿舍只能住5人,则有10人无法入住.问该校现有多少间学生宿舍?16.鹏程中学拟组织七年级部分师生赴滁州市琅琊山进行文学采风活动.下面是活动负责人李老师和小芳同学、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”(1)全部物资一次性运送可用甲型车8辆,乙型车5辆,丙型车辆.(2)若全部物资仅用甲、乙两种车型一次性运完,需运费9600元,求甲、乙两种车型各需多少辆?(3)若该公司打算用甲、乙、丙三种车型同时参与运送,已知车辆总数为14辆,(1)甲、乙两种货车每辆可装多少吨货物?(2)若某货主共有20吨货物,计划租用该公司的货车,正好(每辆货车都满载)把这批货物运完,则该货主有________种租车方案?(3)王先生要租用该公可的甲、乙两种货车送一批货,如果租用甲种货车数量比乙种货车数量多1辆,而乙种货车每辆的运费是甲种货车的1.4倍,结果甲种货车共付运费800元,乙种货车共付运费980元,试求此次甲、乙两种货车每辆各需运费多少元?答案1.(1)每辆甲种货车能装货4吨,每辆乙种货车能装货3吨(2)方案1:租用3辆甲种货车、11辆乙种货车;方案2:租用6辆甲种货车、7辆乙种货车;方案3:租用9辆甲种货车、3辆乙种货车2.(1)A种产品4件,B种产品3件;(2)利润是12万元.3.(1)初一(2)班共有53人或59人;(2)两个一起买票更省钱,比原计划节省298元或290元4.新、旧工艺的废水排量分别为200吨和500吨5.A奖品单价30元,B奖品单价15元.6.(1)随身听单价为342元,书包单价为150元(2)在A购买书包,在B购买随身听更省钱,费用为387元7.(1)1辆A型车和1辆B型车都装满货物一次可分别运货3吨,4吨;(2)故共有四种租车方案,分别为:①A型车0辆,B型车9辆;②A型车4辆,B 型车6辆;③A型车8辆,B型车3辆;④A型车12辆,B型车0辆.8.(1)1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨;(2)共有3种租车方案:方案一,A型车9辆,B型车1辆;方案二,A型车5辆,B型车4辆;方案三,A型车1辆,B型车7辆,最省钱的租车方案是A型车1辆,B型车7辆,最少租车费为940元9.(1)A型汽车每辆的进价为25万元,B型汽车每辆的进价为10万元;(2)方案一:购进A型车6辆,B型车5辆;方案二:购进A型车4辆,B型车10辆;方案三:购进A型车2辆,B型车15辆;(3)购进A型车2辆,B型车15辆获利最大,最大利润是91000元10.(1)1辆A货车和1辆B货车一次可以分别运货20吨和15吨;(2)共有3种租车方案,方案1:租用A型车8辆,B型车2辆;方案2:租用A型车5辆,B型车6辆;方案3:租用A型车2辆,B型车10辆;租用A型车8辆,B 型车2辆最少.11.(1)每名熟练工每月可以安装4辆电动汽车,新工人每月分别安装2辆电动汽车;(2)12.(1)240人,原计划租用45座客车5辆;(2)租4辆60座客车划算.13.到甲超市购买这种cc饮料便宜.14.24.5吨15.该校现有30间学生宿舍16.(1)平安客运公司60座和45座的客车每辆每天的租金分别是1000元,800元.(2)按小明提出的租车方案,七年级师生到该公司租车一天,共需租金6000元.(3)租用5辆60座和1辆45座的客车,此时租车费为5800元.17.(1)建设一个A类美丽村庄需120万元,建设一个B类美丽村庄需180万元;(2)共需资金1080万元.18.(1)4;(2)甲种车型需8辆,乙种车型需10辆;(3)甲车2辆,乙车5辆,丙车7辆,此时的总运费为8800元.19.(1)1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨;(2)①共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车;②最省钱的租车方案是租用7辆A型车,最少租车费是840元20.(1)甲种货车每辆可装2吨货物,乙种货车每辆可装3吨货物;(2)4种租车方案;(3)甲种货车每辆需运费100元,乙种货车每辆需运费140元。
初中数学二元一次方程组的应用题型分类汇编——古代算术问题2(附答案)
()
x y 35
x y 35
x y 35
x y 35
A. 2x 2y 74 B. 4x 2y 74 C. 2x 4y 74 D. x 2y 74
11.古代算术题:“我问开店李三云,众客来到你店中,一房七客多一客,一房九客一
房空.”则房间数和客人数分别为( )
A.8,62
初中数学二元一次方程组的应用题型分类汇编——古代算术问题 2(附答案) 1.《九章算术》中记载:“今有上禾三秉,益实六斗,当下禾十秉.下禾五秉,益实一斗,当上禾 二秉.问上、下禾实一秉各几何?”其大意是:今有上等稻子三捆,若打出来的谷子再加六斗, 则相当于十捆下等稻子打出来的谷子.有下等稻子五捆,若打出来的谷子再加一斗,则相 当于两捆上等稻子打岀来的谷子.问上等、下等稻子每捆能打多少斗谷子?设上等稻子每 捆能打 x 斗谷子,下等稻子每捆能打 y 斗谷子,根据题意,可列方程组为( )
思是:“用一根绳子去量一根木条,绳子剩余 尺;将绳子对折再量木条,木条剩余 尺,
问绳子、木条长多少尺?”,设绳子长为 尺,木条长为 尺,根据题意,所列方程组正
确的是( )
A.
B.
C.
D.
13.《九章算术》中有这样一个问题:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一 雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?其大意如下:今有 5 只雀、6 只燕,分别放一起用衡器称,聚在一起的雀重,燕轻.将 1 只雀、1 只燕交 换位置放,两边重量相等.5 只雀、6 只燕重量为 1 斤(注:声代 1 斤=16 两).问每只雀、 燕各重多少两? 14.程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了 算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和 尚得几丁.意思是:有 100 个和尚分 100 个馒头,如果大和尚 1 人分 3 个,小和尚 3 人 分 1 个,正好分完,大、小和尚各有多少人? 15.《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人 各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱 48 文;如果乙得到甲所有钱
七年级数学下册第八章二元一次方程组题型总结及解题方法(带答案)
七年级数学下册第八章二元一次方程组题型总结及解题方法单选题1、若关于x 、y 的二元一次方程组{ax +3y =74x +y =9 与{−x +5y =35x +by =8的解相同,则√a −b 的值为( ) A .1B .±1C .2D .±2答案:C分析:先解方程组{−x +5y =34x +y =9,再把方程组的解代入ax +3y =7和5x +by =8,求出a 、b 的值,代入计算即可.解:∵关于x 、y 的二元一次方程组{ax +3y =74x +y =9 与{−x +5y =35x +by =8的解相同, ∴方程组{−x +5y =34x +y =9的解满足四个方程, 解方程组{−x +5y =34x +y =9得,{x =2y =1 , 把{x =2y =1分别代入ax +3y =7和5x +by =8得, 2a +3=7,10+b =8,解得,a =2,b =−2;∴√a −b =√2+2=2,故C 正确.故选:C .小提示:本题考查了解二元一次方程组、二元一次方程的解和算术平方根,解题关键是明确同解方程的意义,熟练掌握解二元一次方程组的步骤.2、如图所示的是由截面为同一种长方形的墙砖粘贴的部分墙面,其中三块横放的墙砖比两块竖放的墙砖低30cm ,两块竖放的墙砖比两块横放的墙砖高50cm ,则每块墙砖的截面面积是( )A .600cm 2B .900cm 2C .1200cm 2D .1500cm 2答案:B分析:设每块墙砖的长为x cm ,宽为y cm ,观察图形,根据长方形墙砖长宽之间的关系,即可得出关于x ,y 的二元一次方程组,解之即可求出x ,y 的值,再利用长方形的面积计算公式,即可求出每块墙砖的截面面积. 解:设每块墙砖的长为x cm ,宽为y cm ,由题意得:{2x −3y =302x −2y =50, 解得:{x =45y =20, ∴xy =45×20=900,∴每块墙砖的截面面积是900cm 2. 故选:B小提示:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3、已知{x =2y =1是二元一次方程组{mx +ny =8nx − my =1的解,则2m −n 的算术平方根为( ) A .±2B .√2C .2D .4答案:C分析:把x 与y 的值代入方程组求出m 与n 的值,即可求出所求.∵{x =2y =1是二元一次方程组{mx +ny =8nx − my =1的解, ∴{2m +n =82n −m =1, 解得{m =3n =2∴√2m −n =√2×3−2=√4=2即2m −n 的算术平方根为2故选C .小提示:此题考查了解二元一次方程组,以及算术平方根,熟练掌握运算法则是解本题的关键.4、方程x −y =−2与下面方程中的一个组成的二元一次方程组的解为{x =2y =4,那么这个方程可以是( ) A .3x −4y =16B .4x −y =−2C .14x +y =0D .2(x +y )=6x 答案:D分析:根据方程组的解的定义及二元一次方程组的定义求解.解:把方程组的解代入A ,左边=6−16=−10≠16,故不是A 的解;B 是分式方程,不是二元一次方程,故排除B ;把方程组的解代入C ,左边=12+4≠0,故不是C 的解;把方程组的解代入D ,左边=2(2+4)=12,右边=12,故是D 的解;故选:D .小提示:本题考查了二元一次方程组的解,代入验证是解题的关键.5、如图,AB ⊥BC ,∠ABC 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x °,y °,那么下面可以求出这两个角的度数的方程组是( ).A .{x +y =90x =y −15B .{x +y =90x =2y +15C .{x +y =90x =15−2yD .{x +y =90x =2y −15答案:A分析:此题中的等量关系有:∠ABD +∠DBC =90°,∠ABC =2∠DBC −15° ,根据等量关系列出方程即可.设∠ABD 和∠DBC 的度数分别为x °,y °,则有{x +y =90x +y =2y −15整理得:{x +y =90x =y −15, 故选:A .小提示:本题考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.6、解方程组{2x +3y =5①x −2y =−1②时,经过下列步骤,能消去末知数y 的是( ) A .①×2−②×3B .①×3−②×2C .①×3+②×2D .①×2+②×3答案:D分析:由消去未知数y ,可得方程组中y 的未知数系数化为绝对值相等,符号相反,①×2+②×3可消去y . 解:∵消去未知数y ,解方程组{2x +3y =5①x −2y =−1②中y 的未知数系数化为绝对值相等,符号相反, ∴①×2+②×3可消去y .