三人行教育陈老师一元一次方程应用题归类汇集

合集下载

一元一次方程应用题分类汇集(我已整)2013.12.5

一元一次方程应用题分类汇集(我已整)2013.12.5

一元一次方程应用题分类汇集一、一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),调配问题,分配问题,配套问题,销售问题增长率问题数字问题,方案设计与成本分析,积分问题5古典数学,浓度问题等。

二、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)三、具体分类(一)行程问题——画图分析法(线段图)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。

并且还常常借助画草图来分析,理解行程问题。

1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度水流速度=(顺水速度-逆水速度)÷2抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.即顺水逆水问题常用等量关系:顺水路程=逆水路程.常见的还有:相背而行;行船问题;环形跑道问题;隧道问题;时钟问题等。

常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量3、单人往返⑴各段路程和=总路程⑵各段时间和=总时间⑶匀速行驶时速度不变4、行船问题与飞机飞行问题⑴顺水速度=静水速度+水流速度⑵逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。

一元一次方程应用题归类汇集超详细解题过程含答案(特级教师整理版)

一元一次方程应用题归类汇集超详细解题过程含答案(特级教师整理版)

一元一次方程应用题归类汇集含详细答案整理版本一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。

第一类、行程问题基本的数量关系:(1)路程=速度×时间⑵速度=路程÷时间⑶时间=路程÷速度要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量3、单人往返⑴各段路程和=总路程⑵各段时间和=总时间⑶匀速行驶时速度不变4、行船问题与飞机飞行问题⑴顺水速度=静水速度+水流速度⑵逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。

6、时钟问题:⑴将时钟的时针、分针、秒针的尖端看作一个点来研究⑵通常将时钟问题看作以整时整分为起点的同向追击问题来分析。

常用数据:①时针的速度是°/分②分针的速度是6°/分③秒针的速度是6°/秒一、一般行程问题(相遇与追击问题)1、从甲地到乙地,某人步行比乘公交车多用小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。

一元一次方程应用题归类汇集讲义(补课用)

一元一次方程应用题归类汇集讲义(补课用)

一元一次方程应用题归类汇集一元一次方程应用题归类汇集:行程问题 , 工程问题 , 和差倍分问题(生产、做工等各类问题), 调配问题, 分配问题,配套问题 , 增长率问题 数字问题 ,方案设计与成本分析 ,古典数学 , 浓度等问题。

一、行程问题:(1)行程问题中的三个基本量及其关系: 路程=速度×时间。

(2)基本类型有:① 相遇问题;② 追及问题;常见的还有:相背而行;行船问题;环形跑道问题。

(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。

并且还常常借助画草图来分析,理解行程问题。

例1:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

故可结合图形分析。

(一)相遇:1.甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度。

2. A 、B 两地相距15千米. 甲每小时走5千米,乙每小时走4千米. 甲、乙两人分别从A 、B 两地同时出发,相向而行,几小时后两人相遇?3.A 、B 两地相距15千米.甲每小时走5千米,乙每小时走4千米.甲、乙两人分别从A 、B 两地相向而行,甲先出 类型 等 量 关 系 列一元一次方程解行程问题 直线 相遇 追及 相遇 追及 顺逆流问题 错车问题 两者的路程之和=两地的距离 两者的路程之差=两地的距离 两者的路程之和=环形跑道一圈的长度 两者的路程之差=环形跑道一圈的长度 路程或静水中的速度相等 两者路程和或差=两个车身的长度和发1小时后乙再出发,几小时后两人相遇?4. A 、B 两地相距15千米. 甲每小时走5千米,乙每小时走4千米. 甲、乙两人分别从A 、B 两地同时出发,背向而行,几小时后两人相距60千米?5.甲乙两人从相距32千米的两地相向而行,甲步行每小时走4千米,先行1小时后,乙骑自行车出发2小时后与甲相遇,问乙骑自行车每小时走多少千米?6.某汽车和电动车从相距298千米的两地同时出发相对而行,汽车的速度比电动车速度的6倍还多15千米,半小时后相遇。

