考点一动量守恒的判断
高中物理【动量守恒定律】知识点、规律总结
2.反冲 (1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量, 这种现象叫反冲运动. (2)特点:系统内各物体间的相互作用的内力_远__大__于___系统受到的外力.实例:发射 炮弹、爆竹爆炸、发射火箭等. (3)规律:遵从动量守恒定律. 3.爆炸问题 爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且_远__大__于___系统所受 的外力,所以系统动量_守__恒___.
的动量
系统性 研究的对象是相互作用的两个或多个物体组成的系统 动量守恒定律不仅适用于低速宏观物体组成的系统,还适用于接近光速运动
普适性 的微观粒子组成的系统
2.应用动量守恒定律的解题步骤 (1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程). (2)进行受力分析,判断系统动量是否守恒(或某一方向上是否守恒). (3)规定正方向,确定初、末状态动量. (4)由动量守恒定律列出方程. (5)代入数据,求出结果,必要时讨论说明.
两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒,在
相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为
“人船模型”问题.
2.“人船模型”的特点
(1)两物体满足动量守恒定律:m1v1-m2v2=0. (2)运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比
2.弹性碰撞的结论 两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为 m1、速度为 v1 的小 球与质量为 m2 的静止小球发生正面弹性碰撞为例,则有 m1v1=m1v1′+m2v2′ 12m1v21=12m1v1′2+12m2v2′2
【总结提升】 碰撞问题解题策略 (1)抓住碰撞的特点和不同种类碰撞满足的条件,列出相应方程求解. (2)可熟记一些公式,例如“一动一静”模型中,两物体发生弹性正碰后的速度满足: v1=mm11- +mm22v0、v2=m12+m1m2v0. (3)熟记弹性正碰的一些结论,例如,当两球质量相等时,两球碰撞后交换速度.
31 第七章 第2讲 动量守恒定律
答案:(1)8 N 5 N (2)8 m/s (3)0.2 m 解析:(1)当滑块处于静止时桌面对滑杆的支持力等于滑块和滑杆的 重力,即 N1=(m+M)g=8 N 当滑块向上滑动过程中受到滑杆的摩擦力为1 N,根据牛顿第三定律 可知滑块对滑杆的摩擦力也为1 N,方向竖直向上,则此时桌面对滑 杆的支持力为N2=Mg-f′=5 N
【重难诠释】 1.动量守恒条件的理解 (1)理想守恒:不受外力或所受外力的合力为零。 (2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力。 (3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系 统在这一方向上动量守恒。
2.应用动量守恒定律解题的步骤
【典例精析】 考向1 动量守恒的判断
(1)三个情况的讨论: ①若m1=m2,则v1′=0,v2′=v1 (质量相等的两个物体发生弹性碰撞, 则碰撞后两物体交换速度)。 ②若m1>m2,则v1′>0,v2′>0(碰后两物体沿同一方向运动)。 特例:当m1≫m2时,v1′≈v1,v2′≈2v1。 ③若m1<m2,则v1′<0,v2′>0(碰后两物体沿相反方向运动)。 特例:当m1≪m2时,v1′≈-v1,v2′≈0。
(2)重要推论:
运动物体 A 以速度 v0 与静止的物体 B 发生碰撞: ①当发生弹性碰撞时,物体 B 获得的速度最大:vBmax=mA2+mAmB v0。
②当发生完全非弹性碰撞时损失的机械能最多,物体 B 获得的速度最
小:vBmin=mAm+AmB v0。
③当发生非弹性碰撞时,碰后物体
B
的速度范围为: mA mA+mB
B [虽然题给四个选项均满足动量守恒定律,但 A、D 两项中,碰后 A 的速度 vA′大于 B 的速度 vB′,不符合实际,AD 错误;C 项中,两 球碰后的总动能 Ek 后=12 mAvA′2+12 mBvB′2=57 J,大于碰前的总动能 Ek 前=12 mAvA2+12 mBvB2=22 J,违背了能量守恒定律,C 错误;而 B 项既符合实际情况,也不违背能量守恒定律,B 正确。]
高考物理重难点考点:动量守恒定律及“三类模型”问题
第2讲动量守恒定律及“三类模型”问题一、动量守恒定律1.内容如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
2.表达式(1)p=p′,系统相互作用前的总动量p等于相互作用后的总动量p′。
(2)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。
(3)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向。
(4)Δp=0,系统总动量的增量为零。
3.适用条件(1)理想守恒:不受外力或所受外力的合力为零。
(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力。
(3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒。
【自测1】(多选)如图1所示,小车与木箱紧挨着静止放在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱。
关于上述过程,下列说法中正确的是()图1A.男孩和木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量增量与男孩、小车的总动量增量大小相同答案CD解析男孩和木箱组成的系统受小车的摩擦力,所以动量不守恒,A错误;小车与木箱组成的系统受男孩的力为外力,所以动量不守恒,B错误;男孩、小车与木箱三者组成的系统,所受合外力为0,所以动量守恒,C正确;木箱的动量增量与男孩、小车的总动量增量大小相同,但方向相反,D正确。
二、“三类”模型问题1.“子弹打木块”模型(1)“木块”放置在光滑的水平面上①运动性质:“子弹”对地在滑动摩擦力作用下做减速直线运动;“木块”在滑动摩擦力作用下做加速直线运动。
②处理方法:通常由于“子弹”和“木块”的相互作用时间极短,内力远大于外力,可认为“子弹”与“木块”组成的系统在这一过程中动量守恒。
把“子弹”和“木块”看成一个系统,系统水平方向动量守恒;机械能不守恒;对“木块”和“子弹”分别应用动能定理。
动量守恒定律的理解及应用
考点二 动量守恒定律的基本应用
例4 如图所示,甲、乙两船的总质量(包括船、人和货物)分别为10m、 12m,两船沿同一直线同一方向运动,速度分别为2v0、v0,为避免两船 相撞,乙船上的人将一质量为m的货物沿水平方向抛向甲船,甲船上的 人将货物接住,求抛出货物的最小速度。(不计水的阻力)
√C.只有甲、丙
B.只有丙、丁 D.只有乙、丁
1 2 3 4 5 6 7 8 9 10 11 12
2.木块a和b用一根轻弹簧连接起来,放在光滑水平面上,a紧靠在墙壁上, 在b上施加向左的水平力使弹簧压缩,如图所示,当撤去外力后,下列 说法正确的是 A.a离开墙壁前,a、b和弹簧组成的系统机械能不守恒 B.a离开墙壁前,a、b和弹簧组成的系统动量守恒
考点三 爆炸问题 反冲运动 人船模型
例6 将质量为1.00 kg的模型火箭点火升空,50 g燃烧的燃气以大小为
600 m/s的速度从火箭喷口在很短时间内喷出。在燃气喷出后的瞬间,火
箭的动量大小为(喷出过程中重力和空气阻力可忽略)
√A.30 kg·m/s
C.6.0×102 kg·m/s
B.5.7×102 kg·m/s D.6.3×102 kg·m/s
考点一 动量守恒定律的理解
例2 (2023·辽宁丹东市期末)如图,水平地面上有一小车C,顶端有一轻滑 轮,质量完全相同的两个小木块A、B由通过滑轮的轻绳相连接,初始时用 手托住小木块A,使A、B、C均处于静止状态。某时刻突然将手撤去,A、 B、C开始运动,则对小车C、小木块A、B三者组成的系统,下列说法正确 的是(所有摩擦均忽略不计) A.动量不守恒,机械能不守恒 B.动量守恒,机械能守恒 C.竖直方向上动量守恒,机械能不守恒
新教材-人教版高中物理选择性必修第一册 第一章 动量守恒定律 知识点考点重点难点提炼汇总
第一章 动量守恒定律1、2 动量 动量定理 .................................................................................................. - 1 - 3 动量守恒定律............................................................................................................ - 9 - 4 实验:验证动量守恒定律 ...................................................................................... - 17 - 5 弹性碰撞和非弹性碰撞 .......................................................................................... - 24 -1、2 动量 动量定理一、动量1.动量(1)定义:物理学中把物体的质量m 跟运动速度v 的乘积m v 叫作动量.(2)定义式:p =m v .(3)单位:在国际单位制中,动量的单位是千克米每秒,符号为kg·m/s.(4)矢量:由于速度是矢量,所以动量是矢量,它的方向与速度的方向相同.2.用动量概念表示牛顿第二定律(1)公式表示:F =Δp Δt .(2)意义:物体所受到的合外力等于它动量的变化率.二、动量定理 1.冲量(1)定义:物理学中把力与力的作用时间的乘积叫作力的冲量.(2)公式:I =F Δt =F (t ′-t ).(3)矢量:冲量是矢量,它的方向跟力的方向相同.(4)物理意义:冲量是反映力的作用对时间的累积效应的物理量,力越大,作用时间越长,冲量就越大. 2.动量定理(1)内容:物体在一个过程中所受力的冲量等于它在这个过程始末的动量变化量.