故选:D小提示:本题考查二元一次方程组加减消元法,关键是化某一未知数系数化为绝对值相等,系数相同用减法,系数相反用加法.7、五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为( )A .30B .26C .24D .22答案:B分析:设1艘大船与1艘小船分别可载x 人,y 人,根据“1艘大船与2艘小船一次共可以满载游客32人”和“2艘大船与1艘小船一次共可以满载游客46人”这两个等量关系列方程组,解出(x +y )即可.设1艘大船与1艘小船分别可载x 人,y 人,依题意:{x +2y =32①2x +y =46②(①+②)÷3得:x+y=26故选:B.小提示:本题考查二元一次方程组的实际应用;注意本题解出(x+y)的结果即可.8、利用两块长方体测量一张桌子的高度,首先按图①方式放置,再交换木块的位置,按图②方式放置,测量的数据如图,则桌子的高度是()A.73cmB.74cmC.75cmD.76cm答案:D设桌子的高度为hcm,第一个长方体的长为xcm,第二个长方体的宽为ycm,由第一个图形可知桌子的高度为:h-y+x=79,由第二个图形可知桌子的高度为:h-x+y=73,两个方程相加得:(h-y+x)+(h-x+y)=152,解得:h=76cm.故选D.9、方程组{2x+y=33x−z=7x−y+3z=0的解为()A.{x=2y=1z=−1B.{x=2y=−1z=1C.{x=2y=−1z=−1D.{x=2y=1z=1答案:C分析:根据代入消元法解三元一次方程组即可求解.解:{2x+y=3①3x−z=7②x−y+3z=0③,由①得y=3−2x④,由②得z=3x−7⑤,将④⑤代入③得,x−(3−2x)+3(3x−7)=0,解得x=2,将x=2代入④得y=−1,将x=2代入⑤得z=−1,∴原方程组的解为{x=2y=−1z=−1.故选C.小提示:本题考查了解三元一次方程组,掌握代入消元是解题的关键.10、一个三角形三条边长的比是2:4:5,最长的边比最短的边长6cm,这个三角形的周长为().A.20cm B.21cm C.22cm D.20cm或22cm答案:C分析:设三角形三边分别为2xcm、4xcm、5xcm,由最长边比最短边长6cm,列方程即可求解.解:设三角形三边分别为2xcm、4xcm、5xcm.则:5x-2x=6,解得:x=2,∴三角形三边分别为4cm、8cm、10cm,∴这个三角形的周长为22cm.故选:C.小提示:本题考查了一元一次方程的应用及三角形的知识,解题的关键是根据三角形的三边的比设出三边的长,难度不大.填空题11、有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元.答案:100或85.分析:设所购商品的标价是x元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.解:设所购商品的标价是x元,则①所购商品的标价小于90元,x﹣20+x=150,解得x =85;②所购商品的标价大于90元,x ﹣20+x ﹣30=150,解得x =100.故所购商品的标价是100或85元.故答案为100或85.小提示:本题主要考查了一元一次方程的应用,正确运用分类讨论思想是解答本题的关键.12、已知x ,y 满足方程组{x +5y =63x −y =2,则x +y 的值为______. 答案:2分析:利用整体思想①+②的得出结果,之后等式两边都除以4,即可得出x +y 的值.解:{x +5y =6①3x −y =2②, ①+②得4x +4y =8,∴x +y =2;所以答案是:2.小提示:本题主要考查了二元一次方程组的解,掌握用整体思想解决问题是解题的关键.13、一个三位数,十位数字比个位数字大1,百位数字是个位数字的2倍,把百位数字与个位数字对调,得到的三位数比原来的三位数小297,则原三位数为______.答案:643分析:设原三位数的个位数字为x ,十位数字为y ,则百位数字为2x ,由题意:十位数字比个位数字大1,把百位数字与个位数字对调,得到的三位数比原来的三位数小297,列出二元一次方程组,解方程组即可. 解:设原三位数的个位数字为x ,十位数字为y ,则百位数字为2x ,由题意得:{y =x +1100×2x +10y +x −(100x +10y +2x)=297, 解得:{x =3y =4, ∴2x =6,即原三位数为643,所以答案是:643.小提示:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14、某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元,则有______种购买方案.答案:3##三分析:设购买甲种奖品x 件,乙种奖品y 件,列出关系式,并求出x =12−3y 4,由于x ≥1,y ≥1且x ,y 都是正整数,所以y 是4的整数倍,由此计算即可.解:设:购买甲种奖品x 件,乙种奖品y 件,4x +3y =48,解得x =12−3y 4,∵x ≥1,y ≥1且x ,y 都是正整数,∴y 是4的整数倍,∴y =4时,x =12−3×44=9, y =8时,x =12−3×84=6,y =12时,x =12−3×124=3,y =16时,x =12−3×164=0,不符合题意, 故有3种购买方案,所以答案是:3.小提示:本题考查列关系式,根据题意判断出y 是4的整数倍是解答本题的关键.15、已知x 、y 满足方程组{3x +y =2021x +3y =2022,则x −y =______. 答案:−12##﹣0.5分析:方程组两方程相减得2x -2y =﹣1,两边同除以2得出x ﹣y 即可.解:{3x +y =2021①x +3y =2022② ①-②得,2x -2y =﹣1,两边同除以2得,x -y =−12, 所以答案是:−12小提示:此题考查了二元一次方程组,整体法的应用是求解此题的关键.解答题16、某工厂计划生产甲、乙两种产品,已知生产每件甲产品需要4吨A 种原料和2吨B 种原料,生产每件乙产品需要3吨A 种原料和1吨B 种原料.该厂现有A 种原料120吨,B 种原料50吨.(1)甲、乙两种产品各生产多少件,恰好使两种原料全部用完?(2)在(1)的条件下,计划每件甲产品的售价为3万元,每件乙产品的售价为5万元,可全部售出.根据市场变化情况,每件甲产品实际售价比计划上涨a %,每件乙产品实际售价比计划下降10%,结果全部出售的总销售额比原计划增加了3.5万元,求a 的值.答案:(1)甲生产15件,乙生产20件,恰好使两种原材料全部用完(2)a =30分析:(1)设甲生产x 件,乙生产y 件,根据题意得,{4x +3y =120①2x +y =50② ,进行计算即可得; (2)用市场变化后的总销售额减去原计划的总销售额即可得.(1)解:设甲生产x 件,乙生产y 件,根据题意得,{4x +3y =120①2x +y =50②由②得,y =50−2x ③将③代入①得:4x +3×(50−2x)=1202x =30x =15,将x =15代入③得:y =50−2×15=20,解得{x =15y =20则甲生产15件,乙生产20件,恰好使两种原材料全部用完.(2)解:根据题意得,3×(1+a%)×15+(1−10%)×5×20−(3×15+5×20)=3.5解得a =30.小提示:本题考查了二元一次方程的应用,一元一次方程的应用,解题的关键是理解题意,找出等量关系.17、学校举办“艺术周”创意设计展览,如图,现有一个大正方形和四个一样的小正方形,小明、小聪、小方分别用这些正方形设计出了图1,图2,图3三种图案:(1)根据图1,图2中所标数据,求出大正方形和小正方形的边长分别是多少厘米?(2)图3中四个小正方形的重叠部分也是三个一样的小正方形,求阴影部分的面积.答案:(1)大正方形边长12cm ,小正方形边长4 cm(2)8513分析:(1)设大正方形和小正方形的边长分别是x cm 和y cm ,根据题意列方程组即可得到结论;(2)设四个小正方形的重叠部分形成小正方形的边长为a cm ,根据题意列方程得到a =43,根据正方形的面积公式即可得到结论.(1)设大正方形边长x cm ,小正方形边长y cm ,依题意得{x +2y =20x −2y =4, 解得{x =12y =4, 答:大正方形和小正方形的边长分别是12cm 和4cm ;(2)设有重叠的小正方形边长a cm ,依题意得3(4−a )+4=12,解得a =43,∴阴影面积=122−4×42+3×(43)2=8513. 小提示:本题考查了二元一次方程组的应用,正方形的面积的计算,正确的识别图形是解题的关键.18、解下列二元一次方程组:(1){y =2x 3x +y -10=0(2){2x +3y =53x +2y =-5答案:(1){x =2y =4; (2){x =−5y =5. 分析:(1)根据代入消元法,将①代入②即可求得y ,再将y 代入①,即可求解;(2)根据加减消元法,①×2−②×3即可求得x ,再将x 代入②,即可求解.(1)解:{y =2x ①3x +y -10=0②, 将②代入①,可得:3x +2x -10=0,解得:x =2,将x =2代入①,可得:y =4,∴方程组的解为{x =2y =4; (2)解:{2x +3y =5①3x +2y =-5②, 由①×2-②×3,得:4x −9x =10+15,解得:x =−5,将x =−5代入①,可得:−10+3y =5,解得:y=5,∴方程组的解为{x=−5.y=5小提示:本题考查解二元一次方程组,解题的关键是熟练掌握二元一次方程组的解法-加减消元法和代入消元法.。
初中数学二元一次方程组的应用题型分类汇编——行程问题2(附答案)
故可得方程组:
5
6 2
3
x y (x 6)
y
,
10
x 36
解得:
y
30
.
故选 C.
【点睛】
此题主要考查方程组的应用,解题的关键是根据题意找到等量关系列出方程组.
3.B
【解析】
【分析】 根据甲乙两人在相距 18 千米的两地,若同时出发相向而行,经 2 小时相遇,可得 2x+2y=18, 根据甲比乙先出发 1 小时,那么在乙出发后经 4 小时甲追上乙,可得 5x-4y=18,从而可以 列出相应的方程组. 【详解】 由题意可得,
初中数学二元一次方程组的应用题型分类汇编——行程问题 2(附答案) 1.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时 15 分钟.他 骑自行车的平均速度是 250 米/分钟,步行的平均速度是 80 米/分钟.他家离学校的距离 是 2900 米.如
果他骑车和步行的时间分别为 x, ?y 分钟,列出的方程是( )
xy 1
A.{
4
250x 80 y 2900
x y 15 B.{
80x 250 y 2900
xy 1
C.{
4
80x 250 y 2900
x y 15 D.{
250x 80 y 2900
2.公司职员小王和小陈在同一办事处工作,某天下午 2 点整要参加公司总部的西部大
开发研讨会.下午小陈 1 点整从办事处出发,乘出租车于 1 点 50 分提前到达公.28 和 12
D.30 和 10
5.某部队第一天行军 5 h,第二天行军 6 h,两天共行军 120 km,且第二天比第一天多
走 2 km,设第一天和第二天行军的速度分别为 xkm/h 和 ykm/h,则符合题意的二元一次
初中数学二元一次方程组的应用题型分类汇编——行程问题(附答案)
6.如图,A、B 两地有公路和铁路相连,在这条路上有一家食品厂,它到 B 地的距离是 到 A 地的 2 倍,这家厂从 A 地购买原料,制成食品卖到 B 地.已知公路运价为 1.5 元/(公 里•吨),铁路运价为 1 元/(公里•吨),这两次运输(第一次:A 地→食品厂,第二次:食品 厂→B 地)共支出公路运费 15600 元,铁路运费 20600 元. 问:(1)这家食品厂到 A 地的距离是多少? (2)这家食品厂此次买进的原料每吨 5000 元,卖出的食品每吨 10000 元,此批食品销售 完后工厂共获利多少元?