一元一次方程应用题归类汇总

一元一次方程应用题归类汇总

,.一元一次方程应用题分类汇总一元一次方程应用题归类齐集:形积变化问题、行船问题、工程问题、和差倍分问题、劳力分派问题、配套问题、分派问题、年龄问题、比赛积分问题、利润赢亏问题、存储问题、增加率问题、数字问题、古典数学、分段函数问题等(一)形积变化问题:解决这类问题,应从有关图形的面积、周长、体积等计算公式出发,依照题目中这些量的变化,建立相等关系,从而列出方程。

有关公式以下:( 1 )长方形的周长、面积公式: C 长方形 =2( 长 + 宽 ), s 长方形 = 长×宽( 2)长方体、圆柱的体积公式:V长方体=长×宽×高,V圆柱=∏r2h(3)等积变形的相等关系:变形前的体积= 变形后的体积&1、学校建花坛余下 24 米长的小围栏,某班同学准备在自己教室前的空地上,建一个一面砖墙、三面围栏的长方形小花园。

(注意此题面积最大不是长与宽相等,因为这里24 米只包括一个长两个宽,而不是两个长两个宽。

此题需要代数分别谈论后,再比较得结论。

)(1)请你设计一下,使长比宽多 3 米,算一算这时的面积。

(2)请你再想法改变长与宽,扩大花园的面积,并和其他同学比一比,看谁设计的花园面积最大2 、有一个底面积20 ×20 长方体玻璃杯(已满水)向一个内底面积16 ×5,内高是 10 的长方体铁盒倒水,当铁盒装满水时,玻璃杯的水的高度下降多少?3 、某工厂锻造直径为60 毫米,高 20 毫米的圆柱形零件毛坯,需要截取直径40 毫米的圆钢多长?4:有一个底面积20 ×20 长方体玻璃杯(已满水)向一个内底面积16 ×5 ,内高是 10 的长方体铁盒倒水,当铁盒装满水时,玻璃杯的水的高度下降多少?(一)行程问题:(1)行程问题中的三个基本量及其关系:行程= 速度×时间 S=vt(2)基本种类有① 相遇问题;② 追及问题;常有的还有:相背而行;行船问题;环形跑道问题。

一元一次方程应用题归类汇集(含答案)

一元一次方程应用题归类汇集(含答案)

一元一次方程应用题归类聚集〔含答案〕一、一般行程问题〔相遇与追击问题〕1.行程问题中的三个根本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题根本类型〔1〕相遇问题:快行距+慢行距=原距〔2〕追及问题:快行距-慢行距=原距二、环行跑道与时钟问题:三、行船与飞机飞行问题:航行问题:顺水〔风〕速度=静水〔风〕速度+水流〔风〕速度逆水〔风〕速度=静水〔风〕速度-水流〔风〕速度水流速度=〔顺水速度-逆水速度〕÷2四、工程问题1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间2.经常在题目中未给出工作总量时,设工作总量为单位1。

即完成某项任务的各工作量的和=总工作量=1.一元一次方程应用题型1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇50a+75〔a-1〕=27550a+75a-75=275125a=350a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地间隔。

设原定时间为a小时45分钟=3/4小时根据题意40a=40×3+〔40-10〕×〔a-3+3/4〕40a=120+30a-67.510a=52.5a=5.25=5又1/4小时=21/4小时所以甲乙间隔40×21/4=210千米3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,那么甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数?解:设乙队原来有a人,甲队有2a人那么根据题意2a-16=1/2×〔a+16〕-34a-32=a+16-63a=42a=14那么乙队原来有14人,甲队原来有14×2=28人如今乙队有14+16=30人,甲队有28-16=12人4、某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。

整理一元一次方程应用题归类汇集(实用).doc

整理一元一次方程应用题归类汇集(实用).doc

一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)( 1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。

第一类、行程问题基本的数量关系:(1)路程=速度×时间⑵ 速度=路程÷时间⑶ 时间=路程÷速度要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量3、单人往返⑴ 各段路程和=总路程⑵ 各段时间和=总时间⑶ 匀速行驶时速度不变4、行船问题与飞机飞行问题⑴ 顺水速度=静水速度+水流速度⑵ 逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。