(2)公式表示⎩⎨⎧I =p ′-p F (t ′-t )=m v ′-m v (3)意义:冲量是物体动量变化的量度,合外力的冲量等于物体动量的变化量.考点一 动量1.(1)定义:物体的质量m和其运动速度v的乘积称为物体的动量,记作p=m v.①动量是动力学中反映物体运动状态的物理量,是状态量.②在谈及动量时,必须明确是哪个物体在哪个时刻或哪个状态所具有的动量.(2)单位:动量的单位由质量和速度的单位共同决定.在国际单位制中,动量的单位是千克米每秒,符号为kg·m/s.(3)矢量性:动量是矢量,它的方向与物体的速度方向相同,遵循矢量运算法则.2.动量与动能的区别与联系3.动量的变化量(1)p′,初动量为p,则Δp=p′-p=m v′-m v=mΔv.(2)动量的变化量Δp也是矢量,其方向与速度的改变量Δv的方向相同.(3)动量变化量Δp的计算方法①若物体做直线运动,只需选定正方向,与正方向相同的动量取正,反之取负.Δp=p′-p,若Δp是正值,就说明Δp的方向与所选正方向相同;若Δp是负值,则说明Δp的方向与所选正方向相反.②若初、末状态动量不在一条直线上,可按平行四边形定则求得Δp的大小和方向,这时Δp、p为邻边,p′为平行四边形的对角线.如图所示.动量为矢量,动量变化遵守矢量运算法则.【例1】质量为m=0.1 kg的橡皮泥,从高h=5 m处自由落下(g取10 m/s2),橡皮泥落到地面上静止,求:(1)橡皮泥从开始下落到与地面接触前这段时间内动量的变化;(2)橡皮泥与地面作用的这段时间内动量的变化;(3)橡皮泥从静止开始下落到停止在地面上这段时间内动量的变化.【审题指导】【解析】取竖直向下的方向为正方向.(1)橡皮泥从静止开始下落时的动量p1=0;下落5 m与地面接触前的瞬时速度v=2gh=10 m/s,方向向下,这时动量p2=m v=0.1×10 kg·m/s=1 kg·m/s,为正.则这段时间内动量的变化Δp=p2-p1=(1-0) kg·m/s=1 kg·m/s,是正值,说明动量变化的方向向下.(2)橡皮泥与地面接触前瞬时动量p1′=1 kg·m/s,方向向下,为正,当与地面作用后静止时的动量p2′=0.则这段时间内动量的变化Δp′=p2′-p1′=(0-1) kg·m/s=-1 kg·m/s,是负值,说明动量变化的方向向上.(3)橡皮泥从静止开始下落时的动量p1=0,落到地面后的动量p2′=0.则这段时间内动量的变化Δp″=p2′-p1=0,即这段时间内橡皮泥的动量变化为零.【答案】(1)大小为1 kg·m/s,方向向下(2)大小为1 kg·m/s,方向向上(3)0考点二冲量1.冲量(1)定义:物理学中把力与力的作用时间的乘积叫作力的冲量.(2)公式:通常用符号I表示冲量,即I=FΔt.(3)单位:在国际单位制中,冲量的单位是N·s.动量与冲量的单位关系是:1 N·s=1 kg·m/s.(4)对冲量的理解①时间性:冲量不仅与力有关,还与力的作用时间有关,恒力的冲量等于力与力作用时间的乘积,此公式I=Ft只适用于恒力.向变化的力来说,冲量的方向与相应时间内动量的变化量的方向一致,冲量的运算应遵循平行四边形定则.③绝对性:由于力和时间都跟参考系的选择无关,所以力的冲量也跟参考系的选择无关.④过程性:冲量是描述力F对时间t的累积效果的物理量,是过程量,必须明确是哪个力在哪段时间内对哪个物体的冲量.2.冲量与功的区别(1)冲量是矢量,功是标量.(2)由I=Ft可知,有力作用,这个力一定会有冲量,因为时间t不可能为零.但是由功的定义式W=F·s cosθ可知,有力作用,这个力却不一定做功.例如:在斜面上下滑的物体,斜面对物体的支持力有冲量的作用,但支持力对物体不做功;做匀速圆周运动的物体,向心力对物体有冲量的作用,但向心力对物体不做功;处于水平面上静止的物体,重力不做功,但在一段时间内重力的冲量不为零.(3)冲量是力在时间上的积累,而功是力在空间上的积累.这两种积累作用可以在“F-t”图像和“F-s”图像上用面积表示.如图所示.图甲中的曲线是作用在某一物体上的力F随时间t变化的曲线,图中阴影部分的面积就表示力F在时间Δt=t2-t1内的冲量.图乙中阴影部分的面积表示力F做的功.【例2】质量为2 kg的物体静止在足够大的水平面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力和滑动摩擦力大小视为相等.从t=0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F的作用,F随时间t的变化规律如图所示.重力加速度g取10 m/s2,则物体在t=0到t=12 s这段时间内合外力的冲量是多少?【审题指导】关键词信息物体与地面间的动摩擦因数为0.2物体受摩擦力物体受到方向不变、大小呈周期性变化的水平拉力F,F随时间t的变化规律如图所示图线的面积等于力F的冲量大小f=μmg=0.2×2×10 N=4 N则摩擦力的冲量为I f=-ft=-4×12 N·s=-48 N·s 力F的冲量等于F-t图线的面积则I F=(F1t1+F2t2)×2=(4×3+8×3)×2 N·s=72 N·s 则合外力的冲量I=I f+I F=(-48+72) N·s=24 N·s. 【答案】24 N·s冲量计算注意问题(1)冲量是矢量,在计算过程中要注意正方向的选取,在同一直线上的矢量合成转化为代数运算,较为简单.(2)不在同一直线上的冲量计算要应用平行四边形定则或三角形定则.(3)要明确F-t图像面积的意义,且要知道t轴以上与以下的面积意义不同,两者表示方向相反.考点三动量定理1.对动量定理的理解(1)动量定理反映了合外力的冲量与动量变化量之间的因果关系,即合外力的冲量是原因,物体的动量变化量是结果.力的冲量,可以是各力冲量的矢量和,也可以是外力在不同阶段冲量的矢量和.(3)动量定理表达式I=p′-p是个矢量式,式中的“=”表示合外力的冲量与动量的变化量等大、同向,但某时刻的合外力的冲量可以与动量的方向同向,也可以反向,还可以成某一角度.(4)动量定理具有普遍性,其研究对象可以是单个物体,也可以是物体系统,不论物体的运动轨迹是直线还是曲线,作用力不论是恒力还是变力,几个力作用的时间不论是相同还是不同,动量定理都适用.2.动量定理的应用(1)定性分析有关现象①物体的动量变化量一定时,力的作用时间越短,力就越大;力的作用时间越长,力就越小.例如:车床冲压工件时,缩短力的作用时间,产生很大的作用力;而在搬运玻璃等易碎物品时,包装箱内放些碎纸、刨花、塑料等,是为了延长作用时间,减小作用力.因为越坚固,发生碰撞时,作用时间将会越短,由I=FΔt可知,碰撞时的相互作用力会很大,损坏会更严重.②作用力一定时,力的作用时间越长,动量变化量越大;力的作用时间越短,动量变化量越小.例如:自由下落的物体,下落时间越长,速度变化越大,动量变化越大,反之,动量变化越小.(2)定量计算有关物理量①两种类型a .已知动量或动量的变化量求合外力的冲量,即 p 、p ′或Δp ――→I =ΔpIb .已知合外力的冲量求动量或动量的变化量,即I ――→Δp =p ′-p =IΔp 或p 、p ′应用I =Δp 求平均力,可以先求该力作用下物体的动量变化,Δp 等效代换变力冲量I ,进而求平均力F =Δp Δt .a .选定研究对象,明确运动过程.b .进行受力分析和运动的初、末状态分析.c .选定正方向,根据动量定理列方程求解.【例3】 杂技表演时,常可看见有人用铁锤猛击放在“大力士”身上的条石,石裂而人不伤,试分析其中道理.【审题指导】【解析】 设条石的质量为M ,铁锤的质量为m .取铁锤为研究对象,设铁锤打击条石前速度大小为v ,反弹速度大小为v ′,根据动量定理得(F -mg )Δt =m v ′-m (-v ),F =m (v +v ′)Δt+mg .Δt 极短,条石受到的铁锤对它的打击力F ′=F 很大,铁锤可以击断条石.对条石下的人而言,原来受到的压力为Mg ,铁锤打击条石时将对人产生一附加压力,根据牛顿第三定律,条石受到的冲量F ′Δt =F Δt =m (v +v ′)+mg Δt ,条石因此产生的动量变化量Δp =m (v +v ′)+mg Δt ,因人体腹部柔软,缓冲时间t较长,人体受到的附加压力大小为F 1=Δp t =m (v +v ′)t+mg Δt t ,可知附加压力并不大.【答案】 见解析应用动量定理的四点注意事项(1)明确物体受到冲量作用的结果是导致物体动量的变化.冲量和动量都是矢量,它们的加、减运算都遵循平行四边形定则.(2)列方程前首先要选取正方向,与规定的正方向一致的力或动量取正值,反之取负值,而不能只关注力或动量数值的大小.(3)分析速度时一定要选取同一个参考系,未加说明时一般是选地面为参考系,同一道题目中一般不要选取不同的参考系.(4)公式中的冲量应是合外力的冲量,求动量的变化量时要严格按公式,且要注意是末动量减去初动量.动量定理与牛顿定律的综合应用1.动量定理与牛顿定律(1)力F的大小等于动量对时间的变化率.在质量一定的问题中,反映的是力越大,运动状态改变越快,即产生的加速度越大.(2)动量定理与牛顿第二定律在实质上虽然是一致的,但是牛顿第二定律适用于解决恒力问题,而动量定理不但适用于恒力还适用于变力,所以动量定理在解决变力作用问题上更方便.但是要注意,通过动量定理得到的力,是作用过程的平均作用力.2.综合应用动量定理与牛顿定律解题该类问题除要明确研究对象的初、末状态外,还要对合理选取的研究对象进行受力分析,应用动量定理和牛顿第二定律列式求解.【典例】一枚竖直向上发射的火箭,除燃料外火箭的质量m火箭=6 000 kg,火箭喷气的速度为1 000 m/s,在开始时每秒大约要喷出多少质量的气体才能托起火箭?如果要使火箭开始时有19.6 m/s2向上的加速度,则每秒要喷出多少气体?【解析】火箭向下喷出的气体对火箭有一个向上的反作用力,正是这个力支持着火箭,根据牛顿第三定律,也就知道喷出气体的受力,再根据动量定理就可求得结果.设火箭每秒喷出的气体质量为m,根据动量定理可得Ft=m v2-m v1=m(v2-v1),其中F=m火箭g,v2-v1=1 000 m/s,得m=Ftv2-v1=m火箭gtv2-v1=58.8 kg.当火箭以19.6 m/s2的加速度向上运动时,由牛顿第二定律得F′-m火箭g=m 火箭a,设此时每秒喷出的气体质量为m′,根据动量定理有F′t=m′v2-m′v1,得m′=F′tv2-v1=m火箭(g+a)tv2-v1=176.4 kg.【答案】58.8 kg176.4 kg应用动量定理解题时所选研究对象一般是动量发生变化的物体,此题中是“喷出的气体”,再结合牛顿运动定律求解.3动量守恒定律一、动量守恒定律1.系统、内力和外力(1)系统:两个或两个以上的物体组成的研究对象称为一个力学系统,简称系统.(2)内力:系统中物体间的作用力称为内力.(3)外力:系统以外的物体施加给系统内物体的力称为外力.二、动量守恒定律的普适性1.