七年级数学(上)期末测试题及答案3
2023-2024年人教版七年级上册数学期末检测题(含简单答案)
二、填空题(每题 3 分,共 24 分)
C. 1 或 9
D. 9 或 1
9.如果 5m 表示向东走 5m ,那么 10m 表示 . 10.小明写作业时不慎将两滴墨水滴在数轴上(如图),请你判断墨迹盖住的整数有 个.
11.单项式 πx2 y5z 的系数是
.
5
12.单项式 x3 ya 与 6xb y 是同类项,则 a b3
24.已知 A、B 两点在数轴上分别表示数 a、b
(1)对照数轴填写表格:
a
6 6 6 3 2.5
b
4 0 3 7 2.5
A、B 两点的距离 2 6
(2)若 A、B 两点间的距离记为d ,则d 与 a、b 的数量关系为________. (3)求出数轴上到 4 和 4 的距离之和为 8 的所有整数的和. (4)动点 A 从 10 出发向数轴正方向运动,动点 A 的速度是 3 个单位长度/秒,同时,动 点 B 从 5 出发向数轴正方向运动,动点 B 的速度是 2 个单位长度/秒,当 A、B 两点相距 5 个单位长度时,求点 A 的运动时间为多少秒?
(1
0.5)
1 3
2
(3)2
.
18.解下列方程: (1) 3x 7 32 2x ;
(2) 2x 3 3x 1 1.
5
2
19.先化简,再求值: a3
3a2b 3ab2 ab
3
1 3
a3
a2b
ab2
,其中
a,b
满足
(a 2)2 b 1 0 .
20.已知有理数 a、b、c 在数轴上的位置,
BOC 的度数为 .
16.一个两位数的个位数字与十位数字的和是 8,把这个两位数加上 18,结果恰好成为
人教版数学七年级上学期《期末检测试卷》附答案解析
(3)点C为数轴上一点,对应的数为c,若A点在原点的左侧,O为AC的中点,OB=3BC,请画出图形并求出满足条件的c的值.
24.如图1,已知 , 在 内, 在 内, .
(1) 从图1中的位置绕点 逆时针旋转到 与 重合时,如图2, ;
(2)若图1中的 平分 ,则 从图1中的位置绕点 逆时针旋转到 与 重合时,旋转了多少度?
A. B.
C. D.
10.一列火车长 米,以每秒 米的速度通过一个长为 米的隧道,用式子表示它刚好从开始进隧道口到全部通过隧道所需的时间为()秒
A. B. C. D.
二、填空题
11.某市2020年元旦 最低气温为 ,最高气温为 ,这一天的最高温度比最低温度高________
12.单项式 的系数是__________,次数是__________.
35
(1)规定用量内 收费标准是元/吨,超过部分的收费标准是元/吨;
(2)问该市每户每月用水规定量是多少吨?
(3)若小明家六月份应缴水费50元,则六月份他们家的用水量是多少吨?
23.已知数轴上,点A和点B分别位于原点O两侧,点A对应的数为a,点B对应的数为b,且|a-b|=15.
(1)若b=-6,则a的值为;
∴选项A正确,选项B、C、D错误,
故选A.
6.有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形折叠后能成为一个封闭的正方体盒子,你不能选择图中 , , , 中的()位置接正方形.
A. B. C. D.[答Biblioteka ]B[解析][分析]
结合正方体的平面展开图的特征,只要折叠后不能围成正方体即可.
详解]∵ ,
七年级上期末数学试卷含答案解析 (3)
浙江省温州市苍南县2018-2019学年度七年级上学期期末数学试卷一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选均不给分)1.在数1,0,﹣1,﹣2中,最大的数是()A.1 B.0 C.﹣1 D.﹣22.据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为()A.4.6×108B.46×108C.4.6×109D.0.46×10103.8的立方根为()A. B.C.2 D.±24.下列属于一元一次方程的是()A.x+1 B.3x+2y=2 C.3x﹣3=4x﹣4 D.x2﹣6x+5=05.与无理数最接近的整数是()A.5 B.6 C.7 D.86.下列各单项式中,与4x3y2是同类项的是()A.﹣x3y2B.2x2y3C.4x4y D.x2y27.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克 B.19.9千克 C.20.1千克 D.20.3千克8.实数a,b在数轴上对应的点的位置如图所示,则下列代数式中,表示正数的是()A.﹣b B.﹣a C.a﹣b D.a+b9.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.则其中男生人数比女生人数多()A.11人B.12人C.3人D.4人10.如图,线段CD在线段AB上,且CD=2,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28 B.29 C.30 D.31二、填空题(本题有8小题,每小题3分,共24分)11.﹣4的绝对值是.12.已知∠1=30°,则∠1的补角的度数为度.13.若x﹣3与1互为相反数,则x=.14.用代数式表示“a的2倍与b的的和”.15.计算:(﹣)×(﹣6)=.16.如果代数式x﹣4y的值为3,那么代数式2x﹣8y﹣1的值等于.17.如图,直线AB,CD相交于点O,OE平分∠BOD,若∠AOE=144°,则∠AOC的度数是.18.把六张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为20cm,宽为16cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长的和是.三、解答题(本题有6小题,共46分)19.计算:(1)3+(﹣1)﹣(﹣5)(2)+(﹣3)2×(﹣).20.解方程:(1)2(x﹣4)=1﹣x(2)+=1.21.先化简,再求值:2(a﹣ab)+(4ab﹣2b)﹣a,其中a=3,b=﹣2.22.如图,点O是直线EF上一点,射线OA,OB,OC在直线EF的上方,射线OD的直线EF的下方,且OF平分∠COD,OA⊥OC,OB⊥OD.(1)若∠DOF=25°,求∠AOB的度数.(2)若OA平分∠BOE,则∠DOF的度数是.(直接写出答案)23.学校组织植树活动,已知在甲处植树的有14人,在乙处植树的有6人,现调70人去支援.(1)若要使在甲处植树的人数与在乙处植树的人数相等,应调往甲处人.(2)若要使在甲处植树的人数是在乙处植树人数的2倍,问应调往甲、乙两处各多少人?(3)通过适当的调配支援人数,使在甲处植树的人数恰好是在乙处植树人数的n倍(n是大于1的正整数,不包括1.)则符合条件的n的值共有个.24.如图,线段AB=10,动点P从点A出发,以每秒1个单位的速度,沿线段AB向终点B运动,同时,另一个动点Q从点B出发,以每秒3个单位的速度在线段AB上来回运动(从点B向点A运动,到达点A后,立即原速返回,再次到达B点后立即调头向点A运动.)当点P到达B点时,P,Q两点都停止运动.设点P的运动时间为x.(1)当x=3时,线段PQ的长为.(2)当P,Q两点第一次重合时,求线段BQ的长.(3)是否存在某一时刻,使点Q恰好落在线段AP的中点上?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.浙江省温州市苍南县2015~2016学年度七年级上学期期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选均不给分)1.在数1,0,﹣1,﹣2中,最大的数是()A.1 B.0 C.﹣1 D.﹣2【考点】有理数大小比较.【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得1>0>﹣1>﹣2,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.2.据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为()A.4.6×108B.46×108C.4.6×109D.0.46×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 600 000 000用科学记数法表示为:4.6×109.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.8的立方根为()A. B.C.2 D.±2【考点】立方根.【专题】计算题.【分析】根据立方根的定义求出的值,即可得出答案.【解答】解:8的立方根是==2,故选C.【点评】本题考查了对立方根的定义的理解和运用,注意:a的立方根是.4.下列属于一元一次方程的是()A.x+1 B.3x+2y=2 C.3x﹣3=4x﹣4 D.x2﹣6x+5=0【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、x+1是代数式,故A错误;B、3x+2y=2是二元一次方程,故B错误;C、3x﹣3=4x﹣4是一元一次方程,故C正确;D、x2﹣6x+5=0是一元二次方程,故D错误;故选:C.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.5.与无理数最接近的整数是()A.5 B.6 C.7 D.8【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得答案.【解答】解:<<,得49与51接近,与无理数最接近的整数是7,故选:C.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大是解题关键.6.下列各单项式中,与4x3y2是同类项的是()A.﹣x3y2B.2x2y3C.4x4y D.x2y2【考点】同类项.【分析】根据同类项是字母项相同且相同字母的指数也相同,可得答案.【解答】解:A、字母项相同且相同字母的指数也相同,故A正确;B、相同字母的指数不同,故B错误;C、相同字母的指数不同,故C错误;D、相同字母的指数不同,故D错误;故选:A.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了2016届中考的常考点.7.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克 B.19.9千克 C.20.1千克 D.20.3千克【考点】正数和负数.【专题】计算题.【分析】根据有理数的加法,可得答案.【解答】解:(﹣0.1﹣0.3+0.2+0.3)+5×4=20.1(千克),故选:C.【点评】本题考查了正数和负数,有理数的加法运算是解题关键.8.实数a,b在数轴上对应的点的位置如图所示,则下列代数式中,表示正数的是()A.﹣b B.﹣a C.a﹣b D.a+b【考点】实数与数轴.【分析】根据点的坐标,可得a、b的值,根据相反数的意义,有理数的减法,有理数的加法,可得答案.【解答】解:由点的坐标,得a<﹣1,0<b<1.A、﹣b<0,故A错误;B、﹣a>0是正数,故B正确;C、a﹣b<a<0,故C错误;D、a+b<0,故D错误;故选:B.【点评】本题考查了实数与数轴,利用点的坐标得出a、b的值是解题关键.9.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.则其中男生人数比女生人数多()A.11人B.12人C.3人D.4人【考点】一元一次方程的应用.【分析】设男生有x人,女生有人,根据男生每人种3棵,女生每人种2棵,共种了52棵树苗,求出男生和女生的人数,再两者相减即可得出答案.【解答】解:设男生有x人,女生有人,根据题意得:3x+2=52,解得:x=12,女生的人数是:20﹣12=8人,则其中男生人数比女生人数多12﹣8=4(人);故选D.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.10.如图,线段CD在线段AB上,且CD=2,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28 B.29 C.30 D.31【考点】两点间的距离.【分析】根据数轴和题意可知,所有线段的长度之和是AC+CD+DB+AD+CB+AB,然后根据CD=2,线段AB的长度是一个正整数,可以解答本题.【解答】解:由题意可得,图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和是:AC+CD+DB+AD+CB+AB=(AC+CD+DB)+(AD+CB)+AB=AB+AB+CD+AB=3AB+CD,∵CD=2,线段AB的长度是一个正整数,AB>CD,∴当AB=8时,3AB+CD=3×8+2=26,当AB=9时,3AB+CD=3×9+2=29,当AB=10时,3AB+CD=3×10+2=32.故选B.【点评】本题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件.二、填空题(本题有8小题,每小题3分,共24分)11.﹣4的绝对值是4.【考点】绝对值.【专题】计算题.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:|﹣4|=4.故答案为:4.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.已知∠1=30°,则∠1的补角的度数为150度.【考点】余角和补角.【专题】计算题.【分析】若两个角的和等于180°,则这两个角互补.根据已知条件直接求出补角的度数.【解答】解:∵∠1=30°,∴∠1的补角的度数为=180°﹣30°=150°.故答案为:150.【点评】本题考查了补角的定义,解题时牢记定义是关键.13.若x﹣3与1互为相反数,则x=2.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:x﹣3+1=0,解得:x=2,故答案为:2【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.用代数式表示“a的2倍与b的的和”.【考点】列代数式.【分析】本题考查列代数式,要明确给出文字语言中的运算关系,先求倍数,然后求和.【解答】解:用代数式表示“a的2倍与b的的和”为:,故答案为:【点评】此题考查代数式问题,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“和”等,从而明确其中的运算关系,正确地列出代数式.15.计算:(﹣)×(﹣6)=﹣1.【考点】有理数的乘法.【专题】计算题;实数.【分析】原式利用乘法分配律计算即可得到结果.【解答】解:原式=﹣4+3=﹣1,故答案为:﹣1【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.16.如果代数式x﹣4y的值为3,那么代数式2x﹣8y﹣1的值等于5.【考点】代数式求值.【分析】根据题意得出x﹣4y=3,再变形后代入求出即可.【解答】解:根据题意得:x﹣4y=3,所以2x﹣8y﹣1=2(x﹣4y)﹣1=2×3﹣1=5,故答案为:5.【点评】本题考查了求代数式的值的应用,能整体代入是解此题的关键.17.如图,直线AB,CD相交于点O,OE平分∠BOD,若∠AOE=144°,则∠AOC的度数是72°.【考点】对顶角、邻补角;角平分线的定义.【分析】根据两直线相交,对顶角相等,可推出∠AOC=∠DOB,又根据OE平分∠BOD,∠AOE=144°,可求∠BOE,从而可求∠BOD,根据对顶角的性质即可得到结论.【解答】解:∵AB、CD相交于O,∴∠AOC与∠DOB是对顶角,即∠AOC=∠DOB,∵∠AOE=144°,∴∠BOE=180°﹣∠AOE=36°,又∵OE平分∠BOD,∠BOE=30°,∴∠BOD=2∠BOE=2×36°=72°,∴∠BOD=∠AOC=72°,故答案为:72°.【点评】本题主要考查对顶角的性质以及角平分线的定义、邻补角,解决本题的关键是求出∠BOE.18.把六张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为20cm,宽为16cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长的和是64cm.【考点】列代数式.【专题】应用题.【分析】设小长方形长为xcm,宽为ycm,由题意得:y+3x=20,根据图示可得两块阴影部分长的和为20cm,宽表示为(16﹣3y)cm和(16﹣x)cm,再求周长即可.【解答】解:设小长方形长为xcm,宽为ycm,由题意得:y+3x=20,阴影部分周长的和是:20×2+(16﹣3y+16﹣x)×2=104﹣6y﹣2x=104﹣2(3y+x)=104﹣40=64(cm),故答案为:64cm.【点评】此题主要考查了列代数式,关键是正确理解题意,根据图示表示出阴影部分的长和宽.三、解答题(本题有6小题,共46分)19.计算:(1)3+(﹣1)﹣(﹣5)(2)+(﹣3)2×(﹣).【考点】实数的运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方及算术平方根运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=3﹣1+5=8﹣1=7;(2)原式=2+9×(﹣)=2+(﹣3)=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.解方程:(1)2(x﹣4)=1﹣x(2)+=1.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x﹣8=1﹣x,移项合并得:3x=9,解得:x=3;(2)去分母得:2x+3x﹣6=6,移项合并得:5x=12,解得:x=2.4.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.先化简,再求值:2(a﹣ab)+(4ab﹣2b)﹣a,其中a=3,b=﹣2.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=2a﹣2ab+2ab﹣b﹣a=a﹣b,当a=3,b=﹣2时原式=3﹣(﹣2)=3+2=5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.如图,点O是直线EF上一点,射线OA,OB,OC在直线EF的上方,射线OD的直线EF的下方,且OF平分∠COD,OA⊥OC,OB⊥OD.(1)若∠DOF=25°,求∠AOB的度数.(2)若OA平分∠BOE,则∠DOF的度数是30°.(直接写出答案)【考点】垂线;角平分线的定义.【分析】(1)利用角平分线的定义可得∠DOC=50°,由垂直的定义可得∠BOD=90°,易得∠BOC=40°,因为OA⊥OC,可得结果;(2)利用垂直的定义易得∠BOC+∠COD=90°,∠AOB+∠BOC=90°,可得∠COD=∠AOB,设∠DOF=∠COF=x,利用平分线的定义可得∠AOE=∠AOB=∠COD=2x,∠BOC=90°﹣2x,由平角的定义可得5x+90°﹣2x=180°,解得x,即得结果.【解答】解:(1)∵∠DOF=25°,OF平分∠COD,∴∠DOC=50°,∵OB⊥OD,∴∠BOC=90°﹣50°=40°,∵OA⊥OC,∴∠AOB=90°﹣∠BOC=50°;(2)∵∠BOC+∠COD=90°,∠AOB+∠BOC=90°,∴∠COD=∠AOB,设∠DOF=∠COF=x,∵OA平分∠BOE,∴∠AOE=∠AOB=∠COD=2x,∠BOC=90°﹣2x,∴5x+90°﹣2x=180°,解得:x=30°,即∠DOF=30°.故答案为:30°.【点评】本题主要考查了角平分线的定义和垂直的定义,利用定义得出各角的度数是解答此题的关键.23.学校组织植树活动,已知在甲处植树的有14人,在乙处植树的有6人,现调70人去支援.(1)若要使在甲处植树的人数与在乙处植树的人数相等,应调往甲处31人.(2)若要使在甲处植树的人数是在乙处植树人数的2倍,问应调往甲、乙两处各多少人?(3)通过适当的调配支援人数,使在甲处植树的人数恰好是在乙处植树人数的n倍(n是大于1的正整数,不包括1.)则符合条件的n的值共有6个.【考点】一元一次方程的应用.【分析】(1)设调往甲处y人,则调往乙处(70﹣y)人,由题意得等量关系:在甲处植树的人数=在乙处植树的人数,根据等量关系列出方程,再解即可;(2)设调往甲处x人,则调往乙处(70﹣x)人,由题意得等量关系:在甲处植树的人数=在乙处植树的人数×2,根据等量关系列出方程,再解即可;(3)设调往甲处z人,则调往乙处(70﹣z)人,由题意得等量关系:在甲处植树的人数=在乙处植树的人数×n,根据等量关系列出方程,再求出整数解即可.【解答】解:(1)设调往甲处y人,则调往乙处(70﹣y)人,由题意得:14+y=6+(70﹣y),解得:y=31,故答案为:31;(2)解:设调往甲处x人,则调往乙处(70﹣x)人,由题意得:14+x=2(6+70﹣x),解得:x=46成人数:70﹣46=24(人),答:应调往甲处46人,乙处24人.(3)设调往甲处z人,则调往乙处(70﹣z)人,列方程得14+z=n(6+70﹣z),14+z=n(76﹣z),n=,解得:,,,,,,共6种,故答案为:6.【点评】此题主要考查了一元一次方程的应用以及二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.24.如图,线段AB=10,动点P从点A出发,以每秒1个单位的速度,沿线段AB向终点B运动,同时,另一个动点Q从点B出发,以每秒3个单位的速度在线段AB上来回运动(从点B向点A运动,到达点A后,立即原速返回,再次到达B点后立即调头向点A运动.)当点P到达B点时,P,Q两点都停止运动.设点P的运动时间为x.(1)当x=3时,线段PQ的长为2.(2)当P,Q两点第一次重合时,求线段BQ的长.(3)是否存在某一时刻,使点Q恰好落在线段AP的中点上?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.【考点】一元一次方程的应用;两点间的距离.【专题】几何动点问题;压轴题;存在型;数形结合;分类讨论;方程思想;一次方程(组)及应用.【分析】(1)结合图形,表示出AP、AQ的长,可得PQ;(2)当P,Q两点第一次重合时,点P运动路程+点Q运动路程=AB的长,列方程可求得;(3)点Q落在线段AP的中点上有以下三种情况:①点Q从点B出发未到点A;②点Q到达点A 后,从A到B;③点Q第一次返回到B后,从B到A,根据AP=2AQ列方程可得.【解答】解:(1)根据题意,当x=3时,P、Q位置如下图所示:此时:AP=3,BQ=3×3=9,AQ=AB﹣BQ=10﹣9=1,∴PQ=AP﹣AQ=2;(2)设x秒后P,Q第一次重合,得:x+3x=10解得:x=2.5,∴BQ=3x=7.5;(3)设x秒后,点Q恰好落在线段AP的中点上,根据题意,①当点Q从点B出发未到点A时,即0<x<时,有x=2(10﹣3x),解得;②当点Q到达点A后,从A到B时,即<x<时,有x=2(3x﹣10),解得x=4;③当点Q第一次返回到B后,从B到A时,即<x<10时,有x=2(30﹣3x),解得;综上所述:当x=或x=4或x=时,点Q恰好落在线段AP的中点上.故答案为:(1)2.【点评】本题考查了数轴、一元一次方程的应用,解答(3)题,对x分类讨论是解题关键,属中档题.。
人教版度七年级数学上册期末检测试题及答案三