(1)货车的速度是
m/h;
(2)当 1≤x≤5 时,求轿车对应的函数关系式
;
(3)轿车出发多少小时追上货车?
(4)当轿车与甲地相距 240km 时,货车与甲地相距多少 km?
4.列方程(组),解应用题 甲、乙两人在 400 米的环形跑道上同一起点同时背向起跑,40 秒后相遇,若甲先从起 跑点出发,半分钟后,乙也从该点同向出发追赶甲,再过 3 分钟后乙追上甲,求甲、乙 两人的速度. 5.现有甲骑电瓶车,乙骑自行车从湖州西山漾公园丝绸小镇门口出发沿同一路线匀速 前往太湖龙之梦乐园.设乙行驶的时间为 x(h),甲、乙两人距出发点的路程 S 甲、S 乙关于 x 的函数图像如图①所示;甲、乙两人之间的路程差 y 关于 x 的函数图像如图②所示: 请你解决以下问题 (1)甲的速度是_____km/h;乙的速度是______km/h; (2)对比图①、②可知:a=______;b=_____. (3)乙出发多少时间,甲、乙两人路程差为 7.5km?
(1)求出租车的起同学乘出租车从家到北国超市行驶了 5 公里,应付车费多少元? 12.岳阳到长沙的公路全长 140 千米,甲、乙两车同时从岳阳、长沙两地相向开出,0.5h 后到达同一地点,甲车比乙车多行了 20 千米,求出甲、乙两车的速度 13.从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时 3km,平路每小时走 4km, 下坡每小时走 5km,那么从甲地到乙地需 54 分钟,从乙地到甲地需 42 分钟,甲地到乙 地全程多少 km? 14.小阳骑车和步行的速度分别为 270 米/分钟和 90 米/分钟,小红每次从家步行到学校 所需吋间相同,请根据两人的对话解决如下问题: 小阳:“如果我骑车,你步行,那么我从家到学校比你少用 4 分钟”; 小红:“如果我们俩都步行,那么从家到学校我比你少用 2 分钟.”若设小阳从家到学校的
部编数学七年级下册专题07《二元一次方程组》选择题、填空题重点题型分类(解析版)含答案
专题07 《二元一次方程组》选择题、填空题重点题型分类专题简介:本份资料专攻《二元一次方程组》中“二元一次方程组的概念”、“二元一次方程组的解”、“已知方程组的解求系数”、“涉及三个未知数的方程”、“方程组有解的情况”选择、填空重点题型;适用于老师给学生作复习培训时使用或者考前刷题时使用。
考点1:二元一次方程的概念方法点拨:有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.注意:二元一次方程满足的三个条件:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式.1.有下列方程:①xy =1;②2x =3y ;③12x y -=;④x 2+y =3; ⑤314x y =-;⑥ax 2+2x +3y =0 (a =0),其中,二元一次方程有( )A .1个B .2个C .3个D .4个【答案】C【解析】略2.若关于x ,y 的方程()716m x m y ++=是二元一次方程,则m 的值为( )A .﹣1B .0C .1D .2【答案】C 【分析】根据二元一次方程的定义得出1m =且10m +¹,再求出答案即可.【详解】解:∵关于x ,y 的方程()716mx m y ++=是二元一次方程,∴1m =且10m +¹,解得:m =1,故选C .【点睛】本题考查了二元一次方程的定义,能熟记二元一次方程的定义是解此题的关键.3.若1(2)31a a x y --+=是关于x ,y 的二元一次方程,则a 的值( )A .-2B .3C .3或-3D .2或-2【答案】A【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得:|a |-1=1,且a -2≠0,解可得答案.【详解】解:由题意得:|a|-1=1,且a -2≠0,解得:a =-2,故选:A .【点睛】此题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.4.若关于x ,y 的方程258m n m n x y +-++=是二元一次方程,则mn 的值是__________.【答案】0【分析】根据二元一次方程的定义含有两个未知数并且含未知数的项的次数为1的方程是二元一次方程,建立方程组计算即可.【详解】解:∵关于x ,y 的方程258m n m n x y +-++=是二元一次方程,∴121m n m n +=ìí-+=î,解得01m n =ìí=î,∴mn =0,故答案为:0.【点睛】本题考查了二元一次方程的定义,二元一次方程组的解法,代数式的值,根据方程的定义构造方程组是解题的关键.5.若x 2a ﹣3+yb +2=3是二元一次方程,则a ﹣b =__.【答案】3【分析】先根据二元一次方程的定义求出a 、b 的值,然后代入a ﹣b 计算即可.【详解】解:∵x 2a ﹣3+yb +2=3是二元一次方程,∴2a ﹣3=1,b +2=1,∴a =2,b =﹣1,则a ﹣b =2﹣(﹣1)=2+1=3.故答案为:3.【点睛】本题考查了二元一次方程的定义,熟练掌握二元一次方程组的定义是解答本题的关键.方程的两边都是整式,含有两个未知数,并且未知数的项的次数都是1次的方程叫做二元一次方程.6.方程(1)(1)0a x a y ++-=,当a ≠___时,它是二元一次方程,当a =____时,它是一元一次方程.【答案】 ±1 1-或1【分析】根据一元一次方程的定义可得分两种情况讨论,当10a +=,即1a =-时;当10a -=,即1a =时,方程为一元一次方程,即可得a 的值;根据二元一次方程的定义可得10a +¹且10a -¹,解可得a 的值.【详解】解:Q 关于x 的方程(1)(1)0a x a y ++-=,是二元一次方程,10a \+¹且10a -¹,解得:1a ¹±;Q 方程(1)(1)0a x a y ++-=,是一元一次方程,分类讨论如下:当10a +=,即1a =-时,方程为20y -=为一元一次方程;当10a -=,即1a =时,方程为20x =为一元一次方程;故答案是:±1;1-或1.【点睛】本题主要考查了二元一次方程和一元一次方程的定义,解题的关键是掌握一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.7.方程23x y -=是______元____次方程,它可以变形为y =_______,也可以变形为x =________.【答案】 二 一 23x - 32y +【分析】如果一个方程含有两个未知数,并且所含未知项的次数都为1次,那么这个整式方程就叫做二元一次方程.根据定义和等式性质可得.【详解】方程23x y -=是二元一次方程,它可以变形为y =23x -,也可以变形为x=32y +故答案为:二,一,23x -,32y +【点睛】考核知识点:二元一次方程.理解二元一次方程的定义和等式基本性质是关键.考点2:二元一次方程的解方法点拨:使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一个解.对二元一次方程的解的理解应注意以下几点:①一般地,一个二元一次方程的解有无数个,且每一个解都是指一对数值,而不是指单独的一个未知数的值;②二元一次方程的一个解是指使方程左右两边相等的一对未知数的值;反过来,如果一组数值能使二元一次方程左右两边相等,那么这一组数值就是方程的解;③在求二元一次方程的解时,通常的做法是用一个未知数把另一个未知数表示出来,然后给定这个未知数一个值,相应地得到另一个未知数的值,这样可求得二元一次方程的一个解.1.已知x =2,y =﹣1是方程ax +y =3的一组解,则a 的值为( )A .2B .1C .﹣1D .﹣2【答案】A【分析】把x =2,y =﹣1代入方程ax +y =3中,得到2a -1=3,解方程即可.【详解】∵x =2,y =﹣1是方程ax +y =3的一组解,∴2a -1=3,解得a =2,故选A .【点睛】本题考查了二元一次方程的解即使方程两边相等的一组未知数的值,一元一次方程的解法,正确理解定义,规范解一元一次方程是解题的关键.2.已知x =3,y =-2是方程2x +my =8的一个解,那么m 的值是( )A .-1B .1C .-2D .2【答案】A【分析】根据题意把x =3,y =-2代入方程2x +my =8,可得关于m 的一元一次方程,解方程即可求出m 的值.【详解】解:把x =3,y =-2代入方程2x +my =8,可得:628m -=,解得:1m =-.故选:A.【点睛】本题考查二元一次方程的解的定义以及解一元一次方程,注意掌握一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.3.方程x +y =6的正整数解有( )A .5个B .6个C .7个D .无数个【答案】A【分析】根据题意求二元一次方程的特殊解,根据解为正整数,分别令1,2,3,4,5x =进而求得对应y 的值即可【详解】解:方程的正整数解有15x y =ìí=î,24x y =ìí=î,33x y =ìí=î,42x y =ìí=î,51x y =ìí=î共5个,故选:A .【点睛】本题考查了求二元一次方程的特殊解,理解解为正整数是解题的关键.4.某班组织20名同学去春游,同时租用A 、B 两种型号的车辆,A 种车每辆有8个座位,B 种车每辆有4个座位,要求租用的车辆不留空座,也不能超载,那么可以租用______辆A 种车.【答案】1或2##2或1【分析】设租用A 型车x 辆,B 型车y 辆,再列方程8420,x y +=再求解方程的正整数解即可.【详解】解:设租用A 型车x 辆,B 型车y 辆,则8420,x y +=52,y x \=-由题意得:,x y 为正整数,13x y ì=ï\í=ïî或2,1x y ì=ïí=ïî所以租用A 型车1辆或2辆,故答案为:1或2【点睛】本题考查的是二元一次方程的正整数解的应用,掌握“利用二次元一次方程的正整数解确定方案”是解本题的关键.5.若21x y =ìí=-î是方程x +ay =3的一个解,则a 的值为 ______.【答案】1-【分析】将2,1x y ==-代入方程可得一个关于a 的一元一次方程,解方程即可得.【详解】解:由题意,将2,1x y ==-代入3x ay +=得:23a -=,解得1a =-,故答案为:1-.【点睛】本题考查了二元一次方程的解、一元一次方程,掌握理解二元一次方程的解的定义(一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解)是解题关键.6.小明心里想好一个两位数,将十位数字乘2,然后加3,再将所得的新数乘5,最后加原两位数的个位数字,结果是94.算算看小明心里想的两位数是 _____.【答案】79【分析】设小明想的两位数的个位数字为a ,十位数字为b ,根据题意列出方程,然后根据1≤b ≤9,0≤a ≤9且a ,b 为整数,从而确定二元一次方程的解.【详解】解:设小明想的两位数的个位数字为a ,十位数字为b ,由题意可得:5(2b +3)+a =94,整理,可得:10b +a =79,∵1≤b ≤9,0≤a ≤9且a ,b 为整数,∴a =9,b =7,∴小明心里想的两位数是79.故答案为:79【点睛】本题主要考查了二元一次方程的应用,明确题意,准确得到等量关系是解题的关键.7.已知12x y =ìí=-î是方程5ax by +=的一组解,则24a b --=______.【答案】1【分析】把12xy=ìí=-î代入方程5ax by+=得出25a b-=,再变形,最后代入求出即可.【详解】解:Q12xy=ìí=-î是关于x、y的方程5ax by+=的一组解,\代入得:25a b-=,24(2)4541a b a b\--=--=-=,故答案是:1.【点睛】本题考查了二元一次方程的解和求代数式的值,解题的关键是能够整体代入求值.8.在二元一次方程3x+y=12的解中,x和y是相反数的解是_______.【答案】66 xy=ìí=-î【分析】根据x和y是相反数可得x=﹣y,然后代入原方程求解即可.【详解】解:∵x和y是相反数,∴x=﹣y,把x=﹣y代入原方程中,可得:﹣3y+y=12,解得:y=﹣6,∴x=6,∴在二元一次方程3x+y=12的解中,x和y是相反数的解是66xy=ìí=-î,故答案为:66xy=ìí=-î.【点睛】本题考查二元一次方程的解,理解方程的解和互为相反数的概念是解题关键.9.