七年级数学上册3.1.2等式的性质导学案1

合集下载

七年级上册数学学案设计3.1.2等式的性质

七年级上册数学学案设计3.1.2等式的性质

第三章 一元一次方程3.1 从算式到方程3.1.2 等式的性质学习目标1. 会用等式的性质解简单的一元一次方程。

2. 培养学生观察、分析、概括及逻辑思维能力。

重点:运用等式的性质。

难点:用等式的性质解简单的方程。

使用要求:独立完成学案,然后小组讨论交流。

一、 自主学习1 、等式的基本性质有哪两条?2、(1)从3x+2=3y-2中,能不能得到x=y,为什么?(2)从ax=aby 中,能不能得到x=by,为什么?3、利用等式的性质解下列方程:(1)x-2=5 (2)x 32-=6(3)3x=x+6 (4)31-x-5=4二、合作探究 1、练习P84 利用等式的性质解下列方程并检验:2、某班有男生25人,比女生的2倍少15人,这个班有女生多少人?3、把1200克洗衣粉分别装入5个大小相同的瓶子中,除一瓶还差75克外,其余4瓶都装满了。

每个瓶子可以装多少洗衣粉?4、甲乙二人同时由A地步行去B地.甲每小时走5千米,乙每小时走3千米.当甲到达B地时,乙距B地还有6千米.甲走了几小时?A、B两地的距离是多少?三、能力提升已知2x2+3x=5,求代数式-4x2-6x+6的值【提示】灵活运用等式的性质并将 2x2+3x整体变成-4x2-6x是解决问题的方法四、小组小结作业:习题3.1第4、10、11题2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,∠1=15︒,∠AOC=90︒,点O 、D 在同一直线上,则∠2的度数为( )A.5°B.15°C.105°D.165°2.在海上,灯塔位于一艘船的北偏东40方向,那么这艘船位于这个灯塔的( )A.南偏西50°B.南偏西40°C.北偏东50°D.北偏东40°3.下列各式计算正确的是( ) A.12⎛⎫ ⎪⎝⎭°=118″ B.38゜15′=38.15゜ C.24.8゜×2=49.6゜ D.90゜﹣85゜45′=4゜65′4.如果式子32x -与-7互为相反数,则x 的值为( )A.5B.-5C.3D.-35.已知某种商品的原出售价为204元,即使促销降价20%仍有20%的利润,则该商品的进货价为( )A .136元B .135元C .134元D .133元6.下列各组中两个单项式为同类项的是 A.23x 2y 与-xy 2 B.20.5a b 与20.5a cC.3b 与3abcD.20.1m n -与215nm 7.a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,以此类推,则2019(a = )A.3B.23C.12-D.无法确定8.下面计算正确的是( )A .﹣32=9B .﹣5+3=﹣8C .(﹣2)3=﹣8D .3a+2b =5ab9.当x=4时,式子5(x +b)-10与bx +4的值相等,则b 的值为( ).A.-7B.-6C.6D.710.计算2-(-1)的结果是( )A.3B.1C.-3D.-111.计算:﹣9+6=( )A .﹣15B .15C .﹣3D .312.下列计算正确的是( )A.330--=B.02339+=C.331÷-=-D.()1331-⨯-=- 二、填空题13.如图,已知EOC ∠是平角,OD 平分BOC ∠,在平面上画射线OA ,使AOC ∠和COD ∠互余,若50BOC ∠=︒,则AOB ∠是__________.14.上午9点钟的时候,时针和分针成直角,则下一次时针和分针成直角的时间是_____.15.当=____时,代数式与的值是互为相反数.16.某商品进价100元,提价30%后再打九折卖出,则可获利______元.17.我们知道,正整数的和1+3+5+…+(2n ﹣1)=n 2,若把所有正偶数从小到大排列,并按如下规律分组:(2),(4,6,8),(10,12,14,16,18),(20,22,24,26,28,30,32),…,现有等式A m =(i ,j )表示正偶数m 是第i 组第j 个数(从左到右数),如A 8=(2,3),则A 2018=_____18.对于有理数a 、b ,定义a*b =3a+2b ,化简x*(x ﹣y )=_____.19.比较大小:①0________﹣0.5, ②﹣34________﹣45(用“>”或“<”填写) 20.数轴上与表示-3的点相距4个单位长度的点表示的数是_____.三、解答题21.一个角的余角比它的补角的13还少20°,求这个角. 22.如图①,点O 为直线AB 上一点,射线OC ⊥AB 于O 点,将一直角三角板的60°角的顶点放在点O 处,斜边OE 在射线OB 上,直角顶点D 在直线AB 的下方.(1)将图①中的三角板绕点O 逆时针旋转至图②,使一边OE 在∠BOC 的内部,且恰好平分∠BOC ,问:直线OD 是否平分∠AOC ?请说明理由;(2)将图①中的三角板绕点O 按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线OD 恰好平分∠AOC ,则t 的值为________;(直接写出结果)(3)将图①中的三角板绕点O 顺时针旋转至图③,使OD 在∠AOC 的内部,请探究:∠AOE 与∠DOC 之间的数量关系,并说明理由.23.把一批作业本发给某班的学生,如果每人发2本,则剩12本;如果每人发3本,则缺24本,求这个班有多少学生.24.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母。

人教版七年级数学上3.1.2等式的性质1教案教学设计教学案课时作业同步练习含答案解析

人教版七年级数学上3.1.2等式的性质1教案教学设计教学案课时作业同步练习含答案解析

3.1一元一次方程【目标导航】1.能说出等式的意义,并能举出例子;2.能说出等式的两条性质,并能用它们将等式变形.【预习引领】1.我们已熟悉下面这样的式子,其中是等式有:1+2 = 3,a+b = b+a,S = ab,4+x = 5,x+y = 0,mn = 1【要点梳理】1.等式的概念(1)定义;像这种用等号表示相等关系的式子,叫做等式.(2)例题讲解:例1下列式子中,哪些是等式?哪些是代数式?(1)3x+4,(2)5x-3 = 0,(3)3x+2x = 5x,(4)3+2 = 5,(5)7a-3a-1;(6)a+b > 1.〖说明〗代数式与等式的区别是:等式含有等号,代数式不含等号;等式表示代数式之间有相等关系,代数式不表示大小关系.〖及时巩固〗课本P.183 练习.2.等式的性质:(1)通过天平的实例引入;(2)等式的性质:等式性质1 等式的两边都加上(或减去),所得结果仍是等式.等式性质2 等式的两边都乘(或除以),所得结果仍是等式.〖强调〗运用性质1时,一定要注意等式的两边都加上(或减去)同一个数或同一个整式,才能保证所得结果仍是等式,这里特别要注意“都”和“同一个”.运用性质2时,一定要注意等式的两边都乘以(或除以)同一个数,才能保证所得结果仍是等式,还必须注意,等式两边不能都除以0,因为0不能作为除数.【应用举例】例2用适当的数或整式填空,使所得结果仍是等式,并说明是根据等式的哪一条性质以及怎样变形(改变式子的形状)的:①如果2x = 5-3x,那么2x+= 5;②如果0.2x = 10,那么x = ;③如果5x-7 = 8,那么5x = 8 +;④如果5x = 15,那么x = .〖说明〗解这一类题目的关键是将变形后的等式某一边与原等式的同一边进行比较,找出它们的区别,然后再根据等式性质在另一边作相应的变形.例3 如果ac = ab,那么下列等式中不一定成立的是()A ac-1 = ab-1B ac+a = ab+aC -3ac = -3abD c = b例4利用等式的性质解下列方程:(1)x+7=26;(2)-5x=20;(3)-13x-5=4.(4)-13x-5=4x+21〖及时巩固〗课本P 84 练习例5下列方程的解法对不对?如果不对,错在哪里?应当怎样改正?(1)解方程:x+12=34解:x+12=34=x+12-12=34-12=x=22(2)解方程-9x+3=6解:-9x+3-3=6-3于是-9x=3所以x=-3(3)解方程23x-1=13解:两边同乘以3,得2x-1=-1两边都加上1,得2x-1+1=-1+1化简,得2x=0两边同除以2,得x=0例6回答下列问题:(1)从a+b=b+c,能否得到a=c,为什么?(2)从ab=bc能否得到a=c,为什么?(3)从ab=cb,能否得到a=c,为什么?(4)从a-b=c-b,能否得到a=c,为什么?(5)从xy=1,能否得到x=1y,为什么?【课堂操练】一、填空题.1.在等式2x -1=4,两边同时________得2x =5.2.在等式x -23=y -23,两边都_______得 x =y .3.在等式-5x =5y ,两边都_______得x =-y .4.在等式-13x =4的两边都______,得x =______. 5.如果2x -5=6,那么2x =________, x =______,其根据是 ___.6.如果-14x =-2y ,那么x =________,根据____ . 7.在等式34x=-20的两边都______或______得x=________. 8.已知等式:-7x -1=3x -9,先根据____ ,把等式两边都________,可以使等式的左边不含常数项,右边不含未知数项即______,再根据___ ___把等式的两边都______,就可得x =______.二、判断题.(对的打“∨”,错的打“×”)9.由m -1=4,得m =5. ( )10.由x +1=3,得x =4. ( )11.由3x =3,得x =1. ( ) 12.由2x =0,得x =2 ( ) 13. 在等式2x =3中两边都减去2,得x =1.( )14.下列方程的解是x =2的有( ).A .3x -1=2x +1B .3x +1=2x -1C .3x +2x -2=0D .3x -2x +2=015.下列各组方程中,解相同的是( ).A .x =3与2x =3B .x =3与2x +6=0C .x =3与2x -6=0D .x =3与2x =5三、用等式的性质未知数.16.(1)x +2=5; (2)3=x -3;【课后盘点】四、用等式的性质未知数(3)x -9=8; (4)5-y =-16;(5)-3x =15; (6)-3y -2=10;(7)3x +4=-13; (8)23x -1=5.(9)3-2x =9+x (10)5x -1=2x +3五、检验下列各小题括号里的数哪个是它前面方程的解.17.(2x -1)(x +3)=0(x =12,x =1,x =-3). 18.x 2+2x -3=0(x =1,x =-1,x =-3).19. 利用等式的性质解下列方程并检验. ⑴12142x x -=-⑵12223x x =+20.下列判断错误的是( ).A.若33,-=-=bc ac b a 则B.若1122+=+=c b c a b a 则C.若x x x 2,22==则D.若b a bx ax ==则, 21.下列等式变形不正确的是( )A 、由等式6x =5x +1得到等式x =1B 、由等式7x=2得到等式x =14C 、由等式3232b a =得到等式a =b D 、由等式a =2.5得到等式2a =522.由等式0.2y =6,得y =30,这是由于( )A 、等式两边都加上0.2B 、等式两边都减去0.2C 、等式两边都乘以0.2D 、等式两边都除以0.223.下列几种说法中,正确的是( )A 、若ac =bc ,则a =bB 、若a 2=b 2,则a =bC 、若c b c a =,则a=b D 、631=-x ,则x =-2 24.由等式a =b ,能不能得到x b x a =,为什么?25.关于x 的方程 3x – 10 = mx 的解为2,那么你知道m 的值是多少吗,为什么?26.已知b a a b 23123-=--,利用等式的性质,试比较a 与b 的大小.27.现有9只外表完全相同的小球,其中有一只不合格,且知它的重量较轻,请你用一天平检测,试说明至少用几次就一定能测出这只不合格小球?(设计人:黄本华)No.参考答案:课题:《一元一次方程》【要点梳理】例1答案:(2)(3)(4)例2答案:① 3x ② 50 ③ 7 ④ 3例3答案:D例4答案:(1)解:x=26-7x=19(2)解:x=-4(3)解:x=-27(4)解:x=-6例5答案:(1)不对正解: x+12=34x+12-12=34-12x=22(2)不对正解:-9x+3=6-9x+3-3=6-3-9x=3x=-31(3)不对正解:23x-1=13两边同乘以3,得2x-3=-1两边都加上1,得 2x-3+3=-1+3化简,得 2x=2两边同除以2,得x=1例6答案:(1)对。