人教版度七年级数学上册期末检测试题及答案一、选择题1.下列运算正确的是() A .7259545--⨯=-⨯=- B .54331345÷⨯=÷= C .3(2)(6)6--=--=D .12(25)12(3)4÷-=÷-=-2.如图,数轴上表示数2的相反数的点是()A .点NB .点MC .点QD .点P3.我国古代著作《九章算术》在世界数学史上首次正式引入负数,若气温升高3C ︒时,气温变化记作C 3︒+,那么气温下降10C ︒时,气温变化记作() A .C 13︒-B .10C ︒-C .7C ︒-D .C 7︒+4.若8m x y 与36n x y 的和是单项式,则m n +的值为( ) A .-4B .3C .4D .85.若多项式22229(93)x y ax y -+--+的值与x 的取值无关,则(2)a -的值为() A .0B .1C .4-D .46.已知1639n x y 与41232m x y 的和是单项式,则m n +的值是() A .5B .6C .7D .87.某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折; (3)一次性购物超过300元一律8折.李明两次购物分别付款80元,252元.如果李明一次性购买与这两次相同的物品,则应付款( ) A .288元 B .332元 C .288元或316元D .332元或363元8.我国古代对于利用方程解决实际问题早有研究,《九章算术》中提到这么一道“以绳测井”的题:以绳测井,若将绳三折测之,绳多四尺:若将绳四折测之,绳多一尺.绳长、井深各几何?这道题大致意思是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,C .13x +4=14x +1 D .13x ﹣4=14x ﹣1 9.某市居民自来水收费标准如下:每户每月用水不超过 4 吨时,每吨价格为 2 元,当用水超过 4吨而不超过 7 吨时,超过部分每吨水的价格为 3 元,当用水超过 7 吨时,超过部分每吨水的价格为5 元,李老师 10 月份付了水费 32 元,则李老师用水吨数为( )A .7B .10C .11D .1210.如图,AOB ∠,以OB 为边作BOC ∠,使2BOC AOB ∠=∠,那么下列说法正确的是( )A . 3AOC AOB ∠=∠ B .AOB AOC ∠=∠或3AOC AOB ∠=∠ C .AOC BOC ∠>∠D . AOC AOB ∠=∠二、填空题 11.计算111112612209900++++⋯+的值为__________________. 12.已知2241A x ax y =+-+,234B x x by =++-,且对于任意有理数x 、y ,代数式2A B -的值不变,则ab 的值是_______.13.磁器口古镇,被赞誉为“小重庆”,磁器口的陈麻花更是重庆标志性名片之一.磁器口某门店从陈麻花生产商处采购了原味、麻辣、巧克力三种口味的麻花进行销售,其每袋进价分别是10元,12元,15元,其中原味与麻辣味麻花每袋的销售利润率相同,原味与巧克力味麻花每袋的销售利润相同.经统计,在今年元旦节当天,该门店这三种口味的麻花销量是2:3:2,其销售原味与巧克力味麻花的总利润率是40%,且巧克力味麻花销售额比原味麻花销售额多1000元,则今年元旦节当天该门店销售这三种口味的麻花的利润共_____元.14.小明沿街道匀速行走,他注意到每隔6分钟从背后驶过一辆1路公交车,每隔4分钟迎面驶来一辆1路公交车.假设每辆1路公交车行驶速度相同,而且1路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是________ 分钟. 15.如图,已知∠AOB =40°,自O 点引射线OC ,若∠AOC :∠COB =2:3,OC 与∠AOB 的平分线所成的角的度数为_____.三、解答题 16.计算:(3)-27+(-32)+(-8)+72 (4)3222(4)(133⎡⎤-+---⨯⎣⎦)17.数轴上两点之间的距离等于相应两数差的绝对值,如2与3的距离可表示为|2﹣3|=1,2与﹣3的距离可表示为|2﹣(﹣3)|=5(1)数轴上表示3和8的两点之间的距离是_____;数轴上表示﹣3和﹣9的两点之间的距离是_____; (2)数轴上表示x 和﹣2的两点A 和B 之间的距离是_____;如果|AB|=4,则x 为_____; (3)当代数式|x+1|+|x ﹣2|+|x ﹣3|取最小值时,x 的值为_____.18.先化简,再求值(1)2(x 2-5xy)-3(x 2-6xy),其中x=-1,y=12.(2)()222231052xy x y xy yx ⎡⎤--+⎣⎦,其中x = 1010,y= -12.19.若一个四位自然数满足个位与百位相同,十位与千位相同,我们称这个数为“双子数”.将“双子数”m 的百位、千位上的数字交换位置,个位、十位上的数字也交换位置,得到个新的双子数m ',记22()1111m m F m '+=为“双子数”m 的“双11数”.例如,1313m =,3131m '=,则2131323131(1313)81111F ⨯+⨯==.(1)计算2424的“双11数”(2424)F =______;(2)若“双子数”m 的“双11数”的()F m 是一个完全平方数,求()F m 的值;(3)已知两个“双子数”p 、q ,其中p abab =,q cdcd =(其中19a b ≤<≤,19c ≤≤,19d ≤≤,c d ≠且a 、b 、c 、d 都为整数,若p 的“双11数”()F p 能被17整除,且p 、q 的“双11数”满足()2()(432)0F p F q a b d c +-+++=,令(,)101p qG p q -=,求(,)G p q 的值.20.甲、乙两个玩具的成本共300元,商店老板为获取利润,并快速出售玩具,决定甲玩具按60%的利润率标价出售,乙玩具按50%的利润率标价出售.在实际出售时,应顾客要求,两个玩具均按标价9折出售,这样商店共获利114元. (1)求甲、乙两个玩具的成本各是多少元?(2)商店老板决定投入1000元购进这两种玩具,且为了吸引顾客,每个玩具至少购进1个,那么可以怎样安排进货?21.已知1520a b c ++-++=,且a ,b ,c 分别是点A ,B ,C 在数轴上对应的数. (1)求a ,b ,c 的值,并在数轴上标出点A ,B ,C .(2)若动点P ,Q 同时从A ,B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,Q 可以追上点P ?(3)在数轴上找一点M ,使点M 到A ,B 两点的距离之和等于10,请求出所有点M 对应的数,并说明理由.22.水资源透支现象令人担忧,节约用水迫在眉睫.针对居民用水浪费现象,重庆市政府和环保组织进行了调查,并制定出相应的措施.(1)针对居民用水浪费现象,市政府将向每个家庭收取污水处理费,按每立方米1元收费.此外,市政府还将向市民收取自来水费,收费标准为:规定每个家庭每月的用水量不超过10立方米,则按每立方米2.5元收费;超过10立方米的部分,按每立方米3.2元收费.若我市某家庭某月用水量为x 立方米,产生的污水量也为x 立方米,则这个家庭在该月应缴纳的水费(包括污水处理费)W 1为多少钱?(用含x 的代数式表示)(2)在近期由市物价局举行的水价听证会上,有一代表提出一新的水价收费设想:不再收取污水处理费,每天6:00至22:00为用水高峰期,水价可定为每立方米4元;22:00至次日6:00为用水低谷期,水价可定为每立方米3.2元,若某家庭高低峰时期都有用水,且高峰期的用水量比低谷期多20%.设这个家庭这个月用水低谷期的用水量为y 立方米,请计算该家庭在这个月按照此方案应缴纳的水费W 2为多少钱?(用含y 的代数式表示)(3)若某三口之家按照(1)问中的方案与(2)问中的方案所交水费都为392元,请计算表示哪种方案下的用水量较少?23.如图所示,两条直线AB ,CD 相交于点O ,且AOC AOD ∠=∠,射线OM (与射线OB 重合)绕点O 按逆时针方向旋转,速度为15/s ︒,射线ON (与射线OD 重合)绕点O 按顺时针方向旋转,速度为12/s ︒.两射线OM ,ON 同时运动,运动时间为()t s .(本题出现的角均指小于平角的角)(1)图中一定有________个直角;当3t =时,MON ∠的度数为________,BON ∠的度数为________MOC ∠的度数为________.(2)当012t <<时,若360AOM AON ︒∠=∠-,试求出t 的值. (3)当06t <<时,探究72COM BONMON∠+∠∠的值:在t 满足怎样的条件时是定值;在t 满足怎样的条件时不是定值.参考答案1.D2.A3.B4.C5.D6.D7.C8.A9.B10.B 11.9910012.-12 13.3800 14.4.8 15.4°或100°. 16.(1) 4;(2)113-;(3) 5;(4)32. 17.(1)56(2)|x+2|2或﹣6(3)2 18.(1)28x xy -+,-5;(2)28xy ,4020 19.(1)12;(2)4或16或36;;(3)51或17.20.(1)甲玩具的成本是100元,乙玩具的成本是200元;(2)购进乙玩具1个,购进甲玩具8个. 21.(1)1a =-,b=5,c=-2,数轴作图略;(2)6秒;(3)-3或7,22.(1)用水量不超过10立方米,应缴纳的水费3.5x ,用水量超过10立方米,应缴纳的水费4.2x ﹣7;(2)W 2=3.2y +4×(1+20%)y =8y ;(3)问题(2)中的方案下的用水量较少 23.(1)4,171︒,126︒,45︒;(2)107或10;(3)当1003t <<时,72COM BONMON ∠+∠∠不是定值,当1063t <<时,72COM BONMON∠+∠∠是定值,定值是3。
2022-2023学年七年级上学期数学期末检测试题(含答案)
2022-2023学年七年级上学期数学期末检测试题(含答案)一、选择题(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一个符合题意)1.(3分)下列选项中,是负分数的是()A.﹣5B.0C.﹣D.32.(3分)单项式x2yz2的次数为()A.B.6C.5D.33.(3分)2022年9月30日下午,成绵苍巴高速公路项目苍巴段凉水村隧道实现双线贯通,为明年建成通车奠定了坚实基础,在修公路时有时需要挖隧道,其体现的数学道理是()A.经过一点有无数条直线B.两点之间,线段最短C.两点之间,直线最短D.两点确定一条直线4.(3分)下列运用等式的性质进行变形,正确的是()A.由3m﹣1=5得到3m=5+1B.由3x=﹣6得到x=2C.由ac=bc得到a=b D.由a=b得到a+c=b﹣c5.(3分)脆香甜柚是苍溪县农业局从柚芽变中选育出来的早熟良种,平均单果重1300克左右,已种植1万余亩,商品果产量6000吨,单价一般为每千克6元,可得毛利润约为36000000元.数据36000000用科学记数法可表示为()A.3.6×107B.0.36×108C.3.6×108D.3.6×1066.(3分)一个两位数,用x表示十位数字,用y表示个位数字,则这个两位数表示为()A.xy B.x+y C.10y+x D.10x+y7.(3分)如图所示是一个正方体的展开图,图中的六个正方形内分别标有:有、志、者、事、竟、成,将其围成一个正方体后,与“有”所在面相对面上的字是()A.竟B.成C.事D.者8.(3分)如果|a+2|+|b﹣1|=0,那么(a+b)2022的值为()A.﹣1B.1C.﹣2022D.20229.(3分)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售20件的销售额,与按这种服装每件的标价降低27元销售25件的销售额相等.设这种服装每件的标价为x元,根据题意可列方程为()A.20×8x=25(x﹣27)B.20×0.8x=25(x﹣27)C.20×8x=25(x+27)D.20×0.8x=25(x+27)10.(3分)已知A,B,C三点在数轴上从左向右依次排列,且AC=3AB=6,若B为原点,则点A所表示的数是()A.﹣4B.4C.﹣2D.2二、填空题(本大题共6小题,每小题4分,共24分,把正确答案直接写在答题卡对应题目的横线上)11.(4分)2022的相反数是.12.(4分)比较大小:﹣﹣.(用“>”“=”或“<”连接)13.(4分)若x=2是关于x的方程3x﹣10=2a的解,则a=.14.(4分)已知a2+a=3,则2a2+2a+2020的值为.15.(4分)如图,∠AOC=∠DOE=90°,如果∠AOE=65°,那么∠COD的度数是.16.(4分)如图是用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍;拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;…照这样拼图,则第4个图形需要根火柴棍,第n个图形需要根火柴棍.三、解答题(本大题共10小题,共96分,要求写出必要的解题步骤或证明过程)17.(6分)计算:(1)()×(﹣63);(2)﹣22×(﹣)﹣(﹣3)3÷9.18.(8分)解方程:(1)6﹣3x=2(2﹣x);(2)﹣1=.19.(8分)先化简,再求值:3ab﹣2(ab﹣a2b)﹣3a2b,其中a=2,6=﹣1.20.(9分)如图是由8个相同的小立方体组成的几何体,请在下列方框内画出它的从三个方向所看到的平面图形(线条用黑色签字笔描黑).21.(9分)红阳猕猴桃是在苍溪野生资源中选育出的珍稀品种,为中国特有,小青买了10箱红阳猕猴桃,每箱的标准质量是5千克,将超出标准质量的千克数记为正数,不足标准质量的千克数记为负数,记录结果如下:﹣0.25,+0.15,﹣0.05,+0.2,﹣0.1,﹣0.2,﹣0.1,+0.05,0,+0.1(1)求这10箱红阳猕猴桃的质量;(2)求这10箱红阳猕猴桃的平均质量.22.(10分)(1)如图所示,已知线段a,b.①作射线AM;②在射线AM上依次截取AC=CD=a;③在线段DA上截取DB=b.由作图可知AB=.(用含a,b的式子表示)(2)在(1)的作图基础上,若a=10,b=8,E为线段AC的中点,F为线段BD的中点,求线段EF的长.23.(10分)为了全面贯彻党的教育方针,培养学生劳动技能,学校组织七年级学生乘车前往某社会实践基地进行劳动实践活动.若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量增加4辆,并空出2个座位.问:计划调配36座的新能源客车多少辆?该校七年级共有多少名学生?24.(10分)如图所示,∠AOB=90°,OD,OE分别是∠AOC和∠BOC的平分线.(1)当∠BOC=30°时,求∠DOE的度数;(2)当∠BOC为锐角a时,∠DOE 的度数是.(直接写出结果)25.(12分)为响应国家节能减排的号召,各地市先后出台了居民用电“阶梯价格”制度,下表是某市的阶梯电价收费标准(每月):阶梯用电量(单位:度)电费价格(单位:元/度)一档不超过220度的电量0.500.55二档220至420度(含420度)的电量三档超过420度的电量0.80(1)小明家八月份共用电450度,求小明家八月份应交多少电费?(2)如果某户居民某月用电a度(220<a≤420),请用含a的式子表示该户居民该月应交电费;(3)小刚家十月份的电费是176元,求小刚家该月用电多少度.26.(14分)已知数轴上两点A,B表示的数分别为﹣4,2.(1)动点P从A出发,以每秒3个单位的速度沿数轴向右匀速运动.另一动点R从B 出发,以每秒1个单位的速度沿数轴向右匀速运动,若点P、R同时出发,点P运动秒追上点R,此时点P在数轴上表示的数是.(2)若点P从A出发,以每秒2个单位的速度沿数轴向右匀速运动,点R从B出发,以每秒1个单位的速度沿数轴向左匀速运动,设点P、R同时出发,运动时间为t秒,试探究:t为何值时,点P、R两点间的距离为4个单位?参考答案一、选择题(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一个符合题意)1.(3分)下列选项中,是负分数的是()A.﹣5B.0C.﹣D.3【解答】解:﹣是分数,且小于0,是负分数,故选:C.2.(3分)单项式x2yz2的次数为()A.B.6C.5D.3【解答】解:单项式的次数是:2+1+2=5.故选:C.3.(3分)2022年9月30日下午,成绵苍巴高速公路项目苍巴段凉水村隧道实现双线贯通,为明年建成通车奠定了坚实基础,在修公路时有时需要挖隧道,其体现的数学道理是()A.经过一点有无数条直线B.两点之间,线段最短C.两点之间,直线最短D.两点确定一条直线【解答】解:2022年9月30日下午,成绵苍巴高速公路项目苍巴段凉水村隧道实现双线贯通,为明年建成通车奠定了坚实基础,在修公路时有时需要挖隧道,其体现的数学道理是两点之间,线段最短,故选:B.4.(3分)下列运用等式的性质进行变形,正确的是()A.由3m﹣1=5得到3m=5+1B.由3x=﹣6得到x=2C.由ac=bc得到a=b D.由a=b得到a+c=b﹣c【解答】解:A、由3m﹣1=5得到3m=5+1,故A符合题意;B、由3x=﹣6得到x=﹣2,故B不符合题意;C、由ac=bc(c≠0)得到a=b,故C不符合题意;D、由a=b得到a+c=b+c,故D不符合题意;故选:A.5.(3分)脆香甜柚是苍溪县农业局从柚芽变中选育出来的早熟良种,平均单果重1300克左右,已种植1万余亩,商品果产量6000吨,单价一般为每千克6元,可得毛利润约为36000000元.数据36000000用科学记数法可表示为()A.3.6×107B.0.36×108C.3.6×108D.3.6×106【解答】解:36000000=3.6×107.故选:A.6.(3分)一个两位数,用x表示十位数字,用y表示个位数字,则这个两位数表示为()A.xy B.x+y C.10y+x D.10x+y【解答】解:个位数字是y,十位数字是x,这个两位数可表示为10x+y.故选:D.7.(3分)如图所示是一个正方体的展开图,图中的六个正方形内分别标有:有、志、者、事、竟、成,将其围成一个正方体后,与“有”所在面相对面上的字是()A.竟B.成C.事D.者【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“志”相对的字是“事”;“者”相对的字是“成”;“有”相对的字是“竟”.故选:A.8.(3分)如果|a+2|+|b﹣1|=0,那么(a+b)2022的值为()A.﹣1B.1C.﹣2022D.2022【解答】解:由题意得,a+2=0,b﹣1=0,解得a=﹣2,b=1,∴(a+b)2022=(﹣2+1)2022=1.故选:B.9.(3分)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售20件的销售额,与按这种服装每件的标价降低27元销售25件的销售额相等.设这种服装每件的标价为x元,根据题意可列方程为()A.20×8x=25(x﹣27)B.20×0.8x=25(x﹣27)C.20×8x=25(x+27)D.20×0.8x=25(x+27)【解答】解:根据题意得20×0.8x=25(x﹣27).故选:B.10.(3分)已知A,B,C三点在数轴上从左向右依次排列,且AC=3AB=6,若B为原点,则点A所表示的数是()A.﹣4B.4C.﹣2D.2【解答】解:∵3AB=6,∴AB=2,∵B为原点,A,B,C三点在数轴上从左向右排列,∴点A在原点左侧,∴点A表示的数是﹣2,故选:C.二、填空题(本大题共6小题,每小题4分,共24分,把正确答案直接写在答题卡对应题目的横线上)11.(4分)2022的相反数是﹣2022.【解答】解:2022的相反数是:﹣2022.故答案为:﹣2022.12.(4分)比较大小:﹣>﹣.(用“>”“=”或“<”连接)【解答】解:﹣=﹣,﹣=﹣,∵<,∴﹣>﹣,∴﹣>﹣.故答案为:>.13.(4分)若x=2是关于x的方程3x﹣10=2a的解,则a=﹣2.【解答】解:把x=2代入方程得6﹣10=2a,解得a=﹣2.故答案是:﹣2.14.(4分)已知a2+a=3,则2a2+2a+2020的值为2026.【解答】解:当a2+a=3,2a2+2a+2020=2(a2+a)+2020=2×3+2020=6+2020=2026.故答案为:2026.15.(4分)如图,∠AOC=∠DOE=90°,如果∠AOE=65°,那么∠COD的度数是115°.【解答】解:∵∠AOC=∠DOE=90°,∠AOE=65°,∴∠AOD=∠DOE﹣∠AOE=90°﹣65°=25°,∴∠COD=∠AOC+∠AOD=90°+25°=115°,故答案为:115°.16.(4分)如图是用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍;拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;…照这样拼图,则第4个图形需要9根火柴棍,第n个图形需要(2n+1)根火柴棍.【解答】解:设第n个图形需要a n(n为正整数)根火柴棒,观察发现规律:第1个图形需要火柴棍:3=1×2+1,第2个图形需要火柴棍:5=2×2+1;第3个图形需要火柴棍:7=3×2+1,第4个图形需要火柴棍:4×2+1=9,……,∴第n个图形需要火柴棍:2n+1.故答案为:9,(2n+1).三、解答题(本大题共10小题,共96分,要求写出必要的解题步骤或证明过程)17.(6分)计算:(1)()×(﹣63);(2)﹣22×(﹣)﹣(﹣3)3÷9.【解答】解:(1)原式=×(﹣63)﹣×(﹣63)﹣×(﹣63)=﹣7+18+12=23;(2)原式=﹣4×(﹣)﹣(﹣27)÷9=3+3=6.18.(8分)解方程:(1)6﹣3x=2(2﹣x);(2)﹣1=.【解答】解:(1)6﹣3x=2(2﹣x),去括号,得6﹣3x=4﹣2x,移项,得2x﹣3x=4﹣6,合并同类项,得﹣x=﹣2,系数化为1,得x=2;(2)﹣1=,去分母,得3(3x﹣1)﹣6=2(4x﹣7),去括号,得9x﹣3﹣6=8x﹣14,移项,得9x﹣8x=3+6﹣14,合并同类项,得x=﹣5.19.(8分)先化简,再求值:3ab﹣2(ab﹣a2b)﹣3a2b,其中a=2,6=﹣1.【解答】解:3ab﹣2(ab﹣a2b)﹣3a2b=3ab﹣2ab+3a2b﹣3a2b=ab,当a=2,b=﹣1时,原式=2×(﹣1)=﹣2.20.(9分)如图是由8个相同的小立方体组成的几何体,请在下列方框内画出它的从三个方向所看到的平面图形(线条用黑色签字笔描黑).【解答】解:从正面看从左面看从上面看21.(9分)红阳猕猴桃是在苍溪野生资源中选育出的珍稀品种,为中国特有,小青买了10箱红阳猕猴桃,每箱的标准质量是5千克,将超出标准质量的千克数记为正数,不足标准质量的千克数记为负数,记录结果如下:﹣0.25,+0.15,﹣0.05,+0.2,﹣0.1,﹣0.2,﹣0.1,+0.05,0,+0.1(1)求这10箱红阳猕猴桃的质量;(2)求这10箱红阳猕猴桃的平均质量.【解答】解:(1)10×5+(﹣0.25+0.15﹣0.05+0.2﹣0.1﹣0.2﹣0.1+0.05+0+0.1)=50+(﹣0.2)=49.8(千克),答:这10箱红阳猕猴桃的质量为49.8千克;(2)49.8÷10=4.98(千克),答:这10箱红阳猕猴桃的平均质量为4.98千克.22.(10分)(1)如图所示,已知线段a,b.①作射线AM;②在射线AM上依次截取AC=CD=a;③在线段DA上截取DB=b.由作图可知AB=2a﹣b.(用含a,b的式子表示)(2)在(1)的作图基础上,若a=10,b=8,E为线段AC的中点,F为线段BD的中点,求线段EF的长.【解答】解:(1)由作图可知,AD=2a,DB=b,∴AB=AD﹣DB=2a﹣b.故答案为:2a﹣b;(2)∵E为线段AC的中点,F为线段BD的中点,a=10,b=8,∴AE=AC=a=5,FD=BD=b=4,由(1)可知,AD=2a=20,∴EF=AD﹣AE﹣DF=20﹣5﹣4=11.23.(10分)为了全面贯彻党的教育方针,培养学生劳动技能,学校组织七年级学生乘车前往某社会实践基地进行劳动实践活动.若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量增加4辆,并空出2个座位.问:计划调配36座的新能源客车多少辆?该校七年级共有多少名学生?【解答】解:设计划调配36座的新能源客车x辆,则该校七年级共有(36x+2)名学生,根据题意得:36x+2=22(x+4)﹣2,解得:x=6,∴36x+2=36×6+2=218.答:计划调配36座的新能源客车6辆,该校七年级共有218名学生.24.(10分)如图所示,∠AOB=90°,OD,OE分别是∠AOC和∠BOC的平分线.(1)当∠BOC=30°时,求∠DOE的度数;(2)当∠BOC为锐角a时,∠DOE的度数是45°.(直接写出结果)【解答】解:(1)∵∠BOC=30°,∠AOB=90°,∴∠AOC=∠BOC+∠AOB=30°+90°=120°,又∵OD,OE平分∠AOC和∠BOC的角平分线,∴∠COD=∠AOC=×120°=60°,∠COE=∠BOC=×30°=15°,∴∠DOE=∠COD﹣∠COE=60°﹣15°=45°;即∠DOE的度数是45°;(2)45°,理由如下:∵∠BOC=α,∠AOB=90°,∴∠AOC=∠BOC+∠AOB=α+90°,又∵OD,OE平分∠AOC和∠BOC的角平分线,∴∠COD=∠AOC=×(α+90°)=α+45°,∠COE=∠BOC=α,∴∠DOE=∠COD﹣∠COE=α+45°﹣α=45°.故答案为:45°.25.(12分)为响应国家节能减排的号召,各地市先后出台了居民用电“阶梯价格”制度,下表是某市的阶梯电价收费标准(每月):阶梯用电量(单位:度)电费价格(单位:元/度)一档不超过220度的电量0.500.55二档220至420度(含420度)的电量三档超过420度的电量0.80(1)小明家八月份共用电450度,求小明家八月份应交多少电费?(2)如果某户居民某月用电a度(220<a≤420),请用含a的式子表示该户居民该月应交电费;(3)小刚家十月份的电费是176元,求小刚家该月用电多少度.【解答】解:(1)0.5×220+0.55×(420﹣220)+0.8×(450﹣420)=0.5×220+0.55×200+0.8×30=110+110+24=244(元).答:小明家八月份应交244元电费;(2)根据题意得:该户居民该月应交电费0.5×220+0.55(a﹣220)=(0.55a﹣11)元.(3)根据题意得:0.55a﹣11=176,解得:a=340.答:小刚家该月用电340度.26.(14分)已知数轴上两点A,B表示的数分别为﹣4,2.(1)动点P从A出发,以每秒3个单位的速度沿数轴向右匀速运动.另一动点R从B 出发,以每秒1个单位的速度沿数轴向右匀速运动,若点P、R同时出发,点P运动3秒追上点R,此时点P在数轴上表示的数是2.(2)若点P从A出发,以每秒2个单位的速度沿数轴向右匀速运动,点R从B出发,以每秒1个单位的速度沿数轴向左匀速运动,设点P、R同时出发,运动时间为t秒,试探究:t为何值时,点P、R两点间的距离为4个单位?【解答】解:(1)设点P、R运动时间是t秒,则运动后P表示的数是﹣4+3t,R运动后表示的数是2+t,根据题意得:﹣4+3t=2+t,解得t=3,∴点P运动3秒追上点R,此时点P在数轴上表示的数是﹣4+3×3=5,故答案为:3,5;(2)当点P、R运动时间为t秒时,点P在数轴上表示的数是﹣4+2t,点Q在数轴上表示的数是2﹣t,根据题意得:|(﹣4+2t)﹣(2﹣t)|=4,化简得:3t﹣6=4或3t﹣6=﹣4,解得t=或t=,答:当t=秒或秒时,点P、R两点间的距离为4个单位.。
人教版数学七年级上学期《期末检测试题》带答案解析
(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?
