资源县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载

资源县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析

资源县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析

资源县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.设x,y∈R,且满足,则x+y=()A.1 B.2 C.3 D.42.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过2个小时,这种细菌由1个可繁殖成()A.512个B.256个C.128个D.64个3.若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为()A.1:2:3 B.2:3:4 C.3:2:4 D.3:1:24.已知点A(0,1),B(﹣2,3)C(﹣1,2),D(1,5),则向量在方向上的投影为()A.B.﹣C. D.﹣5.已知等差数列{a n}满足2a3﹣a+2a13=0,且数列{b n} 是等比数列,若b8=a8,则b4b12=()A.2 B.4 C.8 D.166.执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填()A.11? B.12? C.13? D.14?7.下列说法正确的是()A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.8. 命题:“若a 2+b 2=0(a ,b ∈R ),则a=b=0”的逆否命题是( )A .若a ≠b ≠0(a ,b ∈R ),则a 2+b 2≠0B .若a=b ≠0(a ,b ∈R ),则a 2+b 2≠0C .若a ≠0且b ≠0(a ,b ∈R ),则a 2+b 2≠0D .若a ≠0或b ≠0(a ,b ∈R ),则a 2+b 2≠09. 偶函数f (x )的定义域为R ,若f (x+2)为奇函数,且f (1)=1,则f (89)+f (90)为( ) A .﹣2 B .﹣1 C .0 D .110.已知函数f (x )=2x ﹣+cosx ,设x 1,x 2∈(0,π)(x 1≠x 2),且f (x 1)=f (x 2),若x 1,x 0,x 2成等差数列,f ′(x )是f (x )的导函数,则( ) A .f ′(x 0)<0 B .f ′(x 0)=0C .f ′(x 0)>0D .f ′(x 0)的符号无法确定11.已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21F F 、,过2F 的直线交双曲线于Q P ,两点且1PF PQ ⊥,若||||1PF PQ λ=,34125≤≤λ,则双曲线离心率e 的取值范围为( ).A. ]210,1(B. ]537,1(C. ]210,537[ D. ),210[+∞ 第Ⅱ卷(非选择题,共100分)12.已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( )A .2B .6C .4D .2二、填空题13.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填A B 方格的数字,则不同的填法共有 种(用数字作答).14.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( ) A .1310 B .3 C .4 D .2110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.15.已知函数f (x )=,点O 为坐标原点,点An (n ,f (n ))(n ∈N +),向量=(0,1),θn 是向量与i 的夹角,则++…+= .16.已知角α终边上一点为P (﹣1,2),则值等于 .17.一组数据2,x ,4,6,10的平均值是5,则此组数据的标准差是 .18.【徐州市第三中学2017~2018学年度高三第一学期月考】函数()3f x x x =-+的单调增区间是__________.三、解答题19.设椭圆C :+=1(a >b >0)过点(0,4),离心率为.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.20.已知函数f (x )=lnx ﹣a (1﹣),a ∈R . (Ⅰ)求f (x )的单调区间; (Ⅱ)若f (x )的最小值为0. (i )求实数a 的值;(ii )已知数列{a n }满足:a 1=1,a n+1=f (a n )+2,记[x]表示不大于x 的最大整数,求证:n >1时[a n ]=2.21.(本小题满分12分)已知12,F F 分别是椭圆C :22221(0)x y a b a b+=>>的两个焦点,且12||2F F =,点在该椭圆上.(1)求椭圆C 的方程;(2)设直线l 与以原点为圆心,b 为半径的圆上相切于第一象限,切点为M ,且直线l 与椭圆交于P Q 、两点,问22F P F Q PQ ++是否为定值?如果是,求出定值,如不是,说明理由.22.(本小题满分10分)选修41-:几何证明选讲如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相 交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.23.(本小题满分10分)已知曲线22:149x y C +=,直线2,:22,x t l y t =+⎧⎨=-⎩(为参数). (1)写出曲线C 的参数方程,直线的普通方程;(2)过曲线C 上任意一点P 作与夹角为30的直线,交于点A ,求||PA 的最大值与最小值.24.(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD 外接于圆,AC 是圆周角BAD ∠的角平分线,过点C 的切线与AD 延长线交于点E ,AC 交BD 于点F . (1)求证:BD CE ;(2)若AB 是圆的直径,4AB =,1DE =,求AD 长资源县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】解:∵(x﹣2)3+2x+sin(x﹣2)=2,∴(x﹣2)3+2(x﹣2)+sin(x﹣2)=2﹣4=﹣2,∵(y﹣2)3+2y+sin(y﹣2)=6,∴(y﹣2)3+2(y﹣2)+sin(y﹣2)=6﹣4=2,设f(t)=t3+2t+sint,则f(t)为奇函数,且f'(t)=3t2+2+cost>0,即函数f(t)单调递增.由题意可知f(x﹣2)=﹣2,f(y﹣2)=2,即f(x﹣2)+f(y﹣2)=2﹣2=0,即f(x﹣2)=﹣f(y﹣2)=f(2﹣y),∵函数f(t)单调递增∴x﹣2=2﹣y,即x+y=4,故选:D.【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f(t)是解决本题的关键,综合考查了函数的性质.2.【答案】D【解析】解:经过2个小时,总共分裂了=6次,则经过2小时,这种细菌能由1个繁殖到26=64个.故选:D.【点评】本题考查数列的应用,考查了等比数列的通项公式,是基础的计算题.3.【答案】D【解析】解:设球的半径为R,则圆柱、圆锥的底面半径也为R,高为2R,则球的体积V球=圆柱的体积V圆柱=2πR3圆锥的体积V圆锥=故圆柱、圆锥、球的体积的比为2πR3::=3:1:2故选D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键.4.【答案】D【解析】解:∵;∴在方向上的投影为==.故选D.【点评】考查由点的坐标求向量的坐标,一个向量在另一个向量方向上的投影的定义,向量夹角的余弦的计算公式,数量积的坐标运算.5.【答案】D【解析】解:由等差数列的性质可得a3+a13=2a8,即有a82=4a8,解得a8=4(0舍去),即有b8=a8=4,由等比数列的性质可得b4b12=b82=16.故选:D.6.【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+++…+=的值,若输出的结果是,则最后一次执行累加的k值为12,则退出循环时的k值为13,故退出循环的条件应为:k≥13?,故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.7.【答案】C【解析】考点:几何体的结构特征.8.【答案】D【解析】解:“且”的否定为“或”,因此其逆否命题为“若a≠0或b≠0,则a2+b2≠0”;故选D.【点评】此类题型考查四种命题的定义与相互关系,一般较简单,但要注意常见逻辑连接词的运用与其各自的否定方法、形式.9.【答案】D【解析】解:∵f(x+2)为奇函数,∴f(﹣x+2)=﹣f(x+2),∵f(x)是偶函数,∴f(﹣x+2)=﹣f(x+2)=f(x﹣2),即﹣f(x+4)=f(x),则f(x+4)=﹣f(x),f(x+8)=﹣f(x+4)=f(x),即函数f(x)是周期为8的周期函数,则f(89)=f(88+1)=f(1)=1,f(90)=f(88+2)=f(2),由﹣f(x+4)=f(x),得当x=﹣2时,﹣f(2)=f(﹣2)=f(2),则f(2)=0,故f(89)+f(90)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.10.【答案】A【解析】解:∵函数f(x)=2x﹣+cosx,设x1,x2∈(0,π)(x1≠x2),且f(x1)=f(x2),∴,∴存在x 1<a <x 2,f '(a )=0,∴,∴,解得a=,假设x 1,x 2在a 的邻域内,即x 2﹣x 1≈0.∵,∴,∴f (x )的图象在a 的邻域内的斜率不断减少小,斜率的导数为正, ∴x 0>a ,又∵x >x 0,又∵x >x 0时,f ''(x )递减,∴.故选:A .【点评】本题考查导数的性质的应用,是难题,解题时要认真审题,注意二阶导数和三阶导数的性质的合理运用.11.【答案】C【解析】如图,由双曲线的定义知,a PF PF2||||21=-,a QF QF 2||||21=-,两式相加得 a PQ QF PF 4||||||11=-+,又||||1PF PQ λ=,1PF PQ ⊥,||1||121PF QF λ+=∴, a PF PQ QF PF 4||)11(||||||1211=-++=-+∴λλ,λλ-++=21114||aPF ①,λλλλ-+++-+=∴22211)11(2||a PF ②,在12PF F ∆中,2212221||||||F F PF PF =+,将①②代入得+-++22)114(λλa22224)11)11(2(c a =-+++-+λλλλ,化简得:+-++22)11(4λλ22222)11()11(e =-+++-+λλλλ,令t =-++λλ211,易知λλ-++=211y 在]34,125[上单调递减,故]35,34[∈t ,22222284)2(4t t t t t t e +-=-+=∴]25,2537[21)411(82∈+-=t ,]210,537[∈e ,故答案 选C.12.【答案】B【解析】解:∵圆C :x 2+y 2﹣4x ﹣2y+1=0,即(x ﹣2)2+(y ﹣1)2=4,表示以C(2,1)为圆心、半径等于2的圆.由题意可得,直线l:x+ay﹣1=0经过圆C的圆心(2,1),故有2+a﹣1=0,∴a=﹣1,点A(﹣4,﹣1).∵AC==2,CB=R=2,∴切线的长|AB|===6.故选:B.【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题.二、填空题13.【答案】27【解析】解:若A方格填3,则排法有2×32=18种,若A方格填2,则排法有1×32=9种,根据分类计数原理,所以不同的填法有18+9=27种.故答案为:27.【点评】本题考查了分类计数原理,如何分类是关键,属于基础题.14.【答案】D【解析】15.【答案】.【解析】解:点An(n,)(n∈N+),向量=(0,1),θn是向量与i的夹角,=,=,…,=,∴++…+=+…+=1﹣=,故答案为:.【点评】本题考查了向量的夹角、数列“裂项求和”方法,考查了推理能力与计算能力,属于中档题.16.【答案】 .【解析】解:角α终边上一点为P (﹣1,2), 所以tan α=﹣2.===﹣.故答案为:﹣.【点评】本题考查二倍角的正切函数,三角函数的定义的应用,考查计算能力.17.【答案】 2 .【解析】解:∵一组数据2,x ,4,6,10的平均值是5, ∴2+x+4+6+10=5×5, 解得x=3,∴此组数据的方差 [(2﹣5)2+(3﹣5)2+(4﹣5)2+(6﹣5)2+(10﹣5)2]=8,∴此组数据的标准差S==2. 故答案为:2.【点评】本题考查一组数据的标准差的求法,解题时要认真审题,注意数据的平均数和方差公式的求法.18.【答案】(【解析】()2310f x x x ⎛=-+>⇒∈ ⎝'⎭ ,所以增区间是⎛ ⎝⎭三、解答题19.【答案】【解析】解:(1)将点(0,4)代入椭圆C 的方程得=1,∴b=4,…由e==,得1﹣=,∴a=5,…∴椭圆C 的方程为+=1.…(2)过点(3,0)且斜率为的直线为y=(x﹣3),…设直线与椭圆C的交点为A(x1,y1),B(x2,y2),将直线方程y=(x﹣3)代入椭圆C方程,整理得x2﹣3x﹣8=0,…由韦达定理得x1+x2=3,y1+y2=(x1﹣3)+(x2﹣3)=(x1+x2)﹣=﹣.…由中点坐标公式AB中点横坐标为,纵坐标为﹣,∴所截线段的中点坐标为(,﹣).…【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键.20.【答案】【解析】解:(Ⅰ)函数f(x)的定义域为(0,+∞),且f′(x)=﹣=.当a≤0时,f′(x)>0,所以f(x)在区间(0,+∞)内单调递增;当a>0时,由f′(x)>0,解得x>a;由f′(x)<0,解得0<x<a.所以f(x)的单调递增区间为(a,+∞),单调递减区间为(0,a).综上述:a≤0时,f(x)的单调递增区间是(0,+∞);a>0时,f(x)的单调递减区间是(0,a),单调递增区间是(a,+∞).(Ⅱ)(ⅰ)由(Ⅰ)知,当a≤0时,f(x)无最小值,不合题意;当a>0时,[f(x)]min=f(a)=1﹣a+lna=0,令g(x)=1﹣x+lnx(x>0),则g′(x)=﹣1+=,由g′(x)>0,解得0<x<1;由g′(x)<0,解得x>1.所以g(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).故[g(x)]max=g(1)=0,即当且仅当x=1时,g(x)=0.因此,a=1.(ⅱ)因为f(x)=lnx﹣1+,所以a n+1=f(a n)+2=1++lna n.由a1=1得a2=2于是a3=+ln2.因为<ln2<1,所以2<a3<.猜想当n≥3,n∈N时,2<a n<.下面用数学归纳法进行证明.①当n=3时,a 3=+ln2,故2<a 3<.成立.②假设当n=k (k ≥3,k ∈N )时,不等式2<a k <成立. 则当n=k+1时,a k+1=1++lna k ,由(Ⅰ)知函数h (x )=f (x )+2=1++lnx 在区间(2,)单调递增,所以h (2)<h (a k )<h (),又因为h (2)=1++ln2>2,h ()=1++ln <1++1<.故2<a k+1<成立,即当n=k+1时,不等式成立.根据①②可知,当n ≥3,n ∈N 时,不等式2<a n <成立. 综上可得,n >1时[a n ]=2.【点评】本题主要考查函数的导数、导数的应用等基础知识,考查推理论证能力、运算求解能力、创新意识等, 考查函数与方程思想、化归与转化思想、分类与整合思想、有限与无限思想等,属难题.21.【答案】【解析】【命题意图】本题考查椭圆方程与几何性质、直线与圆的位置关系等基础知识,意在考查逻辑思维能力、探索性能力、运算求解能力,以及方程思想、转化思想的应用.22.【答案】【解析】(Ⅰ)∵EC EF DE ⋅=2,DEF DEF ∠=∠ ∴DEF ∆∽CED ∆,∴C EDF ∠=∠……………………2分 又∵AP CD //,∴C P ∠=∠, ∴P EDF ∠=∠.(Ⅱ)由(Ⅰ)得P EDF ∠=∠,又PEA DEF ∠=∠,∴EDF ∆∽EPA ∆,∴EDEPEF EA =,∴EP EF ED EA ⋅=⋅,又∵EB CE ED EA ⋅=⋅,∴EP EF EB CE ⋅=⋅. ∵EC EF DE ⋅=2,2,3==EF DE ,∴ 29=EC ,∵2:3:=BE CE ,∴3=BE ,解得427=EP .∴415=-=EB EP BP .∵PA 是⊙O 的切线,∴PC PB PA ⋅=2∴)29427(4152+⨯=PA ,解得4315=PA .……………………10分23.【答案】(1)2cos 3sin x y θθ=⎧⎨=⎩,26y x =-+;(2.【解析】试题分析:(1)由平方关系和曲线C 方程写出曲线C 的参数方程,消去参数作可得直线的普通方程;(2)由曲线C 的参数方程设曲线上C 任意一点P 的坐标,利用点到直线的距离公式求出点P 直线的距离,利用正弦函数求出PA ,利用辅助角公式进行化简,再由正弦函数的性质求出PA 的最大值与最小值.试题解析:(1)曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩,(为参数),直线的普通方程为26y x =-+.(2)曲线C 上任意一点(2cos ,3sin )P θθ到的距离为4cos 3sin 6|d θθ=+-.则|||5sin()6|sin 30d PA θα==+-,其中α为锐角,且4tan 3α=,当sin()1θα+=-时,||PA 取.当sin()1θα+=时,||PA 考点:1、三角函数的最值;2、椭圆的参数方程及直线的的参数方程. 24.【答案】【解析】【命题意图】本题主要考查圆周角定理、弦切角定理、三角形相似的判断与性质等基础知识,意在考查逻辑推证能力、转化能力、识图能力.∴DE DC BC BA =BC AB=,则24BC AB DE =⋅=,∴2BC =. ∴在Rt ABC ∆中,12BC AB =,∴30BAC ∠=︒,∴60BAD ∠=︒,∴在Rt ABD ∆中,30ABD ∠=︒,所以122AD AB ==.。