6、时钟问题:⑴ 将时钟的时针、分针、秒针的尖端看作一个点来研究⑵ 通常将时钟问题看作以整时整分为起点的同向追击问题来分析。

常用数据:①时针的速度是°/ 分② 分针的速度是6°/ 分③ 秒针的速度是6° / 秒一、一般行程问题(相遇与追击问题)1、从甲地到乙地,某人步行比乘公交车多用小时,已知步行速度为每小时8 千米,公交车的速度为每小时 40 千米,设甲、乙两地相距x 千米,则列方程为。

一元一次方程应用题归类汇集(含答案) (5)

一元一次方程应用题归类汇集(含答案) (5)

一元一次方程应用题归类汇集一、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。

2、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。

行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。

如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。

⑴行人的速度为每秒多少米?⑵这列火车的车长是多少米?5、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。

汽车速度是60千米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。

出发地到目的地的距离是60千米。

问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)6、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。

7、一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。

隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。

一元一次方程应用题归类汇集

一元一次方程应用题归类汇集

一元一次方程应用题归类汇集:(一)行程问题:行程问题是指有关匀速运动的应用题.这类问题可分为:①基本行程问题;②相遇问题;③追及问题;④航行问题;⑤环行问题等等。

但无论怎样变化,都离不开匀速运动基本关系式:,以及由此推导出来的:,.现将这几类应用题的解法,通过举例介绍如下:一基本行程问题.基本行程问题的特点是:同一人(或物体)在去时与回时的运动过程中,改变了路程、速度或时间;也可以是两人(或两物体)在同一路程行进中,由于速度不同而导致到达的时间不同.解这类问题时,要抓住总路程或总时间不变,直接运用路程、速度与时间三者之间的关系式.二、相遇问题.相遇问题的特点是:两个运动着的人(或物体)从两地沿同一路线相向而行,最终相遇.解这类问题时,要抓住甲、乙同时出发至相遇时的基本等量关系:(1)甲行的路程+乙行的路程=两地间的路程,即:甲与乙的速度和×相遇时间=两地间的路程;(2)同时出发到相遇甲与乙所用的时间相等.三、追及问题.追及问题的特点是:两人(或两物体)同时沿同一路线,同一方向运动,慢者在前,快者在后,快者追赶慢者.解这类问题要抓住基本等量关系:(1)快者行的路程-慢者行的路程=两者间的距离,即:两者的速度差×追及时间=两者间的距离;(2)从开始追赶到追及时,快者与慢者所用的时间相等.四、航行问题.航行问题是一种特殊的行程问题,它的特殊性在于要考虑水速对船速的影响,其基本等量关系是:(1)船顺流速度=船的速度+ 水流速度;(2)船逆流速度=船的速度-水流速度.五、环行问题.环行问题即封闭路线上的行程问题.如果同时从同一地点出发,到第一次相遇,有两种情况:同向环行类似追及问题,其基本等量关系是:快者走的路程-慢者走的路程=环形周长;反向环行类似相遇问题,其基本等量关系是:快者走的路程+慢者走的路程=环形周长.数学运算之行程问题专题行程问题的“三原色”路程、速度、时间。

问题千变万化,归根结底就是这三者之间的变化。

一元一次方程应用题归类汇集(含答案)

一元一次方程应用题归类汇集(含答案)

一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际, 检验后写出答案.(注意带上单位)二、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程=速度×时间 时间=路程÷速度 速度=路程÷时间2.行程问题基本类型(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。

解:等量关系 步行时间-乘公交车的时间=3.6小时 列出方程是:6.3408=-x x 2、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系 ⑴ 速度15千米行的总路程=速度9千米行的总路程⑵ 速度15千米行的时间+15分钟=速度9千米行的时间-15分钟 提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。

方法一:设预定时间为x 小/时,则列出方程是:15(x -0.25)=9(x +0.25)方法二:设从家里到学校有x 千米,则列出方程是:60159601515-=+x x 3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米? 提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。

一元一次方程应用题归类汇集(含答案)

一元一次方程应用题归类汇集(含答案)

七年级一元一次方程应用题归类汇集(11.21)二、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。

2、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。

行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。

如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。

⑴行人的速度为每秒多少米?⑵这列火车的车长是多少米?6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。

汽车速度是60千米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。

出发地到目的地的距离是60千米。

问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)7、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。