人教版数学七年级上册3.1.2《等式的性质》教案

人教版数学七年级上册3.1.2《等式的性质》教案

人教版数学七年级上册3.1.2《等式的性质》教案一. 教材分析《等式的性质》是人教版数学七年级上册第三章第一节的内容,主要介绍了等式的性质,包括等式的两边同时加减同一个数、乘除同一个数不改变等式的成立性。

这一节内容是学生学习方程和不等式的基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。

二. 学情分析学生在学习这一节内容前,已经掌握了整数、有理数的基本运算和概念,具备一定的逻辑思维能力。

但部分学生对于抽象的等式性质的理解可能存在困难,需要通过具体的例子和操作来加深理解。

三. 教学目标1.理解等式的性质,包括等式两边同时加减同一个数、乘除同一个数不改变等式的成立性。

2.能够运用等式的性质解决简单的问题。

3.培养学生的逻辑思维和解决问题的能力。

四. 教学重难点1.重点:等式的性质的理解和运用。

2.难点:对等式性质的深入理解和运用。

五. 教学方法采用问题驱动法、案例教学法和小组合作法,通过具体例子和操作,引导学生发现和总结等式的性质,并通过练习巩固所学知识。

六. 教学准备1.教学PPT。

2.练习题。

七. 教学过程1.导入(5分钟)通过一个具体的例子,引导学生思考等式的性质,激发学生的学习兴趣。

例子:有一辆汽车从A地出发,以每小时60公里的速度行驶,行驶了3小时后到达B地,问汽车行驶的路程是多少?2.呈现(10分钟)通过PPT呈现等式的性质,引导学生观察和发现等式的性质。

性质1:等式的两边同时加减同一个数,等式仍然成立。

性质2:等式的两边同时乘除同一个数(不为0),等式仍然成立。

3.操练(10分钟)让学生分组进行练习,运用等式的性质解决问题。

练习1:判断等式的正确性。

练习2:运用等式的性质,求解未知数。

4.巩固(10分钟)让学生独立完成练习题,巩固对等式性质的理解。

1.判断等式的正确性。

2.运用等式的性质,求解未知数。

3.拓展(10分钟)引导学生思考等式性质在实际问题中的应用,提高学生解决问题的能力。

3.1.2等式的性质学案

3.1.2等式的性质学案

§3.1.2 等式的性质(第二课时)一. 学习目标1.了解等式的概念和等式的两条性质,并能运用这两条性质解方程. 2.了解和掌握等式的两条性质是掌握一元一次方程的解法的关键. 二.复习回顾 1.引入课题方程是_________ _ 的等式. 2.什么是等式?用等号来表示相等关系的式子叫做等式.例如:m+n=n+m ,x+2x=3x ,3×3+1=5×2,3x+1=5y 这样的式子,都是等式,•我们可以用a=b 表示一般的等式. 3.等式性质.等式的性质1:等式两边都加(或减)同一个数(或式子),结果________ . 用式子的形式表示这个性质为:如果a=b ,那么___________.等式性质2:等式两边乘同一个数,或除以同一个不等于0的数,结果仍_________. 用式子的形式表示这个性质为:如果a=b ,那么_________; 如果a=b ,(c ≠0),那么__________.性质2中仅仅乘以(或除以)同一个数,而不包括整式(含字母),•要注意与性质1的区别. 三自主探究 典例分析利用等式的性质解下列方程: (1)x+7=26; (2)-5x=20; (3)-13x-5=4. 解:(1)根据等式性质____,两边同______,得: .(2)分析:-5x=20中-5x 表示-5乘x ,其中-5是这个式子-5x 的系数,式子x•的系数为1,-x 的系数为-1,如何把方程-5x=20转化为x=a 的形式呢?即把-5x 的系数变为1,应把方程两边同除以______. 解:根据等式性质____,两边都除以____,得52055x -=-- 于是x=_____ (3)分析:方程-13x-5=4的左边的-5要去掉,同时还要把-13x 的系数化为1,如何去掉-5呢?根据两个互为相反数的和为______,所以应把方程两边都加上____. 解:根据等式性质______,两边都加上_____,得 -13x-5+5=4+5 化简,得-13x=9 再根据等式性质____,两边同除以-13(即乘以-3),得 -13x ·(-3)=9×(-3) 于是 x=_____ 同学们自己代入原方程检验,看看x=-27是否使方程的两边相等. 四尝试应用1:下列方程的解法对不对?如果不对,错在哪里?应当怎样改正? (1)解方程:x+12=34解:x+12=34=x+12-12=34-12=x=22 (2)解方程-9x+3=6 解: -9x+3-3=6-3 于是 -9x=3 所以 x=-3 (3)解方程23x -1=13- 解:两边同乘以3,得2x-1=-1 两边都加上1,得 2x-1+1=-1+1 化简,得 2x=0两边同除以2,得 x=0 2.课本第83页练习. (1)x-5=6解:两边同______,得x=_____.检验______________________________________. (2)0.3x=45解:两边同_______,即乘以______,得x=______,检验___________________________. (3)5x+4=0解:两边都加上_______,得5x=________两边同乘以______,得x=___________________(4)2-41x=3 解法1:两边都减去_____,得2-14x-2=3-2 化简,得______=_____ 两边同乘以-4,得x=_____解法2:两边都乘以-4,得-8+x=_____ 两边都加上______,得x=____检验:将x=-4代入方程2-14x=3中,得: 左边=2-14×(-4)=_____ 因为方程的 =______。

3.1.2等式的性质导学案

3.1.2等式的性质导学案

3.1.2 等式的性质学习目标:掌握等式的两条性质,并能运用这两条性质解方程 学习重、难点:运用等式的两条性质解方程学法指导一、复习引入1、什么是方程?什么是一元一次方程?2、什么是方程的解?3、思考:1000=x 和2000-=x 中哪一个是方程()8052.0152.0=--x x 的解?二、新知探究1、运用小学知识逐步引出等式的性质(1)计算并填空:13- 2()313+- 32+()313-- 32-()313⨯- 32⨯()313÷- 32÷(2)观察上述结果,你有什么发现?问题:根据你的结论填空:如果b a =,那么c b c a ±± ; c b ⨯⨯c a ; cb c a (0≠c ) 2、阅读课本82页“例2”,然后利用等式的性质解下列方程并检验:(1)65=-x (2)65=+x(3)453.0=x (4)521=x 3、例题讲解:(1)045=+x (2)3241=-x 三、随堂检测1、下列变形错误的是( )A 、由b a =得55+=+b aB 、由b a =得33-=-b a C 、由22+=+y x 得y x = D 、由y x 33-=-得y x -=2、根据等式的性质,下列变形正确的是( )A 、由x x 332=-得3=xB 、由753=-x 得573-=xC 、由2223+=-x x 得4=xD 、由y x 323=-得y x 2= 3、利用等式的性质解下列方程:(1)x x 655-=-; (2)930-=x ; (3)253+=-y四、小结通过本课的学习你有哪些收获?你对同伴有何建议?五、作业布置A 、课本83页 习题3.1 第4题B 、课本83页 习题3.1 第4、6题。