资源县三中2018-2019学年高二上学期第二次月考试卷数学

资源县三中2018-2019学年高二上学期第二次月考试卷数学

资源县三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知11xyi i=-+,其中,x y 是实数,是虚数单位,则x yi +的共轭复数为 A 、12i + B 、12i - C 、2i + D 、2i -2. 已知数列{}n a 的各项均为正数,12a =,114n n n na a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n =( )A .35B . 36C .120D .1213. 幂函数y=f (x )的图象经过点(﹣2,﹣),则满足f (x )=27的x 的值是( ) A.B.﹣ C .3D .﹣34. 函数f (x )=Asin (ωx+θ)(A >0,ω>0)的部分图象如图所示,则f()的值为()A. B .0 C. D.5. “双曲线C 的渐近线方程为y=±x ”是“双曲线C的方程为﹣=1”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .不充分不必要条件6. 直线2x+y+7=0的倾斜角为( ) A .锐角 B .直角 C .钝角 D .不存在7. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是( )A .60°B .45°C .90°D .120°8. 已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为真命题的是( )A .p q ∧B .()()p q ⌝∧⌝C .()p q ∧⌝D .()p q ⌝∧9. 执行如图所示的程序,若输入的3x =,则输出的所有x 的值的和为( ) A .243 B .363 C .729 D .1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.10.在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为( )A .B .C .D .11.偶函数f (x )的定义域为R ,若f (x+2)为奇函数,且f (1)=1,则f (89)+f (90)为( ) A .﹣2 B .﹣1 C .0 D .112.若直线2y x =上存在点(,)x y 满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为 A 、1- B 、 C 、32D 、2 二、填空题13.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 .14.已知点M (x ,y)满足,当a >0,b >0时,若ax+by 的最大值为12,则+的最小值是 .15.直线l 过原点且平分平行四边形ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为 .16.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为 (用数字作答)17.函数y=f (x )的图象在点M (1,f (1))处的切线方程是y=3x ﹣2,则f (1)+f ′(1)= .18.圆心在原点且与直线2x y +=相切的圆的方程为_____ .【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.三、解答题19.已知椭圆E 的长轴的一个端点是抛物线y 2=4x 的焦点,离心率是.(1)求椭圆E 的标准方程;(2)已知动直线y=k (x+1)与椭圆E 相交于A 、B 两点,且在x 轴上存在点M ,使得与k 的取值无关,试求点M 的坐标.20.(本小题满分13分)如图,已知椭圆C :22221(0)x y a b a b +=>>C 的左顶点T 为圆心作圆T :222(2)x y r ++=(0r >),设圆T 与椭圆C 交于点M 、N .[_](1)求椭圆C 的方程;(2)求TM TN ⋅的最小值,并求此时圆T 的方程;(3)设点P 是椭圆C 上异于M 、N 的任意一点,且直线MP ,NP 分别与x 轴交于点R S 、(O 为坐标 原点),求证:OR OS ⋅为定值.【命题意图】本题考查椭圆的方程,直线与椭圆的位置关系,几何问题构建代数方法解决等基础知识,意在考查学生转化与化归能力,综合分析问题解决问题的能力,推理能力和运算能力.21.已知△ABC 的顶点A (3,2),∠C 的平分线CD 所在直线方程为y ﹣1=0,AC 边上的高BH 所在直线方程为4x+2y ﹣9=0.(1)求顶点C 的坐标; (2)求△ABC 的面积.22.(本小题满分12分)2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达3.32亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为0.4.(Ⅰ)确定x,y,p,q的值;(Ⅱ)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.(参考公式:()()()()()2n ad bca b c d a c b d-K=++++,其中n a b c d=+++)23.如图,在四棱柱中,底面,,,.(Ⅰ)求证:平面;(Ⅱ)求证:;(Ⅲ)若,判断直线与平面是否垂直?并说明理由.24.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x(个) 2 3 4 5加工的时间y(小时) 2.5 3 4 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程=x+,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:回归直线=bx+a,其中b==,a=﹣b.资源县三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】1()1,2,1,12x x xi yi x y i =-=-∴==+故选D 2. 【答案】C【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前n 项和.由114n n n na a a a ++-=+得2214n n a a +-=,∴{}2n a 是等差数列,公差为4,首项为4,∴244(1)4n a n n =+-=,由0n a >得n a =1112n n a a +==+,∴数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n项和为11111)(1)52222n+++==,∴120n =,选C . 3. 【答案】A【解析】解:设幂函数为y=xα,因为图象过点(﹣2,﹣),所以有=(﹣2)α,解得:α=﹣3所以幂函数解析式为y=x﹣3,由f(x )=27,得:x ﹣3=27,所以x=.故选A .4. 【答案】C【解析】解:由图象可得A=,=﹣(﹣),解得T=π,ω==2.再由五点法作图可得2×(﹣)+θ=﹣π,解得:θ=﹣,故f (x )=sin (2x ﹣), 故f ()=sin (﹣)=sin=,故选:C .【点评】本题主要考查由函数y=Asin (ωx+θ)的部分图象求函数的解析式,属于中档题.5. 【答案】C【解析】解:若双曲线C的方程为﹣=1,则双曲线的方程为,y=±x,则必要性成立,若双曲线C的方程为﹣=2,满足渐近线方程为y=±x,但双曲线C的方程为﹣=1不成立,即充分性不成立,故“双曲线C的渐近线方程为y=±x”是“双曲线C的方程为﹣=1”的必要不充分条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据双曲线和渐近线之间的关系是解决本题的关键.6.【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,即可判断出结论.【解答】解:设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,则θ为钝角.故选:C.7.【答案】A【解析】解:如图所示,设AB=2,则A(2,0,0),B(2,2,0),B1(2,2,2),C1(0,2,2),E(2,1,0),F(2,2,1).∴=(﹣2,0,2),=(0,1,1),∴===,∴=60°.∴异面直线EF和BC1所成的角是60°.故选:A.【点评】本题考查了利用向量的夹角公式求异面直线所成的夹角,考查了推理能力与计算能力,属于中档题.8. 【答案】D 【解析】考点:命题的真假. 9. 【答案】D【解析】当3x =时,y 是整数;当23x =时,y 是整数;依次类推可知当3(*)nx n N =∈时,y 是整数,则由31000nx =≥,得7n ≥,所以输出的所有x 的值为3,9,27,81,243,729,其和为1092,故选D .10.【答案】C【解析】解:如图所示,△BCD 是圆内接等边三角形,过直径BE 上任一点作垂直于直径的弦,设大圆的半径为2,则等边三角形BCD 的内切圆的半径为1, 显然当弦为CD 时就是△BCD 的边长,要使弦长大于CD 的长,就必须使圆心O 到弦的距离小于|OF|, 记事件A={弦长超过圆内接等边三角形的边长}={弦中点在内切圆内},由几何概型概率公式得P (A )=,即弦长超过圆内接等边三角形边长的概率是. 故选C .【点评】本题考查了几何概型的运用;关键是找到事件A 对应的集合,利用几何概型公式解答.11.【答案】D 【解析】解:∵f (x+2)为奇函数, ∴f (﹣x+2)=﹣f (x+2),∵f (x )是偶函数,∴f (﹣x+2)=﹣f (x+2)=f (x ﹣2), 即﹣f (x+4)=f (x ),则f (x+4)=﹣f (x ),f (x+8)=﹣f (x+4)=f (x ),即函数f (x )是周期为8的周期函数, 则f (89)=f (88+1)=f (1)=1, f (90)=f (88+2)=f (2), 由﹣f (x+4)=f (x ), 得当x=﹣2时,﹣f (2)=f (﹣2)=f (2),则f (2)=0, 故f (89)+f (90)=0+1=1,故选:D .【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.12.【答案】B【解析】如图,当直线m x =经过函数x y 2=的图象 与直线03=-+y x 的交点时,函数x y 2=的图像仅有一个点P 在可行域内, 由230y xx y =⎧⎨+-=⎩,得)2,1(P ,∴1≤m .二、填空题13.【答案】.254154【解析】解:一次游戏中,甲、乙、丙出的方法种数都有2种,所以总共有23=8种方案,而甲胜出的情况有:“甲黑乙白丙白”,“甲白乙黑丙黑”,共2种,所以甲胜出的概率为故答案为.【点评】本题考查等可能事件的概率,关键是分清甲在游戏中胜出的情况数目.14.【答案】4.【解析】解:画出满足条件的平面区域,如图示:,由,解得:A(3,4),显然直线z=ax+by过A(3,4)时z取到最大值12,此时:3a+4b=12,即+=1,∴+=(+)(+)=2++≥2+2=4,当且仅当3a=4b时“=”成立,故答案为:4.【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题.15.【答案】.【解析】解:∵直线l过原点且平分平行四边形ABCD的面积,则直线过BD的中点(3,2),故斜率为=,∴由斜截式可得直线l 的方程为,故答案为.【点评】本题考查直线的斜率公式,直线方程的斜截式.16.【答案】 15【解析】解:8名支教名额分配到三所学校,每个学校至少一个名额,则8人可以分为(6,1,1),(5,2,1),(4,3,1),(4,2,2),(3,3,2),∵甲学校至少分到两个名额,第一类是1种,第二类有4种,第三类有4种,第四类有3种,第五类也有3种,根据分类计数原理可得,甲学校至少分到两个名额的分配方案为1+4+4+3+3=15种 故答案为:15.【点评】本题考查了分类计数原理得应用,关键是分类,属于基础题.17.【答案】 4 .【解析】解:由题意得f ′(1)=3,且f (1)=3×1﹣2=1所以f (1)+f ′(1)=3+1=4.故答案为4.【点评】本题主要考查导数的几何意义,要注意分清f (a )与f ′(a ).18.【答案】222x y +=【解析】由题意,圆的半径等于原点到直线2x y +=的距离,所以r d ===222x y +=. 三、解答题19.【答案】【解析】解:(1)由题意,椭圆的焦点在x 轴上,且a=,…1分c=e •a=×=,故b===,…4分所以,椭圆E 的方程为,即x 2+3y 2=5…6分(2)将y=k (x+1)代入方程E :x 2+3y 2=5,得(3k 2+1)x 2+6k 2x+3k 2﹣5=0;…7分 设A (x 1,y 1),B (x 2,y 2),M (m ,0),则 x 1+x 2=﹣,x 1x 2=;…8分∴=(x 1﹣m ,y 1)=(x 1﹣m ,k (x 1+1)),=(x 2﹣m ,y 2)=(x 2﹣m ,k (x 2+1));∴=(k 2+1)x 1x 2+(k 2﹣m )(x 1+x 2)+k 2+m 2=m 2+2m ﹣﹣,要使上式与k 无关,则有6m+14=0,解得m=﹣; ∴存在点M (﹣,0)满足题意…13分【点评】本题考查了直线与圆锥曲线的综合应用问题,也考查了椭圆的标准方程及其几何性质,考查了一定的计算能力,属于中档题.20.【答案】【解析】(1)依题意,得2a =,3c e a ==1,322=-==∴c a b c ;故椭圆C 的方程为2214x y += . (3分)(3)设),(00y x P 由题意知:01x x ≠,01y y ≠±.直线MP 的方程为),(010100x x x x y y y y ---=-令0=y 得101001y y y x y x x R --=,同理:101001y y y x y x x S ++=,∴212021202021y y y x y x x x S R --=⋅. (10分)又点P M ,在椭圆上,故)1(4),1(421212020y x y x -=-=,∴4)(4)1(4)1(421202120212021202021=--=----=y y y y y y y y y y x x S R ,4R S R S OR OS x x x x ∴⋅=⋅==,即OR OS ⋅为定值4.(13分)21.【答案】【解析】解:(1)由高BH 所在直线方程为4x+2y ﹣9=0,∴=﹣2.∵直线AC ⊥BH ,∴k AC k BH =﹣1.∴,直线AC的方程为,联立∴点C 的坐标C (1,1). (2),∴直线BC的方程为,联立,即. 点B 到直线AC :x ﹣2y+1=0的距离为.又,∴.【点评】本题考查了相互垂直的直线斜率之间的关系、角平分线的性质、点到直线的距离公式、两点间的距离公式、三角形的面积计算公式,属于基础题.22.【答案】【解析】(Ⅰ)因为网购金额在2000元以上的频率为40., 所以网购金额在2000元以上的人数为10040.⨯=40 所以4030=+y ,所以10=y ,……………………1分15=x ,……………………2分所以10150.,.==q p ……………………4分⑵由题设列联表如下……………………7分 所以))()()(()(d b c a d c b a bc ad n K ++++-=22=5656040257554020351002.)(≈⨯⨯⨯⨯-⨯…………9分 因为0245565..>……………………10分所以据此列联表判断,有597.%的把握认为网购金额超过2000元与网龄在三年以上有关.……………………12分 23.【答案】【解析】【知识点】垂直平行 【试题解析】(Ⅰ)证明:因为,平面,平面,所以平面. 因为,平面,平面,所以平面.又因为, 所以平面平面.又因为平面, 所以平面.(Ⅱ)证明:因为底面,底面,所以. 又因为,,所以平面. 又因为底面,所以.(Ⅲ)结论:直线与平面不垂直.证明:假设平面,由平面,得. 由棱柱中,底面,可得,,又因为, 所以平面,所以. 又因为, 所以平面,所以.这与四边形为矩形,且矛盾,故直线与平面不垂直.24.【答案】【解析】解:(1)作出散点图如下:…(3分)(2)=(2+3+4+5)=3.5,=(2.5+3+4+4.5)=3.5,…(5分)=54,x i y i=52.5∴b==0.7,a=3.5﹣0.7×3.5=1.05,∴所求线性回归方程为:y=0.7x+1.05…(10分)(3)当x=10代入回归直线方程,得y=0.7×10+1.05=8.05(小时).∴加工10个零件大约需要8.05个小时…(12分)【点评】本题考查线性回归方程的求法和应用,考查学生的计算能力,属于中档题.。

资源县实验中学2018-2019学年上学期高二数学12月月考试题含解析

资源县实验中学2018-2019学年上学期高二数学12月月考试题含解析

资源县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。

问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽AD =3丈,长AB =4丈,上棱EF =2丈,EF ∥平面ABCD .EF 与平面ABCD 的距离为1丈,问它的体积是( ) A .4立方丈 B .5立方丈 C .6立方丈 D .8立方丈2. “方程+=1表示椭圆”是“﹣3<m <5”的( )条件.A .必要不充分B .充要C .充分不必要D .不充分不必要3. 已知α是△ABC 的一个内角,tan α=,则cos (α+)等于( )A .B .C .D .4. 执行如图所示的程序,若输入的3x ,则输出的所有x 的值的和为( ) A .243 B .363 C .729 D .1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.5.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100 B.150 C.200 D.2506.一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是()A.4πB.12πC.16πD.48π7. 若等式(2x ﹣1)2014=a 0+a 1x+a 2x 2+…+a 2014x 2014对于一切实数x 都成立,则a 0+1+a 2+…+a 2014=( )A .B .C .D .08. 某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为 ( )A .π1492+B .π1482+C .π2492+D .π2482+【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.9. 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积 为1S 、2S 、3S ,则( )A .123S S S <<B .123S S S >>C .213S S S <<D .213S S S >> 10.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则点P 轨迹方程为( )A .86210x y --=B .86210x y +-=C .68210x y +-=D .68210x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.11.已知函数f (x )=﹣log 2x ,在下列区间中,包含f (x )零点的区间是( ) A .(0,1) B .(1,2) C .(2,4) D .(4,+∞)12.给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行; ③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个二、填空题13.在复平面内,记复数+i对应的向量为,若向量饶坐标原点逆时针旋转60°得到向量所对应的复数为 .14.若x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.15.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A. B.C.D.16.81()x x-的展开式中,常数项为___________.(用数字作答) 【命题意图】本题考查用二项式定理求指定项,基础题.17.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( ) A .1310 B .3 C .4 D .2110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.18.如图所示,圆C 中,弦AB 的长度为4,则AB AC ×的值为_______.【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.三、解答题19.已知函数f (x )=aln(x+1)+x 2﹣x ,其中a 为非零实数. (Ⅰ)讨论f (x )的单调性;(Ⅱ)若y=f (x )有两个极值点α,β,且α<β,求证:<.(参考数据:ln2≈0.693)20.(本小题满分12分)如图(1),在三角形PCD 中,AB 为其中位线,且2BD PC =,若沿AB 将三角形PAB 折起,使PAD θ∠=,构成四棱锥P ABCD -,且2PC CDPF CE==. (1)求证:平面 BEF ⊥平面PAB ; (2)当 异面直线BF 与PA 所成的角为3π时,求折起的角度.21.(本小题满分12分)已知向量,a b 满足:||1a =,||6b =,()2a b a ∙-=. (1)求向量与的夹角; (2)求|2|a b -.22.已知,且.(1)求sin α,cos α的值;(2)若,求sin β的值.23.(本题满分12分)在长方体1111D C B A ABCD -中,a AD AA ==1,E 是棱CD 上的一点,P 是棱1AA 上的一点.(1)求证:⊥1AD 平面D B A 11; (2)求证:11AD E B ⊥;(3)若E 是棱CD 的中点,P 是棱1AA 的中点,求证://DP 平面AE B 1.24.在正方体1111D ABC A B C D 中,,E G H 分别为111,,BC C D AA 的中点. (1)求证:EG 平面11BDD B ;(2)求异面直线1B H 与EG 所成的角]资源县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】 【解析】解析:选B.如图,设E 、F 在平面ABCD 上的射影分别为P ,Q ,过P ,Q 分别作GH ∥MN ∥AD 交AB 于G ,M ,交DC 于H ,N ,连接EH 、GH 、FN 、MN ,则平面EGH 与平面FMN 将原多面体分成四棱锥E -AGHD 与四棱锥F -MBCN 与直三棱柱EGH -FMN .由题意得GH =MN =AD =3,GM =EF =2,EP =FQ =1,AG +MB =AB -GM =2,所求的体积为V =13(S 矩形AGHD +S 矩形MBCN )·EP +S △EGH ·EF =13×(2×3)×1+12×3×1×2=5立方丈,故选B.2. 【答案】C【解析】解:若方程+=1表示椭圆,则满足,即,即﹣3<m <5且m ≠1,此时﹣3<m <5成立,即充分性成立,当m=1时,满足﹣3<m <5,但此时方程+=1即为x 2+y 2=4为圆,不是椭圆,不满足条件.即必要性不成立.故“方程+=1表示椭圆”是“﹣3<m <5”的充分不必要条件.故选:C .【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题.3. 【答案】B【解析】解:由于α是△ABC 的一个内角,tan α=,则=,又sin 2α+cos 2α=1,解得sin α=,cos α=(负值舍去).则cos (α+)=cos cos α﹣sin sin α=×(﹣)=.故选B .【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题.4. 【答案】D【解析】当3x =时,y 是整数;当23x =时,y 是整数;依次类推可知当3(*)nx n N =∈时,y 是整数,则由31000nx =≥,得7n ≥,所以输出的所有x 的值为3,9,27,81,243,729,其和为1092,故选D .5. 【答案】A【解析】解:分层抽样的抽取比例为=,总体个数为3500+1500=5000,∴样本容量n=5000×=100.故选:A .6. 【答案】B【解析】解:由三视图可知几何体是底面半径为2的圆柱,∴几何体的侧面积为2π×2×h=12π,解得h=3,∴几何体的体积V=π×22×3=12π.故选B .【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.7. 【答案】B【解析】解法一:∵,∴(C 为常数),取x=1得,再取x=0得,即得,∴,故选B .解法二:∵,∴,∴,故选B .【点评】本题考查二项式定理的应用,定积分的求法,考查转化思想的应用.8. 【答案】A9. 【答案】A 【解析】考点:棱锥的结构特征. 10.【答案】D【解析】由切线性质知PQ CQ ⊥,所以222PQ PC QC =-,则由PQ PO =,得,2222(3)(4)4x y x y -++-=+,化简得68210x y --=,即点P 的轨迹方程,故选D ,11.【答案】C【解析】解:∵f (x )=﹣log 2x ,∴f (2)=2>0,f (4)=﹣<0, 满足f (2)f (4)<0,∴f (x )在区间(2,4)内必有零点, 故选:C12.【答案】B 【解析】考点:空间直线与平面的位置关系.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.二、填空题13.【答案】2i.【解析】解:向量饶坐标原点逆时针旋转60°得到向量所对应的复数为(+i)(cos60°+isin60°)=(+i)()=2i,故答案为2i.【点评】本题考查两个复数代数形式的乘法及其集合意义,判断旋转60°得到向量对应的复数为(+i)(cos60°+isin60°),是解题的关键.14.【答案】【解析】解析:可行域如图,当直线y=-3x+z+m与直线y=-3x平行,且在y轴上的截距最小时,z才能取最小值,此时l经过直线2x-y+2=0与x-2y+1=0的交点A(-1,0),z min=3×(-1)+0+m=-3+m=1,∴m=4.答案:415.【答案】【解析】解:法1:取A1C1的中点D,连接DM,则DM∥C1B1,在在直三棱柱中,∠ACB=90°,∴DM⊥平面AA1C1C,则∠MAD是AM与平面AA1C1C所的成角,则DM=,AD===,则tan∠MAD=.法2:以C1点坐标原点,C1A1,C1B1,C1C分别为X,Y,Z轴正方向建立空间坐标系,则∵AC=BC=1,侧棱AA=,M为A1B1的中点,1∴=(﹣,,﹣),=(0,﹣1,0)为平面AA1C1C的一个法向量设AM与平面AA1C1C所成角为θ,则sinθ=||=则tanθ=故选:A【点评】本题考查的知识点是直线与平面所成的角,其中利用定义法以及建立坐标系,求出直线的方向向量和平面的法向量,将线面夹角问题转化为向量夹角问题是解答本题的关键.16.【答案】70【解析】81()x x -的展开式通项为8821881()(1)r rr r r r r T C x C x x--+=-=-,所以当4r =时,常数项为448(1)70C -=.17.【答案】D 【解析】18.【答案】8三、解答题19.【答案】【解析】解:(Ⅰ).当a ﹣1≥0时,即a ≥1时,f'(x )≥0,f (x )在(﹣1,+∞)上单调递增;当0<a <1时,由f'(x )=0得,,故f (x )在上单调递增,在上单调递减,在上单调递增;当a <0时,由f'(x )=0得,,f (x )在上单调递减,在上单调递增.证明:(Ⅱ)由(I )知,0<a <1,且,所以α+β=0,αβ=a ﹣1..由0<a <1得,0<β<1.构造函数.,设h (x )=2(x 2+1)ln (x+1)﹣2x+x 2,x ∈(0,1),则,因为0<x <1, 所以,h'(x )>0,故h (x )在(0,1)上单调递增, 所以h (x )>h (0)=0,即g'(x )>0, 所以g (x )在(0,1)上单调递增,所以,故.20.【答案】(1)证明见解析;(2)23πθ=. 【解析】试题分析:(1)可先证BA PA ⊥,BA AD ⊥从而得到BA ⊥平面PAD ,再证CD FE ⊥,CD BE ⊥可得CD ⊥平面BEF ,由//CD AB ,可证明平面BEF ⊥平面PAB ;(2)由PAD θ∠=,取BD 的中点G ,连接,FG AG ,可得PAG ∠即为异面直线BF 与PA 所成的角或其补角,即为所折起的角度.在三角形中求角即可. 1 试题解析:(2)因为PAD θ∠=,取BD 的中点G ,连接,FG AG ,所以//FG CD ,12FG CD =,又//AB CD ,12AB CD =,所以//FG AB ,FG AB =,从而四边形ABFG 为平行四边形,所以//BF AG ,得;同时,因为PA AD =,PAD θ∠=,所以PAD θ∠=,故折起的角度23πθ=.考点:点、线、面之间的位置关系的判定与性质.21.【答案】(1)3π;(2) 【解析】试题分析:(1)要求向量,a b 的夹角,只要求得这两向量的数量积a b ⋅,而由已知()2a b a ∙-=,结合数量积的运算法则可得a b ⋅,最后数量积的定义可求得其夹角;(2)求向量的模,可利用公式22a a =,把考点:向量的数量积,向量的夹角与模.【名师点睛】本题考查向量的数量积运算及特殊角的三角函数值,求解两个向量的夹角的步骤:第一步,先计算出两个向量的数量积;第二步,分别计算两个向量的模;第三步,根据公式cos ,a b a b a b⋅<>=求得这两个向量夹角的余弦值;第四步,根据向量夹角的范围在[0,]π内及余弦值求出两向量的夹角. 22.【答案】【解析】解:(1)将sin +cos=两边平方得:(sin+cos)2=sin2+2sin cos+cos 2=1+sin α=,∴sin α=,∵α∈(,π),∴cos α=﹣=﹣;(2)∵α∈(,π),β∈(0,),∴α+β∈(,),∵sin (α+β)=﹣<0,∴α+β∈(π,),∴cos (α+β)=﹣=﹣,则sin β=sin=sin (α+β)cos α﹣cos (α+β)sin α=﹣×(﹣)﹣(﹣)×=+=.【点评】此题考查了两角和与差的正弦函数公式,以及运用诱导公式化简求值,熟练掌握公式是解本题的关键.23.【答案】【解析】【命题意图】本题综合考查了线面垂直、线线垂直、线面平行等位置关系的证明,对空间想象能力及逻辑推理有较高要求,对于证明中辅助线的运用是一个难点,本题属于中等难度.24.【答案】(1)证明见解析;(2)90.【解析】(2)延长DB 于M ,使12BM BD =,连结11,,B M HM HB M ∠为所求角.设正方体边长为,则111,cos 02222B M B H AM HM HB M ====∴∠=, 1B H ∴与EG 所成的角为90.考点:直线与平行的判定;异面直线所成的角的计算.【方法点晴】本题主要考查了直线与平面平行的判定与证明、空间中异面直线所成的角的计算,其中解答中涉及到平行四边形的性质、正方体的结构特征、解三角形的相关知识的应用,着重考查了学生的空间想象能力以及学生分析问题和解答问题的能力,本题的解答中根据异面直线所成的角找到角1HB M ∠为异面直线所成的角是解答的一个难点,属于中档试题.。

