北师大版九年级上册数学 1.1 第1课时 菱形的性质教案

合集下载

北师大版数学九年级上册《菱形的性质》教学设计

北师大版数学九年级上册《菱形的性质》教学设计

北师大版数学九年级上册《菱形的性质》教学设计一. 教材分析北师大版数学九年级上册《菱形的性质》是学生在学习了平行四边形的性质,矩形、菱形的性质,正方形的性质等知识后进行的一节概念课。

本节课主要让学生掌握菱形的性质,并能够运用菱形的性质解决一些简单问题。

教材通过引入菱形的定义,引导学生探究菱形的性质,从而让学生更好地理解菱形的特点。

二. 学情分析学生在学习本节课之前,已经掌握了平行四边形的性质,矩形、菱形的性质,正方形的性质等知识。

学生对于四边形的分类和性质有一定的了解,具备了一定的观察、操作、探究能力。

但学生在学习过程中,可能对菱形的性质的理解和运用存在一定的困难,需要教师在教学过程中给予引导和帮助。

三. 教学目标1.知识与技能:使学生掌握菱形的性质,能够运用菱形的性质解决一些简单问题。

2.过程与方法:通过观察、操作、探究等活动,培养学生的观察能力、操作能力和探究能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。

四. 教学重难点教学重点:使学生掌握菱形的性质。

教学难点:对菱形的性质的理解和运用。

五. 教学方法采用问题驱动法、探究发现法、合作交流法等教学方法。

教师引导学生观察、操作、探究,从而让学生自主发现菱形的性质。

在教学过程中,教师注意启发学生思维,引导学生积极参与,培养学生的观察能力、操作能力和探究能力。

六. 教学准备1.准备一些菱形的图片,用于导入和展示。

2.准备一些矩形、正方形的图片,用于比较和区分。

3.准备一些菱形的纸片,用于学生操作和探究。

七. 教学过程1.导入(5分钟)教师出示一些菱形的图片,让学生观察并说出它们的共同特点。

学生可能会说出菱形都是四边形,对边相等,对角相等等特点。

教师引导学生发现这些特点,并引导学生思考:这些特点和矩形、正方形的性质有什么不同?通过对比,让学生对菱形的性质产生疑问,激发学生的学习兴趣。

2.呈现(10分钟)教师引导学生观察教材中给出的菱形的性质,并让学生尝试解释这些性质。

九年级数学北师大版上册1.1菱形的性质与判定优秀教学案例

九年级数学北师大版上册1.1菱形的性质与判定优秀教学案例
此外,还可以利用多媒体教学手段,如动画、图片等,展示不同形状的菱形图案,让学生在视觉上对菱形有更直观的认识,从而提高他们的学习积极性。
(二)问题导向
在教学过程中,教师应设计具有启发性和思考性的问题,引导学生主动探究菱形的性质与判定方法。问题设计要由浅入深,让学生在解决问题的过程中逐步掌握知识。
例如,可以提出以下问题:
在教学过程中,我们将结合生活中的实际例子,引导学生观察、思考菱形在生活中的应用,从而激发他们的学习兴趣。通过对菱形性质的学习,使学生能够熟练运用这些性质解决实际问题,同时培养他们用数学的眼光看待世界的习惯。此外,我们还重视对学生判定能力的培养,让他们在探索中学会严谨、理性的思考方式,为今后的数学学习打下坚实基础。
3.培养学生的审美意识,使他们能够发现数学中的美,提高生活品质;
4.培养学生严谨、理性的思维品质,使他们学会用数学的眼光看待世界,解决问题;
5.培养学生的团队合作意识,让他们学会与他人分享、交流,共同成长。
三、教学策略
(一)情景创设
为了让学生更好地理解和掌握菱形的性质与判定,本节课将采用生活化的情景创设,将学生熟悉的实际生活场景引入课堂。例如,可以展示一幅含有菱形的建筑图案,让学生观察并指出其中的菱形。通过这种方式,让学生感受到数学与生活的紧密联系,激发他们的学习兴趣。
1.如何判定一个四边形是菱形?
2.菱形具有哪些独特的性质?
3.如何运用菱形的性质解决实际问题?
(三)小组合作
小组合作是培养学生团队合作能力和沟通能力的重要途径。在本节课中,教师可以将学生分成若干小组,让他们共同探究菱形的性质与判定方法。
小组合作的具体步骤如下:
1.分组讨论:让学生在小组内讨论如何判定一个四边形是菱形,并总结菱形的性质;