动量守恒定律与牛顿运动定律用牛顿运动定律解决问题要涉及整个过程中的力.动量守恒定律只涉及过程始末两个状态,与过程中力的细节无关.这样,问题往往能大大简化.动量守恒定律并不是由牛顿运动定律推导出来的,它是自然界普遍适用的自然规律.而牛顿运动定律适用范围有局限性.(1)相互作用的物体无论是低速还是高速运动,无论是宏观物体还是微观粒子,动量守恒定律均适用.(2)高速(接近光速)、微观(小到分子、原子的尺度)领域,牛顿运动定律不再适用,而动量守恒定律仍然正确.考点一应用动量守恒定律解决问题的基本思路和一般方法1.分析题意,明确研究对象在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的.2.要对各阶段所选系统内的物体进行受力分析弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力.在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒.3.明确所研究的相互作用过程,确定过程的始、末状态即系统内各个物体的初动量和末动量的值或表达式.【注意】在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系.4.确定好正方向建立动量守恒方程求解【例1】(多选)如图所示,A、B两物体质量之比m A m B=32,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,水平地面光滑.当弹簧突然释放后,则()A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成的系统动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成的系统动量守恒C.若A、B所受的摩擦力大小相等,A、B组成的系统动量守恒D.若A、B所受的摩擦力大小相等,A、B、C组成的系统动量守恒在多个物体组成的系统中,动量是否守恒与研究对象的选择有关.系统可按解决问题的需要灵活选取.【审题指导】要判断A、B组成的系统是否动量守恒,要先分析A、B组成的系统受到的合外力与A、B之间相互作用的内力;看合外力是否为零,或者内力是否远远大于合外力.【解析】如果物体A、B与平板车上表面间的动摩擦因数相同,弹簧释放后,A、B分别相对小车向左、向右滑动,它们所受的滑动摩擦力F A向右,F B向左,由于m A m B=32,所以F A F B=32,则A、B组成的系统所受的外力之和不为零,故其动量不守恒,选项A错;对A、B、C组成的系统,A、B与C 间的摩擦力为内力,该系统所受的外力的合力为零,故该系统的动量守恒,选项B、D均正确;若A、B所受的摩擦力大小相等,则A、B组成的系统的外力之和为零,故其动量守恒,选项C正确.【答案】BCD考点二多个物体组成的系统动量守恒问题多个物体相互作用时,物理过程往往比较复杂,分析此类问题时应注意:(1)正确进行研究对象的选取,有时需应用整体动量守恒,有时只需应用部分物体动量守恒.研究对象的选取,一是取决于系统是否满足动量守恒的条件,二是根据所研究问题的需要.(2)正确进行过程的选取和分析,通常对全程进行分段分析,并找出联系各阶段的状态量.列式时有时需分过程多次应用动量守恒,有时只需针对初、末状态建立动量守恒的关系式.【例3】质量为M=2 kg的小平板车静止在光滑水平面上,车的一端静止着质量为m A=2 kg的物体A(可视为质点),如图所示.一颗质量为m B=20 g的子弹以600 m/s的水平速度射穿A后,速度变为100 m/s,最后物体A仍静止在车上,求平板车最后的速度是多大.【审题指导】1.子弹与物体A能否组成系统?水平方向动量是否守恒?2.子弹射穿物体A后,物体A与小车是否可以组成系统?水平方向动量是否守恒?3.子弹、物体A和小车能否组成系统?该系统在水平方向动量是否守恒?【解析】解法一:子弹射穿A的过程极短,因此在射穿过程中车对A的摩擦力及子弹的重力作用可忽略,即认为子弹和A组成的系统水平方向动量守恒;同时,由于作用时间极短,可认为A的位置没有发生变化.设子弹击穿A后的速度为v′,由动量守恒定律m B v0=m B v′+m A v A,得v A=m B(v0-v′)m A=0.02×(600-100)2m/s=5 m/s.A获得速度v A后相对车滑动,由于A与车间有摩擦,最后A相对车静止,以共同速度v运动,对于A与车组成的系统,水平方向动量守恒,因此有m A v A=(m A+M)v,故v=m A v Am A+M=2×52+2m/s=2.5 m/s.解法二:因地面光滑,子弹、物体A、车三者组成的系统在水平方向不受外力,水平方向动量守恒,最后A与车速度相同.对于三者组成的系统,由动量守恒定律得m B v0=m B v′+(m A+M)v,得v=m B(v0-v′)m A+M=0.02×(600-100)2+2m/s=2.5 m/s.【答案】 2.5 m/s考点三碰撞、爆炸问题的处理方法碰撞和爆炸现象很多,如交通事故中人被车撞了、两车相撞、球与球之间相撞等,那么它们有什么特点呢?我们可以从以下几个方面分析:(1)过程的特点①相互作用时间很短.②在相互作用过程中,相互作用力先是急剧增大,然后再急剧减小,平均作用力很大,远远大于外力,因此作用过程的动量可看成守恒.(2)位移的特点碰撞、爆炸、打击过程是在一瞬间发生的,时间极短,所以在物体发生碰撞、爆炸、打击的瞬间可忽略物体的位移.可以认为物体在碰撞、爆炸、打击前后在同一位置.(3)能量的特点爆炸过程系统的动能增加,碰撞、打击过程系统的动能不会增加,可能减少,也可能不变.【例4】以初速度v0与水平方向成60°角斜向上抛出的手榴弹,到达最高点时炸成质量分别是m和2m的两块弹片.其中质量较大的一块弹片沿着原来的水平方向以2v0的速度飞行.求:(1)质量较小的另一块弹片速度的大小和方向;(2)爆炸过程中有多少化学能转化为弹片的动能.【审题指导】1.手榴弹在空中受到的合力是否为零?2.手榴弹在爆炸过程中,各弹片组成的系统动量是否守恒,为什么?3.在爆炸时,化学能的减少量与弹片动能的增加量有什么关系?【解析】(1)斜抛的手榴弹在水平方向上做匀速直线运动,在最高点处爆炸前的速度v=v0cos60°=12v0,设v的方向为正方向,如图所示,由动量守恒定律得3m v=2m v1+m v2,其中爆炸后大块弹片速度v1=2v0,小块弹片的速度v2为待求量,解得v2=-2.5v0,“-”号表示v2的方向与爆炸前速度方向相反.(2)爆炸过程中转化为动能的化学能等于系统动能的增量.ΔE k=12×2m v21+12m v22-12(3m)v2=6.75m v20.【答案】(1)大小为2.5v0,方向与原来的速度方向相反(2)6.75m v20考点四动量守恒定律和机械能守恒定律的比较和综合应用动量守恒定律和机械能守恒定律的比较定律名称项目动量守恒定律机械能守恒定律相同点研究对象研究对象都是相互作用的物体组成的系统研究过程研究的都是某一运动过程不同点守恒条件系统不受外力或所受外力的矢量和为零系统只有重力或弹力做功表达式p1+p2=p1′+p2′E k1+E p1=E k2+E p2表达式的矢量式标量式矢标性某一方向上应用情况可在某一方向独立使用不能在某一方向独立使用运算法则用矢量法则进行合成或分解代数运算光滑圆槽顶端由静止滑下.在槽被固定和可沿着光滑平面自由滑动两种情况下,木块从槽口滑出时的速度大小之比为多少?【审题指导】槽被固定时,木块的机械能守恒;槽不被固定时,木块和槽组成的系统的机械能守恒,且水平方向上动量守恒.【解析】圆槽固定时,木块下滑过程中只有重力做功,木块的机械能守恒.木块在最高处的势能全部转化为滑出槽口时的动能.设木块滑出槽口时的速度为v1,由mgR=12m v21①木块滑出槽口时的速度:v1=2gR②圆槽可动时,在木块开始下滑到脱离槽口的过程中,木块和槽所组成的系统水平方向不受外力,水平方向动量守恒.设木块滑出槽口时的速度为v2,槽的速度为u,则:m v2-Mu=0③又木块下滑时,只有重力做功,机械能守恒,木块在最高处的重力势能转化为木块滑出槽口时的动能和圆槽的动能,即mgR=12m v22+12Mu2④联立③④两式解得木块滑出槽口的速度:v2=2MgRm+M⑤两种情况下木块滑出槽口的速度之比:v1 v2=2gR2MgR/(m+M)=m+MM.【答案】m+MM多运动过程中的动量守恒包含两个及两个以上物理过程的动量守恒问题,应根据具体情况来划分过程,在每个过程中合理选取研究对象,要注意两个过程之间的衔接条件,如问题不涉及或不需要知道两个过程之间的中间状态,应优先考虑取“大过程”求解.(1)对于由多个物体组成的系统,在不同的过程中往往需要选取不同的物体组成的不同系统.(2)要善于寻找物理过程之间的相互联系,即衔接条件.【典例】如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C 向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C碰撞.求A与C发生碰撞后瞬间A的速度大小.【解析】因碰撞时间极短,A与C碰撞过程动量守恒,设碰后瞬间A的速度为v A,C的速度为v C,以向右为正方向,由动量守恒定律得m A v0=m A v A+m C v C A与B在摩擦力作用下达到共同速度,设共同速度为v AB,由动量守恒定律得m A v A+m B v0=(m A+m B)v ABA与B达到共同速度后恰好不再与C碰撞,应满足v AB=v C联立以上各式,代入数据得v A=2 m/s.【答案】 2 m/s动量守恒定律的研究对象是系统,为了满足守恒条件,系统的划分非常重要,往往通过适当变换划入系统的物体,可以找到满足守恒条件的系统.在选择研究对象时,应将运动过程的分析与系统的选择统一考虑.类题试解如图所示,质量为m的子弹,以速度v水平射入用轻绳悬挂在空中的木块,木块的质量为m′,绳长为l,子弹停留在木块中,求子弹射入木块后的瞬间绳子张力的大小.【解析】 在子弹射入木块的这一瞬间,系统动量守恒.取向左为正方向,由动量守恒定律有0+m v =(m +m ′)v ′,解得v ′=m v m +m ′. 随着整体以速度v ′向左摆动做圆周运动.在圆周运动的最低点,整体只受重力(m +m ′)g 和绳子的拉力F 作用,由牛顿第二定律有(取向上为正方向)F -(m +m ′)g =(m +m ′)v ′2l .将v ′代入即得F =(m +m ′)g +m 2v 2(m +m ′)l. 【答案】 (m +m ′)g +m 2v 2(m +m ′)l4 实验:验证动量守恒定律一、实验思路两个物体在发生碰撞时,作用时间很短,相互作用力很大,如果把这两个物体看作一个系统,虽然物体还受到重力、支持力、摩擦力、空气阻力等外力的作用,但是有些力的矢量和为0,有些力与系统内两物体的相互作用力相比很小.