蒲县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

蒲县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

蒲县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 如图,在长方形ABCD 中,AB=,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为()A .B .C .D .2. 若函数则“a=1”是“函数y=f (x )在R 上单调递减”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3. 某几何体的三视图如图所示,则该几何体为()A .四棱柱B .四棱锥C .三棱台D .三棱柱4. 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为()A. B .483C.D .1632035. 若不等式1≤a ﹣b ≤2,2≤a+b ≤4,则4a ﹣2b 的取值范围是( )A .[5,10]B .(5,10)C .[3,12]D .(3,12)6. 已知随机变量X 服从正态分布N (2,σ2),P (0<X <4)=0.8,则P (X >4)的值等于()A .0.1B .0.2C .0.4D .0.67. 下面的结构图,总经理的直接下属是()A .总工程师和专家办公室B .开发部C .总工程师、专家办公室和开发部D .总工程师、专家办公室和所有七个部8. 如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是()A .1﹣B .﹣C .D .9. 空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( )A .(4,1,1)B .(﹣1,0,5)C .(4,﹣3,1)D .(﹣5,3,4)10.在定义域内既是奇函数又是减函数的是( )A .y=B .y=﹣x+C .y=﹣x|x|D .y=11.江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )A .10米B .100米C .30米D .20米12.与命题“若x ∈A ,则y ∉A ”等价的命题是()A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A二、填空题13.在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为 .14.如图,在平行四边形ABCD 中,点E 在边CD 上,若在平行四边形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率是 .15.函数f (x )=a x +4的图象恒过定点P ,则P 点坐标是 .16.已知x 是400和1600的等差中项,则x= .17.已知正方体ABCD ﹣A 1B 1C 1D 1的一个面A 1B 1C 1D 1在半径为的半球底面上,A 、B 、C 、D 四个顶点都在此半球面上,则正方体ABCD ﹣A 1B 1C 1D 1的体积为 .18.已知一组数据,,,,的方差是2,另一组数据,,,,()1x 2x 3x 4x 5x 1ax 2ax 3ax 4ax 5ax 0a >的标准差是,则.a =三、解答题19.已知函数f (x )=的定义域为A ,集合B 是不等式x 2﹣(2a+1)x+a 2+a >0的解集.(Ⅰ) 求A ,B ;(Ⅱ) 若A ∪B=B ,求实数a 的取值范围.20.已知函数f (x )=,求不等式f (x )<4的解集.21.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD绕AD 旋转一周所成几何体的表面积.22.已知椭圆C1:+x2=1(a>1)与抛物线C:x2=4y有相同焦点F1.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知直线l1过椭圆C1的另一焦点F2,且与抛物线C2相切于第一象限的点A,设平行l1的直线l交椭圆C1于B,C两点,当△OBC面积最大时,求直线l的方程.23.设集合A={x|0<x﹣m<3},B={x|x≤0或x≥3},分别求满足下列条件的实数m的取值范围.(1)A∩B=∅;(2)A∪B=B.24.如图,四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,.求证:PC⊥BC;(Ⅱ)求三棱锥C﹣DEG的体积;(Ⅲ)AD边上是否存在一点M,使得PA∥平面MEG.若存在,求AM的长;否则,说明理由.蒲县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】解:由题意,将△AED沿AE折起,使平面AED⊥平面ABC,在平面AED内过点D作DK⊥AE,K 为垂足,由翻折的特征知,连接D'K,则D'KA=90°,故K点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是,如图当E与C重合时,AK==,取O为AD′的中点,得到△OAK是正三角形.故∠K0A=,∴∠K0D'=,其所对的弧长为=,故选:D.2.【答案】A【解析】解:设g(x)=,h(x)=﹣x+a,则g(x),h(x)都是单调递减∵y=在(﹣∞,0]上单调递减且h(x)≥h(0)=1若a=1时,y=﹣x+a单调递减,且h(x)<h(0)=1∴,即函数y=f(x)在R上单调递减若函数y=f(x)在R上单调递减,则g(0)≤h(0)∴a≤1则“a=1”是“函数y=f(x)在R上单调递减”的充分不必要条件故选A【点评】本题以充分必要条件的判断为载体,主要考查了分段函数的单调性的判断,解题中要注意分段函数的端点处的函数值的处理3.【答案】A【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A.考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹.4. 【答案】【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积V =23-×2×2×1=,故选D.132035. 【答案】A【解析】解:令4a ﹣2b=x (a ﹣b )+y (a+b )即解得:x=3,y=1即4a ﹣2b=3(a ﹣b )+(a+b )∵1≤a ﹣b ≤2,2≤a+b ≤4,∴3≤3(a ﹣b )≤6∴5≤(a ﹣b )+3(a+b )≤10故选A【点评】本题考查的知识点是简单的线性规划,其中令4a ﹣2b=x (a ﹣b )+y (a+b ),并求出满足条件的x ,y ,是解答的关键. 6. 【答案】A【解析】解:∵随机变量ξ服从正态分布N (2,o 2),∴正态曲线的对称轴是x=2P (0<X <4)=0.8,∴P (X >4)=(1﹣0.8)=0.1,故选A . 7. 【答案】C【解析】解:按照结构图的表示一目了然,就是总工程师、专家办公室和开发部.读结构图的顺序是按照从上到下,从左到右的顺序.故选C.【点评】本题是一个已知结构图,通过解读各部分从而得到系统具有的功能,在解读时,要从大的部分读起,一般而言,是从左到右,从上到下的过程解读.8.【答案】A【解析】解:设扇形的半径为r,则扇形OAB的面积为,连接OC,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,则阴影部分的面积为:﹣,∴此点取自阴影部分的概率是.故选A.9.【答案】C【解析】解:设C(x,y,z),∵点A(﹣2,1,3)关于点B(1,﹣1,2)的对称点C,∴,解得x=4,y=﹣3,z=1,∴C(4,﹣3,1).故选:C.10.【答案】C【解析】解:A.在定义域内没有单调性,∴该选项错误;B.时,y=,x=1时,y=0;∴该函数在定义域内不是减函数,∴该选项错误;C.y=﹣x|x|的定义域为R,且﹣(﹣x)|﹣x|=x|x|=﹣(﹣x|x|);∴该函数为奇函数;;∴该函数在[0,+∞),(﹣∞,0)上都是减函数,且﹣02=02;∴该函数在定义域R上为减函数,∴该选项正确;D.;∵﹣0+1>﹣0﹣1;∴该函数在定义域R上不是减函数,∴该选项错误.故选:C.【点评】考查反比例函数的单调性,奇函数的定义及判断方法,减函数的定义,以及分段函数单调性的判断,二次函数的单调性.11.【答案】C【解析】解:如图,过炮台顶部A作水平面的垂线,垂足为B,设A处观测小船C的俯角为45°,设A处观测小船D的俯角为30°,连接BC、BDRt△ABC中,∠ACB=45°,可得BC=AB=30米Rt△ABD中,∠ADB=30°,可得BD=AB=30米在△BCD中,BC=30米,BD=30米,∠CBD=30°,由余弦定理可得:CD2=BC2+BD2﹣2BCBDcos30°=900∴CD=30米(负值舍去)故选:C【点评】本题给出实际应用问题,求炮台旁边两条小船距的距离.着重考查了余弦定理、空间线面的位置关系等知识,属于中档题.熟练掌握直线与平面所成角的定义与余弦定理解三角形,是解决本题的关键.12.【答案】D【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可.与命题“若x∈A,则y∉A”等价的命题是若y∈A,则x∉A.故选D.二、填空题13.【答案】 (1,2) .【解析】解:由2ρcos2θ=sinθ,得:2ρ2cos2θ=ρsinθ,即y=2x2.由ρcosθ=1,得x=1.联立,解得:.∴曲线C1与C2交点的直角坐标为(1,2).故答案为:(1,2).【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题.14.【答案】 .【解析】解:由题意△ABE的面积是平行四边形ABCD的一半,由几何概型的计算方法,可以得出所求事件的概率为P=,故答案为:.【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题.15.【答案】 (0,5) .【解析】解:∵y=a x的图象恒过定点(0,1),而f(x)=a x+4的图象是把y=a x的图象向上平移4个单位得到的,∴函数f(x)=a x+4的图象恒过定点P(0,5),故答案为:(0,5).【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题.16.【答案】 1000 .【解析】解:∵x 是400和1600的等差中项,∴x==1000.故答案为:1000.17.【答案】 2 .【解析】解:如图所示,连接A 1C 1,B 1D 1,相交于点O .则点O 为球心,OA=.设正方体的边长为x ,则A 1O=x .在Rt △OAA 1中,由勾股定理可得:+x 2=,解得x=.∴正方体ABCD ﹣A 1B 1C 1D 1的体积V==2.故答案为:2. 18.【答案】2【解析】试题分析:第一组数据平均数为,2)((()()(,2524232221=-+-+-+-+-∴x x x x x x x x x x x .22222212345()()()()()8,4,2ax ax ax ax ax ax ax ax ax ax a a -+-+-+-+-=∴=∴=考点:方差;标准差.三、解答题19.【答案】【解析】解:(Ⅰ)∵,化为(x﹣2)(x+1)>0,解得x>2或x<﹣1,∴函数f(x)=的定义域A=(﹣∞,﹣1)∪(2,+∞);由不等式x2﹣(2a+1)x+a2+a>0化为(x﹣a)(x﹣a﹣1)>0,又a+1>a,∴x>a+1或x<a,∴不等式x2﹣(2a+1)x+a2+a>0的解集B=(﹣∞,a)∪(a+1,+∞);(Ⅱ)∵A∪B=B,∴A⊆B.∴,解得﹣1≤a≤1.∴实数a的取值范围[﹣1,1].20.【答案】【解析】解:函数f(x)=,不等式f(x)<4,当x≥﹣1时,2x+4<4,解得﹣1≤x<0;当x<﹣1时,﹣x+1<4解得﹣3<x<﹣1.综上x∈(﹣3,0).不等式的解集为:(﹣3,0).21.【答案】【解析】解:四边形ABCD绕AD旋转一周所成的几何体,如右图:S表面=S圆台下底面+S圆台侧面+S圆锥侧面=πr22+π(r1+r2)l2+πr1l1===22.【答案】【解析】解:(Ⅰ)∵抛物线x2=4y的焦点为F1(0,1),∴c=1,又b2=1,∴∴椭圆方程为:+x2=1.…(Ⅱ)F2(0,﹣1),由已知可知直线l1的斜率必存在,设直线l1:y=kx﹣1由消去y并化简得x2﹣4kx+4=0∵直线l1与抛物线C2相切于点A.∴△=(﹣4k)2﹣4×4=0,得k=±1.…∵切点A在第一象限.∴k=1…∵l∥l1∴设直线l的方程为y=x+m由,消去y整理得3x2+2mx+m2﹣2=0,…△=(2m)2﹣12(m2﹣2)>0,解得.设B(x1,y1),C(x2,y2),则,.…又直线l交y轴于D(0,m)∴…=当,即时,.…所以,所求直线l的方程为.…【点评】本题主要考查椭圆、抛物线的有关计算、性质,考查直线与圆锥曲线的位置关系,考查运算求解能力及数形结合和化归与转化思想.23.【答案】【解析】解:∵A={x|0<x﹣m<3},∴A={x|m<x<m+3},(1)当A∩B=∅时;如图:则,解得m=0,(2)当A∪B=B时,则A⊆B,由上图可得,m≥3或m+3≤0,解得m≥3或m≤﹣3.24.【答案】【解析】解:(I)证明:∵PD⊥平面ABCD,∴PD⊥BC,又∵ABCD是正方形,∴BC⊥CD,∵PDICE=D,∴BC⊥平面PCD,又∵PC⊂面PBC,∴PC⊥BC.(II)解:∵BC⊥平面PCD,∴GC是三棱锥G﹣DEC的高.∵E是PC的中点,∴.∴.(III)连接AC,取AC中点O,连接EO、GO,延长GO交AD于点M,则PA∥平面MEG.下面证明之:∵E为PC的中点,O是AC的中点,∴EO∥平面PA,又∵EO⊂平面MEG,PA⊄平面MEG,∴PA∥平面MEG,在正方形ABCD中,∵O是AC中点,∴△OCG≌△OAM,∴,∴所求AM的长为.【点评】本题主要考查线面平行与垂直关系、多面体体积计算等基础知识,考查空间想象能、逻辑思维能力、运算求解能力和探究能力、考查数形结合思想、化归与转化思想.。

资源县一中2018-2019学年上学期高二数学12月月考试题含解析

资源县一中2018-2019学年上学期高二数学12月月考试题含解析

资源县一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 如图,正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是AA 1,AD 的中点,则CD 1与EF 所成角为( )A .0°B .45°C .60°D .90°2. 以下四个命题中,真命题的是( ) A .2,2x R x x ∃∈≤-B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.3. 已知11xyi i=-+,其中,x y 是实数,是虚数单位,则x yi +的共轭复数为 A 、12i + B 、12i - C 、2i + D 、2i -4. 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A .96B .48C .24D .05. 四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )A .AC BD ⊥B .AC BD =C.AC PQMN D .异面直线PM 与BD 所成的角为456. 在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是( )A .最多可以购买4份一等奖奖品B .最多可以购买16份二等奖奖品C .购买奖品至少要花费100元D .共有20种不同的购买奖品方案7. 函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( ) A . C . D .时,函数f (x )的最大值与最小值的和为( )A .a+3B .6C .2D .3﹣a8. 已知直线x+y+a=0与圆x 2+y 2=1交于不同的两点A 、B ,O 是坐标原点,且,那么实数a 的取值范围是( )A .B .C .D .9. 过直线3x ﹣2y+3=0与x+y ﹣4=0的交点,与直线2x+y ﹣1=0平行的直线方程为( ) A .2x+y ﹣5=0B .2x ﹣y+1=0C .x+2y ﹣7=0D .x ﹣2y+5=010.下列函数在其定义域内既是奇函数又是增函数的是( )A .B .C .D .11.已知命题p :2≤2,命题q :∃x 0∈R ,使得x 02+2x 0+2=0,则下列命题是真命题的是( ) A .¬p B .¬p ∨qC .p ∧qD .p ∨q12.如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为4,点E ,F 分别是线段AB ,C 1D 1上的动点,点P 是上底面A 1B 1C 1D 1内一动点,且满足点P 到点F 的距离等于点P 到平面ABB 1A 1的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .4D .2二、填空题13.下列命题:①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;③2()(21)2(21)f x x x =+--既不是奇函数又不是偶函数; ④A R =,B R =,1:||f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1()f x x=在定义域上是减函数. 其中真命题的序号是 .14.分别在区间[0,1]、[1,]e 上任意选取一个实数a b 、,则随机事件“ln a b ≥”的概率为_________. 15.已知直线l 过点P (﹣2,﹣2),且与以A (﹣1,1),B (3,0)为端点的线段AB 相交,则直线l 的斜率的取值范围是 .16.已知两个单位向量,a b 满足:12a b ∙=-,向量2a b -与的夹角为,则cos θ= .17.已知α为钝角,sin (+α)=,则sin (﹣α)= .18. 设函数()x f x e =,()ln g x x m =+.有下列四个命题:①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <; ②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-; ③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22em <-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <. 其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.三、解答题19.在△ABC 中,D 为BC 边上的动点,且AD=3,B=.(1)若cos ∠ADC=,求AB 的值;(2)令∠BAD=θ,用θ表示△ABD 的周长f (θ),并求当θ取何值时,周长f (θ)取到最大值?20.已知斜率为2的直线l 被圆x 2+y 2+14y+24=0所截得的弦长为,求直线l 的方程.21.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()()3244f x x a x a b x c =+--++(),,R a b c ∈有一个零点为4,且满足()01f =.(1)求实数b 和c 的值;(2)试问:是否存在这样的定值0x ,使得当a 变化时,曲线()y f x =在点()()00,x f x 处的切线互相平行?若存在,求出0x 的值;若不存在,请说明理由; (3)讨论函数()()g x f x a =+在()0,4上的零点个数.22.已知f(x)=log3(1+x)﹣log3(1﹣x).(1)判断函数f(x)的奇偶性,并加以证明;(2)已知函数g(x)=log,当x∈[,]时,不等式f(x)≥g(x)有解,求k的取值范围.23.已知函数f(x)=sin2x•sinφ+cos2x•cosφ+sin(π﹣φ)(0<φ<π),其图象过点(,.)(Ⅰ)求函数f(x)在[0,π]上的单调递减区间;(Ⅱ)若x0∈(,π),sinx0=,求f(x0)的值.24.十八届四中全会明确提出“以法治手段推进生态文明建设”,为响应号召,某市红星路小区的环保人士向该市政府部门提议“在全市范围内禁放烟花、炮竹”.为此,红星路小区的环保人士对该小区年龄在[15,75)(2)若从年龄在[55,65)、[65,75)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“禁放烟花、炮竹”的人数为ξ,求随机变量ξ的分布列和数学期望.资源县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】C【解析】解:连结A 1D 、BD 、A 1B ,∵正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是AA 1,AD 的中点,∴EF ∥A 1D ,∵A 1B ∥D 1C ,∴∠DA 1B 是CD 1与EF 所成角,∵A 1D=A 1B=BD , ∴∠DA 1B=60°. ∴CD 1与EF 所成角为60°.故选:C .【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.2. 【答案】D3. 【答案】D【解析】1()1,2,1,12x x xi yi x y i =-=-∴==+故选D 4. 【答案】B【解析】排列、组合的实际应用;空间中直线与直线之间的位置关系.【专题】计算题;压轴题.【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.【解答】解:8种化工产品分4组,设四棱锥的顶点是P ,底面四边形的个顶点为A 、B 、C 、D .分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA 、DC ;PB 、AD ;PC 、AB ;PD 、BC )或(PA 、BC ;PD 、AB ;PC 、AD ;PB 、DC )那么安全存放的不同方法种数为2A 44=48.故选B .【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖. 5. 【答案】B 【解析】试题分析:因为截面PQMN 是正方形,所以//,//PQ MN QM PN ,则//PQ 平面,//ACD QM 平面BDA ,所以//,//PQ AC QM BD ,由PQ QM ⊥可得AC BD ⊥,所以A 正确;由于//PQ AC 可得//AC 截面PQMN ,所以C 正确;因为PN PQ ⊥,所以AC BD ⊥,由//BD PN ,所以MPN ∠是异面直线PM 与BD所成的角,且为045,所以D 正确;由上面可知//,//BD PN PQ AC ,所以,PN AN MN DN BD AD AC AD==,而,AN DN PN MN ≠=,所以BD AC ≠,所以B 是错误的,故选B. 1考点:空间直线与平面的位置关系的判定与证明.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键. 6. 【答案】D【解析】【知识点】线性规划【试题解析】设购买一、二等奖奖品份数分别为x ,y ,则根据题意有:,作可行域为:A(2,6),B(4,12),C(2,16).在可行域内的整数点有:(2,6),(2,7),…….(2,16),(3,9),(3,10),……..(3,14),(4,12),共11+6+1=18个。