某销商10月份销售B、C三种奶茶的数量之比为2:3:4,A、B、C三种奶茶的单价之比为1:2:3.11月份该销售商加大了宣传力度,并根据季节对三种奶茶的价格作了适当的调整,预计11月份三种奶茶的销售总额将比10月份有所增加,其中A奶茶增加的销售额占11月份销售总额的110,A、C奶茶的销售额之比是2:9.11月份三种奶茶的单价之和比10月份增加2336.11月份C奶茶的数量在10月份基础上上调50%,A、B奶茶的数量不变,则11月份A、B奶茶的单价之比为___.【答案】9:7【分析】根据三种饮料的数量比、单价比,可以按照比例设未知数,即10月份A、B、C三种饮料的销售的数量和单价分别为2a、3a、4a;b、2b、3b.可以表示出10月份各种饮料的销售额和总销售额.因问题中涉及到A的10月销售数量,因此可以设11月份A的销售量为x ,再根据A 11月份的单价求出11月份A 的销售额和C 的销售额.可以根据饮料增加的销售额占11月份销售总额比,用未知数列出等式关键即可求解出.【详解】解:由题意可设10月份A 、B 、C 三种饮料的销售的数量为2a 、3a 、4a ,单价为b 、2b 、3b ;11月份A 的销售量为x ,则11月份A 、B 、C 三种饮料的销售的数量为2a 、3a 、6a ;10\月份奶茶销售额为2324320a b a b a b ab ×+×+×=,11月份A 种奶茶的销售额为:2ax ,A Q 、C 奶茶的销售额之比是2:9,11\月份C 种奶茶的销售额为:9ax ,11\月份C 种奶茶的价格为1.5x ,11Q 月份三种奶茶的单价之和比10月份增加2336,11\月份三种奶茶的单价之和为2359(23)(1)366b b b b +++=,11\月份B 种奶茶的单价为:5959( 1.5)( 2.5)66b x x b x --=-,A Q 奶茶增加的销售额占11月份销售总额的110,15922[113( 2.5)]106ax ab ax a b x \-=+-,解得3x b =,\5972.563b x b -=,73:9:73b b \=.即11月份A 、B 奶茶的单价之比为为9:7.故答案为:9:7.【点睛】此题考查的是二元一次方程的应用,掌握用代数式表示每个参数,并用整体法解题是关键.10.使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.如果一个二元一次方程的解中两个未知数的绝对值相等,那么我们把这个解称做这个二元一次方程的等模解.二元一次方程2x ﹣5y =7的等模解是____.【答案】7373x y ì=-ïïíï=-ïî或11x y =ìí=-î【详解】解:根据题意得:257x y x y =ìí-=î或257x y x y =-ìí-=î,解得:7373x y ì=-ïïíï=-ïî或11x y =ìí=-î,故答案为:7373x y ì=-ïïíï=-ïî或11x y =ìí=-î.【点睛】本题考查了解二元一次方程组,解题的关键是需要分两种情况解方程组,注意不要漏解.考点3:已知方程组的解求系数方法点拨:把方程的解代入原方程 此时原方程就变成含有未知系数的方程了 从这个方程中解出你要求的未知数1.若关于x 、y 的二元一次方程25327x y m x y m +=ìí-=î的解,也是方程320x y +=的解,则m 的值为( )A .-3B .-2C .2D .无法计算【答案】C【分析】将m 看作已知数值,利用加减消元法求出方程组的解,然后代入320x y +=求解即可得.【详解】解:25327x y m x y m +=ìí-=î①②,+①②得:412x m =,解得:3x m =,将3x m =代入①可得:,解得:y m =,∴方程组的解为:3x m y m =ìí=î,∵方程组的解也是方程320x y +=的解,代入可得920m m +=,解得2m =,故选:C .【点睛】题目主要考查解二元一次方程组求参数,熟练掌握解二元一次方程组的方法是解题关键.2.若方程组233x y k x y +=ìí-=-î的解满足20x y +>,则k 的值可能为( )A .-1B .0C .1D .2【分析】将两个方程组相加得到:233+=-x y k ,再由330->k 即可求出1k >进而求解.【详解】解:由题意可知:233x y k x y +=ìí-=-îL L ①②,将①+②得到:233+=-x y k ,∵20x y +>,∴330->k ,解得1k >,故选:D .【点睛】本题考查二元一次方程组的解法及不等式的解法,解题关键是求出233+=-x y k ,进而求出k 的取值范围.3.若21x y =-ìí=î是方程组17ax by bx ay +=ìí+=î的解,则()()a b a b +-的值为( )A .16B .-1C .-16D .1【答案】C【分析】把x 与y 的值代入方程组,求出a +b 与a -b 的值,代入原式计算即可求出值.【详解】解:把21x y =-ìí=î代入方程组得2127a b b a -+=ìí-+=î,两式相加得8a b +=-;两式相差得:2a b -=,∴()()16a b a b +-=-,故选C .【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.4.己知33x k y k =ìí=-î是关于x ,y 的二元一次方程227x y -=的解,则k 的值是( )A .3B .3-C .2D .2-【答案】A 【分析】将33x k y k =ìí=-î代入关于x ,y 的二元一次方程2x -y =27得到关于k 的方程,解这个方程即可得到k 的值.【详解】解:将33x k y k =ìí=-î代入关于x ,y 的二元一次方程2x -y =27得:2×3k -(-3k )=27.∴k =3.【点睛】本题主要考查了二元一次方程的解和解一元一次方程,将方程的解代入原方程是解题的关键.5.若关于x ,y 的方程组48ax by ax by -=-ìí+=î的解是23x y =ìí=î,则方程组(3)(1)4(3)(1)8a x b y a x b y +--=-ìí++-=î的解是( )A .14x y =-ìí=îB .23x y =ìí=îC .14x y =ìí=-îD .52x y =ìí=î【答案】A 【分析】通过观察所给方程组的关系可得3213x y +=ìí-=î,求出x 、y 即可.【详解】解:∵关于x ,y 的方程组48ax by ax by -=-ìí+=î的解是23x y =ìí=î,∴234238a b a b -=-ìí+=î,又∵(3)(1)4(3)(1)8a xb y a x b y +--=-ìí++-=î,∴3213x y +=ìí-=î,解得14x y =-ìí=î,\方程组(3)(1)4(3)(1)8a x b y a x b y +--=-ìí++-=î的解为14x y =-ìí=î,故选:A .【点睛】本题考查二元一次方程组的解,解题的关键是要知道两个方程组之间的关系.6.已知关于x 、y 的二元一次方程组356310x y x ky +=ìí+=î给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( )A .①②③B .①③C .②③D .①②【答案】A【分析】根据二元一次方程组的解法逐个判断即可.【详解】Q 当5k =时,方程组为3563510x y x y +=ìí+=î,此时方程组无解\结论①正确由题意,解方程组35661516x y x y +=ìí+=î得:2345x y ì=ïïíï=ïî把23x =,45y =代入310x ky +=得2431035k ´+=解得10k =,则结论②正确Q 解方程组356310x y x ky +=ìí+=î得:20231545x k y k ì=-ïï-íï=ï-î又k Q 为整数x \、y 不能均为整数\结论③正确综上,正确的结论是①②③故选:A .【点睛】本题考查了二元一次方程组的解与解法,掌握二元一次方程组的解法是解题关键.7.若关于x 、y 的二元一次方程组2133x y m x y -=+ìí+=î的解满足x +y =1,则m 的值为__________.【答案】﹣1【分析】由①+②,得:2224x y m +=+ ,从而得到2x y m +=+ ,再由x +y =1,可得到21+=m ,即可求解.【详解】解:2133x y m x y -=+ìí+=î①②,由①+②,得:2224x y m +=+ ,∴2x y m +=+ ,∵x +y =1,∴21+=m ,解得:1m =- .故答案为:-1【点睛】本题主要考查了解二元一次方程和二元一次方程的解,由①+②得到2x y m +=+ 是解题的关键.8.已知13x y =ìí=î和02x y =ìí=-î都是方程ax y b -=的解,则b a 的平方根等于______.【答案】5±【分析】由题意根据方程的解满足方程,可得关于a ,b 的方程组,进而解方程组,再根据有理数的乘方和有理数的平方根的定义即可得答案.【详解】解:由13x y =ìí=î和02x y =ìí=-î都是方程ax y b -=的解,可得:30(2)a b b-=ìí--=î,解得:52a b =ìí=î,a 的值是5,b 的值是22525b a \==25\的平方根为:5±b a \的平方根为:5±故答案为:5±【点睛】本题考查二元一次方程的解,平方根的定义,注意利用方程的解满足方程得出关于a ,b 的方程组是解题的关键.9.已知11x y =ìí=î是二元一次方程组71mx ny nx my +=ìí-=î的解,则mn 的相反数为______.【答案】-12【分析】把11x y =ìí=î代入方程组求出m ,n 即可;【详解】把11x y =ìí=î代入71mx ny nx my +=ìí-=î中得:71m n n m +=ìí-=î①②,+①②得:28n =,解得:4n =,把4n =代入①中得:3m =,∴方程组的解是34m n =ìí=î,∴3412mn =´=,∴mn 的相反数是12-;故答案是:12-.【点睛】本题主要考查了二元一次方程组的求解,代数式求值,相反数的性质,准确计算是解题的关键.10.已知13x y =ìí=î是关于x ,y 的二元一次方程组()2715ax y x b y +=ìí--=-î的解,则1123a b -的值为____________.【答案】0【分析】结合题意,根据二元一次方程组的性质,将13x y =ìí=î代入到原方程组,得到关于a 和b 的二元一次方程组,通过求解即可得到a 和b ,结合代数式的性质计算,即可得到答案.【详解】∵13x y =ìí=î是关于x ,y 的二元一次方程组()2715ax y x b y +=ìí--=-î的解∴将13x y =ìí=î代入到()2715ax y x b y +=ìí--=-î,得()2371315a b +=ìí--=-î∴23a b =ìí=î∴1111023a b -=-=故答案为:0.【点睛】本题考查了二元一次方程组、代数式的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.考点4:涉及三个未知数的方程方法点拨:(1)先列出三元一次方程组,再化简为二元一次方程组,接着再化成一元一次方程,解出一个未知数的值,然后代入求出第二、第三个未知数的值.(2)求出相关量。
最新初中数学试卷二元一次方程组易错压轴解答题题分类汇编(附答案)