1.1菱形的性质与判定教学设计-2024-2025学年北师大版数学九年级上册

1.1菱形的性质与判定教学设计-2024-2025学年北师大版数学九年级上册
2. 评价方式单一:当前的评价方式过于注重考试成绩,忽视了学生的过程表现和创新能力,需要多元化评价学生的学习成果。
3. 教学内容与实际应用脱节:部分学生反映菱形的性质与判定知识与实际生活应用关联不大,需要加强与实际应用的结合,提高学生的学习动机。
(三)改进措施
1. 增加课堂互动:通过提问、小组讨论等方式,增加学生的参与度,鼓励学生积极思考和表达自己的观点。
(三)新课呈现(预计用时:25分钟)
知识讲解:
清晰、准确地讲解菱形的性质与判定知识点,结合实例帮助学生理解。
突出重点,强调难点,通过对比、归纳等方法帮助学生加深记忆。
互动探究:
设计小组讨论环节,让学生围绕菱形的性质与判定问题展开讨论,培养学生的合作精神和沟通能力。
鼓励学生提出自己的观点和疑问,引导学生深入思考,拓展思维。
知识拓展:
介绍与菱形的性质与判定内容相关的拓展知识,拓宽学生的知识视野。
引导学生关注学科前沿动态,培养学生的创新意识和探索精神。
情感升华:
结合菱形的性质与判定内容,引导学生思考学科与生活的联系,培养学生的社会责任感。
鼓励学生分享学习菱形的性质与判定的心得和体会,增进师生之间的情感交流。
(六)课堂小结(预计用时:2分钟)
3. 相邻角互补
4. 菱形中心对称
判定:
1. 四边相等的四边形
2. 对角线互相垂直平分的四边形
3. 相邻角互补的四边形
4. 中心对称的四边形
```
板书设计应根据实际教学情况和学生需求进行调整和优化,以达到最佳教学效果。
八、反思改进措施
(一)教学特色创新
1. 实践教学:在菱形的性质与判定教学中,通过实际操作和实验,让学生亲身体验菱形的性质和判定方法,提高学生的实践能力和解决问题的能力。

(名师整理)最新北师大版数学九年级上册第1章第1节《菱形的性质与判定》精品教案

(名师整理)最新北师大版数学九年级上册第1章第1节《菱形的性质与判定》精品教案

§1.1《菱形的性质与判定》教案第一课时一、教学内容分析:教材分析:《菱形的性质与判定》是北师版九年级数学上册第一章第一节的内容,《菱形的性质与判定》共2 个课时,本节课学习的是第一课时的内容——菱形的概念及菱形的性质。

学生分析:“菱形的性质与判定”是继学习了平行四边形以后,在此基础上进行研究的第一种特殊的平行四边形。

它既是对平行四边形认识的延续和深入,同时也为后面学习矩形和正方形奠定了基础,提供了有效的探索方法。

起到承上启下的作用。

二、教学目标分析:知识与能力目标:1、掌握菱形的的定义,理解菱形与平行四边形的“特殊与一般”的关系。

2、理解并掌握菱形的性质定理; 在证明性质和运用性质解决问题的过程中过程与方法目标:1、通过菱形的轴对称性发现菱形的特殊性质;2、通过灵活运用菱形的性质解决有关问题,掌握几何的思维方法。

情感态度价值观目标:在猜想与证明菱形性质的过程中,感受证明的必要性,培养严谨的推理能力。

三、教学重点难点分析:教学重点:了解并掌握菱形的概念及其性质定理。

教学难点:菱形性质定理的应用。

四、教学准备:预备知识:平行四边形的性质;轴对称图形;等腰三角形性质;等边三角形性质及判定。

教学方法:启发式。

五、教学过程: 预计时间 教学内容 教师活动 学生活动 教学评价 5 分一、引入问题:1.复习回顾:什么样的四边形叫平行四边形?它有哪些性质?1、请从对称性, 边,角,对角线的角度回答问题。

2、板书课题。

菱形是特殊的平行1、平行四边形是中心对称图形;两组对边平行且相等; 对角相等;对通过情景引 入,让学生体会到“一般”与“特殊”的关证明方法可证),所以,菱形的面积=三角形ABO 面积的4倍。

1注意:4×=1×2OB×2OA 2=1BD •AC2预计时间教学内容教师活动学生活动教学评价3分钟四、学以致用,随堂练习。

2.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O. 已知AB=5cm,AO=4cm,求BD 的长. 独立完成,算出结果:BD=6cm检测教学效果,查看学生当堂掌握情况。

北师大版九年级上册菱形的性质与判定教学设计

北师大版九年级上册菱形的性质与判定教学设计

北师大版九年级上册菱形的性质与判定教学设计简介菱形是初中数学中的基础图形之一。

在北师大版九年级数学教材上,介绍了菱形的定义、性质和判定等内容。

本文将结合教材内容和教学经验,探讨针对北师大版九年级上册菱形的性质与判定的教学设计。

教学目标•理解菱形的定义和性质•掌握菱形对角线的性质•能够判定一个图形是否为菱形教学内容一、菱形的定义和性质1. 定义菱形是四边形的一种,有两组对边相等,四个角都是直角的四边形。

2. 性质•对角线相互垂直,即菱形的对角线互相垂直。

•对角线互相平分,即菱形的对角线互相平分。

•对角线相等,即菱形的对角线相等。

•对边平行,即菱形的对边互相平行。

•对角线分别平分角,即每个角的平分线同时也是对角线的中垂线,平分角的大小为45度。

二、菱形对角线的性质1. 性质1菱形的对角线互相垂直。

2. 性质2菱形的对角线互相平分。

3. 性质3菱形对角线的长度相等。

三、判定图形是否为菱形1. 利用菱形定义判定若一个四边形的四条边相等,则它是菱形。

2. 利用菱形的性质判定判定一个四边形是否为菱形,也可以利用菱形的性质,如对角线互相平分、对角线相等、对角线互相垂直等。

教学设计一、教学方法本节内容主要讲解菱形的性质和判定方法。

因此,采用讲授、演练和解题三种教学方法相结合,以让学生掌握菱形的定义和性质、理解性质强调的重点和应用方法、熟练掌握判定图形是否为菱形的方法。

二、教学过程1.引入通过认识四边形的分类,引入菱形的概念。

2.学习菱形的定义通过图形展示和讲解,介绍菱形的定义和概念。

3.掌握菱形的性质通过图形展示和讲解,引导学生掌握菱形的性质。

4.演练菱形的性质和应用通过讲解和练习,创设实际问题,让学生理解和应用菱形的性质。

5.判定图形是否为菱形通过讲解和实例演示,引导学生判定图形是否为菱形。

6.反思总结通过讨论和总结,让学生回顾学习内容和方法,检验自己的知识和技能掌握情况。

评价方式教师通过学生的书写、口头表达和举手等方式,对学生的掌握情况进行评价和检查,及时反馈学生的问题和不足。

北师大版九年级数学上册全册教案

北师大版九年级数学上册全册教案

第一章特殊平行四边形1 菱形的性质与判定第1课时菱形的性质【知识与技能】理解菱形的概念,掌握菱形的性质.【过程与方法】经历探索菱形的性质和基本概念的过程,在操作、观察、分析过程中发展学生思维意识,体会几何说理的基本方法.【情感态度】培养学生主动探究的习惯、严密的思维意识和审美意识.【教学重点】理解并掌握菱形的性质.【教学难点】形成推理的能力.一、情境导入,初步认识四人为一小组先在组内交流自己收集的有关菱形的图片,实物等,然后进行全班性交流.引入定义:有一组邻边相等的平行四边形叫做菱形.【教学说明】认识菱形,感受菱形的生活价值.二、思考探究,获取新知教师拿出平行四边形木框(可活动的),操作给学生看,让学生体会到:平移平行四边形的一条边,使它与相邻的一条边相等,可以得到一个菱形,说明菱形也是平行四边形的特例,因此,菱形也具有平行四边形的所有性质.【教学说明】通过教师的教具操作感受菱形的定义.如图:将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,再打开.思考:1.这是一个什么样的图形呢?2.有几条对称轴?3.对称轴之间有什么位置关系?4.菱形中有哪些相等的线段?【教学说明】充分地利用学具的制作,发现菱形所具有的性质,激发课堂学习的热情.【归纳结论】菱形具有平行四边形的一切性质,另外,菱形的四条边相等、对角线互相垂直.三、运用新知,深化理解1.见教材P3第1题.2.见教材P3例1 .3.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为(A)A.15B.153 2C.7.5D.153【教学说明】本题考查有一个角是60°的菱形的一条对角线等于菱形的边长.4.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC且交BC的延长线于点E.求证:DE=12 BE.分析:由四边形ABCD是菱形,∠ABC=60°,易得BD⊥AC,∠DBC=30°,又由DE∥AC,即可证得DE⊥BD,由30°所对的直角边等于斜边的一半,即可证得DE=12 BE.证明:方法一:如图,连接BD,∵四边形ABCD是菱形,∠ABC=60°,∴BD⊥AC,∠DBC=30°,∵DE∥AC,∴DE⊥BD,即∠BDE=90°,∴DE=12 BE.方法二:∵四边形ABCD是菱形,∠ABC=60°,∴AD∥BC,AC=AD,∵AC∥DE,∴四边形ACED是菱形,∴DE=CE=AC=AD,又四边形ABCD是菱形,∴AD=AB=BC=CD,∴BC=EC=DE,即C为BE的中点,∴DE=BC=12 BE.【教学说明】此题考查了菱形的性质,直角三角形的性质等知识.此题难度不大,注意数形结合思想的应用.5.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.分析:(1)根据菱形的四条边都相等,又∠A=60°,得到△ABD是等边三角形,∠ABD是60°;(2)先求出OB的长和∠BOE的度数,再根据30°角所对的直角边等于斜边的一半即可求出.解:(1)在菱形ABCD中,AB=AD,∠A=60°,∴△ABD为等边三角形,∴∠ABD=60°;(2)由(1)可知BD=AB=4,又∵O为BD的中点,∴OB=2,又∵OE⊥AB,∠ABD=60°,∴∠BOE=30°,∴BE=1.【教学说明】本题利用等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半求解,需要熟练掌握.学生自主完成,如有一定难度可相互交流,最后由教师总结.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作补充.1.布置作业:教材“习题1.1”中第1、2 题.2.完成练习册中相应练习.本节课中,重在探索菱形性质的过程,在操作活动和观察分析过程中发展学生的审美意识,进一步体会和理解说理的基本步骤,了解菱形的现实应用.第2课时菱形的判定【知识与技能】1.理解并掌握菱形的定义及两个判定方法;2.会用这些判定方法进行有关的论证和计算.【过程与方法】经历探索菱形判定思想的过程,领会菱形的概念以及应用方法,发展学生主动探究的思想和说理的基本方法.【情感态度】培养良好的思维意识以及推理的能力,感悟其应用价值及培养学生的观察能力、动手能力及逻辑思维能力.【教学重点】菱形的两个判定方法.【教学难点】判定方法的证明及运用.一、情境导入,初步认识回顾:(1)菱形的定义:一组邻边相等的平行四边形.(2)菱形的性质:性质1菱形的四条边都相等;性质2菱形的对角线互相平分,并且每条对角线平分一组对角.(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)【教学说明】通过对菱形的性质复习回顾,让学生养成勤复习的习惯.用以温故而知新.二、思考探究,获取新知活动1按下列步骤画出一个平行四边形:(1)画一条线段长AC=6cm;(2)取AC的中点O,再以点O为中点画另一条线段BD=8cm,且使BD⊥AC;(3)顺次连接A、B、C、D四点,得到平行四边形ABCD.猜猜你画的是什么四边形?【归纳结论】菱形的判定方法1:对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.【教学说明】首先教师活动让学生观察,然后让学生自己动手亲自体验活动从而猜想出结论来.已知:在□ABCD中,AC⊥BD.求证:□ABCD是菱形.证明:∵四边形ABCD是平行四边形,AC ⊥BD,∴□ABCD是菱形.活动2画一画:作一条线段AC,分别以A、C为圆心,以大于AC的一半为半径画弧,两弧分别交于B、D两点,依次连接A、B、C、D.