8、一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。

隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。

一元一次方程应用题归类汇集

一元一次方程应用题归类汇集

一元一次方程应用题归类汇集列方程解应用题的一般步骤(解题思路)(1)审——审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设——设出未知数:根据提问,巧设未知数.(3)找——等量关系:根据题意找出等量关系。

(4)列——列出方程:设出未知数后,然后利用已找出的等量关系列出方程.(5)解——解方程:解所列的方程,求出未知数的值.(6)答——作答(注意带上单位)一、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。

2、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系⑴速度15千米行的总路程=速度9千米行的总路程⑵速度15千米行的时间+15分钟=速度9千米行的时间-15分钟提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。

3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。

等量关系:快车行的路程+慢车行的路程=两列火车的车长之和设客车的速度为3x米/秒,货车的速度为2x米/秒,则 16×3x+16×2x=200+280二、环行跑道与时钟问题:老师提醒:此题为环形跑道上,同时同地同向的追击与相遇问题。

1、甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?三、行船与飞机飞行问题:航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度水流速度=(顺水速度-逆水速度)÷21、一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。

七年级上学期:一元一次方程应用题归类汇总含答案解析

七年级上学期:一元一次方程应用题归类汇总含答案解析

一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。

2、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。

行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。

如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。

⑴行人的速度为每秒多少米?⑵这列火车的车长是多少米?6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。

汽车速度是60千米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。

出发地到目的地的距离是60千米。

一元一次方程应用题分类汇集

一元一次方程应用题分类汇集

一元一次方程应用题分类汇集一、一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),调配问题,分配问题,配套问题,销售问题增长率问题数字问题,方案设计与成本分析,积分问题5古典数学,浓度问题等。

二、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)三、具体分类(一)行程问题——画图分析法(线段图)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。

并且还常常借助画草图来分析,理解行程问题。

1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度水流速度=(顺水速度-逆水速度)÷2抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.即顺水逆水问题常用等量关系:顺水路程=逆水路程.常见的还有:相背而行;行船问题;环形跑道问题;隧道问题;时钟问题等。

常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量常用数据:①时针的速度是0.5°/分②分针的速度是6°/分③秒针的速度是6°/秒例1:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

一元一次方程应用题归类汇集实用

一元一次方程应用题归类汇集实用

一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。

第一类、行程问题——画图分析法利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度水流速度=(顺水速度-逆水速度)÷2抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.即顺水逆水问题常用等量关系:顺水路程=逆水路程.常见的还有:相背而行;行船问题;环形跑道问题。

要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量3、单人往返⑴各段路程和=总路程⑵各段时间和=总时间⑶匀速行驶时速度不变4、行船问题与飞机飞行问题⑴顺水速度=静水速度+水流速度⑵逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。

一元一次方程应用题归类汇集[实用]

一元一次方程应用题归类汇集[实用]

一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析 ,古典数学,浓度问题等。

第一类、行程问题基本的数量关系:(1)路程=速度×时间 ⑵ 速度=路程÷时间 ⑶ 时间=路程÷速度要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程 ⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量 ⑵二人所用的时间相等或有提前量3、单人往返⑴ 各段路程和=总路程 ⑵ 各段时间和=总时间 ⑶ 匀速行驶时速度不变4、行船问题与飞机飞行问题⑴ 顺水速度=静水速度+水流速度 ⑵ 逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。

6、时钟问题:⑴ 将时钟的时针、分针、秒针的尖端看作一个点来研究⑵ 通常将时钟问题看作以整时整分为起点的同向追击问题来分析。

常用数据:① 时针的速度是0.5°/分 ② 分针的速度是6°/分 ③ 秒针的速度是6°/秒一、一般行程问题(相遇与追击问题)1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。

一元一次方程应用题分类题集(最全面)

一元一次方程应用题分类题集(最全面)

一元一次方程应用题归类题集(一)行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.相遇问题:同时出发开始计时,到相遇时两者所花时间是相等[相向而行] 同时出发开始计时,到相遇时两者所走的路程之和等于全程1、甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?2、甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时候相遇。