最新初中数学试卷二元一次方程组易错压轴解答题题分类汇编(附答案)一、二元一次方程组易错压轴解答题1.阅读下列材料,然后解答后面的问题.我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需求出其正整数解.例:由2x+3y=12得y==4﹣ x(x,y为正整数).∴则有0<x<6,又∵y=4﹣ x为正整数,∴ x为正整数.由2与3互质,可知x为3的倍数,从而x=3,代入y=4﹣ x=2.∴2x+3y=12的正整数解为 .问题:(1)请你写出方程3x+y=7的一组正整数解:________.(2)若为自然数,则满足条件的x值有 .A.2个B.3个C.4个D.5个(3)为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品至少购买1件),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去180元,问有几种购买方案.2.关于x,y的二元一次方程ax+by=c(a,b,c是常数),b=a+1,c=b+1.(1)当时,求c的值.(2)当a=时,求满足|x|<5,|y|<5的方程的整数解.(3)若a是正整数,求证:仅当a=1时,该方程有正整数解.3.青山化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料经铁路120km和公路10km运回工厂,制成每吨8000元的产品经铁路110km和公路20km销售到B地.已知铁路的运价为1.2元/(吨·千米),公路的运价为1.5元/(吨·千米),且这两次运输共支出铁路运费124800元,公路运费19500元.(1)设原料重x吨,产品重y吨,根据题中数量关系填写下表原料x吨产品y吨合计(元)铁路运费124800公路运费19500(2)这批产品的销售款比原料费与运输费的和多多少元?4.某集团购买了150吨物资打算运往某地支援,现有甲、乙、丙三种车型供选择,每辆汽车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)10001200150024000元,问分别需甲、乙两种车型各多少辆?(2)若该集团决定用甲、乙、丙三种汽车共18辆同时参与运送,请你写出可能的运送方案,并帮助该集团找出运费最省的方案(甲、乙、丙三种车辆均要参与运送).5.有大小两种货车,3辆大货车与2辆小货车一次可以运货21吨,2辆大货车与4辆小货车一次可以运货22吨.(1)每辆大货车和每辆小货车一次各可以运货多少吨?(2)现有这两种货车共10辆,要求一次运货不低于35吨,则其中大货车至少多少辆?(用不等式解答)(3)日前有23吨货物需要运输,欲租用这两种货车运送,要求全部货物一次运完且每辆车必须装满.已知每辆大货车一次运货租金为300元,每辆小货车一次运货租金为200元,请列出所有的运输方案井求出最少租金.6.菜矿泉水厂在山脚下筑有水池蓄水,山泉水不停地流入水池,水池底部有大小两个排水口,(1)当蓄水到吨时,需要截住泉水清理水池。
二元一次方程(组)应用题专题讲解及练习(附答案)
实际问题与二元一次方程组(一) 要点一.常见的一些等量关系 1.和差倍分问题:增长量=原有量×增长率 较大量=较小量+多余量,总量=倍数×倍量. 2.产品配套问题:解这类问题的基本等量关系是:加工总量成比例.3.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量.4.利润问题:商品利润=商品售价-商品进价,=100% 利润利润率进价. 要点二.实际问题与二元一次方程组 1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.2.列二元一次方程组解应用题的一般步骤: 设:用两个字母表示问题中的两个未知数; 列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组); 解:解方程组,求出未知数的值; 验:检验求得的值是否正确和符合实际情形; 答:写出答案.例题讲解题型一.和差倍分问题例1.电子商务的快速发展逐步改变了人们的生活方式,网购已悄然进入千家万户.李阿姨在淘宝网上花220元买了1个茶壶和10个茶杯,已知茶壶的单价比茶杯的单价的4倍还多10元.请问茶壶和茶杯的单价分别是多少元?【跟踪训练】根据如图提供的信息,可知一个热水瓶的价格是( )A .7元B .35元C .45元D .50元题型二.配套问题例2. 某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?【跟踪训练】某家具厂生产一种方桌,设计时13m的木材可做50个桌面或300条桌腿.现有103m的木材,怎样分配桌面和桌腿使用的木材,才能使桌面和桌腿刚好配套,并指出可生产多少张方桌?(提示:一张方桌有一个桌面,4条桌腿). 题型三.工程问题例3.一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问:两人每天各做多少个零件?题型4.利润问题例4.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲24 36乙33 48(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?【跟踪训练】王师傅下岗后开了一家小商店,上周他购进甲乙两种商品共50件,甲种商品的进价是每件35元,利润率是20%,乙种商品的进价是每件20元,利润率是15%,共获利278元,你知道王师傅分别购进甲乙两种商品各多少件吗专题练习(一)一、选择题1.有一些苹果箱,若每只装苹果25 kg,则剩余40 kg无处装;若每只装30 kg,则还有20个空箱,这些苹果箱有( ) .A.12只 B.6只 C.112只 D.128只2.幸福中学七年级学生到礼堂开会,若每条长椅坐5人,则少10条长椅,若每条长椅坐6人,则又多余2条长椅,设学生有x人,长椅有y条,依题意得方程组 ( ) .A.5105662x yx y=+⨯⎧⎨=-⨯⎩B.51062x yx y=-⎧⎨=+⎩C.5105662x yx y=-⨯⎧⎨=+⨯⎩D.51062x yx y=+⎧⎨=-⎩3.十一旅游黄金周期间,某景点举办优惠活动,成人票和儿童票均有较大折扣,王明家去了3个大人和4个小孩,共花了400元,李娜家去了4个大人和2个小孩,共花了400元,王斌家计划去3个大人和2个小孩,请你帮助他算一下,需要准备多少门票钱?()A.300元 B.310元 C.320元 D.330元4.王力在一天内以每件80元的价格卖了两件上衣,其中一件赢利20%,一件赔了20%,则在这次买卖中他( ) .A.赔了10元 B.赚了10元C.赔了约7元 D.赚了约7元5.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺帽和生产螺栓的数分别为()A.50人,40人 B.30人,60人C.40人,50人 D.60人,30人6.某校七年级(2)班40名同学为四川地震灾区捐款,共捐了100元,捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可列方程组( ) .A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩二、填空题7.端午节时,王老师用72元钱买了荷包和五彩绳共20个.其中荷包每个4元,五彩绳每个3元,设王老师购买荷包x个,五彩绳y个,根据题意,列出的方程组是________.8.根据图中所给的信息,每件T恤和每瓶矿泉水的价格分别是元和元.9.一张试卷有25道题,做对一道得4分,做错一道扣1分,小明做了全部试题共得70分,则他做对了______道题.10.已知甲数的2倍比乙数大30,乙数的3倍比甲数的4倍少20,求甲、乙两数,若设甲、乙两数分别为x、y,可得方程组________,这两数分别为________.11.如图,3个纸杯整齐地叠放在一起,总高度约为9cm,8个纸杯整齐地叠放在一起,总高度约为14cm,则100个这样的纸杯整齐叠放在一起时,它的高度约是________ cm.12.“六一”儿童节,某动物园的成人门票每张8元,儿童门票半价(即每张4元),全天共售出门票3000张,共收入15600元,则这一天售出了成人票张儿童票张。
(专题精选)初中数学方程与不等式之二元一次方程组分类汇编附答案
(专题精选)初中数学方程与不等式之二元一次方程组分类汇编附答案一、选择题1.关于x、y的方程组222x ymx y m+=⎧⎨+=+⎩的解为整数,则满足这个条件的整数m的个数有()A.4个B.3个C.2个D.无数个【答案】A【解析】【分析】先解二元一次方程组x、y,然后利用解为整数解题即可【详解】解方程组222x ymx y m+=⎧⎨+=+⎩得到242m xmym ⎧=⎪⎪-⎨⎪=⎪-⎩因为方程组的解为整数,所以m可以为0、1、3、4,所以满足条件的m的整数有4个,选A【点睛】本题主要考查二元一次方程组的解,解出x、y再利用解为整数求解是本题关键2.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套,现有120张白铁皮,设用x张制盒身,y张制盒底,得方程组()A.1204016x yy x+=⎧⎨=⎩B.1204332x yy x+=⎧⎨=⎩C.12040210x yy x+=⎧⎨=⨯⎩D.以上都不对【答案】C【解析】【分析】根据题意可知,本题中的等量关系是(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,从而列方程组.【详解】解:根据题意,盒身的个数×2=盒底的个数,可得;2×10x=40y;制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,可得x+y=120,故可得方程组12040210x y y x +=⎧⎨=⨯⎩. 故选:C .【点睛】本题考查了根据实际问题抽象二元一次方程组的知识,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.3.甲乙两人同解方程 2{78ax by cx y +=-= 时,甲正确解得 3{2x y ==- ,乙因为抄错c 而得 2{2x y =-= ,则a+b+c 的值是( )A .7B .8C .9D .10 【答案】A【解析】【分析】根据题意可以得到a 、b 、c 的三元一次方程组,从而可以求得a 、b 、c 的值,本题得以解决.【详解】解:根据题意可知,∴3a-2b=2,3c+14=8,-2a+2b=2∴c=-2,a=4,b=5∴a+b+c=7.故答案为:A.【点睛】此题考查二元一次方程组的解,解题的关键是明确题意,找出所求问题需要的条件.4.《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料,下卷收集了一些算术难题,“鸡兔同笼”便是其中一题.下卷中还有一题,记载为:“今有甲乙二人,持钱各不知数.甲得乙中半,可满四十八;乙得甲太半,亦满四十八.问甲、乙二人持钱各几何?”意思是:“甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的23,那么乙也共有钱48文.问甲、乙二人原来各有多少钱?”设甲原有钱x 文,乙原有钱y 文,可得方程组( ) A .14822483x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩ B .14822483y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩ C .14822483x y y x ⎧-=⎪⎪⎨⎪-=⎪⎩ D .14822483y x x y ⎧-=⎪⎪⎨⎪-=⎪⎩【解析】【分析】根据题意,通过题目的等量关系,结合题目所设未知量列式即可得解.【详解】设甲原有x文钱,乙原有y文钱,根据题意,得:14822483x yy x⎧+=⎪⎪⎨⎪+=⎪⎩,故选:A.【点睛】本题主要考查了二元一次方程组的实际应用,准确设出未知量根据等量关系列式求解是解决本题的关键.5.已知二元一次方程1342x y-=的一组解是x ay b=⎧⎨=⎩,则63a b-+的值为()A.11 B.7 C.5 D.无法确定【答案】A【解析】【分析】把二元一次方程12x-3y=4的一组解先代入方程,得12a-3b=4,即a-6b=8,然后整体代入求出结果.【详解】∵x ay b=⎧⎨=⎩是二元一次方程12x-3y=4的一组解,∴12a-3b=4,即a-6b=8,∴a-6b+3=8+3=11.故选:A.【点睛】此题考查二元一次方程的解,解题的关键是运用整体代入的方法.6.若关于x,y的方程组2315x y mx y+=-⎧⎨-=⎩的解满足x+y=3,则m的值为 ( )A.-2 B.2 C.-1 D.1【解析】【分析】首先把m 看成常数,然后进一步解关于x 与y 的方程组,求得用m 表示的x 与y 的值后,再进一步代入3x y +=加以求解即可.【详解】由题意得:2315x y m x y +=-⎧⎨-=⎩①②, ∴由①−②可得:()2315x y x y m +--=--,化简可得:336y m =-,即:2y m =-,将其代入②可得:25x m -+=,∴3x m =+∵3x y +=,∴323m m ++-=,∴1m =,故选:D.【点睛】本题主要考查了二元一次方程组的综合运用,熟练掌握相关方法是解题关键.7.下列4组数值,哪个是二元一次方程2x+3y =5的解?