答案与解析
一、选择题(每小题3分,满分30分)
1.|﹣5|等于()
A.﹣5B. C.5D.
[答案]C
[解析]
[分析]
根据一个负数的绝对值等于它的相反数解答.
[详解]解:|﹣5|=5.
故选:B.
[点睛]考核知识点:同类项.理解同类项的定义是关键.
5.下列计算中正确的是()
A. B. C. D.
[答案]D
[解析]
[分析]
根据相应 概念和运算法则计算即可.
[详解]解:A、a2和a3不是同类项,故A错误;
B、 ,故B错误;
C、 ,故C错误;
D、 ,故D正确;
故选D.
[点睛]本题考查了合并同类项、绝对值和积的乘方,熟练掌握运算性质是解题的关键.
3.下列方程为一元一次方程的是()
A. x+2y=3B. y+3=0C. x2﹣2x=0D. +y=0
4.下列各组单项式中,为同类项的是()
A. a3与a2B. a2与2a2C. 2xy与2xD.﹣3与a
5.下列计算中正确的是()
A. B. C. D.
6. 、 两数在数轴上位置如图所示,将 、 、 、 用“<” 连接,其中正确的是()
二、填空题(每小题3分,满分30分)
11.青藏高原面积约为2 500 000方千米,将2 500 000用科学记数法表示应为______.
[答案]
[解析]
[分析]
科学计数法就是把一个数写成 的形式,其中 ,用科学计数法表示较大数时,n为非负整数,且n的值等于原数中整数部分的位数减去1, ,由
人教版七年级数学(上)期末测试题 含答案
A. B. C. D.人教版七年级数学(上)期末测试题一、选择题:(本大题共10小题,每小题3分,共30分.)1.如果+20%表示增加20%,那么-6%表示 ( )A .增加14%B .增加6%C .减少6%D .减少26%2.13-的倒数是 ( ) A .3 B . 13 C .-3 D . 13-3、如右图是某一立方体的侧面展开图 ,则该立方体是 ( )4、青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示为 ( )A.70.2510⨯ B.72.510⨯ C.62.510⨯D.52510⨯5、已知代数式3y 2-2y+6的值是8,那么32y 2-y+1的值是 ( ) A .1 B .2 C .3 D .46、2、在│-2│,-│0│,(-2)5,-│-2│,-(-2)这5个数中负数共有 ( )A .1 个B . 2个C . 3个D . 4个7.在解方程5113--=x x 时,去分母后正确的是 ( ) A .5x =15-3(x -1) B .x =1-(3 x -1)C .5x =1-3(x -1)D .5 x =3-3(x -1)8.如果x y 3=,)1(2-=y z ,那么x -y +z 等于 ( )A .4x -1B .4x -2C .5x -1D .5x -2 9. 如图1,把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .2m n - B .m n - C .2mD .2n图1 图2第9题 10. 如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是( )第10题A .这是一个棱锥B .这个几何体有4个面C .这个几何体有5个顶点D .这个几何体有8条棱二、填空题:(本大题共10小题,每小题3分,共30分)11.我市某天最高气温是11℃,最低气温是零下3℃,那么当天的最大温差是___℃.nn m n12.三视图都是同一平面图形的几何体有 、 .(写两种即可)13.多项式132223-+--x xy y x x 是_______次_______项式 14.若x=4是关于x的方程5x-3m=2的解,则m= . 15.多项式223368x kxy y xy --+-不含xy 项,则k = ;16.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是 . (用含m ,n 的式子表示)17.已知线段AB =10cm ,点D 是线段AB 的中点,直线AB 上有一点C ,并且BC =2 cm ,则线段DC = .18.钟表在3点30分时,它的时针和分针所成的角是 .19.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打___________折出售此商品20.一个几何体是由一些大小相同的小立方块摆成的,如下图是从正面、左面、上面看这个几何体得到的平面图形,那么组成这个几何体所用的小立方块的个数是 .从正面看 从左面看 从上面看三、解答题:本大题共6小题,共60分.解答时应写出文字说明、证明过程或演算步骤.21.计算:(共6分,每小题3分)AB mnx(1) 3x 2+6x+5-4x 2+7x -6, (2) 5(3a 2b-ab 2)—(ab 2+3a 2b )22.计算(共12分,每小题3分)(1)12-(-18)+(-7)-15 (2)(-8)+4÷(-2)(2)(-10)÷551⨯⎪⎭⎫⎝⎛- (4)121()24234-+-⨯-23.解方程:(共12分,每小题3分)(1)7104(0.5)x x -=-+ (2)0.5y —0.7=6.5—1.3y (3)3421x x =- (4)513x +-216x -=1.24.(5分)先化简,再求值:14×(-4x2+2x-8)-(12x-1),其中x=12.25.(5分)已知一个角的余角是这个角的补角的41,求这个角.26.(5分)跑的快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?27.(7分)如图,∠AOB =∠COD =900,OC 平分∠AOB ,∠BOD =3∠DOE 试求 ∠COE 的度数。
【湘教版】七年级数学上期末试卷(及答案)(3)
一、选择题1.随机调查某小区10户家庭一周内使用环保方便袋的数量.得到数据如下(单位:只):6,5,7,8,7,9,10,5,6,7,利用所得的数据估计该小区1500户家庭一周内需要环保方便袋约为( ) A .1500B .10500C .14000D .150002.一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.设这个数是x ,根据题意列方程是( ) A .21133327x x x x +++= B .21133327x x x ++= C .21133327x x x x ++=+ D .21133327x x x x ++=- 3.一个长方形的周长为32cm ,若这个长方形的长减少2cm ,宽增加3cm 就变成了一个正方形,设长方形的长为xcm ,可列方程( ). A .()2323x x +=-- B .()2163x x -=-+ C .()2323x x -=-+ D .()2163x x +=-- 4.若关于x 的方程250x a b ++=的解是3x =-,则代数式6210a b --的值为( ) A .6-B .0C .12D .185.为了了解2019年北京市乘坐地铁的每个人的月均花费情况,相关部门随机调查了1000人乘坐地铁的月均花费(单位:元),绘制了如下频数分布直方图,根据图中信息,下面三个推断中,合理的是( )①小明乘坐地铁的月均花费是75元,那么在所调查的1000人中一定有超过一半的人月均花费超过小明;②估计平均每人乘坐地铁的月均花费的不低于60元;③如果规定消费达到一定数额可以享受折扣优惠,并且享受折扣优惠的人数控制在20%左右,那么乘坐地铁的月均花费达到120元的人可享受折扣. A .①②B .①③C .②③D .①②③6.某校在开展“节约每一滴水” 的活动中,从九年级300名学生家庭中任选20名学生家庭某个月的节水量x (单位:t ),汇总整理成如下表: 节水量/x t 0.5 1.5x ≤<1.52.5x ≤<2.53.5x ≤<3.54.5x ≤<人数6284估计这300名学生家庭中这个月节水量少于2.5t 的户数为( ) A .180户B .120户C .60户D .80户7.如图,甲从点A 出发向北偏东65°方向走到点B ,乙从点A 出发向南偏西20°方向走到点C ,则BAC ∠的度数是( )A .85°B .135°C .105°D .150°8.如图,下列各个图形中,能用∠1,∠AOB ,∠O 三种方法表示同一角的图形是( )A .B .C .D .9.如图,点C 在线段AB 上,且13AC AB =.点D 在线段AC 上,且13CD AD =.E 为AC 的中点,F 为DB 的中点,且11EF =,则CB 的长度为( )A .15B .16C .17D .1810.观察一列单项式:x ,3 x 2,5 x 2,7x ,9x 2,11 x 2 ,…,则第2020个单项式是( ). A .4040x B .4040 x 2C .4039 xD .4039 x 211.如图是由5个大小相同的正方体组成的几何体,则该几何体从正面看得到的平面图形是( )A .B .C .D .12.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算78⨯和89⨯的两个示例.若用法国的“小九九”计算79⨯,左、右手依次伸出手指的个数是( )A .2,3B .3,3C .2,4D .3,4二、填空题13.某中学七年级甲、乙、丙三个班中,每班的学生人数都为40名.某次数学考试的成绩统计如下:(如图,每组分数含最小值,不含最大值)根据图、表提供的信息,则80~90分这一组人数最多的班是_____班.14.为了调查某校中学生对3月12日“植树节”是否了解,从该校全体学生1000名中,随机抽查了40名学生,结果显示有1名学生不了解,由此,估计该校全体学生中对“植树节”不了解的约有________名学生.15.线段15AB =,点P 从点A 开始向点B 以每秒1个单位长度的速度运动,点Q 从点B 开始向点A 以每秒2个单位长度的速度运动,当其中一个点到达终点时另一个点也随之停止运动,当2AP PQ =时,t 的值为________.16.已知:点A 在原点左侧,点B 在原点右侧,且点A 到原点的距离是点B 到原点距离的2倍,15AB =.点P 从点A 出发,以每秒1个单位长度的速度向点B 方向运动;同时,点Q 从点B 出发,先向点A 方向运动,当与点P 重合后,马上改变方向与点P 同向而行且速度始终为每秒2个单位长度.设运动时间为t 秒.①当点P 与点Q 重合时,t 的值为___;②当23AP AQ =时,t 的值为____秒. 17.如图,已知直线l 和直线外三点A ,B ,C ,按下列要求画图:(1)画射线AB ; (2)连接BC ;(3)反向延长BC 至D ,使得BD =BC ; (4)在直线l 上确定点E ,使得AE +CE 最小; (5)请你判断下列两个生活情景所蕴含的数学道理.情景一:如图从A 地到B 到地有4条道路,除它们外能否再修一条从A 地到B 地的最短道路?如果能,请你联系所学知识,在图上画出最短中线.情景二:同学们做体操时,为了保证一队同学站成一条直线,先让两个同学站好不动,其他同学依次往后站,要求目视前方只能看到各自前面的那个同学,请你说明其中的道理: .18.若210m m +-=,则2222022m m +-=______.19.有一数值转换器,原理如图所示,若开始输入x 的值是7,可以得出第1次输出的结果是12,第2次输出的结果是6,依次继续下去…,第2021次输出的结果是__________.20.如图是由一些大小相同的小正方体组成的简单几何体的左视图和俯视图,符合条件的几何体有_______种.三、解答题21.设中学生体质健康综合评定成绩为x 分,满分为100分,规定85100x 为A 级,7585x <为B 级,6075x <为C 级,60x <为D 级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了 名学生;a = ; (2)补全条形统计图;(3)扇形统计图中C 级对应的圆心角为 度; (4)若该校共有2000名学生,请你估计该校D 级学生有多少名?22.某校在开展“校园献爱心”活动中,共筹款9000元捐赠给西部山区男、女两种款式书包共70个,已知男款书包的单价为每个120元,女款书包的单价为每个140元.那么捐赠的两种书包各多少个?23.如图,已知O 是直线AC 上一点,OC 平分BOD ∠,160AOB ∠=︒,OE AC ⊥,求DOE ∠的度数.24.符号“f”表示一种运算,f (x )表示x 在运算f 作用下的结果,如f (x )=2x+1表示x 在运算f作用下的结果,它对一些数或式的运算结果如下:f(1)=2×1+1=3,f(-3)=2×(-3)+1=﹣5,f(m+1)=2(m+1)+1=2m+3,…利用以上规律计算:(1)f(2021)﹣f(2020)(2)f(2m2+3n)﹣f(2m2﹣3n)25.在一张长方形纸条上画一条数轴,并在两处虚线处,将纸条进行折叠,产生的两条折痕中,左侧折痕与数轴的交点记为A,右侧折痕与数轴的交点记为B.(1)若数轴上一点P(异于点B),且PA=AB,则P点表示的数为;(2)若数轴上有一点Q,使QA=3QB,求Q点表示的数;(3)若将此纸条沿两条折痕处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折(n≥2)次后,再将其展开,请直接写出最左端的折痕和最右端的折痕之间的距离(用含n的式子表示,可以不用化简).26.用5块正方体的木块搭出的几何体如图所示.(1)画出它从正面、左面、上面三个方向看到的形状图.(2)在这个图形中,再添加一个小正方体,使得它从正面和左面看到的形状图不变,操作后,请画出从上面看到的所有可能的形状图.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先求出10户家庭一周内使用环保方便袋的数量总和,然后求得样本平均数,最后乘以总数1500即可解答.【详解】解:∵某小区10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,9,10,5,6,7,∴平均每户使用方便袋的数量为:1(6+5+7+8+7+9+10+5+6+7)=7(只),10∴该小区1500户家庭一周内共需要环保方便袋约:7×1500=10500(只). 故选:B . 【点睛】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.2.A解析:A 【分析】可设这个数是x ,根据等量关系:这个数的三分之二+这个数的一半+这个数的七分之一+这个数=33,依此列出方程求解即可. 【详解】解:设这个数是x ,依题意有21133327x x x x +++=, 故选:A 【点睛】此题主要考查了由实际问题抽象出一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.3.B解析:B 【分析】根据长方形的长为xcm ,得到长方形的宽,结合题意列方程,即可得到答案. 【详解】∵长方形的长为xcm ∴长方形的宽为:()16x -cm 根据题意得:()2163x x -=-+ 故选:B . 【点睛】本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的性质,从而完成求解.4.A解析:A 【分析】将方程的解代回方程得56a b +=,再整体代入代数式求值即可. 【详解】解:把3x =-代入原方程得650a b -++=,即56a b +=, 则()62106256126a b a b --=-+=-=-. 故选:A . 【点睛】本题考查代数式求值和方程解的定义,解题的关键是掌握方程解的定义,以及利用整体代入的思想求值.5.D解析:D 【分析】①求出80元以上的人数,能确定可以判断此结论;②根据图中信息,可得大多数人乘坐地铁的月均花费在60−120之间,据此可得平均每人乘坐地铁的月均花费的范围;③该市1000人中,30%左右的人有300人,根据图形可得乘坐地铁的月均花费达到100元的人有300人可以享受折扣. 【详解】解:①超过月均花费80元的人数为:200+100+80+50+25+25+15+5=500,小明乘坐地铁的月均花费是75元,所调查的1000人中至少有一半以上的人月均花费超过小明;故①正确; ②根据图中信息,可得大多数人乘坐地铁的月均花费在60~120之间, 估计平均每人乘坐地铁的月均花费的范围是60~120,所以估计平均每人乘坐地铁的月均花费的不低于60元,此结论正确; ③∵1000×20%=200,而80+50+25+25+15+5=200,∴乘坐地铁的月均花费达到120元的人可以享受折扣.此结论正确; 综上,正确的结论为①②③, 故选:D . 【点睛】本题主要考查了频数分布直方图及用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.6.B解析:B 【分析】从图表中可得出20名学生家庭中这个月节水量少于2.5t 的人数是8人,所占比例为8100%40%20⨯=,再用总人数乘以所求比例即可得出答案. 【详解】解:估计这300名学生家庭中这个月节水量少于2.5t 的户数为:62300100%30040%12020+⨯⨯=⨯=(户) 故选:B . 【点睛】本题考查的知识点是用样本估计总数,比较简单,易于掌握.7.B解析:B【分析】︒-︒=︒,∠CAE=20°,∠EAD=90︒,根据如图,先求出∠BAD=906525∠=∠BAD+∠EAD+∠CAE即可计算得出答案.BAC【详解】︒-︒=︒,∠CAE=20°,∠EAD=90︒,如图,∵∠BAD=906525∴BAC∠=∠BAD+∠EAD+∠CAE=135°,故选:B..【点睛】此题考查方位角的计算,正确掌握方位角的表示及角度的和差计算是解题的关键.8.B解析:B【分析】根据角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【详解】解:A. 不能用∠O表示,选项A不符合题意;B. 能用∠1,∠AOB,∠O,选项B符合题意;C 不能用∠O表示,选项C不符合题意;D. 不能用∠O表示,选项D不符合题意.故选:B.【点睛】本题考查了角的表示方法,解决本题的关键是掌握表示角的方法.9.B解析:B【分析】=,然后根据题目中的线段比例关系用x表示出线段EF的长,令它等于11,解出设CB xx的值.【详解】=,解:设CB x∵13AC AB =,∴1122AC BC x ==, ∵13CD AD =,∴1148CD AC x ==, ∵E 是AC 中点,∴1124CE AC x ==, 111488DE CE CD x x x =-=-=,1988BD BC CD x x x =+=+=, ∵F 是BD 中点,∴19216DF BD x ==, 91111116816EF DF DE x x x =+=+==,解得16x =. 故选:B . 【点睛】本题考查线段之间和差计算,解题的关键是设未知数帮助我们理顺线段与线段之间的数量关系,然后列式求解未知数.10.C解析:C 【分析】先看系数的变化规律,然后看x 的指数的变化规律,从而确定第2013个单项式,进而得出第n 个单项式. 【详解】解:系数依次为1,3,5,7,9,11,…2n -1;x 的指数依次是1,2,2,1,2,2,1,2,2,可见三个单项式一个循环, 故可得第2020个单项式的系数为4039; ∵202067313=, ∴第2020个单项式指数与第一个数相同,为1, 故可得第2020个单项式是4039 x , 故选:C . 【点睛】本题考查了单项式的知识,属于规律型题目,解答本题关键是观察系数及指数的变化规律.11.A解析:A 【解析】 【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.【详解】从正面看,主视图有三列,正方体的数量分别是2、1、1.故选A.【点睛】本题考查了三种视图中的主视图,比较简单.12.C解析:C【分析】按照法国的“小九九”的算法,大于5时,左手伸出的手指数是第一个因数减5,右手伸出的手指数是第二个因数减5,即可得答案.【详解】∵计算78⨯和89⨯时,7-5=2,8-5=3,9-5=4,∴法国的“小九九”大于5的算法为左手伸出的手指数是第一个因数减5,右手伸出的手指数是第二个因数减5,∴计算79⨯,左、右手依次伸出手指的个数是7-5=2,9-5=4,故选:C.【点睛】本题主要考查有理数的乘法,解题的关键是掌握法国“小九九”伸出手指数与两个因数间的关系.二、填空题13.甲【分析】根据题意和统计图表中的信息可以得到甲乙丙三个班中80~90分这一组人数然后比较大小即可解答本题【详解】解:甲班80~90分这一组有40﹣2﹣5﹣8﹣12=13(人)乙班80~90分这一组有解析:甲【分析】根据题意和统计图表中的信息,可以得到甲、乙、丙三个班中80~90分这一组人数,然后比较大小,即可解答本题.【详解】解:甲班80~90分这一组有40﹣2﹣5﹣8﹣12=13(人),乙班80~90分这一组有40×(1﹣5%﹣10%﹣35%﹣20%)=12(人),丙班80~90分这一组有11人,∵13>12>11,∴80~90分这一组人数最多的是甲班,故答案为:甲.【点睛】本题考查频数分布直方图、扇形统计图、频数分布表,解答本题的关键是明确题意,利用数形结合的思想解答.14.【分析】先通过样本计算对植树节不了解的所占比例然后估计整体中对植树节不了解的人数【详解】解:随机抽查了40名学生中不了解人数占的百分比为×100=25则估计该校全体学生中对植树节不了解的学生人数为1解析:25【分析】先通过样本计算对“植树节”不了解的所占比例,然后估计整体中对“植树节”不了解的人数.【详解】解:随机抽查了40名学生中“不了解”人数占的百分比为140×100%=2.5%,则估计该校全体学生中对“植树节”不了解的学生人数为1000×2.5%=25人.故答案是:25.【点睛】 本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.15.或6【分析】根据时间与速度可以分别表示出APBQ 结合分别从相遇前和相遇后利用线段的和差关系计算出的值【详解】解:此题可分为两种情况进行讨论:①如图1点PQ 相遇前由题意得AP =tBQ =2tPQ =AB -解析:307或6 【分析】根据时间与速度可以分别表示出AP 、BQ ,结合2AP PQ =分别从相遇前和相遇后,利用线段的和差关系计算出t 的值.【详解】解:此题可分为两种情况进行讨论:①如图1,点P 、Q 相遇前,由题意得AP =t ,BQ =2t ,PQ =AB -AP -BQ ,当2AP PQ =时,t =2(15-t -2t),解得t =307; ②如图2,点P 、Q 相遇后,由题意得AP =t ,BQ =2t ,PQ =AP +BQ -AB ,当2AP PQ =时,t =2(t +2t -15),解得t =6.综上所述:t 的值为307或6. 故答案为:307或6. 【点睛】此题考查了与线段有关的动点问题,正确理解题意,利用线段的和差关系列出方程是解题的关键. 16.或10【分析】①根据点P 与点Q 运动的路程之和等于15列方程求解即可;②先求出点AB 表示的数再按照点Q 往左运动和点Q 往右运动两种情况求解【详解】①当点与点重合时得t+2t=15解得t=5故答案为:5; 解析:307或10 【分析】①根据点P 与点Q 运动的路程之和等于15列方程求解即可;②先求出点A 、B 表示的数,再按照点Q 往左运动和点Q 往右运动两种情况求解.【详解】①当点P 与点Q 重合时,得t+2t=15,解得t=5,故答案为:5;②∵点A 到原点的距离是点B 到原点距离的2倍,15AB =, ∴211510,15533OA OB =⨯==⨯=, ∵点A 在原点左侧,点B 在原点右侧,∴点A 表示的数是-10,点B 表示的数是5,点Q 往左运动时,点P 表示的数是-10+t ,点Q 表示的数是5-2t ,此时AP=t ,AQ=15-2t , 当23AP AQ =时, t=23(15-2t ), ∴t=307; 当点P 与点Q 运动5秒时相遇,点Q 往右运动,此时点P 表示的数是-5+(t-5)=t-10,点Q 表示的数是-5+2(t-5)=2t-15,∴AP=t ,AQ=2t-5, 当23AP AQ =时, t=23(2t-5),∴t=10,综上,当23AP AQ时,t的值为307或10秒,故答案为:307或10.【点睛】此题考查数轴上点的运动问题,数轴上两点之间的距离公式,一元一次方程的应用,正确表示数轴上两点之间的距离及理解相遇问题及追及问题分析是解题的关键.17.作图见详解;两点确定一条直线【分析】根据射线线段两点之间线段最短以及两点确定一条直线即可解决问题;【详解】解:(1)射线AB如图所示;(2)线段BC如图所示(3)线段BD如图所示(4)点E即为所求;解析:作图见详解;两点确定一条直线.