因此,在可以忽略这些外力的情况下,碰撞满足动量守恒定律的条件.我们研究最简单的情况:两物体碰撞前沿同一直线运动,碰撞后仍沿这条直线运动.应该尽量创设实验条件,使系统所受外力的矢量和近似为0.二、物理量的测量确定研究对象后,还需要明确所需测量的物理量和实验器材.根据动量的定义,很自然地想到,需要测量物体的质量以及两个物体发生碰撞前后各自的速度.物体的质量可用天平直接测量.速度的测量可以有不同的方式,根据所选择的具体实验方案来确定.三、数据分析根据选定的实验方案设计实验数据记录表格.选取质量不同的两个物体进行碰撞,测出物体的质量(m1,m2)和碰撞前后的速度(v1,v′1,v2,v′2),分别计算出两物体碰撞前后的总动量,并检验碰撞前后总动量的关系是否满足动量守恒定律,即m1v′1+m2v′2=m1v1+m2v2四、参考案例参考案例1:研究气垫导轨上滑块碰撞时的动量守恒(1)实验器材:气垫导轨、光电计时器、天平、滑块(两个)、弹簧片、胶布、撞针、橡皮泥等.(2)实验步骤:接通电源,利用光电计时器测出两滑块在各种情况下碰撞前后的速度(例如:①改变滑块的质量;②改变滑块初速度的大小和方向),验证一维碰撞中的不变量.(3)实验方法①质量的测量:用天平测出两滑块的质量.②速度的测量:挡光板的宽度设为Δx,滑块通过光电门所用时间为Δt,则滑块相当于在Δx的位移上运动了时间Δt,所以滑块做匀速直线运动的速度v=Δx Δt.(4)数据处理将实验中测得的物理量填入相应的表格中,注意规定正方向,物体运动的速度方向与正方向相反时为负值.通过研究以上实验数据,找到碰撞前、后的“不变量”.考点一利用气垫导轨验证动量守恒定律[实验器材]气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等.[实验步骤]本方案优点:气垫导轨阻力很小,光电门计时准确,能较准确地验证动量守恒定律.。
高中物理必修三 讲义 16 A动量守恒定律及应用 基础版
动量守恒定律及应用考点一动量守恒定律的理解和基本应用1.内容如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变.2.表达式(1)p=p′或m1v1+m2v2=m1v1′+m2v2′.系统相互作用前的总动量等于相互作用后的总动量.(2)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向.3.适用条件(1)理想守恒:不受外力或所受外力的合力为零.(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力.(3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒.技巧点拨应用动量守恒定律解题的步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程).(2)进行受力分析,判断系统动量是否守恒(或某一方向上是否守恒).(3)规定正方向,确定初、末状态动量.(4)由动量守恒定律列出方程.(5)代入数据,求出结果,必要时讨论说明.例题精练1.如图1所示,将一光滑的半圆槽置于光滑水平面上,槽的左侧紧靠在墙壁上.现让一小球自左侧槽口A的正上方从静止开始落下,与圆弧槽相切自A点进入槽内,则下列结论中正确的是()图1A.小球在半圆槽内运动的全过程中,只有重力对它做功B.小球在半圆槽内运动的全过程中,小球与半圆槽在水平方向动量守恒C .小球自半圆槽B 点向C 点运动的过程中,小球与半圆槽在水平方向动量守恒D .小球离开C 点以后,将做竖直上抛运动2.(多选)如图2所示,一质量M =3.0 kg 的长方形木板B 放在光滑水平地面上,在其右端放一个质量m =1.0 kg 的小木块A ,同时给A 和B 以大小均为4.0 m/s ,方向相反的初速度,使A 开始向左运动,B 开始向右运动,A 始终没有滑离B 板,在小木块A 做加速运动的时间内,木板速度大小可能是( )图2A .2.1 m/sB .2.4 m/sC .2.8 m/sD .3.0 m/s3.(多选)某研究小组通过实验测得两滑块碰撞前后运动的实验数据,得到如图3所示的位移—时间图象.图中的线段a 、b 、c 分别表示沿光滑水平面上同一条直线运动的滑块Ⅰ、Ⅱ和它们发生正碰后结合体的位移随时间变化关系.已知相互作用时间极短,由图象给出的信息可知( )图3A .碰前滑块Ⅰ与滑块Ⅱ速度大小之比为5∶2B .碰前滑块Ⅰ的动量大小比滑块Ⅱ的动量大小大C .碰前滑块Ⅰ的动能比滑块Ⅱ的动能小D .滑块Ⅰ的质量是滑块Ⅱ的质量的16考点二 动量守恒定律的临界问题1.当小物块到达最高点时,两物体速度相同.2.弹簧最短或最长时,两物体速度相同,此时弹簧弹性势能最大.3.两物体刚好不相撞,两物体速度相同.4.滑块恰好不滑出长木板,滑块滑到长木板末端时与长木板速度相同.例题精练4.如图4所示,光滑悬空轨道上静止一质量为3m的小车A,用一段不可伸长的轻质细绳悬挂一质量为2m的木块B.一质量为m的子弹以水平速度v0射入木块(时间极短),在以后的运动过程中,细绳离开竖直方向的最大角度小于90°,试求:(不计空气阻力,重力加速度为g)图4(1)子弹射入木块B时产生的热量;(2)木块B能摆起的最大高度;(3)小车A运动过程的最大速度大小.综合练习一.选择题(共10小题)1.(和平区校级期中)如图所示,质量为m2的小车上有一半圆形的光滑槽,一质量为m1的小球置于槽内,共同以速度v0沿水平面运动,并与一个原来静止的小车m3对接,则对接后瞬间,小车的速度大小为()A.B.C.D.以上答案均不对2.(邳州市校级期中)A、B两球沿一直线发生正碰,如图所示的x﹣t图像记录了两球碰撞前后的运动情况,图中的a、b分别为碰撞前A、B两球的x﹣t图线。
第2节 动量守恒定律
系统动量守恒
C.小球在半圆槽内由 B 点向 C 点运动的过程中,小球与半
圆槽组成的系统动量守恒
D.小球从 C 点离开半圆槽后,一定还会从 C 点落回半圆槽
解析:只有重力或只有弹力做功时物体的机械能守恒。小球在 半圆槽内由 B 到 C 运动的过程中,除重力做功外,半圆槽的支 持力也对小球做功,由此可知,小球在半圆槽内运动的全过程 中,小球的机械能不守恒,故 A 错误;小球在半圆槽内运动的 前半过程中,左侧物块对半圆槽有作用力,小球与半圆槽组成 的系统动量不守恒。小球在半圆槽内运动的后半过程中,小球 有向心加速度,竖直方向的合力不为零,系统的动量也不守恒, 故 B 错误;小球自半圆槽的最低点 B 向 C 点运动的过程中,竖 直方向的合力不为零,系统的动量也不守恒。系统在水平方向 所受合外力为零,故小球与半圆槽在水平方向动量守恒,故 C 错误;小球离开 C 点以后,既有竖直向上的分速度,又有水平 分速度,小球做斜上抛运动,水平方向做匀速直线运动,水平 分速度与半圆槽的速度相同,所以小球一定还会从 C 点落回半 圆槽,故 D 正确。
第 2 节 动量守恒定律
[微点判断]
(1)只要系统合外力做功为零,系统动量就守恒。
(×)
(2)物体相互作用时动量守恒,但机械能不一定守恒。 (√)
(3)若在光滑水平面上的两球相向运动,碰后均变为静止,则两
球碰前的动量大小一定相同。
(√)
(4)两物体相互作用时若系统间存在摩擦力,则两物体组成的系
统动量不守恒。
[逐点释解] 应用动量守恒定律的三点提醒 1.动量守恒定律是矢量方程,解题时应选取统一的正方向。 2.各物体的速度必须相对于同一参考系,一般是相对于地面。 3.列动量守恒定律方程时应注意所选取的研究系统及研究过 程。
知识讲解 动量守恒定律(基础)
物理总复习:动量守恒定律【考纲要求】1、知道动量守恒定律的内容和适用条件;2、知道弹性碰撞和非弹性碰撞;3、能用动量守恒定律定量分析一维碰撞问题;4、知道验证动量守恒定律实验的原理、方法。
【知识网络】【考点梳理】考点一、动量守恒定律1、动量守恒定律相互作用的一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。
要点诠释:(1)外力指系统外物体对系统内物体的作用力,内力指研究系统内物体间的相互作用力。
(2)动量守恒是对某一系统而言的,划分系统的方法一旦改变,动量可能不再守恒。
因此,在应用动量守恒定律时,一定要弄清研究对象,把过程始末的动量表达式写准确。
在某些问题中,适当选取系统使问题大大简化。
(3)对几种表达式的理解:① 11221122m v m v m v m v ''+=+,表示作用前后系统的总动量相等。
② 120P P ∆+∆= (或0P ∆=) , 表示相互作用物体系总动量增量为零。
③ 12P P ∆=-∆,表示两物体动量的增量大小相等方向相反。
2、应用动量守恒定律列方程时应注意以下四点(1)矢量性:动量守恒方程是一个矢量方程。
对于作用前后物体的运动方向都在同一直线上的问题,应选取统一的正方向,凡是与选取正方向相同的动量为正,相反为负。
若方向未知,可设正方向列动量守恒方程,通过解得结果的正负,判定未知量的方向。
(2)瞬时性:动量是一个瞬时量,动量守恒指的是系统任一瞬时的动量恒定。
列方程11221122m v m v m v m v ''+=+时,等号左侧是作用前(或某一时刻)各物体的动量和,等号右侧是作用后(或另一时刻)各物体的动量和。
不同时刻的动量不能相加。
(3)相对性:由于动量大小与参考系的选取有关,因此应用动量守恒定律时,应注意各物体的速度必须是相对同一惯性系的速度,一般以地面为参考系。
(4)普适性:它不仅适用于两个物体组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,对微观粒子组成的系统也适用。
专题:动量定理 动量守恒定律
专题:动量定理动量守恒定律考点一:动量定理的理解及应用【典例1】质量的篮球从距地板高处由静止释放,与水平地板撞击后反弹上升的最大高度,从释放到弹跳至h高处经历的时间,忽略空气阻力,重力加速度,求:篮球与地板撞击过程中损失的机械能;篮球对地板的平均撞击力.强化训练一1.蹦床运动有“空中芭蕾“之称,某质量的运动员从空中落下,接着又能弹起高度,此次人与蹦床接触时间,取,求:运动员与蹦床接触时间内,所受重力的冲量大小I;运动员与蹦床接触时间内,受到蹦床平均弹力的大小F。
2.蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目一个质量为60kg的运动员,从离水平网面高处自由下落,着网后沿竖直方向蹦回离水平网面高处已知运动员与网接触的时间为若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小取3.如图所示,物块A和B通过一根轻质不可伸长的细绳连接,跨放在质量不计的光滑定滑轮两侧,质量分别为、。