( )A .035x y =⎧⎪⎨=⎪⎩B .11x y =⎧⎨=⎩C .23x y =⎧⎨=-⎩D .41x y =⎧⎨=⎩【答案】B【解析】【分析】 二元一次方程2x+3y =5的解有无数个,所以此题应该用排除法确定答案,分别代入方程组,使方程左右相等的解才是方程组的解.【详解】A 、把x =0,y =35代入方程,左边=0+95=95≠右边,所以不是方程的解; B 、把x =1,y =1代入方程,左边=右边=5,所以是方程的解;C 、把x =2,y =﹣3代入方程,左边=﹣5≠右边,所以不是方程的解;D 、把x =4,y =1代入方程,左边=11≠右边,所以不是方程的解.故选B .【点睛】 此题考查二元一次方程的解的定义,要理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.8.如图,将长方形ABCD 的一角折叠,折痕为AE ,∠BAD 比∠BAE 大18°.设∠BAE 和∠BAD 的度数分别为x ,y ,那么x ,y 所适合的一个方程组是( )A .1890y x y x -=⎧⎨+=⎩B .18290y x y x -=⎧⎨+=⎩C .182y x y x -=⎧⎨=⎩D .18290x y y x -=⎧⎨+=⎩ 【答案】B【解析】【分析】首先根据题意可得等量关系:①∠BAD-∠BAE 大18°;②∠BAD+2∠BAE=90°,根据等量关系列出方程组即可.【详解】解:设∠BAE 和∠BAD 的度数分别为x°和y°,依题意可列方程组:18290y x y x -=⎧⎨+=⎩故选:B .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.9.若方程组32232732x y k x y k -=-⎧⎨+=-⎩的解满足2020x y +=,则k 等于( ) A .2018B .2019C .2020D .2021【答案】D【解析】【分析】把两个方程相加,可得5x +5y =5k-5,再根据2020x y +=可得到关于k 的方程,进而求k 即可.【详解】 解:32232732x y k x y k -=-⎧⎨+=-⎩①② ①+②得 5x +5y =5k-5,∴x +y =k -1.∵2020x y +=,∴k -1=2020,∴k=2021.故选:D .【点睛】本题考查了二元一次方程组的特殊解法,依据方程系数特点整体代入是求值的关键.10.如果方程组4x y m x y m +=⎧⎨-=⎩的解是二元一次方程3x ﹣5y ﹣30=0的一个解,那么m 的值为( )A .7B .6C .3D .2【答案】D【解析】【分析】理解清楚题意,运用三元一次方程组的知识,把x ,y 用含m 的代数式表示出来,代入方程3x-5y-30=0求得a 的值.【详解】()()142x y m x y m ⎧+⎪⎨-⎪⎩== (1)+(2)得x=52m , 代入(1)得y=-32m , 把x ,y 代入方程3x-5y-30=0得: 3×52m +5×32m -30=0, 解得m=2; 故选D .【点睛】本题的实质是解三元一次方程组,用加减法或代入法来解答.11.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( ) A .11910813x y y x x y =⎧⎨+-+=⎩()() B .10891311y x x y x y +=+⎧⎨+=⎩ C .91181013x y x y y x ()()=⎧⎨+-+=⎩D .91110813x y y x x y =⎧⎨+-+=⎩()() 【答案】D【解析】【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【详解】设每枚黄金重x 两,每枚白银重y 两,由题意得:91110813x y y x x y =⎧⎨+-+=⎩()(), 故选:D .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.12.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-3分,不答的题得-1分.已知欢欢这次竞赛得了72分,设欢欢答对了x 道题,答错了y 道题,则( )A .5372x y -=B .5372x y +=C .6292x y -=D .6292x y +=【答案】C【解析】【分析】设欢欢答对了x 道题,答错了y 道题,根据“每答对一题得+5分,每答错一题得-3分,不答的题得-1分,已知欢欢这次竞赛得了72分”列出方程.【详解】解:设答对了x 道题,答错了y 道题,则不答的题有()20x y -- 道,依题意得:()532072x y x y ----=,化简得:6292x y -=.故选:C .【点睛】本题考查了由实际问题抽象出二元一次方程,关键是读懂题意,根据题目中的数量关系,列出方程,注意:本题中的等量关系之一为:答对的题目数量+答错的题目数量+不答的题目数量=20.13.已知关于x,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩ 的解适合方程25x y -=,则m 的值为( )A .1B .2C .3D .4【答案】C【解析】【分析】 整理方程为3x+7y=2,与25x y -=组成新的方程组,求解得31x y =⎧⎨=-⎩,代入原方程组中任意一个方程即可求出m.【详解】解:将m=2x+3y 代入3232x y m +=-中得,3x+7y=2,∵x,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩ 的解适合方程25x y -=, ∴联立方程组25372x y x y -=⎧⎨+=⎩,解得:31x y =⎧⎨=-⎩, ∴23m x y =+=3,故选C.【点睛】本题考查解二元一次方程组的方法,属于简单题,熟练掌握加减消元和代入消元的方法是解题关键.14.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,若每人出8钱,则多了3钱;若每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为( )A .8374x y x y -=⎧⎨+=⎩B .8374x y x y +=⎧⎨-=⎩C .8374y x y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩【答案】A【解析】【分析】 设有x 人,物品价值y 钱,根据题意相等关系:①8×人数﹣3=物品价值,②7×人数+4=物品价值,可列方程组.【详解】设有x 人,物品价值y 钱,由题意,得83 74x y x y -=⎧⎨+=⎩, 故选A.15.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( ) A .104937466x y x y +=⎧⎨+=⎩ B .103749466x y x y +=⎧⎨+=⎩C .466493710x y x y +=⎧⎨+=⎩D .466374910x y x y +=⎧⎨+=⎩ 【答案】A【解析】【分析】 设49座客车x 辆,37座客车y 辆,根据49座和37座两种客车共10辆,及10辆车共坐466人,且刚好坐满,即可列出方程组.【详解】解:设49座客车x 辆,37座客车y 辆,根据题意得 :104937466x y x y +=⎧⎨+=⎩故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.16.在方程组657237x y m x y +=+⎧⎨-=⎩的解中,x 、y 的和等于9,则72m +的算术平方根为( )A .7B .7±CD . 【答案】A【解析】【分析】 根据条件得到二元一次方程组937y x y x ⎧⎨-=+=⎩,求出x ,y 的值,进而求出72m +的算术平方根,即可.【详解】∵657237x y m x y +=+⎧⎨-=⎩且x+y=9, ∴937y x y x ⎧⎨-=+=⎩,解得:45x y =⎧⎨=⎩, ∴72m +=65x y +=6×4+5×5=49,∴72m +的算术平方根为:7.故选A .【点睛】本题主要考查二元一次方程组的解的意义,掌握解二元一次方程组的方法,是解题的关键.17.幼儿园阿姨分别给甲、乙两个小朋友若干颗糖果,她们数了一下,甲说“把你的一半给我,我就有14颗糖果”,乙说:“那把你的一半给我,我就有16颗糖果.”那么原来甲小朋友有糖果( )颗.A .6B .8C .10D .12【答案】B【解析】【分析】设原来甲小朋友有x 颗,乙小朋友有y 颗,根据描述建立二元一次方程组求解.【详解】设原来甲小朋友有x 颗,乙小朋友有y 颗,由题意得: 11421162x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩解得812x y =⎧⎨=⎩∴甲小朋友原来有8颗故选B .【点睛】本题考查二元一次方程组的应用,题目较简单,根据描述建立方程是解题的关键.18.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A .3201036x y x y -=⎧⎨+=⎩B .3201036x y x y +=⎧⎨+=⎩C .3201036y x x y -=⎧⎨+=⎩D .3102036x y x y +=⎧⎨+=⎩【答案】B【解析】分析:根据等量关系“一本练习本和一支水笔的单价合计为3元”,“20本练习本的总价+10支水笔的总价=36”,列方程组求解即可.详解:设练习本每本为x 元,水笔每支为y 元,根据单价的等量关系可得方程为x+y=3,根据总价36得到的方程为20x+10y=36,所以可列方程为:3201036x y x y +⎧⎨+⎩==, 故选:B .点睛:此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.19.用加减消元法解方程组2333211x y x y +=⎧⎨-=⎩,下列变形正确的是( ) A .4639611x y x y +=⎧⎨-=⎩B .6396222x y x y +=⎧⎨-=⎩C .4669633x y x y +=⎧⎨-=⎩D .6936411x y x y +=⎧⎨-=⎩ 【答案】C【解析】【分析】运用加减法解方程组时,要满足方程组中某一个未知数的系数相等或互为相反数,把原方程变形要根据等式的性质,本题中方程①×2,②×3,就可把y 的系数变成互为相反数.【详解】解:233{3211x y x y +=-= ①×2得,4x+6y=6③,②×3得,9x-6y=33④,组成方程组得:466{9633x y x y +=-=. 故选C .【点睛】本题考查二元一次方程组的解法有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.运用加减法解方程组时,要满足方程组中某一个未知数的系数相等或互为相反数.20.已知关于x y 、的方程组135x y a x y a +=-⎧⎨-=+⎩,满足12x y ≥,则下列结论:①2a ≥-;②53a =-时,x y =;③当1a =-时,关于x y 、的方程组135x y a x y a +=-⎧⎨-=+⎩的解也是方程2x y +=的解;④若1y ≤,则1a ≤-,其中正确的有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 ①解方程组得322x a y a =+⎧⎨=--⎩,由12x y ≥得到关于a 的不等式,解之可得答案;②将x =y 代入方程组,求出a 的值,即可做出判断;③将x =y 代入322x a y a =+⎧⎨=--⎩求出x 、y 的值,从而依据x =y 得出答案;④由y≤1得出关于a 的不等式,解之可得.【详解】解:关于x 、y 的方程组135x y a x y a +=-⎧⎨-=+⎩, 解得:322x a y a =+⎧⎨=--⎩. ①∵12x y ≥, ∴a +3≥−a−1,解得a≥−2,故①正确;②将x =y 代入322x a y a =+⎧⎨=--⎩,得:4353x a ⎧=⎪⎪⎨⎪=-⎪⎩, 即当x =y 时,a =53-,此结论正确; ③当a =−1时,20x y =⎧⎨=⎩,满足x +y =2,此结论正确; ④若y≤1,则−2a−2≤1,解得a≥−32,此结论错误; 故选:C .【点睛】本题考查了二元一次方程组的解,解题的关键是牢记二元一次方程组的解题方法.。
二元一次方程组应用题经典题及答案