七年级数学上册 3.1.2《等式的性质》学案

七年级数学上册 3.1.2《等式的性质》学案

七年级上册数学导学学案 3.1.2 等式的性质编稿: 审稿: 审批:鲁斌 编码: 七( )班 姓名:一、目标与学法指导:1.掌握等式的基本性质,能运用等式的基本性质解简单的一元一次方程.2.经历数值代入计算的过程,领会方程的解和解方程的意义.3.养成检验反思的好习惯.指点迷津 授之以渔重点:理解等式的性质是解方程的基本依据。

难点:灵活应用等式的性质。

二、回顾旧知:(试一试)能否用估算法求出下列方程的解:(学生不用笔算,只能估算) (1) 4x=24 (2) x +1= 3 (3) 46x=230 (4) 2500+900x = 15000三、超前体验: (C 组)(一) 基础尝试: 1. 什么是等式? 像 m+n=n+m ,x+2x=3x ,3×3+1=5×2,3x+1=5y 等,用等号来表示相等关系的式子叫等式.①我们可以用 a=b 表示一般的等式;②我们通常把等号左边的式子叫等式的左边,等号右边的式子叫等式的右边.2、怎样求方程2x+1=5中的未知数的值?当x=_______时,方程2x+1=5两边相等。

2.小试牛刀:0、1、2、3、4中,哪一个能使方程两边相等?(1)2x —1=5 (2)3x —2=4x —3四、合作探究新知(C 组)1、观看课件,说出:等式的性质1: 。

等式的性质2: 。

2、练一练:判断对错,对的请说出根据等式的哪一条性质,错的请说出为什么。

1) 如果x=y ,那么x+1=y+3 ( )2) 如果x=y ,那么x+5-a=y+5-a ( )3) 如果x=y ,那么2x=3y ( )4) 如果x=y ,那么22y x = ( ) 5) 如果x=y ,那么ay a x = ( ) 6) 如果x=y ,a ≠1那么11-=-a y a x ( )五、达标练习 1、利用等式的性质解下列方程:(1)x+7=26; (2)-5x=20; (3)-13x-5=4.2、利用等式的性质解下列方程并检验(B 组)六、提高部分(A )1、小丽学了等式的性质后,对等式3a+b-2=7a+b-2进行如下变形:两边加2,得 3a+b=7a+b ,两边减b ,得 3a=7a ,两边除以a ,得 3=7.变形到此,小丽很是惊讶,居然得到如此等式!于是小丽开始检查自己的变形过程,但怎么也没找出错误来。

人教版七年级数学上册:3.1.2《等式的性质》教学设计

人教版七年级数学上册:3.1.2《等式的性质》教学设计

人教版七年级数学上册:3.1.2《等式的性质》教学设计一. 教材分析人教版七年级数学上册3.1.2《等式的性质》是学生在掌握了等式的概念之后,进一步探究等式的一些基本性质。

这部分内容是学生理解更深入的等式知识,也是后面学习方程和不等式的基础。

本节课通过探究等式的性质,培养学生的逻辑思维能力和抽象概括能力。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象概括能力,他们对等式的概念有一定的了解。

但是,对于等式的性质的理解还需要通过具体的例子和操作来进行。

此外,学生的学习习惯和思维方式各有不同,需要教师在教学中进行引导和调整。

三. 教学目标1.理解等式的性质,并能够运用性质进行等式的变形。

2.培养学生的逻辑思维能力和抽象概括能力。

3.培养学生合作交流的能力,提高学生的数学素养。

四. 教学重难点1.重点:等式的性质及其运用。

2.难点:对等式性质的理解和运用。

五. 教学方法采用问题驱动法、实例分析法、小组合作法等,引导学生主动探究,发现等式的性质,并通过练习来巩固知识。

六. 教学准备1.教材、教案、PPT2.小组合作学习的准备七. 教学过程1.导入(5分钟)通过一个具体的例子,引导学生回顾等式的概念,并提出问题:我们能不能对等式进行变形呢?怎么变形呢?2.呈现(10分钟)教师通过PPT展示等式的性质,并用具体的例子来解释每个性质。

同时,引导学生发现等式性质的内在联系。

3.操练(10分钟)学生分组进行练习,运用等式的性质进行等式的变形。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)教师选取一些典型的练习题,让学生独立完成,检查学生对等式性质的掌握情况。

5.拓展(10分钟)引导学生思考:等式的性质在我们的日常生活中有哪些应用?学生分组讨论,分享自己的观点。

6.小结(5分钟)教师引导学生总结等式的性质,并强调性质的应用。

7.家庭作业(5分钟)布置一些有关等式性质的练习题,让学生回家后巩固所学知识。

3.1.2等式的基本性质

3.1.2等式的基本性质

《3.1.2等式的基本性质》导学案一、学习目标1、知道等式的性质。

2、会用等式的性质解简单的一元一次方程。

二、学习重难点重点:理解等式的性质。

难点:运用等式的性质把简单的一元一次方程化成“x=a ”的形式。

三、教学过程(一)多元导入,明确目标1、下列各式中,哪些是等式,哪些是一元一次方程?(1) 4-1=3 (2) 267=+x (3) x=0 (4)3a+4(5)205=-x (6) 6x-1 >y (7) 4531=--x (8)S= 21(a+b)h等式有: 一元一次方程有: 2、你能用估算的方法求下列方程的解吗?267=+x 205=-x 4531=--x (二)自主学习,合作展示 探究一:等式的性质1假设小明的体重为a 千克,小红的体重为b 千克,这时天平保持平衡。

(1)如果小红和小明的头上同时落下一只c 千克的小鸟,此时天平______(平衡或不平衡)。

上述过程,可以用数学式子表示为__________________。

(2)如果小红和小明同时脱下一件c 千克的衣服,此时天平______(平衡或不平衡)。

上述过程,可以用数学式子表示为_______________________。

练习1、 已知b a =,请用等于号“=”或不等号“≠”填空:①3+a 3+b ;②3-a 3-b ;③)6(-+a )6(-+b ; ④x a + x b +;⑤y a - y b -;⑥3+a 5+b ;⑦3-a 7-b ;⑧x a + y b +;⑨)32(++x a )32(++x b 。

归纳发现规律:由此你发现等式有什么性质?用语言叙述一下:____________________________________________________用数学符号表示:若 _____=______ ,那么 ________=__________探究二:等式的性质2假设小明的体重为a 千克,小红的体重为b 千克,这时天平保持平衡。

七年级数学上册3.1.2等式的性质导学案(新版)新人教版

七年级数学上册3.1.2等式的性质导学案(新版)新人教版

2016秋七年级数学上册 3.1.2等式的性质导学案(新版)新人教版3.1.2 等式的性质出示U 标1. 了解等式的两条性质.2. 会用等式的性质解简单的一元一次方程 .3. 培养学生观察、分析、概括及逻辑思维能力4. 渗透“化归”的思想.自学指导 看书学习第82、83页的内容,思考下列问题 .1. 等式的性质有哪几条?用字母怎样表示?字母代表什么?2. 解方程的依据是什么?知识探究1. 如果a=b ,那么a ± c=b ± c(字母a 、b 、c 可以表示具体的数,也可以表示一个式子).2. 如果a=b ,那么ac=bc. a b3. 如果a=b(c 丰0),那么—=—.c c自学反馈1. 已知a=b ,请用等于号“=”或不等号“工”填空:a b(1) 3a=3b ; (2) =一 ; (3) -5a=-5b.-4~4 - 2. 利用等式的性质解下列方程: (1)x+7=26 ; (2)-5x=20 ; (3)-2(x+1)=10.解:(1) x=19; (2) x=-4 ; (3) x=-6. 沐i* 注意用等式性质对方程进行逐步变形,最终可变形为“x=a ”的形式. 活动1:小组讨论 利用等式的性质解下列方程并检验:(1)x-9=6 ;⑵-0.2x=10 ; 1(3)3- x=2;3 (4)-2x+ 仁0 ; (5)4(x+1)=-20. 解:(1) x=15; (2) x=-50 ; (3) x=3 ;1(4) x= ; (5) x=-6 2 泊心玄运用等式的性质解方程不能漏掉某一边或某一项 活动2:活学活用利用等式的性质解下列方程并检验:1(1)x+5=8 ; (2)-x-1=0 ; (3)-2- x=2; (4)6x-2=0. 41解:(1) x=3; (2) x=-1 ; (3) =-16 ; (4) x=.2. 在用等式的性质解方程时要注意什么?。

等式的性质-导学案

等式的性质-导学案

1、学习目标:(1)掌握等式的性质;(2)利用等式的性质解方程,注意解方程的步骤与格式(详见例2)和方程的检验。

2、学习重点:利用等式的性质解方程。

3、利用等式的性质解下列方程并检验:(1)726x+=(2)520x-=(3)154 3x--=《等式的性质》导学案1 1、学习目标:(1)掌握等式的性质;(2)利用等式的性质解方程。

2、注意问题:(1)解方程的步骤与格式(详见例2);(2)方程的检验。

3、利用等式的性质解下列方程并检验:(1)726x+=(2)520x-=(3)154 3x--=1、 像下图的天平,左边放上一个10g 的铁球,右边必须放____g 的_______才能让它平衡?若右边放大于10g 的物品,天平会___________;若右边放小于10g 的物品,天平会_____________.(选填向左倾斜、向右倾斜或平衡)图1 图2 图32、已知a=b , 从图2到图1,天平的左右两边都_______________________,天平是否始终平衡?从图1到图2,天平的左右两边都_______________________,天平是否始终平衡?则:____a b a c b c =⇒±±(用大于、小于或等于号填空);故:等式两边加(或减)同一个_______________,结果________________.3、已知a=b ,从图2到图3,天平的左右两边都_______________________,天平是否始终平衡?从图3到图2,天平的左右两边都_______________________,天平是否始终平衡?则:___a b ac bc =⇒;(0)____a b a b c c c=≠⇒(用大于、小于或等于号填空); 故:等式两边乘同一个__________,结果_________; 等式两边除以同一个___________,结果___________.《等式的性质》导学案22、 像下图的天平,左边放上一个10g 的铁球,右边必须放____g 的_______才能让它平衡?若右边放大于10g 的物品,天平会___________;若右边放小于10g 的物品,天平会_____________.(选填向左倾斜、向右倾斜或平衡)图1 图2 图32、已知a=b , 从图2到图1,天平的左右两边都_______________________,天平是否始终平衡?从图1到图2,天平的左右两边都_______________________,天平是否始终平衡?则:____a b a c b c =⇒±±(用大于、小于或等于号填空);故:等式两边加(或减)同一个_______________,结果________________.3、已知a=b ,从图2到图3,天平的左右两边都_______________________,天平是否始终平衡?从图3到图2,天平的左右两边都_______________________,天平是否始终平衡?则:___a b ac bc =⇒;(0)____a b a b c c c=≠⇒(用大于、小于或等于号填空); 故:等式两边乘同一个__________,结果_________; 等式两边除以同一个___________,结果___________.。

人教版七年级数学上册3.1.2等式的性质 导学案

人教版七年级数学上册3.1.2等式的性质 导学案

人教版义务教育教科书七年级数学上册3.1.2《等式性质》导学案一、学习目标1.了解等式的两条性质;2.会用等式的性质解简单的(用等式的一条性质)一元一次方程;3.应用等式的性质把简单的一元一次方程化成“x =a ”.二、课前预习1.下列等式变形错误的是( )A.由a =b 得a +5=b +5;B.由a =b 得99a b =--; C.由x +2=y +2得x =y ; D.由-3x =-3y 得x =-y2.运用等式性质进行的变形,正确的是( )A.如果a =b ,那么a +c =b -c ;B.如果a b c c=,那么a =b ; C.如果a =b ,那么a b c c=; D.如果a 2=3a ,那么a =3 3.用适当的数或式子填空,使所得结果仍是等式,并说明是根据等式的哪一条性崐质以及怎样变形的:(1)如果x +8=10,那么x =10+_________; (2)如果4x =3x +7,那么4x -_______=7;(3)如果-3x =8,那么x =________; (4)如果13x =-2,那么_______=-6. 4.利用等式的性质解下列方程并检验:x +3=2自主学习记录卡1.自学本课内容后,你有哪些疑难之处?2.你有哪些问题要提交小组讨论?三、探究学习1、活动一①演示实验:教师先用实物演示,进一步引导:等式就像平衡的天平,它具有与上面的事实同样的性质. ②借助多媒体图片演示:把一个等式看作一个天平,把等号两边的式子看作天平两边的砝码,则等式成立就可看作是天平保持两边平衡问题:你能发现什么规律?2、活动二:观察幻灯片问题:你能用文字来叙述等式的这个性质吗?问题:等式一般可以用a=b 来表示.等式的性质1怎样用式子的形式来表示?3、继续观察幻灯片,你又能发现什么规律?你能用实验加以验证吗?然后让学生用两种语言表示等式的性质2.4、性质的应用:(1)从x=y 能不能得到x+5=y+5?为什么?(2)从x=y99y x =呢?为什么? (3)从a+2=b+2能不能得到a=b 呢?为什么?从-3a=-3b 能不能得到a=b 呢?为什么?三、应用例举1、例2:利用等式的性质解下列方程分析:所谓“解方程”,就是要求出方程的解“x=?’’因此我们需要把方程转化为“x=a(a 为常数)”形式。

七年级数学上册 3.1.2 等式的性质导学案 (新版)新人教版

七年级数学上册 3.1.2 等式的性质导学案 (新版)新人教版

等式的性质自主学习、课前诊断一、温故知新 x -x -二、设问导读:阅读课本P 81-82完成下列问题:1.像“a=b ”一样,表示__________关系的式子就是等式.2. 等式的两个性质:①等式的两边都加上或都减去_________________,所得结果仍相等。

表示为:______________________.②等式的两边都________________________________,所得结果仍相等.表示为:______________________.______________________.3.等式的两条性质都强调“同一个”,把“同”去掉可以吗?等式性质2中为什么是“除以同一个不为零的数”?4.阅读例题,思考:①在解方程时用到等式的哪条性质?②解以x 为未知数的方程,就是把方程逐步转化成什么样的形式?③.怎样验证从方程解出的未知数的值是该方程的解呢?三、自学检测: 1. 填空题:(1)在①x 2+y 2=0; ②x 2-2xy+y 2;③S=21(a+b)h; ④3≠2; ⑤x+1=1,等式有 (只填序号)(2)在等式-3x=-4x+1中,两边都减去 ,可得到等式x=1.(3)在等式5x=4x+5中,两边都加上 ,可得到等式x=5.(4)在等式-7x=21中,两边都除以 ,可得到等式x=-3. (5)在等式-3x+2=5的两边都 ,得到等式-3x=3,这是根据 。

(6)在等式4x-2=1+2x 的两边都 ,得到等式2x=3,这是根据 。

2.仿照例题解方程:① x -2=5②-2x=6③-x+1=3互动学习、问题解决导入新课二、交流展示学用结合、提高能力一、巩固训练:1.说出下列等式怎样变形?根据是什么?① 由等式x-1=1得到x=2② 由等式-x=8,得到x=-8③ 由等式4x-4=3x,得到x=4④ 由等式-32x=2,得到 x=-32.用适当的数或整式填空,使所得结果仍是等式,并说明是根据等式的哪一条性质以及怎样的变形 ①如果2x=5-3x,那么2x+ =5②如果 5x=4x+7,那么5x- =7 3.解下列方程:① 1131-=+x② -4x-1=3③1321-=x当堂检测1.在等式-51x=2的两边同时乘以-5,得到的新等式是( ) A.x=10 B.-x=-10 C.x=-10 D.x=-522.如果x+y=0,那么下列等式不一定成立的是( ) A.x=-y B.x-y=2xC.y x=-1 D.y=-x三、拓展延伸 判断:下列说法是否正确?为什么?①若 a+b=b+c ,变形后可得a=c ( )②若ab=bc ,变形后可得a=c ( )课堂小结、形成网络____________________________________________________________________ 一、巩固训练① 等式两边同时加1,等式仍成立。

七年级初一数学上册3.1.2等式的性质1导学案新版新人教版2

七年级初一数学上册3.1.2等式的性质1导学案新版新人教版2

3.1.2等式的性质(1)学习目标 1.我能积极讨论,参与群学,敢于展示,勇于质疑、补充。

2.我要掌握等式的两条性质,并能运用这两条性质解方程。

学习重难点:运用等式的两条性质解方程。

一、自主学习知识点一:等式的性质等式的性质1:等式的两边同时加上(减去) 或 等式仍然成立。

符号语言:如果b a =,那么 = 。

等式的性质2:等式的两边同时乘以一个数,或除以同一个不为 的数,结果仍相等。

符号语言:如果b a =,那bc ac =或者 = (0≠c )。

知识点二:对等式的性质的理解1.应用等式的性质1时必须是两边并且是同一个数,不能只在等式的一边进行变换。

2.应用等式的性质2时 ,特别的除数不能为 。

3.应用等式的性质解一元一次方程分两个步骤:(1)使方程有未知数的项在一边,常数项在另一边。

(2)使方程中含有未知数的项的系数为1。

二、合作探究利用等式的性质解下列方程:合作探究一:267=+x ;合作探究二:205=-x ;合作探究三:4531=--x .三、当堂检测(一)知识应用(必做题)1.从a+b=b+c ,能否得到a=c ,为什么?2.从ab=bc 能否得到a=c ,为什么?3.从ab =cb ,能否得到a=c ,为什么?(二)能力提升(选做题)4. 利用等式的性质解下列方程并检验(1)-3x=15; (2)23x-1=5;5.等式(a-2)x2+ax+1=0是关于x的一元一次方程(即x未知),求这个方程的解.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知a 是有理数,下列结论正确的是( )A .若a <0,则a 2>0B .a 2>0C .若a <1,则a 2<1D .若a >0,则a 2>a 【答案】A【解析】根据不等式的基本性质对四个答案进行逐一分析即可.【详解】A 选项:正确;B 选项:当a=0时,不成立,故错误;C 选项:例如a=-2,a 2=4>1,故错误;D 选项:例如a=0.1,a 2=0.01<a=0.1,故错误;故选:A .【点睛】考查的是不等式的基本性质,解题关键是举例法进行判断.2.PM2.5是大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( ) A .0.25×10﹣5B .0.25×10﹣6C .2.5×10﹣5D .2.5×10﹣6 【答案】D【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).【详解】解: 0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而60.0000025 2.510-=⨯. 故选D .3.9的算术平方根是( )A .3-B .3C .3±D .13± 【答案】B【解析】根据算术平方根的意义求解即可.【详解】∵32=9,∴93.故选B.【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x 的平方等于a ,即x 2=a,那么这个正数x 叫做a 的算术平方根.正数a 有一个正的算术平方根, 0的算术平方根是0,负数没有算术平方根.4.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°【答案】B 【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案.解:过E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠C=∠FEC ,∠BAE=∠FEA ,∵∠C=44°,∠AEC 为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B .“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.5.下列方程中:①221x y +=;②234x y+=;③230x y +=;④743x y +=,二元一次方程有( ) A .1个B .2个C .3个D .4个 【答案】B【解析】根据二元一次方程定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程进行分析即可.【详解】①x 2+y 2=1,是二元二次方程; ②234x y+=,不是整式方程; ③2x+3y=0,是二元一次方程; ④743x y +=,是二元一次方程. 所以有③④是二元一次方程,故选:B .【点睛】此题考查二元一次方程,解题关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程. 6.下列命题:①对顶角相等;②内错角相等;③两条平行线之间的距离处处相等;④有且只有一条直线垂直于已知直线.其中是假命题的有( )A .①②B .②④C .②③D .③④ 【答案】B【解析】利用对顶角的性质、平行线的性质等知识分别判断后即可确定正确的选项.【详解】①对顶角相等,正确,是真命题;②两直线平行,内错角相等,故错误,是假命题;③两条平行线之间的距离处处相等,正确,是真命题;④过一点有且只有一条直线垂直于已知直线,故错误,是假命题,故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的性质等知识,难度不大. 7.不等式1()33x m m ->-的解集为1x >,则m 的值为( )A .1B .1-C .4D .4- 【答案】C【解析】先根据一元一次不等式的解法求解不等式,然后根据不等式的解集为x >2,得出9-2m=2,求出m 的值.【详解】解:13(x-m)>3-m,去分母得:x-m>3(3-m),去括号得:x-m>9-3m,移项,合并同类项得:x>9-2m,∵此不等式的解集为x>2,∴9-2m=2,解得:m=2.故选C.【点睛】本题考查了解一元一次不等式,关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为2.8.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案A.5种B.4种C.3种D.2种【答案】C【解析】试题分析:设住3人间的需要有x间,住2人间的需要有y间,则根据题意得,3x+2y=17,∵2y是偶数,17是奇数,∴3x只能是奇数,即x必须是奇数.当x=1时,y=7,当x=3时,y=4,当x=5时,y=1,当x>5时,y<1.∴她们有3种租住方案:第一种是:1间住3人的,7间住2人的,第二种是:3间住3人的,4间住2人的,第三种是:5间住3人的,1间住2人的.故选C.9.某广场准备用边长相等的正方形和正三角形两种地砖铺满地面,在每个顶点的周围,正方形和正三角形地砖的块数分别是()A.1、2 B.2、1 C.2、2 D.2、3【答案】D【解析】由镶嵌的条件知,在一个顶点处各个内角和为360°.【详解】正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴需要正方形2块,正三角形3块.故选D .【点睛】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.10.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .10099【答案】B【解析】分析:直接利用分数的性质将原式变形进而得出答案. 详解:原式=111111223344599100++++⋯+⨯⨯⨯⨯⨯ =111111112233499100-+-+-+⋯+-, =1-1100=99100. 故选B .点睛:此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.二、填空题题11.如图,在ABC ∆中,B 与C ∠的平分线交于点P .若130BPC ∠=︒,则A ∠=______.【答案】80°【解析】根据三角形内角和可以求得∠PBC+∠PCB 的度数,再根据角平分线的定义,求出∠ABC+∠ACB ,最后利用三角形内角和定理解答即可.【详解】解:在△PBC 中,∠BPC=130°,∴∠PBC+∠PCB=180°-130°=50°.∵PB 、PC 分别是∠ABC 和∠ACB 的角平分线,∴∠ABC+∠ACB=2(∠PBC+∠PCB )=2×50°=100°,在△ABC 中,∠A=180°-(∠ABC+∠ACB )=180°-100°=80°.故答案为80°.【点睛】本题主要考查了三角形的内角和定理和角平分线的定义,掌握三角形的内角和定理和角平分线的定义是解题的关键.12.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________. 【答案】2024x y x y +=⎧⎨-=-⎩ (答案不唯一) 【解析】试题分析:最简单的方法就用,,即为,另外与是同解方程的都是答案.考点:二元一次议程组与解.13.我们用[]x 表示不大于x 的最大整数,如:[]3.24-=- ,[]33-=- ,[]0.80= ,[]2.42= ,则关于x 的方程4023[]07x x -+=的解为________. 【答案】1967714或 【解析】根据规定[]x 表示不大于x 的最大整数,可得答案. 【详解】由已知得4023[]7x x -=- , 若0x ,则23[]0x x - ,不成立,所以0x >,且x 不为整数;解法一:设x m n =+,其中m 为正整数,01n << ,[]x m = ,402237m n m ∴+-=-得12027n m =- ,1200127m ∴<-< ,405477m << ,m 为正整数,6m ∴=或7, 当6m = 时,17n = ,当7m = 时,916147n x =∴= 或9714; 解法二:[]x t = (t 为正整数),32027x t =- ,由1[]x x x -<<得,3273202727t K t -<- 解得405477k < 6t ∴= 或7,167x = 或9714. 解法三:设[]x m n =+ ,其中m 为正整数,01n << ,40[],2237x m m n m =∴+-=- , 402,0227m n n ∴-=<< ,m 为正整数,4029267777m n -==-=- .16,7m n ∴==或97,14m n == , 所以167x m n =+= 或9714. 【点睛】本题考查实数大小的比较,正确理解题意,熟练掌握相关计算法则是解题关键.14.在△ABC 中,已知∠BAC=80°,∠C=45°AD 是△ABC 的角平分线,那么ADB ∠=________.【答案】85°【解析】由AD 是∠BAC 的平分线易得∠BAD 的度数,由三角形的内角和定理可得答案【详解】∵AD 是∠BAC 的角平分线,∠BAC=80°∴∠BAD=40°∵∠BAC=80°,∠C=45°∴∠B=180°-∠BAC-∠C=55°∵∠B=55°∴∠ADB=180°-∠B -∠BAD=180°-55°-40°=85°故答案为∠ADB=85°.【点睛】此题考查三角形内角和定理,根据角平分线的性质来计算是解题关键15.若∠A 的一边与∠B 的一边互相平行,∠A 的另一边与∠B 的另一边互相垂直,且∠A=30°,则∠B 的度数是______.【答案】60°或120°【解析】∠A 、∠B 的一边互相平行,另一边互相垂直,借助平行线定理画出辅助图,根据题意画图可知,∠B 的度数存在两种情况,并且相互互补.【详解】∵∠A 的一边与∠B 的一边互相平行,∴∠1=∠A=30°,∵∠A 的另一边与∠B 的另一边互相垂直,∴∠B=90°-∠1=90°-30°=60°,或∠B=90°+∠1=90°+30°=120°,即∠B 的度数是60°或120°.故答案为:60°或120°.【点睛】此题考查平行线定理,解题关键在于对平行线定理的定义理解.16.一根长为1的绳子恰好围成一个三角形,则这个三角形的最长边x的取值范围是_________.【答案】11 32x≤<【解析】设其他两边的边长分别为y、z,然后根据三角形三边关系和x为最长边,列出不等式可得出结论. 【详解】设其他两边的边长分别为y、z,∵三角形周长为1,∴x+y+z=1,由三角形三边关系可得y+z>x,即1-x>x,解得12x<,又∵x为最长边,∴x≥y,x≥z,∴2x≥y+z,即2x≥1-x,解得13 x≥,综上可得11 32x≤<.【点睛】本题考查三角形的三边关系,掌握两较短边之和大于最长边是本题的关键.17.等腰三角形一腰上的高与另一腰的夹角为48,则该等腰三角形的底角的度数为______.【答案】69°或21°【解析】分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°−48°=42°,∵AB=AC,∴∠ABC=∠C=12 (180°−42°)=69°; ②若∠A>90°,如图2所示:同①可得:∠DAB=90°−48°=42°,∴∠BAC=180°−42°=138°,∵AB=AC ,∴∠ABC=∠C=12(180°−138°)=21°; 综上所述:等腰三角形底角的度数为69°或21°.故答案为69°或21°.三、解答题18.如图,在边长为6cm 的正方形ABCD 中,动点P 从点A 出发,沿线段AB 以每秒1cm 的速度向点B 运动;同时动点Q 从点B 出发,沿线段BC 以每秒2cm 的速度向点C 运动.当点Q 到达C 点时,点P 同时停止,设运动时间为t 秒.(注:正方形的四边长都相等,四个角都是直角)(1)CQ 的长为______cm(用含t 的代数式表示);(2)连接DQ 并把DQ 沿DC 翻折,交BC 延长线于点F ,连接DP 、DQ 、PQ.①若ADP DFQ S S ∆∆=,求t 的值.②当DP DF ⊥时,求t 的值,并判断PDQ ∆与FDQ ∆是否全等,请说明理由.【答案】(1)62(03)t t -≤≤(2)① 2.4 ② 2,不是全等三角形.【解析】(1)根据题意动点Q 从点B 出发,沿线段BC 以每秒2cm 的速度向点C 运动.因此利用速度和时间的乘积等于路程,可得CQ 的长.(2)①根据题意分别计算ADP ∆和DFQ ∆的面积,列方程求出t 值即可.②首先根据题意计算PF 、DP 和DF 的长,再利用勾股定理列方程求解即可,确定了t 值再证明PDQ ∆与FDQ ∆是否全等.【详解】(1)根据题意可得点Q 移动的速度为2cm2(03)BQ t t ∴=≤≤62(03)CQ CB BQ t t ∴=-=-≤≤(2)①根据题意可得116322ADP S AD AP t t ∆==⨯⨯=1162(62)361222DFQ S CD FQ t t ∆==⨯⨯-=-ADP DFQ S S ∆∆=33612t t ∴=-即 2.4t =②根据题意可得DP DF ⊥∴ 222PD DF PF +=22222266(62)(6)(122)t t t t ∴+++-=-+- 解的2t =所以当2t =时,可得PD =CQ=2, BQ=PB=4,因此可得PQ = ,DQDF === ,4FQ = ,4FQ =而 PQ =所以可得PDQ ∆与FDQ ∆不是全等三角形.【点睛】本题主要考查正方形的动点问题,关键在于根据题意列出方程,根据方程求解即可.19.(1)解方程组:533+=⎧⎨-=⎩x y x y(2)解不等式组331213(1)8-⎧+≥+⎨⎪--⎩-⎪x x xx <并把解集在数轴上表示出来.【答案】(1)23=⎧⎨=⎩x y ;(2)-2<x ≤1.【解析】试题分析:(1)运用加减法求解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.试题解析:(1)533+=⎧⎨-=⎩x y x y ①② ①+②,得4x=8x=2把x=2代入①得,y=3∴方程组的解为:23=⎧⎨=⎩x y (2)()31131328+≥+---⎧⎪⎨⎪⎩-x x x x ①<②,由①得:x ≤1;由②得:x >-2,∴不等式组的解集为:-2<x ≤1,数轴表示为:考点:1.解二元一次方程组;2.解一元一次不等式组;3.在数轴上表示不等式组的解集.20.解不等式:(1)231162x x +-->;(2)解不等式组:31251422x x x x +⎧⎪⎨+-≥⎪⎩> 【答案】(1)0x <;(2)13x -<≤【解析】(1)按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.(2)先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.【详解】解:(1)2363(1)x x +->-,23633x x +->-,23336x x ->--+,0x ->,0x <;(2)解不等式①得1x >-,解不等式②得3x ≤,∴这个不等式组的解集是13x -<≤.【点睛】本题考查了一元一次不等式的解法及一元一次不等式组的解法.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.21.如图,AB ∥CD ,△EFG 的顶点F ,G 分别落在直线AB ,CD 上,GE 交AB 于点H ,GE 平分∠FGD ,若∠EFG=90°,∠E=35°,求∠EFB 的度数.【答案】20°【解析】依据三角形内角和定理可得∠FGH=55°,再根据GE 平分∠FGD ,AB ∥CD ,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG 是△EFH 的外角,即可得出∠EFB=55°-35°=20°.【详解】∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE 平分∠FGD ,AB ∥CD ,∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG 是△EFH 的外角,∴∠EFB=55°﹣35°=20°.【点睛】本题考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.22.某商场销售A 、B 两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:该商场计划购进两种教学设备若干套,共需132万元,全部销售后可获毛利润18万元.(1)该商场计划购进A 、B 两种品牌的教学设备各多少套?(2)通过市场调查,该商场决定在原计划的基础上,减少A 种设备的购进数量,增加B 种设备的购进数量,已知B 种设备增加的数量是A 种设备减少数量的1.5倍.若用于购进这两种教学设备的总资金不超过138万元,则A 种设备购进数量最多减少多少套?【答案】(1)购进A 、B 两种品牌的教学设备分别20,30套;(2)A 种设备购进数量最多减少10套【解析】(1)首先设该商场计划购进A ,B 两种品牌的教学设备分别为x 套,y 套,根据题意即可列方程组3 2.41320.30.418x y x y +=⎧⎨+=⎩,解此方程组即可求得答案; (2)首先设A 种设备购进数量减少a 套,则B 种设备购进数量增加1.5a 套,根据题意即可列不等式3(20-a )+2.4(30+1.5a )≤138,解此不等式组即可求得答案.【详解】(1)设购进A 、B 两种品牌的教学设备分别,x y 套,列方程组得:3 2.41320.30.418x y x y +=⎧⎨+=⎩, 解得2030x y =⎧⎨=⎩答:购进A 、B 两种品牌的教学设备分别20,30套(2)设A 种设备购进数量减少a 套,由题意得:3(20) 2.4(30 1.5)138a a -++∴10a 又020a∴010a∴a 最多为10答:A 种设备购进数量最多减少10套【点睛】此题考查了一元一次不等式与二元一次方程组的应用.注意根据题意找到等量关系是关键.230=,求2x -的平方根,【答案】2x -平方根为2±.0=可得:2x-1+x+7=1,据此求出x 的值是多少,即可求出-2x 的平方根是多少.0= ∴2170x x -++=,∴2x =-,∴24x -=,∴4的平方根为:2±.【点睛】此题主要考查了立方根的性质和应用,以及平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,1的立方根是1.24.计算:求不等式215132x +≤<的整数解. 【答案】1,2,1【解析】将不等式变形成一个不等式组,解不等式组然后找到整数解即可. 【详解】原不等式可变形为:211321532x x +⎧≥⎪⎪⎨+⎪<⎪⎩①② 解①得,1x ≥ , 解②得,134x < , ∴不等式组的解集为1314x ≤<, ∴不等式215132x +≤<的整数解为1,2,1. 故答案为 :1,2,1.【点睛】本题主要考查不等式组的整数解,正确的解不等式是解题的关键.25.阅读材料:如图1,点A 是直线MN 上一点,MN 上方的四边形ABCD 中,140ABC ∠=︒,延长BC ,2DCE MAD ADC ∠=∠+∠,探究DCE ∠与MAB ∠的数量关系,并证明.小白的想法是:“作ECF ECD ∠=∠(如图2),通过推理可以得到CF MN ,从而得出结论”.请按照小白的想法.....完成解答:拓展延伸:保留原题条件不变,CG 平分ECD ∠,反向延长CG ,交MAB ∠的平分线于点H (如图3),设MAB α∠=,请直接写出H ∠的度数(用含α的式子表示).【答案】阅读材料:40∠=︒+∠ECD MAB ,见解析;拓展延伸:120CHA α=∠︒-.【解析】(1)作ECF ECD ∠=∠,DG MN ,BH MN ,由平行线性质可得180MAD ADG ∠+∠=︒,结合已知2DCE MAD ADC ∠=∠+∠,可证180CDG DCF ∠+∠=︒,进而得到DG CF ,从而CF BH ,140BCF MAB ABC ∠+∠=∠=︒,将180180BCF ECF ECD ∠=︒-∠=︒-∠代入可得40∠=︒+∠ECD MAB .(2)过H 点作HP ∥MN ,可得∠CHA=∠PHA+∠PHC ,结合(1)的结论和CG 平分∠ECD 可得∠PHC =∠FCH =120°-3MAB 2∠,即可得120CHA α=∠︒-.【详解】解:【阅读材料】作ECF ECD ∠=∠,DG MN ,BH MN (如图1).∵DG MN ,∴180MAD ADG ∠+∠=︒.∴()180CDG MAD ADC ∠+∠+∠=︒.∵2DCE MAD ADC ∠=∠+∠,∴2180CDG DCE ∠+∠=︒.∴180CDG DCF ∠+∠=︒.∴DG CF .∵DG MN ,∴MN CF .∵BH MN ,∴CF BH .∴BCF CBH ∠=∠,MAB ABH ∠=∠.∴140BCF MAB ABC ∠+∠=∠=︒.∵180180BCF ECF ECD ∠=︒-∠=︒-∠,∴40∠=︒+∠ECD MAB .【拓展延伸】结论:120CHA α=∠︒-.理由:如图,作ECF ECD ∠=∠,过H 点作HP ∥MN ,∴∠PHA=∠MAH=1BAM 2∠,由(1)得FC ∥MN ,∴FC ∥HP ,∴∠PHC=∠FCH ,∵40∠=︒+∠ECD MAB ,CG 平分∠ECD ,∴∠ECG=20°+1MAB 2∠,∴∠FCH=180ECG ECF ︒-∠-∠=180°-(40MAB ︒+∠)-(20°+1MAB 2∠)=120°-3MAB 2∠∴∠CHA=∠PHA+∠PHC=1MAB 2∠∠+(120°-3MAB 2∠)=120°-MAB ∠ 即:120CHA α=∠︒-.【点评】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,//,,56AB CD DE CE DCE ︒⊥∠=,则1∠的度数为( )A .34︒B .54︒C .66︒D .56︒【答案】A 【解析】由垂直的定义得到∠DEC =90°,根据三角形的内角和得∠CDE 的度数,最后根据平行线的性质得到∠CDE =∠1=34°,即可得到结论.【详解】解:∵DE ⊥CE ,∴∠CED =90°,∵∠DCE =56°,∴∠CDE =180°−90°−56°=34°,∵AB ∥CD ,∴∠1=∠CDE =34°,故选:A .【点睛】本题主要考查了平行线的性质,垂直的定义和三角形内角和定理,解题时注意:两直线平行,内错角相等. 2.已知关于x 的不等式4x a 5-≥-的解集如图所示,则a 的值是( )A .3-B .2-C .1-D .0【答案】A【解析】先求出不等式的解集,根据数轴得出关于a 的方程,求出方程的解即可.【详解】解不等式45x a -≥-得: 54a x -≥, 根据数轴可知:524a -=-, 解得:3a =-,故选A.【点睛】本题考查了解一元一次方程、解一元一次不等式、在数轴上表示不等式的解集等知识.根据题意列出关于a 的方程是解此题的关键.3.甲、乙两班学生参加植树造林.已知甲班每天比乙班少植2棵树,甲班植60棵树所用天数与乙班植70棵树所用天数相等.若设甲班每天植树x棵,则根据题意列出方程正确的是()A.6070x2x=+B.6070x x2=+C.6070x2x=-D.6070x x2=-【答案】B【解析】甲班植60棵树所用的天数与乙班植70棵树所用的天数相等,等量关系为:甲班植60棵树所用的天数=乙班植70棵树所用的天数,根据等量关系列式:【详解】设甲班每天植树x棵,乙班每天植树x+2棵,则甲班植60棵树所用的天数为60x,乙班植70棵树所用的天数为70x2+,所以可列方程:6070x x2=+.故选B4.下列调查方式中,适合全面调查的是()A.调査某批次日光灯的使用情况B.调查市场上某种奶粉的质量情况C.了解全国中学生的视力情况D.调査机场乘坐飞机的旅客是否携带违禁物【答案】D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A. 是具有破坏性的调查,因而不适用全面调查方式,此选项错误;B. 市场上某种奶粉数量太大,不适合全面调查,此选项错误;C. 人数太多,不适合全面调查,此选项错误;D. 违禁物品必须全面调查,此选项正确;故选D.【点睛】此题考查全面调查与抽样调查,解题关键在于掌握其定义.5.不等式组5234xx-≤-⎧⎨-+<⎩的解集表示在数轴上为()A .B .C .D .【答案】B 【解析】根据题意先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.【详解】解:解不等式52x -≤-,得x ≤3,解不等式34x -+<,得x >-1,∴原不等式组的解集是-1<x ≤3.故选B .【点睛】本题考查不等式组的解法和解集在数轴上的表示法,注意掌握如果是表>或<号的点要用空心,如果是表示>等于或<等于号的点用实心.6.下列运算正确的是( )A 93=B 42=±C 2(4)4-=-D .3273-=-【答案】A【解析】根据平方根及算术平方根的定义对各选项进行逐一分析即可.【详解】A 93=,故本选项正确;B 422=≠±,故本选项错误;C 2(4)44-=≠-,故本选项错误;D 、32733--=≠-,故本选项错误.故选A .【点睛】本题考查的是算术平方根的定义,熟知一般地,如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根是解答此题的关键.7.某住宅小区六月份1日至5日母天用水量变化情况如图4所示.那么这5天平均母天的用水量是( )A .30吨B .31吨C .32吨D .33吨【答案】C 【解析】从图中得到6天用水量的6个数据,然后根据平均数的概念计算这6个数据的平均数就可得到平均用水量.解:这6天的平均用水量:30343237286++++=32吨,故选C . 要熟悉统计图,读懂统计图,熟练掌握平均数的计算方法.8.不等式39x <的解集是( ) A .9x <;B .3x <;C .9x >;D .3x >. 【答案】B【解析】根据不等式的性质,不等式两边同时除以3即得答案.【详解】解:不等式两边同时除以3,得3x <.故选B.【点睛】本题考查了一元一次不等式的解法,熟练掌握不等式的性质是解题的关键.9.关于的方程组的解是,则关于的方程组的解是( ) A . B . C . D .【答案】D【解析】设x-1=m,-y=n ,把m,n 代入方程组,得,根据方程组1的解,可得m,n 的值,再代回x-1=m,-y=n 即可求出答案.【详解】解:设x-1=m,-y=n ,把m,n 代入方程组,得,∵的解是∴m=4,n=1把m=4,n=1代入x-1=m,-y=n 得解得x=5,y=-1.故选D.【点睛】此题考查了二元一次方程组的解,和换元法解二元一次方程组,根据方程的特点设出合适的新元是解题的关键.10.如图,105ACD ∠=︒,70A ∠=︒,则B 的大小是( )A .25°B .35°C .45°D .65°【答案】B 【解析】利用三角形的外角的性质即可解决问题.【详解】∵∠ACD=∠B+∠A ,∠ACD=105°,∠A=70°,∴∠B=105°-70°=35°,故选:B .【点睛】本题考查三角形的外角的性质,解题的关键是熟练掌握基本知识.二、填空题题11.不等式3x +2≥5的解集是__________.【答案】1x ≥【解析】解325x +≥得.12.长方形的周长为18,一边长x 由小到大变化,则长方形的面积y 与这个边长x 的关系式为_____.【答案】y=9x ﹣x 1.【解析】直接利用已知结合矩形面积求法进而得出答案.【详解】∵长方形的周长为18,一边长x ,∴另一边长为:9﹣x ,故长方形的面积y 与这个边长x 的关系式为:y=x (9﹣x )=9x ﹣x 1.故答案为:y=9x ﹣x 1.【点睛】此题主要考查了函数关系式,正确表示出矩形的边长是解题关键.13.不等式组360{420x x +≥->的所有整数解的和为 _________.【答案】-2【解析】360420x x +≥⎧⎨->⎩①②,由①得:x ⩾−2,由②得:x<2,∴−2⩽x<2,∴不等式组的整数解为:−2,−1,0,1.所有整数解的和为−2−1+0+1=−2.故答案为−2.14.若关于x 的不等式组2{x x m >>的解集是2x >,则m 的取值范围是___________.【答案】36a -【解析】因为不等式组2{x x m >> 的解集是x>2根据同大取较大原则可知,m <2,当m=2时,不等式组2{x x m >>的解集也是x >2,故m≤2;故答案是:m≤2.15.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是___________. 【答案】56m <≤【解析】先解出不等式组的解集,由题意确定m 的取值范围【详解】解:0(1)721(2)x m x -<⎧⎨-≤⎩解不等式(1)得:x m <解不等式(2)得:3x ≥ 所以不等式组的解集为3x m ≤<,其3个整数解只能是3,4,5,所以m 的取值范围是56m <≤故答案为:56m <≤【点睛】本题主要考查了解一元一次不等式组,正确理解题意是解题的关键.16.乐乐发现三个大小相同的球可以恰好放在一个圆柱形盒子里(底和盖的厚度均忽略不计),如图所示,则三个球的体积之和占整个盒子容积的__________.(球的体积计算公式为343V r π=)【答案】23【解析】根据题意表示出圆柱的体积进而得出三个球的体积之和与整个盒子容积的关系.【详解】设小球的半径为r ,由题意可得圆柱的半径为r ,高度为6r ,则圆柱的体积为2366r r r ππ⨯=,三个小球的体积和为334343r r ππ⨯=, 故三个球的体积之和占整个盒子容积的334263r r ππ=. 故答案为:23. 【点睛】此题考查圆柱体积公式,球体积计算公式,正确理解题意是解题的关键.17.某校开展“未成年人普法”知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记5-分.小明参加本次竞赛的得分超过100分,他至少答对了_____题;【答案】1【解析】根据竞赛得分=10×答对的题数-5×未答对(不答)的题数和本次竞赛得分要超过100分,列出不等式,再求解即可.【详解】设要答对x 道,根据题意得:10x-5×(20-x )>100,10x-100+5x >100,15x >200,解得x >403, 则他至少要答对1道;故答案为:1.【点睛】此题考查了一元一次不等式的应用,读懂题意,找到关键描述语,找到所求得分的关系式是解决本题的关键.三、解答题18.已知:如图,ABC ∆中,90ACB ︒∠=,30A ︒∠=,CD AB ⊥于D ,点E 在AB 的延长线上,45E ︒∠=,若8AB =,求BE 的长.【答案】32【解析】根据直角三角形30°角所对的直角边等于斜边的一半求出BC ,再根据同角的余角相等求出∠BCD =30°,然后求出BD ,根据勾股定理列式求出CD 的长,根据等角对等边求出DE =CD ,再根据BE =DE−BD 进行计算即可得解.【详解】解: 90ACB ︒∠=,30A ︒∠=,8AB =,118422BC AB ==⨯=∴, CD AB ⊥,90BCD ABC ︒∴∠+∠=,又90A ABC ︒∠+∠=,30BCD A ︒∴∠=∠=, 114222BD BC ∴==⨯=, 在Rt BCD ∆中,22224223CD BC BD =-=-=,45E ︒∠=,904545DCE ︒︒︒-∴∠==,DCE E ∴∠=∠,23DE CD ∴==,232BE DE BD ∴=-=-.【点睛】本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,同角的余角相等的性质,等角对等边的性质,熟记各性质是解题的关键.19.我们知道每一个无理数都可以用数轴上的一个点表示出来,如图,在数轴上画出表示2的点A (要求保留作图痕迹,先用2B 铅笔画图,然后0.5毫米碳素笔描黑加粗),数轴上3表示的点B ,如果数轴上的线段BC 的中点是A ,求数轴上的点C 表示的数是多少?【答案】作图见解析,C 点233【解析】过数轴上表示12长,再截取A 点,根据A 点为BC 的中点确定出C 表示的数即可.【详解】解:如图所示,OA 2,∵点A 为BC 的中点,且点A 2,点B 表示的数为3,∴AB =AC ,设点C 表示的数为x ,则有22−x ,解得:x =233,则点C 表示的数233-.【点睛】此题考查了实数与数轴,以及无理数,解题关键是求数轴上两点间的距离应让较大的数减去较小的数即可. 20.如图,已知∠1=∠2,∠MAE =45°,∠FEG =15°,∠NCE =75°。

七年级上册数学《3.1.2等式的性质》导学案

七年级上册数学《3.1.2等式的性质》导学案

第三章 一元一次方程3.1.2 等式的性质学习目标:理解并会熟练运用等式的性质解决实际问题学习重点:运用等式的性质解决实际问题学习难点:运用等式的性质解决实际问题学习关键:把握实际问题中的等式关系一、温故知新1、解简单方程(1)244=x 31)2(=+x 234)3(+=x x二、探索新知:1.自主学习(阅读课本第81页至82页内容,并回答下列问题) ①若__,22=+=+m n p n m 则,依据的是等式的性质_____,它是将等式的两边同时_______________②若__,33=-=-x m x 则,依据的是等式的性质_____,它是将等式的两边同时_______________③等式102=-y x 变形为2024-=+-y x 的依据是等式的性质____,它是将等式的两边同时________④等式3)0(32=≠=a a a a 变形为的依据是等式的性质_____,它是将等式的两边同时________2.自主归纳概念(1)等式两边都加上(或____)同一个______(或_____),结果仍相等,用字母表示:______=±=c a b a ,那么如果(2)等式的两边乘同一个______,或____同一个不为___的数,结果仍相等,用字母表示:____==ac b a ,那么如果;==c a c b a ,那么如果)0_(______ 练习1、回答下列问题(1)从a+b=b+c ,能否得到a=c ,为什么?(2)从ab=bc 能否得到a=c ,为什么?(3)从a b =c b,能否得到a=c ,为什么? (4)从a-b=c-b ,能否得到a=c ,为什么? (5)从xy=1,能否得到x=1y ,为什么?练习2、 填空1.在等式2x-1=4,两边同时________得2x=5.2.在等式x-23=y-23,两边都_______得x=y . 3.在等式-5x=5y ,两边都_______得x=-y .4.在等式-13x=4的两边都______,得x=______. 5.如果2x-5=6,那么2x=________,x=______,其根据是________.6.如果-14x=-2y ,那么x=________,根据________. 7.在等式34x=-20的两边都______或______得x=________. 3.深入探究:利用等式的性质解方程 (1)267=+x 205)2(=-x 4531=--x归纳:解以x 为未知数的方程,就是把方程逐步转化为_________的形式,并且___________是转化的重要依据。

【精品】人教版七年级数学上册 导学案:3.1.2 等式的性质

【精品】人教版七年级数学上册 导学案:3.1.2 等式的性质

第三章 一元一次方程从算式到方程3.1.2 等式的性质... .(2)4>3( ) (4)x +2x =3x ( ) (6)2x ≠2( ) .通常用a =b 表示一般的等式.等式的性质1 等式两边加 (或减) 同一个数 (或式子),结果仍相等.等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结 果仍相等.典例精析例1 (1) 怎样从等式 x -5= y -5 得到等式 x = y ?(2) 怎样从等式 3+x =1 得到等式 x =-2?(3) 怎样从等式 4x =12 得到等式 x =3?(4) 怎样从等式100100ba =得到等式 a = b ?例2 已知mx = my ,下列结论错误的是 ( ) A. x = y B. a +mx =a +my C. mx -y =my -y D. amx =amy易错提醒:此类判断等式变形是否正确的题型中,尤其注意利用等式的性质2等式两边同除某个字母参数,只有这个字母参数确定不为0时,等式才成立.针对训练 说一说:(1)从 x = y 能不能得到99yx =,为什么? (2)从 a +2=b +2 能不能得到 a =b ,为什么? (3)从-3a =-3b 能不能得到 a =b ,为什么? (4)从 3ac = 4a 能不能得到 3c =4,为什么?探究点2:利用等式的性质解方程 例3 利用等式的性质解下列方程:(1)x + 6 = 17; (2)-3x =15;(3)2x -1=-3; (4)31-x +1= -2.方法总结:对于数字和未知数(系数不为1)在等号的同一边的方程,可以先用等式的性质1将方程化为ax =b (a ,b 为常数,且a ≠0)的形式,再用等式的性质2,进一步化为x = c (c 为常数)的形式.要点归纳:一般地,从方程解出未知数的值以后,可以代入原方程检验,看这个值能否使方程的两边相等. 针对训练用等式的性质解下列方程并检验: (1)x-3=-1; (2)0.4x=8;。

数学人教版七年级上册七年级上3.1.2等式的性质七年级数学上册导学案

数学人教版七年级上册七年级上3.1.2等式的性质七年级数学上册导学案

优质资料---欢迎下载3.1.2等式的性质备课时间: 授课时间: 授课班级:学习目标:1、知识与技能:了解等式的两条基本性质,并会用数学式子表示;能利用等式的基本性质解简单的方程.2、过程与方法:经历探索等式的性质的过程,初步体会转化的思想.3、情感态度与价值观:探索中体会成功的乐趣.学习重点:理解等式的两条基本性质.学习难点:利用等式的基本性质解简单的方程.学习方法:自主、合作、探究、展示.一、自主学习:阅读教材第81页,完成下列问题:1.等式的基本性质1:等式两边 (或减)同一个数(或式子),结果仍 ;可以用数学语言表述为:如果a=b ,那么a c= ;2.等式的基本性质2:等式两边乘 ,或除以同一个 ,结果仍相等;可以用数学语言表述为:如果a=b ,那么ac= ;如果a=b(c ≠0),那么a c = . 二、合作探究、交流展示:例1.利用等式的性质解下列方程: (1) x+7=26; (2) -5x=20; (3) -31x-5=4.三、拓展延伸:1.种一批树苗,每人种10棵,则剩6棵树苗未种;如果每人种12棵,则缺6棵树苗.有多少人种树?2.一辆汽车已行驶了12000km,计划每月再行使800km,几个月后这辆汽车将行驶20800km?四、课堂检测:1.回答下列问题:(1)从a+b=b+c ,能否得到a=c ,为什么?(2)从a-b=c-b ,能否得到a=c ,为什么?(3)从ab=bc 能否得到a=c ,为什么?(4)从ab =cb ,能否得到a=c ,为什么?(5)从xy=1,能否得到x=1y ,为什么?2.利用等式的性质解下列方程并检验:(1) x-5=6; (2) 0.3x=45;(3) 2-41x=3; (4) 5x+4=0五、教(学)后反思:答案一、自主学习:1.加,相等,b c2.一个数,不为0的数,bc , c b 二、合作探究、交流展示:例1.(1) x=19; (2) x=-4; (3) x=-27三、拓展延伸:1.解:设共有x 个人种树,可得方程:10x +6=12x −62x =12,x =6.答:共有6人种树。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) (2)
(3) (4)
4、《导学案》基础反思1、2、3
课后作业:
习题3.1第4、9题
《导学案》拓展创新。
板书设计:
3.1.2等式的性质(1)
1、等式的两条性质及字母的表示方法。
2、解方程的依据是等式的性质,最后要化为“x=a”形式。
课后反思:
1、怎样的式子是等式?请举出几个等式的例子。
2、等式的两条性 质都强调“同一个”,把“同”去掉行吗?等式性质2中为 什么是“除以同一个不为0的数” ?
3、举一个运用等式性质的实际例子。
4、课本82页例2的(1)、(2),在变形的过程中分别用到了等式的哪个性质。
3、合作探究
《导学案》难点探究
三、展示反馈:
等式的性质
课题:3.1.2等式的性质(1)序号:
学习目标:
1、知识和技能:
(1)、了解等式的两条性质。
(2)、会用等式的性质解简单的一元一次方程。
2、过程和方法:
培养学生观察、分析、概括及逻辑思维能力。
3、情感、 态度、价值观:
渗透“化归”思想。
学习重点:理解和应用等式 的性质。
学习难点:应用等式的性质把简单的一元一次方程化成“x=a”。
导学方法:
课时:1课时
导学过程
课前预习:
阅读教材,思考下列问题:
用估算的方法我们可以求出简单的一元一次方程的解,你能用这种方法求出下列方程的解吗?
(1)3x-5=22 (2)0.28-0.13y=0.27y+1
课堂导学:
导入:
这节课我们来学习新的解一元一次方程的解法。
2、出示任务自主学习
认真自学课本P81-点评。
四、学习小结
1、等式的两条性质及字母的表示方法。
2、解方程的依据是等式的性质,最后要化为“x=a ”形式。
五、达标检测:
1、课本第83页练习1、2、3
2、已知 ,请用等于号“=”或 不等号“ ”填空:
① ;② ;
③ ;④ ;⑤ ;⑥ ;
⑦ ;⑧ 。
3、利用等式的性质解下列方程并检验:
相关文档
最新文档