初始时A静止与水平地面上,B悬于空中。
先将B竖直向上再举高未触及滑轮然后由静止释放。
一段时间后细绳绷直绷直的时间极短,A、B以大小相等的速度一起运动,之后B恰好可以和地面接触。
取。
从释放到细绳绷直时的运动时间t;的最大速度v的大小;初始时B离地面的高度H。
4.某游乐园入口旁有一喷泉,喷出的水柱将一质量M的卡通玩具稳定地悬停在空中。
为计算方便起见,假设水柱从横截面积为S的喷口持续以速度竖直向上喷出;玩具底部为平板面积略大于;水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开。
忽略空气阻力。
已知水的密度为,重力加速度大小为g。
求喷泉单位时间内喷出的水的质量;玩具在空中悬停时,其底面相对于喷口的高度。
考点二:动量守恒定律的理解及应用【典例2】在光滑水平面上静止有质量均为m的木板AB和滑块CD,木板AB上表面粗糙,滑块CD上表面是光滑的圆弧,他们紧靠在一起,如图所示一个可视为质点的物块P,质量也为m,它从木板AB的右端以初速度滑上木板,过B点时速度为,然后又滑上滑块CD,最终恰好能滑到滑块CD圆弧的最高点C处若物体P与木板AB间的动摩擦因数为,求:物块滑到B处时木板AB的速度的大小;木板AB的长度L;滑块CD最终速度的大小.【典例3】如图所示,在光滑的水平面上有一带半圆形光滑弧面的小车,质量为M,圆弧半径为R,从距车上表面高为H处静止释放一质量为m的小球,它刚好沿圆弧切线从A点落入小车,求小球到达车底B点时小车的速度和此过程中小车的位移;小球到达小车右边缘C点处,小球的速度.强化训练二1. 如图,在光滑的水平面上,有一质量为 的木板,木板上有质量为 的物块 它们都以 的初速度反向运动,它们之间有摩擦,且木板足够长,求:当木板向左的速度为 时,物块的速度是多大?木板的最终速度是多大?2. 如图所示,A 、B 两木块靠在一起放于光滑的水平面上,A 、B 的质量均为 。
课时作业1:1.3 动量守恒定律
3动量守恒定律考点一对动量守恒条件的理解1.如图1所示,小车与木箱紧挨着静止放在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱,关于上述过程,下列说法中正确的是()图1A.男孩和木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量的变化量与男孩、小车的总动量的变化量相同答案 C解析由动量守恒定律成立的条件可知,男孩、小车与木箱三者组成的系统动量守恒,选项A、B错误,C正确;木箱的动量的变化量与男孩、小车的总动量的变化量大小相等,方向相反,选项D错误.2.(多选)如图2所示,小车静止放在光滑的水平面上,将系着轻绳的小球拉开一定的角度,然后同时放开小球和小车,不计空气阻力,那么在以后的过程中()图2A.小球向左摆动时,小车也向左运动,且系统动量守恒B.小球向左摆动时,小车向右运动,且系统在水平方向上动量守恒C.小球向左摆到最高点,小球的速度为零而小车的速度不为零D.在任意时刻,小球和小车在水平方向上的动量一定大小相等、方向相反(或者都为零)答案BD解析以小球和小车组成的系统为研究对象,在水平方向上不受外力的作用,所以系统在水平方向上动量守恒.由于初始状态小车与小球均静止,所以小球与小车在水平方向上的动量要么都为零,要么大小相等、方向相反,所以A、C错,B、D对.3.(多选)(2018·三明市高二下学期期末)如图3所示,在光滑水平面上有一辆小车,小车A端与滑块C间夹了一压缩轻质弹簧(未拴接在一起),用左、右手分别控制小车A端和滑块C处于静止状态,释放后C会离开弹簧向B端冲去,并跟B端油泥粘在一起,忽略一切摩擦,对A、B、C组成的系统,下面说法中正确的是()图3A.先放开右手,再放开左手后,系统动量不守恒B.先放开左手,再放开右手,A、B、C的总动量向左C.两手同时放开后,C与油泥粘在一起时,车立即停止运动D.无论先放开哪只手,C与油泥粘在一起时,车都立即停止运动答案BC解析先放开右手,再放开左手后,系统在水平方向不受外力作用,系统的动量守恒,故A 错误.先放开左手,后放开右手,放开右手时,小车已经有向左的速度,系统的动量不为零,所以A、B、C的总动量向左,故B正确.两手同时放开后,系统的总动量为零,C与油泥粘在一起时,根据动量守恒可知车立即停止运动,故C正确.先放开左手,后放开右手,此后A、B、C的总动量向左,C与油泥粘在一起时,车向左运动;先放开右手,后放开左手,此后A、B、C的总动量向右,C与油泥粘在一起时,车向右运动,故D错误.考点二动量守恒定律的应用4.如图4所示,一平板车停在光滑的水平面上,某同学站在小车上,若他设计下列操作方案,最终能使平板车持续地向右驶去的是()图4A.该同学在图示位置用大锤连续敲打车的左端B.只要从平板车的一端走到另一端即可C.在车上装个电风扇,不停地向左吹风D.他站在车的右端将大锤丢到车的左端答案 C解析把人和车看成整体,用大锤连续敲打车的左端,根据动量守恒定律可以知道,系统的总动量为零,车不会持续地向右驶去,故A错误;人从平板车的一端走到另一端的过程中,系统水平方向不受外力,动量守恒,系统总动量为零,车不会持续地向右驶去,故B错误;电风扇向左吹风,电风扇会受到一个向右的反作用力,从而使平板车持续地向右驶去,故C 正确;站在车的右端将大锤丢到车的左端的过程中,系统水平方向不受外力,动量守恒,系统总动量为零,车不会持续地向右驶去,故D错误.5.(2020·福州十一中高二下期中)如图5所示,光滑水平面上有一辆质量为4m的小车,车上左、右两端分别站着甲、乙两人,他们的质量都是m ,开始时两个人和车一起以速度v 0向右匀速运动.某一时刻,站在车右端的乙先以相对地面向右的速度v 跳离小车,然后站在车左端的甲以相对于地面向左的速度v 跳离小车.两人都离开小车后,小车的速度将是( )图5A .1.5v 0B .v 0C .大于v 0,小于1.5v 0D .大于1.5v 0答案 A解析 两人和车组成的系统开始时动量为6m v 0,方向向右.当甲、乙两人先后以相对地面大小相等的速度向两个方向跳离时,甲、乙两人动量的矢量和为零,则有6m v 0=4m v 车,解得v 车=1.5v 0,A 正确.6.如图6所示,光滑的水平面上有大小相同、质量不等的小球A 、B ,小球A 以速度v 0向右运动时与静止的小球B 发生碰撞,碰后A 球速度反向,大小为v 04,B 球的速率为v 02,A 、B 两球的质量之比为( )图6A .3∶8B .8∶3C .2∶5D .5∶2 答案 C解析 以A 、B 两球组成的系统为研究对象,两球碰撞过程动量守恒,以A 球的初速度方向为正方向,由动量守恒定律得:m A v 0=m A (-v 04)+m B ·v 02,解得两球的质量之比m A m B =25,故C 正确.7.(多选)(2019·宁波市高二检测)如图7所示,一个质量为M 的木箱静止在光滑水平面上,木箱内粗糙的水平底板上放着一个质量为m 的小木块.现使木箱获得一个向右的初速度v 0,则( )图7A .小木块最终将相对木箱静止,二者一起向右运动B .小木块和木箱最终速度为M M +m v 0C .小木块与木箱内壁将始终来回往复碰撞,而木箱一直向右运动D .如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动答案 AB解析 木箱与小木块组成的系统水平方向不受外力,故系统水平方向动量守恒,最终两个物体以相同的速度一起向右运动,取v 0的方向为正方向,由动量守恒定律:M v 0=(M +m )v ,解得:v =M v 0M +m,A 、B 正确,C 、D 错误. 8.质量为M 的木块在光滑水平面上以速度v 1水平向右运动,质量为m 的子弹以速度v 2水平向左射入木块,要使木块停下来,必须使发射子弹的数目为(子弹留在木块中不穿出)( ) A.(M +m )v 1m v 2B.M v 1(M +m )v 2C.M v 1m v 2D.m v 1M v 2答案 C解析 设发射子弹的数目为n ,n 颗子弹和木块M 组成的系统在水平方向上所受的合外力为零,满足动量守恒的条件.选子弹运动的方向为正方向,由动量守恒定律有:nm v 2-M v 1=0,得n =M v 1m v 2,故C 正确.9.(多选)两个小木块A 和B (均可视为质点)中间夹着一水平轻质弹簧,用细线(未画出)拴在一起,放在光滑的水平桌面上,烧断细线后,木块A 、B 分别向左、右方向运动,离开桌面后均做平抛运动(离开桌面前两木块已和弹簧分离),落地点与桌面边缘的水平距离分别为l A =1 m ,l B =2 m ,如图8所示,则下列说法正确的是( )图8A .木块A 、B 离开弹簧时的速度大小之比v A ∶v B =1∶2B .木块A 、B 的质量之比m A ∶m B =2∶1C .木块A 、B 离开弹簧时的动能之比E k A ∶E k B =1∶2D .弹簧对木块A 、B 的作用力大小之比F A ∶F B =1∶2答案 ABC解析 A 、B 两木块离开桌面后做平抛运动,由平抛运动规律知,木块A 、B 离开弹簧时的速度大小之比为v A v B =l A l B =12,A 正确;以向左为正方向,根据动量守恒定律得:m A v A -m B v B =0,因此m A m B =v B v A =21,B 正确;木块A 、B 离开弹簧时的动能之比为:E k A E k B =12m A v A 212m B v B 2=12,C 正确;弹簧对木块A 、B 的作用力大小之比:F A F B =11,D 错误. 10.(多选)如图9所示,质量分别为m 1=1.0 kg 和m 2=2.0 kg 的弹性小球a 、b ,用轻绳紧紧地把它们捆在一起,使它们发生微小的形变.该系统以速度v 0=0.10 m/s 沿光滑水平面向右做直线运动.某时刻轻绳突然自动断开,断开后两球仍沿原直线运动.经过时间t =5.0 s 后,测得两球相距s =4.5 m ,则下列说法正确的是( )图9A .刚分离时,a 球的速度大小为0.7 m/sB .刚分离时,b 球的速度大小为0.2 m/sC .刚分离时,a 、b 两球的速度方向相同D .两球分开过程中释放的弹性势能为0.27 J答案 ABD解析 a 、b 组成的系统总动量守恒,以向右为正方向,由动量守恒定律得(m 1+m 2)v 0=m 1v 1+m 2v 2,两球相距s =v 1t -v 2t ,代入数据解得v 1=0.7 m/s ,v 2=-0.2 m/s ,负号表示速度方向与正方向相反,故A 、B 正确,C 错误;由能量守恒定律得12(m 1+m 2)v 02+E p =12m 1v 12+12m 2v 22,代入数据解得E p =0.27 J ,故D 正确.11.A 、B 两球之间压缩一根轻弹簧(不拴接),静置于光滑水平桌面上,已知A 、B 两球的质量分别为2m 和m .