【分析】根据射线,线段、两点之间线段最短,以及两点确定一条直线,即可解决问题;【详解】解:(1)射线AB,如图所示;(2)线段BC,如图所示,(3)线段BD如图所示(4)点E即为所求;(5)情景一:如图:由两点之间线段最短,即可得到线段AB;情景二:同学们做体操时,为了保证一队同学站成一条直线,先让两个同学站好不动,其他同学依次往后站,要求目视前方只能看到各自前面的那个同学,请你说明其中的道理:两点确定一条直线.故答案为:两点确定一条直线.【点睛】本题考查作图——复杂作图、直线、射线、线段的定义、两点之间线段最短,两点确定一条直线等知识,解题的关键是掌握所学的基本知识,属于中考常考题型.18.【分析】先把变形得到m2+m=1再把2m2+2m-2022变形为2(m2+m )-2022然后利用整体代入的方法计算【详解】解:∵m2+m-1=0∴m2+m=1∴2m2+2m-2022=2(m2+m )解析:2020-【分析】先把210m m +-=变形得到m 2+m=1,再把2m 2+2m-2022变形为2(m 2+m )-2022,然后利用整体代入的方法计算【详解】解:∵m 2+m-1=0,∴m 2+m=1,∴2m 2+2m-2022=2(m 2+m )-2022=2×1-2022=-2020.故答案为:-2020.【点睛】此题主要考查了代数式求值,熟练掌握运用整体代入计算是解答此题的关键. 19.4【分析】根据计算程序将每次的结果依次计算出来发现规律:每7次为一个循环组利用得到答案【详解】每次输出的结果为:第1次:12第2次:6第3次:3第4次:8第5次:4第6次:2第7次:7第8次:12每解析:4【分析】根据计算程序将每次的结果依次计算出来,发现规律:每7次为一个循环组,利用202172885÷=得到答案.【详解】 每次输出的结果为:第1次:12,第2次:6,第3次:3,第4次:8,第5次:4,第6次:2,第7次:7,第8次:12,,每7次为一个循环组,∵202172885÷=,∴第2021次输出的结果与第5次输出的结果相同,即为4,故答案为:4.【点睛】此题考查数字类规律探究,有理数的运算,掌握图形中的计算程序图的计算过程,发现计算结果的规律并运用规律解决问题是解题的关键.20.3三、解答题21.(1)50;24%;(2)补全图形见解析;(3)72;(4)160名.【分析】(1)由条形统计图得到B 级学生数,由扇形统计图得B 学生数占抽取学生总数的48%,用24除以48%得所抽取学生的总数即得前一个空的答案,由条形统计图得A 级学生数,用其除以所抽取的学生总数再化成百分数即得a 的值;(2)在(1)的基础上用抽取的总学生数减去A 、B 、D 级的学生数得到C 级的学生数,即可补全条形统计图;(3)用C 级的学生数除以所抽取的总学生数乘以360°即得;(4)先算得D 级学生数占所抽取学生总数的百分比,再乘以学校的学生总数即可.【详解】(1)2448%50÷=(名),1250100%24%a =÷⨯=;(2)C 级学生数为50-12-24-4=10(名)补全条形统计图如下图(3)103607250⨯︒=︒,故填72; (4)4100%200016050⨯⨯=(名) 所以该校D 级学生有160名.【点睛】此题综合考查了条形统计图和扇形统计图,还有用样本去估计全体的相关知识.其关键是领会两种统计图各自的特点和不足,合起来运用.条形统计图能清楚反映出各部分的具体数目,用扇形统计图能直观清楚的看出各部分占全部的百分比.22.捐赠男款书包40个,捐赠女款书包30个【分析】设捐赠男款书包x 个,则捐赠女款书包(70﹣x )个,根据题意可以列出相应的方程,从而可以解答本题.【详解】解:设捐赠男款书包x 个,则捐赠女款书包(70﹣x )个,依题意有120x +140(70﹣x )=9000,解得x =40,则70﹣x =70﹣40=30.故捐赠男款书包40个,捐赠女款书包30个.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程. 23.70︒.【分析】根据平角的定义,求∠BOC ,后利用角的平分线,垂直的定义计算即可.【详解】解:∵160AOB ∠=︒,∴18016020BOC AOC AOB ∠=∠-∠=︒-︒=︒,∵OC 平分BOD ∠,∴20COD BOC ∠=∠=︒,∵OE AC ⊥,∴90COE ∠=︒,∴902070DOE COE COD ∠=∠-∠=︒-︒=︒.【点睛】本题考查了平角的定义,角的平分线,垂直的定义,熟练掌握互补的定义,角的平分线的性质是解题的关键.24.(1)2;(2)12n【分析】(1)按新定义的运算法则代入计算即可;(2)按新定义法则将2m 2+3n ,2m 2﹣3n 代入转化为正常运算,去括号,合并同类项即可.【详解】解:(1)f (2021)﹣f (2020)=2×2021+1-2×2020-1,=4042-4040,=2;(2)f (2m 2+3n )﹣f (2m 2﹣3n )=2(2m 2+3n )+1-2(2m 2-3n )-1 , =4m 2+6n+1-4m 2+6n-1,=12n .【点睛】本题考查新定义运算,掌握行定义运算法则,利用新定义规则转化为正常运算是解题关键.25.(1)1;(2)2或5;(3)4-82n.【分析】(1)根据PA=AB,得出点P为线段AB的中点,即点A、B关于点P对称,即可求解.(2)设Q表示的数为m.分两种情形分别构建方程求解即可.(3)先求出每两条相邻折痕的距离,进一步得到最左端的折痕和最右端的折痕与数轴的交点表示的数,即可求得答案.【详解】解:(1)∵点A表示的数为-1,点B表示的数为3,∴数轴上一点P(异于点B),且PA=AB,则点P为线段AB的中点,即点P为1,故答案为1.(2)设Q表示的数为m.当点Q在线段AB上时,m+1=3(3-m),解得m=2,当点Q在AB的延长线上时,m+1=3(m-3),解得m=5,故答案为2或5.(3)∵对折n次后,每两条相邻折痕的距离为3(1)4 22n n--=,∴最左端的折痕与数轴的交点表示的数是-1+42n,最右端的折痕与数轴的交点表示的数是3-42n.∴最左端的折痕和最右端的折痕之间的距离为4-82n.【点睛】本题主要考查的是数轴的认识,找出对称中心是解题的关键.26.(1)详见解析;(2)详见解析.【解析】【分析】(1)利用三视图是从不同的角度观察图形得到图形,进而分别得出即可;(2)根据再添加一个小正方体,使得它的主视图和左视图不变,则可以在从左起第一行第2列或第3列添加一个立方体即可得出答案.【详解】(1)如图所示:(2)要使从正面看和从左面看的形状图不变,添加的一个小正方体只能在底层第2行空缺的两个位置上,故添加后从上面看的形状图是【点睛】本题考查了三视图的画法,根据三视图的定义从不同角度得出所看到的图形是解题关键.。
七年级数学(上)期末试卷(含答案)
七年级数学(上)期末试卷(含答案)一、选择题(共10小题,满分40分)1.一个数的相反数是﹣,则这个数是()A.B.2C.﹣D.﹣22.第七次全国人口普查显示,我国人口已达到141178万.把这个数据用科学记数法表示为()A.1.41178×107B.1.41178×108C.1.41178×109D.1.41178×10103.下列各组单项式中,不是同类项的是()A.﹣a2b与ab2B.7与2.1C.2xy与﹣5yx D.mn2与3n2m 4.当x=1时,代数式ax2﹣2bx+1的值为3,那么5﹣2a+4b的值是()A.1B.2C.3D.45.为了了解我市七年级学生每天用于学习的时间,对其中500名学生进行了调查,则下列说法错误的是()A.总体是我市七年级学生每天用于学习的时间B.其中500名学生每天用于学习的时间是总体的一个样本C.样本容量是500名D.个体是其中每名学生每天用于学习的时间6.下列等式变形正确的是()A.若4x=﹣5,则B.若ax=bx,则a=bC.若a2=b2,则a=b D.若,则x=y7.如图,O为直线AB上的一点,∠AOC=90°,∠DOE=90°,则图中∠BOE的余角共有()A.1个B.2个C.3个D.4个8.如图,点C是线段AB上一点,点M是线段AB的中点,点N是线段AC的中点.若线段MN的长为4,则线段BC的长度是()A.4B.6C.8D.109.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”形的图案,如图②所示,则这个“”形的图案的周长可以表示为()A.4a﹣8b B.8a﹣4b C.8a﹣8b D.4a﹣10b10.已知整数a1、a2、a3、a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|…,以此类推,则a2021的值为()A.﹣2018B.﹣1010C.﹣1009D.﹣1008二、填空题(共5小题,满分25分)11.比较大小:﹣﹣.12.已知关于x,y的二元一次方程组的解满足x+y=﹣5,则m的值是.13.一件商品如果按标价的八折销售,仍可获得25%的利润.已知该商品的成本价是40元,则该商品标价为元.14.如图,已知∠AOB=150°,∠COD=40°,∠COD在∠AOB的内部绕点O任意旋转,若OE平分∠AOC,则2∠BOE﹣∠BOD的值为°.15.点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+5|+(b﹣3)2=0.点P在数轴上,且满足AP=2PB,则点P对应的数为.三、解答题(共85分)16.计算:(1)5+2×(﹣6)﹣|﹣9|;(2).17.先化简,再求值:2(x2y﹣5x2+4y)﹣3(x2y﹣x2+y)+7x2,其中,y=3.18.解方程(组):(1);(2).19.(1)已知∠α,∠AOB,在图2中,求作:以OB为边,在∠AOB内部作∠BOC=∠α(要求:用直尺和圆规作图,不写作法,保留作图痕迹).(2)若∠AOB=50°,∠BOC=30°,OD平分∠AOC.求∠BOD的度数.20.《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买羊,人出五,不足四十五;人出七,不足三.问人数羊价各几何?”其大意是:今有人合伙买羊,若每人出五钱,还差四十五钱;若每人出七钱,还差三钱.问合伙人数和羊价各是多少?21.为了了解某中学学生体质健康达标情况,该校九年级兴趣小组随机抽查了本校若干名学生的体质健康达标情况(A.优秀:B.良好;C.合格;D.待合格),并将调查结果绘制成条形统计图和扇形统计图(不完整)请你根据图中提供的信息,解答下列问题:(1)此次调查的学生有人;(2)将两幅统计图补充完整;(3)根据抽样调查结果,请你估计该校2600名学生中,达到优良等级的学生共有多少人?22.某医疗器械厂计划用600万元资金采购一批口罩生产机器,其中甲型机器每台的售价为10万元,乙型机器每台的售价为45万元.(1)设购入甲型机器x台,完成下列表格.型号单价(万元)数量(台)总价(万元)甲10x乙45(2)在(1)的条件下,若购买甲型机器的数量是乙型机器数量的5倍还多3台,则甲、乙两种机器分别购入多少台?23.将1到2021之间的所有奇数按顺序排成下表:记P mn表示第m行第n个数,如P23表示第2行第3个数是17.(1)P45=;(2)若P mn=2021,则m=,n=;(3)将表格中的4个阴影格子看成一个整体(“T”字)并平移,所覆盖的4个数之和能否等于200?若能,求出4个数中的最大数;若不能,请说明理由.参考答案一、选择题(共10小题,满分40分)1.一个数的相反数是﹣,则这个数是()A.B.2C.﹣D.﹣2【分析】根据只有符号不同的两个数叫做互为相反数解答.解:的相反数是﹣.故选:A.2.第七次全国人口普查显示,我国人口已达到141178万.把这个数据用科学记数法表示为()A.1.41178×107B.1.41178×108C.1.41178×109D.1.41178×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:141178万=1411780000=1.41178×109,故选:C.3.下列各组单项式中,不是同类项的是()A.﹣a2b与ab2B.7与2.1C.2xy与﹣5yx D.mn2与3n2m 【分析】根据同类项的意义判断即可.解:A.﹣a2b与ab2所含字母相同,但相同字母的指数不相同,故不是同类项,故本选项符合题意;B.7与2.1是同类项,故本选项不合题意;C.2xy与﹣5yx所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意;D.mn2与3n2m所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意;故选:A.4.当x=1时,代数式ax2﹣2bx+1的值为3,那么5﹣2a+4b的值是()A.1B.2C.3D.4【分析】由已知条件得出a﹣2b=2,将原式后两项提取﹣2,代入计算即可.解:根据题意,将x=1代入ax2﹣2bx+1=3,得:a﹣2b=2,则5﹣2a+4b=﹣2(a﹣2b)+5=﹣2×2+5=﹣4+5=1.故选:A.5.为了了解我市七年级学生每天用于学习的时间,对其中500名学生进行了调查,则下列说法错误的是()A.总体是我市七年级学生每天用于学习的时间B.其中500名学生每天用于学习的时间是总体的一个样本C.样本容量是500名D.个体是其中每名学生每天用于学习的时间【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.解:本题考查的是总体、个体和样本的概念.其中选项A、B、D都正确,而C中,样本容量是样本中包含的个体的数目,不能带单位,所以错误.故选:C.6.下列等式变形正确的是()A.若4x=﹣5,则B.若ax=bx,则a=bC.若a2=b2,则a=b D.若,则x=y【分析】根据等式的基本性质逐一判断即可.解:A.若4x=﹣5,则x=﹣,故A不符合题意;B.若ax=bx(x≠0),则a=b,故B不符合题意;C.若a2=b2,则a=±b,故C不符合题意;D.若,则x=y,故D符合题意;故选:D.7.如图,O为直线AB上的一点,∠AOC=90°,∠DOE=90°,则图中∠BOE的余角共有()A.1个B.2个C.3个D.4个【分析】根据余角的和等于90°,结合图形找出构成直角的两个角,然后再计算对数.解:∵∠AOC=∠DOE=90°,∴∠AOD+∠BOE=90°,∠COE+∠BOE=90°.∴∠BOE的余角共有2个.故选:B.8.如图,点C是线段AB上一点,点M是线段AB的中点,点N是线段AC的中点.若线段MN的长为4,则线段BC的长度是()A.4B.6C.8D.10【分析】根据点M是线段AC的中点,点N是线段BC的中点,可知:MN=AM﹣AN=AB﹣AC=(AC﹣BC)=BC,继而即可得出答案.解:∵点M是线段AB的中点,点N是线段AC的中点,MN=AM﹣AN=AB﹣AC=(AC﹣BC)=BC,∵MN=4,∴BC=8.故选:C.9.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”形的图案,如图②所示,则这个“”形的图案的周长可以表示为()A.4a﹣8b B.8a﹣4b C.8a﹣8b D.4a﹣10b【分析】根据图形和题意,可以得到这个“”形的图案的周长为4a+4(a﹣b),然后去括号,合并同类项即可.解:由图②可得,这个“”形的图案的周长可以表示为:4a+4(a﹣b)=4a+4a﹣4b=8a﹣4b,故选:B.10.已知整数a1、a2、a3、a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|…,以此类推,则a2021的值为()A.﹣2018B.﹣1010C.﹣1009D.﹣1008【分析】根据前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值a2n=﹣n,序数为奇数时,其最后的数值a2n+1=﹣+1,从而得到答案.解:a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,a6=﹣|a5+5|=﹣|﹣2+5|=﹣3,a7=﹣|a6+6|=﹣|﹣3+6|=﹣3,…以此类推,经过前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,序数为奇数时,其最后的数值a2n+1=﹣+1,则a2021=﹣+1=﹣1011+1=﹣1010,故选:B.二、填空题(共5小题,满分25分)11.比较大小:﹣<﹣.【分析】根据负有理数比较大小的方法比较(绝对值大的反而小).解:根据两个负数,绝对值大的反而小的规律得出:﹣<﹣.12.已知关于x,y的二元一次方程组的解满足x+y=﹣5,则m的值是﹣24.【分析】把两个方程相加即可求出x+y=,再根据x+y=﹣5,即可=﹣5,然后进行计算即可.解:,①+②得:5x+5y=m﹣1,∴x+y=,∵x+y=﹣5,∴=﹣5,∴m﹣1=﹣25,∴m=﹣24,故答案为:﹣24.13.一件商品如果按标价的八折销售,仍可获得25%的利润.已知该商品的成本价是40元,则该商品标价为62.5元.【分析】设该商品标价为x元,利用利润=售价﹣成本价,即可得出关于x的一元一次方程,解之即可得出该商品的标价.解:设该商品标价为x元,依题意得:80%x﹣40=40×25%,解得:x=62.5.故答案为:62.5.14.如图,已知∠AOB=150°,∠COD=40°,∠COD在∠AOB的内部绕点O任意旋转,若OE平分∠AOC,则2∠BOE﹣∠BOD的值为110°.【分析】根据角平分线的意义,设∠DOE=x,根据∠AOB=150°,∠COD=40°,分别表示出图中的各个角,然后再计算2∠BOE﹣∠BOD的值即可.解:如图:∵OE平分∠AOC,∴∠AOE=∠COE,设∠DOE=x,∵∠COD=40°,∴∠AOE=∠COE=x+40°,∴∠BOC=∠AOB﹣∠AOC=150°﹣2(x+40°)=70°﹣2x,∴2∠BOE﹣∠BOD=2(70°﹣2x+40°+x)﹣(70°﹣2x+40°)=140°﹣4x+80°+2x﹣70°+2x﹣40°=110°,当角AOC小于80度时,OD在OE左侧,同法可得,2∠BOE﹣∠BOD=110°当OD和OE重合时,同法可得,2∠BOE﹣∠BOD=110°故答案为:110.15.点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+5|+(b﹣3)2=0.点P在数轴上,且满足AP=2PB,则点P对应的数为或11.【分析】根据|a+5|+(b﹣3)2=0,可以先求出a、b的值,然后根据AP=2PB,利用分类讨论的方法,列出相应的方程,然后求解.解:∵|a+5|+(b﹣3)2=0,∴a+5=0,b﹣3=0,解得a=﹣5,b=3,∴点A表示的数为﹣5,点B表示的数为3,设点P表示的数为x,∵AP=2PB,∴当点P在点A和点B之间时,x﹣(﹣5)=2(3﹣x),解得x=;当点P在点B的右侧时,x﹣(﹣5)=2(x﹣3),解得x=11;当点P在点A的左侧时,(﹣5)﹣x=2(3﹣x),解得x=11(不合题意,舍去);由上可得,点P对应的数为或11,故答案为:或11.三、解答题(共85分)16.计算:(1)5+2×(﹣6)﹣|﹣9|;(2).【分析】(1)先算乘法和去绝对值,然后算加减法即可;(2)先算乘方和去括号,然后算乘除法、最后算加减法.解:(1)5+2×(﹣6)﹣|﹣9|=5+(﹣12)﹣9=﹣7﹣9=﹣16;(2)=﹣1﹣4×()+3÷(﹣9)=﹣1﹣4×(﹣)+3×(﹣)=﹣1++(﹣)=﹣1.17.先化简,再求值:2(x2y﹣5x2+4y)﹣3(x2y﹣x2+y)+7x2,其中,y=3.【分析】先去括号、合并同类项化简原式,再将x和y的值代入计算可得.解:原式=2x2y﹣10x2+8y﹣3x2y+3x2﹣3y+7x2=﹣x2y+5y,当x=﹣,y=3时,原式=+5×3=﹣+15=.18.解方程(组):(1);(2).【分析】(1)方程去分母、去括号、移项、合并同类项、系数化为1即可;(2)方程组利用加减消元法解答即可.解:(1),去分母,得4(x+2)﹣3(2x﹣1)=12,去括号,得4x+8﹣6x+3=12,移项,得4x﹣6x=12﹣8﹣3,合并同类项,得﹣2x=1,系数化为1,得x=﹣;(2),①﹣②×2,得2y=3,解得y=,把y=代入②,得x=,故方程组的解为.19.(1)已知∠α,∠AOB,在图2中,求作:以OB为边,在∠AOB内部作∠BOC=∠α(要求:用直尺和圆规作图,不写作法,保留作图痕迹).(2)若∠AOB=50°,∠BOC=30°,OD平分∠AOC.求∠BOD的度数.【分析】(1)根据画一个角等于已知角的方法即可在∠AOB内部作∠BOC=∠α;(2)结合(1)根据角平分线定义即可解决问题.解:(1)如图,∠BOC即为所求;(2)∵∠AOB=50°,∠BOC=30°,∴∠AOC=∠AOB﹣∠BOC=20°,∵OD平分∠AOC.∴∠COD=AOC=10°,∴∠BOD=∠BOC+∠COD=40°.20.《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买羊,人出五,不足四十五;人出七,不足三.问人数羊价各几何?”其大意是:今有人合伙买羊,若每人出五钱,还差四十五钱;若每人出七钱,还差三钱.问合伙人数和羊价各是多少?【分析】设合伙人数为x,根据“若每人出五钱,还差四十五钱;若每人出七钱,还差三钱”,即可得出关于x的一元一次方程,解之即可求出合伙人数,再将其代入(5x+45)中即可求出羊价.解:设合伙人数为x,依题意得:5x+45=7x+3,解得:x=21,∴5x+45=5×21+45=150.答:合伙人数为21,羊价为150钱.21.为了了解某中学学生体质健康达标情况,该校九年级兴趣小组随机抽查了本校若干名学生的体质健康达标情况(A.优秀:B.良好;C.合格;D.待合格),并将调查结果绘制成条形统计图和扇形统计图(不完整)请你根据图中提供的信息,解答下列问题:(1)此次调查的学生有120人;(2)将两幅统计图补充完整;(3)根据抽样调查结果,请你估计该校2600名学生中,达到优良等级的学生共有多少人?【分析】(1)用A类人数除以它所占的百分比即可得到调查的总人数;(2)先计算出C类人数,进而得出D类人数,然后补全条形统计图;(3)利用样本估算总体即可.解:(1)此次调查的学生有:24÷20%=120(人);故答案为:120;(2)C类人数有:120×30%=36(人),D类人数有:120﹣24﹣36﹣48=12(人),补全统计图如下:(3)2600×=1560(人),答:估计该校2600名学生中,达到优良等级的学生共有1560人.22.某医疗器械厂计划用600万元资金采购一批口罩生产机器,其中甲型机器每台的售价为10万元,乙型机器每台的售价为45万元.(1)设购入甲型机器x台,完成下列表格.型号单价(万元)数量(台)总价(万元)甲10x10x乙45(600﹣10x)(2)在(1)的条件下,若购买甲型机器的数量是乙型机器数量的5倍还多3台,则甲、乙两种机器分别购入多少台?【分析】(1)设购入甲型机器x台,则购入甲型机器所需总价为10x万元,购入乙型机器所需总价为(600﹣10x)万元,购入乙型机器台;(2)根据购买甲型机器的数量是乙型机器数量的5倍还多3台,即可得出关于x的一元一次方程,解之即可得出结论.解:(1)设购入甲型机器x台,则购入甲型机器所需总价为10x万元,购入乙型机器所需总价为(600﹣10x)万元,购入乙型机器台.故答案为:10x,,(600﹣10x);(2)依题意得:x=5×+3,解得:x=33,=6(台),答:购入甲型机器33台,乙型机器6台.23.将1到2021之间的所有奇数按顺序排成下表:记P mn表示第m行第n个数,如P23表示第2行第3个数是17.(1)P45=45;(2)若P mn=2021,则m=169,n=3;(3)将表格中的4个阴影格子看成一个整体(“T”字)并平移,所覆盖的4个数之和能否等于200?若能,求出4个数中的最大数;若不能,请说明理由.【分析】(1)根据题意可知P45表示第4行第5个数,每行都有6个数,所有的数字都是奇数,然后即可计算出相应的值;(2)根据题意,可以得到2[6(m﹣1)+n]﹣1=2021,然后m为整数,1≤n≤6,即可得到m、n的值;(3)先判断,然后设4个阴影格子中的数分别为2n﹣3、2n﹣1、2n+1、2n+11,即可列出相应的方程,然后求解即可说明理由.解:(1)由题意可得,P45=2×(6×3+5)﹣1=45,故答案为:45;(2)∵P mn=2021,∴2[6(m﹣1)+n]﹣1=2021,∴12m+2n﹣13=2021,∵m为正整数,1≤n≤6,∴m=169,n=3,故答案为:169,3;(3)所覆盖的4个数之和能等于200,理由:设4个阴影格子中的数分别为2n﹣3、2n﹣1、2n+1、2n+11,由题意可得(2n﹣3)+(2n﹣1)+(2n+1)+(2n+11)=200,解得:n=24,∴所覆盖的4个数之和能等于200。
【必考题】七年级数学上期末试卷带答案 (3)
解:设这个角为x度.