资源县三中2018-2019学年高二上学期数学期末模拟试卷含解析

资源县三中2018-2019学年高二上学期数学期末模拟试卷含解析

资源县三中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 垂直于同一条直线的两条直线一定( )A .平行B .相交C .异面D .以上都有可能2. 将函数f (x )=3sin (2x+θ)(﹣<θ<)的图象向右平移φ(φ>0)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P (0,),则φ的值不可能是( )A.B .πC.D.3. 已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( ) A. =1.23x+4 B. =1.23x ﹣0.08 C. =1.23x+0.8 D. =1.23x+0.08 4. 抛物线y=x 2的焦点坐标为( ) A .(0,)B .(,0)C .(0,4)D .(0,2)5. 已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( ) A .14 B .18 C .23 D .1126.设实数,则a 、b 、c 的大小关系为( )A .a <c <bB .c <b <aC .b <a <cD .a <b <c7. 若y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≤-+≥+-0033033y y x y x ,则当31++x y 取最大值时,y x +的值为( )A .1-B .C .3-D .38. 三个实数a 、b 、c 成等比数列,且a+b+c=6,则b 的取值范围是( )A .[﹣6,2]B .[﹣6,0)∪( 0,2]C .[﹣2,0)∪( 0,6]D .(0,2]9. 已知集合},052|{2Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( ) A .1- B . C .1-或 D .1-或2- 10.下列计算正确的是( )A 、2133x x x ÷= B 、4554()x x = C 、4554x xx = D 、44550x x -=11.设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则,类比这个结论可知:四面体S ﹣ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S ﹣ABC 的体积为V ,则r=( )A .B .C .D .12.已知某工程在很大程度上受当地年降水量的影响,施工期间的年降水量X (单位:mm )对工期延误天数Y PA .0.1B .0.3C .0.42D .0.5二、填空题13.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2132n n S S n n ++=+,若对n N *∀∈,1n n a a +<恒成立,则m 的取值范围是_______.【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.14.一个总体分为A ,B ,C 三层,用分层抽样的方法从中抽取一个容量为15的样本,若B 层中每个个体被抽到的概率都为,则总体的个数为 .15.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .16.下列命题:①终边在y 轴上的角的集合是{a|a=,k ∈Z};②在同一坐标系中,函数y=sinx 的图象和函数y=x 的图象有三个公共点;③把函数y=3sin (2x+)的图象向右平移个单位长度得到y=3sin2x 的图象;④函数y=sin (x ﹣)在[0,π]上是减函数其中真命题的序号是 .17.如图,是一回形图,其回形通道的宽和OB1的长均为1,回形线与射线OA交于A1,A2,A3,…,若从点O到点A3的回形线为第1圈(长为7),从点A3到点A2的回形线为第2圈,从点A2到点A3的回形线为第3圈…依此类推,第8圈的长为.18.由曲线y=2x2,直线y=﹣4x﹣2,直线x=1围成的封闭图形的面积为.三、解答题19.在平面直角坐标系中,以坐标原点为极点,x轴非负半轴为极轴建立极坐标系.已知直线l过点P(1,0),斜率为,曲线C:ρ=ρcos2θ+8cosθ.(Ⅰ)写出直线l的一个参数方程及曲线C的直角坐标方程;(Ⅱ)若直线l与曲线C交于A,B两点,求|PA|•|PB|的值.20.设函数f(x)=lg(a x﹣b x),且f(1)=lg2,f(2)=lg12(1)求a,b的值.(2)当x∈[1,2]时,求f(x)的最大值.(3)m为何值时,函数g(x)=a x的图象与h(x)=b x﹣m的图象恒有两个交点.21.(本小题满分12分)如图,多面体ABCDEF 中,四边形ABCD 为菱形,且60DAB ∠=,//EFAC ,2AD =,EA ED EF ===.(1)求证:AD BE ⊥;(2)若BE =-F BCD 的体积.22.已知数列a 1,a 2,…a 30,其中a 1,a 2,…a 10,是首项为1,公差为1的等差数列;列a 10,a 11,…a 20,是公差为d 的等差数列;a 20,a 21,…a 30,是公差为d 2的等差数列(d ≠0).(1)若a 20=40,求d ;(2)试写出a 30关于d 的关系式,并求a 30的取值范围;(3)续写已知数列,使得a 30,a 31,…a 40,是公差为d 3的等差数列,…,依此类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?23.(本小题满分12分)设p :实数满足不等式39a ≤,:函数()()32331932a f x x x x -=++无极值点.(1)若“p q ∧”为假命题,“p q ∨”为真命题,求实数的取值范围;(2)已知“p q ∧”为真命题,并记为,且:2112022a m a m m ⎛⎫⎛⎫-+++> ⎪ ⎪⎝⎭⎝⎭,若是t ⌝的必要不充分条件,求正整数m 的值.24.已知二次函数()f x 的最小值为1,且(0)(2)3f f ==. (1)求()f x 的解析式;(2)若()f x 在区间[]2,1a a +上不单调,求实数的取值范围; (3)在区间[]1,1-上,()y f x =的图象恒在221y x m =++的图象上方,试确定实数m 的取值范围.资源县三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面.故选D【点评】本题主要考查在空间内两条直线的位置关系.2.【答案】C【解析】函数f(x)=sin(2x+θ)(﹣<θ<)向右平移φ个单位,得到g(x)=sin(2x+θ﹣2φ),因为两个函数都经过P(0,),所以sinθ=,又因为﹣<θ<,所以θ=,所以g(x)=sin(2x+﹣2φ),sin(﹣2φ)=,所以﹣2φ=2kπ+,k∈Z,此时φ=kπ,k∈Z,或﹣2φ=2kπ+,k∈Z,此时φ=kπ﹣,k∈Z,故选:C.【点评】本题考查的知识点是函数y=Asin(ωx+φ)的图象变换,三角函数求值,难度中档3.【答案】D【解析】解:设回归直线方程为=1.23x+a∵样本点的中心为(4,5),∴5=1.23×4+a∴a=0.08∴回归直线方程为=1.23x+0.08故选D.【点评】本题考查线性回归方程,考查学生的计算能力,属于基础题.4. 【答案】D【解析】解:把抛物线y=x 2方程化为标准形式为x 2=8y , ∴焦点坐标为(0,2). 故选:D .【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.5. 【答案】C 【解析】试题分析:由2log 1x <得02x <<,由几何概型可得所求概率为202303-=-.故本题答案选C. 考点:几何概型. 6. 【答案】A【解析】解:∵,b=20.1>20=1,0<<0.90=1.∴a <c <b . 故选:A .7. 【答案】D 【解析】考点:简单线性规划. 8. 【答案】B【解析】解:设此等比数列的公比为q , ∵a+b+c=6,∴=6,∴b=.当q >0时, =2,当且仅当q=1时取等号,此时b ∈(0,2];当q <0时,b =﹣6,当且仅当q=﹣1时取等号,此时b ∈[﹣6,0).∴b 的取值范围是[﹣6,0)∪( 0,2]. 故选:B .【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题.9. 【答案】D 【解析】试题分析:由{}{}1,2,025,0522--=⎭⎬⎫⎩⎨⎧∈<<-=∈<+=Z x x x Z x x x x M ,集合{}a N ,0=, 又φ≠N M ,1-=∴a 或2-=a ,故选D . 考点:交集及其运算. 10.【答案】B 【解析】 试题分析:根据()aa βααβ⋅=可知,B 正确。

资源县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析

资源县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析

资源县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知2->a ,若圆1O :01582222=---++a ay x y x ,圆2O :04422222=--+-++a a ay ax y x 恒有公共点,则a 的取值范围为( ).A .),3[]1,2(+∞--B .),3()1,35(+∞-- C .),3[]1,35[+∞-- D .),3()1,2(+∞--2. 集合{}{}2|ln 0,|9A x x B x x =≥=<,则AB =( )A .()1,3B .[)1,3C .[]1,+∞D .[],3e3. 设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C. (1,3) D .(3,)+∞ 4. 在△ABC 中,若A=2B ,则a 等于( ) A .2bsinAB .2bcosAC .2bsinBD .2bcosB5. 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( ) A .1B.C.D.6. 在△ABC 中,AB 边上的中线CO=2,若动点P满足=(sin 2θ)+(cos 2θ)(θ∈R),则(+)•的最小值是( )A .1B .﹣1C .﹣2D .07. “互联网+”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶 段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调 查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( ) A .10 B .20 C .30 D .40 8. 已知变量与正相关,且由观测数据算得样本平均数,,则由该观测的数据算得的线性回归方程可能是( ) ABCD9. 在等比数列}{n a 中,821=+n a a ,8123=⋅-n a a ,且数列}{n a 的前n 项和121=n S ,则此数列的项数n 等于( )A .4B .5C .6D .7【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.10.已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( )A .4x+2y=5B .4x ﹣2y=5C .x+2y=5D .x ﹣2y=511.设a ,b ∈R ,i 为虚数单位,若2+a i1+i =3+b i ,则a -b 为( )A .3B .2C .1D .012.已知集合,则A0或 B0或3C1或D1或3二、填空题13.在△ABC 中,点D 在边AB 上,CD ⊥BC ,AC=5,CD=5,BD=2AD ,则AD 的长为 .14.i 是虚数单位,化简:= .15.已知抛物线1C :x y 42=的焦点为F ,点P 为抛物线上一点,且3||=PF ,双曲线2C :12222=-by a x(0>a ,0>b )的渐近线恰好过P 点,则双曲线2C 的离心率为 .【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.16.已知函数5()sin (0)2f x x a x π=-≤≤的三个零点成等比数列,则2log a = . 17.已知tan()3αβ+=,tan()24πα+=,那么tan β= .18.已知1a b >>,若10log log 3a b b a +=,b a a b =,则a b += ▲ .三、解答题19.在平面直角坐标系xOy 中.己知直线l 的参数方程为(t 为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是ρ=4. (1)写出直线l 的普通方程与曲线C 的直角坐标系方程; (2)直线l 与曲线C 相交于A 、B 两点,求∠AOB 的值.20.斜率为2的直线l 经过抛物线的y 2=8x 的焦点,且与抛物线相交于A ,B 两点,求线段AB 的长.21.(本题满分14分)已知函数x a x x f ln )(2-=.(1)若)(x f 在]5,3[上是单调递减函数,求实数a 的取值范围;(2)记x b x a x f x g )1(2ln )2()()(--++=,并设)(,2121x x x x <是函数)(x g 的两个极值点,若27≥b , 求)()(21x g x g -的最小值.22.(本题满分12分)已知数列}{n a 的前n 项和为n S ,且332-=n n a S ,(+∈N n ). (1)求数列}{n a 的通项公式; (2)记nn a n b 14+=,n T 是数列}{n b 的前n 项和,求n T . 【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前n 项和.重点突出对运算及化归能力的考查,属于中档难度.23.已知集合A={x|x <﹣1,或x >2},B={x|2p ﹣1≤x ≤p+3}.(1)若p=,求A ∩B ;(2)若A ∩B=B ,求实数p 的取值范围.24.已知函数f (x )=|x ﹣2|. (1)解不等式f (x )+f (x+1)≤2(2)若a <0,求证:f (ax )﹣af (x )≥f (2a )资源县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】C【解析】由已知,圆1O 的标准方程为222(1)()(4)x y a a ++-=+,圆2O 的标准方程为222()()(2)x a y a a ++-=+,∵2->a ,要使两圆恒有公共点,则122||26O O a ≤≤+,即 62|1|2+≤-≤a a ,解得3≥a 或135-≤≤-a ,故答案选C2. 【答案】B【解析】试题分析:因为{}{}|ln 0|1A x x A x x =≥==≥,{}{}2|9|33B x x B x x =<==-<<,所以A B ={}|13x x ≤<,故选B.考点:1、对数函数的性质及不等式的解法;2、集合交集的应用. 3. 【答案】A【解析】考点:线性规划.【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线z x my =+截距为zm,作0my x :L =+,向可行域内平移,越向上,则的值越大,从而可得当直线直线z x my =+过点A 时取最大值,⎩⎨⎧==+00001m x y y x 可求得点A 的坐标可求的最大值,然后由z 2,>解不等式可求m的范围.【解析】解:∵A=2B,∴sinA=sin2B,又sin2B=2sinBcosB,∴sinA=2sinBcosB,根据正弦定理==2R得:sinA=,sinB=,代入sinA=2sinBcosB得:a=2bcosB.故选D5.【答案】C【解析】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为.因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为.因此可知:A,B,D皆有可能,而<1,故C不可能.故选C.【点评】正确求出满足条件的该正方体的正视图的面积的范围为是解题的关键.6.【答案】C【解析】解:∵=(sin2θ)+(cos2θ)(θ∈R),且sin2θ+cos2θ=1,∴=(1﹣cos2θ)+(cos2θ)=+cos2θ•(﹣),即﹣=cos2θ•(﹣),可得=cos2θ•,又∵cos2θ∈[0,1],∴P在线段OC上,由于AB边上的中线CO=2,因此(+)•=2•,设||=t,t∈[0,2],可得(+)•=﹣2t(2﹣t)=2t2﹣4t=2(t﹣1)2﹣2,∴当t=1时,(+)•的最小值等于﹣2.故选C.【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题.【解析】试题分析:设从青年人抽取的人数为800,,2050600600800x x x ∴=∴=++,故选B . 考点:分层抽样. 8. 【答案】A【解析】解:∵变量x 与y 正相关, ∴可以排除C ,D ;样本平均数=3,=3.5,代入A 符合,B 不符合, 故选:A 。