当用板挡住A 球而只释放B 球时,B 球被弹出落于距桌边水平距离为x 的地面上,B 球离开桌面时已与弹簧分离,如图10所示.若以同样的程度压缩弹簧,取走A 左边的挡板,将A 、B 同时释放,则B 球的落地点距离桌边的水平距离为( )图10A.x 3B.3x C .x D.63x 答案 D解析 当用板挡住A 球而只释放B 球时,根据能量守恒有弹簧的弹性势能E p =12m v 02,根据平抛运动规律有x =v 0t .当以同样的程度压缩弹簧,取走A 左边的挡板,将A 、B 同时释放,设A 、B 的水平速度大小分别为v A 和v B ,规定向左为正方向,则根据动量守恒和能量守恒有2m v A -m v B =0,E p =12×2m v A 2+12m v B 2,解得v B =63v 0,B 球的落地点距离桌边的水平距离为x ′=v B t =63x ,D 选项正确. 12.(2019·江苏海安月考)下雪天,卡车在平直的高速公路上匀速行驶,司机突然发现前方停着一辆故障车,他将刹车踩到底,车轮抱死(不再滚动),但卡车仍向前滑行,并撞上故障车,且推着它共同滑行了一段距离后停下.已知卡车质量M 为故障车质量m 的5倍,设卡车与故障车相撞前的速度为v 1,两车相撞后的速度变为v 2,相撞的时间极短,求:(1)v 1∶v 2;(2)卡车在碰撞过程中受到的冲量大小.答案 (1)6∶5 (2)M (v 2-v 1)解析 (1)因为相撞的时间极短,所以两车之间的内力远大于外力,两车相撞前后动量守恒,有M v 1=(M +m )v 2,而M =5m ,故v 1∶v 2=6∶5.(2)根据动量定理知,卡车在碰撞过程中受到的冲量等于卡车动量的改变量,即I =M (v 2-v 1).13.(2018·孝感市八校联盟高二下期末)如图11所示,在光滑水平面上,使滑块A 以2 m/s 的速度向右运动,滑块B 以4 m/s 的速度向左运动并与滑块A 发生相互作用,已知滑块A 、B 的质量分别为1 kg 、2 kg ,滑块B 的左侧连有水平轻弹簧,求:图11(1)当滑块A 的速度减为0时,滑块B 的速度大小;(2)两滑块相距最近时,滑块B 的速度大小;(3)弹簧弹性势能的最大值.答案 (1)3 m/s (2)2 m/s (3)12 J解析 (1)以向右为正方向,A 、B 与轻弹簧组成的系统所受合外力为零,系统动量守恒.当滑块A 的速度减为0时,滑块B 的速度为v B ′,由动量守恒定律得:m A v A +m B v B =m B v B ′解得v B ′=-3 m/s ,故滑块B 的速度大小为3 m/s ,方向向左;(2)两滑块相距最近时速度相等,设此速度为v .根据动量守恒得:m A v A +m B v B =(m A +m B )v ,解得:v =-2 m/s ,故滑块B 的速度大小为2 m/s ,方向向左;(3)两个滑块的速度相等时,弹簧压缩至最短,弹性势能最大,根据系统的机械能守恒知,弹簧的最大弹性势能为:E pm=12m A v A2+12m B v B2-12(m A+m B)v2解得:E pm=12 J.。
2022年高考物理一轮复习考点归纳动量和动量守恒定律
六动量和动量守恒定律一、基本概念和规律1.物理量的比较(1)动量定理的表达式Ft=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合外力。
(2)动量定理不仅适用于恒定的力,也适用于随时间变化的力。
在这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值。
(3)应用动量定理解释两类物理现象①当物体的动量变化量一定时,力的作用时间t越短,力F就越大;力的作用时间t越长,力F就越小。
如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎。
②当作用力F一定时,力的作用时间t越长,动量变化量Δp越大;力的作用时间t越短,动量变化量Δp越小。
3.动量守恒条件的判断(1)绝对条件:系统所受外力的矢量和为零或不受外力。
这一条件告诉我们,系统动量是否守恒与系统内物体间的作用力的多少、大小以及性质无关,系统内力不会改变系统的总动量,但可以改变系统内各物体的动量,使某些物体的动量增加,另外一些物体的动量减小,而总动量保持不变。
(2)近似条件:系统所受合外力虽然不为零,但系统的内力远大于外力,如碰撞、爆炸等现象中,系统的动量可近似看成守恒。
(3)某一方向上的动量守恒条件:如果系统所受的外力矢量和不为零,但外力在某一方向上的矢量和为零,则系统在该方向上动量守恒。
值得注意的是,系统的总动量并不守恒。
(4)表达式①p=p′即系统相互作用前的总动量p和相互作用后的总动量p′大小相等,方向相同。
系统总动量的求法遵循矢量运算法则。
②Δp=p′-p=0即系统总动量的变化量为零。
③Δp1=-Δp2即对由两部分组成的系统,在相互作用前后两部分的动量变化等值反向。
4.关于碰撞问题(1)弹性碰撞:碰撞结束后,形变全部消失,动能没有损失,不仅动量守恒,而且初、末动能相等。
m1v1+m2v2=m1v1′+m2v2′12m1v 21+12m2v22=12m1v1′2+12m2v2′2v1′=(m1-m2)v1+2m2v2m1+m2v2′=(m2-m1)v2+2m1v1m1+m2若v2=0,即为“一动一静”的弹性碰撞,碰后二者速度分别为v1′=m1-m2 m1+m2v1v2′=2m1m1+m2v1如果m1=m2,则v1′=0,v2′=v1,二者速度互换;如果m1<m2,则v1′<0,m1被反弹;如果m1≫m2,则v1′≈v1,速度几乎不变,v2′≈2v1。
学案:1.3 动量守恒定律
1.3 动量守恒定律【学习目标】1.应用牛顿定律推导出适用于两球碰撞模型的动量守恒定律,能够理解动量守恒定律的物理过程。
2.理解动量守恒定律(内容、守恒条件),会分析计算同一直线上两个物体的动量守恒问题。
3.在理解动量守恒定律的确切含义的基础上正确区分内力和外力。
4.知道运用动量守恒定律解决问题,并知道运用动量守恒定律解决有关问题的优点。
5.培养逻辑思维能力,会应用动量守恒定律分析计算有关问题。
【知识梳理】知识点一、动量守恒定律在物理学中,把几个有相互作用的物体合称为系统,系统内物体间的相互作用力叫做内力,系统以外的物体对系统的作用力叫做外力.(1)内容:由动量定理知,合外力的冲量等于0(合外力等于0),动量的变化量也为0。
故有: 如果一个系统不受外力或者所受外力的矢量和为零,那么这个系统的总动量保持不变,这就是动量守恒。
(2)动量守恒定律的数学表达式:①p p ='②Δ0p p p =='-.③12ΔΔp p =-④同一直线上时,动量守恒定律可表示为代数式:11221122m m m m +=+''v v v v .(3)动量守恒定律成立的条件:①系统不受外力作用或者所受外力之和为零,系统动量守恒;②系统所受合外力虽然不为零,但系统的内力远大于外力时,如碰撞、爆炸等现象中,系统的动量可看成近似守恒;③若系统在某一方向上符合以上三条中的某一条,则系统在该方向上动量守恒。
它是自然界最普遍、最基本的规律之一.不仅适用于宏观、低速领域,而且适用于微观、高速领域.小到微观粒子,大到天体,无论内力是什么性质的力,只要满足守恒条件,动量守恒定律总是适用的.知识点二、与动量守恒定律有关的问题(1)研究对象:两个或两个以上相互作用的物体所组成的系统:如AB 组成的系统动量守恒。
(2)研究过程:要特别注意分析哪一阶段是守恒阶段:如碰撞过程中,动量守恒。
(3)系统的内力只能影响系统内各物体的动量,但不会影响系统的总动量。
动量守恒定律及其应用
动量守恒定律及其应用一、动量守恒定律1.动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
(2)表达式:m1v1+m2v2=m1v′1+m2v′2或Δp1=-Δp2。
(1)理想守恒:系统不受外力或所受外力的合力为0,则系统动量守恒。
(2)近似守恒:系统受到的合外力不为0,但当内力远大于合外力时,系统的动量可近似看成守恒。
(3)分方向守恒:系统在某个方向上所受合外力为0或沿该方向F内≫F外时,系统在该方向上动量守恒。
二、动量守恒定律的应用1.碰撞(1)特点①作用时间:极短;②相互作用力:极大;③动能:不增加。
(2)分类(1)反冲的定义:一个静止的物体在内力的作用下分裂为两部分,一部分向某个方向运动,另外一部分必然向相反方向运动,这个现象叫反冲。
(2)反冲的特点①物体的不同部分在内力的作用下向相反方向运动。
②在反冲运动中,系统的合外力一般不为0,但内力远大于外力,可认为反冲运动中系统动量守恒。
③在反冲运动中机械能总量一般是增加的。
(3)反冲现象的应用和防止①应用:反击式水轮机是使水从转轮的叶片中流出,由于反冲而使转轮旋转,从而带动发电机发电的;火箭、喷气式飞机是靠喷出气流的反冲作用而获得巨大的推力的。
②避免有害的反冲运动。
(4)爆炸与碰撞类似,物体间的相互作用力很大,且远大于系统所受的外力,所以认为系统动量守恒。
爆炸过程中位移很小,可忽略不计,可认为爆炸后各部分从相互作用前的位置以新的动量开始运动。
考点1动量守恒的判断1.(系统动量守恒的判断)如图所示,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦。
用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动。
以地面为参考系(可视为惯性系),从撤去推力开始,小车、弹簧和滑块组成的系统()A. 动量守恒,机械能守恒B. 动量守恒,机械能不守恒C. 动量不守恒,机械能守恒D. 动量不守恒,机械能不守恒B解析:因为滑块与车厢水平底板间有摩擦,且撤去推力时滑块在车厢底板上有相对滑动,则有摩擦力做功,而水平地面是光滑的;对小车、弹簧和滑块组成的系统,根据动量守恒和机械能守恒的条件可知,撤去推力后该系统动量守恒,机械能不守恒,故选项B正确。
动量守恒定律
第 2讲
动量守恒守律
2-4 如图所示,在水平光滑直轨道上,静止着三个质量均为m=1 kg的小 球A、B、C。现让A球以vA=4 m/s的速度向右、B球以vB=2 m/s的速度向 左同时相向运动,A、B两球碰撞后粘合在一起继续向右运动,再跟C球 碰撞,C球的最终速度为vC=1 m/s。求:
(1)A、B两球跟C球相碰前的共同速度大小。 (2)A、B两球跟C球相碰后的速度大小。 答案 (1)1 m/s
知识梳理
栏目索引
3.质量为m的炮弹沿水平方向飞行,其动能为Ek,突然在空中爆炸成质量
k 相同的两块,其中一块向后飞去,动能为 ,另一块向前飞去,则向前飞
E 2
去的那块的动能为 ( B )
k A.