思考:四边形ABCD是什么四边形?你能证明吗?【归纳结论】菱形的判定方法2:四条边相等的四边形是菱形.【教学说明】让学生亲自动手体验活动,猜想出结论来并进行证明.从而加深印象.三、运用新知,深化理解1.见教材P6例2 .2.如图,在菱形ABCD中,E、F、G、H分别是菱形四边的中点,连结EG 与FH交点于O,则图中的菱形共有(B)A.4个B.5个C.6个D.7个3.下列说法正确的是(B)A.对角线互相垂直且相等的四边形是菱形B.对角线互相垂直的平行四边形是菱形C.对角线互相平分且相等的四边形是菱形D.对角线相等的四边形是菱形4.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连结AE、CD.求证:AD=CE;证明:∵MN是AC的垂直平分线.∴OA=OC,∠AOD=∠EOC=90°,∵CE∥AB,∴∠DAO=∠ECO,∴△ADO≌△CEO,∴AD=CE.5.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F,求证:四边形AEFG是菱形;证明:∵CE平分∠ACB,EA⊥CA,EF⊥BC,∴AE=FE,∵∠ACE=∠ECF,∴△AEC≌△FEC,∴AC=FC,∵CG=CG,∴△ACG≌△FCG,∴∠CAG =∠CFG =∠B,∴GF∥AE,∵AD⊥BC,EF⊥BC,∴AG∥EF,故四边形AGFE是平行四边形又∵AG=GF(或AE=EF),∴平行四边形AGFE是菱形(一组邻边相等的平行四边形是菱形).【教学说明】让学生先独立完成,然后将不会的问题各小组交流讨论得出结果.让学生从题目中找解题信息,从图形中找解决问题的突破口.四、师生互动、课堂小结1.师生共同回顾判定一个四边形是菱形的方法:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形.2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.2”中第2、3题.2.完成练习册中相应练习.本节课让学生动手操作,不仅可以调动学生的积极性,而且通过动手做一做,然后再说一说的过程,巩固了菱形的判定.只有这样,才能使学生在今后的学习中有更严密的思维,使他们的抽象概括能力有更好的提升.第3课时菱形的性质与判定的运用【知识与技能】能灵活运用菱形的性质定理及判定定理解决一些相关问题,并掌握菱形面积的求法.【过程与方法】经历菱形性质定理及判定定理的应用过程,体会数形结合、转化的思想.【情感态度】培养良好的探究意识以及推理能力,感悟其应用价值;培养学生的观察能力、动手能力及逻辑思维能力.【教学重点】利用菱形性质定理与判定定理解决一些相关问题.【教学难点】菱形性质的探究.一、情境导入,初步认识活动:如图,你能用一张锐角三角形纸片ABC折出一个菱形,使∠A成为菱形的一个内角吗?【教学说明】通过折纸活动激发学生的兴趣,同时对于菱形的相关判定方法也进行了巩固.二、思考探究,获取新知如图,两张等宽的纸条交叉重叠在一起,重叠部分ABCD是菱形吗?为什么?拓展:若纸条的宽度是4cm ,∠ABC=60°,你会求菱形的面积吗?你有几种不同的方法?与同学交流.【归纳结论】菱形面积的计算公式:①如图,S 菱形ABCD =AB ·DE ,即菱形的面积等于底乘高;②S 菱形ABCD =12AC ·BD ,即菱形的面积等于两条对角线乘积的一半.【教学说明】对菱形性质的归纳是学生对菱形特征的认识、是知识的一次升华,有助于培养学生的概括能力,突出教学重点.三、运用新知,深化理解如图,在△ABC 中,AB=BC ,D 、E 、F 分别是BC 、AC 、AB 的重点.(1)求证:四边形BDEF 是菱形;(2)若AB=10cm ,求菱形BDEF 的周长.解:(1)证明:∵E 、F 分别是AC 、AB 的中点,∴EF=12BC ,EF ∥CB. 又∵D 、E 分别是BC 、AC 的中点,∴DE=12AB ,DE ∥AB, ∴四边形BDEF 是平行四边形.又∵AB=BC ,∴EF=DE ,∴四边形BDEF 是菱形.(2)∵F 是AB 的中点,∴BF=12AB.又∵AB=10cm,∴BF=5cm.∵四边形BDEF是菱形,∴BD=DE=EF=BF,∴四边形BDEF的周长为4×5=20(cm).【教学说明】菱形的性质与判定的综合应用,一般先证明四边形是菱形,再利用菱形的性质进行求解或证明,要注意两者的区别与联系.四、师生互动、课堂小结通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.3”中第2、3、4题.2.完成练习册中相应练习.通过复习回顾菱形的性质和判定,唤醒学生的记忆,然后给学生设置好一个个有梯度的问题,调动学生的求知欲,树立勇于战胜自我的信念.2 矩形的性质与判定第1课时矩形的性质【知识与技能】了解矩形的有关概念,理解并掌握矩形的有关性质.【过程与方法】经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.【情感态度】培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.【教学重点】掌握矩形的性质,并学会应用.【教学难点】理解矩形的特殊性.一、情境导入,初步认识将收集来的有关长方形的图片给学生观察,让学生进行感性认识,引入新课——矩形.【教学说明】让学生体会到数学来源于生活,找到数学的价值.二、思考探究,获取新知1.拿一个活动的平行四边形教具,轻轻拉动一个点并观察,它还是一个平行四边形吗?为什么?(演示拉动过程如图)2.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?【归纳结论】矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).让学生观察教师的教具,研究其变化情况,可以发现:矩形是平行四边形的特例,属于平行四边形,因此它具有平行四边形所有性质.思考:矩形还具有哪些特殊的性质?为什么?【教学说明】采用观察、操作、交流、演绎的手法来解决重点突破难点.【归纳结论】矩形性质1 矩形的四个角都是直角.矩形性质2 矩形的对角线相等.3.矩形是轴对称图形吗?如果是,它有几条对称轴?4.如图,在矩形ABCD中,AC、BD相交于点O,求AO与BD的数量关系.【归纳结论】直角三角形斜边上的中线等于斜边的一半.【教学说明】引导学生尽可能多地发现结论,养成善于观察的好习惯.三、运用新知,深化理解1.已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.分析:因为矩形是特殊的平行四边形,它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知条件,可得△OAB是等边三角形,因此对角线的长度可求.解:∵四边形ABCD是矩形,∴AC与BD相等且互相平分.∴OA=OB.又∠AOB=60°,∴△OAB是等边三角形.∴矩形的对角线长AC=BD = 2OA=2×4=8(cm).2.已知:如图,矩形ABCD,AB长8cm ,对角线比AD长4cm.求AD的长及点A到BD的距离AE的长.分析:因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.解:(1)设AD=xcm,则对角线长(x+4)cm,在Rt△ABD中,由勾股定理:x2+82=(x+4)2,解得x=6. 则AD=6cm.(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式:AE·DB=AD·AB,解得AE =4.8cm.3.已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.分析:CE、EF分别是BC,AE线段上的一部分,若AF=BE,则问题解决,而证明AF=BE,只要证明△ABE≌△DFA即可,在矩形中容易构造全等的直角三角形.证明:∵四边形ABCD是矩形,∴∠B=90°,且AD∥BC.∴∠1=∠2.∵DF⊥AE,∴∠AFD=90°.∴∠B=∠AFD.又AD=AE,∴△ABE≌△DFA(AAS).∴AF=BE.∴EF=EC.此题还可以连接DE,证明△DEF≌△DEC,得到EF=EC.【教学说明】给予学生足够的时间,让学生独立思考,小组合作,由不同学生表述自己的不同思路,展示不同的方法.使学生能做一题会一类,熟知矩形中的基本图形.4.若矩形的一个角的平分线分一边为4cm和3cm的两部分,则矩形的周长为22或20 cm.解:本题需分两种情况解答.即矩形的一个角的平分线分一边为4cm和3cm,或者矩形的角平分线分一边为3cm和4cm.当矩形的一个角的平分线分一边为4cm和3cm时,矩形的周长为2×(3+4)+2×4=22cm;当矩形的角平分线分一边为3cm和4cm时,矩形的周长为2×(3+4)+2×3=20cm.【教学说明】本题考查的是矩形的基本性质,学生需要注意的是分两种情况作答即可.四、师生互动,课堂小结1.师生共同回顾矩形的性质.2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.4”中第2、3题.2.完成练习册中相应练习.本节课以“平行四边形变形为矩形的过程”的演示引入课题,将学生的视线集中在数学图形上,思维集中在数学思考上,更好地突出了观察的对象,使学生更容易把握问题的本质,真实、自然、和谐,体现了数学学习的内在需要,加强了学生对知识之间的理解和把握.第2课时矩形的判定【知识与技能】1.理解并掌握矩形的判定方法.2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.【过程与方法】经历探索矩形判定的过程,发展学生实验探索的意识;形成几何分析思路和方法.【情感态度】培养推理能力,会根据需要选择有关的结论证明,体会来自于实践的需要.【教学重点】理解并掌握矩形的判定方法及其证明,掌握判定的应用.【教学难点】定理的证明方法及运用.一、情境导入,初步认识事例引入:小华想做一个矩形相框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形相框吗?看看谁的方法可行?【教学说明】事例引入,激发学生的兴趣.二、思考探究,获取新知动手操作,拿一个活动的平行四边形教具,轻轻拉动一个点.思考:1.随着∠α的变化,两条对角线的长度将发生怎样的变化?2.当两条对角线的长度相等时,平行四边形有什么特征?你能证明吗?【教学说明】让学生动脑思考,动手操作.为下面的学习做准备.【归纳结论】对角线相等的平行四边形是矩形.证明:(见教材P14例题)矩形的四个角都是直角,反过来,一个四边形至少有几个角是直角时,这个四边形就是矩形呢?请证明你的结论,并与同伴交流.【归纳结论】有三个角是直角的四边形是矩形.【教学说明】培养学生的归纳总结能力,同时也训练了学生的语言表达能力和分析问题的能力.三、运用新知,深化理解1. 对角线相等的平行四边形是矩形.有三个角是直角的四边形是矩形.解析:矩形的判定定理有:(1)对角线相等的平行四边形是矩形;(2)有三个角是直角的四边形是矩形.2.下列说法正确的是(D )A.一组对边平行且相等的四边形是矩形B.一组对边平行且有一个角是直角的四边形是矩形C.对角线互相垂直的平行四边形是矩形D.一个角是直角且对角线互相平分的四边形是矩形解析:A、一组对边平行且相等的四边形是平行四边形,故A错误;B、一组对边平行且相等并有一个角是直角的四边形是矩形,故B错误;C、对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”),故C 错误;D、对角线互相平分且相等的四边形是矩形,故D正确.【教学说明】让学生口答第1、2道题,训练学生的语言表达能力.3.如图所示,□ABCD的四个内角的平分线分别相交于E、F、G、H,试说明四边形EFGH是矩形.解:∵∠HAB+∠HBA=90°.∴∠H=90°.同理可求得∠HEF=∠F=∠FGH=90°∴四边形EFGH是矩形.