龙陵县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

龙陵县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

龙陵县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知||=3,||=1,与的夹角为,那么|﹣4|等于( )A .2B .C .D .132. 复数2(2)i z i-=(i 为虚数单位),则z 的共轭复数为( )A .43i -+B .43i +C .34i +D .34i -【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力. 3. 下列函数在其定义域内既是奇函数又是增函数的是( )A .B .C .D .4. 如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若PA=AB ,求PB 与AC 所成角的余弦值; (Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离.5. 双曲线:的渐近线方程和离心率分别是( )A .B .C .D .6. 如果过点M (﹣2,0)的直线l 与椭圆有公共点,那么直线l 的斜率k 的取值范围是( )A .B .C .D .7. 已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 1)(( )A .67-B .67C .65D .65- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.8. 在平行四边形ABCD 中,AC 为一条对角线,=(2,4),=(1,3),则等于( )A .(2,4)B .(3,5)C .(﹣3,﹣5)D .(﹣2,﹣4)9. 如图,程序框图的运算结果为( )A .6B .24C .20D .12010.已知随机变量X 服从正态分布N (2,σ2),P (0<X <4)=0.8,则P (X >4)的值等于( ) A .0.1 B .0.2 C .0.4 D .0.611.如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )A .{, }B .{,, }C .{V|≤V ≤}D .{V|0<V ≤}12.函数y=a x +1(a >0且a ≠1)图象恒过定点( )A .(0,1)B .(2,1)C .(2,0)D .(0,2)二、填空题13.已知奇函数f (x )的定义域为[﹣2,2],且在定义域上单调递减,则满足不等式f (1﹣m )+f (1﹣2m )<0的实数m 的取值范围是 .14.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .15.过抛物线C :y 2=4x 的焦点F 作直线l 交抛物线C 于A ,B ,若|AF|=3|BF|,则l 的斜率是 . 16.【泰州中学2018届高三10月月考】设函数()f x '是奇函数()f x 的导函数,()10f -=,当0x >时,()()0xf x f x -<',则使得()0f x >成立的x 的取值范围是__________.17.在(x 2﹣)9的二项展开式中,常数项的值为 .18.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是 .三、解答题19.(本小题满分13分)设1()1f x x=+,数列{}n a 满足:112a =,1(),n n a f a n N *+=∈.(Ⅰ)若12,λλ为方程()f x x =的两个不相等的实根,证明:数列12n n a a λλ⎧⎫-⎨⎬-⎩⎭为等比数列;(Ⅱ)证明:存在实数m ,使得对n N *∀∈,2121222n n n n a a m a a -++<<<<.)20.数列{a n }满足a 1=,a n ∈(﹣,),且tana n+1•cosa n =1(n ∈N *).(Ⅰ)证明数列{tan 2a n }是等差数列,并求数列{tan 2a n }的前n 项和;(Ⅱ)求正整数m ,使得11sina 1•sina 2•…•sina m =1.21.(本小题满分12分)在多面体ABCDEFG 中,四边形ABCD 与CDEF 均为正方形,CF ⊥平面ABCD ,BG ⊥平面ABCD ,且24AB BG BH ==.(1)求证:平面AGH ⊥平面EFG ; (2)求二面角D FG E --的大小的余弦值.22.(本小题满分12分)已知在ABC ∆中,角C B A ,,所对的边分别为,,,c b a 且 )3(s i n ))(sin (sin c b C a b B A -=-+. (Ⅰ)求角A 的大小;(Ⅱ) 若2a =,ABC ∆c b ,.23.长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点.(1)求证:BD1∥平面A1DE;(2)求证:A1D⊥平面ABD1.24.已知函数y=x+有如下性质:如果常数t>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.(1)已知函数f(x)=x+,x∈[1,3],利用上述性质,求函数f(x)的单调区间和值域;(2)已知函数g(x)=和函数h(x)=﹣x﹣2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得h(x2)=g(x1)成立,求实数a的值.龙陵县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】C【解析】解:||=3,||=1,与的夹角为,可得=||||cos <,>=3×1×=,即有|﹣4|===.故选:C .【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.2. 【答案】A【解析】根据复数的运算可知43)2()2(22--=--=-=i i i ii z ,可知z 的共轭复数为43z i =-+,故选A.3. 【答案】B【解析】【知识点】函数的单调性与最值函数的奇偶性 【试题解析】若函数是奇函数,则故排除A 、D ;对C :在(-和(上单调递增,但在定义域上不单调,故C 错; 故答案为:B 4. 【答案】【解析】解:(I )证明:因为四边形ABCD 是菱形,所以AC ⊥BD ,又因为PA ⊥平面ABCD ,所以PA ⊥BD ,PA ∩AC=A 所以BD ⊥平面PAC (II )设AC ∩BD=O ,因为∠BAD=60°,PA=AB=2,所以BO=1,AO=OC=,以O 为坐标原点,分别以OB ,OC 为x 轴、y 轴,以过O 且垂直于平面ABCD 的直线为z 轴,建立空间直角坐标系O ﹣xyz ,则P (0,﹣,2),A (0,﹣,0),B (1,0,0),C (0,,0)所以=(1,,﹣2),设PB与AC所成的角为θ,则cosθ=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC⊥平面PDC,所以=0,即﹣6+=0,解得t=,所以PA=.【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力5.【答案】D【解析】解:双曲线:的a=1,b=2,c==∴双曲线的渐近线方程为y=±x=±2x;离心率e==故选D6.【答案】D【解析】解:设过点M(﹣2,0)的直线l的方程为y=k(x+2),联立,得(2k2+1)x2+8k2x+8k2﹣2=0,∵过点M(﹣2,0)的直线l与椭圆有公共点,∴△=64k4﹣4(2k2+1)(8k2﹣2)≥0,整理,得k2,解得﹣≤k≤.∴直线l的斜率k的取值范围是[﹣,].故选:D.【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.7.【答案】B8.【答案】C【解析】解:∵,∴==(﹣3,﹣5).故选:C.【点评】本题考查向量的基本运算,向量的坐标求法,考查计算能力.9.【答案】B【解析】解:∵循环体中S=S×n可知程序的功能是:计算并输出循环变量n的累乘值,∵循环变量n的初值为1,终值为4,累乘器S的初值为1,故输出S=1×2×3×4=24,故选:B.【点评】本题考查的知识点是程序框图,其中根据已知分析出程序的功能是解答的关键.10.【答案】A【解析】解:∵随机变量ξ服从正态分布N(2,o2),∴正态曲线的对称轴是x=2P(0<X<4)=0.8,∴P(X>4)=(1﹣0.8)=0.1,故选A.11.【答案】D【解析】解:根据几何体的正视图和侧视图,得;当该几何体的俯视图是边长为1的正方形时,它是高为2的四棱锥,其体积最大,为×12×2=;当该几何体的俯视图为一线段时,它的底面积为0,此时不表示几何体;所以,该几何体体积的所有可能取值集合是{V|0<V≤}.故选:D.【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征是什么,是基础题目.12.【答案】D【解析】解:令x=0,则函数f(0)=a0+3=1+1=2.∴函数f(x)=a x+1的图象必过定点(0,2).故选:D.【点评】本题考查了指数函数的性质和a0=1(a>0且a≠1),属于基础题.二、填空题13.【答案】[﹣,].【解析】解:∵函数奇函数f(x)的定义域为[﹣2,2],且在定义域上单调递减,∴不等式f(1﹣m)+f(1﹣2m)<0等价为f(1﹣m)<﹣f(1﹣2m)=f(2m﹣1),即,即,得﹣≤m≤,故答案为:[﹣,]【点评】本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键.注意定义域的限制.14.【答案】[﹣1,﹣).【解析】解:作出y=|x﹣2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k∈[﹣1,﹣).故答案为:[﹣1,﹣).【点评】本题考查全称命题,考查数形结合的数学思想,比较基础.15.【答案】 .【解析】解:∵抛物线C 方程为y 2=4x ,可得它的焦点为F (1,0), ∴设直线l 方程为y=k (x ﹣1),由,消去x 得.设A (x 1,y 1),B (x 2,y 2),可得y 1+y 2=,y 1y 2=﹣4①. ∵|AF|=3|BF|,∴y 1+3y 2=0,可得y 1=﹣3y 2,代入①得﹣2y 2=,且﹣3y 22=﹣4, 消去y2得k 2=3,解之得k=±.故答案为:.【点评】本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题.16.【答案】()(),10,1-∞-⋃【解析】17.【答案】 84 .【解析】解:(x 2﹣)9的二项展开式的通项公式为 T r+1=•(﹣1)r •x 18﹣3r ,令18﹣3r=0,求得r=6,可得常数项的值为T 7===84,故答案为:84.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.18.【答案】 50π .【解析】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:;则这个球的表面积是: =50π.故答案为:50π.【点评】本题是基础题,考查球的内接多面体的有关知识,球的表面积的求法,注意球的直径与长方体的对角线的转化是本题的解答的关键,考查计算能力,空间想象能力.三、解答题19.【答案】【解析】解:证明:2()10f x x x x =⇔+-=,∴2112221010λλλλ⎧+-=⎪⎨+-=⎪⎩,∴21122211λλλλ⎧-=⎪⎨-=⎪⎩. ∵12111111112122222222111111n n n n n n n n n na a a a a a a a a a λλλλλλλλλλλλλλλλ++--+----====⋅------+, (3分)11120a a λλ-≠-,120λλ≠,∴数列12n n a a λλ⎧⎫-⎨⎬-⎩⎭为等比数列. (4分)(Ⅱ)证明:设m =()f m m =. 由112a =及111n na a +=+得223a =,335a =,∴130a a m <<<.∵()f x 在(0,)+∞上递减,∴13()()()f a f a f m >>,∴24a a m >>.∴1342a a m a a <<<<,(8分) 下面用数学归纳法证明:当n N *∈时,2121222n n n n a a m a a -++<<<<.①当1n =时,命题成立. (9分)②假设当n k =时命题成立,即2121222k k k k a a m a a -++<<<<,那么 由()f x 在(0,)+∞上递减得2121222()()()()()k k k k f a f a f m f a f a -++>>>> ∴2222321k k k k a a m a a +++>>>>由2321k k m a a ++>>得2321()()()k k f m f a f a ++<<,∴2422k k m a a ++<<, ∴当1n k =+时命题也成立, (12分)由①②知,对一切n N *∈命题成立,即存在实数m ,使得对n N *∀∈,2121222n n n n a a m a a -++<<<<.20.【答案】【解析】(Ⅰ)证明:∵对任意正整数n ,a n ∈(﹣,),且tana n+1•cosa n =1(n ∈N *).故tan 2a n+1==1+tan 2a n ,∴数列{tan 2a n }是等差数列,首项tan 2a 1=,以1为公差.∴=.∴数列{tan 2a n }的前n 项和=+=.(Ⅱ)解:∵cosa n >0,∴tana n+1>0,.∴tana n =,,∴sina 1•sina 2•…•sina m =(tana 1cosa 1)•(tana 2•cosa 2)•…•(tana m •cosa m ) =(tana 2•cosa 1)•(tana 3cosa 2)•…•(tana m •cosa m ﹣1)•(tana 1•cosa m )=(tana 1•cosa m )==,由,得m=40.【点评】本题考查了等差数列的通项公式及其前n 项和公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于难题.21.【答案】【解析】【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,意在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.∵GH∈平面AGH,∴平面AGH⊥平面EFG.……………………………5分22.【答案】解:(Ⅰ)由正弦定理及已知条件有2223c bc a b -=-, 即bc a c b 3222=-+. 3分由余弦定理得:232cos 222=-+=bc a c b A ,又),0(π∈A ,故6π=A . 6分(Ⅱ) ABC ∆3sin 21=∴A bc ,34=∴bc ①, 8分又由(Ⅰ)2223c bc a b -=-及,2=a 得1622=+c b ,② 10分由 ①②解得32,2==c b 或2,32==c b . 12分 23.【答案】【解析】证明:(1)连结A 1D ,AD 1,A 1D ∩AD 1=O ,连结OE , ∵长方体ABCD ﹣A 1B 1C 1D 1中,ADD 1A 1是矩形,∴O是AD1的中点,∴OE∥BD1,∵OE∥BD1,OE⊂平面ABD1,BD1⊄平面ABD1,∴BD1∥平面A1DE.(2)∵长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点,∴ADD1A1是正方形,∴A1D⊥AD1,∵长方体ABCD﹣A1B1C1D1中,AB⊥平面ADD1A1,∴A1D⊥AB,又AB∩AD1=A,∴A1D⊥平面ABD1.24.【答案】【解析】解:(1)由已知可以知道,函数f(x)在x∈[1,2]上单调递减,在x∈[2,3]上单调递增,f(x)min=f(2)=2+2=4,又f(1)=1+4=5,f(3)=3+=;f(1)>f(3)所以f(x)max=f(1)=5所以f(x)在x∈[1,3]的值域为[4,5].(2)y=g(x)==2x+1+﹣8设μ=2x+1,x∈[0,1],1≤μ≤3,则y=﹣8,由已知性质得,当1≤u≤2,即0≤x≤时,g(x)单调递减,所以递减区间为[0,];当2≤u≤3,即≤x≤1时,g(x)单调递增,所以递增区间为[,1];由g(0)=﹣3,g()=﹣4,g(1)=﹣,得g(x)的值域为[﹣4,﹣3].因为h(x)=﹣x﹣2a为减函数,故h(x)∈[﹣1﹣2a,﹣2a],x∈[0,1].根据题意,g(x)的值域为h(x)的值域的子集,从而有,所以a=.。

永德县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

永德县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

永德县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知集合A={4,5,6,8},B={3,5,7,8},则集合A ∪B=( ) A .{5,8}B .{4,5,6,7,8}C .{3,4,5,6,7,8}D .{4,5,6,7,8}2. 设i 是虚数单位,若z=cos θ+isin θ且对应的点位于复平面的第二象限,则θ位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3. 已知空间四边形ABCD ,M 、N 分别是AB 、CD 的中点,且4AC =,6BD =,则( ) A .15MN << B .210MN << C .15MN ≤≤ D .25MN << 4. 下列说法正确的是( ) A .类比推理是由特殊到一般的推理 B .演绎推理是特殊到一般的推理 C .归纳推理是个别到一般的推理 D .合情推理可以作为证明的步骤5. 函数y=﹣lnx (1≤x ≤e 2) 的值域是( )A .[0,2]B .[﹣2,0]C .[﹣,0]D .[0,]6. 如果函数f (x )的图象关于原点对称,在区间上是减函数,且最小值为3,那么f (x )在区间上是( ) A .增函数且最小值为3B .增函数且最大值为3C .减函数且最小值为﹣3D .减函数且最大值为﹣37. 某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为( )A .4320B .2400C .2160D .13208. 设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( ) A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件9. 函数的定义域是( )A .[0,+∞)B .[1,+∞)C .(0,+∞)D .(1,+∞)10.执行如图所示的程序框图,若输入的分别为0,1,则输出的( )A .4B .16C .27D .3611.设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.12.已知函数f (x )满足f (x )=f (π﹣x ),且当x ∈(﹣,)时,f (x )=e x+sinx ,则( )A .B .C .D .二、填空题13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sinAsinB+sinBsinC+cos2B=1.若C=,则= .14.已知直线l 的参数方程是(t 为参数),曲线C 的极坐标方程是ρ=8cos θ+6sin θ,则曲线C 上到直线l 的距离为4的点个数有 个.15.若与共线,则y= .16.幂函数1222)33)(+-+-=m m x m m x f (在区间()+∞,0上是增函数,则=m .17.若的展开式中含有常数项,则n 的最小值等于 .18.将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最小值是.三、解答题19.证明:f(x)是周期为4的周期函数;(2)若f(x)=(0<x≤1),求x∈[﹣5,﹣4]时,函数f(x)的解析式.18.已知函数f(x)=是奇函数.20.如图,在三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥CD,E,F,G分别是AC,AD,BC的中点.求证:(I)AB∥平面EFG;(II)平面EFG⊥平面ABC.21.如图,四边形ABCD内接于⊙O,过点A作⊙O的切钱EP交CB 的延长线于P,己知∠PAB=25°.(1)若BC是⊙O的直径,求∠D的大小;(2)若∠DAE=25°,求证:DA2=DC•BP.22.【南通中学2018届高三10月月考】设,,函数,其中是自然对数的底数,曲线在点处的切线方程为.(Ⅰ)求实数、的值;(Ⅱ)求证:函数存在极小值;(Ⅲ)若,使得不等式成立,求实数的取值范围.23.已知曲线C1:ρ=1,曲线C2:(t为参数)(1)求C1与C2交点的坐标;(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′与C2′,写出C1′与C2′的参数方程,C1与C2公共点的个数和C1′与C2′公共点的个数是否相同,说明你的理由.2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)24.已知函数f(x)=lg(x2﹣5x+6)和的定义域分别是集合A、B,(1)求集合A,B;(2)求集合A∪B,A∩B.永德县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】C【解析】解:∵A={4,5,6,8},B={3,5,7,8}, ∴A ∪B={3,4,5,6,7,8}. 故选C2. 【答案】B【解析】解:∵z=cos θ+isin θ对应的点坐标为(cos θ,sin θ), 且点(cos θ,sin θ)位于复平面的第二象限,∴,∴θ为第二象限角,故选:B .【点评】本题考查复数的几何意义,考查三角函数值的符号,注意解题方法的积累,属于中档题.3. 【答案】A 【解析】试题分析:取BC 的中点E ,连接,ME NE ,2,3ME NE ==,根据三角形中两边之和大于第三边,两边之差小于第三边,所以15MN <<,故选A .考点:点、线、面之间的距离的计算.1【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题.4.【答案】C【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选C.【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题.5.【答案】B【解析】解:∵函数y=lnx在(0,+∞)上为增函数,故函数y=﹣lnx在(0,+∞)上为减函数,当1≤x≤e2时,若x=1,函数取最大值0,x=e2,函数取最小值﹣2,故函数y=﹣lnx(1≤x≤e2)的值域是[﹣2,0],故选:B【点评】本题考查的知识点是对数函数的值域与最值,熟练掌握对数函数的图象和性质,是解答的关键.6.【答案】D【解析】解:由奇函数的性质可知,若奇函数f(x)在区间上是减函数,且最小值3,则那么f(x)在区间上为减函数,且有最大值为﹣3,故选:D【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,比较基础.7.【答案】D【解析】解:依题意,6名同学可分两组:第一组(1,1,1,3),利用间接法,有•=388,第二组(1,1,2,2),利用间接法,有(﹣)•=932根据分类计数原理,可得388+932=1320种,故选D.【点评】本题考查排列、组合及简单计数问题,考查分类讨论思想与转化思想,考查理解与运算能力,属于中档题.8. 【答案】B【解析】解:∵b ⊥m ,∴当α⊥β,则由面面垂直的性质可得a ⊥b 成立, 若a ⊥b ,则α⊥β不一定成立, 故“α⊥β”是“a ⊥b ”的充分不必要条件, 故选:B .【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键.9. 【答案】A【解析】解:由题意得:2x ﹣1≥0,即2x ≥1=20,因为2>1,所以指数函数y=2x为增函数,则x ≥0.所以函数的定义域为[0,+∞)故选A【点评】本题为一道基础题,要求学生会根据二次根式的定义及指数函数的增减性求函数的定义域.10.【答案】D【解析】【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是, 则输出的36。

乌鲁木齐县第二中学校20182019学年高二上学期数学期末模拟试卷含解析

乌鲁木齐县第二中学校20182019学年高二上学期数学期末模拟试卷含解析

乌鲁木齐县第二中学校2018-2019学年高二上学期数学期末模拟试卷含分析班级__________座号_____姓名__________分数__________一、选择题1.在△ABC中,a2=b2+c2+bc,则A等于()A.120°B.60°C.45°D.30°2.等比数列{an}知足a1=3,a1+a3+a5=21,则a2a6=()A.6B.9C.36D.723.某校为了认识1500名学生对学校食堂的建议,从中抽取1个容量为50的样本,采纳系统抽样法,则分段间隔为()1111]A.10B.15C.20D.304.已知平面α∩β=l,m是α内不一样于l的直线,那么以下命题中错误的是()A.若m∥β,则m∥lB.若m∥l,则m∥βC.若m⊥β,则m⊥lD.若m⊥l,则m⊥β5.德国有名数学家狄利克雷在数学领域成就明显,以其名命名的函数f(x)=被称为狄利克雷函数,此中R为实数集,Q为有理数集,则对于函数f(x)有以下四个命题:①f(f(x))=1;②函数f (x)是偶函数;③任取一个不为零的有理数T,f(x+T)=f(x)对随意的x=R恒建立;④存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.此中真命题的个数有()A.1个B.2个C.3个D.4个6.江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,并且两条船与炮台底部连线成30°角,则两条船相距()A.10米B.100米C.30米D.20米7.半径R的半圆卷成一个圆锥,则它的体积为()A.πR3B.πR3C.πR3D.πR38.设m、n是两条不一样的直线,α,β,γ是三个不一样的平面,给出以下四个命题:①若m⊥α,n∥α,则m⊥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;③若m⊥α,n⊥α,则m∥n;④若α⊥β,m⊥β,则m∥α;此中正确命题的序号是()A.①②③④B.①②③C.②④D.①③9.知足以下条件的函数f(x)中,f(x)为偶函数的是()A.f(e x)|x|B.f(e x)e2xC.f(lnx)lnx2D.f(lnx)x1x第1页,共15页【命题企图】此题考察函数的分析式与奇偶性等基础知识,意在考察剖析求解能力.10.假如一个几何体的三视图以下图,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位:cm),则此几何体的表面积是()A.8cm2B.cm2C.12cm2D.cm2ì#x1 11.函数f(x)(x?R)是周期为4的奇函数,且在[0,2]上的分析式为?x(1-x),0f(x)=í,则f(17)+f(41)=(?sinpx,1<x?2)4679C.11D.13A.B.16161616【命题企图】此题考察函数的奇偶性和周期性、分段函数等基础知识,意在考察转变和化归思想和基本运算能力.12.已知高为5的四棱锥的俯视图是以下图的矩形,则该四棱锥的体积为()A.24B.80C.64D.240二、填空题13.已知定义域为(0,+∞)的函数f(x)知足:(1)对随意x∈(0,+∞),恒有f(2x)=2f(x)建立;(2)当x∈(1,2]时,f(x)=2﹣x.给出以下结论:①对随意m∈Z,有f(2m =0;②函数f x)的值域为[0,+∞);③存在nZ f(2n)(∈,使得+1)=9;④“函数f(x)在区间(a,b)上单一递减”的充要条件是“存在k∈Z,使得(a,b)?(2k,2k+1)”;此中全部正确结论的序号是.14.已知f(x)是定义在R上函数,f(x)是f(x)的导数,给出结论以下:①若f(x)f(x)0,且f(0)1,则不等式f(x)e x的解集为(0,);②若f(x)f(x)0,则f(2015)ef(2014);第2页,共15页③若xf(x) 2f(x) 0,则f(2n1)4f(2n),n N;④若f(x)f(x)e,则函数xf(x)有极小值0;0,且f(0)x⑤若xf(x)e xe,则函数f(x)在(0,)上递加.f(x),且f(1)x此中全部正确结论的序号是.15.某企业对140名新职工进行培训,新职工中男职工有80人,女职工有60人,培训结束后用分层抽样的方法检查培训结果.已知男职工抽取了16人,则女职工应抽取人数为.16.复数z=(i虚数单位)在复平面上对应的点到原点的距离为.17.对随意实数x,不等式ax2﹣2ax﹣4<0恒建立,则实数a的取值范围是.x18.若曲线f(x)=ae+bsinx(a,b∈R)在x=0处与直线y=﹣1相切,则 b﹣a=.三、解答题19.如图,在Rt△ABC中,∠EBC=30°,∠BEC=90°,CE=1,此刻分别以BE,CE为边向Rt△BEC外作正△EBA和正△CED.(Ⅰ)求线段AD的长;(Ⅱ)比较∠ADC和∠ABC的大小.20.如图,A地到火车站共有两条路径和,据统计,经过两条路径所用的时间互不影响,所用时间落在个时间段内的频次以下表:第3页,共15页现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。