则180°-x=3(90°-x)-20°,
【分析】
根据负数的绝对值越大,这个数反而越小,可以对A、C、D进行判断;根据同分子分数大小比较的方法进行比较即可作出判断.
【详解】
A.﹣3<﹣1,所以A选项错误;
B. < ,所以B选项错误;
C.﹣ >﹣ ,所以C选项错误;
D.﹣ >﹣ ,所以D选项正确.
故选D.
【点睛】
本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.
【点睛】
本题考查了相反数、绝对值以及有理数的加法运算,熟练掌握相关知识并运用分类思想是解题的关键.
2.A
解析:A
【解析】
【分析】
把 代入方程 ,得出一个关于a的方程,求出方程的解即可.
【详解】
把 代入方程 得:
8-9=3a-4
解得:a=1
故选:A.
【点睛】
本题考查了解一元一次方程和一元二次方程的解,能够得出关于a的一元一次方程是解此题的关键.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
根据相反数的意义可求得x的值,根据绝对值的意义可求得y的值,然后再代入x+y中进行计算即可得答案.
【详解】
∵ 是 的相反数, ,
∴x=3,y=±5,
当x=3,y=5时,x+y=8,
当x=3,y=-5时,x+y=-2,
故选C.
C. ,故该选项正确
D. ,不能计算,故该选项错误
故选:C
【点睛】
本题考查了合并同类项,掌握合并同类项法则是解题的关键.
七年级(上)期末数学试卷(含答案) (3)
北京市丰台区2018-2019学年七年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)在﹣3,﹣1,2,0这四个数中,最小的数是()A.﹣3 B.﹣1 C.2 D.02.(3分)如图所示的圆柱体从正面看得到的图形可能是()A.B.C.D.3.(3分)北京某天的最高气温是6℃,最低气温是﹣1℃,则这天的温差是()A.﹣7℃B.﹣5℃C.5℃D.7℃4.(3分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱5.(3分)如图,小红用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能解释这一现象的数学知识是()A.经过一点能画无数条直线B.两点之间,线段最短C.两点确定一条直线D.连接两点间的线段的长度,叫做这两点的距离6.(3分)下列运算正确的是()A.4m﹣m=3 B.a3﹣a2=a C.2xy﹣yx=xy D.a2b﹣ab2=07.(3分)2018年10月24日珠港澳大桥正式通车,它是中国境内一座连接珠海、香港和澳门的桥隧工程.其中海底隧道由33节巨型沉管等部件组成,已知每节沉管重约74000吨,那么珠港澳大桥海底隧道所有巨型沉管的总重量约为()A.7.4×104吨B.7.4×105吨C.2.4×105吨D.2.4×106吨8.(3分)有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是()A.a>b B.﹣ab<0 C.|a|<|b| D.a<﹣b9.(3分)如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等的图形是()A.B.C.D.10.(3分)如图,表中给出的是某月的月历,任意选取“H”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是()A.63 B.70 C.96 D.105二、填空题(本题共16分,每小题2分)11.(2分)绝对值等于3的数是.12.(2分)单项式﹣x2y3的系数是,次数是.13.(2分)若a,b互为相反数,则5a+5b的值为.14.(2分)若∠α=47°30′,则∠α的补角的度数为.15.(2分)若x=4是关于x的一元一次方程ax=x﹣1的解,则a=.16.(2分)学习直线、射线、线段时,老师请同学们交流这样一个问题:直线上有三点A,B,C,若AB=6,BC=2,点D是线段AB的中点,请你求出线段CD的长.小华同学通过计算得到CD的长是5.你认为小华的答案是否正确(填“是”或“否”).你的理由是.17.(2分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了6天才到达目的地.若设此人第一天走的路程为x里,依题意可列方程为.18.(2分)一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.集合中的元素是互不相同的,如一组数1,2,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比有理数可以进行加法运算,集合也可以“相加”.我们规定:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为A+B.若已知A={﹣2,0,1,4,6},B={﹣1,0,4},则A+B.三、解答题(本题共54分,第19题3分,第20-21题,每小题3分,第22-26题,每小题3分,第27-29题,每小题3分)19.(3分)计算:﹣7﹣(﹣13)+(﹣9).20.(4分)计算:﹣8×(+﹣)21.(4分)计算:(﹣1)2019+|﹣|÷(﹣4)×822.(5分)解方程:2x+3(5﹣x)=4.23.(5分)=1﹣.24.(5分)如图,平面上有三个点A,O,B.(1)画直线OA,射线OB;(2)连接AB,用圆规在射线OB上截取OC=AB(保留作图痕迹);(3)用量角器测量∠AOB的大小(精确到度).25.(5分)先化简,再求值:3(a2b+ab2)﹣(3a2b﹣1)﹣ab2﹣1,其中a=1,b=﹣3.26.(5分)如图,∠CAB+∠ABC=90°,AD平分∠CAB,与BC边交于点D,BE平分∠ABC与AC 边交于点E.(1)依题意补全图形,并猜想∠DAB+∠EBA的度数等于;(2)证明以上结论.证明:∵AD平分∠CAB,BE平分∠ABC,∴∠DAB=∠CAB,∠EBA=.(理由:)∵∠CAB+∠ABC=90°,∴∠DAB+∠EBA=×(∠+∠)=.27.(6分)某校初一年级两个班的学生要到航天科普教育基地进行社会大课堂活动,两班学生共104人,其中初一(1)班有40多人,不足50人,教育基地门票价格如下:原计划两班都以班为单位购票,则一共应付1136元,请回答下列问题:(1)初一(1)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?28.(6分)如图,数轴上点A对应的有理数为10,点P以每秒1个单位长度的速度从点A出发,点Q以每秒3个单位长度的速度从原点O出发,且P、Q两点同时向数轴正方向运动,设运动时间为t秒.(1)当t=2时,P,Q两点对应的有理数分別是,,PQ=;(2)当PQ=8时,求t的值.29.(6分)阅读下面一段文字:问题:0.能化为分数形式吗?探求:步骤①设x=0.,步骤②10x=10×,步骤③10x=7.,则10x=7×,步骤④10x=7+x,解得:x=.根据你对这段文字的理解,回答下列问题:(1)步骤①到步骤②的依据是;(2)仿照上述探求过程,请你尝试把0.化为分数形式:步骤①设x=0.,步骤②100x=100×,步骤③;步骤④,解得x=;(3)请你将0.3化为分数形式,并说明理由.参考答案一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.解:如图所示,,由图可知,四个数中﹣3最小.故选:A.2.解:一个直立在水平面上的圆柱体,从正面看是一个矩形,故选:B.3.解:这天的温差为6﹣(﹣1)=6+1=7(℃),故选:D.4.解:观察图形可知,这个几何体是三棱柱.故选:A.5.解:小红用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能解释这一现象的数学知识是两点之间,线段最短,故选:B.6.解:(A)原式=3m,故A错误;(B)原式=a3﹣a2,故B错误;(D)原式=a2b﹣ab2,故D错误;故选:C.7.解:74000×33=2442000(吨),2442000吨≈2.4×106吨.故选:D.8.解:∵由图可知a<0<b,且|a|>|b|,∴a<﹣b.故选:D.9.解:A、∠α=∠β=90°﹣45°=90°,能判断∠α和∠β相等,故本选项错误;B、∠α和∠β都等于90°减去重合的角,故本选项错误;C、不能判断∠α和∠β相等,故本选项正确;D、∠α=∠β=180°﹣45°=135°,能判断∠α和∠β相等,故本选项错误.故选:C.10.解:设“H”型框中的正中间的数为x,则其他6个数分别为x﹣8,x﹣6,x﹣1,x+1,x+6,x+8,这7个数之和为:x﹣8+x﹣6+x﹣1+x+1+x+x+6+x+8=7x.由题意得A、7x=63,解得:x=9,能求得这7个数;B、7x=70,解得:x=10,能求得这7个数;C、7x=96,解得:x=,不能求得这7个数;D、7x=105,解得:x=15,能求得这7个数.故选:C.二、填空题(本题共16分,每小题2分)11.解:绝对值等于3的数是±3.12.解:单项式﹣x2y3的系数为﹣,次数为5.故答案为:﹣,5.13.解:∵a,b互为相反数,∴5a+5b=5(a+b)=0.故答案为:0.14.解:180°﹣47°30′=132°30′,故答案为:132°30′.15.解:把x=4代入方程ax=x﹣1得:4a=4﹣1,解得:a=,故答案为:.16.解:如图1,∵AB=6,点D是线段AB的中点,∴DB=3,又BC=2,∴DC=5;如图2,∵AB=6,点D是线段AB的中点,∴DB=3,又BC=2,∴DC=1,∴小华的答案不正确,因为线段DC的长为1或5,故答案为:否;当点C在线段AB上时,CD=1或5.17.解:设此人第一天走的路程为x里,根据题意得:x+++++=378.故答案为:x+++++=378.18.解:∵A={﹣2,0,1,4,6},B={﹣1,0,4},∴由集合的定义,可得A+B={﹣2,﹣1,0,1,4,6}.故答案为:={﹣2,﹣1,0,1,4,6}.三、解答题(本题共54分,第19题3分,第20-21题,每小题3分,第22-26题,每小题3分,第27-29题,每小题3分)19.解:原式=﹣7+13﹣9=﹣3.20.解:原式=﹣1﹣2+12=9.21.解:原式=﹣1﹣××8=﹣1﹣1=﹣2.22.解:去括号得:2x+15﹣3x=4,移项合并得:﹣x=﹣11,解得:x=11.23.解:去分母得:4x﹣1=6﹣6x+2,移项合并得:10x=9,解得:x=0.9.24.解:(1)如图所示,直线OA和射线OB即为所求;(2)如图所示,线段OC即为所求;(3)∠AOB约为40°.25.解:原式=3a2b+3ab2﹣3a2b+1﹣ab2﹣1=2ab2,当a=1,b=﹣3时,原式=2×1×(﹣3)2=2×9=18.26.解:(1)补全图形,并猜想∠DAB+∠EBA的度数等于45°;(2)证明:∵AD平分∠CAB,BE平分∠ABC,∴∠DAB=∠CAB,∠EBA=∠CBA.(理由:角平分线的定义)∵∠CAB+∠ABC=90°,∴∠DAB+∠EBA=×(∠CAB+∠ABC)=45°.故答案为:45°,∠CAB,角平分线的定义,,∠CAB,∠ABC,45°.27.解:(1)设初一(1)班有x人,则初一(2)班有(104﹣x)人,12x+10(104﹣x)=1136,解得,x =48,答:初一(1)有48人; (2)两个班一起购票最省钱,1136﹣8×104=1136﹣832=304(元), 即可以节省304元.28.解:(1)∵10+2×1=12,3×2=6,∴当t =2时,P ,Q 两点对应的有理数分别是12,6, ∴PQ =12﹣6=6. 故答案为:12;6;6;(2)运动t 秒时,P ,Q 两点对应的有理数分别是10+t ,3t . ①当点P 在点Q 右侧时, ∵PQ =8,∴(10+t )﹣3t =8, 解得:t =1;②当点P 在点Q 左侧时, ∵PQ =8,∴3t ﹣(10+t )=8, 解得:t =9.综上所述,t 的值为1秒或9秒.29.解:(1)步骤①到步骤②的依据是等式的基本性质2. 故答案为等式的基本性质2;(2)把0.化为分数形式:步骤①设x =0.,步骤②100x =100×,步骤③100x =37.,则100x =37+0.;步骤④100x =37+x ,解得x =.故答案为100x =37.,则100x =37+0.;100x =37+x ,;11(3)设x =0.,10x =10×0.,10x =8.,10x =8+0.,10x =8+x ,解得:x =.设m =0.3,10m =3.=3+=,m =. 即0.3=.。
人教版七年级上学期数学《期末检测试卷》附答案解析
期末测 试 卷
学校________班级________姓名________成绩________
一、选择题
1. 的倒数是[]
A. B. C. D.
2.x=-2是方程2a+3x=-16的解,则a的值是()
A.5B.-5C.-11D.11
3.有理数a,b,c在数轴上 位置如图所示,下列关系正确的是()
A.|a|>|b|B.a>﹣bC.b<﹣aD. ﹣a=b
4.下列说法错误的是()
A. 是二次三项式B. 不是单项式
C. 的系数是 D. 的次数是6
5.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):
城市
悉尼
纽约
时差/时
当北京6月15日23时,悉尼、纽约的时间分别是()
(3)点A. B以(2)中的速度同时向右运动,点P从原点O以7个单位/秒的速度向右运动,是否存在常数m,使得4AP+3OB−mOP为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.
答案与解析
一、选择题
1. 的倒数是[]
A. B. C. D.
[答案]C
[解析]
先化为假分数,再根据乘积是1的两个数互为倒数解答:
A.4个B.3个C.2个D.1个
[答案]B
[解析]
[分析]
根据互为补角的两个角的和等于180°可得∠A+∠B=180°,再根据互为余角的两个角的和等于90°对各小题分析判断即可得解.
[详解]解:∵∠A和∠B互补,
∴∠A+∠B=180°,
①∵∠B+(90°-∠B)=90°,
∴90°-∠B是∠B的余角,
人教版七年级数学上册期末测试题含答案 (3)
七年级(上)期末目标检测数学试卷(三)一、选择题(每小题3分,共30分)1.a 、b ,在数轴上表示如图1,下列判断正确的是( )A .0>+b aB .01>+bC .01<--bD .01>+a 2.如图2,在下列说法中错误的是( )A .射线OA 的方向是正西方向B .射线OB 的方向是东北方向C .射线OC 的方向是南偏东60°D .射线OD 的方向是南偏西55°3.下列运算正确的是( )A.235=-x xB.ab b a 532=+C.ab ba ab =-2D.a b b a +=--)(4.如果有理数b a ,满足0>ab ,0<+b a ,则下列说法正确的是( )A.0,0>>b aB.0,0><b aC.0,0<<b aD.0,0<>b a 5.若0|2|)1(2=++-n m ,如n m +的值为( )A.1-B.3-C.3D.不确定 6.若0||>a ,那么( )A.0>aB.0<aC.0≠aD.a 为任意有理数 7.平面内有三个点,过任意两点画一条直线,则可以画直线的条数是( ) A.2条 B.3条 C.4条 D.1条或3条 8.将长方形的纸ABCD 沿AE 折叠,得到如图3 所示的图形,已知∠CED′=60º.则∠AED 的是( ) A.60º B.50º C.75º D.55º9.在正方体的表面上画有如图4 a 所示的粗线,图4 b 是其展开图的示意图,但只在A 面上有粗线,那么将图4 a 中剩余两个面中的粗线画入图4 b 中,画法正确的是( )10.一家三口人(父亲、母亲、女儿)准备参加旅游团外出旅游,甲旅行社告知“父母全票,女儿半价优惠”,乙旅行社告知家庭可按团体票计价,即每人均按全价54收费。
苏科版数学七年级上学期期末测试题 (3)含答案
苏科版数学七年级上学期期末测试题一、选择题(本大题共8小题,共24.0分)1.在−3,1,0,−1这四个数中,最大的数是()A. −3B. −1C. 0D. 1【答案】D【解析】解:根据题意得:−3<−1<0<1,则最大的数是1,故选:D.将各数按照从小到大顺序排列,找出最大的数即可.此题考查了有理数大小比较,将各数按照从小到大顺序排列是解本题的关键.2.如图,左面的图形绕虚线旋转一周,可以得到的几何体是()A. B. C. D.【答案】B【解析】解:图形绕虚线旋转一周,可以得到的几何体是圆锥,故选:B.根据三角形绕一直角边旋转是圆锥,于是得到结论.此题主要考查了面动成体,题目比较简单.3.把原来弯曲的河道改直,两地间的河道长度会变短,这其中蕴含的数学道理是()A. 两地之间线段最短B. 直线比曲线短C. 两点之间直线最短D. 两点确定一条直线【答案】A【解析】解:把原来弯曲的河道改直,两地间的河道长度会变短,这其中蕴含的数学道理是两地之间线段最短.故选:A.直接利用线段的性质进而分析得出答案.本题考查的是线段的性质,正确掌握两点之间线段最短是解题关键.4.下列是一元一次方程的是()A. 3x−2=xB. 20−35=−15C. x+y=2D. x2−2x+1=0【答案】A【解析】解:A.整理得:2x−2=0,符合一元一次方程的定义,A项正确,B.不含有未知数,不是一元一次方程,B项错误,C.含有两个未知数,属于二元一次方程,不是一元一次方程,C项错误,D.未知数的最高次数为2,属于一元二次方程,不是一元一次方程,D项错误,故选:A.根据一元一次方程的定义,依次分析各个选项,找出是一元一次方程的选项即可.本题考查了一元一次方程的定义,正确掌握一元一次方程的定义是解题的关键.5.下列计算正确的是()A. 3a+4b=7abB. 7a−3a=4C. 3a+a=3a2D. 3a2b−4a2b=−a2b【答案】D【解析】解:A、3a和4b不是同类项,不能合并,故本选项错误;B、字母不应去掉.故本选项错误;C、字母的指数不应该变,故本选项错误;D、符合合并同类项的法则,故本选项正确.故选:D.根据合并同类项的法则,系数相加作为系数,字母和字母的指数不变,进行判断.本题考查合并同类项的知识,难度不大,注意掌握合并同类项的法则是关键.6.同学小明在用一副三角板画出了许多不同度数的角,但下列哪个度数他画不出来()A. 15∘B. 65∘C. 75∘D. 135∘【答案】B【解析】解:一副三角板中有30∘,45∘,60∘和90∘,60∘−45∘=15∘,30∘+45∘=75∘,45∘+90∘=135∘,所以可画出15∘、75∘和135∘等,但65∘画不出.故选:B.利用一副三角板可画出15∘的整数倍的角.本题考查了角的计算:熟练掌握角度的加减运算.7.已知a−b=3,c+d=2,则(a+c)−(b−d)的值为()A. 1B. −1C. 5D. −5【答案】C【解析】解:∵a−b=3,c+d=2,∴原式=a+c−b+d=(a−b)+(c+d)=3+2=5.故选:C.原式去括号整理后,将已知等式代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.8.某超市推出如下购物优惠方案:(1)一次性购物在80元(不含80元)以内时,不享受优惠;(2)一次性购物在80元(含80元)以上,300元(不含300元)以内时,一律享受九折的优惠;(3)一次性购物在300元(含300元)以上时,一律享受八折的优惠,某顾客在本超市两次购物分别付款65元、252元,如果他改成在本超市一次性购买与上两次完全相同的商品,则应付款()A. 316元B. 304元或316元C. 276元D. 276元或304元【答案】D【解析】解:设第一次购买物品的原价为x元,第二次购买物品的原价为y元,∵80×0.9=72,300×0.8=240,300×0.9=270,65<72,240<252<270,∴x=65,80≤y<300或y≥300.当y<300时,有0.9y=252,解得:y=280,∴0.8(x+y)=276;当y≥300时,有0.8y=252,解得:y=315,∴0.8(x+y)=304.故选:D.设第一次购买物品的原价为x元,第二次购买物品的原价为y元,分析临界点可得出x=65、80≤y<300或y≥300,分80≤y<300和y≥300两种情况找出关于y的一元一次方程,解之即可得出y值,将其代入0.8(x+y)中,即可求出结论.本题考查了一元一次方程的应用,分80≤y<300和y≥300两种情况找出关于y的一元一次方程是解题的关键.二、填空题(本大题共10小题,共30.0分)9.单项式−a2b3的次数是______.【答案】3【解析】解:单项式−a2b3的次数为3.故答案为3.根据单项式的次数的定义直接求解.本题考查了单项式:由数与字母的积或字母与字母的积所组成的代数式叫做单项式(单独的一个数字或字母也是单项式).单项式中的数字因数叫做这个单项式的系数.所有字母的指数之和叫做这个单项式的次数.10.2018年我市承办了省园博会、省运会“两大盛会”,市区城建累计投入236000000000元,把236000000000用科学记数法表示为______.【答案】2.36×1011【解析】解:236000000000=2.36×1011.故答案是:2.36×1011.科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数,n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.本题考查学生对科学记数法的掌握.科学记数法要求前面的部分的绝对值是>或等于1,而<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.已知方程4x−3m+2=0的解是x=1,则m=______.【答案】2【解析】解:将x=1代入方程4x−3m+2=0,得:4−3m+2=0,解得:m=2,故答案为:2.将x=1代入方程可得4−3m+2=0,据此解之即可.本题考查了一元一次方程的解和解一元一次方程,能得出关于m的方程是解此题的关键.12.已知2xm−1y4与−x4y2n是同类项,则mn=______.【答案】10【解析】解:由同类项的定义可得2n=4m−1=4,解得m=5,n=2.∴mn=5×2=10.本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可先求得m和n的值,从而求出它们的积.同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.13.将一副三角板如图放置,若∠AOD=20∘,则∠BOC的大小为______.【答案】160∘【解析】解:∵∠AOD=20∘,∠COD=∠AOB=90∘,∴∠COA=∠BOD=90∘−20∘=70∘,∴∠BOC=∠COA+∠AOD+∠BOD=70∘+20∘+70∘=160∘,故答案为:160∘.先求出∠COA和∠BOD的度数,代入∠BOC=∠COA+∠AOD+∠BOD求出即可.本题考查了度、分、秒之间的换算,余角的应用,解此题的关键是求出∠COA和∠BOD 的度数,注意:已知∠A,则∠A的余角=90∘−∠A.14.若|a−2|+(b+3)2=0,则a−2b的值为______.【答案】8【解析】解:∵|a−2|+(b+3)2=0,∴a=2,b=−3,则a−2b=2+6=8,故答案为:8.利用非负数的性质求出a与b的值,即可确定出原式的值.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.如图所示,将图沿线折起来,得到一个正方体,那么“我”的对面是______(填汉字)【答案】数【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“数”是相对面,“喜”与“课”是相对面,“欢”与“学”是相对面.故答案为:数.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.16.黑、白两种颜色的正六边形地砖按如图所示的规律拼成若干个图案:则第n个图案中有白色地砖______块.(用含n的代数式表示)【答案】4n+2【解析】解:分析可得:第1个图案中有白色地砖4×1+2=6块.第2个图案中有白色地砖4×2+2=10块.…第n个图案中有白色地砖4n+2块.通过观察,前三个图案中白色地砖的块数分别为:6,10,14,所以会发现后面的图案比它前面的图案多4块白色地砖,可得第n个图案有4n+2块白色地砖.本题考查学生通过观察、归纳的能力.此题属于规律性题目.注意由特殊到一般的分析方法,此题的规律为:第n个图案有4n+2块白色地砖.17.为鼓励节约用电,某地对用户用电收费标准作如下规定:如果每月每户用电不超过100度,那么每度电价按0.55元收费,如果超过100度,那么超过部分每度电价按1元收费.某户居民在三月需缴纳电费105元,则该户共用电______度.【答案】150【解析】解:设该户共用电x度,由题意得,100×0.55+(x−100)×1=105,解得:x=150.答:该户共用电150度.故答案为150.首先设该户共用电x度,根据题意可得等量关系:前100度的电费+超过100度部分的电费=总电费105元,根据等量关系,列出方程,再解即可.此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.18.任意写出一个3的倍数(例如:111),首先把这个数各数位上的数字都立方,再相加,得到一个新数,然后把这个新数重复上述运算,运算结果最终会得到一个固定不变的数M,它会掉入一个数字“黑洞”.那么最终掉入“黑洞”的那个数M是______.【答案】153【解析】解:如:3.3的立方为27,则2的立方加上7的立方得351,则3的立方加上5的立方再加上1的立方得153,所以这个数是153.故答案为:153.认真审题,熟悉规则.取符合条件的数如3,6,9等,按规则计算便可得结果.考查了数字的变化类问题,读懂题意,熟悉规则是关键.可经过多次试验确定结果.三、计算题(本大题共4小题,共34.0分)19.计算:(1)(−3)+7+8+(−9).(2)(−1)10×2+(−2)3÷4.【答案】解:(1)原式=−12+15=3;(2)原式=2−2=0.【解析】(1)原式结合后,相加即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.计算:(1)−3x2y+3xy2+2x2y−xy2(2)4x2−(2x2+x−1)+(2−x2+3x)【答案】解:(1)原式=−x2y+2xy2;(2)原式=4x2−2x2−x+1+2−x2+3x=x2+2x+3.