【教学说明】在黑板上展示第3题,有多种证明方法的题目学生口答展示,教师予以总结.既训练了学生的语言表达能力,也训练了学生的书写能力和分析问题的能力.四、师生互动,课堂小结1.师生共同回顾矩形有哪些判定定理?2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.5”中第2、3题.2.完成练习册中相应练习.本节课用逻辑推理的方法对以前曾用直观感知、操作说明得到的矩形判定进行的重新研究,让学生充分感受到逻辑推理是研究几何的重要方法.尽可能地提供多种机会让学生自己去理解、感悟、体验,从而提高学生的数学认识,激发学生的数学情感,促进学生数学水平的提高.第3课时矩形的性质与判定的运用【知识与技能】熟练运用矩形的性质和判定定理进行相关的计算和证明.【过程与方法】经历从性质到判定的转化过程,合理、准确地运用已有的知识进行推导、证明,体会数学知识之间的联系和区别.【情感态度】通过严谨的推理,强化学生的规范意识.【教学重点】灵活运用矩形的性质和判定定理进行相关的计算和证明.【教学难点】利用矩形的相关性质构造新的图形,进而对知识进行转化.一、情境导入,初步认识如图,在矩形ABCD中,AD=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,ED=3BE.求AE的长.【教学说明】通过例题感受知识的应用的同时体会知识之间的联系及转化,并通过规范的步骤强调教学推理的严谨性.二、思考探究,获取新知已知:如图,在△ABC中,AB=AC,AD是△ABC的一条角平分线,AN为△ABC的外角∠CAM的平分线,CE⊥AN,垂足为E.求证:四边形ADCE是矩形.【思考】在上例中,连接DE,交AC于点F.(1)试判断四边形ABDE的形状,并证明你的结论;(2)线段DF与AB有怎样的关系?请证明你的结论.【教学说明】让学生感受矩形与等腰三角形之间的联系,感受知识转化在解决问题中的作用.三、运用新知,深化理解1.见教材P16~P17例3.2.如图,O是矩形ABCD的对角线的交点,过点O的直线EF分别交AB、CD于点E、F,那么阴影部分的面积是矩形ABCD的面积的(B )3.(一题多解)如图所示,△ABC为等腰三角形,AB=AC,CD⊥AB于D,P为BC上的一点,过P点分别作PE⊥AB,PF⊥CA,垂足分别为E,F,则有PE+PF=CD,你能说明为什么吗?解:解法一:能.如图所示,过P点作PH⊥DC,垂足为H.可得四边形PHDE是矩形,∴PE=DH,PH∥BD∴∠HPC=∠B又∵AB=AC∴∠B=∠ACB∴∠HPC=∠FCP.又∵PC=CP,∠PHC=∠CFP=90°∴△PHC≌△CFP∴PF=HC∴DH+HC=PE+PF即:DC=PE+PF.解法二:能.如图,延长EP,过C点作CH⊥EP,垂足为点H,如图所示,可得四边形HEDC是矩形,∴EH=PE+PH=DC,CH∥AB∴∠HCP=∠B.∴△PHC≌△PFC∴PH=PF∴PE+PF=DC.【教学说明】通过应用性的练习,巩固基础知识的同时,感受知识的综合运用在解题过程中的重要性,使所学知识进行深化.四、师生互动,课堂小结通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.6”中第1、2、3题.2.完成练习册中相应练习.本节课在复习前一节课内容的基础上利用矩形的性质和判定解决具体问题,在例题的选择和设计上,追寻知识向能力的转化,让学生主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略,同时训练学生清晰、有条理地表达自己的思考过程,从而培养学生的推理能力和分析问题的能力.3 正方形的性质与判定第1课时正方形的性质【知识与技能】使学生掌握正方形的概念,知道正方形具有矩形和菱形的一切性质,并会用它们进行有关的论证和计算.【过程与方法】学会用正方形的性质解决一些问题,进一步发展学生的推理能力,促进其逐步掌握说理的基本方法.【情感态度】通过分析正方形的概念、性质与矩形、菱形的概念、性质的联系和区别,对学生进行辩证唯物主义教育.【教学重点】正方形的性质.【教学难点】正方形的性质.一、情境导入,初步认识1.在我们的生活中除了平行四边形、矩形、菱形外,还有什么特殊的平行四边形呢?2.展示正方形图片,学生观察它们有什么共同特征?【教学说明】学生回答后,再展示图片,使学生感受到生活中到处存在数学,激发学习热情.【归纳结论】有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.二、思考探究,获取新知1.做一做:用一张长方形的纸片折出一个正方形.2.观察:这个正方形具有哪些性质?【教学说明】让学生在动手操作中对正方形产生感性认识.【归纳结论】正方形的四个角都是直角,四条边相等.正方形的对角线相等且互相垂直平分.3.议一议:平行四边形、菱形、矩形、正方形之间有什么关系?你能用一个图直观地说明吗?【教学说明】小组交流,引导学生从角、对角线的角度归纳总结.使学生感受变化过程,更清晰地了解各四边形之间的联系与区别.三、运用新知,深化理解1.见教材P21例1 .2.如图,△ABC是一个等腰直角三角形,DEFG是其内接正方形,H是正方形的对角线交点;那么,由图中的线段所构成的三角形中互相全等的三角形的对数为()A.12B.13C.26D.30解析:根据全等三角形的判定可以确定全等三角形的对数,由于图中全等三角形的对数较多,可以根据斜边长的不同确定对数,可以做到不重不漏.设AB=3,图中所有三角形均为等腰直角三角形,其中,斜边长为1的有5个,它们组成102的有6个,它们组成15对全等三角形;斜边长为2的有2个,它们组成1对全等三角形;共计26对.故选C.3.已知正方形ABCD在直角坐标系内,点A(0,1),点B(0,0),则点C,D坐标分别为(1,0)和(1,1).(只写一组)解析:首先根据正方形ABCD的点A(0,1),点B(0,0),在坐标系内找出这两点,根据正方形各边相等,从而可以确定C,D的坐标.∵正方形ABCD 的点A(0,1),点B(0,0),∴AD∥x轴,CD∥y轴,这样画出正方形,即可得出C与D的坐标,分别为:C(1,0),D(1,1).4.如图,点E、F分别在正方形ABCD的边DC、BC上,AG⊥EF,垂足为G,且AG=AB,求∠EAF度数.分析:根据角平分线的判定,可得出△ABF≌△AGF,故有∠BAF=∠GAF,再证明△AGE≌△ADE,有∠GAE=∠DAE,所以可得∠EAF=45°.解:在Rt△ABF与Rt△AGF中,∵AB=AG,AF=AF,∠B=∠G=90°,∴△ABF≌△AGF(HL),∴∠BAF=∠GAF,同理易得:△AGE≌△ADE,有∠GAE=∠DAE;即∠EAF=∠EAG+∠FAG=12(∠DAG+ ∠BAG)=12∠DAB=45°,故∠EAF=45°【教学说明】主要考查了正方形的性质和全等三角形的判定.5.如图,正方形ABCD中,AB=3,点E、F分别在BC、CD上,且∠BAE=30°,∠DAF=15°.(1)求证:DF+BE=EF;(2)求∠EFC的度数.分析:(1)延长EB至G,使BG=DF,连接AG.利用正方形的性质,证明△AGE≌△AFE,△FAE≌△GAE,得出DF+BE=EF;(2)根据△AGE≌△AFE及角之间的关系从而求得∠EFC的度数;解:(1)延长EB至G,使BG=DF,连接AG,∵四边形ABCD是正方形,∴AB=AD,∠ABG=∠ADF=∠BAD=90°,∵BG=DF,∴△ABG≌△ADF,∴AG=AF,∵∠BAE=30°,∠DAF=15°,∴∠FAE=∠GAE=45°,∵AE=AE,∴△FAE≌△GAE,∴EF=EG=GB+BE=DF+BE;(2)∵△AGE≌△AFE,∴∠AFE=∠AGE=∠DFA=90°-∠DAF=75°,∴∠EFC=180°-∠DFA-∠AFE=180°-75°-75°=30°,∴∠EFC=30°.【教学说明】学生独立完成以培养学生的独立意识.四、师生互动,课堂小结1.师生共同回顾正方形有哪些性质?2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.7”中第2 、3题.2.完成练习册中相应练习.本课虽然是学习正方形的性质,实际上应起到对平行四边形、矩形、菱形性。

北师大版 九年级数学上册 第一章_1.1.1菱形的性质_电子教案

北师大版 九年级数学上册 第一章_1.1.1菱形的性质_电子教案

第一章特殊平行四边形1.1 菱形的性质与判定1.1.1 菱形及其性质1.经历探索、猜想、证明的过程,进一步发展推理论证的能力.2.能运用综合法证明菱形的性质定理和判定定理.3.体会证明过程中所运用的归纳概括以及转化等数学思想方法掌握菱形的性质运用菱形的性质解决与菱形有关的问题1.提问:什么是平行四边形?平行四边形中相邻两边有何关系?学生回顾交流.2.教师出示生活中菱形的例子,引出这类特殊的平行四边形——菱形.学生活动:观察衣服、衣帽架和窗户等实物图片.教师:同学们,在观察图片后,你们能从中发现熟悉的图形吗?你们认为它们有什么样的共同特征呢?学生1:图片中有八年级学过的平行四边形.教师:请同学们观察,图片中的平行四边形与图1-1-1中的ABCD相比较,还有不同点吗?学生2:图片中的平行四边形不但对边相等,而且任意两条邻边也相等.教师:同学们观察得很仔细,这就是我们今天要研究的一类特殊的平行四边形——菱形.菱形的概念:有一组邻边相等的平行四边形叫作菱形.·想一想教师:菱形是特殊的平行四边形,它具有一般平行四边形的所有性质.你能列举一些这样的性质吗?学生:菱形的对边平行且相等,对角相等,对角线互相平分.教师:你认为菱形还具有哪些特殊的性质吗?同学互相交流讨论.学生活动:分小组讨论菱形的性质,组长组织组员讨论,让尽可能多的组员发言,并汇总结果.教师活动:教师巡视,并参与到学生的讨论中,启发同学们类比平行四边形,从图形的边、角和对角线三个方面探讨菱形的性质.对学生的结论,教师要及时评价,积极引导、激励学生.·做一做教师组织学生活动,即用菱形纸折一折.教师:请同学们用菱形纸片折一折,并回答下列问题:(1)菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?(2)菱形中有哪些相等的线段?学生活动:分小组折纸,探索教师问题的答案.组长组织,并汇总结果.教师活动:教师巡视并参与学生活动,引导学生分析怎样折纸才能得到正确的结论.学生研讨完毕,教师要展示、汇总学生的折纸方法以及相应的结论,以便于后面的教学.通过折菱形纸片,得出以下结论:(1)菱形是轴对称图形,有两条对称轴,两条对称轴互相垂直;(2)菱形的四条边相等;(3)菱形的对角线互相垂直.教师:通过折纸活动,同学们已经对菱形的性质有了初步的了解,下面我们要对菱形的第(2)(3)条性质进行严格的逻辑证明.教师出示幻灯片,引导学生证明.已知:如图1-1-2,在菱形ABCD中,AB=AD,对角线AC与BD相交于点O.图1-1-2求证:(1)AB=BC=CD=AD;(2)AC⊥BD.师生共析:①菱形不但对边相等,而且邻边相等,这样就可以证明菱形的四条边都相等了.②因为菱形是平行四边形,所以点O是对角线AC与BD的中点;又因为在菱形中可以得到等腰三角形,这样就可以利用“三线合一”来证明结论了.学生活动:写出证明过程,进行组内交流对比,优化证明方法,掌握相关定理.教师活动:书写板书.证明:(1)∵四边形ABCD是菱形,∴AB=CD,AD=BC(菱形的对边相等).又∵AB=AD,∴AB=BC=CD=AD.(2)∵AB=AD,∴△ABD是等腰三角形.又∵四边形ABCD是菱形,∴OB=OD(菱形的对角线互相平分).在等腰三角形ABD中,∵OB=OD,∴AO⊥BD,即AC⊥BD.由上边的证明得出以下定理:定理:菱形的四条边相等.定理:菱形的对角线互相垂直..例题讲解图1-1-3例1如图1-1-3,在菱形ABCD中,对角线AC与BD相交于点O,∠BAD=60°,BD=6,求菱形的边长AB和对角线AC的长.师生共析:①因为菱形的邻边相等,一个内角是60°,这样就可以得到等边三角形ABD,因为BD=6,所以菱形的边长也是6.②菱形的对角线互相垂直,可以得到直角三角形AOB;根据菱形的对角线互相平分,可以得到OB=3,根据勾股定理就可以求出OA的长度;再一次根据菱形的对角线互相平分,即AC=2OA,求出AC.教师活动:引导学生思考,书写解答步骤.解:∵四边形ABCD是菱形,∴AB=AD(菱形的四条边相等),AC⊥BD(菱形的对角线互相垂直),OB=OD=12BD=12×6=3(菱形的对角线互相平分).在等腰三角形ABD中,∵∠BAD=60°,∴△ABD是等边三角形.∴AB=BD=6.在Rt△AOB中,由勾股定理,得OA2+OB2=AB2,∴OA=AB2-OB2=62-32=33.∴AC=2OA=63(菱形的对角线互相平分)【巩固练习】教材随堂练习补充练习:如图1-1-4,在菱形ABCD中,对角线AC,BD相交于点O,BD=12 cm,AC=6 cm,求菱形的周长.本节课应掌握:1.菱形的定义:有一组邻边相等的平行四边形叫作菱形.2.菱形的性质:菱形具有平行四边形的所有性质,除此之外还有以下特殊性质:①菱形是轴对称图形,对称轴是两条对角线所在的直线;②菱形的四条边相等;③菱形的对角线互相垂直平分.课本习题1.1。