资源县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

资源县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

资源县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 设a ,b为实数,若复数,则a ﹣b=( )A .﹣2B .﹣1C .1D .22. 已知三个数1a -,1a +,5a +成等比数列,其倒数重新排列后为递增的等比数列{}n a 的前三 项,则能使不等式1212111n na a a a a a +++≤+++成立的自然数的最大值为( ) A .9 B .8 C.7 D .53. 若等式(2x ﹣1)2014=a 0+a 1x+a2x 2+…+a 2014x 2014对于一切实数x 都成立,则a 0+1+a 2+…+a 2014=( )A .B .C .D .04. 已知三棱柱111ABC A B C - 的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC的中点, 则异面直线AB 与1CC所成的角的余弦值为( )ABD .345. 对“a ,b ,c 是不全相等的正数”,给出两个判断: ①(a ﹣b )2+(b ﹣c )2+(c ﹣a )2≠0;②a ≠b ,b ≠c ,c ≠a 不能同时成立,下列说法正确的是( )A .①对②错B .①错②对C .①对②对D .①错②错6. 已知等比数列{a n }的第5项是二项式(x+)4展开式的常数项,则a 3•a 7( ) A .5B .18C .24D .367. 设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A .(1,1B .(1)+∞ C. (1,3) D .(3,)+∞ 8. 四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )A .AC BD ⊥B .AC BD =C.AC PQMN D .异面直线PM 与BD 所成的角为459. 等比数列{a n }中,a 3,a 9是方程3x 2﹣11x+9=0的两个根,则a 6=( )A .3B .C .±D .以上皆非10.如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为( )A .11B .11.5C .12D .12.511.设0<a <b 且a+b=1,则下列四数中最大的是( )A .a 2+b 2B .2abC .aD .12.已知,其中i 为虚数单位,则a+b=( )A .﹣1B .1C .2D .3二、填空题13.若点p (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为 14.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是 . 15.【常熟中学2018届高三10月阶段性抽测(一)】函数()21ln 2f x x x =-的单调递减区间为__________. 16.直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,则实数a 的值为 .17.在(x 2﹣)9的二项展开式中,常数项的值为 .18.计算:×5﹣1= .三、解答题19.如图,已知AC,BD为圆O的任意两条直径,直线AE,CF是圆O所在平面的两条垂线,且线段AE=CF=,AC=2.(Ⅰ)证明AD⊥BE;(Ⅱ)求多面体EF﹣ABCD体积的最大值.20.已知函数f(x)=(ax2+x﹣1)e x,其中e是自然对数的底数,a∈R.(Ⅰ)若a=0,求曲线f(x)在点(1,f(1))处的切线方程;(Ⅱ)若,求f(x)的单调区间;(Ⅲ)若a=﹣1,函数f(x)的图象与函数的图象仅有1个公共点,求实数m的取值范围.21.为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:(1)求出频率分布表中①、②、③、④、⑤的值;(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S 合计22.已知p :x ∈A={x|x 2﹣2x ﹣3≤0,x ∈R},q :x ∈B={x|x 2﹣2mx+m 2﹣4≤0,x ∈R ,m ∈R} (1)若A ∩B=[0,3],求实数m 的值;(2)若p 是¬q 的充分条件,求实数m 的取值范围.23.若点(p ,q ),在|p|≤3,|q|≤3中按均匀分布出现.(1)点M (x ,y )横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M (x ,y )落在上述区域的概率?(2)试求方程x 2+2px ﹣q 2+1=0有两个实数根的概率.24.【泰州中学2018届高三10月月考】已知函数()(),,xf x eg x x m m R ==-∈.(1)若曲线()y f x =与直线()y g x =相切,求实数m 的值; (2)记()()()h x f x g x =⋅,求()h x 在[]0,1上的最大值; (3)当0m =时,试比较()2f x e -与()g x 的大小.资源县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】C【解析】解:,因此.a ﹣b=1.故选:C .2. 【答案】C【解析】试题分析:因为三个数1,1,5a a a -++等比数列,所以()()()2115,3a a a a +=-+∴=,倒数重新排列后恰好为递增的等比数列{}n a 的前三项,为111,,842,公比为,数列1n a ⎧⎫⎨⎬⎩⎭是以为首项,12为公比的等比数列,则不等式1212111n n a a a a a a +++≤+++等价为()118112281212n n ⎛⎫-- ⎪⎝⎭≤--,整理,得722,17,n n n N +≤∴≤≤≤∈,故选C. 1考点:1、等比数列的性质;2、等比数列前项和公式. 3. 【答案】B 【解析】解法一:∵,∴(C 为常数),取x=1得,再取x=0得,即得,∴,故选B . 解法二:∵,∴,∴,故选B .【点评】本题考查二项式定理的应用,定积分的求法,考查转化思想的应用.4.【答案】D【解析】考点:异面直线所成的角.5.【答案】A【解析】解:由:“a,b,c是不全相等的正数”得:①(a﹣b)2+(b﹣c)2+(c﹣a)2中至少有一个不为0,其它两个式子大于0,故①正确;但是:若a=1,b=2,c=3,则②中a≠b,b≠c,c≠a能同时成立,故②错.故选A.【点评】本小题主要考查不等关系与不等式等基础知识,考查运算求解能力,考查逻辑思维能力.属于基础题.6.【答案】D【解析】解:二项式(x+)4展开式的通项公式为T r+1=•x4﹣2r,令4﹣2r=0,解得r=2,∴展开式的常数项为6=a5,∴a3a7=a52=36,故选:D.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.7.【答案】A【解析】考点:线性规划.【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线z x my =+截距为zm,作0my x :L =+,向可行域内平移,越向上,则的值越大,从而可得当直线直线z x my =+过点A 时取最大值,⎩⎨⎧==+00001m x y y x 可求得点A 的坐标可求的最大值,然后由z 2,>解不等式可求m的范围.8. 【答案】B 【解析】试题分析:因为截面PQMN 是正方形,所以//,//PQ MN QM PN ,则//PQ 平面,//ACD QM 平面BDA ,所以//,//PQ AC QM BD ,由PQ QM ⊥可得AC BD ⊥,所以A 正确;由于//PQ AC 可得//AC 截面PQMN ,所以C 正确;因为PN PQ ⊥,所以AC BD ⊥,由//BD PN ,所以MPN ∠是异面直线PM 与BD 所成的角,且为045,所以D 正确;由上面可知//,//BD PN PQ AC ,所以,PN AN MN DN BD AD AC AD==,而,AN DN PN MN ≠=,所以BD AC ≠,所以B 是错误的,故选B. 1 考点:空间直线与平面的位置关系的判定与证明.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键.9. 【答案】C【解析】解:∵a 3,a 9是方程3x 2﹣11x+9=0的两个根, ∴a 3a 9=3,又数列{a n }是等比数列,则a62=a 3a 9=3,即a 6=±.故选C10.【答案】C【解析】解:由题意,0.06×5+x ×0.1=0.5,所以x 为2,所以由图可估计样本重量的中位数是12. 故选:C .11.【答案】A【解析】解:∵0<a <b 且a+b=1∴∴2b >1∴2ab ﹣a=a (2b ﹣1)>0,即2ab >a又a 2+b 2﹣2ab=(a ﹣b )2>0 ∴a 2+b 2>2ab∴最大的一个数为a 2+b 2故选A12.【答案】B【解析】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选B.【点评】本题考查复数相等的意义、复数的基本运算,是基础题.二、填空题13.【答案】:2x﹣y﹣1=0解:∵P(1,1)为圆(x﹣3)2+y2=9的弦MN的中点,∴圆心与点P确定的直线斜率为=﹣,∴弦MN所在直线的斜率为2,则弦MN所在直线的方程为y﹣1=2(x﹣1),即2x﹣y﹣1=0.故答案为:2x﹣y﹣1=014.【答案】2:1.【解析】解:设圆锥、圆柱的母线为l,底面半径为r,所以圆锥的侧面积为:=πrl圆柱的侧面积为:2πrl所以圆柱和圆锥的侧面积的比为:2:1故答案为:2:10,115.【答案】()【解析】16.【答案】1【解析】【分析】利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a的值.【解答】解:直线ax﹣2y+2=0与直线x+(a﹣3)y+1=0平行,∴,解得a=1.故答案为1.17.【答案】84.【解析】解:(x2﹣)9的二项展开式的通项公式为T r+1=•(﹣1)r•x18﹣3r,令18﹣3r=0,求得r=6,可得常数项的值为T7===84,故答案为:84.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.18.【答案】9.【解析】解:×5﹣1=×=×=(﹣5)×(﹣9)×=9,∴×5﹣1=9,故答案为:9.三、解答题19.【答案】【解析】(Ⅰ)证明:∵BD为圆O的直径,∴AB⊥AD,∵直线AE是圆O所在平面的垂线,∴AD⊥AE,∵AB∩AE=A,∴AD⊥平面ABE,∴AD⊥BE;(Ⅱ)解:多面体EF﹣ABCD体积V=V B﹣AEFC+V D﹣AEFC=2V B﹣AEFC.∵直线AE,CF是圆O所在平面的两条垂线,∴AE∥CF,∥AE⊥AC,AF⊥AC.∵AE=CF=,∴AEFC为矩形,∵AC=2,∴S AEFC=2,作BM⊥AC交AC于点M,则BM⊥平面AEFC,∴V=2V B﹣AEFC=2×≤=.∴多面体EF﹣ABCD体积的最大值为.【点评】本题考查线面垂直,线线垂直,考查体积的计算,考查学生分析解决问题的能力,难度中等.20.【答案】【解析】解:(Ⅰ)∵a=0,∴f(x)=(x﹣1)e x,f′(x)=e x+(x﹣1)e x=xe x,∴曲线f(x)在点(1,f(1))处的切线斜率为k=f(1)=e.又∵f(1)=0,∴所求切线方程为y=e(x﹣1),即.ex﹣y﹣4=0(Ⅱ)f′(x)=(2ax+1)e x+(ax2+x﹣1)e x=[ax2+(2a+1)x]e x=[x(ax+2a+1)]e x,①若a=﹣,f′(x)=﹣x2e x≤0,∴f(x)的单调递减区间为(﹣∞,+∞),②若a<﹣,当x<﹣或x>0时,f′(x)<0;当﹣<x<0时,f′(x)>0.∴f(x)的单调递减区间为(﹣∞,﹣],[0,+∞);单调递增区间为[﹣,0].(Ⅲ)当a=﹣1时,由(Ⅱ)③知,f(x)=(﹣x2+x﹣1)e x在(﹣∞,﹣1)上单调递减,在[﹣1,0]单调递增,在[0,+∞)上单调递减,∴f(x)在x=﹣1处取得极小值f(﹣1)=﹣,在x=0处取得极大值f(0)=﹣1,由,得g′(x)=2x2+2x.当x<﹣1或x>0时,g′(x)>0;当﹣1<x<0时,g′(x)<0.∴g(x)在(﹣∞,﹣1]上单调递增,在[﹣1,0]单调递减,在[0,+∞)上单调递增.故g(x)在x=﹣1处取得极大值,在x=0处取得极小值g(0)=m,∵数f(x)与函数g(x)的图象仅有1个公共点,∴g(﹣1)<f(﹣1)或g(0)>f(0),即..【点评】本题考查了曲线的切线方程问题,考查函数的单调性、极值问题,考查导数的应用,是一道中档题.21.【答案】【解析】解:(1)由分布表可得频数为50,故①的数值为50×0.1=5,②中的值为=0.40,③中的值为50×0.2=10,④中的值为50﹣(5+20+10)=15,⑤中的值为=0.30;(2)不低于85的概率P=×0.20+0.30=0.40,∴获奖的人数大约为800×0.40=320;(3)该程序的功能是求平均数,S=65×0.10+75×0.40+85×0.20+95×0.30=82,∴800名学生的平均分为82分22.【答案】【解析】解:由已知得:A={x|﹣1≤x≤3},B={x|m﹣2≤x≤m+2}.(1)∵A∩B=[0,3]∴∴,∴m=2;(2)∵p是¬q的充分条件,∴A⊆∁R B,而C R B={x|x<m﹣2,或x>m+2}∴m﹣2>3,或m+2<﹣1,∴m>5,或m<﹣3.23.【答案】【解析】解:(1)根据题意,点(p,q),在|p|≤3,|q|≤3中,即在如图的正方形区域,其中p、q都是整数的点有6×6=36个,点M(x,y)横、纵坐标分别由掷骰子确定,即x、y都是整数,且1≤x≤3,1≤y≤3,点M(x,y)落在上述区域有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),有9个点,所以点M(x,y)落在上述区域的概率P1=;(2)|p|≤3,|q|≤3表示如图的正方形区域,易得其面积为36;若方程x2+2px﹣q2+1=0有两个实数根,则有△=(2p)2﹣4(﹣q2+1)>0,解可得p2+q2≥1,为如图所示正方形中圆以外的区域,其面积为36﹣π,即方程x2+2px﹣q2+1=0有两个实数根的概率,P2=.【点评】本题考查几何概型、古典概型的计算,解题时注意区分两种概率的异同点.24.【答案】(1)1m =-;(2)当1e m e <-时,()()max 1h x m e =-;当1e m e ≥-时,()max h x m =-;(3)()()2f x eg x ->.【解析】试题分析:(1)研究函数的切线主要是利用切点作为突破口求解;(2)通过讨论函数在定义域内的单调性确定最值,要注意对字母m 的讨论;(3)比较两个函数的大小主要是转化为判断两个函数的差函数的符号,然后转化为研究差函数的单调性研究其最值.试题解析:(1)设曲线()xf x e =与()g x x m =-相切于点()00,P x y , 由()xf x e '=,知01x e=,解得00x =,又可求得点P 为()0,1,所以代入()g x x m =-,得1m =-.(2)因为()()xh x x m e =-,所以()()()()[]1,0,1x x xh x e x m e x m e x =+-=∈'--.①当10m -≤,即1m ≤时,()0h x '≥,此时()h x 在[]0,1上单调递增, 所以()()()max 11h x h m e ==-;②当011m <-<即12m <<,当()0,1x m ∈-时,()()0,h x h x '<单调递减, 当()1,1x m ∈-时,()()0,h x h x '>单调递增,()()()0,11h m h m e =-=-.(i )当()1m m e -≥-,即21em e ≤<-时,()()max 0h x h m ==-; (ii )当()1m m e -<-,即11em e <<-时,()()()max 11h x h m e ==-;③当11m -≥,即2m ≥时,()0h x '≤,此时()h x 在[]0,1上单调递减,所以()()min 0h x h m ==-. 综上,当1em e <-时,()()max 1h x m e =-; 当1em e ≥-时,()max h x m =-. (3)当0m =时,()()22,x f x e ee g x x --==, ①当0x ≤时,显然()()2f x e g x ->;②当0x >时,()()222ln ln ,ln ln x f x ex e e e g x x ---===,记函数()221ln ln x x x ex e x eφ-=-=⨯-, 则()22111x x x e e e x xφ-=⨯-=-',可知()x φ'在()0,+∞上单调递增,又由()()10,20φφ''知,()x φ'在()0,+∞上有唯一实根0x ,且012x <<,则()020010x x e x φ--'==,即0201x e x -=(*),当()00,x x ∈时,()()0,x x φφ'<单调递减;当()0,x x ∈+∞时,()()0,x x φφ'>单调递增, 所以()()0200ln x x x e x φφ-≥=-,结合(*)式0201x e x -=,知002ln x x -=-, 所以()()()2200000000121120x x x x x x x x x φφ--+≥=+-==>, 则()2ln 0x x ex φ-=->,即2ln x ex ->,所以2x e ex ->.综上,()()2f x eg x ->.试题点睛:本题综合考查了利用导数研究函数的单调性、最值基本思路,当比较两个函数大小的时候,就转化为两个函数的差的单调性,进一步确定最值确定符号比较大小.。

资源县二中2018-2019学年上学期高二数学12月月考试题含解析

资源县二中2018-2019学年上学期高二数学12月月考试题含解析

资源县二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数,则a的取值范围为()A.0<a≤B.0≤a≤C.0<a<D.a>2.已知圆C:x2+y2﹣2x=1,直线l:y=k(x﹣1)+1,则l与C的位置关系是()A.一定相离 B.一定相切C.相交且一定不过圆心D.相交且可能过圆心3.某程序框图如图所示,则该程序运行后输出的S的值为()A.1 B.C.D.4.已知函数f(x)=,则的值为()A.B.C.﹣2 D.35.在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是()A .最多可以购买4份一等奖奖品B .最多可以购买16份二等奖奖品C .购买奖品至少要花费100元D .共有20种不同的购买奖品方案6. 若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3||log x x y a =的图象大致是 ( )【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等. 7. 下列命题正确的是( )A .很小的实数可以构成集合.B .集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合.C .自然数集 N 中最小的数是.D .空集是任何集合的子集.8. 与﹣463°终边相同的角可以表示为(k ∈Z )( )A .k360°+463°B .k360°+103°C .k360°+257°D .k360°﹣257°9. 已知||=3,||=1,与的夹角为,那么|﹣4|等于( )A .2B .C .D .1310.在△ABC 中,若2cosCsinA=sinB ,则△ABC 的形状是( ) A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形11.已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.12.“x >0”是“>0”成立的( )A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件二、填空题13.将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S 的最小值是 .14.方程(x+y ﹣1)=0所表示的曲线是 .15.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B为 .16.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)= .17.已知圆C 的方程为22230x y y +--=,过点()1,2P -的直线与圆C 交于,A B 两点,若使AB最小则直线的方程是 .18.向量=(1,2,﹣2),=(﹣3,x ,y ),且∥,则x ﹣y= .三、解答题19.已知,且.(1)求sin α,cos α的值;(2)若,求sin β的值.20.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x (个) 2 3 4 5 加工的时间y (小时)2.5344.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程=x+,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:回归直线=bx+a,其中b==,a=﹣b.21.某公司春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金30元,三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金.(1)员工甲抽奖一次所得奖金的分布列与期望;(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?22.已知集合A={x|a﹣1<x<2a+1},B={x|0<x<1}(1)若a=,求A ∩B .(2)若A ∩B=∅,求实数a 的取值范围.23.如图,在四边形ABCD 中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积.24.【无锡市2018届高三上期中基础性检测】在一块杂草地上有一条小路AB,现在小路的一边围出一个三角形(如图)区域,在三角形ABC 内种植花卉.已知AB 长为1千米,设角,C θ=AC 边长为BC 边长的()1a a >倍,三角形ABC 的面积为S (千米2). 试用θ和a 表示S ;(2)若恰好当60θ=时,S 取得最大值,求a 的值.资源县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:当a=0时,f(x)=﹣2x+2,符合题意当a≠0时,要使函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数∴⇒0<a≤综上所述0≤a≤故选B【点评】本题主要考查了已知函数再某区间上的单调性求参数a的范围的问题,以及分类讨论的数学思想,属于基础题.2.【答案】C【解析】【分析】将圆C方程化为标准方程,找出圆心C坐标与半径r,利用点到直线的距离公式表示出圆心到直线的距离d,与r比较大小即可得到结果.【解答】解:圆C方程化为标准方程得:(x﹣1)2+y2=2,∴圆心C(1,0),半径r=,∵≥>1,∴圆心到直线l的距离d=<=r,且圆心(1,0)不在直线l上,∴直线l与圆相交且一定不过圆心.故选C3.【答案】C【解析】解:第一次循环第二次循环得到的结果第三次循环得到的结果第四次循环得到的结果…所以S是以4为周期的,而由框图知当k=2011时输出S∵2011=502×4+3所以输出的S是故选C4. 【答案】A【解析】解:∵函数f (x )=,∴f ()==﹣2,=f (﹣2)=3﹣2=.故选:A .5. 【答案】D【解析】【知识点】线性规划【试题解析】设购买一、二等奖奖品份数分别为x ,y ,则根据题意有:,作可行域为:A(2,6),B(4,12),C(2,16).在可行域内的整数点有:(2,6),(2,7),…….(2,16),(3,9),(3,10),……..(3,14),(4,12),共11+6+1=18个。