【解析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.解下列一元一次方程①2−3x=x−(2x−3);②x−3x−44=2−5x−76.【答案】解:①去括号得:2−3x=x−2x+3,移项合并得:−2x=1,解得:x=−12;②去分母得:12x−9x+12=24−10x+14,移项合并得:13x=26,解得:x=2.【解析】①原式去括号,移项合并,把x系数化为1,即可求出解;②方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.22.已知点A,B,C在同一条直线上,点M,N分别是AC,BC的中点.(1)如图,若点C在线段AB上,AC=6cm,CB=4cm,求线段MN的长;(2)若点C在线段AB上,且AC+CB=acm,试求MN的长度,并说明理由;(3)若点C在线段AB的延长线上,且AC−BC=bcm,猜测MN的长度,写出你的结论,画出图形并说明理由.【答案】解:(1)∵AC=6cm,点M是AC的中点,∴CM=0.5AC=3cm,∵CB=4cm,点N是BC的中点,∴CN=0.5BC=2cm,∴MN=CM+CN=5cm,∴线段MN的长度为5cm,(2)MN=12a,当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=12a,(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=12AC,∵点N是BC的中点,∴CN=12BC,∴MN=CM−CN=12(AC−BC)=12b.【解析】(1)根据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度即可,(2)当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=12a,(3)点在AB的延长线上时,根据M、N分别为AC、BC的中点,即可求出MN的长度.本题考查了两点间的距离,利用了线段中点的性质,线段的和差.分情况讨论是解题的难点,难度较大.四、解答题(本大题共6小题,共62.0分)23.如图,在方格纸中,点A、B、C是三个格点(网格线的交点叫做格点)(1)过点C画AB的垂线,垂足为D;(2)将点D沿BC翻折,得到点E,作直线CE;(3)直线CE与直线AB的位置关系是______;(4)判断:∠ACB______∠ACE.(填“>”、“<”或“=”【答案】平行>【解析】解:(1)如图所示:点D即为所求;(2)如图所示:直线EC,即为所求;(3)直线CE与直线AB的位置关系是:平行;故答案为:平行;(4)如图所示:∵∠ECA=∠A,AB>BC,∴∠ACB>∠A,∴∠ACB>∠ACE.故答案为:>.(1)直接利用网格结合垂直的定义得出D点位置;(2)直接利用翻折变换的性质得出E点位置;(3)利用网格得出直线CE与直线AB的位置关系;(4)利用同一三角形中大角对大边得出答案.此题主要考查了基本作图以及轴对称变换,正确借助网格分析是解题关键.24.如图,O,D,E三点在同一直线上,∠AOB=90∘.(1)图中∠AOD的补角是______,∠AOC的余角是______;(2)如果OB平分∠COE,∠AOC=35∘,请计算出∠BOD的度数.【答案】∠AOE∠BOC【解析】解:(1)图中∠AOD的补角是∠AOE,∠AOC的余角是∠BOC;(2)∵OB平分∠COE,∠AOC=35∘,∠AOB=90∘.∴∠BOC=∠BOE=90∘−35∘=55∘,∴∠BOD=180∘−55∘=125∘,故答案为:∠AOE;∠BOC.(1)根据互余和互补解答即可;(2)利用角平分线的定义和平角的定义解答即可.本题考查的是垂线的性质及角平分线的定义,熟知角平分线的定义是解答此题的关键.25.(1)由大小相同的小立方块搭成的几何体如下图,请在下图的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要______个小立方块,最多要______个小立方块.【答案】5 7【解析】解:(1)作图如下:;(2)解:由俯视图易得最底层有4个小立方块,第二层最少有1个小立方块,所以最少有5个小立方块;第二层最多有3个小立方块,所以最多有7个小立方块.故答案是:5;7.(1)从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1,依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最少个数和最多个数相加即可.考查了作图−三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.26.一商店在某一时间经销甲、乙两种商品,甲种商品以每件60元的价格售出,每件盈利为50%,乙种商品每件进价50元,每件以亏损20%的价格售出(Ⅰ)甲种商品每件进价______元;乙种商品每件售价______元(Ⅱ)若该商店当时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲、乙两种商品各多少件?【答案】40 40【解析】解:(1)设甲种商品每件进价为x元,乙种商品每件售价为y元,根据题意得:60−x=50%x,y−50=−20%×50,解得:x=40,y=40.故答案为:40;40.(2)设购进甲种商品z件,则购进乙种商品(50−z)件,根据题意得:40z+50(50−z)=2100,解得:z=40,∴50−z=50−40=10.答:购进甲种商品40件,购进乙种商品10件.(1)设甲种商品每件进价为x元,乙种商品每件售价为y元,根据售价−进价=利润,即可分别得出关于x、y的一元一次方程,解之即可得出结论;(2)设购进甲种商品z件,则购进乙种商品(50−z)件,根据单价×数量=总价,即可得出关于z的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.27.如图,数轴正半轴上的A,B两点分别表示有理数a,b,O为原点,若|a|=4,线段OB=4OA.(1)a=______,b=______;(2)若点P从点A出发,以每秒3个单位长度向x轴正半轴运动,求运动时间为多少时,点P到点A的距离是点P到点B距离的3倍;(3)数轴上还有一点C表示的数为30,若点P和点Q同时从点A和点B出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C点运动,P点到达C点后,再立刻以同样的速度返回,运动到终点A.求点P和点Q运动多少秒时,P、Q两点之间的距离为4.【答案】4 16【解析】解:(1)∵数轴正半轴上的A,B两点分别表示有理数a,b,|a|=4,线段OB=4OA,∴a=4,b=16,故答案为4,16;(2)设运动时间为t秒时,点P到点A的距离是点P到点B距离的3倍.由题意得:3t=3(16−4−3t)或3t=3(4+3t−16),解得t=3或6,即运动时间为3或6秒时,点P到点A的距离是点P到点B的距离的3倍;(3)设点P和点Q运动t秒时,P、Q两点之间的距离为4.由题意得:12+t−3t=4或3t−(12+t)=4或12+t+4+3t=52或12+t+3t−4=52,解得t=4或8或9或11,即点P和点Q运动4或8或9或11秒时,P,Q两点之间的距离为4.(1)先根据A点在原点的右边以及|a|=4求出a的值,再根据B点在原点的右边以及线段OB=4OA求出b的值即可;(2)设运动时间为t秒,根据PA=3PB构建方程即可解决问题;(3)分四种情形构建方程即可解决问题.本题考查了一元一次方程的应用,行程问题相等关系的应用,两点间的距离等知识,关键是学会构建方程解决问题,学会用分类讨论的思想思考问题.28.问题情境:小明在学习中发现:棱长为1cm的正方体的表面展开图面积为6cm2.但是反过来,在面积为6cm2的长方形纸片(如图1,图中小正方形的边长为1cm)上是画不出这个正方体表面展开图的.于是,爱思考的小明就想:要画出这个正方体的表面展开图,最少需要选用多大面积的长方形纸片呢?问题解决:小明仔细研究正方体的表面展开图的11种不同情形后发现,至少要用“3×4”和“2×5”两种不同的长方形纸片才能剪得一个正方体的表面展开图.请你在图2两个网格中分别画出一种.拓展廷伸:若要在如图3所示的“3×6”和“2×8”的两种规格的长方形纸片上分别剪出两个正方体的表面展开图,请在图中画出裁剪方法.操作应用:现有边长20cm的正方形纸片(图4所示),能否用它剪得两个棱长相等,且表面积之和最大的正方体表面展开图?若能,请你画出你的设计方案;若不能,请说明理由.【答案】解:问题解决:如图2:拓展延伸:如图3:操作应用:能,如图4,【解析】根据正方体展开图的11种特征,正方体展开图分四种类型.“1−4−1”结构,“2−2−2”结构,“1−3−2”结构,“3−3”结构,发现至少要用“2×5”和“3×4”两种不同的长方形纸片才能剪得一个正方体的表面展开图,进行分析.本题考查了作图,解决本题的关键是掌握正方体展开图的11种特征.。
人教版数学七年级上学期期末测试题 (3)含答案
人教版数学七年级上学期期末测试题一、选择题(本大题共8小题,共24.0分)1.如图,数轴上点()表示的数是-2的相反数.A. 点AB. 点BC. 点CD. 点D2.如图是一个正方体的展开图,则“文”字的对面的字是()A. 青B. 岛C. 城D. 市3.下列调查中,适宜采用全面调查(普查)方式的是()A. 调查江北市民对“江北区创建国家食品安全示范城市”的了解情况B. 调查央视节目《国家宝藏》的收视率C. 调查我校某班学生喜欢上数学课的情况D. 调查学校一批白板笔的使用寿命4.莫拉、沃姆两位博士及其同事在《PloSBio log y》期刊发表了一篇关于地球物种数量预测的文章,根据他们采用的最新分析方法,这个星球总共拥有8700000个物种,8700000用科学记数法可以表示为()A. 8.7×105B. 8.7×106C. 8.7×107D. 0.87×1075.用一副三角板不能画出下列那组角()A. 45∘,30∘,90∘B. 75∘,15∘,135∘C. 60∘,105∘,150∘D. 45∘,80∘,120∘6.方程2x-1=3与方程1-3a−x3=0的解相同,则a的值为()A. 3B. 2C. 1D. 537.在如图所示的2018年1月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是()A. 23B. 51C. 65D. 758.把夏禹时代的“洛书”用数学符号翻译出来就是一个三阶幻方,它的每行、每列、每条对角线上三个数之和均相等,则幻方中a的值是()A. 6B. 12C. 18D. 24二、填空题(本大题共6小题,共18.0分)9.单项式-13πa2b3c的系数为______,次数为______.10.若a=-2×32,b=(-2×3)2,c=-(2×3)2,将a、b、c三个数用“<”连接起来应为______.11.半径为2的圆中,扇形AOB的圆心角为90°,则这个扇形的面积是______.12.某种商品的进价为300元,售价为550元.后来由于该商品积压,商店准备打折销售,但要保证利润率为10%,则该商品可打______折.13.如图,把一张边长为15cm的正方形硬纸板的四个角各剪去一个同样大小的正方形,再折成一个无盖的长方体盒子(纸板的厚度忽略不计),当剪去的正方形边长从4cm变为6cm后,长方体的纸盒容积变______(填大或小)了______cm3.14.一个由13个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,则这个几何体的搭法共有______种.三、计算题(本大题共2小题,共18.0分)15.计算:(1)7+(-15)-2×(-9)(2)(-3)2÷(-134)×0.75×|-213|.16.(1)化简:-14(2k3+4k2-28)+12(k3-2k2+4k).(2)已知A-B=7a2-7ab,且B=-4a2+6ab+7.①求A+B;②若a=-1,b=2,求A+B的值.四、解答题(本大题共8小题,共60.0分)17.如图,已知线段a、b(1)画一条射线AB;(2)在射线AB上作一条线段AC,使AC等于a-b.18.解方程(1)2(100-15x)=60+5x(2)2x−13−10x+16=1.19.某中学为了解全校学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选,同时把调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整).请根据图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)通过计算补全条形统计图;(3)在扇形统计图中,“私家车”部分所对应的圆心角是多少度?(4)若全校共有1800名学生,估计该校乘坐私家车上学的学生约有多少名?20.某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+30、-25、-30、+28、-29、-16、-15、(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存200吨水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元、出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费?21.在市南区某住房小区建设中,为了提高业主的宜居环境,某小区因地制宜规划修建一个广场(图中阴影部分).(1)用含m、n的代数式表示该广场的周长C;(2)用含m、n的代数式表示该广场的面积S;(3)若m、n满足(m-6)2+|n-8|=0,求出该广场的周长和面积.22.如图①,已知线段AB=20cm,CD=2cm,线段CD在线段AB上运动,E、F分别是AC、BD的中点.(1)若AC=4cm,则EF=______cm.(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变,请求出EF的长度;如果变化,请说明理由.(3)我们发现角的很多规律和线段一样,如图②,已知∠COD在∠AOB内部转动,OE、OF分别平分∠AOC和∠BOD,若∠AOB=142°,∠COD=38°,则∠EOF=______.由此,你猜想∠EOF、∠AOB和∠COD会有怎样的数量关系.(直接写出猜想即可)23.我区有着丰富的莲藕资.某企业已收购莲藕52.5吨.根据市场信息,将莲藕直接销售,每吨可获利100元;如果对莲藕进行粗加工,每天可加工8吨,每吨可获利1000元;如果进行精加工,每天可加0.5吨,每吨可获利5000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批莲藕全部销售.为此研究了二种方案:方案一:将莲藕全部粗加工后销售,则可获利______ 元.方案二:30天时间都进行精加工,未来得及加工的莲藕,在市场上直接销售,则可获利______ 元.问:是否存在第三种方案,将部分莲藕精加工,其余莲藕粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.24.阅读以下材料并填空问题:在一条直线上有n个点(n≥2),每两个点确定一条线段,一共有多少条线段?【探究】:当仅有2个点时,有1×22=1条线段;当有3个点时,有2×32=3条线段;当有4个点时,有3×42=6条线段;当有5个点时,有______条线段;……当有n个点时,从这些点中任意取一点,如1,以这个点为端点和其余各点能组成(n-1)条线段,这样总共有n×(n-1)条线段.在这些线段中每条线段都重复了两次,如:线段A1A2和A2A1是同一条线段,所以,一条直线上有n个点,一共有______条线段.【应用】(1)在一条直线上有10个点,直线外一点分别与这10个点连接成线段,一共可以组成______个三角形.(2)平面上有50个点,且任意三个点不在同一直线上,过这些点作直线,一共能作出______条不同的直线.【拓展】平面上有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少个不同的三角形?当有3个点时,可作1个三角形;当有4个点时,可作______个三角形;当有5个点时,可作______个三角形;……当有n个点时,可连成______个三角形.答案和解析1.【答案】D【解析】解:∵-2的相反数是2,而数轴上点D表示的数是2,∴数轴上点D表示的数是-2的相反数,故选:D.由-2的相反数是2且点D表示数2可得.本题主要考查数轴,解题的关键是掌握数轴上的点所表示的数及相反数的定义.2.【答案】B【解析】解:这是一个正方体的平面展开图,共有六个面,其中“文”字的对面的字是岛.故选:B.利用正方体及其表面展开图的特点求解即可.本题考查了正方体相对两个面上文字的知识,解答本题的关键是从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念.3.【答案】C【解析】解:A、调查江北市民对“江北区创建国家食品安全示范城市”的了解情况,故应当采用抽样调查,故本选项错误;B、调查央视节目《国家宝藏》的收视率,故应当采用抽样调查,故本选项错误;C、调查我校某班学生喜欢上数学课的情况,适宜采用全面调查,故本选项正确;D、调查学校一批白板笔的使用寿命,故应当采用抽样调查,故本选项错误;故选:C.普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.4.【答案】B【解析】解:8700000=8.7×106.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】D【解析】解:A、45°,30°,90°,可以,B、75°,15°,135,可以,C、60°,105°,150,可以,D、45°,80°,120°,其中80°、120°不能.故选:D.A、45° 30°90°,可以,B、75°15°135,可以,C、60° 105° 150,可以,D、45° 80° 120°,其中80°、120°不能.本题考查的是角的计算,根据题意提供的角度,画出图形即可解答.6.【答案】D【解析】解:解方程2x-1=3,得x=2,把x=2代入方程1-=0,得1-=0,解得,a=.故选:D.先解方程2x-1=3,求得x的值,因为这个解也是方程1-=0的解,根据方程的解的定义,把x代入求出a的值.此题考查同解方程,本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.7.【答案】B【解析】解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+213x+21=23,解得x=(舍去);3x+21=51,解得x=10;3x+21=65,解得x=14(舍去);3x+21=75,解得x=18(舍去).故这三个数的和可能是51.故选:B.设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.8.【答案】C【解析】解:设中心数为x,根据题意得,6+x+16=4+x+a,∴a=18,故选:C.根据三阶幻方的特点,可得三阶幻方的和,根据三阶幻方的和,可得a、b的值,根据有理数的加法,可得答案.本题主要考查了有理数的加法,解决此题的关键利用中心数求幻和,再由幻和与已知数求得a、b,最后是有理数的加法.9.【答案】-13π 6【解析】解:单项式-πa2b3c的系数为-π,次数为6,故答案为:-π,6.单项式的系数是数字部分,单项式的次数是字母指数的和,可得答案.本题考查了单项式,单项式的系数是数字因数,单项式的次数是字母指数和.10.【答案】c<a<b【解析】解:a=-2×32=-2×9=-18,b=(-2×3)2=(-6)2=36,c=-(2×3)2=-62=-36,∵-36<-18<36,∴c<a<b.故答案为:c<a<b.先求出各数的值,再比较大小即可.本题考查的是有理数的大小比较,熟知负数与负数比较大小的法则是解答此题的关键.11.【答案】π【解析】解:由题意扇形的面积==π,故答案为π.利用扇形的面积公式计算即可.本题考查扇形的面积公式,解题的关键是熟练掌握基本知识,属于中考常考题型.12.【答案】6【解析】解:设商店可打x折则550×0.1x-300=300×10%,解得x=6.即商店可打6折.故答案为:6.可设商店可打x折,则售价是550×0.1x=55x元.根据等量关系:利润率为10%就可以列出方程,解方程即可求解.本题考查一元一次方程的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.13.【答案】小142【解析】解:当剪去的正方形边长从4cm变为6cm后,长方体的纸盒容积从(15-4×2)2×4=196cm3变为(15-6×2)2×6=54cm3.故长方体的纸盒容积变小了196-54=142cm3.故答案为:小,142.分别求得剪去的正方形边长从4cm变为6cm后,长方体的纸盒容积即可得到结论.本题考查了展开图折叠成几何体,长方体的体积,熟记长方体的体积公式是解题的关键.14.【答案】3【解析】解:由题意俯视图:除了A,B,C不能确定,其余位置上的小立方体是确定的数字如图所示.∵由13个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,∴A为1,B为2,C为2或A为2,B为2,C为1或A为2,B为1,C为2,共三种情形,故答案为3.由题意俯视图:除了A,B,C不能确定,其余位置上的小立方体是确定的数字如图所示.根据俯视图即可解决问题.本题考查三视图判定几何体,解题的关键是理解题意,灵活运用所学知识解决问题.15.【答案】解:(1)7+(-15)-2×(-9)=7+(-15)+18=10;(2)(-3)2÷(-134)×0.75×|-213|=9×(-47)×34×73=-9.【解析】(1)根据有理数的乘法和加减法可以解答本题;(2)根据有理数的乘除法和绝对值可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.16.【答案】解:(1)原式=-12k3-k2+7+12k3-k2+2k=-2k2+2k+7;(2)①A+B=A-B+2B=7a2-7ab+2(-4a2+6ab+7)=7a2-7ab-8a2+12ab+14=-a2+5ab+14,②当a=-1,b=2时,原式=-(-1)2+5×(-1)×2+14=-1-10+14=3.【解析】(1)先去括号,再合并同类项即可得;(2)①由A+B=A-B+2B,再将A、B所表示的多项式代入,去括号、合并同类项即可得;②将a和b的值代入所得代数式计算可得.本题主要考查整式的加减,解题的关键是掌握去括号和合并同类项法则.17.【答案】解:线段AC即为所求.【解析】作射线AB,在射线AB上截取AD=a,在线段DA上截取DC=b,线段AC即为所求.本题考查作图-复杂作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.18.【答案】解:(1)去括号得:200-30x=60+5x移项、合并同类项得:-35x=-140系数化为1得:x=4(2)去分母得:2(2x-1)-(10x+1)=6去括号得:4x-2-10x-1=6移项、合并同类项得:-6x=9系数化为1得:x=-32【解析】(1)方程去括号,移项合并,把x系数化为1,即可求出解.(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.本题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.【答案】解:(1)24÷30%=80(名),答:在这次调查中,一共抽取了80名学生.(2)乘坐公交车的人数=80×20%=16(名),条形图如图所示:(3)“私家车”部分所对应的圆心角=360°×3280=144°.(4)全校共有1800名学生,估计该校乘坐私家车上学的学生约有1800×3280=720(名)【解析】(1)根据步行的人数以及百分比求出总人数即可.(2)求出乘坐公交车的人数,画出条形图即可.(3)根据圆心角=360°×百分比计算即可.(4)利用样本估计总体的思想解决问题即可.本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.【答案】解:(1)∵+30-25-30+28-29-16-15=-57;∴经过这7天,仓库里的水泥减少了57吨;(2)∵200+57=257,∴那么7天前,仓库里存有水泥257吨.(3)依题意:进库的装卸费为:[(+30)+(+28)]a=58a;出库的装卸费为:[|-25|+|-30|+|-29|+|-16|+|-15|]b=115b,∴这7天要付多少元装卸费58a+115b.【解析】(1)根据有理数的加法运算,可得答案;(2)根据有理数的减法运算,可得答案;(3)根据装卸都付费,可得总费用.本题考查了正数和负数及列代数式的知识,(1)有理数的加法是解题关键;(2)剩下的减去多运出的就是原来的,(3)装卸都付费.21.【答案】解:(1)C=6m+4n;(2)S=2m×2n-m(2n-n-0.5n)=4mn-0.5mn=3.5mn;(3)由题意得m-6=0,n-8=0,∴m=6,n=8,代入,可得原式=3.5×6×8=168.【解析】(1)根据周长公式解答即可;(2)由广场的面积等于大矩形面积减去小矩形面积表示出S即可;(3)利用非负数的性质求出m与n的值,代入S中计算即可得到结果.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.22.【答案】11 90°【解析】解:(1)∵AB=20cm,CD=2cm,AC=4cm,∴DB=14cm,∵E、F分别是AC、BD的中点,∴CE=AC=2cm,DF=DB=7cm,∴EF=2+2+7=11cm,故答案为:11;(2)EF的长度不变.∵E、F分别是AC、BD的中点,∴EC=AC,DF=DB,∴EF=EC+CD+DF=AC+CD+DB=(AC+BD)+CD=(AB-CD)+CD=(AB+CD),∵AB=20cm,CD=2cm,∴EF=×(20+2)=11cm;(3)∠EOF=(∠AOB+∠COD).理由:∵OE、OF分别平分∠AOC和∠BOD,∴∠COE=∠AOC,∠DOF=∠BOD,∴∠EOF=∠COE+∠COD+∠DOF=∠AOC+∠COD+∠BOD=(∠AOC+∠BOD)+∠COD=(∠AOB-∠COD)+∠COD=(∠AOB+∠COD)..故答案为:90(1)依据AB=20cm,CD=2cm,AC=4cm可得DB=14cm,再根据E、F分别是AC、BD的中点,即可得到CE=AC=2cm,DF=DB=7cm,进而得出EF=2+2+7=11cm;(2)依据E、F分别是AC、BD的中点,可得EC=AC,DF=DB,再根据EF=EC+CD+DF进行计算,即可得到EF=×(20+2)=11cm;(3)依据OE、OF分别平分∠AOC在∠BOD,可得∠COE=∠AOC,∠DOF=∠BOD,再依据∠EOF=∠COE+∠COD+∠DOF进行计算,即可得到结果.本题主要考查角平分线、线段的中点的定义及线段的和差关系的运用,关键在于认真的进行计算,熟练运用相关的性质定理.23.【答案】52500 78750【解析】解:方案一:由已知得:将莲藕全部粗加工后销售,则可获利为:1000×52.5=52500(元).故答案为:52500.方案二:30天时间都进行精加工,未来得及加工的莲藕,在市场上直接销售,则可获利为:0.5×30×5000+(52.5-0.5×30)×100=78750(元).故答案分为:78750.由已知分析存在第三种方案.设粗加工x天,则精加工(30-x)天,依题意得:8x+0.5×(30-x)=52.5,解得:x=5,30-x=25.销售后所获利润为:1000×5×8+5000×25×0.5=102500(元).答:存在第三种方案,将部分莲藕精加工,其余莲藕粗加工,并且恰好在30天内完成,销售后所获利润为102500元.方案一:根据总利润=每吨利润×总质量即可求出结论;方案二:根据总利润=精加工部分的利润+未加工部分的利润即可求出结论;分析方案一、二可知存在方案三,设粗加工x天,则精加工(30-x)天,根据总质量为52.5吨即可得出关于x的一元一次方程,解之即可得出x的值,再根据总利润=精加工部分的利润+粗加工部分的利润即可算出结论.本题考查了一元一次方程的应用,根据数量关系列出关于x的一元一次方程是解题的关键.24.【答案】10 S n=n(n−1)245 1225 4 10 n(n−1)(n−2)6【解析】解:【探究】:当仅有2个点时,有=1条线段;当有3个点时,有=3条线段;当有4个点时,有=6条线段;当有5个点时,有=10条线段;…一条直线上有n个点,一共有S n=条线段.故答案为10,S n=;【应用】(1)∵n=10时,S10==45,∴在一条直线上有10个点,直线外一点分别与这10个点连接成线段,一共可以组成45个三角形.(2)∵n=50时,S50==1225,∴平面上有50个点,且任意三个点不在同一直线上,过这些点作直线,一共能作出1225条不同的直线.故答案为45,1225;【拓展】当有3个点时,可作1个三角形,1=;当有4个点时,可作4个三角形,4=;当有5个点时,可作10个三角形,10=;…当有n个点时,可连成个三角形.故答案为1,4,10,.【探究】结合右面的图形,正确地数出有5个点时线段的数量即可;根据一条直线上有2、3、4、5个点时对应的线段条数以及阅读材料,总结出规律,即可得出一条直线上有n个点时的线段条数;【应用】结合总结出点数与直线的规律S n=,将n=10或50代入前面的式子,求得所作出的直线数量即可;【拓展】画出图形,得出当有4个点时,可作4个三角形;当有5个点时,可作10个三角形;依此类推得出当有n个点时,可作个三角形.此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律,并用得到的规律解题.体现了由特殊到一般,并由一般到特殊的方法.。