实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=36 3x+(3+2)y=36 解得:x=6,y=3.6 答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=280 14(x+y)=280 解得:x=17,y=3 答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,类型二:列二元一次方程组解决——工程问题【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:解:类型三:列二元一次方程组解决——商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10 ②2000x+1500y=18000 解得:x=6,y=4 答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩【变式2】某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(注:获利 = 售价—进价)求该商场购进A、B两种商品各多少件;解:设购进A的数量为x件、购进B的数量为y件,依据题意列方程组1200x+1000y=360000 (1380-1200)x+(1200-1000)y=60000 解得x=200,y=120 答:略类型四:列二元一次方程组解决——银行储蓄问题【变式2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?解:设x为第一种存款的方式,Y第二种方式存款,则X + Y = 4000 X * 2.25%* 3 + Y * 2.7%* 3 = 303.75 解得:X = 1500,Y = 2500。
初中数学二元一次方程组的应用题型分类汇编——销售利润问题2(附答案)
价如表所示.
类型 价格
A型
B型
进价(元/个) 2000
2600
售价(元/个) 2800
3700
(1)若恰好用掉 14.4 万元,那么这两种机器人各购进多少个? (2)在每种机器人销售利润不变的情况下,若该商场计划销售这批智能扫地机器人的 总利润不少于 53000 元,问至少需购进 B 型智能扫地机器人多少个? 20.梧州市特产批发市场有龟苓膏粉批发,其中 A 品牌的批发价是每包 20 元,B 品牌 的批发价是每包 25 元,小王需购买 A,B 两种品牌的龟苓膏粉共 1000 包. (1)若小王按需购买 A,B 两种品牌龟苓膏粉共用 22000 元,则各购买多少包? (2)凭会员卡在此批发市场购买商品可以获得 8 折优惠,会员卡费用为 500 元.若小王购 买会员卡并用此卡按需购买 1000 包龟苓膏粉,共用了 y 元,设 A 品牌买了 x 包,请求 出 y 与 x 之间的函数关系式; (3)在(2)中,小王共用了 20000 元,他计划在网店包邮销售这批龟苓膏粉,每包龟苓膏 粉小王需支付邮费 8 元,若每包销售价格 A 品牌比 B 品牌少 5 元,请你帮他计算,A 品牌的龟苓膏粉每包定价不低于多少元时才不亏本?(运算结果取整数) 21.某公司用 3000 元购进两种货物,货物卖出后,一种货物的利润率是 10%,另一种 货物的利润率是 11%,两种货物共获利 315 元,如果设该公司购进这两种货物所用的费 用分别为 x 元,y 元,则列出的方程组是__. 22.某厂家以 A、B 两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其 中,甲产品每袋含 1.5 千克 A 原料、1.5 千克 B 原料;乙产品每袋含 2 千克 A 原料、1 千克 B 原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产 品每袋售价 72 元,则利润率为 20%.某节庆日,厂家准备生产若干袋甲产品和乙产品, 甲产品和乙产品的数量和不超过 100 袋,会计在核算成本的时候把 A 原料和 B 原料的 单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少 500 元,那么厂家 在生产甲乙两种产品时实际成本最多为_____元. 23.今年“五一”,A、B 两人到商场购物,A 购 3 件甲商品和 2 件乙商品共支付 16 元, B 购 5 件甲商品和 3 件乙商品共支付 25 元,求一件甲商品和一件乙商品各售多少元.设 甲商品售价 x 元/件,乙商品售价 y 元/件,则可列出方程组_________. 24.甲.乙两种商品原来的单价和为 100 元,因市场变化,甲商品降价 10%,乙商品提
二元一次方程组应用题题及答案
二元一次方程组应用题题及答案文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:+2)x+=363x+(3+2)y=36解得: x=6,y=答:甲的速度是6千米/每小时,乙的速度是千米/每小时。
【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,类型二:列二元一次方程组解决——工程问题【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司请你说明理由. 解:类型三:列二元一次方程组解决——商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩【变式2】某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:类型四:列二元一次方程组解决——银行储蓄问题【变式1】李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息元.已知两种储蓄年利率的和为%,问这两种储蓄的年利率各是百分之几(注:公民应缴利息所得税=利息金额×20%)解:设2000的存款利率是X,则1000的存款利率是%-X,则有:2000*X*(1-20%)+1000*%-X)*(1-20%)=即:1600X+=800X=18X=%%%=%所以,2000的存款利率是%,1000的存款的利息率是%.法二:也可用二元一次方程组解。
七年级数学8.3 实际问题与二元一次方程组第2课时 利用二元一次方程组的解作决策 (含答案)
第2课时利用二元一次方程组的解作决策要点感知解决间接求解的应用题的思路:先根据题目中给出的等量关系建立方程组求解,再用求出的解去解决题目要求的问题.预习练习某高校有5个大餐厅和2个小餐厅,经过测试知:同时开放1个大餐厅、2个小餐厅,可供1 680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2 280名学生就餐.同时开放这7个餐厅,可供__________名学生就餐.知识点1 建立二元一次方程组模型支配信息1.(2013·南宁)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A.19B.18C.16D.152.仔细观察下图,认真阅读对话:根据以上对话内容,可知小明买5元邮票多少张?知识点2 利用二元一次方程组的解作决策3.为建设资源节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实行“阶梯电价”,电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实际“基本电价”;当居民家庭月用电量超过80千瓦时时,超过部分实行“提高电价”.(1)小张家2013年4月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时?(2)若6月份小张家预计用电130千瓦时,请预算小张家6月份应上缴的电费.4.(2014·铜仁)某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?5.(2013·曲靖)某种仪器由1个A部件和1个B部件配套构成,每个工人每天可以加工A部件1 000个或者加工B部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A部件和B部件配套?6.(2014·聊城)某服装店用6 000元购进A,B两种新式服装,按标价售出后可获得毛利润3 800元((1)(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?7.(2013·嘉兴)某镇水库的可用水量为12 000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?挑战自我8.(2012·龙岩)已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.参考答案课前预习预习练习 5 520当堂训练1.C2.设小明买2元邮票x 张,1元邮票2x 张,5元邮票y 张,则根据题意得218,22535.x x y x x y ++=++=⎧⎨⎩解得5,3.x y ==⎧⎨⎩ 答:小明买5元邮票3张.3.(1)设“基本电价”为x 元/千瓦时,“提高电价”为y 元/千瓦时.根据题意得()()801008068801208088.x y x y +-⎧⎪=+-=⎪⎨⎩,解得0.61.x y =⎩=⎧⎨, 答:“基本电价”为0.6元/千瓦时,“提高电价”为1元/千瓦时.(2)80x+(130-80)y=80×0.6+(130-80)×1=98.答:预计小张家6月份上缴的电费为98元.4.(1)设这批游客的人数是x 人,原计划租用45座客车y 辆.根据题意,得()4515,601.y x y x +=-=⎧⎨⎩解得240,5.x y ==⎧⎨⎩ 答:这批游客的人数是240人,原计划租用45座客车5辆.(2)租45座客车:240÷45≈5.3(辆),所以需租6辆,租金为220×6=1 320(元).租60座客车:240÷60=4(辆),所以需租4辆,租金为300×4=1 200(元).所以租用4辆60座客车更合算.答:租用4辆60座客车更合算.课后作业5.设安排生产A 部件和B 部件的工人分别为x 人,y 人.根据题意,得16,1000600.x y x y +==⎧⎨⎩解得6,10.x y ==⎧⎨⎩ 答:安排生产A 部件和B 部件的工人分别为6人,10人.6.(1)设A 种服装购进x 件,B 种服装购进y 件,由题意得601006000,40603800.x y x y +=+=⎧⎨⎩解得50,30.x y ==⎧⎨⎩答:购进A 种服装50件,购进B 种服装30件.(2)由题意,得3 800-50(100×0.8-60)-30(160×0.7-100)=3 800-1 000-360=2 440(元).答:服装店比按标价出售少收入2 440元.7.(1)设年降水量为x 万立方米,每人每年平均用水量为y 立方米.依题意,得1200020162012000152015.x y x y +=⨯+=⎩⨯⎧⎨,解得200,50.x y ==⎧⎨⎩ 答:年降水量为200万立方米,每人年平均用水量为50立方米.(2)设该城镇居民年平均用水量为z 立方米才能实现目标.则12 000+25×200=20×25z.解得z =34.50-34=16(立方米).答:该城镇居民人均每年需要节约16立方米的水才能实现目标.8.(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨、y 吨.根据题意,得210,211.x y x y +=+=⎧⎨⎩解得3,4.x y ==⎧⎨⎩ 答:1辆A 型车和1辆B 型车都装满货物一次可分别运货3吨、4吨.(2)根据题意可得3a+4b=31,b=3134a -,使a ,b 都为整数的情况共有a=1,b=7或a=5,b=4或a=9,b=1三种情况,故租车方案分别为①A 型车1辆,B 型车7辆;②A 型车5辆,B 型车4辆;③A 型车9辆,B 型车1辆.(3)方案①花费为100×1+120×7=940(元);方案②花费为100×5+120×4=980(元);方案③花费为100×9+120×1=1 020(元).即方案①最省钱,即租用A 型车1辆,B 型车7辆,最少租车费用为940元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)租车公司目前B型车只有6辆,若A型车租金为1800元/辆,B型车租金为2100元/辆,请你为学校设计使座位恰好坐满师生且租金最少的租车方案.