2023-2024学年北师大版九年级数学上册教学设计:1.1 菱形的性质与判定

2023-2024学年北师大版九年级数学上册教学设计:1.1 菱形的性质与判定

2023-2024学年北师大版九年级数学上册教学设计:1.1 菱形的性质与判定一. 教材分析北师大版九年级数学上册第一章《几何图形的性质》的1.1节《菱形的性质与判定》是本章的重要内容。

本节课主要让学生了解菱形的性质,学会用菱形的性质解决一些简单问题,并掌握菱形的判定方法。

教材通过丰富的图片和实例,激发学生的学习兴趣,引导学生发现菱形的性质,培养学生观察、思考、归纳的能力。

二. 学情分析九年级的学生已经学习了矩形、三角形等图形的性质,对图形的性质有一定的了解。

但学生对菱形的认识较少,需要通过实例和探究活动,让学生理解和掌握菱形的性质。

此外,学生需要进一步培养观察、思考、归纳的能力,以及运用菱形性质解决实际问题的能力。

三. 教学目标1.理解菱形的性质,能运用菱形的性质解决一些简单问题。

2.掌握菱形的判定方法,能判断一个四边形是否为菱形。

3.培养学生的观察、思考、归纳能力,提高学生运用菱形性质解决实际问题的能力。

四. 教学重难点1.教学重点:菱形的性质及判定方法。

2.教学难点:菱形性质在实际问题中的应用。

五. 教学方法1.引导发现法:通过实例和探究活动,引导学生发现菱形的性质。

2.归纳总结法:引导学生观察、思考、归纳菱形的性质和判定方法。

3.实践应用法:设计练习题,让学生运用菱形性质解决实际问题。

六. 教学准备1.教学课件:制作课件,展示菱形的图片和实例。

2.练习题:设计一些有关菱形性质的练习题。

3.教学黑板:准备一块黑板,用于板书 key points 和解题过程。

七. 教学过程导入(5分钟)1.利用课件展示一些生活中的菱形图片,如蜂巢、骰子等,引导学生关注菱形在生活中的应用。

2.提问:我们已经学习了矩形、三角形等图形的性质,你们想不想知道菱形有哪些性质呢?呈现(10分钟)1.给出一个矩形ABCD,将其对角线AC和BD相交于点O,连接OB和OD。

2.提问:你们能发现矩形ABCD的哪些性质?3.引导学生发现矩形的对角线互相平分且相等,即OB=OD。

北师大版九年级数学上册第1章1.1菱形的性质与判定优秀教学案例

北师大版九年级数学上册第1章1.1菱形的性质与判定优秀教学案例
最后,我结合学生的实际水平和课程要求,设计了丰富多样的教学活动,如观察实物、分组讨论、动手操作、解答问题等,使学生在实践中学习,提高他们的学习兴趣和参与度。同时,我注重发挥教师的主导作用,引导学生掌握学习方法,培养他们的自主学习能力。
二、教学目标
(一)知识与技能
1.学生能够理解菱形的定义,掌握菱形的性质,并能够运用菱形的性质解决实际问题。
2.引导学生通过观察、操作、思考、交流等途径,合作解决实际问题,培养他们的合作意识和问题解决能力。
3.教师巡回指导,给予学生必要的帮助和指导,促进他们的学习进程。
(四)总结归纳
1.教师引导学生进行小组讨论,总结菱形的性质和判定方法,归纳出关键点。
2.学生分享并汇报本小组的讨论成果,教பைடு நூலகம்进行点评和补充。
2.学生能够掌握菱形的判定方法,并能够运用判定方法判断一个四边形是否为菱形。
3.学生能够了解菱形与矩形、正方形的联系和区别,提高他们对平行四边形性质的理解和应用能力。
(二)过程与方法
1.学生通过观察实物和几何图形,培养他们的空间想象能力和观察能力。
2.学生通过分组讨论和动手操作,培养他们的合作意识和问题解决能力。
五、案例亮点
1.生活情境的创设:通过展示实际生活中的菱形物体,如菱形宝石、菱形海报等,引发学生对菱形的兴趣和好奇心。这种生活情境的创设使学生能够更好地理解和应用菱形的性质和判定方法,提高他们的学习兴趣和实际问题解决能力。
2.问题导向的教学策略:设计富有挑战性和实际意义的问题,引导学生思考和探索菱形的性质和判定方法。这种问题导向的教学策略能够激发学生的思维活跃度,培养他们的critical thinking能力和problem-solving能力。
3.设计有趣的教学游戏,如菱形拼图游戏,让学生在游戏中体验菱形的性质和判定方法,提高他们的学习兴趣。

北师大版数学九年级上册教学设计:1.1菱形的性质与判定(三)

北师大版数学九年级上册教学设计:1.1菱形的性质与判定(三)
7.课后作业:布置具有挑战性的练习题,巩固所学知识,提高学生的几何解题能力。
8.教学评价:关注学生的学习过程,从知识掌握、能力提升、情感态度等方面进行全面评价。
二、学情分析
九年级学生在前两年的学习中,已经积累了丰富的几何图形知识,具备了一定的空间想象能力和逻辑推理能力。在此基础上,学生对菱形的性质与判定的学习,应该能够顺利地运用已学过的平行四边形、矩形、菱形等知识进行类比和迁移。然而,由于菱形的性质和判定方法具有一定的复杂性,学生在理解上可能会遇到一些困难,如对角线垂直的判定、对角线平分对角的运用等。此外,学生在解决实际问题时,可能会对如何运用菱形性质进行分析和解答感到困惑。因此,在教学过程中,教师需要关注学生的个体差异,提供适当的引导和帮助,以增强学生的自信心,提高学生的几何解题能力。同时,通过激发学生的兴趣,培养其探究精神,使学生能够在轻松愉快的氛围中掌握菱形的性质与判定方法,为后续几何知识的学习打下坚实基础。
3.实施步骤:
-布置基础题,让学生熟悉菱形的性质和判定方法。
-布置提高题,让学生运用菱形知识解决实际问题。
-学生独立完成练习题,教师巡回指导,解答学生疑问。
(五)总结归纳
1.教学内容:对本节课的知识点进行总结,引导学生回顾学习过程。
2.教学策略:采用师生互动法,让学生在总结中加深对知识的理解。
3.实施步骤:
2.采用启发式教学,引导学生通过观察、猜想、验证、总结的学习过程,自主发现菱形的性质。
-设想:教师提出引导性问题,如“菱形有哪些独特的性质?”“如何证明这些性质?”等,激发学生的探究欲望。
3.分组合作,让学生在讨论交流中掌握判定菱形的方法。
-设想:组织学生进行小组讨论,分享各自的想法和证明方法,培养学生的团队合作意识和交流能力。

1.1《菱形的性质与判定第1课时》北师大版九年级数学上册教案

1.1《菱形的性质与判定第1课时》北师大版九年级数学上册教案

第一章特殊的平行四边形1 菱形的性质与判定第1课时一、教学目标1.理解菱形的概念,了解它与平行四边形之间的关系.2.经历菱形性质定理的探索过程,进一步发展合情推理能力.3.能够用综合法证明菱形的性质定理,进一步发展演绎推理能力.4.体会探索与证明过程中所蕴含的抽象、推理等数学思想.二、教学重难点重点:理解菱形的概念,掌握菱形的性质定理.难点:探究证明菱形的性质定理.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情境【观察思考】教师活动:先提出问题让学生观察,然后再演示动画.问题:观察下列实物中的平行四边形,说一说什么是平行四边形?预设答案:两组对边分别平行的四边形叫做平行四边形.追问:平行四边形有哪些性质呢?预设答案:平行四边形的性质:①对边相等;②对角观察实物图形,回顾平行四边形的概念回顾平行四边形的性质通过对实物中的平行四边形的直观观察及动画演示复习回顾平行四边形的概念和性质,为本节课要学习的内容作准备.相等;③对角线互相平分.环节二探究新知【观察】教师活动:教师课件展示几幅图片中都含有平行四边形,观察得到这些平行四边形的共同特征,并通过动画展示一组邻边相等,从而给出菱形的定义.问题:下面几幅图片中都含有一些平行四边形,观察这些平行四边形,你能发现它们有什么样的共同特征?预设答案:四条边都相等.思考:平行四边形的变化过程,当一组邻边相等时,会产生什么图形?预设答案:一组邻边相等的平行四边形.追问:你能给这样的图形下个定义吗?预设答案:有一组邻边相等的平行四边形叫做菱形.(菱形的定义)师强调:按照菱形的定义必须满足:一组邻边相等且四边形是平行四边形.【试一试】菱形也是常见的图形,你能举出一些生活中的例子吗?认真观察观看动画说出常见的菱形形象的实物观察三幅图片中的平行四边形,找出它们的共同特征,为引出菱形的定义打下基础借助动态演示,让学生直观感知边的变化带来平行四边形的改变.体会菱形是平行四边形的边特殊化后的产物,自然引出菱形的定义.通过举例说明,使学生真实感受菱形的广泛应用,激发学教师动画演示从实例中抽象出菱形,一方面加深对菱形的理解,另一方面强调菱形也是特殊的平行四边形.【想一想】菱形是特殊的平行四边形,它具有平行四边形的所有性质,你能列举出来吗?预设答案:菱形的对边相等,对角相等,对角线互相平分.追问:除了这些性质,菱形还具有哪些特殊的性质呢?【做一做】教师活动:动画演示折纸活动,通过折纸活动,让学生发现、验证菱形的特殊性质.用菱形纸片折一折,回答下列问题:(1)菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?(2)菱形中有哪些相等的线段?预设答案:(1)菱形是轴对称图形,有两条对称轴,两条对称轴互相垂直.(2)菱形的四条边相等.举手说一说认真思考观看演示视频过程或自主折纸尝试,回答问题思考回答习兴趣.先让学生列举出这些性质,一是对平行四边形性质的回顾;二是在回顾这些性质的过程中,结合菱形的形状特征,学生初步感悟到菱形的一些特殊性质,为接下来探索、证明菱形的特殊性质做好铺垫.鼓励学生实际折一折或观看视频,并在操作或观看过程中进行观察与思考,从而获得有关结论.思考:通过上面的折纸活动,你发现了菱形的什么特殊性质?预设答案:菱形的四条边都相等;菱形的两条对角线互相垂直.追问:你能证明这些性质吗?【证明】已知:如图,在菱形ABCD 中,AB=AD, 对角线AC与BD相交于点O.求证: (1)AB=BC=CD=AD;(2)AC⊥BD.证明:(1)∵四边形ABCD是菱形,∴AB=CD,AD=BC(菱形的对边相等).又∵AB=AD, ∴AB=BC=CD=AD.(2)∵AB=AD,∴△ABD是等腰三角形.又∵四边形ABCD是菱形,∴OB=OD(菱形的对角线互相平分).在等腰三角形ABD中,∵OB=OD,∴AO⊥BD,即AC⊥BD.【归纳】菱形的性质具有平行四边形的所有性质:对边平行且相等;对角相等;对角线互相平分.菱形的特殊性质:边:菱形的四条边都相等.对角线:菱形的两条对角线互相垂直.问题熟悉证明过程熟悉菱形的性质及其几何语言通过证明让学生明确菱形的性质,培养学生的逻辑推理能力.通过归纳进一步熟悉菱形的性质,培养归纳概括能力.几何语言:∵四边形ABCD是菱形∴AB=BC=CD=DA,AC⊥BD,环节三应用新知【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例1 如图,在菱形ABCD 中,对角线AC 与BD相交于点O, ∠BAD = 60°,BD = 6,求菱形的边长AB 和对角线AC的长.分析:根据菱形的两条特殊的性质及已知条件,可得出△ABD是等边三角形,从而得出边长AB,再由勾股定理得出OA的长,从而可求对角线AC的长.