E 2
B. Ek
9 2
C. Ek
9 4
D.
94 2 答案 B 设向前飞去的那块的动能为Ek',则其动量p=
深化拓展
栏目索引
2.根据物理情景研究初、末动量,直接判断动量是否守恒。 【情景素材· 教师备用】 下列四幅图所反映的物理过程中,系统动量守恒的是哪个?
深化拓展
栏目索引
1-1 (多选)木块a和b用一根轻弹簧连接起来,放在光滑水平面上,a紧靠 在墙壁上。在b上施加向左的水平力F使弹簧压缩,如图所示。当撤去 外力F后,下列说法中正确的是 ( BC )
深化拓展
栏目索引
答案 B 设人的质量为m,两小车的质量均为M,人来回跳跃后人与A 车的速度为v1,B车的速度为v2,根据题意知,人车组成的系统水平方向动 量守恒。由题意有:p0=0,人来回跳跃后的总动量p=(M+m)v1+Mv2,由动量 守恒有p0=p,解得v1=-
M v2,其中负号表示v1、v2的方向相反,小车A的 M m
专题06 动量守恒定律——高考物理复习核心考点归纳识记
高考一轮复习知识考点归纳 专题06 动量守恒定律【基本概念、规律】动量及动量守恒定律第1节 动量及动量定理第2节 动量守恒定律第3节 动量守恒定律的应用实验 验证动量守恒定律(1)定义:力与力作用时间的乘积.(2)公式:I=Ft ;公式适用范围:恒力冲量;(3)量性:矢量,方向与作用力方向一致;动量及动量定理冲量动量动量定理(1)定义:物体质量与速度的乘积;(2)表达式:p=mv ;(3)量性:矢量,方向与速度方向一致;(4)物理意义:反映物体运动状态(1)内容:物体合外力冲量等于物体动量变化量;(2)表达式:F ·Δt =Δp =p ′-p . (3)注意:动量定理表达式为矢量式【重要考点归纳】考点一 动量定理的理解及应用1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F 应理解为变力在作用时间内的平均值.2.动量定理的表达式F ·Δt =Δp 是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F 是物体或系统所受的合力.3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt 越短,力F 就越大,力的作用时间Δt 越长,力F 就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎.(2)当作用力F 一定时,力的作用时间Δt 越长,动量变化量Δp 越大,力的作用时间Δt 越短,动量变化量Δp 越小4.应用动量定理解题的一般步骤 (1)明确研究对象和研究过程.研究过程既可以是全过程,也可以是全过程中的某一阶段. (2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力. (3)规定正方向.(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考点二 动量守恒定律与碰撞 1.动量守恒定律的不同表达形式守恒条件:(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.动量守恒定律动量守恒定律动量守恒应用1.碰撞 物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.2.特点 在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.动量守恒定律的表达式:m 1v 1+m 2v 2=m 1v ′1+m 2v ′2或Δp 1=-Δp 2.1.爆炸3.反冲 人船模型(1)p=p′,系统相互作用前的总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v′1+m2v′2,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.(4)Δp=0,系统总动量的增量为零.2.碰撞遵守的规律(1)动量守恒,即p1+p2=p′1+p′2.(2)动能不增加,即E k1+E k2≥E′k1+E′k2或p212m1+p222m2≥p′212m1+p′222m2.(3)速度要合理.①碰前两物体同向,则v后>v前;碰后,原来在前的物体速度一定增大,且v′前≥v′后.②两物体相向运动,碰后两物体的运动方向不可能都不改变.3.两种碰撞特例(1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v′1+m2v′2①12m1v21=12m1v′21+12m2v′22②由①②得v′1=m1-m2v1m1+m2v′2=2m1v1m1+m2结论:①当m1=m2时,v′1=0,v′2=v1,两球碰撞后交换了速度.②当m1>m2时,v′1>0,v′2>0,碰撞后两球都向前运动.③当m1<m2时,v′1<0,v′2>0,碰撞后质量小的球被反弹回来.(2)完全非弹性碰撞两物体发生完全非弹性碰撞后,速度相同,动能损失最大,但仍遵守动量守恒定律.4.应用动量守恒定律解题的步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.考点三爆炸和反冲人船模型1.爆炸的特点(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸时物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加.(3)位移不变:爆炸的时间极短,因而作用过程中物体运动的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸时的位置以新的动量开始运动.2.反冲(1)现象:物体的不同部分在内力的作用下向相反方向运动.(2)特点:一般情况下,物体间的相互作用力(内力)较大,因此系统动量往往有以下几种情况:①动量守恒;②动量近似守恒;③某一方向动量守恒.反冲运动中机械能往往不守恒.注意:反冲运动中平均动量守恒.(3)实例:喷气式飞机、火箭、人船模型等.3.人船模型若人船系统在全过程中动量守恒,则这一系统在全过程中的平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由m1v1=-m2v2得m1x1=-m2x2.该式的适用条件是:(1)系统的总动量守恒或某一方向上的动量守恒.(2)构成系统的两物体原来静止,因相互作用而反向运动.(3)x1、x2均为沿动量方向相对于同一参考系的位移.实验:验证动量守恒定律1.实验原理在一维碰撞中,测出物体的质量m和碰撞前后物体的速率v、v′,找出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v′1+m2v′2,看碰撞前后动量是否守恒.2.实验方案方案一:利用气垫导轨完成一维碰撞实验(1)测质量:用天平测出滑块质量.(2)安装:正确安装好气垫导轨.(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量.②改变滑块的初速度大小和方向).(4)验证:一维碰撞中的动量守恒.方案二:利用等长悬线悬挂等大小球完成一维碰撞实验(1)测质量:用天平测出两小球的质量m1、m2.(2)安装:把两个等大小球用等长悬线悬挂起来.(3)实验:一个小球静止,拉起另一个小球,放下时它们相碰.(4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.方案三:在光滑桌面上两车碰撞完成一维碰撞实验(1)测质量:用天平测出两小车的质量.(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥.(3)实验:接通电源,让小车A运动,小车B静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动.(4)测速度:通过纸带上两计数点间的距离及时间由v=ΔxΔt算出速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.方案四:利用斜槽上滚下的小球验证动量守恒定律(1)用天平测出两小球的质量,并选定质量大的小球为入射小球.(2)按照如图所示安装实验装置,调整固定斜槽使斜槽底端水平.(3)白纸在下,复写纸在上,在适当位置铺放好.记下重垂线所指的位置O.(4)不放被撞小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面,圆心P就是小球落点的平均位置.(5)把被撞小球放在斜槽末端,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被碰小球落点的平均位置N.如图所示.(6)连接ON,测量线段OP、OM、ON的长度.将测量数据填入表中.最后代入m1OP=m1OM+m2ON,看在误差允许的范围内是否成立.(7)整理好实验器材放回原处.(8)实验结论:在实验误差范围内,碰撞系统的动量守恒.【思想方法与技巧】动量守恒中的临界问题1.滑块与小车的临界问题滑块与小车是一种常见的相互作用模型.如图所示,滑块冲上小车后,在滑块与小车之间的摩擦力作用下,滑块做减速运动,小车做加速运动.滑块刚好不滑出小车的临界条件是滑块到达小车末端时,滑块与小车的速度相同.2.两物体不相碰的临界问题两个在光滑水平面上做匀速运动的物体,甲物体追上乙物体的条件是甲物体的速度v甲大于乙物体的速度v乙,即v甲>v乙,而甲物体与乙物体不相碰的临界条件是v甲=v乙.3.涉及弹簧的临界问题对于由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短时,弹簧两端的两个物体的速度相等.4.涉及最大高度的临界问题在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于弹力的作用,斜面在水平方向将做加速运动.物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体在竖直方向的分速度等于零.5.正确把握以下两点是求解动量守恒定律中的临界问题的关键:(1)寻找临界状态看题设情景中是否有相互作用的两物体相距最近,避免相碰和物体开始反向运动等临界状态.(2)挖掘临界条件在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,即速度相等或位移相等。
2020高考物理一复习:动量守恒定律及应用
普适性 不仅适用ቤተ መጻሕፍቲ ባይዱ低速宏观系统,也适用于高速微观系统
2.动量守恒定律常用的三种表达形式 (1)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于 作用后的动量和。