22.为了增强学生体质,丰富学生的学习生活,某校设置室外活动课,并决定购买一些排球和跳绳.已知一个排球的费用比3根跳绳的费用少10元,2个排球与5根跳绳的总费用为200元.
20.为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则搭建方案共有___________种.
21.为开拓学生的视野,全面培养和提升学生的综合素质,让学生感受粤东古城潮州的悠久历史,某中学组织八年级师生共420人前往潮州开展研学活动.学校向租车公司租赁A、B两种车型接送师生往返,若租用A型车3辆,B型车5辆,则空余15个座位;若租用A型车5辆,B型车3辆,则15人没座位.
16.甲种电影票每张20元,乙种去700元,则甲种电影票买了________张,乙种电影票买了________张.
17.万州某企业捐资购买了一批重120吨的物资支援某贫困乡镇,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下(假设每辆车均满载):甲载重5吨,运费400元/车,乙载重8吨,运费500元/车,丙载重10吨,运费600元/车,该公司计划用甲、乙、丙三种车型同时参与运送并完成任务,已知它们的总辆数为15辆,要使费用最省,所使用的甲、乙、丙三种车型的辆数分别是______。
A.6台B.7台C.8台D.9台
6.5月22-23日,在川汇区教育局组织部分学生参加市举办的“唱响红歌”庆祝活动中,分别给每位男、女生佩戴了白、红颜色的太阳帽,当大家坐在一起时,发现一个有趣的现象,每名男生看到白色的帽子比红色的帽子多 个,每名女生看到的红色帽子是白色帽子数量的 ,设这些学生中男生有 人,女生有 人,依题意可列方程().
(2)如果购买乙种花木的数量不少于甲种花木的数量,请设计一种购买方案使所需费用最低,并求出该购买方案所需总费用.
30.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车,恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.
(1)求每辆大客车和每辆小客车的乘客座位数;
(1)求每个排球和每根跳绳的价格分别为多少元;
(2)该校现计划购买排球和跳绳110件,排球的数量不少于跳绳数量的 ,且用于购买排球和跳绳的总费用不超过3760元.请你通过计算求出该校有哪几种购买方案.
23.已知用2辆A型车和1辆B型车载满货物一次可运货物10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)用1辆A型车和1辆B型车都载满货物一次可分别运货多少吨?
【详解】
解:设租用每辆8个座位的车x辆,每辆有4个座位的车y辆,
根据题意得,8x+4y=20,
整理得,2x+y=5,
∵x、y都是正整数,
∴x=1时,y=3,
x=2时,y=1,
x=3时,y=-1(不符合题意,舍去),
所以,共有2种租车方案.
故选:A.
【点睛】
初中数学二元一次方程组的应用题型分类汇编——方案决策问题2(附答案)
1.为推进课改,王老师把班级里60名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案( )
A.4B.3C.2D.1
2.小聪去商店购买笔记本和钢笔,共用了60元钱,已知每本笔记本2元,每支钢笔5元,若笔记本和钢笔都需购买,且笔记本的数量多于钢笔的数量,则小聪的购买方案有( )
18.有三种物品,每件的价格分别是2元、4元和6元.现在用60元买这三种物品,总共买了16件,而钱恰好用完,则价格为6元的物品最多买___件.
19.小威到小吃店买水饺,他身上带的钱恰好等于15粒虾仁水饺或20粒韭菜水饺的价钱,若小威先买了9粒虾仁水饺,则他身上剩下的钱恰好可买________粒韭菜水饺.
(2)请你帮该物流公司设计租车方案.若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.
24.益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:
【详解】
(1)设笔记本的数量为x个,钢笔的数量为y个.
由题意得: ,∴ ,
解得: .
∵ 为正整数,∴x为5的倍数,故x的取值为10,15,20,25.
故有四种方案.
故选B.
【点睛】
本题考查了一元一次不等式和二元一次方程的应用,解题的关键是找出题目中的等量关系或者不等关系.
3.A
【解析】
【分析】
设租用每辆8个座位的车x辆,每辆有4个座位的车y辆,根据车座位数等于学生的人数列出二元一次方程,再根据x、y都是正整数求解即可.
26.某商店要运一批货物,租用甲、乙两车运送.若两车合作,各运12趟才能完成,需支付运费共4800元;若甲、乙两车单独运完这批货物,则乙车所运趟数是甲车的2倍;已知乙车毎趟运费比甲车少200元.
(1)分别求出甲、乙两车每趟的运费;
(2)若单独租用甲车运完此批货物,需运多少趟;
(3)若同时租用甲、乙两车,则甲车运x趟,乙车运y趟,才能运完此批货物,其中x、y均为正整数,设总运费为w(元),求w与x的函数关系式,直接写出w的最小值.
A.3种B.4种C.5种D.6种
11.为丰富学生的体育活动,某校计划使用资金2000元购买篮球和足球(两种球都买且钱全部花光).若每个篮球80元,每个足球50元,则该校的购买方案个数为_________.
12.为了适合不同人群的口味,某商店对苹果味、草莓味、牛奶味的糖果混合组装成甲、乙两种袋装进行销售.甲种每袋装有苹果味、草莓味、牛奶味的糖果各10颗,乙种每袋装有苹果味糖果20颗,草莓味和牛奶味糖果各5颗.甲、乙两种袋装糖果每袋成本价分别是袋中各类糖果成本之和.已知每颗苹果味的糖果成本价为0.4元,甲种袋装糖果的售价为23.4元,利润率为30%,乙种袋装糖果每袋的利润率为20%.若这两种袋装的销售利润率达到24%,则该公司销售甲、乙两种袋装糖果的数量之比是__________.
(2)若每次运输主方总不小于148吨,且小型渣土运输车至少派出7辆,问该渣土运输公司有哪几种派出方案?最少需要花费多少元?
29.某学校为了美化绿化校园,计划购买甲,乙两种花木共100棵绿化操场,其中甲种花木每棵60元,乙种花木每棵80元.
(1)若购买甲,乙两种花木刚好用去7200元,则购买了甲,乙两种花木各多少棵?
27.为保障国庆70周年南口阅兵训练基地全体人员的生活,需通过铁路、公路两种运输方式运送生活物资.原计划铁路运输物资的5倍是公路运输的8倍,实际铁路运输的物资减少了15吨,公路运输增加了15吨,且铁路运输物资的2倍比公路运输的3倍少60吨.
(1)原计划铁路、公路分别运输多少吨物资到训练基地?
(2)现采用微型集装箱装载这些物资,每个集装箱装满后箱货总重量为1.6吨,空箱重量为0.1吨.为增加集装箱的载货量将其进行改造,改造后每个集装箱装满后箱货总重量比改造前增加 吨,空箱重量比改造前减少 吨,其中 .改造前的集装箱每个装满后恰好装下这些物资.若用改造后的集装箱来装载这些物资,改造后的集装箱个数比改造前少用10个.设改造后的集装箱最大载货量总重量为 吨,求 关于 的函数关系式以及 的最大值.
13.自行车和三轮车共20辆,总共有52个轮子,自行车有(______)辆,三轮车有(________)辆.
14.某农民收了400多个橙子(不到500个),把这些橙子20个装一盒或者12个装一盒,都是多5个,这个农民一共收了______个橙子.
15.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有种租车方案.
A.3种B.4种C.5种D.6种
3.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位,要求租用的车辆不留空座,也不能超载.租车方案共有()种.
A.2B.3C.4D.5
4.为安置200名因暴风雪受灾的灾民,需要同时搭建可容纳12人和8人的两种帐篷,则搭建方案共有( )
当x=10,则y= (不合题意);
当x=11,则y= (不合题意);
当x=12,则y=0
故有3种分组方案.
故选B.
【点睛】
此题主要考查了二元一次方程组的应用,根据题意分情况讨论得出是解题关键.
2.B
【解析】
【分析】
设笔记本的数量为x个,钢笔的数量为y个,用笔记本的钱数+钢笔的钱数=60,笔记本数量>钢笔数量,可以列出一元一次不等式,求出其解集,再根据笔记本数,钢笔数必须是整数,确定购买方案.
28.某运输公司派出大小两种型号共20辆渣土运输车运输士方.已知一辆大型渣土运输车和两辆小型渣土运输车每次共运20吨;3辆大型渣土运输车和8辆小型渣土运输车每次共运70吨.并且一辆大型渣土运输车运输花费500元/次,一辆小型渣土运输车运输花费300元/次.
(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨?
(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,且所有参加活动的师生都有座位,求租用小客车数量的最大值.
参考答案
1.B
【解析】
【分析】
根据题意设5人一组的有x个,6人一组的有y个,利用把班级里60名学生分成若干小组,进而得出等式求出即可.
【详解】
解:设5人一组的有x个,6人一组的有y个,根据题意可得: