2019高考数学文一轮分层演练:第9章平面解析几何 第7讲
推荐2019届高三数学(理 新课标)一轮复习课件第九章 平面解析几何9.7
与椭圆x42+y2=1 共焦点且过点 P(2,
1)的双曲线方程是( ) A.x42-y2=1
C.x32-y32=1
B.x22-y2=1 D.x2-y22=1
解:椭圆x42+y2=1 的焦点坐标是(± 3,0). 设双曲线方程为ax22-by22=1(a>0,b>0),
因为双曲线过点 P(2,1), 所以a42-b12=1,又 a2+b2=3, 解得 a2=2,b2=1,所以所求双曲线方程是x22 -y2=1.故选 B.
线段 PF1,A1A2 为直径的两个圆的位置关系为( )
A.相交
B.相切
C.相离
D.以上情况以线段 PF1,A1A2 为直径的 两个圆的半径分别为 r1,r2,两个圆的圆心分别为 O1,O2.若 P 在 双曲线左支上,则|O2O1|=12|PF2|=12(|PF1|+2a)=12|PF1|+a=r1+
(2015·福建)若双曲线 E:x92-1y62 =1 的左、右
焦点分别为 F1、F2,点 P 在双曲线 E 上,且|PF1|=3,
则|PF2|等于( )
A.11
B.9
C.5
D.3
解:根据双曲线的定义,得||PF2|-|PF1||=2×3=6, 所以||PF2|-3|=6,所以|PF2|=9 或|PF2|=-3(舍去),故 选 B.
y≥a 或 y≤-a
F1(0,-c),F2(0,c) 2c=2 a2+b2
y=±abx
自查自纠
1.(1)绝对值 < 焦点 焦距 (2)离心率 (3)等轴双曲线 充要 垂直 2.(2)ax22-by22=1(a>0,b>0) (5)A1(0,-a),A2(0,a) (7)F1(-c,0),F2(c,0) (9)e=ac(e>1) (10)y=±bax
2019版高考一轮复习数学(文理通用):第一部分 基础与考点过关 第九章 平面解析几何
, 第九章 平面解析几何)第1课时 直线的倾斜角与斜率(对应学生用书(文)121~122页、(理)126~127页)1. (原创)设m 为常数,则过点A (2,-1),B (2,m )的直线的倾斜角是 W. 答案:90°解析:因为过点A (2,-1),B (2,m )的直线x =2垂直于x 轴,故其倾斜角为90°. 2. (必修2P 80练习1改编)若过点M (-2,m ),N (m ,4)的直线的斜率等于1,则m 的值为 W.答案:1解析:由1=4-mm +2,得m +2=4-m ,解得m =1.3. (原创)若直线l 的斜率k 的变化范围是[-1,3],则它的倾斜角的变化范围是 W.答案:⎣⎢⎡⎦⎥⎤0,π3∪⎣⎢⎡⎭⎪⎫3π4,π解析:由-1≤k ≤3,即-1≤tan α≤3,∴ α∈⎣⎢⎡⎦⎥⎤0,π3∪⎣⎢⎡⎭⎪⎫3π4,π.4. (必修2P 80练习6改编)已知两点A (4,0),B (0,3),点C (8,a )在直线AB 上,则a = W.答案:-3解析:由k AB =k BC 得3-4=a -38,解得a =-3.5. (必修2P 80练习4改编)若直线l 沿x 轴的负方向平移2个单位,再沿y 轴的正方向平移3个单位后,又回到原来的位置,则直线l 的斜率为 W.答案:-32解析:设直线上任一点为(x ,y ),平移后的点为(x -2,y +3),利用斜率公式得直线l 的斜率为-32.1. 直线倾斜角的定义 在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴所在的直线绕着交点按逆时针方向旋转至和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角,并规定:与x 轴平行或重合的直线的倾斜角为0°;直线的倾斜角α的取值范围是[0,π)W.2. 直线斜率的定义倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率.直线的斜率常用k 表示,即k =tan α.由正切函数的单调性可知,倾斜角不同的直线其斜率也不同.3. 过两点的斜率公式过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线,当x 1≠x 2时,斜率公式为k =tan α=y 2-y 1x 2-x 1,该公式与两点的顺序无关;当x 1=x 2时,直线的斜率不存在,此时直线的倾斜角为90°W.[备课札记], 1 直线的倾斜角和斜率之间的关系), 1) 如果三条直线l 1,l 2,l 3的倾斜角分别为α1,α2,α3,其中l 1:x -y =0,l 2:x +2y =0,l 3:x +3y =0,则α1,α2,α3从小到大的排列顺序为 W.答案:α1<α2<α3解析:由tan α1=k 1=1>0,所以α1∈⎝ ⎛⎭⎪⎫0,π2.tan α2=k 2=-12<0,所以α2∈⎝ ⎛⎭⎪⎫π2,π,α2>α1.tan α3=k 3=-13<0, 所以α3∈⎝ ⎛⎭⎪⎫π2,π,α3>α1,而-12<-13,正切函数在⎝ ⎛⎭⎪⎫π2,π上单调递增,所以α3>α2.综上,α1<α2<α3.变式训练已知经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y 的值为 W.答案:-3解析:由2y +1-(-3)4-2=2y +42=y +2=tan 3π4,得y +2=-1,所以y =-3., 2 求直线的倾斜角和斜率) , 2) 已知两点A (-1,-5),B (3,-2),直线l 的倾斜角是直线AB 倾斜角的一半,求直线l 的斜率.解:设直线l 的倾斜角为α,则直线AB 的倾斜角为2α, 由题意可知tan 2α=34,∴ 2tan α1-tan 2α=34. 整理得3tan 2α+8tan α-3=0,解得tan α=13或tan α=-3.∵ tan 2α=34>0,∴ 0°<2α<90°,∴ 0°<α<45°,∴ tan α>0,故直线l 的斜率为13.变式训练如图,已知直线l1的倾斜角α1=30°,直线l1⊥l2,求直线l1,l2的斜率.解:直线l1的斜率k1=tan α1=tan 30°=3 3.∵直线l2的倾斜角α2=90°+30°=120°,∴直线l2的斜率k2=tan 120°=tan(180°-60°)=-tan 60°=- 3.,3求直线的倾斜角和斜率的取值范围),3)已知两点A(-3,4),B(3,2),过点P(1,0)的直线l与线段AB 有公共点.(1)求直线l的斜率k的取值范围;(2)求直线l的倾斜角α的取值范围.解:如图,由题意可知,k PA=4-0-3-1=-1,k PB=2-03-1=1.(1)要使直线l与线段AB有公共点,则直线l的斜率k的取值范围是(-∞,-1]∪[1,+∞).(2)由题意可知,直线l的倾斜角介于直线PB与PA的倾斜角之间.又PB的倾斜角是45°,PA的倾斜角是135°,所以α的取值范围是[45°,135°].变式训练若直线mx+y+1=0与连结点A (-3,2),B (2,3)的线段相交,求实数m的取值范围.解:直线的斜率为k=-m,且直线经过定点P(0,-1),因为直线PA,PB的斜率分别为-1,2,所以斜率k的取值范围是(-∞,-1]∪[2,+∞),即实数m的取值范围是(-∞,-2]∪[1,+∞).1. 已知A(-1,23),B(0,3a),C(a,0)三点共线,则此三点所在直线的倾斜角α的大小是W.答案:120°解析:若a =0,则点B ,C 重合,不合题意.由A ,B ,C 三点共线得k AB =k BC ,即3a -230+1=0-3a a -0,解得a =1,所以B (0,3).此三点所在直线的斜率k AB =3-230+1=-3,即tan α=- 3.又0°≤α<180°,所以α=120°.2. 直线xcos α+3y +2=0的倾斜角的取值范围是 .答案:⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π解析:由直线的方程可知其斜率k =-cos α3∈⎣⎡⎦⎤-33,33.设直线的倾斜角为θ,则tanθ∈⎣⎡⎦⎤-33,33,且θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π. 3. 已知实数x ,y 满足y =-2x +8,且2≤x ≤3,求yx的最大值和最小值.解:如图,由于点(x ,y )满足关系式2x +y =8,且2≤x ≤3可知,点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标可分别为A (2,4),B (3,2).由于y x 的几何意义是直线OP 的斜率,且k OA =2,k OB =23,所以y x 的最大值为2,最小值为23.4. 已知直线kx +y -k =0与射线3x -4y +5=0(x ≥-1)有交点,求实数k 的取值范围.解:kx +y -k =0⇒k (x -1)+y =0,直线过定点(1,0)⇒由题意作图可得:由题意可看出: k ∈⎝⎛⎭⎫-∞,-34∪⎣⎡⎭⎫14,+∞.(或者由两直线方程联立,消去y 得x =4k -53+4k ≥-1,即4k -14k +3≥0⇒k ≥14或k <-34)1. 已知x 轴上的点P 与点Q (-3,1)连线所成直线的倾斜角为30°,则点P 的坐标为 W.答案:(-23,0)解析:设P (x ,0),由题意得k PQ =tan 30°=33,即1-3-x =33,解得x =-23,故点P 的坐标为(-23,0).2. 如图,直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则它们的大小关系为 W.答案:k 1<k 3<k 2解析:直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2.3. 已知函数f (x )=asin x -bcos x.若f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x ,则直线ax -by +c =0的倾斜角为 W.答案:3π4解析:由f ⎝ ⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x 知,函数f (x )的图象关于直线x =π4对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π2,所以-b =a ,所以直线ax -by +c =0的斜率为ab =-1.设直线ax -by +c =0的倾斜角为α,则tan α=-1,因为α∈[0,π),所以α=3π4,即直线ax -by +c =0的倾斜角为3π4.4. 若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是 W.答案:⎝ ⎛⎭⎪⎫π6,π2解析:如图,直线l :y =kx -3过定点P (0,-3).又A (3,0),所以k PA =0-(-3)3-0=33,所以直线l 的斜率范围为⎝⎛⎭⎫33,+∞,由于直线的倾斜角的取值范围为[0,π),所以满足条件的直线l 的倾斜角的范围是⎝ ⎛⎭⎪⎫π6,π2.1. 求斜率要熟记斜率公式:k =y 2-y 1x 2-x 1,该公式与两点顺序无关,已知两点坐标(x 1≠x 2)时,根据该公式可求出经过两点的直线的斜率.当x 1=x 2,y 1≠y 2时,直线的斜率不存在,此时直线的倾斜角为90°.2. 要正确理解倾斜角的定义,明确倾斜角的取值范围,倾斜角与斜率的关系是k =tan α(α≠90°),其中α为倾斜角,因此求倾斜角的取值范围通常需从斜率的范围入手,而求斜率的范围则常需考虑倾斜角的取值范围,但都需要利用正切函数的性质,借助图象或单位圆数形结合,注意直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎡⎭⎫0,π2与⎝⎛⎭⎫π2,π两种情况讨论.由正切函数图象可以看出当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0).第2课时 直线的方程(对应学生用书(文)123~124页、(理)128~129页)1. (必修2P 82练习1(1)~(4)改编)过点P (-2,0),且斜率为3的直线的方程是 W.答案:y =3x +6解析:设所求直线方程为y =3x +b ,由题意可知3×(-2)+b =0,∴ b =6,故y =3x +6.2. (必修2P 87练习4改编)如果ax +by +c =0表示的直线是y 轴,则系数a ,b ,c 满足条件 W.答案:a ≠0且b =c =0解析:ax +by +c =0表示的直线是y 轴,即x =0,∴ b =c =0,a ≠0.3. (必修2P 87练习1改编)直线x 3-y4=1在两坐标轴上的截距之和为 W.答案:-1解析:令x =0,得y =-4;令y =0,得x =3.故直线在两坐标轴上的截距之和为-4+3=-1.4. (必修2P 85练习4改编)下列说法中正确的是 W.(填序号) ① 经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示; ② 经过定点A (0,b )的直线都可以用方程y =kx +b 表示;③ 不经过原点的直线都可以用方程x a +yb=1表示;④ 经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.答案:④ 解析:对于①②,斜率有可能不存在,对于③,截距也有可能为0. 5. (必修2P 85练习2(2)(3)改编)若一直线经过点P (1,2),且在y 轴上的截距与直线2x +y +1=0在y 轴上的截距相等,则该直线的方程是 W.答案:3x -y -1=0解析:直线2x +y +1=0在y 轴上的截距为-1,由题意,所求直线过点(0,-1),又所求直线过点P (1,2),故由两点式得直线方程为y +12+1=x -01-0,即3x -y -1=0.1. 直线方程的五种形式111222(1) 当x 1=x 2,且y 1≠y 2时,直线垂直于x 轴,方程为x =x 1W. (2) 当x 1≠x 2,且y 1=y 2时,直线垂直于y 轴,方程为y =y 1W. (3) 当x 1=x 2=0,且y 1≠y 2时,直线即为y 轴,方程为x =0W. (4) 当x 1≠x 2,且y 1=y 2=0时,直线即为x 轴,方程为y =0W. (5) 直线的斜率k 与倾斜角α之间的关系如下表:若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),且线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎨⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式., 1 求直线方程), 1) 已知直线l 过点P (5,2),分别求满足下列条件的直线方程. (1) 直线l 在x 轴上的截距是在y 轴上的截距的2倍;(2) 直线l 与两坐标轴围成的三角形面积为52.解:(1) 当直线l 过原点时,直线l 的斜率为25,∴ 直线方程为y =25x ,即2x -5y =0;当直线l 不过原点时,设直线方程为x 2a +y a =1,将x =5,y =2代入得a =92,∴ 直线方程为x +2y -9=0.综上,直线l 的方程为2x -5y =0或x +2y -9=0. (2) 显然直线与坐标轴不垂直.∵ 直线l 经过点P (5,2),且能与坐标轴围成三角形,∴ 可设直线l 的方程为y -2=k(x -5)(k ≠0),则直线在x 轴上的截距为5-2k,在y 轴上的截距为2-5k ,由题意,得12|5-2k |·|2-5k|=52,即(5k -2)2=5|k|.当k>0时,原方程可化为(5k -2)2=5k ,解得k =15或k =45;当k<0时,原方程可化为(5k -2)2=-5k ,此方程无实数解;故直线l 的方程为y -2=15(x -5)或y -2=45(x -5),即x -5y +5=0或4x -5y -10=0.变式训练求过点(-3,4),且在两坐标轴上的截距之和为12的直线方程.解:由题设知截距不为0,设直线方程为x a +y 12-a =1,又直线过点(-3,4),从而-3a +412-a=1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. , 2 含参直线方程问题), 2) 已知直线l :kx -y +1+2k =0 (k ∈R ). (1) 求证:直线l 过定点;(2) 若直线不经过第四象限,求k 的取值范围;(3) 若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,△AOB 的面积为S ,求S 的最小值并求此时直线l 的方程. (1) 证明:直线l 的方程是k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1, ∴ 无论k 取何值,直线l 总经过定点(-2,1).(2) 解:由方程知,当k ≠0时直线在x 轴上的截距为-1+2k k ,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎨⎧-1+2kk ≤-2,1+2k ≥1,解得k>0;当k =0时,直线为y =1,符合题意,故k ≥0.(3) 解:由l 的方程,得A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ).依题意得⎩⎨⎧-1+2kk <0,1+2k>0,解得k>0. ∵ S =12·OA ·OB =12·⎪⎪⎪⎪⎪⎪-1+2k k ·|1+2k|= 12·(1+2k )2k =12·⎝⎛⎭⎫4k +1k +4≥12×(2×2+4)=4, “=”成立的条件是k>0且4k =1k ,即k =12,∴ S min =4,此时l :x -2y +4=0.变式训练已知直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y +6-2m =0. (1) 求实数m 的取值范围;(2) 若直线l 的斜率不存在,求实数m 的值;(3) 若直线l 在x 轴上的截距为-3,求实数m 的值; (4) 若直线l 的倾斜角是45°,求实数m 的值.解:(1) 当x ,y 的系数不同时为零时,方程表示一条直线,令m 2-2m -3=0,解得m =-1或m =3;令2m 2+m -1=0解得m =-1或m =12.所以实数m 的取值范围是(-∞,-1)∪(-1,+∞).(2) 由(1)易知,当m =12时,方程表示的直线的斜率不存在.(3) 依题意,有2m -6m 2-2m -3=-3,所以3m 2-4m -15=0,所以m =3或m =-53,由(1)知所求m =-53.(4) 因为直线l 的倾斜角是45°,所以斜率为1.由-m 2-2m -32m 2+m -1=1,解得m =43或m =-1(舍去).所以当直线l 的倾斜角为45°时,m =43., 3 直线方程的综合应用), 3) 为了绿化城市,拟在矩形区域ABCD 内建一个矩形草坪(如图),另外△EFA 内部有一文物保护区不能占用,经测量AB =100 m ,BC =80 m ,AE =30 m ,AF =20 m ,应如何设计才能使草坪面积最大?解:如图,建立平面直角坐标系,则E (30,0),F (0,20),∴ 线段EF 的方程为x 30+y20=1(0≤x ≤30).在线段EF 上取点P (m ,n ), 作PQ ⊥BC 于点Q ,PR ⊥CD 于点R , 设矩形PQCR 的面积为S ,则S =PQ·PR =(100-m )(80-n ).又m 30+n20=1(0≤m ≤30),∴ n =20⎝⎛⎭⎫1-m 30. ∴ S =(100-m )⎝⎛⎭⎫80-20+23m =-23(m -5)2+18 0503(0≤m ≤30).∴ 当m =5时,S 有最大值,∴ 当矩形草坪的两边在BC ,CD 上,一个顶点在线段EF 上,且这个顶点距AD 边5 m 时,草坪面积最大.备选变式(教师专享)如图,互相垂直的两条道路l 1,l 2相交于点O ,点P 与l 1,l 2的距离分别为2千米、3千米,过点P 建一条直线道路AB ,与l 1,l 2分别交于A ,B 两点.(1) 当∠BAO =45°时,试求OA 的长;(2) 若使△AOB 的面积最小,试求OA ,OB 的长.解:以l 1为x 轴,l 2为y 轴,建立平面直角坐标系,则O (0,0),P (3,2). (1) 由∠BAO =45°知,OA =OB ,可设A (a ,0),B (0,a )(a >0),直线l 的方程为x a +ya=1.∵ 直线l 过点P (3,2),∴ 3a +2a =1⇒a =5,即OA =5千米. (2) 设A (a ,0),B (0,b )(a >0,b >0),则直线l 的方程为x a +yb=1.∵ 直线l 过点P (3,2),∴ 3a +2b =1,b =2aa -3(a >3).从而S △ABO =12a ·b =12a ·2a a -3=a 2a -3,令a -3=t ,t >0,则a 2=(t +3)2=t 2+6t +9,故有S △ABO =t 2+6t +9t =t +9t +6(t >0).设f (t )=t +9t +6,可证f (t )在(0,3)上单调递减,在(3,+∞)上单调递增,∴ 当t =3时,f (t )min =f (3)=12,此时a =6,b =4,直线l 的方程为x 6+y4=1,即OA =6千米,OB =4千米.1. 若直线(2m 2+m -3)x +(m 2-m )y =4m -1 在x 轴上的截距为1,则实数m 的值是 W.答案:2或-12解析:令y =0,则(2m 2+m -3)x =4m -1, ∴ x =4m -12m 2+m -3=1,∴ m =2或-12.2. 若方程(a 2-a -2)x +(a 2+a -6)y +a +1=0表示垂直于y 轴的直线,则a 为W.答案:-1解析:因为方程表示垂直于y 轴的直线,所以a 2-a -2=0且a 2+a -6≠0,解得a =-1.3. 已知直线l 过点M (1,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.当OA +OB 取得最小值时,直线l 的方程是 W.答案:x +y -2=0解析:设A (a ,0),B (0,b )(a>0,b>0),直线l 的方程为x a +yb=1,已知直线l 过点M (1,1),则OA +OB =a +b =(a +b )⎝⎛⎭⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0.4. 已知直线l 过点(0,5),且在两坐标轴上的截距之和为2,则直线l 的方程为 W.答案:5x -3y +15=0解析:∵ 直线过点(0,5),∴ 直线在y 轴上的截距为5. ∵ 在两坐标轴上的截距之和为2,∴ 直线在x 轴上的截距为-3.∴ 直线l 的方程为x -3+y5=1,即5x -3y +15=0.5. 已知在△ABC 中,A (1,-4),B (6,6),C (-2,0).求(1) △ABC 中平行于BC 边的中位线所在直线的一般式方程和截距式方程; (2) BC 边的中线所在直线的一般式方程和截距式方程.解:(1) 平行于BC 边的中位线就是AB ,AC 中点的连线.因为线段AB ,AC 中点坐标为⎝⎛⎭⎫72,1,⎝⎛⎭⎫-12,-2,所以这条直线的方程为y +21+2=x +1272+12,整理得6x -8y -13=0, 化为截距式方程为x 136-y138=1.(2) 因为BC 边上的中点为(2,3),所以BC 边上的中线所在直线的方程为y +43+4=x -12-1,即7x -y -11=0,化为截距式方程为x 117-y11=1.1. 若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则实数m 满足条件 W.答案:m ≠1解析:2m 2+m -3,m 2-m 不能同时为0.2. 若直线(2t -3)x +2y +t =0不经过第二象限,则t 的取值范围是 W.答案:⎣⎡⎦⎤0,32 解析:直线方程可化为y =⎝⎛⎭⎫32-t x -t 2,由题意得⎩⎨⎧32-t ≥0,-t2≤0,解得0≤t ≤32.3. 不论m 取何值,直线(m -1)x -y +2m +1=0恒过定点 . 答案:(-2,3)解析:把直线方程(m -1)x -y +2m +1=0, 整理得(x +2)m -(x +y -1)=0,则⎩⎪⎨⎪⎧x +2=0,x +y -1=0,解得⎩⎪⎨⎪⎧x =-2,y =3.4. 已知直线x +2y =2与x 轴、y 轴分别相交于A ,B 两点.若动点P (a ,b )在线段AB 上,则ab 的最大值为 W.答案:12解析:由题意知A (2,0),B (0,1),所以线段AB 的方程可表示为x2+y =1,x ∈[0,2].又动点P (a ,b )在线段AB 上,所以a 2+b =1,a ∈[0,2].又a 2+b ≥2ab 2,所以1≥2ab2,解得0≤ab ≤12,当且仅当a 2=b =12,即P ⎝⎛⎭⎫1,12时,ab 取得最大值12. 5. 已知两直线a 1x +b 1y +1=0和a 2x +b 2y +1=0的交点为P (2,3),求过两点Q 1(a 1,b 1),Q 2(a 2,b 2)(a 1≠a 2)的直线方程.解:由题意,知P (2,3)在已知直线上,∴ ⎩⎪⎨⎪⎧2a 1+3b 1+1=0,2a 2+3b 2+1=0,∴ 2(a 1-a 2)+3(b 1-b 2)=0,即b 1-b 2a 1-a 2=-23,∴ 所求直线方程为y -b 1=-23(x -a 1),∴ 2x +3y -(2a 1+3b 1)=0,即2x +3y +1=0.1. 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况;而选用两点式时不要忽视与坐标轴垂直的情况.2. 解决直线方程的综合问题时,除灵活选择方程的形式外,还要注意题目中的隐含条件,若与最值或范围相关的问题可考虑构建目标函数进行转化求最值.[备课札记]第3课时 直线与直线的位置关系(对应学生用书(文)125~126页、(理)130~131页)1. (原创)“a =3”是“直线ax +3y =1与直线x +y =1平行”的 条件. 答案:充要解析:若a =3,直线ax +3y =1与直线x +y =1显然平行;若直线ax +3y =1与直线x+y =1平行,由a 1= 31 ≠ 11,易得a =3.2. (必修2P 93练习6改编)过点P (-1,3)且垂直于直线x -2y +3=0的直线方程为 W.答案:2x +y -1=0解析:设直线方程为2x +y +c =0,又直线过点P (-1,3),则-2+3+c =0,c =-1,即所求直线方程为2x +y -1=0.3. (必修2P 95练习3改编)若三条直线2x +3y +8=0,x -y -1=0和x +ky =0相交于一点,则k = W.答案:-12解析:由⎩⎪⎨⎪⎧2x +3y +8=0,x -y -1=0,解得⎩⎪⎨⎪⎧x =-1,y =-2,∴ 点(-1,-2)在x +ky =0上,即-1-2k =0,∴ k =-12.4. (必修2P 105练习1改编)已知点(a ,2)(a >0)到直线l :x -y +3=0的距离为1,则a = W.答案:2-1解析:由题意知|a -2+3|2=1,∴ |a +1|= 2.又∵ a >0,∴ a =2-1.5. (必修2P 106习题10改编)与直线7x +24y =5平行,并且距离等于3的直线方程是 W.答案:7x +24y +70=0或7x +24y -80=0解析:设直线方程为7x +24y +c =0,则d =|c +5|242+72=3,∴ c =70或-80.1. 两条直线的位置关系设两条直线的方程是l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,两条直线的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.若方程组有惟一解,则两条直线相交,此解就是交点坐标W.若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立.若方程组有无数组解,则两条直线重合W.3. 几种距离(1) 两点间的距离: 平面上的两点A (x 1,y 1),B (x 2,y 2)间的距离公式: d (A ,B )=AB =(x 1-x 2)2+(y 1-y 2)2. (2) 点到直线的距离:点P (x 1,y 1)到直线l :Ax +By +C =0的距离d =|Ax 1+By 1+C|A 2+B 2.(3) 两条平行线间的距离:两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2.4. 常见的三大直线系方程(1) 与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ∈R 且m ≠C ). (2) 与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m ∈R ). (3) 过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.5. 中心对称(1) 点关于点对称:若点M (x 1,y 1)与N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2) 直线关于点对称问题的主要解法:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用l 1∥l 2,由点斜式得到所求的直线方程.6. 轴对称(1) 点关于直线的对称若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,则线段P 1P 2的中点在对称轴l 上,且连结P 1P 2的直线垂直于对称轴l ,由方程组⎩⎪⎨⎪⎧A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,A (y 1-y 2)=B (x 1-x 2),可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中A ≠0,x 1≠x 2).特别地,若直线l :Ax +By +C =0满足|A|=|B|,则P 1(x 1,y 1)与P 2(x 2,y 2)坐标关系为⎩⎪⎨⎪⎧Ax 1+By 2+C =0,Ax 2+By 1+C =0.(2) 直线关于直线的对称此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[备课札记], 1 两直线的平行与垂直), 1) 已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值:(1) l 1⊥l 2,且直线l 1过点(-3,-1);(2) l 1∥l 2,且坐标原点到这两条直线的距离相等.解:(1) ∵ l 1⊥l 2,∴ a (a -1)-b =0. ∵ 直线l 1过点(-3,-1), ∴ -3a +b +4=0.故a =2,b =2.(2) ∵ 直线l 2的斜率存在,l 1∥l 2,∴ 直线l 1的斜率存在.∴ k 1=k 2,即ab =1-a.∵ 坐标原点到这两条直线的距离相等,∴ l 1,l 2在y 轴上的截距互为相反数,即4b=b.故a =2,b =-2或a =23,b =2.变式训练已知直线l 1经过点A (3,a ),B (a -1,2),直线l 2经过点C (1,2),D (-2,a +2),分别在下列条件下求a 的值:(1) l 1∥l 2; (2) l 1⊥l 2.解:设直线l 2的斜率为k 2,则k 2=2-(a +2)1-(-2)=-a3.(1) 若l 1∥l 2,则直线l 1的斜率k 1=-a3.又k 1=2-a a -4,则2-a a -4=-a3,解得a =1或a =6.经检验,当a =1或a =6时,l 1∥l 2. (2) 若l 1⊥l 2.① 当k 2=0时,此时a =0,k 1=-12,不符合题意.② 当k 2≠0时,直线l 2的斜率存在,此时k 1=2-aa -4.由k 2k 1=-1,得-a 3·2-aa -4=-1,解得a =3或a =-4.经检验,当a =3或a =-4时,l 1⊥l 2. , 2 两直线的交点), 2) 已知△ABC 的顶点B (3,4),AB 边上的高CE 所在直线方程为2x +3y -16=0,BC 边上的中线AD 所在直线方程为2x -3y +1=0,求AC 的长.解:∵ k CE = -23,AB ⊥CE ,∴ k AB =32, ∴ 直线AB 的方程为3x -2y -1=0.由⎩⎪⎨⎪⎧3x -2y -1=0,2x -3y +1=0,解得A (1,1), 设C (a ,b ), 则D ⎝ ⎛⎭⎪⎫3+a 2,4+b 2,∵ C 点在CE 上,BC 的中点D 在AD 上,∴ ⎩⎨⎧2a +3b -16=0,2·3+a 2-3·4+b2+1=0,得C (5,2), 由两点间距离公式得AC 的长为17. 变式训练已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1),∴ l AC :2x +y -11=0.联立l AC ,l CM 得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,∴ C (4,3).设B (x 0,y 0),则AB 的中点M 为⎝ ⎛⎭⎪⎫x 0+52,y 0+12,代入2x -y -5=0,得2x 0-y 0-1=0,∴ ⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,∴ B (-1,-3),∴ k BC =65,∴ 直线BC 的方程为y -3=65(x -4),即6x -5y -9=0., 3 点到直线及两平行直线之间的距离) , 3) 已知点P (2,-1).(1) 求过P 点且与原点距离为2的直线l 的方程;(2) 求过P 点且与原点距离最大的直线l 的方程,最大距离是多少?(3) 是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.解:(1) 过P 点的直线l 与原点距离为2,而P 点坐标为(2,-1), 可见,过P (2,-1)且垂直于x 轴的直线满足条件. 此时l 的斜率不存在,其方程为x =2. 若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知,得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,直线l 的方程为x =2或3x -4y -10=0.(2) 过P 点与原点O 距离最大的直线是过P 点且与OP 垂直的直线,由l ⊥OP ,得k l k OP =-1,所以k l =-1k OP =2.由直线方程的点斜式得y +1=2(x -2), 即2x -y -5=0.即直线2x -y -5=0是过P 点且与原点O 距离最大的直线,最大距离为|-5|5= 5.(3) 不存在.理由:由(2)可知,过P 点不存在到原点距离大于5的直线,因此不存在过P 点且到原点距离为6的直线.备选变式(教师专享)已知直线l 经过直线l 1:2x +y -5=0与l 2:x -2y =0的交点. (1) 若点A (5,0)到l 的距离为3,求直线l 的方程; (2) 求点A (5,0)到直线l 的距离的最大值.解:(1) 由直线l 经过直线l 1与l 2交点知,其直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0.∵ 点A (5,0)到直线l 的距离为3, ∴|10+5λ-5|(2+λ)2+(1-2λ)2=3,即2λ2-5λ+2=0,∴ λ=2或λ=12,∴ 直线l 的方程为x =2或4x -3y -5=0.(2) 设直线l 1与l 2的交为P ,由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得P (2,1),如图,过点P 作任一直线l ,设d 为点A 到l 的距离,则d ≤PA (当l ⊥PA 时等号成立). ∴ d max =PA =(5-2)2+(0-1)2=10., 4 对称问题), 4) 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1) 点A 关于直线l 的对称点A′的坐标;(2) 直线m :3x -2y -6=0关于直线l 的对称直线m′的方程; (3) 直线l 关于点A (-1,-2)对称的直线l′的方程. 解:(1) 设A′(x ,y ),由已知得⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413. ∴ A ′⎝⎛⎭⎫-3313,413. (2) 在直线m 上任取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m′上.设对称点为M′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1,解得M′⎝⎛⎭⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,解得N (4,3).∵ m ′经过点N (4,3),∴ 由两点式得直线m′的方程为9x -46y +102=0.(3) 设P (x ,y )为l′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P′(-2-x ,-4-y ).∵ P ′在直线l 上,∴ 2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0.备选变式(教师专享) 光线通过点A (2,3),在直线l :x +y +1=0上反射,反射光线经过点B (1,1),试求入射光线和反射光线所在直线的方程.解:设点A (2,3)关于直线l 的对称点为A′(x 0,y 0),则⎩⎪⎨⎪⎧2+x 02+3+y 02+1=0,y 0-3x 0-2=1,解得A′(-4,-3).由于反射光线经过点A′(-4,-3)和B (1,1),所以反射光线所在直线的方程为y -1-3-1=x -1-4-1,即4x -5y +1=0.解方程组⎩⎪⎨⎪⎧4x -5y +1=0,x +y +1=0,得反射点P ⎝⎛⎭⎫-23,-13. 所以入射光线所在直线的方程为y -3-13-3=x -2-23-2,即5x -4y +2=0.1. (2016·上海卷文)已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2的距.解析:利用两平行线间距离公式得d =|-1-1|22+12=255.2. 将一张坐标纸折叠一次,使点(0,2)与点(4,0)重合,且点(7,3)与点(m ,n )重合,则m +n 的值是 W.答案:345解析:点(0,2)与点(4,0)关于y -1=2(x -2)对称,则点(7,3)与点(m ,n )也关于y -1=2(x -2)对称,则⎩⎨⎧n +32-1=2⎝ ⎛⎭⎪⎫m +72-2,n -3m -7=-12,解得⎩⎨⎧m =35,n =315.∴ m +n =345.3. 已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,直线l 1的方程是 .答案:x +2y -3=0解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x-1),即x +2y -3=0.4. 在平面直角坐标系中,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是 W.答案:(2,4)解析:设P 为平面上一点,则由三角形两边之和大于第三边知PA +PC ≥AC ,PB +PD ≥BD ,所以四边形ABCD 对角线的交点到四点距离之和最小,直线AC 的方程为y -2=2(x -1),直线BD 的方程为y -5=-(x -1),由⎩⎪⎨⎪⎧y -2=2(x -1),y -5=-(x -1),得交点坐标为(2,4).5. △ABC 的两条高所在直线的方程分别为2x -3y +1=0和x +y =0,顶点A 的坐标为(1,2),求BC 边所在直线的方程.解:可以判断A 不在所给的两条高所在的直线上,则可设AB ,AC 边上的高所在直线的方程分别为2x -3y +1=0,x +y =0,则可求得AB ,AC 边所在直线的方程分别为y -2=-32(x -1),y -2=x -1,即3x +2y -7=0,x -y +1=0.由⎩⎪⎨⎪⎧3x +2y -7=0,x +y =0,得B (7,-7), 由⎩⎪⎨⎪⎧x -y +1=0,2x -3y +1=0,得C (-2,-1), 所以BC 边所在直线的方程为2x +3y +7=0.1. 在平面直角坐标系xOy 中,直线l :(2k -1)x +ky +1=0,则当实数k 变化时,原点O 到直线l 的距离的最大值为 W.答案:5解析:直线l 过定点P (1,-2),原点O 到直线l 的距离的最大值即为OP =12+(-2)2= 5.2. 若过点P (1,2)作一直线l ,使点M (2,3)和点N (4,-1)到直线l 的距离相等,则直线l 的方程为 W.答案:2x +y -4=0或x +2y -5=0解析:当直线l 经过MN 的中点时,其方程为x +2y -5=0;当过M ,N 两点的直线平行于直线l 时,直线l 的方程为2x +y -4=0.3. 已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是 W.答案:⎝⎛⎭⎫-16,12 解析:由方程组⎩⎨⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴ 交点坐标为⎝ ⎛⎭⎪⎫2-4k 2k +1,6k +12k +1. ∵ 交点位于第一象限,∴ ⎩⎪⎨⎪⎧2-4k2k +1>0,6k +12k +1>0,解得-16<k <12.∴ 实数k 的取值范围是⎝⎛⎭⎫-16,12. 4. 已知直线l 1:2x -y -2=0和直线l 2:x +2y -1=0关于直线l 对称,则直线l 的斜率为 W.答案:-3或13解析:(解法1)在直线l 上任取一点P (x ,y ),点P 到直线l 1和直线l 2的距离相等.|2x -y -2|22+(-1)2=|x +2y -1|12+22,整理得,直线l 的方程为3x +y -3=0或x -3y -1=0,所以直线l 的斜率为-3或13.(解法2)设l 1的倾斜角为α.因为l 1⊥l 2,所以l 的倾斜角为α±π4,所以直线l 的斜率为tan ⎝ ⎛⎭⎪⎫α±π4.因为tan α=2,所以tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tanπ41-tan αtan π4=-3,tan ⎝ ⎛⎭⎪⎫α-π4=tan α-tanπ41+tan αtanπ4=13,所以直线l 的斜率为-3或13.1. 在两条直线的位置关系中,讨论最多的还是平行与垂直,它们是两条直线的特殊位置关系.解题时认真画出图形,有助于快速准确地解决问题.判断两直线平行与垂直时,不要忘记考虑斜率不存在的情形,利用一般式则可避免分类讨论.2. 运用公式d =|C 1-C 2|A 2+B 2求两平行直线间的距离时,一定要把x ,y 项系数化为相等的系数.3. 对称思想是高考热点,主要分为中心对称和轴对称两种,关键要把握对称问题的本质,必要情况下可与函数的对称轴建立联系.[备课札记]第4课时 圆 的 方 程(对应学生用书(文)127~128页、(理)132~133页)1. (必修2P 111练习4改编)圆x 2+y 2-4x +6y =0的圆心坐标是 W. 答案:(2,-3)解析:由(x -2)2+(y +3)2=13知,圆心坐标为(2,-3). 2. (必修2P 111习题7改编)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的标准方程为 W.答案:(x -2)2+y 2=10解析:设圆心坐标为(a ,0),易知(a -5)2+(-1)2=(a -1)2+(-3)2,解得a =2,∴ 圆心为(2,0),半径为10,∴ 圆C 的标准方程为(x -2)2+y 2=10. 3. (必修2P 111练习6改编)经过三点A (1,-1),B (1,4),C (4,-2)的圆的一般方程为 W.答案:x 2+y 2-7x -3y +2=0解析:设圆的一般方程为x 2+y 2+Dx +Ey +F =0.将A ,B ,C 三点代入,整理得方程组⎩⎪⎨⎪⎧D -E +F =-2,D +4E +F =-17,4D -2E +F =-20,解得⎩⎪⎨⎪⎧D =-7,E =-3,F =2,∴ 所求圆的一般方程为x 2+y 2-7x -3y +2=0. 4. 已知点P (1,1)在圆x 2+y 2-ax +2ay -4=0的内部,则a 的取值范围是 W. 答案:(-∞,2)解析:由圆的一般方程知a ∈R ,因为点P 在圆内,所以1+1-a +2a -4<0,解得a<2. 5. (原创)已知实数x ,y 满足x 2+(y +3)2=4,则(x -3)2+(y -1)2的最大值为 W.答案:49解析:(x -3)2+(y -1)2表示圆x 2+(y +3)2=4上一动点P (x ,y )到点(3,1)的距离d 的平方,因为圆心(0,-3)到点(3,1)的距离为5,所以d 的最大值为5+2=7,所以d 2的最大值为49.1. 圆的定义在平面内,到定点的距离等于定长的点的集合叫做圆.确定一个圆最基本的要素是圆心和半径W.2. 圆的标准方程(1) 以(a ,b )为圆心,r (r>0)为半径的圆的标准方程为(x -a )2+(y -b )2=r 2W.(2) 特殊的,x 2+y 2=r 2(r>0)的圆心为(0,0),半径为r W. 3. 圆的一般方程方程x 2+y 2+Dx +Ey +F =0变形为⎝⎛⎭⎫x +D 22+⎝⎛⎭⎫y +E 22=D 2+E 2-4F 4. (1) 当D 2+E 2-4F>0时,该方程表示以⎝⎛⎭⎫-D 2,-E22圆;(2) 当D 2+E 2-4F =0时,该方程表示一个点⎝⎛⎭⎫-D 2,-E 2; (3) 当D 2+E 2-4F <0时,该方程不表示任何图形. 4. 点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1) 若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2W. (2) 若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2W. (3) 若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2W. [备课札记]1 确定圆的方程) 1) 求经过点A (-2,-4),且与直线l :x +3y -26=0相切于点B (8,6)的圆的方程.解:(解法1)设圆心为C ,所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心C ⎝⎛⎭⎫-D 2,-E2,∴ k CB =6+E 28+D2. ∵ 圆C 与直线l 相切,∴ k CB ·k l =-1,即6+E 28+D 2·⎝⎛⎭⎫-13=-1 ①.又有(-2)2+(-4)2-2D -4E +F =0 ②, 又82+62+8D +6E +F =0 ③.联立①②③,可得D =-11,E =3,F =-30, ∴ 所求圆的方程为x 2+y 2-11x +3y -30=0. (解法2)设圆的圆心为C ,则CB ⊥l ,可得CB 所在直线的方程为y -6=3(x -8),即3x -y -18=0 ①. 由A (-2,-4),B (8,6),得AB 的中点坐标为(3,1). 又k AB =6+48+2=1,∴ AB 的垂直平分线的方程为y -1=-(x -3), 即x +y -4=0 ②.由①②联立,解得⎩⎨⎧x =112,y =-32.即圆心坐标为⎝⎛⎭⎫112,-32. ∴ 所求圆的半径r =⎝⎛⎭⎫112-82+⎝⎛⎭⎫-32-62=1252, ∴ 所求圆的方程为⎝⎛⎭⎫x -1122+⎝⎛⎭⎫y +322=1252.变式训练圆经过点A (2,-3)和B (-2,-5). (1) 若圆的面积最小,求圆的方程;(2) 若圆心在直线x -2y -3=0上,求圆的方程. 解:(1) 要使圆的面积最小,则AB 为圆的直径,圆心C (0,-4),半径r =12AB =5,所以所求圆的方程为x 2+(y +4)2=5.(2) 因为k AB =12,AB 中点为(0,-4),所以AB 中垂线方程为y +4=-2x ,即2x +y +4=0,解方程组⎩⎪⎨⎪⎧2x +y +4=0,x -2y -3=0,得⎩⎪⎨⎪⎧x =-1,y =-2.所以圆心为(-1,-2).根据两点间的距离公式,得半径r =10,因此,所求的圆的方程为(x +1)2+(y +2)2=10.备选变式(教师专享)已知一圆的圆心在原点,且圆周被直线3x +4y +15=0分成1∶2两部分,求圆的方程. 解:如图,因为圆周被直线3x +4y +15=0分成1∶2两部分,所以∠AOB =120°,而圆心O (0,0)到直线3x +4y +15=0的距离d =1532+42=3,在△AOB 中,可求得OA =6, 所以所求圆的方程为x 2+y 2=36.,2 与参数有关的圆方程问题), 2) 已知圆C 的方程x 2+y 2-2ax +2y +a +1=0.(1) 若圆C 上任意点A 关于l :x +2y -5=0的对称点也在圆上,求实数a 的值; (2) 求圆心C 到直线ax +y -a 2=0的距离的取值范围. 解:(1) 将圆C 的方程配方得(x -a )2+(y +1)2=a 2-a.由题意知圆心C (a ,-1)在直线l :x +2y -5=0上,即a -2-5=0,所以a =7. (2) 由圆方程可知, a 2-a >0,解得a >1或a <0. 由方程得圆心C (a ,-1)到直线ax +y -a 2=0的距离 d =|a 2-1-a 2|a 2+1=1a 2+1.因为a >1或a <0,所以a 2+1>1,所以0<d <1,所以所求距离的取值范围为(0,1).变式训练已知圆C :(x -a )2+(y -b )2=1,设平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为 W.答案:37解析:作出可行域,如图,由题意知,圆心为C (a ,b ),半径r =1,且圆C 与x 轴相切,所以b =1.而直线y =1与可行域边界的交点为A (6,1),B (-2,1),目标函数z =a 2+b 2表示点C 到原点距离的平方,所以当点C 与点A 重合时,z 取到最大值,z max =37. 备选变式(教师专享)设△ABC 顶点坐标为A (0,a ),B (-3a ,0),C (3a ,0),其中a>0,圆M 为△ABC 的外接圆.(1) 求圆M 的方程;(2) 当a 变化时,圆M 是否过某一定点,请说明理由.解:(1) 设圆M 的方程为x 2+y 2+Dx +Ey +F =0. ∵ 圆M 过点A (0,a ),B (-3a ,0),C (3a ,0) ∴ ⎩⎪⎨⎪⎧a 2+aE +F =0,3a -3aD +F =0,3a +3aD +F =0,解得⎩⎪⎨⎪⎧D =0,E =3-a ,F =-3a ,∴ 圆M 的方程为x 2+y 2+(3-a )y -3a =0.(2) 圆M 的方程可化为(3+y )a -(x 2+y 2+3y )=0.。
2019届高考数学一轮复习第九章平面解析几何9-7双曲线课件文
[答案] 2
3.(2015·北京卷)已知(2,0)是双曲线 x2-by22=1(b>0)的一个焦 点,则 b=________.
[解析] 因为(2,0)是双曲线 x2-by22=1(b>0)的一个焦点,所以 1+b2=4,则 b= 3.
[答案] A
5.已知 F1、F2 是双曲线 C:ax22-by22=1(a>0,b>0)的两个焦
点,P 是 C 上一点,若|PF1|+|PF2|=6a,且△PF1F2 最小内角的
大小为 30°,则双曲线 C 的渐近线方程是( )
A. 2x±y=0
B.x± 2y=0
C.x±2y=0
D.2x±y=0
[解析] 由题意,不妨设|PF1|>|PF2|,则根据双曲线的定义得, |PF1|-|PF2|=2a, 又|PF1|+|PF2|=6a, 解得|PF1|=4a,|PF2|=2a. 在△PF1F2 中,|F1F2|=2c,而 c>a,所以|PF2|<|F1F2|,
[小题速练] 1.(2017·全国卷Ⅲ)双曲线ax22-y92=1(a>0)的一条渐近线方程 为 y=35x,则 a=________.
[解析] 因为双曲线ax22-by22=1(a>0,b>0)的渐近线方程为 y =±bax,所以 a=5.
[答案] 5
2.(2017·北京卷)若双曲线 x2-ym2=1 的离心率为 3,则实数 m=________.
提示:a=8,b=6,c=10,所以||PF1|-|PF2||=16,又|PF1| =17,所以|PF2|=1 或|PF2|=33,又 c-a=2>1,所以|PF2|=33.
第九章 第七节 抛物线
上一页
返回导航
下一页
1 2 解析:抛物线 y= x 的标准方程为 x2=4y,所以其准线方程为 y=- 4 1,故选 A.
答案:A
上一页
返回导航
下一页
4. 设抛物线的顶点在原点, 准线方程为 x=-2, 则抛物线的方程是( A.y2=-8x C.y2=8x B.y2=-4x D.y2=4x
)
解析:由抛物线准线方程为 x=-2 知 p=4,且开口向右,故抛物线 方程为 y2=8x,故选 C.
) )
(3)抛物线既是中心对称图形,又是轴对称图形.(
(4)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段 叫做抛物线的通径,那么抛物线 x2=-2ay(a>0)的通径长为 2a.(
上一页 返回导航 下一页
)
解析:(1)当定点在定直线上时,轨迹为过定点 F 与定直线 l 垂直的 一条直线,而非抛物线. 1 (2)方程 y=ax (a≠0)可化为 x =ay,是焦点在 y 轴上的抛物线,且其
上一页
返回导航
下一页
(2)依题意,由点 M 向抛物线 x2=4y 的准线 l:y=-1 引垂线,垂足 为 M1, 则有|MA|+|MF|=|MA|+|MM1|, 结合图形可知|MA|+|MM1|的最小值等于圆心 C(-1,5)到 y=-1 的 距离再减去圆 C 的半径, 即等于 6-1=5,因此|MA|+|MF|的最小值是 5.
答案:(1)B (2)B
上一页 返回导航 下一页
规律方法 抛物线标准方程的求法及性质应用技巧 (1)求抛物线的标准方程的方法 ①求抛物线的标准方程常用待定系数法,因为未知数只有 p,所以只 需一个条件确定 p 值即可. ②因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定 位,再定量.
2019版高考数学大一轮复习人教B版全国通用课件:第九
方程为 y = k(x + 2) ,代入抛物线方程,消去 y 整理得 k2x2 + (4k2 - 8)x +
4k2=0,
由Δ=(4k2-8)2-4k2· 4k2=64(1-k2)≥0,
解得-1≤k≤1.
1
2
3
4
5
6
几何画板展示
解析
答案
题型分类
深度剖析
题型一
抛物线的定义及应用
师生共研
典例 设P是抛物线y2=4x上的一个动点,若B(3,2),则|PB|+|PF|的最小值 4 为___. 解析 如图,过点 B 作 BQ 垂直准线于点 Q ,交抛
第九章 平面解析几何
§9.7 抛物线
内容索引
基础知识
自主学习
题型分类
课时作业
深度剖析
基础知识
自主学习
知识梳理 1.抛物线的概念 平面内与一个定点F和一条定直线l(F∉l)的距离 相等 的点的轨迹叫做抛 物线.定点F叫做抛物线的 焦点 ,定直线l叫做抛物线的准线 . 2.抛物线的标准方程与几何性质 标准 y2=2px(p>0) y2=-2px(p>0) x2=2py(p>0) x2=-2py(p>0)
2 2 4 + 2 =2 5, ∴|PB|+|PF|≥|BF|=
即|PB|+|PF|的最小值为2 5 .
几何画板展示
解答
2.若将本例中的条件改为:已知抛物线方程为y2=4x,直线l的方程为
方程
p的几何意义:焦点F到准线l的距离
图形
顶点坐标
O(0,0)
对称轴
焦点坐标
x轴
y轴
F
p , 0 2
F
p , 0 2
【2019届走向高考】高三数学一轮(北师大版)第九章 平面解析几何:第9章 第1节
第九章平面解析几何 Nhomakorabea走向高考 ·高考总复习 ·北师大版 ·数学
(2)直线的斜率 ①定义:一条直线的倾斜角 α 的正切值 ______ 叫作这条直线的斜 tanα ,倾斜角是90°的 率,斜率常用小写字母k表示,即k=______ 直线斜率不存在.
②过两点的直线的斜率公式
经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为 y2-y1 k=______. x2-x1
走向高考 ·数学
北师大版 ·高考总复习
路漫漫其修远兮 吾将上下而求索
走向高考 ·高考总复习 ·北师大版 ·数学
第九章
平面解析几何
第九章
平面解析几何
走向高考 ·高考总复习 ·北师大版 ·数学
第九章 第一节
直线的倾斜角与斜率、直线的方程
第九章
平面解析几何
走向高考 ·高考总复习 ·北师大版 ·数学
1
命题分析 通过对近三年的高考试题的统计 分析可以看出,对于直线方程的考 查,一是考查直线倾斜角与斜率的关 系、斜率公式;二是考查求直线的方 程.从分析五种直线方程成立的条件 入手,确定相应的量是确定直线方程 的关键.用待定系数法求直直线方程 时,要特别注意斜率不存在的情况. 预测2016年高考对本节内容的考 查仍将以直线的斜率和方程为主.结 合直线的斜率与方程,考查与其他曲 线的综合应用.
D.既不充分也不必要条件
[答案] A [解析] 本题考查点与直线的位臵关系,充要条件.当x= 2,y=-1时,有2-1-1=0成立,此时P(2,-1)在直线上, 而点P(x,y)在直线并不一定有“x=2且y=-1”.
第九章 平面解析几何
走向高考 ·高考总复习 ·北师大版 ·数学
(新课标)2019届高考数学一轮复习第九章平面解析几何9.
自查自纠
1.定点 定长 集合 圆心 半径长 2.(1)(a,b) r D E 1 2 2 - ,- (2)D +E -4F>0 2 2 D +E -4F 2
2 2
3.(1)(x0-a)2+(y0-b)2=r2 (2)(x0-a)2+(y0-b)2>r2 (3)(x0-a)2+(y0-b)2<r2
第九章 第一章
集合与常用逻辑用语 平面解析几何
9.3
圆的方程
1.圆的定义 在平面内,到____________的距离等于____________的点的____________叫圆.确 定一个圆最基本的要素是____________和____________. 2.圆的标准方程与一般方程 (1) 圆的标准方程: 方程 (x - a)2 + (y - b)2 = r2(r>0) 叫做以点 ____________ 为圆心, ____________为半径长的圆的标准方程. (2)圆的一般方程:方程 x2+y2+Dx+Ey+F=0(____________)叫做圆的一般方程. D2 E2 D2+E2-4F 注:将上述一般方程配方得 x+ 2 + y+ 2 = ,此为该一般方程对应 4 的标准方程,表示的是以____________为圆心,____________为半径长的圆.
2 2 2 2 2 2 2 2
(2016· 柳州模拟)若方程 x2+y2-2x+2my+2m2 -6m+9=0 表示圆,则 m 的取值范围是____________; 当半径最大时,圆的标准方程为____________.
解:原方程可化为 (x- 1)2+ (y +m)2=-m2+ 6m -8, 则 r2=-m2+6m-8=-(m-2)(m-4)>0,所以 2<m<4. 当 m=3 时,r 最大为 1,此时圆的方程为(x-1)2 +(y+3)2=1.故填(2,4);(x-1)2+(y+3)2=1.
2019版高考数学一轮总复习第九章解析几何7双曲线(一)课件理
(6)双曲线形状与 e 的关系:k=ba=
c2-a2 a
=
ac22-1 =
e2-1,e 越大,即渐近线的斜率的绝对值就越大,这时双曲线
的形状就从扁狭逐渐变得开阔,即双曲线的离心率越大,它的开
口就越开阔.
1.判断下面结论是否正确(打“√”或“×”).
(1)平面内到点 F1(0,4),F2(0,-4)距离之差的绝对值等于 8 的点的轨迹是双曲线.
离心率
渐近线
F1(-c,0),F2(c,0)
F1(0,-c),F2(0,c)
|F1F2|=2c c2=a2+b2
|x|≥a,y∈R
|y|≥a,x∈R
关于 x 轴,y 轴和原点对称
(-a,0),(a,0)
(0,-a),(0,a)
实轴长 2a,虚轴长 2b
e=ca(e>1)
xa±yb=0(或 y=±bax)
y2;0,b>0)的
离心率分别是e1,e2,则
1 e12
+
1 e22
=1(此结论中两条双曲线为共轭
双曲线).
答案 (1)× (2)× (3)√ (4)√ (5)√
2.(课本习题改编)若双曲线方程为x2-2y2=1,则它的右焦 点坐标为________.
答案 ( 26,0)
(2)(2018·广东普宁市华侨中学期末)过双曲线 x2-y42=1 的左 焦点 F1 作一条直线 l 交双曲线左支于 P,Q 两点,若|PQ|=4,F2 是双曲线的右焦点,则△PF2Q 的周长是________.
【解析】 由题意,|PF2|-|PF1|=2,|QF2|-|QF1|=2. ∵|PF1|+|QF1|=|PQ|=4,∴|PF2|+|QF2|-4=4,∴|PF2|+|QF2| =8.∴△PF2Q 的周长是|PF2|+|QF2|+|PQ|=8+4=12. 【答案】 12
核按钮(新课标)高考数学一轮复习第九章平面解析几何训
第九章 平面解析几何考纲链接1.平面解析几何初步 (1)直线与方程①在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素.②理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.③能根据两条直线的斜率判定这两条直线平行或垂直.④掌握确定直线的几何要素,掌握直线方程的三种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.⑤能用解方程组的方法求两相交直线的交点坐标.⑥掌握两点间的距离公式、点到直线的距离公式,会求两平行直线间的距离.(2)圆与方程①掌握确定圆的几何要素,掌握圆的标准方程与一般方程.②能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程判断圆与圆的位置关系.③能用直线和圆的方程解决一些简单的问题. ④初步了解用代数方法处理几何问题的思想. 2.圆锥曲线与方程 (1)掌握椭圆的定义、几何图形、标准方程和简单几何性质(范围、对称性、顶点、离心率).(2)了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线).(3)了解抛物线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率).(4)理解数形结合的思想. (5)了解圆锥曲线的简单应用.§9.1 直线与方程1.平面直角坐标系中的基本公式(1)数轴上A ,B 两点的距离:数轴上点A 的坐标为x 1,点B 的坐标为x 2,则A ,B 两点间的距离|AB |=____________.(2)平面直角坐标系中的基本公式:①两点间的距离公式:在平面直角坐标系中,两点A (x 1,y 1),B (x 2,y 2)之间的距离公式为d (A ,B )=|AB |=_______________________. ②线段的中点坐标公式:若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x = ,y = . 2.直线的倾斜角与斜率 (1)直线的倾斜角:当直线l 与x 轴相交时,取x 轴作为基准,x 轴____________与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.当直线l 与x 轴________或________时,我们规定它的倾斜角为0°.因此,直线的倾斜角α的取值范围为__________________.(2)斜率:一条直线的倾斜角α的____________叫做这条直线的斜率,常用小写字母k 表示,即k =______(α≠______).当直线平行于x 轴或者与x 轴重合时,k______0;当直线的倾斜角为锐角时,k______0;当直线的倾斜角为钝角时,k______0;倾斜角为______的直线没有斜率.倾斜角不同,直线的斜率也不同.因此,我们可以用斜率表示直线的倾斜程度.(3)经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =.3.直线方程的几种形式(1)截距:直线l 与x 轴交点(a ,0)的____________叫做直线l 在x 轴上的截距,直线l 与y 轴交点(0,b )的____________叫做直线l 在y 轴上的截距.注:截距____________距离(填“是”或“不是”).________的特例.(3)过点P 1(x 1,y 1),P 2(x 2,y 2)的直线方程 ①若x 1=x 2,且y 1≠y 2时,直线垂直于x 轴,方程为____________;②若x 1≠x 2,且y 1=y 2时,直线垂直于y 轴,方程为____________;③若x 1=x 2=0,且y 1≠y 2时,直线即为y 轴,方程为____________;④若x 1≠x 2,且y 1=y 2=0,直线即为x 轴,方程为____________.自查自纠: 1.(1)|x 2-x 1|(2)①()x 2-x 12+()y 2-y 12②x 1+x 22 y 1+y 222.(1)正向 平行 重合 0°≤α<180° (2)正切值 tan α 90° = > < 90° (3)y 2-y 1x 2-x 13.(1)横坐标a 纵坐标b 不是 (2)①y -y 0=k (x -x 0) ②y =kx +b③y -y 1y 2-y 1=x -x 1x 2-x 1④x 1≠x 2且y 1≠y 2 ⑤x a +y b=1 ⑥Ax +By +C =0(A ,B 不同时为0)点斜式 两点式(3)①x =x 1 ②y =y 1 ③x =0 ④y =0过点M (-1,m ),N (m +1,4)的直线的斜率等于1,则m 的值为( )A .1 B.12 C .2 D.13解:由4-m m +2=1,得m =1.故选A.直线3x -3y +1=0的倾斜角是( ) A .30° B .60° C .120° D .135°解:直线方程可变形为y =3x +33,tan α=3,∵倾斜角α∈[0°,180°),∴α=60°.故选B.过点(5,2),且在y 轴上的截距是在x 轴上截距2倍的直线方程是( )A .2x +y -12=0B .2x +y -12=0或2x -5y =0 C .x -2y -1=0D .x -2y -1=0或2x -5y =0解:当直线过原点时所求方程为2x -5y =0;当直线不过原点时,可设其截距式为x a +y2a =1,由该直线过点(5,2)即可解得a =6,对应方程为x 6+y12=1,即2x +y -12=0.故选B.已知直线l 过点(0,2),且其倾斜角的余弦值为45,则直线l 的方程为____________.解:∵cos α=45,α∈[0,π),∴sin α=35,k =tan α=34.∴直线l 的方程为y -2=34x ,即3x-4y +8=0.故填3x -4y +8=0.下列四个命题中真命题有______个. ①经过定点P (x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示;②经过任意两点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示;③不经过原点的直线都可以用方程x a +y b=1表示;④经过定点(0,b )的直线都可以用方程y =kx +b 表示.解:①当k 不存在时,直线方程为x =x 0,不正确;②正确;③当直线与坐标轴垂直时不能用该方程表示,不正确;④k 可能不存在,不正确.故填1.类型一 直线的倾斜角和斜率(1)经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点,则直线l 的斜率k 和倾斜角α的取值范围分别为____________,____________.解:如图所示,为使l 与线段AB 总有公共点,则k PA ≤k ≤k PB ,而k PB >0,k PA <0,故k <0时,倾斜角α为钝角;k =0时,α=0;k >0时,α为锐角.又k PA =-2-(-1)1-0=-1,k PB =1-(-1)2-0=1,∴-1≤k ≤1.又当0≤k ≤1时,0≤α≤π4;当-1≤k <0时,3π4≤α<π.故倾斜角α的取值范围为α∈⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π. 故填[-1,1];⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.(2)如图所示,直线l 1的倾斜角α1=30°,直线l 1与l 2垂直,则直线l 1的斜率k 1=________,直线l 2的斜率k 2=________.解:由图可知,α2=α1+90°=120°,则直线l 1的斜率k 1=tan α1=tan30°=33,直线l 2的斜率k 2=tan α2=tan120°=-3,故填33;-3.点拨:①直线的倾斜角与斜率均是反映直线倾斜程度的量.倾斜角是从“形”的角度刻画直线的倾斜程度,而斜率是从“数”的角度刻画直线的倾斜程度,两者由公式k =tan α联系.②在使用过两点的直线的斜率公式k =y 2-y 1x 2-x 1时,注意同一直线上选取的点不同,直线的斜率不会因此而发生变化,同时还要注意两点横坐标是否相等,若相等,则直线的倾斜角为90°,斜率不存在,但并不意味着直线的方程也不存在,此时直线的方程可写为x =x 1.③在已知两点坐标,求倾斜角α的值或取值范围时,用tan α=k =y 2-y 1x 2-x 1转化,其中倾斜角α∈[0,π),此时依然要注意斜率不存在的情形,同时注意运用数形结合思想解题.(1)直线x sin α-y +1=0的倾斜角的变化范围是( )A.⎝⎛⎭⎪⎫0,π2 B .(0,π)C.⎣⎢⎡⎦⎥⎤-π4,π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫34π,π解:直线x sin α-y +1=0的斜率是k =sin α, ∵-1≤sin α≤1,∴-1≤k ≤1,当0≤k ≤1时,倾斜角的范围是⎣⎢⎡⎦⎥⎤0,π4;当-1≤k <0时,倾斜角的范围是⎣⎢⎡⎭⎪⎫34π,π.故选D.(2)已知线段PQ 两端点的坐标分别为P (-1,1)和Q (2,2),若直线l :x +my +m =0与线段PQ 有交点,则实数m 的取值范围是____________.解:如图所示,直线l :x +my +m =0过定点A (0,-1),当m ≠0时,k QA =32,k PA =-2,k l =-1m,∴-1m ≤-2或-1m ≥32,解得0<m ≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段PQ 有交点.∴实数m 的取值范围为⎣⎢⎡⎦⎥⎤-23,12.故填⎣⎢⎡⎦⎥⎤-23,12. 类型二求直线方程 根据所给条件求直线的方程.(1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距相等;(3)直线过点(5,10),且到原点的距离为5. 解:(1)由题意知,直线的斜率存在,设倾斜角为α,则sin α=1010(α∈[0,π)), 从而cos α=±31010,则k =tan α=±13.故所求直线的方程为y =±13(x +4),即x ±3y+4=0.(2)若截距不为0,设直线的方程为x a +y a=1, ∵直线过点(-3,4),∴-3a +4a=1,解得a =1.此时直线方程为x +y -1=0. 若截距为0,设直线方程为y =kx ,代入点(-3,4),有4=-3k ,解得k =-43,此时直线方程为4x+3y =0.综上,所求直线方程为x +y -1=0或4x +3y =0.(3)由题意知,当直线的斜率不存在时符合题意,此时直线方程为x -5=0.当直线斜率存在时,设其方程为y -10=k (x -5),即kx -y +(10-5k )=0.由点到直线的距离公式,得||10-5k 1+k2=5,解得k =34.此时直线方程为3x -4y +25=0. 综上知,所求直线方程为x -5=0或3x -4y +25=0.点拨:本题考查应用直线方程的几种形式求直线方程,难度虽不大,但每小题都有陷阱.(1)给出了倾斜角的正弦值,求正切值时,应注意倾斜角的范围;(2)截距相等包括经过原点的直线,还要注意截距不是距离;(3)应用点斜式求直线方程时,注意点斜式的局限性,它不能表示平面内所有直线.求满足下列条件的所有直线方程:(1)经过点P (4,1),且在两坐标轴上的截距相等;(2)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍.解:(1)根据题意,设直线l 在x ,y 轴上的截距均为a ,若a =0,即l 过点(0,0)和(4,1),∴l 的方程为y =14x ,即x -4y =0.若a ≠0,则设l 的方程为x a +y a=1, ∵l 过点(4,1),∴4a +1a=1,得a =5.∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y-5=0.(2)由已知设直线y =3x 的倾斜角为α,则所求直线的倾斜角为2α.∵tan α=3,∴tan2α=2tan α1-tan 2α=-34. 又直线经过点(-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.类型三 直线方程的应用(1)已知点A (4,-1),B (8,2)和直线 l :x -y -1=0,动点P (x ,y )在直线l 上,则||PA +||PB 的最小值为__________.解:设点A 1(x 1,y 1)与A (4,-1)关于直线l 对称,P 0为A 1B 与直线l 的交点,∴||P 0A 1=||P 0A ,||PA 1= ||PA .∴||PA +||PB =||PA 1 +||PB ≥||A 1B =||A 1P 0+||P 0B =||P 0A +||P 0B .当P 点运动到P 0点时,||PA +||PB 取到最小值||A 1B .∵点A ,A 1关于直线l 对称,∴由对称的充要条件知,⎩⎪⎨⎪⎧y 1+1x 1-4×1=-1,x 1+42-y 1-12-1=0, 解得⎩⎪⎨⎪⎧x 1=0,y 1=3, 即A 1(0,3).∴(||PA +||PB )min =||A 1B =82+(-1)2=65.故填65.点拨:平面内,两点间连线中直线段最短,这一最基本的公理是解决此类问题的理论基础.求A 关于l 的对称点是关键一步,而点关于直线对称的充要条件又是求对称点的依据.(2)直线l 过点P (1,4),且分别交x 轴的正半轴和y 轴的正半轴于A ,B 两点,O 为坐标原点.①当|OA |+|OB |最小时,求l 的方程; ②若|PA |·|PB |最小,求l 的方程. 解:①依题意,l 的斜率存在,且斜率为负, 设直线l 的斜率为k ,则直线l 的方程为y -4=k (x -1)(k <0).令y =0,可得A ⎝⎛⎭⎪⎫1-4k,0;令x =0,可得B (0,4-k ).|OA |+|OB |=⎝ ⎛⎭⎪⎫1-4k +(4-k )=5-⎝ ⎛⎭⎪⎫k +4k=5+⎝⎛⎭⎪⎫-k +4-k ≥5+4=9. ∴当且仅当-k =4-k且k <0,即k =-2时,|OA |+|OB |取最小值. 这时l 的方程为2x +y -6=0.②|PA |·|PB |=⎝ ⎛⎭⎪⎫4k 2+16·1+k 2=4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-k +(-k )≥8(k <0), 当且仅当1-k=-k 且k <0,即k =-1时,|PA |·|PB |取最小值. 这时l 的方程为x +y -5=0.点拨:直线方程综合问题的两大类型及解法:(1)与函数相结合的问题,解决这类问题,一般是利用直线方程中的x ,y 的关系,将问题转化为关于x (或y )的函数,借助函数的性质解决;(2)与方程、不等式相结合的问题,一般是利用方程、不等式的有关知识(如方程解的个数、根的存在问题,不等式的性质、基本不等式等)来解决.已知直线l :kx -y +1+2k =0(k ∈R ).(1)证明:直线l 过定点; (2)若直线l 不经过第四象限,求k 的取值范围; (3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.解:(1)证明:将直线l 的方程变形得k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1, ∴无论k 取何值,直线l 过定点(-2,1). (2)当直线l 的倾斜角θ∈[0°,90°]时,直线l 不经过第四象限,∴k ≥0.(3)由l 的方程,得A ⎝⎛⎭⎪⎫-1+2k k,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0. ∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k |=12·(1+2k )2k =12⎝ ⎛⎭⎪⎫4k +1k +4≥12×(2×2+4)=4, 当且仅当4k =1k 且k >0,即k =12时等号成立,∴S min =4,此时直线l 的方程为x -2y +4=0.1.直线的倾斜角和斜率的关系,可借助k =tan α的图象(如图)来解决.这里,α∈[0,π),k 的范围是两个不连续的区间.这说明,每条直线都有倾斜角,但不一定每条直线都存在斜率,故在求直线方程时,若不能确定直线的斜率是否存在,则应对斜率存在或不存在进行分类讨论.2.直线在坐标轴上的截距是直线与坐标轴的交点的坐标,它不是距离,它可正、可负、可为0,在用截距式求直线方程时,不可忽视截距为0的情况.3.在解决直线与坐标轴围成的直角三角形的面积、周长等问题时,应用截距式方程比较简单.4.对于直线方程来说,要注意的是,除“一般式”外,每一种形式的二元一次方程表示的直线都是有限制的,具体可参看本节“考点梳理”栏目.在解决关于直线方程的问题中,要把握限制的条件,在求解时要细心处理,否则容易产生增解或漏解的情形.如利用直线的点斜式、斜截式解题时,要注意防止忽视斜率不存在而出现漏解;利用直线的截距式解题时,要注意防止忽视零截距而造成漏解;利用直线的一般式解题时,要注意防止忽视隐含条件A 2+B 2≠0而出现增解.1.若A -B +C =0,则直线Ax +By +C =0必经过点( )A .(0,1)B .(1,0)C .(1,-1)D .(-1,-1)解:将点(1,-1)代入Ax +By +C =0,得A -B +C =0,∴直线Ax +By +C =0必过点(1,-1).故选C.2.下列命题中,正确的是( ) A .直线的斜率为tan α,则直线的倾斜角是α B .直线的倾斜角为α,则直线的斜率为tan α C .直线的倾斜角越大,则直线的斜率就越大D .直线的倾斜角α∈⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫π2,π时,直线的斜率分别在这两个区间上单调递增解:因为直线的斜率k =tan θ,且θ∈[0,π)时,θ才是直线的倾斜角,所以A 不对;因为任一直线的倾斜角α∈[0,π),而当α=π2时,直线的斜率不存在,所以B 不对;当α∈⎝⎛⎭⎪⎫0,π2时,斜率大于0;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率小于0,C 不对.故选D.3.已知直线的倾斜角为120°,在y 轴上的截距为-2,则此直线的方程为( )A .y =3x +2B .y =-3x +2C .y =-3x -2D .y =3x -2解:∵k =tan120°=-3,且直线在y 轴上的截距为-2,∴由斜截式得y =-3x -2.故选C.4.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则实数a 的值是( )A .1B .-1C .-2或-1D .-2或1解:显然a ≠0,由题意得a +2=a +2a,解得a=-2或1.故选D.5.将直线l 沿y 轴的负方向平移a (a >0)个单位,再沿x 轴正方向平移a +1个单位得直线l ′,此时直线l ′与l 重合,则直线l ′的斜率为( )A.aa +1B .-aa +1C.a +1aD .-a +1a解:设直线l 的倾斜角为θ,则根据题意,有tan(π-θ)=-tan θ=a a +1,∴k =tan θ=-aa +1.故选B.6.(2013·北京海淀模拟)已知点A (-1,0),B (cos α,sin α),且||AB =3,则直线AB 的方程为( )A .y =3x +3或y =-3x - 3B .y =33x +33或y =-33x -33C .y =x +1或y =-x -1D .y =2x +2或y =-2x - 2解:∵||AB =(cos α+1)2+sin 2α=2+2cos α=3,∴cos α=12,sin α=±32.当点B 的坐标为⎝ ⎛⎭⎪⎫12,32时,直线AB 的方程为y =33x +33;当点B 的坐标为⎝ ⎛⎭⎪⎫12,-32时,直线AB 的方程为y =-33x -33.故选B. 7.直线l :x sin30°+y cos150°+1=0的斜率是____________.解:由题意得直线l 的斜率k =-sin30°cos150°=tan30°=33,∴直线l 的斜率为33.故填33. 8.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎢⎡⎦⎥⎤π6,π4∪⎣⎢⎡⎭⎪⎫2π3,π,则k 的取值范围是____________.解:∵k =tan α,α∈⎣⎢⎡⎦⎥⎤π6,π4∪⎣⎢⎡⎭⎪⎫2π3,π,∴-3≤k <0或33≤k ≤1.故填[-3,0)∪⎣⎢⎡⎦⎥⎤33,1. 9.已知直线l 的斜率为16,且和坐标轴围成面积为3的三角形,求直线l 的方程.解:设所求直线l 的方程为x a +yb=1. ∵k =16,∴-b a =16,得a =-6b .又S =12|a |·|b |=3,∴|ab |=6.联立⎩⎨⎧a =-6b ,||ab =6,得⎩⎪⎨⎪⎧a =-6,b =1或⎩⎪⎨⎪⎧a =6,b =-1.∴所求直线方程为:x -6+y 1=1或x 6+y-1=1, 即x -6y +6=0或x -6y -6=0.10.已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求:(1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 的方程.解:(1)∵直线BC 经过B (2,1)和C (-2,3)两点,∴由两点式得BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)易得BC 边的中点D 的坐标为(0,2),∵BC 边的中线AD 过点A (-3,0),D (0,2)两点,∴由截距式得AD 所在直线方程为x -3+y2=1,即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12,则直线BC 的垂直平分线DE 的斜率k 2=2. 由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0), 即2x -y +2=0.11.已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.解法一:设直线l 的方程为x a +y b=1(a >0,b >0),将点P (3,2)代入得3a +2b =1≥26ab,得ab ≥24,从而S △AOB =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23,从而所求直线l 的方程为2x +3y -12=0.解法二:依题意知,直线l 的斜率k 存在且k <0, 可设直线l 的方程为y -2=k (x -3)(k <0),则A ⎝⎛⎭⎪⎫3-2k,0,B (0,2-3k ),S △ABO =12(2-3k )⎝ ⎛⎭⎪⎫3-2k=12⎣⎢⎡⎦⎥⎤12+(-9k )+4-k≥12⎣⎢⎡⎦⎥⎤12+2(-9k )·4-k =12×(12+12)=12,当且仅当-9k =4-k ,即k =-23时,等号成立.∴△ABO 的面积的最小值为12,所求直线l 的方程为2x +3y -12=0.已知△ABC 中,顶点A (4,5),点B 在直线l :2x -y +2=0上,点C 在x 轴上,求△ABC 周长的最小值.解:设点A 关于直线l :2x -y +2=0的对称点为A 1(x 1,y 1),点A 关于x 轴的对称点为A 2(x 2,y 2),连接A 1A 2交l于点B ,交x 轴于点C ,则此时△ABC 的周长取最小值,且最小值为||A 1A 2.∵A 1与A 关于直线l :2x -y +2=0对称,∴⎩⎪⎨⎪⎧y 1-5x 1-4×2=-1,2×x 1+42-y 1+52+2=0,解得⎩⎪⎨⎪⎧x 1=0,y 1=7.∴A 1(0,7).易求得A 2(4,-5),∴△ABC 周长的最小值为||A 1A 2=(4-0)2+(-5-7)2=410.§9.2 两条直线的位置关系1.两条直线的位置关系(1)平行:对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,有l 1∥l 2⇔____________,特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2的关系为____________.(2)垂直:如果两条直线l 1,l 2的斜率都存在,且分别为k 1,k 2,则有l 1⊥l 2⇔____________,特别地,若直线l 1:x =a ,直线l 2:y =b ,则l 1与l 2的关系为____________.2.两条直线的交点坐标一般地,将两条直线的方程联立,得方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0. 若方程组有惟一解,则两条直线__________,此解就是__________;若方程组无解,则两条直线____________,此时两条直线____________.3.距离公式(1)点到直线的距离:点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d = .(2)两条平行直线间的距离:两条平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0(C 1≠C 2)间的距离d =____________________. 4.过两直线交点的直线系方程 若已知直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0相交,则方程A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(其中λ∈R ,这条直线可以是l 1,但不能是l 2)表示过l 1和l 2交点的直线系方程.自查自纠:1.(1)k 1=k 2 l 1∥l 2 (2)k 1k 2=-1 l 1⊥l 2 2.相交 交点的坐标 无公共点 平行3.(1)||Ax 0+By 0+C A 2+B 2(2)||C 1-C 2A 2+B 2直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是( )A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=0解:由题意知直线l 的斜率是-32,因此直线l的方程为y -2=-32(x +1),即3x +2y -1=0.故选A.(2015·北京海淀区期末)已知直线l 1:x +2y -1=0与直线l 2:mx -y =0平行,则实数m 的值为( )A .-12 B.12C .2D .-2解:∵直线l 1:x +2y -1=0与直线l 2:mx -y=0平行,∴m1=-12≠0,解得m =-12.故选A.(2015·浙江名校联考)已知直线l 1:x +(a -2)y -2=0,l 2:(a -2)x +ay -1=0,则“a =-1”是“l 1⊥l 2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:若a =-1,则l 1:x -3y -2=0,l 2:-3x -y -1=0,显然两条直线垂直;若l 1⊥l 2,则(a -2)+a (a -2)=0,解得a =-1或a =2,因此,“a =-1”是“l 1⊥l 2”的充分不必要条件.故选A.(2015·武汉调研)直线x -2y +1=0关于直线x =1对称的直线方程是____________.解:设直线x -2y +1=0关于直线x =1对称的直线为l 2,则l 2的斜率为-12,且过直线x -2y +1=0与x =1的交点(1,1),则l 2的方程为y -1=-12(x -1),即x+2y -3=0.故填 x +2y -3=0. 已知直线l 1与l 2:x +y -1=0平行,且l 1与l 2的距离是2,则直线l 1的方程为____________.解:设l 1的方程为x +y +c =0,则|c +1|2=2,解得c =1或c =-3.∴直线l 1的方程为x +y +1=0或x +y -3=0.故填x +y +1=0或x +y -3=0.类型一 两条直线平行、重合或相交 已知两条直线:l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,当m 为何值时,l 1与l 2:(1)相交; (2)平行; (3)重合.解:联立两直线方程⎩⎪⎨⎪⎧x +my +6=0,(m -2)x +3y +2m =0.当m =0或m =2时两直线相交;当m ≠0且m ≠2时,此时A 1A 2=1m -2,B 1B 2=m 3,C 1C 2=62m, 当A 1A 2=B 1B 2时,即1m -2=m3,解得m =-1或m =3;当A 1A 2=C 1C 2时,即1m -2=62m,解得m =3. (1)当m ≠-1且m ≠3时,A 1A 2≠B 1B 2,方程组有唯一一组解.∴l 1与l 2相交.(2)当m =-1时,A 1A 2=B 1B 2且A 1A 2≠C 1C 2,方程组无解.∴l 1与l 2平行.(3)当m =3时,A 1A 2=B 1B 2=C 1C 2,方程组有无穷多组解.∴l 1与l 2重合.点拨:由直线的一般式直接判断两条直线是否平行时,可直接应用本题的结论,即:若A 1A 2=B 1B 2≠C 1C 2,则直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0平行,这是一个很实用的结论,但要注意分母不能为零.当实数m 为何值时,三条直线l 1:3x+my -1=0,l 2:3x -2y -5=0,l 3:6x +y -5=0不能围成三角形.解:当m =0时,直线l 1,l 2,l 3可以围成三角形,要使直线l 1,l 2,l 3不能围成三角形,则m ≠0.记l 1,l 2,l 3三条直线的斜率分别为k 1,k 2,k 3,则k 1=-3m ,k 2=32,k 3=-6.若l 1∥l 2,或l 1∥l 3,则k 1=k 2=32,或k 1=k 3=-6,解得m =-2或m =12;若三条直线交于一点,由⎩⎪⎨⎪⎧3x -2y -5=0,6x +y -5=0得⎩⎪⎨⎪⎧x =1,y =-1, l 2与l 3交于点(1,-1),将点(1,-1)代入3x +my -1=0,得m =2.∴当m =±2或12时,l 1,l 2,l 3不能围成三角形.类型二 两条直线垂直(1)已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,若l 1⊥l 2,且l 1过点(-3,-1),求a ,b 的值;(2)已知两直线l 1:x +y sin α-1=0和l 2:2x ·sin α+y +1=0,若l 1⊥l 2,求α的值.解:(1)法一:由已知可得l 2的斜率k 2存在,且k 2=1-a .若k 2=0,则1-a =0,a =1.∵l 1⊥l 2,∴直线l 1的斜率k 1必不存在,即b =0.又∵l 1过点(-3,-1),∴-3a +4=0,得a =43(矛盾). ∴此种情况不存在,∴k 2≠0, ∴k 1,k 2都存在.∵k 2=1-a ,k 1=a b ,l 1⊥l 2,∴k 1k 2=-1,即ab(1-a )=-1.①又∵l 1过点(-3,-1),∴-3a +b +4=0.② 联立①②可得a =2,b =2.法二:∵l 1⊥l 2,∴a (a -1)+(-b )·1=0,即b =a 2-a .①又∵l 1过点(-3,-1), ∴-3a +b +4=0.②联立①②可得⎩⎪⎨⎪⎧a =2,b =2.经验证,符合题意.故a =2,b =2.(2)∵A 1A 2+B 1B 2=0是l 1⊥l 2的充要条件, ∴2sin α+sin α=0,即sin α=0,α=k π,k ∈Z .∴当α=k π,k ∈Z 时,l 1⊥l 2.点拨:判定两直线垂直的方法:(1)判定两直线的斜率是否存在,若存在,可先化成斜截式,若k 1·k 2=-1,则两直线垂直;若一条直线的斜率不存在,另一条直线的斜率为0,则两直线也垂直.(2)直接用以下方法,可避免对斜率是否存在进行讨论.设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,l 1⊥l 2⇔A 1A 2+B 1B 2=0.(3)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件.“m =3”是“直线l 1:2(m +1)x +(m-3)y +7-5m =0与直线l 2:(m -3)x +2y -5=0垂直”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解:由l 1⊥l 2,得2(m +1)(m -3)+2(m -3)=0,解得m =3或m =-2.∴m =3是l 1⊥l 2的充分不必要条件.故选A.类型三 对称问题已知直线l :2x -3y +1=0,点A (-1,-2).求:(1)点A 关于直线l 的对称点A ′的坐标; (2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程;(3)直线l 关于点A (-1,-2)对称的直线l ′的方程.解:(1)设A ′(x ,y ),则有⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,∴A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上.设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得M ′⎝ ⎛⎭⎪⎫613,3013. 设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.(3)法一:在l :2x -3y +1=0上任取两点,如P (1,1),N (4,3).则P ,N 关于点A 的对称点P ′,N ′均在直线l ′上.易知P ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0.法二:设Q (x ,y )为l ′上任意一点, 则Q (x ,y )关于点A (-1,-2)的对称点为 Q ′(-2-x ,-4-y ),∵Q ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0.点拨:(1)关于中心对称问题的处理方法:①若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1.②求直线关于点的对称直线的方程,其主要方法是:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用两直线平行,由点斜式得到所求直线方程,当然,斜率必须存在.(2)关于轴对称问题的处理方法:①点关于直线的对称.若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,则线段P 1P 2的中点在l 上,且连接P 1P 2的直线垂直于l ,由方程组⎩⎪⎨⎪⎧A ⎝ ⎛⎭⎪⎫x 1+x 22+B ⎝ ⎛⎭⎪⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝ ⎛⎭⎪⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).②直线关于直线的对称.此类问题一般转化为点关于直线的对称问题来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.已知三角形的一个顶点A (4,-1),它的两条角平分线所在直线的方程分别为l 1:x -y -1=0和l 2:x -1=0,则BC 边所在直线的方程为____________.解:A 不在这两条角平分线上,因此l 1,l 2是另两个角的角平分线.点A 关于直线l 1的对称点A 1,点A 关于直线l 2的对称点A 2均在边BC 所在直线l 上.设A 1(x 1,y 1),则有 ⎩⎪⎨⎪⎧y 1+1x 1-4×1=-1,x 1+42-y 1-12-1=0,解得⎩⎪⎨⎪⎧x 1=0,y 1=3,∴A 1(0,3).同理设A 2(x 2,y 2),易求得A 2(-2,-1). ∴BC 边所在直线方程为2x -y +3=0. 故填2x -y +3=0.类型四 距离问题(1)已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是____________.(2)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是____________.解:(1)由题意得,点P 到直线的距离为 |4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15, 解之得0≤a ≤10,∴a 的取值范围是[0,10].故填[0,10].(2)依题意知,63=a -2≠c-1,解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x -2y +c2=0,又两平行线之间的距离为21313,∴⎪⎪⎪⎪⎪⎪c 2+132+(-2)2=21313,解得c =2或-6. 故填2或-6.点拨:距离的求法:(1)点到直线的距离.可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式.(2)两平行直线间的距离.①利用“化归”法将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离;②利用两平行线间的距离公式d =|C 1-C 2|A 2+B2.直线l 经过点P (2,-5)且与点A (3,-2)和点B (-1,6)的距离之比为1∶2,求直线l 的方程.解:当直线l 与x 轴垂直时,此时直线l 的方程为x =2,点A 到直线l 的距离为d 1=1,点B 到直线l 的距离为d 2=3,不符合题意,故直线l 的斜率必存在.设直线l 的方程为y +5=k (x -2),即kx -y -2k -5=0,则点A (3,-2)到直线l 的距离d 1=|3k -(-2)-2k -5|k 2+1=|k -3|k 2+1,点B (-1,6)到直线l 的距离d 2=|-k -6-2k -5|k 2+1=|3k +11|k 2+1,∵d 1∶d 2=1∶2,∴|k -3||3k +11|=12,解得k =-1或k =-17.∴所求直线方程为x +y +3=0和17x +y -29=0.类型五 直线系及其应用求证:动直线(m 2+2m +3)x +(1+m -m 2)y +3m 2+1=0(其中m ∈R )恒过定点,并求出定点坐标.证法一:令m =0,则直线方程为3x +y +1=0,①再令m =1时,直线方程为6x +y +4=0,②联立①②,得方程组⎩⎪⎨⎪⎧3x +y +1=0,6x +y +4=0,解得⎩⎪⎨⎪⎧x =-1,y =2. 将点A (-1,2)代入动直线(m 2+2m +3)x +(1+m -m 2)y +3m 2+1=0中,(m 2+2m +3)×(-1)+(1+m -m 2)×2+3m 2+1=(3-1-2)m 2+(-2+2)m +2+1-3=0, 故点A (-1,2)的坐标恒满足动直线方程,所以动直线(m 2+2m +3)x +(1+m -m 2)y +3m 2+1=0恒过定点A .证法二:将动直线方程按m 降幂排列整理得, m 2(x -y +3)+m (2x +y )+3x +y +1=0,① 不论m 为何实数,①式恒为零,∴有⎩⎪⎨⎪⎧x -y +3=0,2x +y =0,3x +y +1=0,解得⎩⎪⎨⎪⎧x =-1,y =2.故动直线恒过点(-1,2).点拨:此题属于数学中恒成立问题,所以证法一是先赋给m 两个特殊值得两条直线,那么这两条直线的交点就是那个定点,但m 只是取两个特殊值,是否m ∈R 时都成立,则要进行代入检验;证法二是将动直线方程按m 的降幂排列,由于∀m ∈R 恒成立,所以得关于x ,y 的方程组,解此方程组便得定点坐标.直线系也称直线束,是具有某一共同性质的直线的集合.常见直线系方程有:(1)过定点(x 1,y 1)的直线系:y -y 1=k (x -x 1)和x =x 1.(2)平行于直线Ax +By +C =0的直线系:Ax +By +λ=0(λ≠C ).(3)垂直于直线Ax +By +C =0的直线系:Bx -Ay +λ=0.(4)过A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0的交点的直线系:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(不包括直线A 2x +B 2y +C 2=0).已知直线l :(a +b )x +(a -b )y +2=0,其中a ,b 满足3a -b +2=0.求证:直线l 恒过一定点.证明:由已知得b =3a +2,则直线l 的方程可化为(4a +2)x -(2a +2)y +2=0,整理得 a (4x -2y )+2x -2y +2=0. 令⎩⎪⎨⎪⎧4x -2y =0,2x -2y +2=0,解得⎩⎪⎨⎪⎧x =1,y =2. ∵点(1,2)恒满足直线l 的方程,∴直线l 恒过定点(1,2).1.当直线的方程中含有字母参数时,不仅要考虑斜率存在与不存在的情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.2.两条直线的位置关系一般用斜率和截距来判定,但当直线方程用一般式给出且系数中有参数时,往往需要繁琐地讨论.但也可以这样避免:设两直线为A 1x +B 1y +C 1=0和A 2x +B 2y +C 2=0,则两直线垂直的条件为⎝ ⎛⎭⎪⎫-A 1B 1·⎝ ⎛⎭⎪⎫-A 2B 2=-1,由此得A 1A 2+B 1B 2=0,但后者适用性更强,因为当B 1=0或B 2=0时前者不适用但后者适用.3.运用直线系方程,有时会使解题更为简单快捷,常见的直线系方程有:(1)与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ∈R 且m ≠C );(2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m ∈R );(3)过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.4.运用公式d =||C 1-C 2A 2+B 2求两平行直线间的距离时,一定要将两条直线方程中x ,y 的系数化成相等的系数,求两平行直线间的距离也可化归为点到直线的距离,即在一条直线上任取一点(如直线与坐标轴的交点),求该点到另一条直线的距离即为两平行直线间的距离.这一方法体现了化归思想的应用.5.对称主要分为中心对称和轴对称两种,中心对称仅用中点坐标公式即可,轴对称因对称点连线的中垂线就是对称轴,所以根据线段的中点坐标公式和两条直线垂直的条件即可解决.1.过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( )A .x -2y +4=0B .2x +y -7=0C .x -2y +3=0D .x -2y +5=0解:由点斜式得所求直线方程为y -3=12(x -2),即x -2y +4=0.故选A.2.过点(1,0)且与直线x -2y -2=0平行的直线方程是( )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=0解:设所求直线方程为x -2y +c =0,将(1,0)代入得c =-1.∴所求直线方程为x -2y -1=0.故选A.3.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( )A .(0,4)B .(0,2)C .(-2,4)D .(4,-2)解:∵直线l 1与l 2关于点(2,1)对称,且直线l 1过点(4,0),∴直线l 2必过点(4,0)关于点(2,1)的对称点(0,2).故选B.4.(2013·长春调研)已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是( )A .1710B .175C .8D .2 解:由题意得36=4m ≠-314,解得m =8.∴直线6x +my +14=0可化为3x +4y +7=0.∴两平行线间的距离为d =||-3-732+42=2.故选D. 5.已知过点A (-2,m )和点B (m ,4)的直线为l 1,l 2:2x +y -1=0,l 3:x +ny +1=0.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( )A .-10B .-2C .0D .8解:∵l 1∥l 2,∴k AB =4-mm +2=-2,解得m =-8.又∵l 2⊥l 3.∴⎝ ⎛⎭⎪⎫-1n ×(-2)=-1,解得n =-2.∴m +n =-10.故选A.6.(2015·洛阳统考)已知点P (x 0,y 0)是直线l :Ax +By +C =0外一点,则方程Ax +By +C +(Ax 0+By 0+C )=0表示( )A .过点P 且与l 垂直的直线B .过点P 且与l 平行的直线C .不过点P 且与l 垂直的直线D .不过点P 且与l 平行的直线解:∵点P (x 0,y 0)不在直线Ax +By +C =0上,∴Ax 0+By 0+C ≠0,∴直线Ax +By +C +(Ax 0+By 0+C )=0不经过点P .又直线Ax +By +C +(Ax 0+By 0+C )=0与直线l :Ax +By +C =0平行.故选D.7.过圆x 2+y 2+2x -4y =0的圆心,且与直线2x +3y =0垂直的直线方程为____________.解:设与直线2x +3y =0垂直的直线方程为3x -2y +m =0,由于其过圆心(-1,2),所以有3×(-1)-2×2+m =0,得m =7,所求直线方程为3x -2y +7=0.故填3x -2y +7=0.8.直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为____________.解法一:当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0.由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|,解得k =-13.∴直线l 的方程为y -2=-13(x +1),即x +3y-5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意.故所求直线l 的方程为x +3y -5=0或x =-1.解法二:当AB ∥l 时,有k =k AB =-13,直线l的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 中点时,AB 的中点为(-1,4). ∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1.故填x +3y -5=0或x =-1.9.已知两直线l 1:x +y sin θ-1=0和l 2:2x sin θ+y +1=0,试求θ的值,使得:(1)l 1∥l 2; (2)l 1⊥l 2.解:(1)由12sin θ=sin θ≠-11,得sin θ=±22. 由sin θ=±22,得θ=k π±π4(k ∈Z ). ∴当θ=k π±π4(k ∈Z )时,l 1∥l 2. (2)由2sin θ+sin θ=0,得sin θ=0,θ=k π(k ∈Z ),∴当θ=k π(k ∈Z )时,l 1⊥l 2.10求直线l :x -2y +6=0关于点M (-1,1)对称的直线l ′的方程. 解法一:取l 上的两点A (0,3),B (-6,0),求出它们关于点M 的对称点,A ′(-2,-1), B ′(4,2),再用两点式求出l ′的方程为x -2y =0.解法二:设点P ′(x ′,y ′)为所求直线l ′上的任意一点,则点P ′关于点M 在直线l 上的对称点为P (x ,y ).由⎩⎪⎨⎪⎧-1=x +x ′2,1=y +y ′2得 ⎩⎪⎨⎪⎧x =-2-x ′,y =2-y ′, 代入直线l 的方程得:(-2-x ′)-2(2-y ′)+6=0,得x ′-2y ′=0,即x -2y =0为所求直线l ′的方程.11.设一直线l 经过点(-1,1),此直线被两平行直线l 1:x +2y -1=0和l 2:x +2y -3=0所截得线段的中点在直线x -y -1=0上,求直线l 的方程.解法一:设直线x -y -1=0与l 1,l 2的交点分别为C (x C ,y C ),D (x D ,y D ),则由⎩⎪⎨⎪⎧x +2y -1=0,x -y -1=0解得⎩⎪⎨⎪⎧x C =1,y C=0, ∴C (1,0). 由⎩⎪⎨⎪⎧x +2y -3=0,x -y -1=0解得⎩⎪⎨⎪⎧x D =53,y D =23,∴D ⎝ ⎛⎭⎪⎫53,23.∴CD 的中点为M ⎝ ⎛⎭⎪⎫43,13. 又l 过点(-1,1),由两点式得l 的方程为: y -131-13=x -43-1-43,即2x +7y -5=0. 解法二:∵与l 1,l 2平行且与它们距离相等的直线方程为:x +2y +-1-32=0,即x +2y -2=0,∴由⎩⎪⎨⎪⎧x +2y -2=0,x -y -1=0 得M ⎝ ⎛⎭⎪⎫43,13.(以下同解法一)解法三:过中点且与两直线平行的直线方程为x +2y -2=0,设所求方程为:(x -y -1)+λ(x +2y -2)=0,① ∵(-1,1)在此直线上,∴-1-1-1+λ(-1+2-2)=0,解得λ=-3,代入①得2x +7y -5=0. 解法四:设所求直线与两平行线l 1,l 2的交点为A (x 1,y 1),B (x 2,y 2),则 由⎩⎪⎨⎪⎧x 1+2y 1-1=0,x 2+2y 2-3=0得(x 1+x 2)+2(y 1+y 2)-4=0.①又AB 的中点在直线x -y -1=0上,。
2019年高考数学(文科)一轮分层演练:第9章平面解析几何第7讲(含答案解析)
[学生用书P269(单独成册)]一、选择题1.抛物线y =ax 2(a <0)的准线方程是( ) A .y =-12aB .y =-14aC .y =12aD .y =14a解析:选B .抛物线y =ax 2(a <0)可化为x 2=1a y ,准线方程为y =-14a.故选B .2.直线l 过抛物线y 2=2px (p >0)的焦点,且与抛物线交于A ,B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线方程是( )A .y 2=12xB .y 2=8xC .y 2=6xD .y 2=4x解析:选B .设A (x 1,y 1),B (x 2,y 2),根据抛物线定义, x 1+x 2+p =8,因为AB 的中点到y 轴的距离是2, 所以x 1+x 22=2,所以p =4;所以抛物线方程为y 2=8x .故选B .3.顶点在原点,经过圆C :x 2+y 2-2x +22y =0的圆心且准线与x 轴垂直的抛物线方程为( ) A .y 2=-2x B .y 2=2x C .y =2x 2D .y =-2x 2解析:选B .因为圆C :x 2+y 2-2x +22y =0的圆心是(1,-2),抛物线的顶点在原点,焦点在x 轴上,且经过点(1,-2),设标准方程为y 2=2px ,因为点(1,-2)在抛物线上,所以(-2)2=2p ,所以p =1,所以所求抛物线方程为y 2=2x ,故选B .4.设抛物线 y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足,如果直线AF 的斜率为-3,那么|PF |=( ) A .4 3 B .8 C .8 3D .16解析:选B .如图,由k AF =-3知∠AFM =60°. 又AP ∥MF ,所以∠P AF =60°. 又|P A |=|PF |,所以△APF 为等边三角形. 故|PF |=|AF |=2|MF |=2p =8.5.已知点A (2,1),抛物线y 2=4x 的焦点是F ,若抛物线上存在一点P ,使得|P A |+|PF |最小,则P 点的坐标为( )A .(2,1)B .(1,1)C .⎝⎛⎭⎫12,1D .⎝⎛⎭⎫14,1解析:选D .如图,设抛物线准线为l ,作AA ′⊥l 于A ′,PP ′⊥l 于P ′, 则|P A |+|PF |=|P A |+|PP ′|≥|AA ′|, 即当P 点为AA ′与抛物线交点时, |P A |+|PF |最小,此时P ⎝⎛⎭⎫14,1. 故选D .6.抛物线y 2=2px 的焦点为F ,M 为抛物线上一点,若△OFM 的外接圆与抛物线的准线相切(O 为坐标原点),且外接圆的面积为9π,则p =( )A .2B .4C .6D .8解析:选B .因为△OFM 的外接圆与抛物线的准线相切,所以△OFM 的外接圆的圆心到准线的距离等于圆的半径,因为圆面积为9π,所以圆的半径为3,又因为圆心在OF 的垂直平分线上,|OF |=p 2,所以p 2+p4=3,所以p =4.二、填空题7.若抛物线y 2=2x 上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为________.解析:设抛物线的顶点为O ,焦点为F ,P (x P ,y P ),由抛物线的定义知,点P 到准线的距离即为点P 到焦点的距离,所以|PO |=|PF |,过点P 作PM ⊥OF 于点M (图略),则M 为OF 的中点,所以x P =14,代入y 2=2x ,得y P=±22,所以P ⎝⎛⎭⎫14,±22. 答案:⎝⎛⎭⎫14,±228.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.解析:在等边三角形ABF 中,AB 边上的高为p , AB 2=33p ,所以B ⎝⎛⎭⎫±33p ,-p 2. 又因为点B 在双曲线上, 故p 233-p 243=1,解得p =6. 答案:69.过点P (-2,0)的直线与抛物线C :y 2=4x 相交于A ,B 两点,且|P A |=12|AB |,则点A 到抛物线C 的焦点的距离为________.解析:设A (x 1,y 1),B (x 2,y 2),分别过点A ,B 作直线 x =-2的垂线,垂足分别为D ,E (图略), 因为|P A |=12|AB |,所以⎩⎪⎨⎪⎧3(x 1+2)=x 2+2, 3y 1=y 2,又⎩⎪⎨⎪⎧y 21=4x 1, y 22=4x 2,得x 1=23,则点A 到抛物线C 的焦点的距离为1+23=53. 答案:5310.设抛物线y 2=4x 的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若∠F AC =120°,则圆的方程为__________________.解析:由题意知该圆的半径为1,设圆心坐标为C (-1,a )(a >0),则A (0,a ),又F (1,0),所以AC →=(-1,0),AF →=(1,-a ),由题意得AC →与AF →的夹角为120°, 得cos 120°=-11×1+a 2=-12,解得a =3, 所以圆的方程为(x +1)2+(y -3)2=1. 答案:(x +1)2+(y -3)2=1三、解答题11.已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥F A ,垂足为N ,求点N 的坐标. 解:(1)抛物线y 2=2px 的准线为x =-p2,于是4+p2=5,所以p =2.所以抛物线方程为y 2=4x . (2)因为点A 的坐标是(4,4), 由题意得B (0,4),M (0,2). 又因为F (1,0),所以k F A =43,因为MN ⊥F A ,所以k MN =-34.所以F A 的方程为y =43(x -1),①MN 的方程为y -2=-34x ,②联立①②,解得x =85,y =45,所以N 的坐标为⎝⎛⎭⎫85,45.12.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.解:(1)由题意得直线AB 的方程为y =22·⎝⎛⎭⎫x -p 2,与y 2=2px 联立,消去y 有4x 2-5px +p 2=0,所以x 1+x 2=5p 4. 由抛物线定义得|AB |=x 1+x 2+p =5p4+p =9,所以p =4,从而该抛物线的方程为y 2=8x . (2)由(1)得4x 2-5px +p 2=0, 即x 2-5x +4=0, 则x 1=1,x 2=4,于是y 1=-22,y 2=42,从而A (1,-22),B (4,42),设C (x 3,y 3),则OC →=(x 3,y 3)=(1,-22)+λ(4,42) =(4λ+1,42λ-22).又y 23=8x 3,所以[22(2λ-1)]2=8(4λ+1),整理得(2λ-1)2=4λ+1, 解得λ=0或λ=2.1.如图,抛物线y 2=4x 的焦点为F ,过点F 的直线交抛物线于A ,B 两点. (1)若AF →=2FB →,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值. 解:(1)依题意知F (1,0),设直线AB 的方程为 x =my +1.将直线AB 的方程与抛物线的方程联立, 消去x 得y 2-4my -4=0. 设A (x 1,y 1),B (x 2,y 2), 所以y 1+y 2=4m ,y 1y 2=-4.① 因为AF →=2FB →,所以y 1=-2y 2.② 联立①和②,消去y 1,y 2,得m =±24.所以直线AB 的斜率是±22.(2)由点C 与原点O 关于点M 对称,得M 是线段OC 的中点,从而点O 与点C 到直线AB 的距离相等,所以四边形OACB 的面积等于2S △AOB .因为2S △AOB =2×12·|OF |·|y 1-y 2|=(y 1+y 2)2-4y 1y 2=41+m 2,所以当m=0时,四边形OACB 的面积最小,最小值是4.2.如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上. (1)写出该抛物线的方程及其准线方程.(2)当P A 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率.解:(1)由已知条件,可设抛物线的方程为y 2=2px (p >0). 因为点P (1,2)在抛物线上, 所以22=2p ×1, 解得p =2.故所求抛物线的方程是y 2=4x ,准线方程是x =-1. (2)设直线P A 的斜率为k P A ,直线PB 的斜率为k PB .则k P A =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 2-1(x 2≠1),因为P A 与PB 的斜率存在且倾斜角互补,所以k P A =-k PB .由A (x 1,y 1),B (x 2,y 2)均在抛物线上,得⎩⎪⎨⎪⎧y 21=4x 1,① y 22=4x 2,② 所以y 1-214y 21-1=-y 2-214y 22-1,所以y 1+2=-(y 2+2). 所以y 1+y 2=-4.由 ①-②得,y 21-y 22=4(x 1-x 2),所以k AB =y 1-y 2x 1-x 2=4y 1+y 2=-1.。
高考数学一轮复习第9章平面解析几何章末总结分层演练文