人教版七年级数学上册期末试卷(3)及答案
期末试卷(3)一、选择题:每小题3分,共30分1.(3分)﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.(3分)320000这个数用科学记数法表示()A.0.32×106B.3.2×104C.3.2×105D.32×1043.(3分)下列方程是一元一次方程的是()A.3x2﹣x=2 B.x﹣5y=3 C.+x=D.xy﹣2xy=﹣xy4.(3分)下列各式中运算正确的是()A.4m﹣m=3 B.a2b﹣ab2=0 C.2a3﹣3a3=a3D.xy﹣2xy=﹣xy5.(3分)下列说法正确的是()A.x﹣1的项是x和1 B.和都是单项式C.0和x2+xy+y2都是多项式D.a,﹣6,abc,都是整式6.(3分)从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是()A.圆柱B.圆锥C.棱锥D.球7.(3分)如图所示几何体的左视图是()A.B.C. D.8.(3分)如图,已知点O在直线AB上,∠BOC=90°,则∠AOE的余角是()A.∠COE B.∠BOC C.∠BOE D.∠AOE9.(3分)如图是一个正方体纸盒的展开图,按虚线折成正方体后,相对面上的两个数互为相反数,则c a+b=()A.﹣8 B.9 C.﹣3 D.210.(3分)已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A.1 B.5 C.﹣5 D.﹣111.(3分)有理数﹣32,(﹣3)2,|﹣33|,按从小到大的顺序排列是()A.<﹣32<(﹣3)2<|﹣33|B.|﹣33|<﹣32<<(﹣3)2C.﹣32<<(﹣3)2<|﹣33|D.<﹣32<|﹣33|<(﹣3)2 12.(3分)按下面的程序计算:若输入x=100,输出结果是501,若输入x=25,输出结果是631,若开始输入的x值为正整数,最后输出的结果为556,则开始输入的x值可能有()A.1种 B.2种 C.3种 D.4种二、填空题:每小题3分,共24分13.(3分)1平角=°.14.(3分)如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=52°,则∠BOD等于.15.(3分)如图,已知点A、O、B在同一条直线上,若OA的方向是北偏西28°,则OB的方向是南偏东.16.(3分)时钟3:40,时针与分针所夹的角是度.17.(3分)一商店把彩电按标价的9折出售,仍可获利20%,若该彩电的进价是2400元,则彩电的标价为元.18.(3分)我们知道:=﹣,=﹣…,那么=.利用上面的规律计算:+++…+=.三、解答题:本题有7小题,19、20、21题6分,22题4分,23、24、25题8分,共46分19.(6分)计算:(1)38°7′4″+59°28′59″﹣61°5′9″(2)[2﹣(+﹣)×24]÷5×(﹣1)2006.20.(6分)解方程:(1)2x﹣(x+10)=5x+2(x﹣1)(2)﹣1=.21.(6分)已知x,y,m满足下列条件:(1)|x﹣5|+|m|=0;(2)﹣2ab y+1与4ab3是同类项.求式子2x2﹣3xy+6y2﹣m(3x2﹣xy+9y)的值.22.(4分)如图,∠AOB=120°,∠COD=20°,OE平分∠AOC,OF平分∠BOD,求∠EOF的度数.23.(8分)如图,已知点A、B、C、D、E在同一直线上,且AC=BD,E是线段BC的中点.(1)点E是线段AD的中点吗?说明理由;(2)当AD=10,AB=3时,求线段BE的长度.24.(8分)十年前,父亲的年龄是儿子的6倍,从现在起的十年后,父亲的年龄是儿子年龄的2倍,求父亲和儿子现在的年龄?25.(8分)已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0.(1)请求出a、b、c的值;(2)a、b、c所对应的点分别为A、B、C,点P为动点,其对应的数为x,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+3|;(写出化简过程)(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案与试题解析一、选择题:每小题3分,共30分1.(3分)﹣2的相反数是()A.2 B.﹣2 C.D.﹣【考点】相反数.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.(3分)320000这个数用科学记数法表示()A.0.32×106B.3.2×104C.3.2×105D.32×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于320000有6位,所以可以确定n=6﹣1=5.【解答】解:320 000=3.2×105.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)下列方程是一元一次方程的是()A.3x2﹣x=2 B.x﹣5y=3 C.+x=D.xy﹣2xy=﹣xy【考点】一元一次方程的定义.【分析】根据一元一次方程的定义进行判断.【解答】解:A、该方程的未知数的最高次数是2,属于一元二次方程,故本选项错误;B、该方程中含有2个未知数,属于二元一次方程,故本选项错误;C、该方程符合一元一次方程的定义,故本选项正确;D、该方程的未知数的最高次数是2,属于二元二次方程,故本选项错误;故选:C.【点评】本题考查了一元一次方程的定义.一元一次方程的未知数的指数为1.4.(3分)下列各式中运算正确的是()A.4m﹣m=3 B.a2b﹣ab2=0 C.2a3﹣3a3=a3D.xy﹣2xy=﹣xy【考点】合并同类项.【专题】计算题.【分析】根据合并同类项得到4m﹣m=3m,2a3﹣3a3=﹣a3,xy﹣2xy=﹣xy,于是可对A、C、D进行判断;由于a2b与ab2不是同类项,不能合并,则可对B进行判断.【解答】解:A、4m﹣m=3m,所以A选项错误;B、a2b与ab2不能合并,所以B选项错误;C、2a3﹣3a3=﹣a3,所以C选项错误;D、xy﹣2xy=﹣xy,所以D选项正确.故选D.【点评】本题考查了合并同类项:把同类项的系数相加减,字母和字母的指数不变.5.(3分)下列说法正确的是()A.x﹣1的项是x和1 B.和都是单项式C.0和x2+xy+y2都是多项式D.a,﹣6,abc,都是整式【考点】多项式;整式;单项式.【分析】根据多项式的项的定义判断A;根据单项式的定义判断B;根据多项式的定义判断C;根据整式的定义判断D.【解答】解:A、x﹣1的项是x和﹣1,故本选项错误;B、是多项式,是单项式,故本选项错误;C、0是单项式,x2+xy+y2是多项式,故本选项错误;D、a,﹣6,abc,都是整式,故本选项正确;故选D.【点评】本题考查了单项式、多项式以及整式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式;几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;单项式和多项式统称为整式.6.(3分)从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是()A.圆柱B.圆锥C.棱锥D.球【考点】由三视图判断几何体.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选:A.【点评】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.7.(3分)如图所示几何体的左视图是()A.B.C. D.【考点】简单组合体的三视图.【分析】根据左视图是从物体的左面看得到的图形解答.【解答】解:从左边看到的现状是A中图形,故选:A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.8.(3分)如图,已知点O在直线AB上,∠BOC=90°,则∠AOE的余角是()A.∠COE B.∠BOC C.∠BOE D.∠AOE【考点】余角和补角.【专题】计算题.【分析】求∠AOE的余角,根据互余的定义,即是求与∠AOE的和是90°的角,根据角相互间的和差关系可得.【解答】解:已知点O在直线AB上,∠BOC=90°,∴∠AOC=90°,∴∠AOE+∠COE=90°,∴∠AOE的余角是∠COE,故选:A.【点评】本题主要考查了余角和补角的定义,是一个基本的类型.9.(3分)如图是一个正方体纸盒的展开图,按虚线折成正方体后,相对面上的两个数互为相反数,则c a+b=()A.﹣8 B.9 C.﹣3 D.2【考点】几何体的展开图;相反数.【分析】根据相对面上的两个数互为相反数,可得出a,b,c的值,再代入即可求解.【解答】解:由图可知,a,b,c的对面分别是0,﹣3,2,∵相对面上的两个数互为相反数,∴a,b,c所表示的数分别是0,3,﹣2.∴c a+b=(﹣2)0+3=﹣8.故选A.【点评】本题考查灵活运用正方体的相对面解答问题,立意新颖,是一道不错的题.10.(3分)已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A.1 B.5 C.﹣5 D.﹣1【考点】去括号与添括号.【专题】计算题.【分析】先把括号去掉,重新组合后再添括号.【解答】解:因为(b+c)﹣(a﹣d)=b+c﹣a+d=(b﹣a)+(c+d)=﹣(a﹣b)+(c+d)…(1),所以把a﹣b=﹣3、c+d=2代入(1)得:原式=﹣(﹣3)+2=5.故选:B.【点评】(1)括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去括号;(2)添括号后,括号前是“+”,括号里的各项都不改变符号;添括号后,括号前是“﹣”,括号里的各项都改变符号.运用这一法则添括号.11.(3分)有理数﹣32,(﹣3)2,|﹣33|,按从小到大的顺序排列是()A.<﹣32<(﹣3)2<|﹣33|B.|﹣33|<﹣32<<(﹣3)2C.﹣32<<(﹣3)2<|﹣33|D.<﹣32<|﹣33|<(﹣3)2【考点】有理数大小比较.【专题】计算题.【分析】先根据乘方的意义得到﹣32=﹣9,(﹣3)2,=9,|﹣33|=|﹣27|=27,由|﹣9|=9,|﹣|=得到﹣9<﹣,则所给四个数的大小关系为﹣32<<(﹣3)2<|﹣33|.【解答】解:﹣32=﹣9,(﹣3)2,=9,|﹣33|=|﹣27|=27,∵|﹣9|=9,|﹣|=,∴﹣9<﹣,∴有理数﹣32,(﹣3)2,|﹣33|,按从小到大的顺序排列为﹣32<<(﹣3)2<|﹣33|.故选C.【点评】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.12.(3分)按下面的程序计算:若输入x=100,输出结果是501,若输入x=25,输出结果是631,若开始输入的x值为正整数,最后输出的结果为556,则开始输入的x值可能有()A.1种 B.2种 C.3种 D.4种【考点】代数式求值.【专题】图表型.【分析】由5x+1=556,解得x=111,即开始输入的x为111,最后输出的结果为556;当开始输入的x值满足5x+1=111,最后输出的结果也为556,可解得x=22;当开始输入的x值满足5x+1=22,最后输出的结果也为556,但此时解得的x的值为小数,不合题意.【解答】解:∵输出的结果为556,∴5x+1=556,解得x=111;而111<500,当5x+1等于111时最后输出的结果为556,即5x+1=111,解得x=22;当5x+1=22时最后输出的结果为556,即5x+1=22,解得x=4.2(不合题意舍去),所以开始输入的x值可能为22或111.故选B.【点评】本题考查了代数式求值:先把代数式进行变形,然后把满足条件的字母的值代入计算得到对应的代数式的值.也考查了解一元一方程.二、填空题:每小题3分,共24分13.(3分)1平角=180°.【考点】角的概念.【分析】依据平角的定义求解即可.【解答】解:1平角=180°.故答案为:180°.【点评】本题主要考查的是角的概念,掌握平角的定义是解题的关键.14.(3分)如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=52°,则∠BOD等于76°.【考点】对顶角、邻补角;角平分线的定义.【分析】先根据角平分线的定义求出∠COB的度数,再由平角的定义即可得出结论.【解答】解:∵OE平分∠COB,∠EOB=52°,∴∠COB=2∠EOB=104°,∴∠BOD=180°﹣104°=76°.故答案为:76°.【点评】本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.15.(3分)如图,已知点A、O、B在同一条直线上,若OA的方向是北偏西28°,则OB的方向是南偏东28°.【考点】方向角.【分析】根据方向角的定义进行求解即可.【解答】解:∵点A、O、B在同一条直线上,OA的方向是北偏西28°,∴OB的方向是南偏东28°;故答案为:28°.【点评】此题考查了方向角,方向角一般以观测者的位置为中心,所以观测方向不同,方向就正好相反,但角度相同.16.(3分)时钟3:40,时针与分针所夹的角是130度.【考点】钟面角.【分析】画出草图,利用钟表表盘的特征解答.【解答】解:3:40,时针和分针中间相差4大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴3:40分针与时针的夹角是×30°=130°.【点评】用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.17.(3分)一商店把彩电按标价的9折出售,仍可获利20%,若该彩电的进价是2400元,则彩电的标价为3200元.【考点】一元一次方程的应用.【分析】设彩电的标价为x元,根据售价﹣进价=利润建立方程求出其解即可.【解答】解:设彩电的标价为x元,有题意,得0.9x﹣2400=2400×20%,解得:x=3200.故答案为:3200.【点评】本题考查了销售问题的数量关系的运用,列一元一次方程解实际问题的运用,解答时根据售价﹣进价=利润建立方程是关键.18.(3分)我们知道:=﹣,=﹣…,那么=.利用上面的规律计算:+++…+=.【考点】规律型:数字的变化类.【分析】观察给定的等式变形找出规律“两个连续自然数的乘积的倒数=较小数的倒数﹣较大数的倒数”由此可将变形为两个分式相减的形式,再由类似的方法找出=(﹣)这一规律,结合此规律将+++…+进行变形即可得出结论.【解答】解:观察=﹣,=﹣…,可发现两个连续自然数的乘积的倒数=较小数的倒数﹣较大数的倒数,即=﹣.根据类推法可得出:=(﹣),∴+++…+=(1﹣+﹣+﹣+…+﹣)=(1﹣)=.故答案为:;.【点评】本题考查了数字的变化类,解题的关键是找出规律式=(﹣).本题属于基础题,难度不大,再解决该题型题目时,根据给定等式发现规律是关键.三、解答题:本题有7小题,19、20、21题6分,22题4分,23、24、25题8分,共46分19.(6分)计算:(1)38°7′4″+59°28′59″﹣61°5′9″(2)[2﹣(+﹣)×24]÷5×(﹣1)2006.【考点】有理数的混合运算;度分秒的换算.【专题】计算题;实数.【分析】(1)原式利用度分秒运算法则计算即可得到结果;(2)原式中括号中利用乘法分配律计算,再计算乘方运算,最后算乘除运算即可得到结果.【解答】解:(1)原式=38°7′4″+59°28′59″﹣61°5′9″=97°35′63″﹣61°5′9″=36°30′54″;(2)原式=(2﹣9﹣4+18)×=(+5)×=+1=1.【点评】此题考查了有理数的混合运算,以及度分秒的换算,熟练掌握运算法则是解本题的关键.20.(6分)解方程:(1)2x﹣(x+10)=5x+2(x﹣1)(2)﹣1=.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x﹣x﹣10=5x+2x﹣2,移项合并得:6x=﹣8,解得:x=﹣;(2)方程整理得:﹣1=,去分母得:x﹣4﹣12=8x+40,移项合并得:7x=﹣56,解得:x=﹣8.【点评】此题考查了解一元一次方程,解一元一次方程的步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21.(6分)已知x,y,m满足下列条件:(1)|x﹣5|+|m|=0;(2)﹣2ab y+1与4ab3是同类项.求式子2x2﹣3xy+6y2﹣m(3x2﹣xy+9y)的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;同类项.【专题】计算题.【分析】利用非负数的性质以及同类项的定义求出x,y及m的值,代入原式计算即可求出值.【解答】解:由题意得:x﹣5=0,m=0,y+1=3,即x=5,m=0,y=2,则原式=2x2﹣3xy+6y2﹣0=2×25﹣30+24=44.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.22.(4分)如图,∠AOB=120°,∠COD=20°,OE平分∠AOC,OF平分∠BOD,求∠EOF的度数.【考点】角的计算.【专题】计算题.【分析】利用角平分线的定义可得EOC+∠DOF=∠AOC+∠BOD=(AOC+∠BOD),再根据∠EOF=∠EOC+∠DOF+∠COD即可求解.【解答】解:∵∠AOB=120°,∠COD=20°∴∠AOC+∠BOD=∠AOB﹣∠COD=120°﹣20°=100°又∵OE平分∠AOC,OF平分∠BOD∴∠EOC+∠DOF=∠AOC+∠BOD=(AOC+∠BOD)=×100°=50°∴∠EOF=∠EOC+∠DOF+∠COD=50°+20°=70°【点评】本题主要考查了角度的计算,正确理解角平分线的定义,根据角平分线的定义求得∠EOC+∠DOF是解题的关键.23.(8分)如图,已知点A、B、C、D、E在同一直线上,且AC=BD,E是线段BC的中点.(1)点E是线段AD的中点吗?说明理由;(2)当AD=10,AB=3时,求线段BE的长度.【考点】比较线段的长短.【专题】计算题;数形结合.【分析】(1)点E是线段AD的中点.由于AC=BD可以得到AB=CD,又E是线段BC的中点,利用中点的性质即可证明结论;(2)由于AD=10,AB=3,由此求出BC,然后利用中点的性质即可求出BE的长度.【解答】解:(1)点E是线段AD的中点.(1分)∵AC=BD,∴AB+BC=BC+CD,∴AB=CD.(3分)∵E是线段BC的中点,∴BE=EC,∴AB+BE=CD+EC,即AE=ED,∴点E是线段AD的中点.(5分)(2)∵AD=10,AB=3,∴BC=AD﹣2AB=10﹣2×3=4,∴BE=BC=×4=2.即线段BE的长度为2.(8分).【点评】此题主要考查了线段的长度的比较,其中利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.24.(8分)十年前,父亲的年龄是儿子的6倍,从现在起的十年后,父亲的年龄是儿子年龄的2倍,求父亲和儿子现在的年龄?【考点】一元一次方程的应用.【分析】设十年前父亲和儿子的年龄分别是6x岁和x岁,根据十年后,父亲的年龄是儿子年龄的2倍,列出方程,求出x的值,继而可求得现在父亲和儿子的年龄.【解答】解:设十年前父亲和儿子的年龄分别是6x岁和x岁.由题意得,6x+20=2(x+20),即4x=20,解得:x=5,6x=30,则父亲现在的年龄为:30+10=40(岁),儿子现在的年龄为:5+10=15(岁).答:父亲和儿子现在的年龄分别是40岁和15岁.【点评】本题考查了一元一次方程的应用,解答这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等,年龄差是一定的.25.(8分)已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0.(1)请求出a、b、c的值;(2)a、b、c所对应的点分别为A、B、C,点P为动点,其对应的数为x,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+3|;(写出化简过程)(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【考点】数轴;绝对值;整式的加减.【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)根据x的范围,确定x+1,x﹣1,x+5的符号,然后根据绝对值的意义即可化简;(3)根据A,B,C的运动情况即可确定AB,BC的变化情况,即可确定AB﹣BC 的值.【解答】解:(1)根据题意得:c﹣5=0,a+b=0,b=1,∴a=﹣1,b=1,c=5;(2)当0≤x≤1时,x+1>0,x﹣1≤0,x+3>0,∴|x+1|﹣|x﹣1|+2|x+3|=x+1﹣(1﹣x)+2(x+3)=x+1﹣1+x+2x+6=4x+6;当1<x≤2时,x+1>0,x﹣1>0,x+3>0.∴|x+1|﹣|x﹣1|+2|x+3|=x+1﹣(x﹣1)+2(x+3)=x+1﹣x+1+2x+6=2x+8;(3)不变.∵点A以每秒1个单位长度的速度向左运动,点B每秒2个单位长度向右运动,∴A,B每秒钟增加3个单位长度;∵点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴B,C每秒钟增加3个单位长度.∴BC﹣AB=2,BC﹣AB的值不随着时间t的变化而改变.【点评】本题考查了数轴与绝对值,正确理解AB,BC的变化情况是关键.。
七年级数学(上)期末目标检测数学试卷及答案 (53)