已知甲骑车每小时比乙每小时多走2千米,若设乙的速度为x千米/小时。

则可列方程:3.小明家与小红家相距6000米,小明要尽快把一件重要的东西交给小红,小明先骑自行车从家里出发,小明骑了1500米后小红骑摩托车也从家出发.小明每分钟骑500米,小红每分钟骑1000米.小明出发几分钟后他们在路上相遇?4.在800米跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,多少分钟后第一次相遇?5、甲乙两人在400米的环形跑道上跑步,从同一起点同时出发,甲的速度是5米/秒,乙的速度是3米/秒。

(1)如果背向而行,两人多久第一次相遇?(2)如果同向而行,两人多久第一次相遇?6. 甲,乙两地相距168千米,一列慢车从甲地出发,每小时行驶36千米,一列快车从乙地出发,每小时行驶48千米。

如果慢车先开一小时,快车才出发,问快车出发几小时后两车相遇?7.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2问两车每秒各行驶多少米?追及问题:同时出发开始计时,追到时两者所用时间相等1、甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,甲让乙先跑5米然后奋力去追,设x秒钟后,甲便追上了乙?2、甲乙两人从A、B同时出发,甲骑自行车,乙骑摩托车,沿同一条路线同时相向而行,出发后3小时相遇,已知相遇时乙比甲多走90千米,相遇后经过1小时乙到达A地,问甲乙的速度分别是多少?3、甲、乙两人分别从相距140千米的A,B两地同时出发,甲的速度:40千米/小时,乙的速度:20千米/小时(1)若相向而行,经过多少小时两人相距20千米?(2)如果同向而行,经过多少小时两人相距20千米?4.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,问甲乙两地相距多少千米?5. 某人从家里骑自行车到学校。

一元一次方程应用题归类汇集讲义(补课用)

一元一次方程应用题归类汇集讲义(补课用)

一元一次方程应用题归类汇集一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),调配问题,分配问题,配套问题,增长率问题数字问题,方案设计与成本分析,古典数学,浓度等问题。

一、行程问题:(1)行程问题中的三个基本量及其关系:路程=速度×时间。

(2)基本类型有:①相遇问题;②追及问题;常见的还有:相背而行;行船问题;环形跑道问题。

类型等量关系列一元一次方程解行程问题直线相遇追及相遇追及顺逆流问题错车问题两者的路程之和=两地的距离两者的路程之差=两地的距离两者的路程之和=环形跑道一圈的长度两者的路程之差=环形跑道一圈的长度路程或静水中的速度相等两者路程和或差=两个车身的长度和(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。

并且还常常借助画草图来分析,理解行程问题。

例1:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

故可结合图形分析。

(一)相遇:1.甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度。

2. A、B两地相距15千米. 甲每小时走5千米,乙每小时走4千米. 甲、乙两人分别从A、B两地同时出发,相向而行,几小时后两人相遇?3.A、B两地相距15千米.甲每小时走5千米,乙每小时走4千米.甲、乙两人分别从A、B两地相向而行,甲先出发1小时后乙再出发,几小时后两人相遇?4. A、B两地相距15千米. 甲每小时走5千米,乙每小时走4千米. 甲、乙两人分别从A、B两地同时出发,背向而行,几小时后两人相距60千米?5.甲乙两人从相距32千米的两地相向而行,甲步行每小时走4千米,先行1小时后,乙骑自行车出发2小时后与甲相遇,问乙骑自行车每小时走多少千米?6.某汽车和电动车从相距298千米的两地同时出发相对而行,汽车的速度比电动车速度的6倍还多15千米,半小时后相遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三人行教育陈老师一元一次方程应用题归类汇集第一类、行程问题
基本的数量关系:
(1)路程=速度×时间⑵速度=路程÷时间⑶时间=路程÷速度
要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)
常用的等量关系:
1、甲、乙二人相向相遇问题
⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量
2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题
⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量
3、单人往返
⑴各段路程和=总路程⑵各段时间和=总时间⑶匀速行驶时速度不变
4、行船问题与飞机飞行问题
⑴顺水速度=静水速度+水流速度⑵逆水速度=静水速度-水流速度
5、考虑车长的过桥或通过山洞隧道问题
将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。

6、时钟问题:
⑴将时钟的时针、分针、秒针的尖端看作一个点来研究
⑵通常将时钟问题看作以整时整分为起点的同向追击问题来分析。

常用数据:①时针的速度是0.5°/分②分针的速度是6°/分③秒针的速度是6°/秒
一、一般行程问题(相遇与追击问题)
1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小
时40千米,设甲、乙两地相距x千米,则列方程为。