资源县二中2018-2019学年高二上学期第二次月考试卷数学

资源县二中2018-2019学年高二上学期第二次月考试卷数学

资源县二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M 的变化而变化2. 是首项,公差的等差数列,如果,则序号等于( )A .667B .668C .669D .6703. 下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.3y x = C.ln y x = D.y x = 4. 若函数f (x )=ka x ﹣a ﹣x ,(a >0,a ≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则g (x )=log a (x+k )的是( )A .B .C .D .5. 定义新运算⊕:当a ≥b 时,a ⊕b=a ;当a <b 时,a ⊕b=b 2,则函数f (x )=(1⊕x )x ﹣(2⊕x ),x ∈[﹣2,2]的最大值等于( ) A .﹣1 B .1C .6D .126. 设双曲线焦点在y 轴上,两条渐近线为,则该双曲线离心率e=( )A .5B .C .D .7. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A. B. C. D.8.已知集合P={x|x≥0},Q={x|≥0},则P∩Q=()A.(﹣∞,2)B.(﹣∞,﹣1)C.[0,+∞)D.(2,+∞)9.下列命题中正确的是()A.若命题p为真命题,命题q为假命题,则命题“p∧q”为真命题B.命题“若xy=0,则x=0”的否命题为:“若xy=0,则x≠0”C.“”是“”的充分不必要条件D.命题“∀x∈R,2x>0”的否定是“”10.如图,空间四边形ABCD中,M、G分别是BC、CD的中点,则等()A.B.C.D.11.设x∈R,则“|x﹣2|<1”是“x2+x﹣2>0”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件12.复数i﹣1(i是虚数单位)的虚部是()A.1 B.﹣1 C.i D.﹣i二、填空题13.已知函数f(x)=x m过点(2,),则m=.14.已知函数f(x)=,g(x)=lnx,则函数y=f(x)﹣g(x)的零点个数为.15.设函数f(x)=的最大值为M,最小值为m,则M+m=.16.已知函数5()sin(0)2f x x a xπ=-≤≤的三个零点成等比数列,则2log a=.17.过点(0,1)的直线与x2+y2=4相交于A、B两点,则|AB|的最小值为.18.如果定义在R上的函数f(x),对任意x1≠x2都有x1f(x1)+x2f(x2)>x1f(x2)+x2(fx1),则称函数为“H函数”,给出下列函数①f(x)=3x+1 ②f(x)=()x+1③f(x)=x2+1 ④f(x)=其中是“H函数”的有(填序号)三、解答题19.已知f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线与直线6x+2y+5=0平行.(1)求函数的单调区间;(2)若x∈[1,3]时,f(x)>1﹣4c2恒成立,求实数c的取值范围.20.本小题满分12分某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.Ⅰ若商店一天购进该商品10件,求当天的利润y单位:元关于当天需求量n单位:件,n∈N的函数解析式;,整理得下表:,求这50天的日利润单位:元的平均数;②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[400,550]内的概率.21.甲、乙两位选手为为备战我市即将举办的“推广妈祖文化•印象莆田”知识竞赛活动,进行针对性训练,近8次的训练成绩如下(单位:分):甲8381937978848894乙8789897774788898(Ⅰ)依据上述数据,从平均水平和发挥的稳定程度考虑,你认为应派哪位选手参加?并说明理由;(Ⅱ)本次竞赛设置A、B两问题,规定:问题A的得分不低于80分时答题成功,否则答题失败,答题成功可获得价值100元的奖品,问题B的得分不低于90分时答题成功,否则答题失败,答题成功可获得价值300元的奖品.答题顺序可自由选择,但答题失败则终止答题.选手答题问题A,B成功与否互不影响,且以训练成绩作为样本,将样本频率视为概率,请问在(I)中被选中的选手应选择何种答题顺序,使获得的奖品价值更高?并说明理由.22.已知集合A={x|a﹣1<x<2a+1},B={x|0<x<1}(1)若a=,求A∩B.(2)若A∩B=∅,求实数a的取值范围.23.已知椭圆G:=1(a>b>0)的离心率为,右焦点为(2,0),斜率为1的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(﹣3,2).(Ⅰ)求椭圆G的方程;(Ⅱ)求△PAB的面积.24.设M是焦距为2的椭圆E:+=1(a>b>0)上一点,A、B是椭圆E的左、右顶点,直线MA与MB的斜率分别为k1,k2,且k1k2=﹣.(1)求椭圆E的方程;(2)已知椭圆E:+=1(a>b>0)上点N(x0,y0)处切线方程为+=1,若P是直线x=2上任意一点,从P向椭圆E作切线,切点分别为C、D,求证直线CD恒过定点,并求出该定点坐标.资源县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B 【解析】考点:棱柱、棱锥、棱台的体积. 2. 【答案】C【解析】 由已知,由得,故选C答案:C3. 【答案】B【解析】试题分析:对于A ,x y e =为增函数,y x =-为减函数,故x y e -=为减函数,对于B ,2'30y x =>,故3y x=为增函数,对于C ,函数定义域为0x >,不为R ,对于D ,函数y x =为偶函数,在(),0-∞上单调递减,在()0,∞上单调递增,故选B.考点:1、函数的定义域;2、函数的单调性.4. 【答案】C【解析】解:∵函数f (x )=ka x ﹣a ﹣x,(a >0,a ≠1)在(﹣∞,+∞)上是奇函数 则f (﹣x )+f (x )=0即(k ﹣1)(a x ﹣a ﹣x)=0则k=1又∵函数f (x )=ka x﹣a ﹣x,(a >0,a ≠1)在(﹣∞,+∞)上是增函数则a >1则g(x)=log a(x+k)=log a(x+1)函数图象必过原点,且为增函数故选C【点评】若函数在其定义域为为奇函数,则f(﹣x)+f(x)=0,若函数在其定义域为为偶函数,则f(﹣x)﹣f(x)=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数﹣减函数=增函数也是解决本题的关键.5.【答案】C【解析】解:由题意知当﹣2≤x≤1时,f(x)=x﹣2,当1<x≤2时,f(x)=x3﹣2,又∵f(x)=x﹣2,f(x)=x3﹣2在定义域上都为增函数,∴f(x)的最大值为f(2)=23﹣2=6.故选C.6.【答案】C【解析】解:∵双曲线焦点在y轴上,故两条渐近线为y=±x,又已知渐近线为,∴=,b=2a,故双曲线离心率e====,故选C.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断渐近线的斜率=,是解题的关键.7.【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m可以取:0,1,2.故答案为:C8.【答案】D【解析】解:由Q中的不等式变形得:(x+1)(x﹣2)≥0,且x﹣2≠0,解得:x≤﹣1或x>2,即Q=(﹣∞,﹣1]∪(2,+∞),∵P=[0,+∞),∴P∩Q=(2,+∞),故选:D.9.【答案】D【解析】解:若命题p为真命题,命题q为假命题,则命题“p∧q”为假命题,故A不正确;命题“若xy=0,则x=0”的否命题为:“若xy≠0,则x≠0”,故B不正确;“”⇒“+2kπ,或,k∈Z”,“”⇒“”,故“”是“”的必要不充分条件,故C不正确;命题“∀x∈R,2x>0”的否定是“”,故D正确.故选D.【点评】本题考查命题的真假判断,是基础题,解题时要认真审题,仔细解答.10.【答案】C【解析】解:∵M、G分别是BC、CD的中点,∴=,=∴=++=+=故选C【点评】本题考查的知识点是向量在几何中的应用,其中将化为++,是解答本题的关键.11.【答案】A【解析】解:由“|x﹣2|<1”得1<x<3,由x2+x﹣2>0得x>1或x<﹣2,即“|x﹣2|<1”是“x2+x﹣2>0”的充分不必要条件,故选:A.12.【答案】A【解析】解:由复数虚部的定义知,i﹣1的虚部是1,故选A.【点评】该题考查复数的基本概念,属基础题.二、填空题13.【答案】﹣1.【解析】解:将(2,)代入函数f(x)得:=2m,解得:m=﹣1;故答案为:﹣1.【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题.14.【答案】3【解析】解:令g(x)=f(x)﹣log4x=0得f(x)=log4x∴函数g(x)=f(x)﹣log4x的零点个数即为函数f(x)与函数y=log4x的图象的交点个数,在同一坐标系中画出函数f(x)与函数y=log4x的图象,如图所示,有图象知函数y=f(x)﹣log4 x上有3个零点.故答案为:3个.【点评】此题是中档题.考查函数零点与函数图象交点之间的关系,体现了转化的思想和数形结合的思想,体现学生灵活应用图象解决问题的能力.15.【答案】2.【解析】解:函数可化为f(x)==,令,则为奇函数,∴的最大值与最小值的和为0.∴函数f(x)=的最大值与最小值的和为1+1+0=2.即M+m=2.故答案为:2.16.【答案】12考点:三角函数的图象与性质,等比数列的性质,对数运算.【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题.17.【答案】2【解析】解:∵x2+y2=4的圆心O(0,0),半径r=2,∴点(0,1)到圆心O(0,0)的距离d=1,∴点(0,1)在圆内.如图,|AB|最小时,弦心距最大为1,∴|AB|min=2=2.故答案为:2.18.【答案】①④【解析】解:∵对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)≥x1f(x2)+x2f(x1)恒成立,∴不等式等价为(x1﹣x2)[f(x1)﹣f(x2)]≥0恒成立,即函数f(x)是定义在R上的不减函数(即无递减区间);①f(x)在R递增,符合题意;②f(x)在R递减,不合题意;③f(x)在(﹣∞,0)递减,在(0,+∞)递增,不合题意;④f(x)在R递增,符合题意;故答案为:①④.三、解答题19.【答案】【解析】解:(1)由题意:f′(x)=3x2+6ax+3b 直线6x+2y+5=0的斜率为﹣3;由已知所以﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)所以由f′(x)=3x2﹣6x>0得心x<0或x>2;所以当x∈(0,2)时,函数单调递减;当x∈(﹣∞,0),(2,+∞)时,函数单调递增.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)由(1)知,函数在x∈(1,2)时单调递减,在x∈(2,3)时单调递增;所以函数在区间[1,3]有最小值f(2)=c﹣4要使x∈[1,3],f(x)>1﹣4c2恒成立只需1﹣4c2<c﹣4恒成立,所以c<或c>1.故c的取值范围是{c|c或c>1}﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题主要考查函数在某点取得极值的条件和导数的几何意义,以及利用导数解决函数在闭区间上的最值问题和函数恒成立问题,综合性较强,属于中档题.20.【答案】【解析】:Ⅰ当日需求量10n ≥时,利润为5010(10)3030200y n n =⨯+-⨯=+;当需求量10n <时,利润50(10)1060100y n n n =⨯--⨯=-.所以利润y 与日需求量n 的函数关系式为:30200,10,60100,10,n n n N y n n n N +≥∈⎧=⎨-<∈⎩Ⅱ50天内有9天获得的利润380元,有11天获得的利润为440元,有15天获得利润为500元,有10天获得的利润为530元,有5天获得的利润为560元.①38094401150015530105605477.250⨯+⨯+⨯+⨯+⨯= ② 若利润在区间[400,550]内的概率为111510185025P ++== 21.【答案】【解析】解:(I )记甲、乙两位选手近8次的训练的平均成绩分别为、,方差分别为、.,.…,.…因为,,所以甲、乙两位选手的平均水平相当,但甲的发挥更稳定,故应派甲参加.…(II )记事件C 表示为“甲回答问题A 成功”,事件D 表示为“甲回答问题B 成功”,则P (C )=,P (D )=,且事件C 与事件D 相互独立. …记甲按AB 顺序获得奖品价值为ξ,则ξ的可能取值为0,100,400.P (ξ=0)=P ()=,P (ξ=100)=P ()=,P (ξ=400)=P (CD )=.所以甲按AB 顺序获得奖品价值的数学期望.…记甲按BA顺序获得奖品价值为η,则η的可能取值为0,300,400.P(η=0)=P()=,P(η=300)=P()=,P(η=400)=P(DC)=,ηη0 300 400P所以甲按BA顺序获得奖品价值的数学期望.…因为Eξ>Eη,所以甲应选择AB的答题顺序,获得的奖品价值更高.…【点评】本小题主要考查平均数、方差、古典概型、相互独立事件的概率、离散型随机变量分布列、数学期望等基础知识,考查数据处理能力、运算求解能力、应用意识,考查必然与或然思想、分类与整合思想.22.【答案】【解析】解:(1)当a=时,A={x|},B={x|0<x<1}∴A∩B={x|0<x<1}(2)若A∩B=∅当A=∅时,有a﹣1≥2a+1∴a≤﹣2当A≠∅时,有∴﹣2<a≤或a≥2综上可得,或a≥2【点评】本题主要考查了集合交集的求解,解题时要注意由A∩B=∅时,要考虑集合A=∅的情况,体现了分类讨论思想的应用.23.【答案】【解析】解:(Ⅰ)由已知得,c=,,解得a=,又b2=a2﹣c2=4,所以椭圆G的方程为.(Ⅱ)设直线l的方程为y=x+m,由得4x2+6mx+3m2﹣12=0.①设A,B的坐标分别为(x1,y1),(x2,y2)(x1<x2),AB的中点为E(x0,y0),则x0==﹣,y0=x0+m=,因为AB是等腰△PAB的底边,所以PE⊥AB,所以PE的斜率k=,解得m=2.此时方程①为4x2+12x=0.解得x1=﹣3,x2=0,所以y1=﹣1,y2=2,所以|AB|=3,此时,点P(﹣3,2).到直线AB:y=x+2距离d=,所以△PAB的面积s=|AB|d=.24.【答案】【解析】(1)解:设A(﹣a,0),B(a,0),M(m,n),则+=1,即n2=b2•,由k1k2=﹣,即•=﹣,即有=﹣,即为a2=2b2,又c2=a2﹣b2=1,解得a2=2,b2=1.即有椭圆E的方程为+y2=1;(2)证明:设点P(2,t),切点C(x1,y1),D(x2,y2),则两切线方程PC ,PD 分别为: +y 1y=1, +y 2y=1,由于P 点在切线PC ,PD 上,故P (2,t )满足+y 1y=1, +y 2y=1, 得:x 1+y 1t=1,x 2+y 2t=1,故C (x 1,y 1),D (x 2,y 2)均满足方程x+ty=1,即x+ty=1为CD 的直线方程.令y=0,则x=1,故CD 过定点(1,0).【点评】本题主要考查椭圆的简单性质、直线与椭圆的位置关系,导数的几何意义等基本知识,考查运算能力和综合解题能力.解题时要注意运算能力的培养.。

全州县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

全州县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

全州县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 如图,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )A .B .C .D .2. 某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为()A .4320B .2400C .2160D .13203. 某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是( )A .B .8C .D .4. 不等式﹣x 2﹣2x+3≤0的解集为( )A .{x|x ≥3或x ≤﹣1}B .{x|﹣1≤x ≤3}C .{x|﹣3≤x ≤1}D .{x|x ≤﹣3或x ≥1}5. 设函数()()()21ln 31f x g x ax x ==-+,,若对任意1[0)x ∈+∞,,都存在2x ∈R ,使得()()12f x f x =,则实数的最大值为()A .94B .C.92D .46. 若圆上有且仅有三个点到直线是实数)的距离为,226260x y x y +--+=10(ax y a -+=则()a =A .B .C .D .1±7. 在空间中,下列命题正确的是( )A .如果直线m ∥平面α,直线n ⊂α内,那么m ∥nB .如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC .如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m ⊥αD .如果平面α⊥平面β,任取直线m ⊂α,那么必有m ⊥β8. (文科)要得到的图象,只需将函数的图象( )()2log 2g x x =()2log f x x =A .向左平移1个单位 B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位9. 袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为()A .B .C .D .10.若命题p :∃x 0∈R ,sinx 0=1;命题q :∀x ∈R ,x 2+1<0,则下列结论正确的是( )A .¬p 为假命题B .¬q 为假命题C .p ∨q 为假命题D .p ∧q 真命题11.已知PD ⊥矩形ABCD 所在的平面,图中相互垂直的平面有( )A .2对B .3对C .4对D .5对12.过点,的直线的斜率为,则( )),2(a M -)4,(a N 21-=||MN A .B .C .D .101803656二、填空题13.向量=(1,2,﹣2),=(﹣3,x ,y ),且∥,则x ﹣y= .14.定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (2)=0,则不等式f (log 8x )>0的解集是 . 15.设函数f (x )=若f[f (a )],则a 的取值范围是 .16.如图是正方体的平面展开图,则在这个正方体中①与平行;②与是异面直线;BM ED CN BE ③与成角;④与是异面直线.CN BM 60︒DM BN 以上四个命题中,正确命题的序号是(写出所有你认为正确的命题).17.在等差数列{}n a 中,17a =,公差为d ,前项和为n S ,当且仅当8n =时n S 取得最大值,则d 的取值范围为__________.18.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是 米.(太阳光线可看作为平行光线) 三、解答题19.(1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件(2)求z=2x+y 的最大值,使式中的x 、y 满足约束条件+=1.20.设函数f (x )=e mx +x 2﹣mx .(1)证明:f (x )在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈,都有|f (x 1)﹣f (x 2)|≤e ﹣1,求m 的取值范围. 21.(本小题满分12分)已知向量满足:,,.,a b ||1a = ||6b = ()2a b a ∙-=(1)求向量与的夹角;(2)求.|2|a b -22.已知圆C 经过点A (﹣2,0),B (0,2),且圆心在直线y=x 上,且,又直线l :y=kx+1与圆C 相交于P 、Q 两点.(Ⅰ)求圆C 的方程;(Ⅱ)若,求实数k 的值;(Ⅲ)过点(0,1)作直线l 1与l 垂直,且直线l 1与圆C 交于M 、N 两点,求四边形PMQN 面积的最大值.23.【徐州市2018届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点、、、在圆周上,、在边上,且,设.(1)记游泳池及其附属设施的占地面积为,求的表达式;(2)怎样设计才能符合园林局的要求?24.(14分)已知函数,其中m ,a 均为实数.1()ln ,()e x x f x mx a x m g x -=--=(1)求的极值; 3分()g x (2)设,若对任意的,恒成立,求的最小值; 1,0m a =<12,[3,4]x x ∈12()x x ≠212111()()()()f x f xg x g x -<-a 5分(3)设,若对任意给定的,在区间上总存在,使得 成立,2a =0(0,e]x ∈(0,e]1212,()t t t t ≠120()()()f t f t g x ==求的取值范围. 6分m全州县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】古典概型及其概率计算公式.【专题】计算题;概率与统计.【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.【解答】解:从9个数中任取3个数共有C93=84种取法,三个数分别位于三行或三列的情况有6种;∴所求的概率为=故选D.【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单.2.【答案】D【解析】解:依题意,6名同学可分两组:第一组(1,1,1,3),利用间接法,有•=388,第二组(1,1,2,2),利用间接法,有(﹣)•=932根据分类计数原理,可得388+932=1320种,故选D.【点评】本题考查排列、组合及简单计数问题,考查分类讨论思想与转化思想,考查理解与运算能力,属于中档题.3.【答案】C【解析】【分析】通过三视图分析出几何体的图形,利用三视图中的数据求出四个面的面积中的最大值.【解答】解:由题意可知,几何体的底面是边长为4的正三角形,棱锥的高为4,并且高为侧棱垂直底面三角形的一个顶点的三棱锥,两个垂直底面的侧面面积相等为:8,底面面积为: =4,另一个侧面的面积为: =4,四个面中面积的最大值为4;故选C .4. 【答案】D【解析】解:不等式﹣x 2﹣2x+3≤0,变形为:x 2+2x ﹣3≥0,因式分解得:(x ﹣1)(x+3)≥0,可化为:或,解得:x ≤﹣3或x ≥1,则原不等式的解集为{x|x ≤﹣3或x ≥1}.故选D . 5. 【答案】]【解析】试题分析:设()()2ln 31g x ax x =-+的值域为A ,因为函数()1f x =-在[0)+∞,上的值域为(0]-∞,,所以(0]A -∞⊆,,因此()231h x ax x =-+至少要取遍(01],中的每一个数,又()01h =,于是,实数需要满足0a ≤或0940a a >⎧⎨∆=-≥⎩,解得94a ≤.考点:函数的性质.【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。

矿区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(1)

矿区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(1)

矿区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 为得到函数的图象,只需将函数y=sin2x 的图象()A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位2. 函数是指数函数,则的值是( )2(44)xy a a a =-+A .4B .1或3C .3D .13. 如右图,在长方体中,=11,=7,=12,一质点从顶点A 射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是( )ABCD4.设函数的集合,平面上点的集合,则在同一直角坐标系中,P中函数的图象恰好经过Q中两个点的函数的个数是A4B6C8D105.如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为()A.54B.162C.54+18D.162+186.487被7除的余数为a(0≤a<7),则展开式中x﹣3的系数为()A.4320B.﹣4320C.20D.﹣207.已知函数f(x)=a x+b(a>0且a≠1)的定义域和值域都是[﹣1,0],则a+b=()A.﹣B.﹣C.﹣D.﹣或﹣8.函数f(x)=lnx﹣的零点所在的大致区间是()A.(1,2)B.(2,3)C.(1,)D.(e,+∞)9.下列说法正确的是()A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.10.在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.若sinC+sin(B﹣A)=sin2A,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形11.已知函数f (x )=m (x ﹣)﹣2lnx (m ∈R ),g (x )=﹣,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的范围是( )A .(﹣∞,]B .(﹣∞,)C .(﹣∞,0]D .(﹣∞,0)12.如图F 1、F 2是椭圆C 1:+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是()A .B .C .D .二、填空题13.已知直线l 的参数方程是(t 为参数),曲线C 的极坐标方程是ρ=8cos θ+6sin θ,则曲线C 上到直线l 的距离为4的点个数有 个. 14.自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到C 22(3)(4)4x y -++=(,)P x y Q P 原点的长,则的最小值为( )O PQ A .B .3C .4D .13102110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.15.在正方体ABCD ﹣A 1B 1C 1D 1中,异面直线A 1B 与AC 所成的角是 °.16.已知函数为定义在区间[﹣2a ,3a ﹣1]上的奇函数,则a+b= .17.在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为 .18.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.①若AC=BD ,则四边形EFGH 是 ;②若AC ⊥BD ,则四边形EFGH 是 . 三、解答题19.已知椭圆x 2+4y 2=4,直线l :y=x+m (1)若l 与椭圆有一个公共点,求m 的值;(2)若l 与椭圆相交于P 、Q 两点,且|PQ|等于椭圆的短轴长,求m 的值. 20.【常州市2018届高三上武进区高中数学期中】已知函数,.()()221ln f x ax a x x =+--R a ∈⑴若曲线在点处的切线经过点,求实数的值;()y f x =()()1,1f ()2,11a ⑵若函数在区间上单调,求实数的取值范围;()f x ()2,3a ⑶设,若对,,使得成立,求整数的最小值.()1sin 8g x x =()10,x ∀∈+∞[]20,πx ∃∈()()122f x g x +≥a21.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D (2,0).(1)求该椭圆的标准方程;(2)设点,若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程.22.已知A (﹣3,0),B (3,0),C (x 0,y 0)是圆M 上的三个不同的点.(1)若x 0=﹣4,y 0=1,求圆M 的方程;(2)若点C 是以AB 为直径的圆M 上的任意一点,直线x=3交直线AC 于点R ,线段BR 的中点为D .判断直线CD 与圆M 的位置关系,并证明你的结论.23.(本小题满分10分)选修:几何证明选讲41- 如图所示,已知与⊙相切,为切点,过点的割线交圆于两点,弦,相PA O A P C B ,AP CD //BC AD , 交于点,为上一点,且.E F CE EC EF DE ⋅=2(Ⅰ)求证:;P EDF ∠=∠(Ⅱ)若,求的长.2,3,2:3:===EF DE BE CE PA24.如图,在四棱锥P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD ,(Ⅰ)求证:平面PED⊥平面PAC;(Ⅱ)若直线PE与平面PAC所成的角的正弦值为,求二面角A﹣PC﹣D的平面角的余弦值.矿区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选A.【点评】本题主要考查诱导公式和三角函数的平移.属基础题.2.【答案】C【解析】考点:指数函数的概念.3.【答案】C【解析】根据题意有:A的坐标为:(0,0,0),B的坐标为(11,0,0),C的坐标为(11,7,0),D的坐标为(0,7,0);A1的坐标为:(0,0,12),B1的坐标为(11,0,12),C1的坐标为(11,7,12),D1的坐标为(0,7,12);E的坐标为(4,3,12)(1)l1长度计算所以:l1=|AE|==13。