解:∵四边形ABCD 是菱形,∴AB=AD(菱形的四条边相等),AC⊥BD(菱形的对角线互相垂直),OB=OD=BD==3(菱形的对角线互相平分).在等腰三角形ABD中,∵∠BAD=60°,∴△ABD是等边三角形.明确例题的做法让学生在探究过程中进一步加深对菱形的性质的认识和理解,培养学生的应用意识.∴AB=BD =6.在Rt △AOB 中,由勾股定理,得OA 2 + OB 2 = AB 2,∴OA =∴AC =2OA =(菱形的对角线互相平分)环节四 巩固新知教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.已知菱形的周长是12 cm ,那么它的边长是______.2.如图,菱形ABCD 的边长为6,∠BAD =120°,则对角线AC 的长是.3.已知:如图,在菱形ABCD 中,∠BAD =2∠B .求证:△ABC 是等边三角形.4.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O . 已知AB =5cm ,OA =4cm ,求 BD的长.自主完成练习,然后集体交流评价.通过课堂练习及时巩固本节课所学内容,并考查学生的知识应用能力,培养独立完成练习的习惯.答案:1. 3 cm;2. 6;3. 证明:∵四边形ABCD是菱形∴AD∥BC,∴∠BAD+∠B=180°,又∵∠BAD=2∠B,∴∠B=60°,∵AB =BC,∴△ABC是等边三角形.4. 解:∵四边形ABCD 是菱形,∴AC⊥BD,OB=OD∴△AOB为直角三角形∴在Rt△AOB中,OB2+OA2=AB2,AB=5cm,OA=4cm,∴OB=3cm∴BD=2OB= 2×3=6(cm),即BD的长为6 cm.环节五课堂小结思维导图的形式呈现本节课的主要内容:学生尝试回顾本节课所讲的内容通过小结总结回顾本节课学习内容,帮助学生归纳、巩固所学知识.环节六布置作业教科书第4-5页习题1.1 第2、3、4题学生课后自主完成.通过课后作业,教师能及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.。

九年级数学北师大版上册1.1菱形的性质与判定教学设计

九年级数学北师大版上册1.1菱形的性质与判定教学设计
(2)讲解菱形的性质,如对角线垂直平分线、对角线互相平分、对边平行且相等等。
(3)介绍菱形的判定方法,如对角线互相垂直平分的四边形是菱形、四条边相等的四边形是菱形等。
2.教学目标:
(1)使学生掌握菱形的性质和判定方法,理解菱形与平行四边形的关系。
(2)培养学生的几何直观和逻辑思维能力,提高学生解决问题的能力。
(2)教师进行点评,强调重点,突破难点。
(3)鼓励学生提出疑问,解答学生的疑问,巩固所学知识。
2.教学目标:
(1)使学生形成系统的知识结构,加深对菱形的认识。
(2)培养学生的总结归纳能力,提高学生的学习效率。
(3)激发学生的学习兴趣,为后续知识的学习打下基础。
五、作业布置
为了巩固学生对菱形性质与判定的理解,提高学生的应用能力,特布置以下作业:
(2)拓展题目:运用菱形的性质,解决一个与面积相关的实际问题,如平面镶嵌、菱形区域的草坪设计等。
3.创新与实践:
(1)鼓励学生运用所学知识,创作一个含有菱形元素的几何图案,并说明其寓意。
(2)小组合作,设计一个关于菱形性质与判定的数学游戏或竞赛题目,与同学分享、交流。
4.作业要求:
(1)作业需独立完成,确保解题过程的规范性和答案的正确性。
1.必做题:
(1)课本习题1.1:完成习题1、2、3,巩固菱形的性质与判定方法。
(2)根据课堂所学,设计一道应用菱形性质的几何题目,并给出解题过程和答案。
(3)结合生活中的实例,说明菱形在实际问题中的应用,以文字或图片形式呈现。
2.选做题:
(1)探究题目:研究菱形与矩形的性质差异,总结二者之间的联系和区别。
2.教学目标:
(1)培养学生的团队协作能力和交流表达能力。

北师大版数学九年级上册1.1.1菱形的性质(教案)

北师大版数学九年级上册1.1.1菱形的性质(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解菱形的基本概念。菱形是四边相等的四边形,它在几何图形中具有重要地位,广泛应用于日常生活和建筑设计等领域。
2.案例分析:接下来,我们来看一个具体的案例。通过分析菱形在实际中的应用,如菱形风筝的设计,了解菱形性质如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调菱形的对角线垂直、平分对角和面积计算方法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
在实践活动环节,学生们分组讨论和实验操作的过程较为顺利。他们能够将所学知识运用到实际问题中,并展示出良好的团队协作能力。但在时间安排上,我感觉到有些紧张,部分小组的展示环节较为仓促。为了更好地发挥实践活动的作用,我计划在下次教学中适当调整时间分配,确保每个小组都有足够的时间进行展示和讨论。
此外,在学生小组讨论环节,我注意到学生们在讨论过程中提出了一些很有创意的想法。但在引导和启发方面,我觉得自己还可以做得更好。在今后的教学中,我将更加关注学生的个体差异,提供更具针对性的指导,帮助他们拓展思维,提高解决问题的能力。
-举例:可以设置一些关于菱形性质的实际问题,如计算菱形窗户的面积、设计菱形图案等,让学生在实际操作中应用所学知识。
本节课的教学难点与重点旨在帮助学生深刻理解菱形的性质,掌握菱形面积的计算方法,并能够将所学知识应用于解决实际问题。在教学过程中,教师需要针对重点内容进行讲解和强调,针对难点采取有效的教学策略,帮助学生突破难点,确保学生对核心知识的理解透彻。
5.引导学生体会数学知识在实际生活中的应用,增强数学应用意识,提高数学实践素养。
本节课的核心素养目标旨在培养学生的几何直观、空间想象、逻辑推理、数学建模、问题解决、数学表达和交流等方面的能力,使其在掌握知识的同时,全面提升数学学科核心素养。

北师大版九年级上册数学 1.1 第1课时 菱形的性质教案1

北师大版九年级上册数学     1.1 第1课时 菱形的性质教案1

1.1菱形的性质与判定第1课时菱形的性质1.通过折、剪纸张的方法,探索菱形独特的性质,理解菱形与平行四边形之间的联系;2.通过学生间的交流、讨论、分析、类比、归纳,运用已学过的知识总结菱形的特征;3.掌握菱形的概念和菱形的性质以及菱形的面积公式的推导.(重点、难点)一、情景导入请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.让学生举一些日常生活中所见到过的菱形的例子.总结:(1)菱形必须满足两个条件:一是平行四边形;二是有一组邻边相等.(2)菱形是特殊的平行四边形,即当一个平行四边形的一组邻边相等时,该平行四边形是菱形.不能忽略平行四边形这一前提,而错误地认为有一组邻边相等的四边形就是菱形.二、合作探究探究点一:菱形的性质【类型一】菱形的四条边相等如图所示,在菱形ABCD中,已知∠A=60°,AB=5,则△ABD的周长是()A.10B.12C.15D.20解析:根据菱形的性质可判断△ABD是等边三角形,继而根据AB=5求出△ABD 的周长.∵四边形ABCD是菱形,∴AB=AD.又∵∠A=60°,∴△ABD是等边三角形,∴△ABD的周长=3AB=15.故选C.方法总结:如果一个菱形的内角为60°或120°,则两边与较短对角线可构成等边三角形,这是非常有用的基本图形.【类型二】菱形的对角线互相垂直如图所示,在菱形ABCD中,对角线AC、BD相交于点O,BD=12cm,AC =6cm,求菱形的周长.解析:由于菱形的四条边都相等,所以要求其周长就要先求出其边长.由菱形性质可知,其对角线互相垂直平分,因此可以在直角三角形中利用勾股定理进行计算.解:因为四边形ABCD 是菱形, 所以AC ⊥BD , AO =12AC ,BO =12BD .因为AC =6cm ,BD =12cm , 所以AO =3cm ,BO =6cm.在Rt △ABO 中,由勾股定理,得 AB =AO 2+BO 2=32+62=35(cm).所以菱形的周长=4AB =4×35=125(cm).方法总结:因为菱形的对角线把菱形分成四个全等的直角三角形,所以菱形的有关计算问题常转化到直角三角形中求解. 【类型三】 菱形是轴对称图形如图,在菱形ABCD 中,CE ⊥AB于点E ,CF ⊥AD 于点F ,求证:AE =AF .解析:要证明AE =AF ,需要先证明△ACE ≌△ACF.证明:连接AC .∵四边形ABCD 是菱形, ∴AC 平分∠BAD , 即∠BAC =∠DAC . ∵CE ⊥AB ,CF ⊥AD , ∴∠AEC =∠AFC =90°. 在△ACE 和△ACF 中, ⎩⎪⎨⎪⎧∠AEC =∠AFC ,∠BAC =∠DAC ,AC =AC , ∴△ACE ≌△ACF .∴AE =AF .方法总结:菱形是轴对称图形,它的两条对角线所在的直线都是它的对称轴,每条对角线平分一组对角.探究点二:菱形的面积的计算方法如图所示,在菱形ABCD 中,点O 为对角线AC 与BD 的交点,且在△AOB 中,AB =13,OA =5,OB =12.求菱形ABCD 两对边的距离h.解析:先利用菱形的面积等于两条对角线长度乘积的一半求得菱形的面积,又因为菱形是特殊的平行四边形,其面积等于底乘高,也就是一边长与两边之间距离的乘积,从而求得两对边的距离.解:在Rt △AOB 中,AB =13,OA =5,OB =12,于是S △AOB =12OA ·OB =12×5×12=30,所以S 菱形ABCD =4S △AOB =4×30=120.又因为菱形两组对边的距离相等, 所以S 菱形ABCD =AB ·h =13h , 所以13h =120,得h =12013.方法总结:菱形的面积计算有如下方法:(1)一边长与两对边的距离(即菱形的高)的积;(2)四个小直角三角形的面积之和(或一个小直角三角形面积的4倍);(3)两条对角线长度乘积的一半.三、板书设计菱形错误!为学生提供动手实践、研究探讨的时间与空间,让学生经历知识发生、发展的全过程,培养学生自主学习、合作学习、主动获取知识的能力,使学生经历实践、推理、交流等数学活动过程,亲身体验数学思想方法及数学观念,培养学生能力,促进学生发展.。

北师大版九年级数学上册1.1 第1课时 菱形的性质2 教学设计

北师大版九年级数学上册1.1 第1课时 菱形的性质2  教学设计

第一章特殊平行四边形1.1菱形的性质与判定第1课时菱形的性质教学目标1、会归纳菱形的特性并进行证明;2、能运用菱形的性质定理进行简单的计算与证明;3、在进行探索、猜想、证明过程中,进一步发展推理论证的能力,体会证明的必要性.重点:菱形的性质定理证明难点:菱形的性质定理证明、运用,生活数学与理论数学的相互转化.知识链接:平行四边形的性质与判定一、课前预习:1.复习平行四边形的性质.边:角:对角线:对称性:2.菱形的定义是什么?___ ____菱形是不是中心对称图形? ,对称中心是___ __3.请动手制作一个菱形,折—折,观察并填空.菱形是不是轴对称图形? ,对称轴有几条?_______,分别是___ ____ 二、探索活动:探索活动(一):菱形是一种特殊的平行四边形,具有平行四边形的所有性质。

菱形特有的性质是(性质定理):菱形的四条边_______ ______;菱形的对角线____ _________。

探索活动(二):试证明上述定理已知:_____________________________________。

求证:(1)__________________________;(2)__________________________。