第9章平面解析几何章末总结一、选择题1.(必修2 P110B组T5改编)已知A(1,2),B(3,4),点P在x轴的负半轴上,O为坐标原点,若△PAB的面积为10,则|OP|=( )A .9B .10C .11D .12解析:选C .设P (m ,0)(m <0),P 到直线AB 的距离为d , 因为|AB |=(3-1)2+(4-2)2=22, 由S △PAB =10得12×22×d =10.所以d =52. 又直线AB 的方程为x -y +1=0, 所以|m +1|2=52.解得m =-11或m =9(舍去), 所以|OP |=|m |=11.选C . 2.(必修2 P 133A 组T 8改编)Rt △ABC 中,|BC |=4,以BC 边的中点O 为圆心,半径为1 的圆分别交BC 于P ,Q ,则|AP |2+|AQ |2=( )A .4B .6C .8D .10解析:选D .法一:特殊法.当A 在BC 的中垂线上时, 由|BC |=4,得|OA |=2.所以|AP |2+|AQ |2=2|AP |2=2(12+22)=10.选D .法二:以O 为原点,BC 所在的直线为x 轴,建立直角坐标系,则B (-2,0),C (2,0),P (-1,0),Q (1,0)设A (x 0,y 0),由AB ⊥AC 得 y 0x 0+2·y 0x 0-2=-1. 即x 20+y 20=4.所以|AP |2+|AQ |2=(x 0+1)2+y 20+(x 0-1)2+y 20 =2(x 20+y 20)+2 =2×4+2=10.即|AP |2+|AQ |2=10.故选D . 3.(选修11 P 35例3改编)如图,AB 是椭圆C 长轴上的两个顶点,M 是C 上一点,∠MBA =45°,tan ∠MAB =13,则椭圆的离心率为 ( )A .22 B .32 C .33D .63解析:选D .以AB 所在的直线为x 轴,AB 的中点为原点建立平面直角坐标系(图略),可设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0).则直线MA ,MB 的方程分别为y =13(x +a ),y =-x +a .联立解得M 的坐标为⎝ ⎛⎭⎪⎫a 2,a 2,所以⎝ ⎛⎭⎪⎫a 22a 2+⎝ ⎛⎭⎪⎫a 22b 2=1,化简得a 2=3b 2=3(a 2-c 2),所以c 2a 2=23,所以c a =63.故选D . 4.(选修11 P 61例4改编)过抛物线y 2=8x 的焦点F 的直线l 与抛物线交于A ,B 两点,与抛物线准线交于C 点,若B 是AC 的中点,则|AB |=( )A .8B .9C .10D .12解析:选B .设A ,B 在准线上的射影分别为D ,E ,且设AB =BC =m ,直线l 的倾斜角为α.则BE =m |cos α|,所以AD =AF =AB -BF =AB -BE =m (1-|cos α|), 所以|cos α|=AD AC=m (1-|cos α|)2m .解得|cos α|=13.由抛物线焦点弦长公式|AB |=2p sin 2α得|AB |=81-19=9.故选B .或:由|cos α|=13得tan α=±22.所以直线l 的方程为y =±22(x -2),代入y 2=8x 得 8(x 2-4x +4)=8x ,即x 2-5x +4=0.所以x A +x B =5,则|AB |=x A +x B +4=9.故选B . 二、填空题5.(选修11 P 54B 组T 1改编)与椭圆x 249+y 224=1有公共焦点,一条渐近线方程为4x +3y=0的双曲线方程为__________________.解析:由于椭圆x 249+y 224=1的焦点为(±5,0),所以可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0), 所以a 2+b 2=25.① 由渐近线方程4x +3y =0得b a =43,② 联立①②解得a =3,b =4,故双曲线方程为x 29-y 216=1.答案:x 29-y 216=16.(选修11 P 68A 组T 5改编)已知α∈(0,π),若曲线C :x 2+y 2cos α=1的离心率为22,则α=________. 解析:由题意知,曲线C 为椭圆,所以cos α∈(0,1),且C 的焦点在y 轴上. 所以a 2=1cos α,b 2=1,c 2=a 2-b 2=1cos α-1.由e =22得c 2a 2=12,即1cos α-11cos α=12.所以cos α=12,所以α=π3.答案:π3三、解答题7.(选修11 P 36练习T 3改编)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,离心率为22,过F 1的直线交椭圆于E ,F 两点,且△EFF 2的周长为8. (1)求椭圆C 的方程;(2)A ,B 是椭圆的左,右顶点,若直线l 经过点B 且垂直于x 轴,点Q 是椭圆上异于A ,B 的一个动点,直线AQ 交l 于点M ,过点M 垂直于QB 的直线为m ,求证:直线m 过定点,并求出定点的坐标.解:(1)由椭圆的定义知|EF 1|+|EF 2|=2a ,|FF 1|+|FF 2|=2a ,又已知△EFF 2的周长为8,所以4a =8,故a =2.又e =c a =22,故c =2, 所以b 2=2,故椭圆C 的方程为x 24+y 22=1.(2)由题意A (-2,0),B (2,0),直线l :x =2,显然直线AQ 的斜率存在且不为0,设为k ,则直线AQ 的方程为y =k (x +2).联立方程组⎩⎪⎨⎪⎧x 24+y 22=1,y =k (x +2),可得点Q ⎝ ⎛⎭⎪⎫2-4k 22k 2+1,4k 2k 2+1.联立方程组⎩⎪⎨⎪⎧y =k (x +2),x =2,可得点M (2,4k ).又B (2,0),则k BQ =4k2k 2+12-4k 22k 2+1-2=-12k,所以k m =2k , 故直线m 的方程为y -4k =2k (x -2),即y =2kx , 所以直线m 过定点(0,0).8.(选修11 P 64A 组T 2(1)、P 41练习T 3(1)改编)已知抛物线C :x 2=2py (p >0)的焦点为F (0,1),过点F 作直线l 交抛物线C 于A ,B 两点.椭圆E 的中心在原点,焦点在x 轴上,点F 是它的一个顶点,且其离心率e =32. (1)分别求抛物线C 和椭圆E 的方程;(2)经过A ,B 两点分别作抛物线C 的切线l 1,l 2,切线l 1与l 2相交于点M .证明:AB ⊥MF . 解:(1)由已知抛物线C :x 2=2py (p >0)的焦点为F (0,1),可得抛物线C 的方程为x2=4y .设椭圆E 的方程为x 2a 2+y2b 2=1(a >b >0),半焦距为c .由已知得:⎩⎪⎨⎪⎧b =1,c a =32,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =2,b =1,所以椭圆E 的方程为x 24+y 2=1.(2)证明:显然直线l 的斜率存在,否则直线l 与抛物线C 只有一个交点,不符合题意. 故可设直线l 的方程为y =kx +1,A (x 1,y 1),B (x 2,y 2)(x 1≠x 2),由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,消去y 并整理得x 2-4kx -4=0,所以x 1x 2=-4.因为抛物线C 的方程为y =14x 2,求导得y ′=12x ,所以过抛物线C 上A ,B 两点的切线方程分别是y -y 1=12x 1(x -x 1),y -y 2=12x 2(x -x 2),即y =12x 1x -14x 21,y =12x 2x -14x 22,解得两条切线l 1,l 2的交点M 的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,x 1x 24,即M ⎝⎛⎭⎪⎫x 1+x 22,-1,所以FM →·AB →=⎝ ⎛⎭⎪⎫x 1+x 22,-2·(x 2-x 1,y 2-y 1)=12(x 22-x 21)-2⎝ ⎛⎭⎪⎫14x 22-14x 21=0. 所以AB ⊥MF .。
2019版高考一轮复习数学(文理通用):第一部分 基础与考点过关 第九章 平面解析几何 (1)
, 第九章 平面解析几何)第1课时 直线的倾斜角与斜率(对应学生用书(文)121~122页、(理)126~127页)1. (原创)设m 为常数,则过点A (2,-1),B (2,m )的直线的倾斜角是 W. 答案:90°解析:因为过点A (2,-1),B (2,m )的直线x =2垂直于x 轴,故其倾斜角为90°. 2. (必修2P 80练习1改编)若过点M (-2,m ),N (m ,4)的直线的斜率等于1,则m 的值为 W.答案:1解析:由1=4-mm +2,得m +2=4-m ,解得m =1.3. (原创)若直线l 的斜率k 的变化范围是[-1,3],则它的倾斜角的变化范围是 W.答案:⎣⎡⎦⎤0,π3∪⎣⎡⎭⎫3π4,π解析:由-1≤k ≤3,即-1≤tan α≤3,∴ α∈⎣⎡⎦⎤0,π3∪⎣⎡⎭⎫3π4,π.4. (必修2P 80练习6改编)已知两点A (4,0),B (0,3),点C (8,a )在直线AB 上,则a = W.答案:-3解析:由k AB =k BC 得3-4=a -38,解得a =-3.5. (必修2P 80练习4改编)若直线l 沿x 轴的负方向平移2个单位,再沿y 轴的正方向平移3个单位后,又回到原来的位置,则直线l 的斜率为 W.答案:-32解析:设直线上任一点为(x ,y ),平移后的点为(x -2,y +3),利用斜率公式得直线l 的斜率为-32.1. 直线倾斜角的定义 在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴所在的直线绕着交点按逆时针方向旋转至和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角,并规定:与x 轴平行或重合的直线的倾斜角为0°;直线的倾斜角α的取值范围是[0,π)W.2. 直线斜率的定义倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率.直线的斜率常用k 表示,即k =tan α.由正切函数的单调性可知,倾斜角不同的直线其斜率也不同.3. 过两点的斜率公式过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线,当x 1≠x 2时,斜率公式为k =tan α=y 2-y 1x 2-x 1,该公式与两点的顺序无关;当x 1=x 2时,直线的斜率不存在,此时直线的倾斜角为90°W.[备课札记], 1 直线的倾斜角和斜率之间的关系), 1) 如果三条直线l 1,l 2,l 3的倾斜角分别为α1,α2,α3,其中l 1:x -y =0,l 2:x +2y =0,l 3:x +3y =0,则α1,α2,α3从小到大的排列顺序为 W.答案:α1<α2<α3解析:由tan α1=k 1=1>0,所以α1∈⎝⎛⎭⎫0,π2.tan α2=k 2=-12<0,所以α2∈⎝⎛⎭⎫π2,π,α2>α1.tan α3=k 3=-13<0,所以α3∈⎝⎛⎭⎫π2,π,α3>α1,而-12<-13,正切函数在⎝⎛⎭⎫π2,π上单调递增,所以α3>α2.综上,α1<α2<α3.变式训练已知经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y 的值为 W.答案:-3解析:由2y +1-(-3)4-2=2y +42=y +2=tan 3π4,得y +2=-1,所以y =-3., 2 求直线的倾斜角和斜率) , 2) 已知两点A (-1,-5),B (3,-2),直线l 的倾斜角是直线AB 倾斜角的一半,求直线l 的斜率.解:设直线l 的倾斜角为α,则直线AB 的倾斜角为2α,由题意可知tan 2α=34,∴ 2tan α1-tan 2α=34.整理得3tan 2α+8tan α-3=0,解得tan α=13或tan α=-3.∵ tan 2α=34>0,∴ 0°<2α<90°,∴ 0°<α<45°,∴ tan α>0,故直线l 的斜率为13.变式训练如图,已知直线l 1的倾斜角α1=30°,直线l 1⊥l 2,求直线l 1,l 2的斜率.解:直线l 1的斜率k 1=tan α1=tan 30°=33. ∵ 直线l 2的倾斜角α2=90°+30°=120°, ∴ 直线l 2的斜率k 2=tan 120°=tan (180°-60°)=-tan 60°=- 3. , 3 求直线的倾斜角和斜率的取值范围) , 3) 已知两点A (-3,4),B (3,2),过点P (1,0)的直线l 与线段AB 有公共点.(1) 求直线l 的斜率k 的取值范围; (2) 求直线l 的倾斜角α的取值范围. 解:如图,由题意可知,k PA =4-0-3-1=-1,k PB =2-03-1=1. (1) 要使直线l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是(-∞,-1]∪[1,+∞).(2) 由题意可知,直线l 的倾斜角介于直线PB 与PA 的倾斜角之间. 又PB 的倾斜角是45°,PA 的倾斜角是135°, 所以α的取值范围是[45°,135°]. 变式训练若直线mx +y +1=0与连结点A (-3,2),B (2,3)的线段相交,求实数m 的取值范围.解:直线的斜率为k =-m ,且直线经过定点P (0,-1),因为直线PA ,PB 的斜率分别为-1,2,所以斜率k 的取值范围是(-∞,-1]∪[2,+∞),即实数m 的取值范围是(-∞,-2]∪[1,+∞).1. 已知A (-1,23),B (0,3a ),C (a ,0)三点共线,则此三点所在直线的倾斜角α的大小是 W.答案:120°解析:若a =0,则点B ,C 重合,不合题意.由A ,B ,C 三点共线得k AB =k BC ,即3a -230+1=0-3a a -0,解得a =1,所以B (0,3).此三点所在直线的斜率k AB =3-230+1=-3,即tan α=- 3.又0°≤α<180°,所以α=120°.2. 直线xcos α+3y +2=0的倾斜角的取值范围是 .答案:⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π解析:由直线的方程可知其斜率k =-cos α3∈⎣⎡⎦⎤-33,33.设直线的倾斜角为θ,则tanθ∈⎣⎡⎦⎤-33,33,且θ∈[0,π),所以θ∈⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π.3. 已知实数x ,y 满足y =-2x +8,且2≤x ≤3,求yx的最大值和最小值.解:如图,由于点(x ,y )满足关系式2x +y =8,且2≤x ≤3可知,点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标可分别为A (2,4),B (3,2).由于y x 的几何意义是直线OP 的斜率,且k OA =2,k OB =23,所以y x 的最大值为2,最小值为23.4. 已知直线kx +y -k =0与射线3x -4y +5=0(x ≥-1)有交点,求实数k 的取值范围.解:kx +y -k =0⇒k (x -1)+y =0,直线过定点(1,0)⇒由题意作图可得:由题意可看出: k ∈⎝⎛⎭⎫-∞,-34∪⎣⎡⎭⎫14,+∞.(或者由两直线方程联立,消去y 得x =4k -53+4k ≥-1,即4k -14k +3≥0⇒k ≥14或k <-34)1. 已知x 轴上的点P 与点Q (-3,1)连线所成直线的倾斜角为30°,则点P 的坐标为 W.答案:(-23,0)解析:设P (x ,0),由题意得k PQ =tan 30°=33,即1-3-x =33,解得x =-23,故点P 的坐标为(-23,0).2. 如图,直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则它们的大小关系为 W.答案:k 1<k 3<k 2解析:直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2.3. 已知函数f (x )=asin x -bcos x.若f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x ,则直线ax -by +c =0的倾斜角为 W.答案:3π4解析:由f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x 知,函数f (x )的图象关于直线x =π4对称,所以f (0)=f ⎝⎛⎭⎫π2,所以-b =a ,所以直线ax -by +c =0的斜率为ab =-1.设直线ax -by +c =0的倾斜角为α,则tan α=-1,因为α∈[0,π),所以α=3π4,即直线ax -by +c =0的倾斜角为3π4. 4. 若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是 W.答案:⎝⎛⎭⎫π6,π2解析:如图,直线l :y =kx -3过定点P (0,-3).又A (3,0),所以k PA =0-(-3)3-0=33,所以直线l 的斜率范围为⎝⎛⎭⎫33,+∞,由于直线的倾斜角的取值范围为[0,π),所以满足条件的直线l 的倾斜角的范围是⎝⎛⎭⎫π6,π2.1. 求斜率要熟记斜率公式:k =y 2-y 1x 2-x 1,该公式与两点顺序无关,已知两点坐标(x 1≠x 2)时,根据该公式可求出经过两点的直线的斜率.当x 1=x 2,y 1≠y 2时,直线的斜率不存在,此时直线的倾斜角为90°.2. 要正确理解倾斜角的定义,明确倾斜角的取值范围,倾斜角与斜率的关系是k =tan α(α≠90°),其中α为倾斜角,因此求倾斜角的取值范围通常需从斜率的范围入手,而求斜率的范围则常需考虑倾斜角的取值范围,但都需要利用正切函数的性质,借助图象或单位圆数形结合,注意直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎡⎭⎫0,π2与⎝⎛⎭⎫π2,π两种情况讨论.由正切函数图象可以看出当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0).第2课时 直线的方程(对应学生用书(文)123~124页、(理)128~129页)1. (必修2P 82练习1(1)~(4)改编)过点P (-2,0),且斜率为3的直线的方程是 W.答案:y =3x +6解析:设所求直线方程为y =3x +b ,由题意可知3×(-2)+b =0,∴ b =6,故y =3x +6.2. (必修2P 87练习4改编)如果ax +by +c =0表示的直线是y 轴,则系数a ,b ,c 满足条件 W.答案:a ≠0且b =c =0解析:ax +by +c =0表示的直线是y 轴,即x =0,∴ b =c =0,a ≠0.3. (必修2P 87练习1改编)直线x 3-y4=1在两坐标轴上的截距之和为 W.答案:-1解析:令x =0,得y =-4;令y =0,得x =3. 故直线在两坐标轴上的截距之和为-4+3=-1.4. (必修2P 85练习4改编)下列说法中正确的是 W.(填序号) ① 经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示; ② 经过定点A (0,b )的直线都可以用方程y =kx +b 表示;③ 不经过原点的直线都可以用方程x a +yb=1表示;④ 经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.答案:④解析:对于①②,斜率有可能不存在,对于③,截距也有可能为0. 5. (必修2P 85练习2(2)(3)改编)若一直线经过点P (1,2),且在y 轴上的截距与直线2x +y +1=0在y 轴上的截距相等,则该直线的方程是 W.答案:3x -y -1=0解析:直线2x +y +1=0在y 轴上的截距为-1,由题意,所求直线过点(0,-1),又所求直线过点P (1,2),故由两点式得直线方程为y +12+1=x -01-0,即3x -y -1=0.1. 直线方程的五种形式111222(1) 当x 1=x 2,且y 1≠y 2时,直线垂直于x 轴,方程为x =x 1W. (2) 当x 1≠x 2,且y 1=y 2时,直线垂直于y 轴,方程为y =y 1W. (3) 当x 1=x 2=0,且y 1≠y 2时,直线即为y 轴,方程为x =0W. (4) 当x 1≠x 2,且y 1=y 2=0时,直线即为x 轴,方程为y =0W. (5) 直线的斜率k 与倾斜角α之间的关系如下表:若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),且线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎨⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式., 1 求直线方程), 1) 已知直线l 过点P (5,2),分别求满足下列条件的直线方程. (1) 直线l 在x 轴上的截距是在y 轴上的截距的2倍;(2) 直线l 与两坐标轴围成的三角形面积为52.解:(1) 当直线l 过原点时,直线l 的斜率为25,∴ 直线方程为y =25x ,即2x -5y =0;当直线l 不过原点时,设直线方程为x 2a +y a =1,将x =5,y =2代入得a =92,∴ 直线方程为x +2y -9=0.综上,直线l 的方程为2x -5y =0或x +2y -9=0. (2) 显然直线与坐标轴不垂直. ∵ 直线l 经过点P (5,2),且能与坐标轴围成三角形,∴ 可设直线l 的方程为y -2=k (x -5)(k ≠0),则直线在x 轴上的截距为5-2k,在y 轴上的截距为2-5k ,由题意,得12|5-2k |·|2-5k|=52,即(5k -2)2=5|k|.当k>0时,原方程可化为(5k -2)2=5k ,解得k =15或k =45;当k<0时,原方程可化为(5k -2)2=-5k ,此方程无实数解;故直线l 的方程为y -2=15(x -5)或y -2=45(x -5),即x -5y +5=0或4x -5y -10=0.变式训练求过点(-3,4),且在两坐标轴上的截距之和为12的直线方程.解:由题设知截距不为0,设直线方程为x a +y12-a =1,又直线过点(-3,4),从而-3a+412-a=1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. , 2 含参直线方程问题), 2) 已知直线l :kx -y +1+2k =0 (k ∈R ). (1) 求证:直线l 过定点;(2) 若直线不经过第四象限,求k 的取值范围;(3) 若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,△AOB 的面积为S ,求S 的最小值并求此时直线l 的方程.(1) 证明:直线l 的方程是k (x +2)+(1-y )=0, 令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1, ∴ 无论k 取何值,直线l 总经过定点(-2,1).(2) 解:由方程知,当k ≠0时直线在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k ≥1,解得k>0;当k =0时,直线为y =1,符合题意,故k ≥0.(3) 解:由l 的方程,得A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k>0,解得k>0.∵ S =12·OA ·OB =12·⎪⎪⎪⎪-1+2k k ·|1+2k|=12·(1+2k )2k =12·⎝⎛⎭⎫4k +1k +4≥12×(2×2+4)=4, “=”成立的条件是k>0且4k =1k ,即k =12,∴ S min =4,此时l :x -2y +4=0. 变式训练已知直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y +6-2m =0. (1) 求实数m 的取值范围;(2) 若直线l 的斜率不存在,求实数m 的值;(3) 若直线l 在x 轴上的截距为-3,求实数m 的值; (4) 若直线l 的倾斜角是45°,求实数m 的值. 解:(1) 当x ,y 的系数不同时为零时,方程表示一条直线, 令m 2-2m -3=0,解得m =-1或m =3;令2m 2+m -1=0解得m =-1或m =12.所以实数m 的取值范围是(-∞,-1)∪(-1,+∞).(2) 由(1)易知,当m =12时,方程表示的直线的斜率不存在.(3) 依题意,有2m -6m 2-2m -3=-3,所以3m 2-4m -15=0,所以m =3或m =-53,由(1)知所求m =-53.(4) 因为直线l 的倾斜角是45°,所以斜率为1.由-m 2-2m -32m 2+m -1=1,解得m =43或m =-1(舍去).所以当直线l 的倾斜角为45°时,m =43., 3 直线方程的综合应用), 3) 为了绿化城市,拟在矩形区域ABCD 内建一个矩形草坪(如图),另外△EFA 内部有一文物保护区不能占用,经测量AB =100 m ,BC =80 m ,AE =30 m ,AF =20 m ,应如何设计才能使草坪面积最大?解:如图,建立平面直角坐标系,则E (30,0),F (0,20),∴ 线段EF 的方程为x 30+y20=1(0≤x ≤30).在线段EF 上取点P (m ,n ),作PQ ⊥BC 于点Q ,PR ⊥CD 于点R , 设矩形PQCR 的面积为S , 则S =PQ·PR =(100-m )(80-n ).又m 30+n20=1(0≤m ≤30),∴ n =20⎝⎛⎭⎫1-m 30. ∴ S =(100-m )⎝⎛⎭⎫80-20+23m =-23(m -5)2+18 0503(0≤m ≤30).∴ 当m =5时,S 有最大值,∴ 当矩形草坪的两边在BC ,CD 上,一个顶点在线段EF 上,且这个顶点距AD 边5 m 时,草坪面积最大.