2、甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,
那么在乙出发1小时30分相遇,当甲比乙每小时快1千米时,求甲、乙两人的速度。

3、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,
可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?
4、在800米跑道上有两人练习中长跑,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,
t分钟后第一次相遇,t等于分钟。

5、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?
6、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。

行人的速度是每小时 3.6km,骑自行车的人
的速度是每小时10.8km。

如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。

⑴行人的速度为每秒多少米?⑵这列火车的车长是多少米?
7、休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带
上礼品以每小时6千米的速度去追我们,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?(提示:此题为典型的追击问题)
8、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。

汽车速度是60千米/时,步行的
速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。

出发地到目的地的距离是60千米。

问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)
9、一列火车长150米,以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,到这列火车完全通过隧道
所需时间是【】(A)60秒(B)50秒(C)40秒(D)30秒
10、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的
时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。

11、甲、乙两人相距5千米,分别以2千米/时的速度相向而行,同时一只小狗以12千米/时的速度从甲处奔向乙,
遇到乙后立即掉头奔向甲,遇到甲后又奔向乙……直到甲、乙相遇,求小狗所走的路程。

12、一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。

隧道的顶上有一盏灯,垂直向下发光,灯光照
在火车上的时间是10s,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。

13、甲、乙两地相距x千米,一列火车原来从甲地到乙地要用15小时,开通高速铁路后,车速平均每小时比原来
加快了60千米,因此从甲地到乙地只需要10小时即可到达,列方程得。

14、列车在中途受阻,耽误了6分钟,然后将时速由原来的每小时40千米提高到每小时50千米,问这样走多少千
米,就可以将耽误的时间补上?
15、两列火车分别行驶在平行的轨道上,其中快车车长为100米,慢车车长150米,已知当两车相向而行时,
快车驶过慢车某个窗口所用的时间为5秒。

⑴两车的速度之和及两车相向而行时慢车经过快车某一窗口所用的时间各是多少?
⑵如果两车同向而行,慢车速度为8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到
快车的车尾离开慢车的车头所需的时间至少是多少秒?
16、甲、乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还
快2千米/时,甲先到达B地后,立即由B地返回,在途中遇到乙,这时距他们出发时已过了3小时。

求两人的速度。

17、一辆汽车上午10:00从安阳出发匀速行驶,途经曲沟、水冶、铜冶三地,时间如下表,
水冶在曲沟和铜冶两地之间,距曲沟10千米,距铜冶20千米,安阳到水冶的
路程有多少千米?
18、甲骑自行车从A地到B地,乙骑自行车从B到A地,两人都匀速前进,已知两人在上午8时同时出发,
到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A、B两地间的路程。

二、环行跑道与时钟问题:
1、甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地同向出发,几
分钟后二人相遇?若背向跑,几分钟后相遇?
三、行船与飞机飞行问题:
1、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,
求两城市间的距离。

2、小明在静水中划船的速度为10千米/时,今往返于某条河,逆水用了9小时,顺水用了6小时,
求该河的水流速度。

3、某船从A 码头顺流航行到B 码头,然后逆流返行到C 码头,共行20小时,已知船在静水中的速度
为7.5千米/时,水流的速度为2.5千米/时,若A 与C 的距离比A 与B 的距离短40千米,求A 与B 的距离。

第二类:工程问题
1、一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,
还需要几天完成?
2、食堂存煤若干吨,原来每天烧煤4吨,用去15吨后,改进设备,耗煤量改为原来的一半,结果多烧了10天,
求原存煤量.
3、一水池,单开进水管3小时可将水池注满,单开出水管4小时可将满池水放完。

现对空水池先打开进水管2小
时,然后打开出水管,使进水管、出水管一起开放,问再过几小时可将水池注满?
4、甲、乙两个工程队合做一项工程,乙队单独做一天后,由甲、乙两队合做两天后就完成了全部工程.已知甲队单 独做所需天数是乙队单独做所需天数的
32,问甲、乙两队单独做,各需多少天?。

相关文档
最新文档