探索活动(三):已知菱形ABCD的两条对角线AC、BD相交于点O,图中存在特殊的三角形吗?如果菱形的两条对角线长分别为6和8,由此你能获得有关这个菱形的哪些结论?(可得到边长为;周长为面积为)你认为菱形的面积与菱形的两条对角线的长有关吗?如果有关,怎样根据菱形的对角线的计算它的面积?由此可得:菱形的面积__________________________________.由此得到菱形的两种面积计算方法:1. _____________________________________________2. _____________________________________________你会计算菱形的周长吗?三、例题精讲例1.课本3页例1例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.四、课堂检测:1.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,•菱形的边长是________cm.2.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.5.菱形的两条对角线把菱形分成全等的直角三角形的个数是().(A)1个(B)2个(C)3个(D)4个6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积五、学习体会:。

北师大版九年级上册数学 第1课时 菱形的性质第1课时 菱形的性质教案2

北师大版九年级上册数学      第1课时  菱形的性质第1课时  菱形的性质教案2

第一章特殊平行四边形
1.1菱形的性质与判定
第1课时菱形的性质
课题菱形的性质课型新授课
教学目标1.经历探索、猜想、证明的过程,进一步发展推理论证的能力。

2.能运用综合法证明菱形的性质定理。

3.体会证明过程中所运用的归纳概括以及转化等数学思想方法。

教学重点掌握菱形的性质。

教学难点运用菱形的性质解决与菱形有关的问题。

教学方法讲练结合法
教学后记
教学内容及过程备注
一、回顾交流,引出概念
1.提问:什么是平行四边形?学生回顾交流。

2.教师出示生活中菱形的例子,引出这类特殊的平行四边形——
菱形,并得出菱形的概念:
有一组邻边相等的平行四边形叫做菱形。

二、师生互动,探究新知
1.教师组织学生活动,通过折菱形纸片,得出以下结论:
(1)菱形是轴对称图形;
(2)菱形的四条边相等;
(3)菱形的对角线互相垂直。

2.如何证明上面的(2)和(3)呢?教师引导学生证明,进而得
出以下定理:
定理菱形的四条边都相等。

定理菱形的对角线互相垂直。

二、范例学习,实战演练
教师出示幻灯片:
例2 如图,在菱形ABCD中,
对角线AC与BD相交于点O,角BAD=
60度,BD=6,求菱形的边长AB和对
角线AC的长。

针对以上例题,学生先思考交流,
然后教师引导,并放映解答步骤,后教师总结思路。

三、随堂练习,巩固新知
课本随堂练习 P4
四、课堂总结
菱形具有平行四边形的所有性质,菱形的四边相等;对角线互相垂直。

五、布置作业
课本习题1.1 1、2、3
1.3 3。

北师大版九年级数学上册1.1.1 菱形的性质教学案

北师大版九年级数学上册1.1.1 菱形的性质教学案

第一章特殊平行四边形1菱形的性质与判定第1课时菱形的性质、教学设计课题第1课时菱形的性质授课人教学目标知识技能1.掌握菱形的概念和性质,理解菱形与平行四边形的区别与联系.2.了解菱形在生活中的应用实例,能根据菱形的性质解决简单的实际问题.数学思考1.通过观察、试验、猜想、验证、推理、交流等数学活动发展学生的合情推理能力和动手操作能力及应用数学的意识和能力.2.运用菱形知识解决具体问题,培养逻辑推理能力和演绎能力.问题解决由菱形的定义能从数学的角度去探究菱形的特殊性质,并能运用菱形的性质进行有关的证明和计算,发展应用意识.情感态度在应用菱形的性质的过程中培养学生独立思考的习惯以及在数学活动中获得成功的体验.教学重点菱形的性质及其应用.教学难点菱形性质“对角线互相垂直平分”的探究.授课类型新授课课时教具可活动操作的平行四边形模型(多媒体)(续表)教学活动教学步骤师生活动设计意图回顾我们学习了平行四边形,还记得什么样的四边形是平行四边形吗?它都具有哪些性质(从边、角、对角线及对称性方面展开)?学生回忆并回答,为本课的学习提供迁移或类比方法.活动 一: 创设 情境 导入 新课1.观察以下平行四边形图片,你能发现什么?图1-1-82.教师播放课件,将平行四边形的一边慢慢地平移,直到相邻两边长度相等.让学生拿出平行四边形木框(可活动的),操作:平移平行四边形的一条边,使它与相邻的一条边相等,可以得到一个菱形.归纳:菱形定义:__有一组邻边相等__的平行四边形叫做菱形.3.举出几个生活中有关菱形的例子.图1-1-9可伸缩的衣架、中国结、伸缩门等.1.观察平行四边形中的特殊平行四边形,获得菱形的初步感性认识.2.理清平行四边形与菱形的关系,引出本节课活动的主题.3.让学生收集并在课堂上交流生活中的菱形图片,调动学生的求知欲,激发学生的探究意识,再通过教师的教具操作感受菱形的定义.活动二: 实践 探究 交流新知【探究1】 菱形是特殊的平行四边形,因此具有平行四边形的所有性质:对边__平行且相等__,对角__相等__,对角线__互相平分__.【探究2】 请同学们拿出长方形纸片,对折两次,然后沿图中虚线剪下,再打开,看一看得到了什么图形.观察这个图形(菱形),它是轴对称图形吗?有几条对称轴?对称轴在什么位置上?你能找出图中相等的线段和角吗?图1-1-10 学生活动:动手操作后发现:菱形是轴对称图形,对称轴就是它的对角线所在的直线(两条).从而利用轴对称图形的性质可得: 菱形性质:(1)菱形的四条边都相等; (2)菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角. 教师提出问题:你能证明上述结论吗? 学生独立思考后自主交流,通过交流明确目前证明线段、 1.通过折纸游戏,培养学生的动手操作能力.同时,进一步体会菱形的对称美,并为探索菱形的性质作准备.2.在学生独立思考后再通过交流和引导,明确目前证明线段、角相等的常用方法,让学生感受数学的严谨性,培养学生合情推理的能力.3.对菱形性质的归纳,是学生对菱角相等的方法是利用平行四边形的性质、三角形全等以及等腰三角形的性质.根据情况选择简便有效的证明方法.学生口述证明过程.学生完成证明过程,培养推理能力,通过证明,验证猜想的正确性,让学生感受到数学结论证明的必要性.教师深入到学生中对需要帮助的学生进行指导.证明完成后,归纳菱形的两个性质.归纳:(1)菱形的四条边__相等__;(2)菱形的对角线互相__垂直平分__,并且每一条对角线平分一组对角. 形特征的认识,是知识的一次升华,培养学生的概括能力,突出教学重点.活动三:开放训练体现应用【应用举例】例如图1-1-11,在菱形ABCD中,对角线AC与BD相交于点O,∠BAD=60°,BD=6,求菱形的边长AB和对角线AC的长.图1-1-11[变式题1] (交换条件与结论)如图1-1-12,菱形花坛ABCD的边长为20米,∠ABC=60°,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长.图1-1-12学生交流,教师讲解,提出不同思路:(1)利用直角三角形有关知识;(2)利用等边三角形有关知识.由于菱形ABCD中,AB=BC,又因为∠ABC=60°,所以△ABC是等边三角形,即AC=AB=20米,AO=10米,再应用勾股定理求BO,从而求出BD.讲评策略:先由学生提出方法,然后老师总结,最后板演.[变式题2] (模仿)如图1-1-13,菱形ABCD中,∠ADC=120°,AC=12 3 cm.(1)求BD的长;(2)写出点A,B,C,D的坐标.审题是解题的关键,通过运用菱形的性质,学会解决简单的实际问题,让学生认识到数学在现实世界中有着广泛的应用,培养了学生的应用意识.采取了启发式教学发挥学生的潜能,培养学生一题多解的思维习惯.图1-1-13【拓展提升】1.用定义判定菱形例1如图1-1-14,AD是△ABC的角平分线,DE∥AC,DF∥AB,求证:四边形AEDF是菱形.图1-1-142.运用菱形的性质计算或证明例2已知:如图1-1-15,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.求证:∠AEF=∠AFE.图1-1-15例3如图1-1-16,菱形ABCD中,∠BAD=60°,E为AB边上一点,且AE=3,BE=5,在对角线AC上找一点P,使PE+PB的值最小,则最小值为________.图1-1-161.引导学生根据定义证四边形是菱形,要满足两个条件:(1)有一组邻边相等;(2)是平行四边形.让学生悟出证明的方法.2.知识的综合与拓展,提高应考能力.活动四:课堂总结反思【当堂训练】1.课本P4中的随堂练习2.课本P4习题1.1中的T1、T2、T4当堂检测,及时反馈学习效果.【知识网络】提纲挈领,重点突出.平行四边形――→一组邻边相等菱形⎩⎪⎨⎪⎧定义性质⎩⎪⎨⎪⎧定理1定理2对称性⎩⎪⎨⎪⎧轴对称图形中心对称图形【教学反思】①[授课流程反思]设置大量的菱形图片,体现数学来源于生活,通过平移平行四边形的一条边得到菱形,让学生感知菱形与平行四边形之间的特例关系,让学生在轻松愉快中自然、水到渠成地得到菱形的定义.②[讲授效果反思]通过折纸操作、观察、猜想,探索出菱形的性质,让学生切身感受到自己是学习的主人,为学生今后获取知识、探索发现和创造打下了良好的基础.这种方法符合学生认识图形的过程,培养了学生主动探索、敢于实践、善于发现的科学精神以及合作交流的学习习惯,最后升华到理论层次,利用平行四边形的性质、三角形全等以及等腰三角形的性质对菱形的性质加以证明.③[师生互动反思]______________________________________________________________________________________________ ④[习题反思]好题题号______________________________ __ 错题题号_______________________________________ 反思,更进一步提升. 、导学设计1.1 菱形的性质与判定(一)学习目标:①通过折、剪纸张的方法,探索菱形独特的性质。

北师大版九年级上册数学 第1课时 菱形的性质第1课时 菱形的性质教案1(2)

北师大版九年级上册数学      第1课时  菱形的性质第1课时  菱形的性质教案1(2)

第一章特殊平行四边形1.1菱形的性质与判定第1课时菱形的性质一、教学目的:1.掌握菱形概念,知道菱形与平行四边形的关系.2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.二、重点、难点1.教学重点:菱形的性质1、2.2.教学难点:菱形的性质及菱形知识的综合应用.三、例题的意图分析本节课安排了三个例题,例1是教材P3中的例2,例2是一道补充题,是为了巩固菱形的性质,例3一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题.此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识.四、课堂引入1.(复习)什么叫做平行四边形?2.(引入)我们已经学习了平行四边形请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.菱形定义:有一组邻边相等的平行四边形叫做菱形.【强调】菱形(1)是平行四边形;(2)一组邻边相等.让学生举一些日常生活中所见到过的菱形的例子.五、例题分析例1 (教材P3例1)略例2(补充)已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.证明:∵四边形ABCD是菱形,∴CB=CD,CA平分∠BCD.∴∠BCE=∠DCE.又CE=CE,∴△BCE≌△COB(SAS).∴∠CBE=∠CDE.∵在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC∴∠AFD=∠CBE.例3 (教材P8例3)略六、随堂练习1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.2.已知菱形的两条对角线分别是6cm和8cm ,求菱形的周长和面积.3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.七、课后练习1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为8cm,求菱形的高.2.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC的长度;(2)菱形ABCD的面积.。