备选变式(教师专享)如图,互相垂直的两条道路l 1,l 2相交于点O ,点P 与l 1,l 2的距离分别为2千米、3千米,过点P 建一条直线道路AB ,与l 1,l 2分别交于A ,B 两点.(1) 当∠BAO =45°时,试求OA 的长;(2) 若使△AOB 的面积最小,试求OA ,OB 的长.解:以l 1为x 轴,l 2为y 轴,建立平面直角坐标系,则O (0,0),P (3,2). (1) 由∠BAO =45°知,OA =OB ,可设A (a ,0),B (0,a )(a >0),直线l 的方程为x a +ya=1.∵ 直线l 过点P (3,2),∴ 3a +2a=1⇒a =5,即OA =5千米.(2) 设A (a ,0),B (0,b )(a >0,b >0),则直线l 的方程为x a +yb=1.∵ 直线l 过点P (3,2),∴ 3a +2b =1,b =2aa -3(a >3).从而S △ABO =12a ·b =12a ·2a a -3=a 2a -3,令a -3=t ,t >0,则a 2=(t +3)2=t 2+6t +9,故有S △ABO =t 2+6t +9t =t +9t +6(t >0).设f (t )=t +9t+6,可证f (t )在(0,3)上单调递减,在(3,+∞)上单调递增,∴ 当t =3时,f (t )min =f (3)=12,此时a =6,b =4,直线l 的方程为x 6+y4=1,即OA =6千米,OB =4千米.1. 若直线(2m 2+m -3)x +(m 2-m )y =4m -1 在x 轴上的截距为1,则实数m 的值是 W.答案:2或-12解析:令y =0,则(2m 2+m -3)x =4m -1,∴ x =4m -12m 2+m -3=1,∴ m =2或-12.2. 若方程(a 2-a -2)x +(a 2+a -6)y +a +1=0表示垂直于y 轴的直线,则a 为 W.答案:-1解析:因为方程表示垂直于y 轴的直线,所以a 2-a -2=0且a 2+a -6≠0,解得a =-1.3. 已知直线l 过点M (1,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.当OA +OB 取得最小值时,直线l 的方程是 W.答案:x +y -2=0解析:设A (a ,0),B (0,b )(a>0,b>0),直线l 的方程为x a +yb=1,已知直线l 过点M (1,1),则OA +OB =a +b =(a +b )⎝⎛⎭⎫1a +1b =2+a b +b a ≥2+2a b ·b a=4,当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0.4. 已知直线l 过点(0,5),且在两坐标轴上的截距之和为2,则直线l 的方程为 W.答案:5x -3y +15=0解析:∵ 直线过点(0,5),∴ 直线在y 轴上的截距为5. ∵ 在两坐标轴上的截距之和为2, ∴ 直线在x 轴上的截距为-3.∴ 直线l 的方程为x -3+y5=1,即5x -3y +15=0.5. 已知在△ABC 中,A (1,-4),B (6,6),C (-2,0).求(1) △ABC 中平行于BC 边的中位线所在直线的一般式方程和截距式方程; (2) BC 边的中线所在直线的一般式方程和截距式方程. 解:(1) 平行于BC 边的中位线就是AB ,AC 中点的连线.因为线段AB ,AC 中点坐标为⎝⎛⎭⎫72,1,⎝⎛⎭⎫-12,-2,所以这条直线的方程为y +21+2=x +1272+12,整理得6x -8y -13=0, 化为截距式方程为x 136-y138=1.(2) 因为BC 边上的中点为(2,3),所以BC 边上的中线所在直线的方程为y +43+4=x -12-1,即7x -y -11=0,化为截距式方程为x 117-y11=1.1. 若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则实数m 满足条件 W.答案:m ≠1解析:2m 2+m -3,m 2-m 不能同时为0.2. 若直线(2t -3)x +2y +t =0不经过第二象限,则t 的取值范围是 W.答案:⎣⎡⎦⎤0,32 解析:直线方程可化为y =⎝⎛⎭⎫32-t x -t 2,由题意得⎩⎨⎧32-t ≥0,-t2≤0,解得0≤t ≤32. 3. 不论m 取何值,直线(m -1)x -y +2m +1=0恒过定点 . 答案:(-2,3)解析:把直线方程(m -1)x -y +2m +1=0, 整理得(x +2)m -(x +y -1)=0, 则⎩⎪⎨⎪⎧x +2=0,x +y -1=0,解得⎩⎪⎨⎪⎧x =-2,y =3. 4. 已知直线x +2y =2与x 轴、y 轴分别相交于A ,B 两点.若动点P (a ,b )在线段AB 上,则ab 的最大值为 W.答案:12解析:由题意知A (2,0),B (0,1),所以线段AB 的方程可表示为x2+y =1,x ∈[0,2].又动点P (a ,b )在线段AB 上,所以a 2+b =1,a ∈[0,2].又a 2+b ≥2ab 2,所以1≥2ab2,解得0≤ab ≤12,当且仅当a 2=b =12,即P ⎝⎛⎭⎫1,12时,ab 取得最大值12. 5. 已知两直线a 1x +b 1y +1=0和a 2x +b 2y +1=0的交点为P (2,3),求过两点Q 1(a 1,b 1),Q 2(a 2,b 2)(a 1≠a 2)的直线方程.解:由题意,知P (2,3)在已知直线上, ∴ ⎩⎪⎨⎪⎧2a 1+3b 1+1=0,2a 2+3b 2+1=0, ∴ 2(a 1-a 2)+3(b 1-b 2)=0,即b 1-b 2a 1-a 2=-23,∴ 所求直线方程为y -b 1=-23(x -a 1),∴ 2x +3y -(2a 1+3b 1)=0,即2x +3y +1=0.1. 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况;而选用两点式时不要忽视与坐标轴垂直的情况.2. 解决直线方程的综合问题时,除灵活选择方程的形式外,还要注意题目中的隐含条件,若与最值或范围相关的问题可考虑构建目标函数进行转化求最值.[备课札记]第3课时 直线与直线的位置关系(对应学生用书(文)125~126页、(理)130~131页)1. (原创)“a =3”是“直线ax +3y =1与直线x +y =1平行”的 条件. 答案:充要解析:若a =3,直线ax +3y =1与直线x +y =1显然平行;若直线ax +3y =1与直线x+y =1平行,由a 1= 31 ≠ 11,易得a =3.2. (必修2P 93练习6改编)过点P (-1,3)且垂直于直线x -2y +3=0的直线方程为 W.答案:2x +y -1=0解析:设直线方程为2x +y +c =0,又直线过点P (-1,3),则-2+3+c =0,c =-1,即所求直线方程为2x +y -1=0.3. (必修2P 95练习3改编)若三条直线2x +3y +8=0,x -y -1=0和x +ky =0相交于一点,则k = W.答案:-12解析:由⎩⎪⎨⎪⎧2x +3y +8=0,x -y -1=0,解得⎩⎪⎨⎪⎧x =-1,y =-2, ∴ 点(-1,-2)在x +ky =0上,即-1-2k =0,∴ k =-12.4. (必修2P 105练习1改编)已知点(a ,2)(a >0)到直线l :x -y +3=0的距离为1,则a = W.答案:2-1解析:由题意知|a -2+3|2=1,∴ |a +1|= 2.又∵ a >0,∴ a =2-1.5. (必修2P 106习题10改编)与直线7x +24y =5平行,并且距离等于3的直线方程是 W.答案:7x +24y +70=0或7x +24y -80=0解析:设直线方程为7x +24y +c =0,则d =|c +5|242+72=3,∴ c =70或-80.1. 两条直线的位置关系设两条直线的方程是l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,两条直线的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.若方程组有惟一解,则两条直线相交,此解就是交点坐标W.若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立.若方程组有无数组解,则两条直线重合W.3. 几种距离(1) 两点间的距离: 平面上的两点A (x 1,y 1),B (x 2,y 2)间的距离公式: d (A ,B )=AB =(x 1-x 2)2+(y 1-y 2)2. (2) 点到直线的距离:点P (x 1,y 1)到直线l :Ax +By +C =0的距离d =|Ax 1+By 1+C|A 2+B 2.(3) 两条平行线间的距离:两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2.4. 常见的三大直线系方程(1) 与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ∈R 且m ≠C ). (2) 与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m ∈R ). (3) 过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.5. 中心对称(1) 点关于点对称:若点M (x 1,y 1)与N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2) 直线关于点对称问题的主要解法:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用l 1∥l 2,由点斜式得到所求的直线方程.6. 轴对称(1) 点关于直线的对称若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,则线段P 1P 2的中点在对称轴l 上,且连结P 1P 2的直线垂直于对称轴l ,由方程组⎩⎪⎨⎪⎧A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,A (y 1-y 2)=B (x 1-x 2),可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中A ≠0,x 1≠x 2).特别地,若直线l :Ax +By +C =0满足|A|=|B|,则P 1(x 1,y 1)与P 2(x 2,y 2)坐标关系为⎩⎪⎨⎪⎧Ax 1+By 2+C =0,Ax 2+By 1+C =0.(2) 直线关于直线的对称此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[备课札记], 1 两直线的平行与垂直), 1) 已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值:(1) l 1⊥l 2,且直线l 1过点(-3,-1);(2) l 1∥l 2,且坐标原点到这两条直线的距离相等. 解:(1) ∵ l 1⊥l 2,∴ a (a -1)-b =0. ∵ 直线l 1过点(-3,-1), ∴ -3a +b +4=0.故a =2,b =2.(2) ∵ 直线l 2的斜率存在,l 1∥l 2,∴ 直线l 1的斜率存在.∴ k 1=k 2,即ab=1-a.∵ 坐标原点到这两条直线的距离相等,∴ l 1,l 2在y 轴上的截距互为相反数,即4b=b.故a =2,b =-2或a =23,b =2.变式训练已知直线l 1经过点A (3,a ),B (a -1,2),直线l 2经过点C (1,2),D (-2,a +2),分别在下列条件下求a 的值:(1) l 1∥l 2; (2) l 1⊥l 2.解:设直线l 2的斜率为k 2,则k 2=2-(a +2)1-(-2)=-a3.(1) 若l 1∥l 2,则直线l 1的斜率k 1=-a3.又k 1=2-a a -4,则2-a a -4=-a3,解得a =1或a =6.经检验,当a =1或a =6时,l 1∥l 2. (2) 若l 1⊥l 2.① 当k 2=0时,此时a =0,k 1=-12,不符合题意.② 当k 2≠0时,直线l 2的斜率存在,此时k 1=2-aa -4.由k 2k 1=-1,得-a 3·2-aa -4=-1,解得a =3或a =-4.经检验,当a =3或a =-4时,l 1⊥l 2. , 2 两直线的交点), 2) 已知△ABC 的顶点B (3,4),AB 边上的高CE 所在直线方程为2x +3y -16=0,BC 边上的中线AD 所在直线方程为2x -3y +1=0,求AC 的长.解:∵ k CE = -23,AB ⊥CE ,∴ k AB =32, ∴ 直线AB 的方程为3x -2y -1=0.由⎩⎪⎨⎪⎧3x -2y -1=0,2x -3y +1=0,解得A (1,1), 设C (a ,b ), 则D ⎝⎛⎭⎫3+a 2,4+b 2,∵ C 点在CE 上,BC 的中点D 在AD 上, ∴ ⎩⎪⎨⎪⎧2a +3b -16=0,2·3+a 2-3·4+b 2+1=0,得C (5,2), 由两点间距离公式得AC 的长为17. 变式训练已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1),∴ l AC :2x +y -11=0.联立l AC ,l CM 得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,∴ C (4,3).设B (x 0,y 0),则AB 的中点M 为⎝⎛⎭⎫x 0+52,y 0+12, 代入2x -y -5=0,得2x 0-y 0-1=0, ∴ ⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,∴ B (-1,-3), ∴ k BC =65,∴ 直线BC 的方程为y -3=65(x -4),即6x -5y -9=0., 3 点到直线及两平行直线之间的距离) , 3) 已知点P (2,-1).(1) 求过P 点且与原点距离为2的直线l 的方程;(2) 求过P 点且与原点距离最大的直线l 的方程,最大距离是多少?(3) 是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.解:(1) 过P 点的直线l 与原点距离为2,而P 点坐标为(2,-1), 可见,过P (2,-1)且垂直于x 轴的直线满足条件. 此时l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知,得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,直线l 的方程为x =2或3x -4y -10=0.(2) 过P 点与原点O 距离最大的直线是过P 点且与OP 垂直的直线,由l ⊥OP ,得k l k OP =-1,所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2), 即2x -y -5=0.即直线2x -y -5=0是过P 点且与原点O 距离最大的直线,最大距离为|-5|5= 5.(3) 不存在.理由:由(2)可知,过P 点不存在到原点距离大于5的直线,因此不存在过P 点且到原点距离为6的直线.备选变式(教师专享)已知直线l 经过直线l 1:2x +y -5=0与l 2:x -2y =0的交点. (1) 若点A (5,0)到l 的距离为3,求直线l 的方程; (2) 求点A (5,0)到直线l 的距离的最大值. 解:(1) 由直线l 经过直线l 1与l 2交点知,其直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0.∵ 点A (5,0)到直线l 的距离为3,∴ |10+5λ-5|(2+λ)2+(1-2λ)2=3,即2λ2-5λ+2=0,∴ λ=2或λ=12,∴ 直线l 的方程为x =2或4x -3y -5=0.(2) 设直线l 1与l 2的交为P ,由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得P (2,1),如图,过点P 作任一直线l ,设d 为点A 到l 的距离,则d ≤PA (当l ⊥PA 时等号成立).∴ d max =PA =(5-2)2+(0-1)2=10., 4 对称问题), 4) 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1) 点A 关于直线l 的对称点A′的坐标;(2) 直线m :3x -2y -6=0关于直线l 的对称直线m′的方程; (3) 直线l 关于点A (-1,-2)对称的直线l′的方程. 解:(1) 设A′(x ,y ),由已知得 ⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413.∴ A ′⎝⎛⎭⎫-3313,413. (2) 在直线m 上任取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m′上.设对称点为M′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1,解得M′⎝⎛⎭⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,解得N (4,3).∵ m ′经过点N (4,3),∴ 由两点式得直线m′的方程为9x -46y +102=0.(3) 设P (x ,y )为l′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P′(-2-x ,-4-y ).∵ P ′在直线l 上,∴ 2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0. 备选变式(教师专享) 光线通过点A (2,3),在直线l :x +y +1=0上反射,反射光线经过点B (1,1),试求入射光线和反射光线所在直线的方程.解:设点A (2,3)关于直线l 的对称点为A′(x 0,y 0),则⎩⎪⎨⎪⎧2+x 02+3+y 02+1=0,y 0-3x 0-2=1,解得A′(-4,-3).由于反射光线经过点A′(-4,-3)和B (1,1),所以反射光线所在直线的方程为y -1-3-1=x -1-4-1,即4x -5y +1=0.解方程组⎩⎪⎨⎪⎧4x -5y +1=0,x +y +1=0,得反射点P ⎝⎛⎭⎫-23,-13. 所以入射光线所在直线的方程为y -3-13-3=x -2-23-2,即5x -4y +2=0.1. (2016·上海卷文)已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2的距.解析:利用两平行线间距离公式得d =|-1-1|22+12=255.2. 将一张坐标纸折叠一次,使点(0,2)与点(4,0)重合,且点(7,3)与点(m ,n )重合,则m +n 的值是 W.答案:345解析:点(0,2)与点(4,0)关于y -1=2(x -2)对称,则点(7,3)与点(m ,n )也关于y -1=2(x -2)对称,则⎩⎪⎨⎪⎧n +32-1=2⎝⎛⎭⎫m +72-2,n -3m -7=-12,解得⎩⎨⎧m =35,n =315.∴ m +n =345.3. 已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,直线l 1的方程是 .答案:x +2y -3=0解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x-1),即x +2y -3=0.4. 在平面直角坐标系中,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是 W.答案:(2,4)解析:设P 为平面上一点,则由三角形两边之和大于第三边知PA +PC ≥AC ,PB +PD ≥BD ,所以四边形ABCD 对角线的交点到四点距离之和最小,直线AC 的方程为y -2=2(x -1),直线BD 的方程为y -5=-(x -1),由⎩⎪⎨⎪⎧y -2=2(x -1),y -5=-(x -1),得交点坐标为(2,4).5. △ABC 的两条高所在直线的方程分别为2x -3y +1=0和x +y =0,顶点A 的坐标为(1,2),求BC 边所在直线的方程.解:可以判断A 不在所给的两条高所在的直线上,则可设AB ,AC 边上的高所在直线的方程分别为2x -3y +1=0,x +y =0,则可求得AB ,AC 边所在直线的方程分别为y -2=-32(x -1),y -2=x -1,即3x +2y -7=0,x -y +1=0. 由⎩⎪⎨⎪⎧3x +2y -7=0,x +y =0,得B (7,-7), 由⎩⎪⎨⎪⎧x -y +1=0,2x -3y +1=0,得C (-2,-1), 所以BC 边所在直线的方程为2x +3y +7=0.1. 在平面直角坐标系xOy 中,直线l :(2k -1)x +ky +1=0,则当实数k 变化时,原点O 到直线l 的距离的最大值为 W.答案:5 解析:直线l 过定点P (1,-2),原点O 到直线l 的距离的最大值即为OP =12+(-2)2= 5.2. 若过点P (1,2)作一直线l ,使点M (2,3)和点N (4,-1)到直线l 的距离相等,则直线l 的方程为 W.答案:2x +y -4=0或x +2y -5=0解析:当直线l 经过MN 的中点时,其方程为x +2y -5=0;当过M ,N 两点的直线平行于直线l 时,直线l 的方程为2x +y -4=0.3. 已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是 W.答案:⎝⎛⎭⎫-16,12 解析:由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k2k +1,y =6k +12k +1. (若2k +1=0,即k =-12,则两直线平行)∴ 交点坐标为⎝ ⎛⎭⎪⎫2-4k 2k +1,6k +12k +1.∵ 交点位于第一象限,∴ ⎩⎪⎨⎪⎧2-4k2k +1>0,6k +12k +1>0,解得-16<k <12.∴ 实数k 的取值范围是⎝⎛⎭⎫-16,12. 4. 已知直线l 1:2x -y -2=0和直线l 2:x +2y -1=0关于直线l 对称,则直线l 的斜率为 W.答案:-3或13解析:(解法1)在直线l 上任取一点P (x ,y ),点P 到直线l 1和直线l 2的距离相等.|2x -y -2|22+(-1)2=|x +2y -1|12+22,整理得,直线l 的方程为3x +y -3=0或x -3y -1=0,所以直线l 的斜率为-3或13.(解法2)设l 1的倾斜角为α.因为l 1⊥l 2,所以l 的倾斜角为α±π4,所以直线l 的斜率为tan ⎝⎛⎭⎫α±π4.因为tan α=2,所以tan ⎝⎛⎭⎫α+π4=tan α+tan π41-tan αtan π4=-3,tan ⎝⎛⎭⎫α-π4=tan α-tanπ41+tan αtanπ4=13, 所以直线l 的斜率为-3或13.1. 在两条直线的位置关系中,讨论最多的还是平行与垂直,它们是两条直线的特殊位置关系.解题时认真画出图形,有助于快速准确地解决问题.判断两直线平行与垂直时,不要忘记考虑斜率不存在的情形,利用一般式则可避免分类讨论.2. 运用公式d =|C 1-C 2|A 2+B 2求两平行直线间的距离时,一定要把x ,y 项系数化为相等的系数.3. 对称思想是高考热点,主要分为中心对称和轴对称两种,关键要把握对称问题的本质,必要情况下可与函数的对称轴建立联系.[备课札记]第4课时 圆 的 方 程(对应学生用书(文)127~128页、(理)132~133页)1. (必修2P 111练习4改编)圆x 2+y 2-4x +6y =0的圆心坐标是 W. 