(2)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向。 (3)Δp=0,系统总动量的增量为零
考点三 动量守恒定律的3个应用
实例① 碰撞
实例
1.碰撞后运动状态可能性判断的三个依据
(1)动量守恒:p1+p2=p1′+p2′。 (2)动能不增加:Ek1+Ek2≥Ek1′+Ek2′或2pm211+2pm222≥p21m′12+p22m′22。 (3)速度要符合情景。
①若碰前两物体同向运动,则应有 v 后>v 前,碰后原来在前的物体速度一定增大, 若碰后两物体同向运动,则应有 v′前≥v′后。
1.动量守恒定律的“五种”性质
系统性 研究对象是相互作用的两个或多个物体组成的系统
相对性 同时性
公式中 v1、v2、v1′、v2′必须相对于同一个惯性系 公式中 v1、v2 是在相互作用前同一时刻的速度,v1′、v2′是相互作用后
同一时刻的速度
矢量性 应先选取正方向,凡是与选取的正方向一致的动量为正值,相反为负值
考点一 动量守恒条件的理解和 应用
解析:当小球在槽内由 A 运动到 B 的过程中,左侧物体对槽有作用力,小球与槽组 成的系统水平方向上的动量不守恒,故 B 错误;当小球由 B 运动到 C 的过程中, 因小球对槽有斜向右下方的压力,槽做加速运动,动能增加,小球机械能减少,槽 对小球的支持力对小球做了负功,故 A 错误;小球从 B 到 C 的过程中,系统水平 方向合外力为零,满足系统水平方向动量守恒,故 C 正确;小球离开 C 点以后, 既有竖直向上的分速度,又有水平分速度,小球做斜上抛运动,故 D 错误。
动量定理-高考物理复习考点微专题
考向12 动量定理-高考一轮复习考点微专题解决目标及考点:1、理解动量、冲量基本概念及简单计算 4、动量守恒定律的判断2、利用动量定理求动量、瞬间冲击力 5、动量守恒的简单计算3、流体冲击中的作用力【例题1】(2015·重庆理综·3)高空作业须系安全带,如果质量为m的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h(可视为自由落体运动).此后经历时间t安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( )A.m2ght+mg B.m2ght-mgC.m ght+mg D.m ght-mg【例题2】(2018·甘肃西峰调研)如图2所示,竖直面内有一个固定圆环,MN是它在竖直方向上的直径.两根光滑滑轨MP、QN的端点都在圆周上,MP>QN.将两个完全相同的小滑块a、b分别从M、Q点无初速度释放,在它们各自沿MP、QN运动到圆周上的过程中,下列说法中正确的是( )A.合力对两滑块的冲量大小相同B.重力对a滑块的冲量较大C.弹力对a滑块的冲量较小D.两滑块的动量变化大小相同一、动量定理1、动量与动能动量动能公式P=mv E K=mv2/2物理意义描述物体的瞬时运动状态描述物体瞬时所具有的能量区别点矢量,状态量标量,状态量联系E K=P2/2m变化量若速度变化,则ΔEk可能为零;Δp一定不为零2、冲量与功冲量功公式I=Ft W=FSsosα物理意义力作用在物体上并持续一段时间产生的效果。
过程量力作用在物体上并使得物体在力方向移动一段距离。
过程量区别点与位移无关与位移有关产生效果力持续了时间即有冲量,但不一定有明显的运动效果力使得物体移动了位移才有功的效果3、动量定理①物体所受合外力的冲量等于物体的动量变化。
Ft=mv’-mv。
②动量定理是牛顿第二定律的另一种表达式,都反映物体运动状态改变的原因——合外力不为零。
第2节 动量守恒定律及应用
= = 20 m/s,水平方向的分速度 = 15 m/s,取小车初速度的方向为正方向,
由于小球和小车的相互作用满足水平方向上动量守恒,则
车 0 − 球 = 车 + 球 ,解得 = 5 m/s,故A正确。
【视角3】 动量守恒定律的临界问题
例3 甲、乙两小孩各乘一辆小车在光滑的水平冰面上匀速相向行驶,速度大小均为
与C间的动摩擦因数或摩擦力大小是否相等无关,B、D正确;若C上表面光滑,则A、
B组成的系统所受的外力之和为零,故其动量守恒,C正确。
【视角2】 动量守恒定律的基本应用
例2 如图所示,质量为0.5 kg的小球在离车底面高度20 m处以一定的初速度向左平抛,
落在以7.5 m/s的速度沿光滑的水平面向右匀速行驶的敞篷小车中,小车的底面上涂有
一层油泥,车与油泥的总质量为4 kg,若小球在落在车的底面之前瞬时速度是25 m/s,
则当小球和小车相对静止时,小车的速度是 = 10 m/s2 ( A )
A.5 m/s
B.4 m/s
C.8.5 m/s
D.9.5 m/s
[解析] 由平抛运动规律可知,小球下落的时间 =
2ℎ
= 2 s,在竖直方向的分速度
动量守恒定律0 = 1 − 0 0 ,解得1 =
0
,物块与弹性挡板撞击后,运动方向
0
与运动员同向,当运动员再次推出物块1 + 0 0 = 2 − 0 0 ,解得2 =
第3次推出后2 + 0 0 = 3 − 0 0 ,解得3 =
动员的速度8 =
A.12
B.13
C.14
D.15
[解析] 规定甲的速度方向为正方向,两车刚好不相撞,则两车速度相等,由动量守恒
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点一动量守恒的判断
例1一颗子弹水平射入置于光滑水平面上的木块A并留在其中,A、B用一根弹性良好的轻质弹簧连在一起,如图2所示.则在子弹打击木块A及弹簧被压缩的过程中,对子弹、两木块和弹簧组成的系统 ( C) A.动量守恒,机械能守恒 B.动量不守恒,机械能守恒
C.动量守恒,机械能不守恒 D.无法判定动量、机械能是否守恒
突破训练1如图所示,小车与木箱紧挨着静止放在光滑的水平冰面上,现有一男孩站在
小车上用力向右迅速推出木箱.关于上述过程,下列说法中正确的是 ( B)
A.男孩和木箱组成的系统动量守恒 B.男孩、小车与木箱三者组成的系统动量守恒
C.小车与木箱组成的系统动量守恒 D.木箱的动量增量与男孩、小车的总动量增量相同
考点二动量守恒定律的理解与应用
例2如图所示,在高为h=5 m的平台右边缘上,放着一个质量M=3 kg的铁块,现有
一质量为m=1 kg的钢球以v0=10 m/s的水平速度与铁块在极短的时间内发生正碰被反弹,
落地点距离平台右边缘的水平距离为L=2 m,已知铁块与平台之间的动摩擦因数为0.5,
求铁块在平台上滑行的距离s(不计空气阻力,铁块和钢球都看成质点,取g=10 m/s2).1.6m
突破训练2如图所示,在光滑水平面上,一辆平板车载着一人以速度v0=6 m/s水平向左匀
速运动.已知车的质量M=100 kg,人的质量m=60 kg.某一时刻人突然相对于车以v=5 m/s
的速度向右奔跑,求此时车的速度.
答案7.875 m/s,方向水平向左
考点三碰撞现象的特点和规律
例3质量为m1=1 kg和m2(未知)的两个物体在光滑的水平面上正碰,碰撞时间不计,
其x-t(位移—时间)图象如图所示,试通过计算回答下列问题: (1)m2等于多少?
(2)碰撞过程是弹性碰撞还是非弹性碰撞?
答案(1)3 kg (2)弹性碰撞
突破训练3如图所示,物体A静止在光滑平直轨道上,其左端固定有
轻质弹簧,物体B以速度v0=2.0 m/s沿轨道向物体A运动,并通过弹簧
与物体A发生相互作用,设A、B两物体的质量均为m=2 kg,求当物体
A的速度多大时,A、B组成的系统动能损失最大?损失的最大动能为多少?
答案 1.0 m/s 2 J
55.动量和能量观点的综合应用
例4如图8所示,一水平面上P点左侧光滑,右侧粗糙,质量为m的劈A在水平
面上静止,上表面光滑,A右端与水平面平滑连接,质量为M的物块B恰好放在水平
面上P点,物块B与水平面间的动摩擦因数为μ.一质量为m的小球C位于劈A的斜
面上,距水平面的高度为h.小球C从静止开始滑下,然后与B发生正碰(碰撞时间极
短,且无机械能损失).已知M=2m,求: (1)小球C与劈A分离时,A的速度;
(2)小球C的最后速度和物块B的运动时间.
突破训练4如图所示,在光滑水平面上有一辆质量M=8 kg的平板小车,车
上有一个质量m=1.9 kg的木块,木块距小车左端6 m(木块可视为质点),车与
木块一起以v=1 m/s的速度水平向右匀速行驶.一颗质量m0=0.1 kg的子弹以
v0=179 m/s 的速度水平向左飞来,瞬间击中木块并留在其中.如果木块刚好不
从车上掉下来,求木块与平板小车之间的动摩擦因数μ.(g=10 m/s2)
答案0.54
1. [对动量、动量变化量的理解]下列说法正确的是 ( D)
A.速度大的物体,它的动量一定也大吗 C.只要物体的运动速度大小不变,物体的动量也保持不变B.动量大的物体,它的速度一定也大 D.物体的动量变化越大则该物体的速度变化一定越大
2. [动量守恒的判断]把一支弹簧枪水平固定在小车上,小车放在光滑水平地面上,枪射出一颗子弹时,关于枪、弹、车,下列说法正确的是( D)
A.枪和弹组成的系统动量守恒 B.枪和车组成的系统动量守恒
C.枪弹和枪筒之间的摩擦力很小,可以忽略不计,故二者组成的系统动量近似守恒
D.枪、弹、车三者组成的系统动量守恒
3. [动量守恒定律的简单应用]A球的质量是m,B球的质量是2m,它们在光滑的水平面上以相同的动量运动.B在前,A在后,发生正碰后,A球仍朝原方向运动,但其速率是原来的一半,碰后两球的速率比v A′∶v B′为 ( D)
A.1/2
B.1/3 C.2 D.2/3
4. [动量守恒定律的应用]如图1所示,在光滑水平面上,用等大反向的F1、F2分别同时作用
于A、B两个静止的物体上,已知m A<m B,经过相同的时间后同时撤去两力,以后两物体相碰并
粘为一体,则粘合体最终将 ( A)
A.静止B.向右运动 C.向左运动D.无法确定
7.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为m B
=2m A,规定向右为正方向,A、B 两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞
后A球的动量增量为-4 kg·m/s,则 ( A)
A.左方是A球,碰撞后A、B两球速度大小之比为2∶5
B.左方是A球,碰撞后A、B两球速度大小之比为1∶10
C.右方是A球,碰撞后A、B两球速度大小之比为2∶5
D.右方是A球,碰撞后A、B两球速度大小之比为1∶10
5. [动量守恒定律的应用]质量是10 g的子弹,以300 m/s的速度射入质量是24 g、静止在光滑水平桌面上的木块,并留在木块中,子弹留在木块中以后,木块运动的速度是多大?如果子弹把木块打穿,子弹穿过后的速度为100 m/s,这时木块的速度又是多大?
答案88.2 m/s 83.3 m/s。