北师大版九年级数学上册教案-第一章第一节菱形的性质与判定

北师大版九年级数学上册教案-第一章第一节菱形的性质与判定

第一章特殊平行四边形第一节菱形的性质与判定第1课时菱形的性质教学目标1.经历观察菱形的特点、猜想及证明的过程,理解菱形性质定理及其推论.2.通过练习及例题的分析,能正确运用性质解题.教学重点菱形的性质的探究.教学难点菱形的性质的探究及灵活运用.教学设计(设计者:×××)教学过程设计一、创设情景明确目标教学问题设计1.前面我们学习了平行四边形的性质和判定,请大家回忆一下平行四边形的性质和判定.2.我们知道,两组对边分别平行的四边形,叫做平行四边形,如果这个平行四边形有一组邻边相等就成为了一种特殊的平行四边形,这就是今天我们要研究的——菱形.教学活动设计:参考教材第1页图形提问学生.二、自主学习指向目标1.自学教材第1至3页.2.学习至此,请完成学生用书“课前预习”部分.三、合作探究达成目标探究点一菱形的定义请同学们根据刚才的演示图试着给出菱形的定义.菱形的定义:有一组邻边相等的平行四边形是菱形.【针对训练】见学生用书P1“当堂训练”第1题探究点二菱形的性质定理从定义上分析,有一组邻边相等的平行四边形是菱形.那么除了这两个特点之外,大家观察,菱形还有什么特点?定理1:菱形的四条边都相等.定理2:菱形的对角线互相垂直.教学活动设计学生活动学习教材,分析问题.寻求答案并师生共同写出过程.【针对训练】①:见学生用书第1页“当堂训练”第2题【针对训练】②:1.菱形的四边________;两条对角线________.2.四边形ABCD是菱形,O是两条对角线的交点,AB=5,AO=4,则对角线AC的长为________,BD的长为________.3.菱形的两条对角线的长分别是6和8,则其周长为________,面积为________.4.用你认为是最简洁的方法画一个菱形.四、总结梳理内化目标本节课你有哪些收获?1.菱形定义:有一组邻边相等的平行四边形是菱形.2.菱形的性质菱形的四条边都相等.菱形的对角线互相垂直.五、达标检测反思目标1.菱形的两条对角线将菱形分成________个等腰三角形;________个直角三角形.2.菱形的对角线长为4和6,求面积.3.菱形的对角线长为6和8,求边长.4.菱形的边长为10,一条对角线长为12,求另一条对角线长.5.菱形的面积为24,一条对角线长为6,求另一条对角线的长.6.菱形的边长为10,一个内角为60°,求对角线的长.7.菱形的周长为24,短对角线长为6,求各内角.8.菱形的边长为8,一个内角为120°,求对角线的长.六、布置作业教材第4页习题1.1第1,2,3题.见学生用书“课后作业”栏题目.第2课时菱形的判定教学目标理解并掌握菱形的定义及判定定理,会利用它们来进行有关论证和计算.教学重点菱形的判定定理.教学难点菱形的定义及判定定理的运用.教学设计(设计者:×××)教学过程设计一、创设情景明确目标我们已经学习了菱形的性质:菱形的定义:一组邻边相等的平行四边形;(判定:2个条件)性质定理:菱形的四条边都相等;性质定理:菱形的对角线互相垂直平分;二、自主学习指向目标1.自学教材第5至7页.2.学习至此,请完成学生用书“课前预习”部分.三、合作探究达成目标探究点一菱形的定义菱形的定义是?它能否作为菱形的判定?探究点二菱形判定定理(1)(2)判定定理1的内容是什么?写出已知、求证,并证明.判定定理2的内容是什么?写出已知、求证,并证明;还有其他方法进行证明吗?例2的证明还有其他方法吗?1.自学质疑:自学课本P5~P6,完成预习题,并提出疑难问题.2.分组讨论:讨论自学中不能解决的问题及学生提出问题.【针对训练】①:已知:在四边形ABCD中,对角线AC与BC互相垂直平分,求证:平行四边形ABCD是菱形.【针对训练】②:见学生用书第2页“当堂训练”第1,2题四、总结梳理内化目标小结:菱形的判定方法1.定义:有一组邻边相等的平行四边形.定理1:对角线互相垂直的平行四边形.定理2:四条边都相等的四边形.2.菱形可根据哪些进行判定?填写下表:菱形的判定应具备两个条件菱形的定义判定定理1判定定理2五、达标检测1.如图,将一个长为10 cm,宽为8 cm矩形纸片对折两次后,沿所折矩形两邻边中点连线(虚线)剪下,再打开,得到的菱形的面积为()A.10 cm2B.20 cm2C.40 cm2D.80 cm2错误!,第2题图)2.如图,点O是AC的中点,将周长为4 cm菱形沿对角线AC方向平移AO长度,得到菱形OB′C′D′,则四边形OECF的周长是________.3.已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求证:四边形MEND是菱形.六、布置作业教材第7页习题1.2第1,2题.见学生用书“课后作业”栏题目.第3课时菱形的性质与判定的综合教学目标熟练运用菱形的性质和判定解决综合问题.教学重点菱形的性质及判定的综合应用.教学难点培养学生运用菱形知识分析问题解决问题的能力.教学设计(设计者:×××)教学过程设计一、创设情景明确目标我们曾在前面探讨过一种特殊的平行四边形——菱形,大家还记得它吗?——我们来共同回忆一下.1.菱形的定义2.菱形的性质3.菱形的判别方法师:菱形的这些性质和判别方法我们是怎样得到的?那么你能运用它们解决一些几何综合问题吗?这节课我们就来探讨这些问题.二、自主学习指向目标1.回顾菱形的性质与判定有关定义、定理.2.学习至此,请完成学生用书“课前预习”部分.三、合作探究达成目标探究点一菱形性质的综合运用菱形的性质:1.菱形具有平行四边形的一切性质.2.菱形的四条边都相等.3.菱形的对角线互相垂直.【针对训练】如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm.通过以上已知条件你能获得哪些结论?若将菱形ABCD的边长改为10cm.你又能获得那些结论?并说明你的理由.探究点二菱形的判定综合运用你还记得怎样判别一个平行四边形是菱形吗?那么满足什么条件的四边形是菱形?你能证明吗?1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边都相等的四边形是菱形.说明:利用课件将学生能想到的判别方法作了总结,除定义外,其他的判别方法要求学生:选择其中一个画图,写已知、求证,并思考证明过程,老师巡视指导,然后小组间交流,中心发言人回答,通过引导学生反思本题是否还有其他解法,比较哪种解法较为简捷,进一步拓宽学生的解题思路,培养思维的灵活性.【针对训练】见教材P8做一做.四、总结梳理内化目标师:通过本节课你学习了哪些知识?对你有什么帮助?小结:1.菱形的性质与判定的综合运用.2.探索问题,总结规律.3.发现的新的数学思想及方法.五、达标检测反思目标1.求证:有一条对角线平分一个内角的平行四边形是菱形.2.已知两条对角线,怎样用尺规作一个菱形.3.拓展延伸:已知△ABC中AB=AC,M为底边BC上任意一点,过M点做AC,AB 的平行线交AC于P,交AB于点Q.则M位于BC什么位置时,四边形AQMP为菱形,并说明理由.4.想一想:师:你手中菱形是怎样制作的,除了利用菱形的定义以外,我们还可以用哪些方法来作?你可以证明它吗?六、布置作业教材第9页习题1.3第1,2,3,4题.见学生用书“课后作业”栏题目.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1菱形的性质与判定
第1课时菱形的性质
1.通过折、剪纸张的方法,探索菱形独特的性质,理解菱形与平行四边形之间的联系;
2.通过学生间的交流、讨论、分析、类比、归纳,运用已学过的知识总结菱形的特征;
3.掌握菱形的概念和菱形的性质以及菱形的面积公式的推导.(重点、难点)
一、情景导入
请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.
让学生举一些日常生活中所见到过的菱形的例子.
总结:(1)菱形必须满足两个条件:一是平行四边形;二是有一组邻边相等.(2)菱形是特殊的平行四边形,即当一个平行四边形的一组邻边相等时,该平行四边形是菱形.不能忽略平行四边形这一前提,而错误地认为有一组邻边相等的四边形就是菱形.
二、合作探究
探究点一:菱形的性质
【类型一】菱形的四条边相等
如图所示,在菱形ABCD中,已知∠A=60°,AB=5,则△ABD的周长是(
)
A.10
B.12
C.15
D.20
解析:根据菱形的性质可判断△ABD是等边三角形,继而根据AB=5求出△ABD 的周长.
∵四边形ABCD是菱形,
∴AB=AD.
又∵∠A=60°,
∴△ABD是等边三角形,
∴△ABD的周长=3AB=15.
故选C.
方法总结:如果一个菱形的内角为60°或120°,则两边与较短对角线可构成等边三角形,这是非常有用的基本图形.
【类型二】菱形的对角线互相垂直
如图所示,在菱形ABCD中,对角线AC、BD相交于点O,BD=12cm,AC =6cm,求菱形的周长.
解析:由于菱形的四条边都相等,所以要求其周长就要先求出其边长.由菱形性质可知,其对角线互相垂直平分,因此可以在直角三角形中利用勾股定理进行计算.
解:因为四边形ABCD是菱形,
所以AC⊥BD,
AO=
1
2AC,BO=
1
2BD.
因为AC=6cm,BD=12cm,
所以AO=3cm,BO=6cm.
在Rt△ABO中,由勾股定理,得
AB=AO2+BO2=32+62=35 (cm).
所以菱形的周长=4AB=4×35=125(cm).
方法总结:因为菱形的对角线把菱形分成四个全等的直角三角形,所以菱形的有关计算问题常转化到直角三角形中求解.【类型三】菱形是轴对称图形
如图,在菱形ABCD中,CE⊥AB
于点E,CF⊥AD于点F,求证:AE=AF.
解析:要证明AE=AF,需要先证明
△ACE≌△ACF
.
证明:连接AC.
∵四边形ABCD是菱形,
∴AC平分∠BAD,
即∠BAC=∠DAC.
∵CE⊥AB,CF⊥AD,
∴∠AEC=∠AFC=90°.
在△ACE和△ACF中,
⎩⎪

⎪⎧
∠AEC=∠AFC,
∠BAC=∠DAC,
AC=AC,
∴△ACE≌△ACF.
∴AE=AF.
方法总结:菱形是轴对称图形,它的两
条对角线所在的直线都是它的对称轴,每条
对角线平分一组对角.
探究点二:菱形的面积的计算方法
如图所示,在菱形ABCD中,点
O为对角线AC与BD的交点,且在△AOB
中,AB=13,OA=5,OB=12.求菱形ABCD
两对边的距离h
.
解析:先利用菱形的面积等于两条对角
线长度乘积的一半求得菱形的面积,又因为
菱形是特殊的平行四边形,其面积等于底乘
高,也就是一边长与两边之间距离的乘积,
从而求得两对边的距离.
解:在Rt△AOB中,AB=13,OA=5,
OB=12,
于是S△AOB=
1
2OA·OB=
1
2×5×12=30,
所以S菱形ABCD=4S△AOB=4×30=120.
又因为菱形两组对边的距离相等,
所以S菱形ABCD=AB·h=13h,
所以13h=120,得h=
120
13.
方法总结:菱形的面积计算有如下方
法:(1)一边长与两对边的距离(即菱形的高)
的积;(2)四个小直角三角形的面积之和(或
一个小直角三角形面积的4倍);(3)两条对
角线长度乘积的一半.
三、板书设计
菱形
错误!
为学生提供动手实践、研究探讨的时间与空
间,让学生经历知识发生、发展的全过程,
培养学生自主学习、合作学习、主动获取知
识的能力,使学生经历实践、推理、交流等
数学活动过程,亲身体验数学思想方法及数
学观念,培养学生能力,促进学生发展.。

相关文档
最新文档