答案:(2,-3)解析:由(x -2)2+(y +3)2=13知,圆心坐标为(2,-3). 2. (必修2P 111习题7改编)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的标准方程为 W.答案:(x -2)2+y 2=10 解析:设圆心坐标为(a ,0),易知(a -5)2+(-1)2=(a -1)2+(-3)2,解得a =2,∴ 圆心为(2,0),半径为10,∴ 圆C 的标准方程为(x -2)2+y 2=10.3. (必修2P 111练习6改编)经过三点A (1,-1),B (1,4),C (4,-2)的圆的一般方程为 W.答案:x 2+y 2-7x -3y +2=0解析:设圆的一般方程为x 2+y 2+Dx +Ey +F =0.将A ,B ,C 三点代入,整理得方程组⎩⎪⎨⎪⎧D -E +F =-2,D +4E +F =-17,4D -2E +F =-20,解得⎩⎪⎨⎪⎧D =-7,E =-3,F =2,∴ 所求圆的一般方程为x 2+y 2-7x -3y +2=0. 4. 已知点P (1,1)在圆x 2+y 2-ax +2ay -4=0的内部,则a 的取值范围是 W. 答案:(-∞,2)解析:由圆的一般方程知a ∈R ,因为点P 在圆内,所以1+1-a +2a -4<0,解得a<2. 5. (原创)已知实数x ,y 满足x 2+(y +3)2=4,则(x -3)2+(y -1)2的最大值为 W.答案:49 解析:(x -3)2+(y -1)2表示圆x 2+(y +3)2=4上一动点P (x ,y )到点(3,1)的距离d 的平方,因为圆心(0,-3)到点(3,1)的距离为5,所以d 的最大值为5+2=7,所以d 2的最大值为49.1. 圆的定义在平面内,到定点的距离等于定长的点的集合叫做圆.确定一个圆最基本的要素是圆心和半径W.2. 圆的标准方程(1) 以(a ,b )为圆心,r (r>0)为半径的圆的标准方程为(x -a )2+(y -b )2=r 2W.(2) 特殊的,x 2+y 2=r 2(r>0)的圆心为(0,0),半径为r W. 3. 圆的一般方程方程x 2+y 2+Dx +Ey +F =0变形为⎝⎛⎭⎫x +D 22+⎝⎛⎭⎫y +E 22=D 2+E 2-4F 4.(1) 当D 2+E 2-4F>0时,该方程表示以⎝⎛⎭⎫-D 2,-E 22圆;(2) 当D 2+E 2-4F =0时,该方程表示一个点⎝⎛⎭⎫-D 2,-E 2; (3) 当D 2+E 2-4F <0时,该方程不表示任何图形.4. 点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1) 若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2W. (2) 若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2W. (3) 若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2W. [备课札记]1 确定圆的方程) 1) 求经过点A (-2,-4),且与直线l :x +3y -26=0相切于点B (8,6)的圆的方程.解:(解法1)设圆心为C ,所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心C ⎝⎛⎭⎫-D 2,-E2,∴ k CB =6+E 28+D2. ∵ 圆C 与直线l 相切,∴ k CB ·k l =-1,即6+E 28+D 2·⎝⎛⎭⎫-13=-1 ①.又有(-2)2+(-4)2-2D -4E +F =0 ②, 又82+62+8D +6E +F =0 ③.联立①②③,可得D =-11,E =3,F =-30, ∴ 所求圆的方程为x 2+y 2-11x +3y -30=0. (解法2)设圆的圆心为C ,则CB ⊥l , 可得CB 所在直线的方程为y -6=3(x -8),即3x -y -18=0 ①. 由A (-2,-4),B (8,6),得AB 的中点坐标为(3,1).又k AB =6+48+2=1,∴ AB 的垂直平分线的方程为y -1=-(x -3), 即x +y -4=0 ②.由①②联立,解得⎩⎨⎧x =112,y =-32.即圆心坐标为⎝⎛⎭⎫112,-32. ∴ 所求圆的半径r =⎝⎛⎭⎫112-82+⎝⎛⎭⎫-32-62=1252,∴ 所求圆的方程为⎝⎛⎭⎫x -1122+⎝⎛⎭⎫y +322=1252.变式训练圆经过点A (2,-3)和B (-2,-5). (1) 若圆的面积最小,求圆的方程;(2) 若圆心在直线x -2y -3=0上,求圆的方程. 解:(1) 要使圆的面积最小,则AB 为圆的直径,圆心C (0,-4),半径r =12AB =5,所以所求圆的方程为x 2+(y +4)2=5. (2) 因为k AB =12,AB 中点为(0,-4),所以AB 中垂线方程为y +4=-2x ,即2x +y +4=0,解方程组⎩⎪⎨⎪⎧2x +y +4=0,x -2y -3=0,得⎩⎪⎨⎪⎧x =-1,y =-2.所以圆心为(-1,-2).根据两点间的距离公式,得半径r =10,因此,所求的圆的方程为(x +1)2+(y +2)2=10.备选变式(教师专享)已知一圆的圆心在原点,且圆周被直线3x +4y +15=0分成1∶2两部分,求圆的方程. 解:如图,因为圆周被直线3x +4y +15=0分成1∶2两部分,所以∠AOB =120°,而圆心O (0,0)到直线3x +4y +15=0的距离d =1532+42=3, 在△AOB 中,可求得OA =6, 所以所求圆的方程为x 2+y 2=36., 2 与参数有关的圆方程问题), 2) 已知圆C 的方程x 2+y 2-2ax +2y +a +1=0.(1) 若圆C 上任意点A 关于l :x +2y -5=0的对称点也在圆上,求实数a 的值; (2) 求圆心C 到直线ax +y -a 2=0的距离的取值范围. 解:(1) 将圆C 的方程配方得(x -a )2+(y +1)2=a 2-a.由题意知圆心C (a ,-1)在直线l :x +2y -5=0上,即a -2-5=0,所以a =7. (2) 由圆方程可知, a 2-a >0,解得a >1或a <0. 由方程得圆心C (a ,-1)到直线ax +y -a 2=0的距离 d =|a 2-1-a 2|a 2+1=1a 2+1.因为a >1或a <0,所以a 2+1>1,所以0<d <1,所以所求距离的取值范围为(0,1). 变式训练已知圆C :(x -a )2+(y -b )2=1,设平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且。
2019高考数学文一轮分层演练:第9章平面解析几何 章末总结 含解析
章末总结一、选择题1.(必修2 P110B组T5改编)已知A(1,2),B(3,4),点P在x轴的负半轴上,O为坐标原点,若△P AB的面积为10,则|OP|=()A.9B.10C.11 D.12解析:选C .设P (m ,0)(m <0),P 到直线AB 的距离为d , 因为|AB |=(3-1)2+(4-2)2=22, 由S △P AB =10得12×22×d =10.所以d =52. 又直线AB 的方程为x -y +1=0, 所以|m +1|2=52.解得m =-11或m =9(舍去), 所以|OP |=|m |=11.选C . 2.(必修2 P 133A 组T 8改编)Rt △ABC 中,|BC |=4,以BC 边的中点O 为圆心,半径为1 的圆分别交BC 于P ,Q ,则|AP |2+|AQ |2=( )A .4B .6C .8D .10解析:选D .法一:特殊法.当A 在BC 的中垂线上时, 由|BC |=4,得|OA |=2.所以|AP |2+|AQ |2=2|AP |2=2(12+22)=10.选D .法二:以O 为原点,BC 所在的直线为x 轴,建立直角坐标系,则B (-2,0),C (2,0),P (-1,0),Q (1,0)设A (x 0,y 0),由AB ⊥AC 得 y 0x 0+2·y 0x 0-2=-1. 即x 20+y 20=4.所以|AP |2+|AQ |2=(x 0+1)2+y 20+(x 0-1)2+y 20 =2(x 20+y 20)+2=2×4+2=10.即|AP |2+|AQ |2=10.故选D . 3.(选修1-1 P 35例3改编)如图,AB 是椭圆C 长轴上的两个顶点,M 是C 上一点,∠MBA =45°,tan ∠MAB =13,则椭圆的离心率为 ( )A .22 B .32 C .33D .63解析:选D .以AB 所在的直线为x 轴,AB 的中点为原点建立平面直角坐标系(图略),可设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0).则直线MA ,MB 的方程分别为y =13(x +a ),y =-x +a .联立解得M 的坐标为⎝⎛⎭⎫a 2,a 2,所以⎝⎛⎭⎫a 22a 2+⎝⎛⎭⎫a 22b 2=1,化简得a 2=3b 2=3(a 2-c 2),所以c 2a 2=23,所以c a =63.故选D . 4.(选修1-1 P 61例4改编)过抛物线y 2=8x 的焦点F 的直线l 与抛物线交于A ,B 两点,与抛物线准线交于C 点,若B 是AC 的中点,则|AB |=( )A .8B .9C .10D .12解析:选B .设A ,B 在准线上的射影分别为D ,E ,且设AB =BC =m ,直线l 的倾斜角为α.则BE =m |cos α|,所以AD =AF =AB -BF =AB -BE =m (1-|cos α|), 所以|cos α|=AD AC=m (1-|cos α|)2m .解得|cos α|=13.由抛物线焦点弦长公式|AB |=2p sin 2α得|AB |=81-19=9.故选B .或:由|cos α|=13得tan α=±22.所以直线l 的方程为y =±22(x -2),代入y 2=8x 得8(x 2-4x +4)=8x ,即x 2-5x +4=0.所以x A +x B =5,则|AB |=x A +x B +4=9.故选B . 二、填空题5.(选修1-1 P 54B 组T 1改编)与椭圆x 249+y 224=1有公共焦点,一条渐近线方程为4x +3y=0的双曲线方程为__________________.解析:由于椭圆x 249+y 224=1的焦点为(±5,0),所以可设双曲线方程为 x 2a 2-y 2b 2=1(a >0,b >0), 所以a 2+b 2=25.① 由渐近线方程4x +3y =0得 b a =43,② 联立①②解得a =3,b =4,故双曲线方程为x 29-y 216=1.答案:x 29-y 216=16.(选修1-1 P 68A 组T 5改编)已知α∈(0,π),若曲线C :x 2+y 2 cos α=1的离心率为22,则α=________.解析:由题意知,曲线C 为椭圆, 所以cos α∈(0,1),且C 的焦点在y 轴上. 所以a 2=1cos α,b 2=1,c 2=a 2-b 2=1cos α-1.由e =22得c 2a 2=12,即1cos α-11cos α=12.所以cos α=12,所以α=π3.答案:π3三、解答题7.(选修1-1 P 36练习T 3改编)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,离心率为22,过F 1的直线交椭圆于E ,F 两点,且△EFF 2的周长为8. (1)求椭圆C 的方程;(2)A ,B 是椭圆的左,右顶点,若直线l 经过点B 且垂直于x 轴,点Q 是椭圆上异于A ,B 的一个动点,直线AQ 交l 于点M ,过点M 垂直于QB 的直线为m ,求证:直线m 过定点,并求出定点的坐标.解:(1)由椭圆的定义知|EF 1|+|EF 2|=2a ,|FF 1|+|FF 2|=2a ,又已知△EFF 2的周长为8,所以4a =8,故a =2.又e =c a =22,故c =2,所以b 2=2,故椭圆C 的方程为x 24+y 22=1.(2)由题意A (-2,0),B (2,0),直线l :x =2,显然直线AQ 的斜率存在且不为0,设为k ,则直线AQ 的方程为y =k (x +2).联立方程组⎩⎪⎨⎪⎧x 24+y 22=1,y =k (x +2),可得点Q ⎝ ⎛⎭⎪⎫2-4k22k 2+1,4k 2k 2+1.联立方程组⎩⎪⎨⎪⎧y =k (x +2),x =2,可得点M (2,4k ).又B (2,0),则k BQ =4k2k 2+12-4k22k 2+1-2=-12k ,所以k m =2k , 故直线m 的方程为y -4k =2k (x -2),即y =2kx , 所以直线m 过定点(0,0).8.(选修1-1 P 64A 组T 2(1)、P 41练习T 3(1)改编)已知抛物线C :x 2=2py (p >0)的焦点为F (0,1),过点F 作直线l 交抛物线C 于A ,B 两点.椭圆E 的中心在原点,焦点在x 轴上,点F 是它的一个顶点,且其离心率e =32. (1)分别求抛物线C 和椭圆E 的方程;(2)经过A ,B 两点分别作抛物线C 的切线l 1,l 2,切线l 1与l 2相交于点M .证明:AB ⊥MF . 解:(1)由已知抛物线C :x 2=2py (p >0)的焦点为F (0,1),可得抛物线C 的方程为x 2=4y .设椭圆E 的方程为x 2a 2+y2b 2=1(a >b >0),半焦距为c .由已知得:⎩⎪⎨⎪⎧b =1,c a =32,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =2,b =1,所以椭圆E 的方程为x 24+y 2=1.(2)证明:显然直线l 的斜率存在,否则直线l 与抛物线C 只有一个交点,不符合题意. 故可设直线l 的方程为y =kx +1,A (x 1,y 1),B (x 2,y 2)(x 1≠x 2),由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,消去y 并整理得x 2-4kx -4=0,所以x 1x 2=-4.因为抛物线C 的方程为y =14x 2,求导得y ′=12x ,所以过抛物线C 上A ,B 两点的切线方程分别是y -y 1=12x 1(x -x 1),y -y 2=12x 2(x -x 2),即y =12x 1x -14x 21,y =12x 2x -14x 22,解得两条切线l 1,l 2的交点M 的坐标为⎝⎛⎭⎫x 1+x 22,x 1x 24,即M ⎝⎛⎭⎫x 1+x 22,-1, 所以FM →·AB →=⎝⎛⎭⎫x 1+x 22,-2·(x 2-x 1,y 2-y 1)=12(x 22-x 21)-2⎝⎛⎭⎫14x 22-14x 21=0. 所以AB ⊥MF .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[学生用书P269(单独成册)]一、选择题1.抛物线y =ax 2(a <0)的准线方程是( ) A .y =-12aB .y =-14aC .y =12aD .y =14a解析:选B .抛物线y =ax 2(a <0)可化为x 2=1a y ,准线方程为y =-14a .故选B .2.直线l 过抛物线y 2=2px (p >0)的焦点,且与抛物线交于A ,B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线方程是( )A .y 2=12xB .y 2=8xC .y 2=6xD .y 2=4x解析:选B .设A (x 1,y 1),B (x 2,y 2),根据抛物线定义, x 1+x 2+p =8,因为AB 的中点到y 轴的距离是2, 所以x 1+x 22=2,所以p =4;所以抛物线方程为y 2=8x .故选B .3.顶点在原点,经过圆C :x 2+y 2-2x +22y =0的圆心且准线与x 轴垂直的抛物线方程为( )A .y 2=-2xB .y 2=2xC .y =2x 2D .y =-2x 2解析:选B .因为圆C :x 2+y 2-2x +22y =0的圆心是(1,-2),抛物线的顶点在原点,焦点在x 轴上,且经过点(1,-2),设标准方程为y 2=2px ,因为点(1,-2)在抛物线上,所以(-2)2=2p ,所以p =1,所以所求抛物线方程为y 2=2x ,故选B .4.设抛物线 y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足,如果直线AF 的斜率为-3,那么|PF |=( )A .4 3B .8C .8 3D .16解析:选B .如图,由k AF =-3知∠AFM =60°. 又AP ∥MF ,所以∠P AF =60°. 又|P A |=|PF |,所以△APF 为等边三角形. 故|PF |=|AF |=2|MF |=2p =8.5.已知点A (2,1),抛物线y 2=4x 的焦点是F ,若抛物线上存在一点P ,使得|P A |+|PF |最小,则P 点的坐标为( )A .(2,1)B .(1,1)C .⎝⎛⎭⎫12,1D .⎝⎛⎭⎫14,1解析:选D .如图,设抛物线准线为l ,作AA ′⊥l 于A ′,PP ′⊥l 于P ′, 则|P A |+|PF |=|P A |+|PP ′|≥|AA ′|, 即当P 点为AA ′与抛物线交点时, |P A |+|PF |最小,此时P ⎝⎛⎭⎫14,1. 故选D .6.抛物线y 2=2px 的焦点为F ,M 为抛物线上一点,若△OFM 的外接圆与抛物线的准线相切(O 为坐标原点),且外接圆的面积为9π,则p =( )A .2B .4C .6D .8解析:选B .因为△OFM 的外接圆与抛物线的准线相切,所以△OFM 的外接圆的圆心到准线的距离等于圆的半径,因为圆面积为9π,所以圆的半径为3,又因为圆心在OF 的垂直平分线上,|OF |=p 2,所以p 2+p4=3,所以p =4.二、填空题7.若抛物线y 2=2x 上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为________.解析:设抛物线的顶点为O ,焦点为F ,P (x P ,y P ),由抛物线的定义知,点P 到准线的距离即为点P 到焦点的距离,所以|PO |=|PF |,过点P 作PM ⊥OF 于点M (图略),则M 为OF 的中点,所以x P =14,代入y 2=2x ,得y P =±22,所以P ⎝⎛⎭⎫14,±22.答案:⎝⎛⎭⎫14,±228.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.解析:在等边三角形ABF 中,AB 边上的高为p , AB 2=33p ,所以B ⎝⎛⎭⎫±33p ,-p 2. 又因为点B 在双曲线上, 故p 233-p 243=1,解得p =6. 答案:69.过点P (-2,0)的直线与抛物线C :y 2=4x 相交于A ,B 两点,且|P A |=12|AB |,则点A到抛物线C 的焦点的距离为________.解析:设A (x 1,y 1),B (x 2,y 2),分别过点A ,B 作直线 x =-2的垂线,垂足分别为D ,E (图略), 因为|P A |=12|AB |,所以⎩⎪⎨⎪⎧3(x 1+2)=x 2+2, 3y 1=y 2,又⎩⎪⎨⎪⎧y 21=4x 1, y 22=4x 2,得x 1=23,则点A 到抛物线C 的焦点的距离为1+23=53. 答案:5310.设抛物线y 2=4x 的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若∠F AC =120°,则圆的方程为__________________.解析:由题意知该圆的半径为1,设圆心坐标为C (-1,a )(a >0),则A (0,a ),又F (1,0),所以AC →=(-1,0),AF →=(1,-a ),由题意得AC →与AF →的夹角为120°,得cos 120°=-11×1+a 2=-12,解得a =3, 所以圆的方程为(x +1)2+(y -3)2=1. 答案:(x +1)2+(y -3)2=1 三、解答题11.已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥F A ,垂足为N ,求点N 的坐标. 解:(1)抛物线y 2=2px 的准线为x =-p 2,于是4+p2=5,所以p =2.所以抛物线方程为y 2=4x . (2)因为点A 的坐标是(4,4), 由题意得B (0,4),M (0,2). 又因为F (1,0),所以k F A =43,因为MN ⊥F A ,所以k MN =-34.所以F A 的方程为y =43(x -1),①MN 的方程为y -2=-34x ,②联立①②,解得x =85,y =45,所以N 的坐标为⎝⎛⎭⎫85,45.12.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.解:(1)由题意得直线AB 的方程为y =22·⎝⎛⎭⎫x -p 2,与y 2=2px 联立,消去y 有4x 2-5px +p 2=0,所以x 1+x 2=5p4.由抛物线定义得|AB |=x 1+x 2+p =5p4+p =9,所以p =4,从而该抛物线的方程为y 2=8x .(2)由(1)得4x 2-5px +p 2=0, 即x 2-5x +4=0, 则x 1=1,x 2=4,于是y 1=-22,y 2=42,从而A (1,-22),B (4,42),设C (x 3,y 3), 则OC →=(x 3,y 3)=(1,-22)+λ(4,42) =(4λ+1,42λ-22).又y 23=8x 3,所以[22(2λ-1)]2=8(4λ+1),整理得(2λ-1)2=4λ+1, 解得λ=0或λ=2.1.如图,抛物线y 2=4x 的焦点为F ,过点F 的直线交抛物线于A ,B 两点. (1)若AF →=2FB →,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.解:(1)依题意知F (1,0),设直线AB 的方程为 x =my +1.将直线AB 的方程与抛物线的方程联立, 消去x 得y 2-4my -4=0. 设A (x 1,y 1),B (x 2,y 2), 所以y 1+y 2=4m ,y 1y 2=-4.① 因为AF →=2FB →,所以y 1=-2y 2.② 联立①和②,消去y 1,y 2,得m =±24.所以直线AB 的斜率是±22.(2)由点C 与原点O 关于点M 对称,得M 是线段OC 的中点,从而点O 与点C 到直线AB 的距离相等,所以四边形OACB 的面积等于2S △AOB .因为2S △AOB =2×12·|OF |·|y 1-y 2|=(y 1+y 2)2-4y 1y 2=41+m 2,所以当m =0时,四边形OACB 的面积最小,最小值是4.2.如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程.(2)当P A 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率. 解:(1)由已知条件,可设抛物线的方程为y 2=2px (p >0). 因为点P (1,2)在抛物线上, 所以22=2p ×1, 解得p =2.故所求抛物线的方程是y 2=4x ,准线方程是x =-1. (2)设直线P A 的斜率为k P A ,直线PB 的斜率为k PB .则k P A =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 2-1(x 2≠1),因为P A 与PB 的斜率存在且倾斜角互补,所以k P A =-k PB .由A (x 1,y 1),B (x 2,y 2)均在抛物线上,得⎩⎪⎨⎪⎧y 21=4x 1,① y 22=4x 2,② 所以y 1-214y 21-1=-y 2-214y 22-1,所以y 1+2=-(y 2+2). 所以y 1+y 2=-4.由 ①-②得,y 21-y 22=4(x 1-x 2),所以k AB =y 1-y 2x 1-x 2=4y 1+y 2=-1.。