七年级(上)期末数学试卷一、选择题(本大题10小题,每小题3分,共30分)1.的倒数是()A.7 B.﹣7 C.D.﹣2.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A.0.109×105B.1.09×104C.1.09×103D.109×1023.下面合并同类项正确的是()A.3x+2x2=5x3B.2a2b﹣a2b=1 C.﹣ab﹣ab=0 D.﹣y2x+xy2=04.如图,下列图形从正面看是三角形的是()A.B.C.D.5.如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB的方向角是()A.北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°6.把方程3x+=3﹣去分母正确的是()A.3x+2(2x﹣1)=3﹣3(x+1)B.3x+(2x﹣1)=3﹣(x+1)C.18x+(2x﹣1)=18﹣(x+1) D.18x+2(2x﹣1)=18﹣3(x+1)7.如果单项式x a+2y3与xy b﹣1是同类项,那么a,b的值分别为()A.a=﹣1,b=4 B.a=﹣1,b=2 C.a=﹣2,b=4 D.a=﹣2,b=28.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=65°,则∠BOD的度数是()A.30°B.40°C.50°D.60°9.如图,为抄近路践踏草坪是一种不文明现象,请你用数学知识解释出现这一现象的原因是()A.两点确定一条直线B.两点之间,线段最短C.直线比线段短D.同角(等角)的余角相等10.某市出租车的收费标准是:起步价7元(行驶距离不超过3km,都需付7元车费),超过3km每增加1km,加收1.2元,小陈乘出租车到达目的地后共支付车费19元,那么小陈坐车可行驶的路最远是()A.12km B.13km C.14km D.15km二、填空题(本大题6小题,每小题4分,共24分)11.单项式2x2y3的次数是.12.已知∠A=60°,则它的补角的度数是度.13.关于x的方程2x+a=9的解是x=4,则a=.14.如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC=35°,则∠AOD=°.15.已知3a﹣2b=2,则6a﹣4b+5的值为.16.当n等于1,2,3…时,由白色小正方形和黑色小正方形组成的图形分别如图所示,则第n个图形中白色小正方形和黑色小正方形的个数总和等于.(用n表示,n是正整数)三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:(﹣3)3÷(﹣9)+22×|(﹣4)+1|18.解方程:﹣=1.19.如图,平面上有射线AP和点B、点C,按下列语句要求画图:(1)连接AB;(2)用尺规在射线AP上截取AD=AB;(3)连接BC,并延长BC到E,使CE=BC;(4)连接DE.四、解答题(二)(本大题3小题,每小题7分,共21分)20.求代数式的值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2.其中a=1,b=﹣3.21.某礼品制造工厂接受一批玩具的订货任务,按计划天数生产,如果每天生产20个玩具,则比订货任务少100个;如果每天生产23个玩具,则可以超过订货任务20个.请求出这批玩具的订货任务是多少个?原计划几天完成任务?22.如图O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)求∠BOD的度数;(2)试判断OE是否平分∠BOC,并说明理由.五、解答题(三)(本大题3小题,每小题9分,共27分)23.邮递员骑摩托车从邮局出发,先向东骑行2km到达A村,继续向东骑行3km到达B 村,然后向西骑行9km到C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)若摩托车每1km耗油0.03升,这趟路共耗油多少升?24.如图,已知箭头的方向是水流的方向,一艘游艇从江心岛的右侧A点逆流航行3小时到达B点后,又继续顺流航行2.5小时到达C点,总共行驶了208千米,已知游艇在静水中的速度是38千米/小时.(1)求水流的速度;(2)由于AC段在建桥,游艇用同样的速度沿原路返回共需要多少时间.(结果保留一位小数)25.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=度.(直接写出结果)(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON的度数是多少?为什么?2017-2018学年广东省江门市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)1.的倒数是()A.7 B.﹣7 C.D.﹣【考点】17:倒数.【专题】17 :推理填空题.【分析】根据求一个分数的倒数,就是调换分子和分母的位置,可得:的倒数是7.【解答】解:的倒数是7.故选:A.【点评】此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:①求一个整数的倒数,就是写成这个整数分之一.②求一个分数的倒数,就是调换分子和分母的位置.2.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A.0.109×105B.1.09×104C.1.09×103D.109×102【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将10900用科学记数法表示为:1.09×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下面合并同类项正确的是()A.3x+2x2=5x3B.2a2b﹣a2b=1 C.﹣ab﹣ab=0 D.﹣y2x+xy2=0【考点】35:合并同类项.【分析】本题考查同类项的定义,所含字母相同,相同字母的指数也相同的项叫做同类项,几个常数项也是同类项,合并时系数相加减,字母与字母的指数不变.【解答】解:3x+2x2不是同类项不能合并,2a2b﹣a2b=a2b,﹣ab﹣ab=﹣2ab,﹣y2x+x y2=0.故选D.【点评】本题考查同类项的定义,合并同类项时把系数相加减,字母与字母的指数不变.注意当同类项的系数互为相反数时,合并的结果为0.4.如图,下列图形从正面看是三角形的是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】分别写出各选项中几何体的从正面看到的图形,进一步选择答案即可.【解答】解:A、三棱柱从正面看到的是长方形,不合题意;B、圆台从正面看到的是梯形,不合题意;C、圆锥从正面看到的是三角形,符合题意;D、长方体从正面看到的是长方形,不合题意.故选:C.【点评】此题主要考查了简单几何体的三视图,关键是掌握简单几何体的特征.5.如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB的方向角是()A.北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°【考点】IH:方向角.【分析】根据垂直,可得∠AOB的度数,根据角的和差,可得答案.【解答】解:∵射线OB与射线OA垂直,∴∠AOB=90°,∴∠1=90°﹣30°=60°,故射线OB的方向角是北偏西60°,故选:B.【点评】本题考查了方向角,方向角的表示方法是北偏东或北偏西,南偏东或南偏西.6.把方程3x+=3﹣去分母正确的是()A.3x+2(2x﹣1)=3﹣3(x+1)B.3x+(2x﹣1)=3﹣(x+1)C.18x+(2x﹣1)=18﹣(x+1) D.18x+2(2x﹣1)=18﹣3(x+1)【考点】86:解一元一次方程.【专题】11 :计算题;521:一次方程(组)及应用.【分析】方程两边乘以6去分母得到结果,即可作出判断.【解答】解:把方程3x+=3﹣去分母得:18x+2(2x﹣1)=18﹣3(x+1),故选D【点评】此题考查了解一元一次方程,解方程去分母时各项都要乘以各分母的最小公倍数.7.如果单项式x a+2y3与xy b﹣1是同类项,那么a,b的值分别为()A.a=﹣1,b=4 B.a=﹣1,b=2 C.a=﹣2,b=4 D.a=﹣2,b=2【考点】34:同类项.【分析】根据同类项;所含字母相同,并且相同字母的指数也相同,求解即可.【解答】解:根据题意得a+2=1,b﹣1=3,解得a=﹣1,b=4.故选A.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=65°,则∠BOD的度数是()A.30°B.40°C.50°D.60°【考点】J2:对顶角、邻补角;IJ:角平分线的定义.【分析】首先根据角平分线的性质可得∠EOB=∠COE,进而得到∠COB的度数,再根据邻补角互补可算出∠BOD的度数.【解答】解:∵OE平分∠COB,∴∠EOB=∠COE,∵∠EOB=65°,∴∠COB=130°,∴∠BOD=180°﹣130°=50°.故选:C.【点评】此题主要考查了邻补角的性质,角平分线的性质,关键是掌握邻补角互补.9.如图,为抄近路践踏草坪是一种不文明现象,请你用数学知识解释出现这一现象的原因是()A.两点确定一条直线B.两点之间,线段最短C.直线比线段短D.同角(等角)的余角相等【考点】IC:线段的性质:两点之间线段最短.【分析】根据线段的性质,可得答案.【解答】解:为抄近路践踏草坪是一种不文明现象,是因为两点之间线段最短,故选:B.【点评】本题考查了线段的性质,熟记线段的性质是解题关键.10.某市出租车的收费标准是:起步价7元(行驶距离不超过3km,都需付7元车费),超过3km每增加1km,加收1.2元,小陈乘出租车到达目的地后共支付车费19元,那么小陈坐车可行驶的路最远是()A.12km B.13km C.14km D.15km【考点】8A:一元一次方程的应用.【分析】设小陈坐车行驶的路程最远为x千米,根据车费=起步价+1.2×超出3千米的路程,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设小陈坐车行驶的路程最远为x千米,根据题意得:7+1.2(x﹣3)=19,解得:x=13.故选B.【点评】本题考查了一元一次方程的应用,根据车费=起步价+1.2×超出3千米的路程列出关于x的一元一次方程是解题的关键.二、填空题(本大题6小题,每小题4分,共24分)11.单项式2x2y3的次数是5.【考点】42:单项式.【分析】直接利用单项式的次数为所有字母次数的和,进而得出答案.【解答】解:单项式2x2y3的次数是:2+3=5.故答案为:5.【点评】此题主要考查了单项式的次数,正确把握定义是解题关键.12.已知∠A=60°,则它的补角的度数是120度.【考点】IL:余角和补角.【分析】根据互补的两角之和为180°即可得出这个角的补角.【解答】解:这个角的补角=180°﹣60°=120°.故答案为:120.【点评】本题考查了补角的知识,属于基础题,掌握互补的两角之和为180°是关键.13.关于x的方程2x+a=9的解是x=4,则a=1.【考点】85:一元一次方程的解.【分析】把x=4代入方程2x+a=9,得到一个关于a的方程,解方程求得a的值.【解答】解:把x=4代入方程2x+a=9,得8+a=9,解得a=1.故答案是:1.【点评】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.14.如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC=35°,则∠AOD= 145°.【考点】IL:余角和补角.【分析】由△AOB与△COD为直角三角形得到∠AOB=∠COD=90°,则∠BOD=∠COD﹣∠BOC=90°﹣35°=55°,然后利用角与角之间的和差关系即可得到∠AOD的度数.【解答】解:∵∠AOB=∠COD=90°,∠BOC=35°,∴∠BOD=∠COD﹣∠BOC=90°﹣35°=55°,∴∠AOD=∠AOB+∠BOD=90°+55°=145°.故答案为:145.【点评】此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.15.已知3a﹣2b=2,则6a﹣4b+5的值为9.【考点】33:代数式求值.【专题】11 :计算题;511:实数.【分析】原式前两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵3a﹣2b=2,∴原式=2(3a﹣2b)+5=4+5=9,故答案为:9【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.16.当n等于1,2,3…时,由白色小正方形和黑色小正方形组成的图形分别如图所示,则第n个图形中白色小正方形和黑色小正方形的个数总和等于n2+4n.(用n表示,n是正整数)【考点】38:规律型:图形的变化类.【专题】16 :压轴题;2A :规律型.【分析】观察不难发现,白色正方形的个数是相应序数的平方,黑色正方形的个数是相应序数的4倍,根据此规律写出即可.【解答】解:第1个图形:白色正方形1个,黑色正方形4×1=4个,共有1+4=5个;第2个图形:白色正方形22=4个,黑色正方形4×2=8个,共有4+8=12个;第3个图形:白色正方形32=9个,黑色正方形4×3=12个,共有9+12=21个;…,第n个图形:白色正方形n2个,黑色正方形4n个,共有n2+4n个.故答案为:n2+4n.【点评】本题是对图形变化规律的考查,把小正方形分成黑、白两个部分求出变化规律是解题的关键,要注意个数与序数的关系.三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:(﹣3)3÷(﹣9)+22×|(﹣4)+1|【考点】1G:有理数的混合运算.【分析】首先计算乘方,然后计算除法和乘法,最后计算加法,求出算式(﹣3)3÷(﹣9)+22×|(﹣4)+1|的值是多少即可.【解答】解:(﹣3)3÷(﹣9)+22×|(﹣4)+1|=(﹣27)÷(﹣9)+4×3=3+12=15【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.18.解方程:﹣=1.【考点】86:解一元一次方程.【专题】11 :计算题;521:一次方程(组)及应用.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得,2(2x+4)﹣3(3x﹣1)=6,去括号得,4x+8﹣9x+3=6,移项得,4x﹣9x=6﹣3﹣8,合并同类项得,﹣5x=﹣5,系数化为1得,x=1.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.19.如图,平面上有射线AP和点B、点C,按下列语句要求画图:(1)连接AB;(2)用尺规在射线AP上截取AD=AB;(3)连接BC,并延长BC到E,使CE=BC;(4)连接DE.【考点】IA:直线、射线、线段.【专题】13 :作图题.【分析】(1)根据要求画出射线及直线即可;(2)射线AP上截取线段AD=AB即可;(3)延长线部分画虚线;(4)连接两点D、E.【解答】解:如图所示:(1)连接AB;(2)用尺规在射线AP上截取AD=AB;(3)连接BC,并延长BC到E,使CE=BC;(4)连接DE.【点评】本题主要考查了直线,射线及线段,解题的关键是利用直线,射线及线段的定义画图.四、解答题(二)(本大题3小题,每小题7分,共21分)20.求代数式的值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2.其中a=1,b=﹣3.【考点】45:整式的加减—化简求值.【专题】11 :计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算求出值.【解答】解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=ab2,当a=1,b=﹣3时,原式=9.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.某礼品制造工厂接受一批玩具的订货任务,按计划天数生产,如果每天生产20个玩具,则比订货任务少100个;如果每天生产23个玩具,则可以超过订货任务20个.请求出这批玩具的订货任务是多少个?原计划几天完成任务?【考点】8A:一元一次方程的应用.【分析】设原计划用x天完成任务,根据题意可得,等量关系为订货任务是一定的,据此列方程求解,然后求出订货任务.【解答】解:设原计划用x天完成任务,20x+100=23x﹣20,3x=120,解得:x=40,则订货任务是20×40+100=900(个).答:这批订货任务是900个,原计划用40天完成.【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.22.如图O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)求∠BOD的度数;(2)试判断OE是否平分∠BOC,并说明理由.【考点】IK:角的计算;IJ:角平分线的定义.【分析】(1)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(2)根据∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分别求得∠COE与∠BOE的度数即可说明.【解答】解:(1)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=∠AOC=25°,∠BOC=180°﹣∠AOC=130°,所以∠BOD=∠DOC+∠BOC=155°;(2)OE平分∠BOC.理由如下:因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又因为∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,所以∠COE=∠BOE,所以OE平分∠BOC.【点评】本题主要考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.五、解答题(三)(本大题3小题,每小题9分,共27分)23.邮递员骑摩托车从邮局出发,先向东骑行2km到达A村,继续向东骑行3km到达B 村,然后向西骑行9km到C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)若摩托车每1km耗油0.03升,这趟路共耗油多少升?【考点】13:数轴.【分析】(1)根据题意画出数轴即可(2)根据数轴即可求出CA的距离(3)求出邮递员走的总路程,根据题意即可求出耗油的数量【解答】解:(1)依题意得,数轴为:(2)依题意得:点C与点A的距离为:2+4=6km(3)依题意得,邮递员骑了:2+3+9+4=18km∴共耗油量为:18×0.03=0.54(升)答:这趟路共耗油0.54升.【点评】本题考查数轴,解题的关键是根据题意画出数轴,本题属于基础题型.24.如图,已知箭头的方向是水流的方向,一艘游艇从江心岛的右侧A点逆流航行3小时到达B点后,又继续顺流航行2.5小时到达C点,总共行驶了208千米,已知游艇在静水中的速度是38千米/小时.(1)求水流的速度;(2)由于AC段在建桥,游艇用同样的速度沿原路返回共需要多少时间.(结果保留一位小数)【考点】8A:一元一次方程的应用.【分析】(1)设水流速度为x千米/小时,则顺流航行速度为(38+x)千米/小时,逆流航行的速度为(38﹣x)千米/小时,根据路程=速度×时间即可得出关于x的一元一次方程,解之即可得出结论;(2)根据路程=速度×时间分别算出AB、BC段的路程,再根据时间=路程÷速度即可得出返回所需时间.【解答】解:(1)设水流速度为x千米/小时,则顺流航行速度为(38+x)千米/小时,逆流航行的速度为(38﹣x)千米/小时,根据题意得:3(38﹣x)+2.5(38+x)=208,解得:x=2.答:水流的速度为2千米/小时.(2)由(1)可知,顺流航行速度为40千米/小时,逆流航行的速度为36千米/小时.AB段的路程为3×36=108(千米),BC段的路程为2.5×40=100(千米),故原路返回时间为: +≈2.8+2.7=5.5(小时).答:游艇用同样的速度原路返回大约需要5.5小时.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)根据路程=速度×时间列出关于x的一元一次方程;(2)根据路程=速度×时间分别算出AB、BC段的路程.25.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=35度.(直接写出结果)(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON的度数是多少?为什么?【考点】IK:角的计算;IJ:角平分线的定义.【分析】(1)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;(2)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;(3)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可.【解答】解:(1)如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=∠AOB+∠BOC=90°+60°=150°,∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=∠AOC=75°,∠NOC=∠BOC=30°,∴∠MON=∠MOC﹣∠NOC=75°﹣30°=45°;(2)如图2,∵∠AOB=70°,∠BOC=60°,∴∠AOC=70°+60°=130°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=65°,∠NOC=∠BOC=30°,∴∠MON=∠MOC﹣∠NOC=65°﹣30°=35°.故答案为:35.(3)如图3,∵∠AOB=α,∠BOC=β,∴∠AOC=∠AOB+∠BOC=α+β,∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=∠AOC=(α+β),∠NOC=∠BOC=β,∴∠MON=∠MOC﹣∠NOC=(α+β)﹣β=α.【点评】本题考查了角平分线定义和角的有关计算,关键是求出∠AOC、∠MOC、∠NOC 的度数和得出∠MON=∠MOC﹣∠NOC.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学(上)综合检测试题
一、选择题(共15小题,每小题3分.)
1.若火箭发射点火前5秒记为-5秒,那么火箭发射点火后10秒应记为( )
A.-10秒
B.-5秒
C.+5秒
D.+10秒
2. 数轴上的点A 表示的数是+2,那么与点A 相距5个单位长度的点表示的数是
( ) A.5 B. ±5 C. 7 D.7 或
3.在下列单项式中,不是同类项的是( )
A .-2
1x 2y 和-yx 2 B .-3和0 C .-a 2bc 和ab 2c D .-mnt 和-8mnt 4.2008北京奥运会主会场“鸟巢”的座席数是91000个,这个数用科学记数法表
示为( )
A .
B .
C .
D . 5.若
0)2(32=++-n m ,则n m 2+的值为( ) A . B . C .0 D .4
6.下列说法中,正确的有( )
A 过两点有且只有一条直线 B.连结两点的线段叫做两点的距离
C.两点之间,直线最短 D .AB =BC ,则点B 是线段AC 的中点
7.若点B 在点A 的北偏东30度,则点A 在点B 的( )
A 、南偏西30度
B 、北偏东60度
C 、南偏西60度
D 、西偏南60度
8.在时刻8∶30时,时钟上的时针与分针间的夹角是( )
A 、75°
B 、85°
C 、70 °
D 、60°
9.如果一个两位数,十位上数字是a,个位上数字是b ,那么这个两位数( )
A.ab
B.a+b
C. 10a+b
D.10b+a
10.下列变形中,正确的是()
A.若ac=bc ,那么a=b 。
B.若
c b c a =,那么a=b C.若b a =,那么a=。
D.若a 2=b 2那么a=b
11.下列变形正确的是( )
A. 4x – 5 = 3x+2变形得4x –3x = –2+5;
B.32
1132+=-x x 变形得4x –6 = 3x+18 C. 3(x –1) = 2(x+3) 变形得3x –1 = 2x+6; D. 3x = 2变形得x =2
3
12.下列说法正确的有( )
①不是正数的数一定是负数;②“增长率为-2%”表示不但没有增长,反而减少了2%; ③0℃表示没有温度; ④0既不是正数,也不是负数。
A.0个
B.1个
C.2个
D.3个
13.如果方程6x+3a=22与方程3x+5=11的解相同,那么a=( ) A. 103 B. 310 C. 10
3- D.--310 14下面合并同类项正确的是( ) (A )3x +2x 2=5x 3 (B )2a 2b -a 2b =1 (C )-ab -ab =0
(D )-y 2x +x y 2=0 15.一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某学生做了全部试题的( )道 A .17 B.18 C.19 D.20
二、填空题(每题4分 ,共20分)
16.若与的和仍为单项式,则= .
17.某商店购进一批运动服,每件售价120元,可获利20%,则每件的进价是___元。
18.若x =2是方程k (2x -1)=kx +7的解,那么k 的值是______ 19. (1) ; (2)。
20.已知A 、B 、C 三点在同一直线上,线段AB=10,BC=4,则线段AC= ______
三、解答题: 21.(1)
4
51132131511÷⨯⎪⎭⎫ ⎝⎛-⨯ (2)()2431(2)453⎡⎤-+-÷⨯--⎣⎦
22.解方程:(1)()432040x x --+= (2) 16
15312=--+x x
23.先化简,后求值:
)3132()31(22122y x y x x +-+-- 其中x=2-,3
2=y
24、如图,已知O 是直线AB 上的一点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线分,求∠DOE 的度数.
25、某校整理一批图书,由一个人做要48小时完成,现在计划由一部分人先做4小时,再增加3人和他们一起做6小时,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?
26.生活与应用: 某地区的手机收费标准有两种方式,用户可任选其一:
A .月租费20元,0.25元/分;
B .月租费25元, 0.20元/分.
(1) 某用户某月打手机X 分钟,请你写出两种方式下该用户应交付的费用;
(2) 某用户估计一个月内打手机时间为25小时,你认为采用哪种方式更合算?
A O E D
C
B
参考答案
二、填空题
16、5; 17、100; 18、7; 19 (1) 23.5° (2) 44 °52′; 20、 14或6
21、:(1)-
25
2 (2)7 22、:(1) x=8 (2) x=-
3 23、:原式 =-3x+ y 2 ∴当x=2-,32=y 原式 =958 24、解:因为 OD 是∠AOC 的平分线 所以∠COD=2
1∠AOC 因为 OE 是∠COB 的平分线 所以∠COE=2
1∠BOC 所以 ∠DOE=∠COD +∠COE =21∠AOC+21∠BOC =2
1∠AOB 因为 ∠AOB=180° 所以 ∠DOE=90°
25、解:设应先安排X 人工作4小时,根据题意得
4X/48+6(X+3)/48 =1 解得 X=3
答:应先安排3人工作4小时,再增加3人和他们一起做6小时
26、解:(1) A 方式费用:20+0.25x B 方式费用:25+0.20 x
(2) 25小时=1500分钟
A 方式费用:20+0.25×1500=395
B 方式费用:25+0.20×1500=325
因为325<395 所以采用B 方式更合算。