2018最新立体几何的的知识点归纳
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何知识点归纳
第一章空间几何体
(一)空间几何体的结构特征
(1)多面体——由若干个平面多边形围成的几何体.
围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征
1.棱柱
1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的
关系:
①
⎧
⎪
⎧−−−−−→
⎨⎪
−−−−−→⎨
⎪
⎪⎩
⎩
底面是正多形
棱垂直于底面
斜棱柱
棱柱正棱柱
直棱柱
其他棱柱
底面为矩形
侧棱与底面边长相等
1.3
①侧棱都相等,侧面是平行四边形;
②两个底面与平行于底面的截面是全等的多边形;
③过不相邻的两条侧棱的截面是平行四边形;
④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
1.4长方体的性质:
①长方体一条对角线长的平方等于一个顶点上三条棱的
平方和;【如图】2222
11
AC AB AD AA
=++
②(了解)长方体的一条对角线
1
AC与过顶点A的三条
棱所成的角分别是αβγ
,,,那么
222
cos cos cos1
αβγ
++=,222
sin sin sin2
αβγ
++=;
③(了解)长方体的一条对角线
1
AC与过顶点A的相邻三个面所成的角分别是αβγ
,,,
则222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=.
1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.
1.6面积、体积公式:
2S c h
S c h S S h
=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h
为棱柱的高) 2.圆柱
2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形. 2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形. 2.4面积、体积公式:
S 圆柱侧=2rh π;S 圆柱全=2
22rh r ππ+,V 圆柱=S 底h=2
r h π(其中r 为底面半径,h 为圆柱高) 3.棱锥
3.1棱锥——有一个面是多边形,其余各
面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。
3.2棱锥的性质: ①平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;
②正棱锥各侧棱相等,各侧面是全等的等腰三角形;
③正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面边长一半,构成四个直角三角形。)(如上图:,,,SOB SOH SBH OBH 为直角三角形) 3.3侧面展开图:正n 棱锥的侧面展开图是有n 个全等的等腰三角形组成的。 3.4面积、体积公式:S 正棱锥侧=
12ch ',S 正棱锥全=12ch S '+底,V 棱锥=1
3
S h ⋅底.(其中c 为底面周长,h '侧面斜高,h 棱锥的高)
4.圆锥
4.1圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。 4.2圆锥的性质:
侧面
母线
B
①平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;
②轴截面是等腰三角形;如右图:SAB ③如右图:222
l h r =+.
4.3圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形。 4.4面积、体积公式:
S 圆锥侧=rl π,S 圆锥全=()r r l π+,V 圆锥=2
13
r h π(其中
r 为底面半径,h 为圆锥的高,l 为母线长) 5.棱台
5.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 5.2正棱台的性质:
①各侧棱相等,各侧面都是全等的等腰梯形; ②正棱台的两个底面以及平行于底面的截面是正多边形; ③ 如右图:四边形`,``O MNO O B BO 都是直角梯
形
④棱台经常补成棱锥研究.如右图:`SO M 与SO N ,S`
O `B`与SO B相似,注意考虑相似比. 5.3棱台的表面积、体积公式:S S S 全上底下底=S ++侧
,1S `)3
V S h 棱台=(,(其中,`S S 是上,下底面面积,h 为棱台的高)
6.圆台
6.1圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台. 6.2圆台的性质:
①圆台的上下底面,与底面平行的截面都是圆; ②圆台的轴截面是等腰梯形;
③圆台经常补成圆锥来研究。如右图: `SO A SOB 与相似,注意相似比的应用. 6.3圆台的侧面展开图是一个扇环;
6.4圆台的表面积、体积公式:22()S r R R r l πππ+++全=,
V
圆台2211S `))33
S h r rR R h πππ++=(=(,(其中r ,R 为上下底面半径,h 为高) 7.球
7.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球. 或空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体叫做球体,简称
B