广西壮族自治区桂林市资源县资源中学高二数学文联考试题含解析

广西壮族自治区桂林市资源县资源中学高二数学文联考试题含解析

广西壮族自治区桂林市资源县资源中学高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知椭圆,焦点在轴上,若焦距为4,则等于( )(A) 4 (B) 5 (C) 7(D) 8参考答案:D依题意,,则,且即,则,解得,故选D.2. 直线与椭圆相交于A,B两点,点P在椭圆上,使得ΔPAB面积等于3,这样的点P共有()A..1个 B.2个 C.3个D.4个参考答案:B略3. 设a>b>0,则下列不等式中一定成立的是()A.a﹣b<0 B.0<<1 C.D.ab>a+b参考答案:C【考点】基本不等式;不等式比较大小.【分析】由不等式的性质易判A、B、D错误,由基本不等式可得C正确.【解答】解:∵a>b>0,∴a﹣b>0,故A错误;由a>b>0可得>1,故B错误;当a=,b=时,有ab<a+b,故D错误;由基本不等式可得≤,由a>b>0可知取不到等号,故C正确.故选:C4. 数列的通项公式,则数列的前10项和为()A.B.C. D.参考答案:B因为,所以数列的前项和,所以,选 B.5. 已知随机变量ξ服从正态分布N(0,σ2),若P(ξ>2)=0.023,则P(﹣2≤ξ≤2)=()A.0.477 B.0.625 C.0.954 D.0.977参考答案:C【考点】CP:正态分布曲线的特点及曲线所表示的意义.【分析】画出正态分布N(0,1)的密度函数的图象,由图象的对称性可得结果.【解答】解:由随机变量ξ服从正态分布N(0,σ2)可知正态密度曲线关于y轴对称,而P(ξ>2)=0.023,则P(ξ<﹣2)=0.023,故P(﹣2≤ξ≤2)=1﹣P(ξ>2)﹣p(ξ<﹣2)=0.954,故选:C.6. 设f(x)与g(x)是定义在同一区间[m,n]上的两个函数,若函数y=f(x)+g(x)在x∈[m,n]上有两个不同的零点,则称f(x)和g(x)在[m,n]上是“相互函数”;若f(x)=﹣4lnx﹣5x与g (x)=x2+3x+a在区间[1,e]上是相互函数,则a的取值范围为()A.[1,4ln2)B.[﹣e2+2e+4,4ln2)C.(4ln2,+∞)D.[1,﹣e2+2e+4]参考答案:B略7. 博鳌亚洲论坛2018年年会于4月8日至11日在海南博鳌举行,为了搞好对外宣传工作,会务组选聘了50名记者担任对外翻译工作,在下面“性别与会俄语”的2×2列联表中,__________.44【分析】根据总人数为50结合表格中的数据可求出的值.【详解】由于总人数为50,可得出,解得,故答案为:44.【点睛】本题考查列联表的相关计算,解题时要充分利用题中信息与数据,考查计算能力,属于基础题. 8. (文)直线a与平面α所成的角为30o,直线b在平面α内,若直线a与b所成的角为,则 ( )A、0o<≤30oB、0o<≤90oC、30o≤≤90oD、30o≤≤180o参考答案:C略9. 若复数(为虚数单位),则的值为()A. B.C.D.参考答案:B10. 把正方形ABCD沿对角线BD折,使平面ABD⊥平面CBD后,下列命题正确的是A. AB⊥BCB. AC⊥BDC. CD⊥平面ABCD. 平面ABC⊥平面ACD参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 执行下边的程序框图,若,则输出的_________。

乌鲁木齐县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

乌鲁木齐县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

乌鲁木齐县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在等比数列{a n }中,已知a 1=3,公比q=2,则a 2和a 8的等比中项为( ) A .48B .±48C .96D .±962. 设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )A .(﹣∞,﹣1]B .[﹣1,+∞)C .(﹣1,+∞)D .(﹣∞,﹣1)3. 若函数y=f (x )是y=3x 的反函数,则f (3)的值是( ) A .0B .1C .D .34. 椭圆=1的离心率为( ) A . B .C .D .5. 已知双曲线(a >0,b >0)的右焦点F ,直线x=与其渐近线交于A ,B 两点,且△ABF 为钝角三角形,则双曲线离心率的取值范围是( )A .B .C .D .6. 若函数()y f x =的定义域是[]1,2016,则函数()()1g x f x =+的定义域是( )A .(]0,2016 B .[]0,2015 C .(]1,2016 D .[]1,20177. 若函数f (x )的定义域为R ,则“函数f (x )是奇函数”是“f (0)=0”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 8. 设a >0,b >0,若是5a 与5b的等比中项,则+的最小值为( )A .8B .4C .1D .9. 设f (x )在定义域内可导,y=f (x )的图象如图所示,则导函数y=f ′(x )的图象可能是( )A .B .C .D .10.等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( )A .B 2=ACB .A+C=2BC .B (B ﹣A )=A (C ﹣A )D .B (B ﹣A )=C (C ﹣A )11.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0e ktP P -=(0P,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1% 的污染物,则需要( )小时. A.8B.10C. 15D. 18【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.12.函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01()sin ,12x x x f x x x ì-#ï=íp <?ïî,则1741()()46f f +=( ) A .716 B .916 C .1116 D .1316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.二、填空题13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 不是直角三角形,则下列命题正确的是 (写出所有正确命题的编号)①tanA •tanB •tanC=tanA+tanB+tanC②tanA+tanB+tanC 的最小值为3③tanA ,tanB ,tanC 中存在两个数互为倒数 ④若tanA :tanB :tanC=1:2:3,则A=45°⑤当tanB ﹣1=时,则sin 2C ≥sinA •sinB .14.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.①若AC=BD ,则四边形EFGH 是 ; ②若AC ⊥BD ,则四边形EFGH 是 .15.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。

资源县高级中学2018-2019学年高二上学期第一次月考试卷数学

资源县高级中学2018-2019学年高二上学期第一次月考试卷数学

资源县高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 若函数21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩则函数1()32y f x x =-+的零点个数为( )A .1B .2C .3D .4 2. 已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos 2A+cos2A=0,a=7,c=6,则b=( ) A .10B .9C .8D .53. 已知f (x ),g (x )都是R 上的奇函数,f (x )>0的解集为(a 2,b ),g (x )>0的解集为(,),且a 2<,则f (x )g (x )>0的解集为( )A .(﹣,﹣a 2)∪(a 2,)B .(﹣,a 2)∪(﹣a 2,)C .(﹣,﹣a 2)∪(a 2,b )D .(﹣b ,﹣a 2)∪(a 2,)4. 椭圆22:143x y C +=的左右顶点分别为12,A A ,点P 是C 上异于12,A A 的任意一点,且直线1PA 斜率的取值范围是[]1,2,那么直线2PA 斜率的取值范围是( )A .31,42⎡⎤--⎢⎥⎣⎦ B .33,48⎡⎤--⎢⎥⎣⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.5. 两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .akmB .akmC .2akmD .akm6. 函数f (x )=1﹣xlnx 的零点所在区间是( )A .(0,)B .(,1)C .(1,2)D .(2,3)7. 若直线y=kx ﹣k 交抛物线y 2=4x 于A ,B 两点,且线段AB 中点到y 轴的距离为3,则|AB|=( ) A .12 B .10C .8D .68. 把函数y=cos (2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f (x )的图象关于直线x=对称,则φ的值为( )A .﹣B .﹣C .D .9. 过点(2,﹣2)且与双曲线﹣y 2=1有公共渐近线的双曲线方程是( )A .﹣=1B .﹣=1 C .﹣=1 D .﹣=110.若复数z=2﹣i ( i 为虚数单位),则=( )A .4+2iB .20+10iC .4﹣2iD .11.实数a=0.2,b=log0.2,c=的大小关系正确的是( )A .a <c <bB .a <b <cC .b <a <cD .b <c <a12.下列命题中的说法正确的是( ) A .命题“若x 2=1,则x=1”的否命题为“若x 2=1,则x ≠1”B .“x=﹣1”是“x 2+5x ﹣6=0”的必要不充分条件C .命题“∃x ∈R ,使得x 2+x+1<0”的否定是:“∀x ∈R ,均有x 2+x+1>0”D .命题“在△ABC 中,若A >B ,则sinA >sinB ”的逆否命题为真命题二、填空题13.如图,在棱长为的正方体1111D ABC A B C D -中,点,E F 分别是棱1,BC CC 的中点,P 是侧面11BCC B 内一点,若1AP 平行于平面AEF ,则线段1A P 长度的取值范围是_________.14.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.15.设f (x )是(x 2+)6展开式的中间项,若f (x )≤mx 在区间[,]上恒成立,则实数m 的取值范围是 .16.在(x 2﹣)9的二项展开式中,常数项的值为 .17.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为__________ 18.已知关于的不等式在上恒成立,则实数的取值范围是__________三、解答题19.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的一段图象如图所示.(1)求f(x)的解析式;(2)求f(x)的单调减区间,并指出f(x)的最大值及取到最大值时x的集合;(3)把f(x)的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数.20.(文科)(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),0,0.5,0.5,1,,4,4.5分成9组,制成了如图所示的频率分布直方图.将数据按照[)[)[)(1)求直方图中的值;(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.21.函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

资源县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.直线:(为参数)与圆:(为参数)的位置关系是()A.相离 B.相切 C.相交且过圆心 D.相交但不过圆心2.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a=3,,A=60°,则满足条件的三角形个数为()A.0 B.1 C.2 D.以上都不对3.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()A.4x+2y=5 B.4x﹣2y=5 C.x+2y=5 D.x﹣2y=54.把“二进制”数101101(2)化为“八进制”数是()A.40(8)B.45(8)C.50(8)D.55(8)5.若命题“p或q”为真,“非p”为真,则()A.p真q真B.p假q真C.p真q假D.p假q假6.已知变量,x y满足约束条件20170x yxx y-+≤⎧⎪≥⎨⎪+-≤⎩,则yx的取值范围是()A.9[,6]5B.9(,][6,)5-∞+∞C.(,3][6,)-∞+∞D.[3,6]7.极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,则|PQ|的最小值为()A.1 B.C.D.28.在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.若sinC+sin(B﹣A)=sin2A,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形9.若函数f(x)=log a(2x2+x)(a>0且a≠1)在区间(0,)内恒有f(x)>0,则f(x)的单调递增区间为()A.(﹣∞,)B.(﹣,+∞)C.(0,+∞)D.(﹣∞,﹣)10.设f (x )在定义域内可导,y=f (x )的图象如图所示,则导函数y=f ′(x )的图象可能是( )A .B .C .D .11.下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.3y x = C.ln y x = D.y x = 12.抛物线y=4x 2的焦点坐标是( )A .(0,1)B .(1,0)C .D .二、填空题13.图中的三个直角三角形是一个体积为20的几何体的三视图,则h =__________.14.(sinx+1)dx 的值为 .15.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为 . 16.在矩形ABCD 中,=(1,﹣3),,则实数k= .17.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sinAsinB+sinBsinC+cos2B=1.若C=,则= .18.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方 法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想.三、解答题19.如图,ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ∥DE ,DE=3AF ,BE 与平面ABCD 所成角为60°.(Ⅰ)求证:AC ⊥平面BDE ;(Ⅱ)求二面角F ﹣BE ﹣D 的余弦值;(Ⅲ)设点M 是线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.20.已知α、β、是三个平面,且c αβ= ,a βγ= ,b αγ= ,且a b O = .求证:、 、三线共点.1818 0792 4544 1716 5809 7983 8619 6206 7650 0310 5523 6405 0526 623821.△ABC中,角A,B,C所对的边之长依次为a,b,c,且cosA=,5(a2+b2﹣c2)=3ab.(Ⅰ)求cos2C和角B的值;(Ⅱ)若a﹣c=﹣1,求△ABC的面积.22.如图,菱形ABCD的边长为2,现将△ACD沿对角线AC折起至△ACP位置,并使平面PAC⊥平面ABC.(Ⅰ)求证:AC⊥PB;(Ⅱ)在菱形ABCD中,若∠ABC=60°,求直线AB与平面PBC所成角的正弦值;(Ⅲ)求四面体PABC体积的最大值.23.已知函数3()1xf xx=+,[]2,5x∈.(1)判断()f x的单调性并且证明;(2)求()f x在区间[]2,5上的最大值和最小值.24.已知向量=(,1),=(cos,),记f(x)=.(1)求函数f(x)的最小正周期和单调递增区间;(2)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,讨论函数y=g(x)﹣k在的零点个数.资源县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】【知识点】直线与圆的位置关系参数和普通方程互化【试题解析】将参数方程化普通方程为:直线:圆:圆心(2,1),半径2.圆心到直线的距离为:,所以直线与圆相交。

又圆心不在直线上,所以直线不过圆心。

故答案为:D2.【答案】B【解析】解:∵a=3,,A=60°,∴由正弦定理可得:sinB===1,∴B=90°,即满足条件的三角形个数为1个.故选:B.【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题.3.【答案】B【解析】解:线段AB的中点为,k AB==﹣,∴垂直平分线的斜率k==2,∴线段AB的垂直平分线的方程是y﹣=2(x﹣2)⇒4x﹣2y﹣5=0,故选B.【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法.4.【答案】D【解析】解:∵101101(2)=1×25+0+1×23+1×22+0+1×20=45(10).再利用“除8取余法”可得:45(10)=55(8).故答案选D.5. 【答案】B【解析】解:若命题“p 或q ”为真,则p 真或q 真,若“非p ”为真,则p 为假,∴p 假q 真, 故选:B .【点评】本题考查了复合命题的真假的判断,是一道基础题.6. 【答案】A 【解析】试题分析:作出可行域,如图ABC ∆内部(含边界),yx 表示点(,)x y 与原点连线的斜率,易得59(,)22A ,(1,6)B ,992552OAk ==,661OB k ==,所以965y x ≤≤.故选A .考点:简单的线性规划的非线性应用.7.【答案】A【解析】解:极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,可知两条曲线是同心圆,如图,|PQ|的最小值为:1.故选:A.【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查.8.【答案】D【解析】解:∵sinC+sin(B﹣A)=sin2A,∴sin(A+B)+sin(B﹣A)=sin2A,∴sinAcosB+cosAsinB+sinBcosA﹣cosBsinA=sin2A,∴2cosAsinB=sin2A=2sinAcosA,∴2cosA(sinA﹣sinB)=0,∴cosA=0,或sinA=sinB,∴A=,或a=b,∴△ABC为等腰三角形或直角三角形故选:D.【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA而导致漏解,属中档题和易错题.9.【答案】D【解析】解:当x∈(0,)时,2x2+x∈(0,1),∴0<a<1,∵函数f(x)=log a(2x2+x)(a>0,a≠1)由f(x)=log a t和t=2x2+x复合而成,0<a <1时,f (x )=log a t 在(0,+∞)上是减函数,所以只要求t=2x 2+x >0的单调递减区间.t=2x 2+x >0的单调递减区间为(﹣∞,﹣),∴f (x )的单调增区间为(﹣∞,﹣),故选:D .【点评】本题考查复合函数的单调区间问题,复合函数的单调区间复合“同增异减”原则,在解题中勿忘真数大于0条件.10.【答案】D【解析】解:根据函数与导数的关系:可知,当f ′(x )≥0时,函数f (x )单调递增;当f ′(x )<0时,函数f (x )单调递减结合函数y=f (x )的图象可知,当x <0时,函数f (x )单调递减,则f ′(x )<0,排除选项A ,C当x >0时,函数f (x )先单调递增,则f ′(x )≥0,排除选项B 故选D【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题11.【答案】B 【解析】试题分析:对于A ,x y e =为增函数,y x =-为减函数,故x y e -=为减函数,对于B ,2'30y x =>,故3y x=为增函数,对于C ,函数定义域为0x >,不为R ,对于D ,函数y x =为偶函数,在(),0-∞上单调递减,在()0,∞上单调递增,故选B. 考点:1、函数的定义域;2、函数的单调性.12.【答案】C【解析】解:抛物线y=4x 2的标准方程为 x 2=y ,p=,开口向上,焦点在y 轴的正半轴上,故焦点坐标为(0,),故选C .【点评】本题考查抛物线的标准方程,以及简单性质的应用;把抛物线y=4x 2的方程化为标准形式,是解题的关键.二、填空题13.【答案】 【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱VA⊥底面ABC,且ABC∆为直角三角形,且5,,6AB VA h AC===,所以三棱锥的体积为115652032V h h=⨯⨯⨯==,解得4h=.考点:几何体的三视图与体积.14.【答案】2.【解析】解:所求的值为(x﹣cosx)|﹣11=(1﹣cos1)﹣(﹣1﹣cos(﹣1))=2﹣cos1+cos1=2.故答案为:2.15.【答案】(0,1)【解析】考点:本题考查函数的单调性与导数的关系16.【答案】4.【解析】解:如图所示,在矩形ABCD中,=(1,﹣3),,∴=﹣=(k﹣1,﹣2+3)=(k﹣1,1),∴•=1×(k﹣1)+(﹣3)×1=0,解得k=4.故答案为:4.【点评】本题考查了利用平面向量的数量积表示向量垂直的应用问题,是基础题目.17.【答案】=.【解析】解:在△ABC中,角A,B,C的对边分别为a,b,c,∵已知sinAsinB+sinBsinC+cos2B=1,∴sinAsinB+sinBsinC=2sin2B.再由正弦定理可得ab+bc=2b2,即a+c=2b,故a,b,c成等差数列.C=,由a,b,c成等差数列可得c=2b﹣a,由余弦定理可得(2b﹣a)2=a2+b2﹣2abcosC=a2+b2+ab.化简可得5ab=3b2,∴=.故答案为:.【点评】本题主要考查等差数列的定义和性质,二倍角公式、余弦定理的应用,属于中档题.18.【答案】19【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为19.三、解答题19.【答案】【解析】【分析】(I)由已知中DE⊥平面ABCD,ABCD是边长为3的正方形,我们可得DE⊥AC,AC⊥BD,结合线面垂直的判定定理可得AC⊥平面BDE;(Ⅱ)以D为坐标原点,DA,DC,DE方向为x,y,z轴正方向,建立空间直角坐标系,分别求出平面BEF 和平面BDE的法向量,代入向量夹角公式,即可求出二面角F﹣BE﹣D的余弦值;(Ⅲ)由已知中M是线段BD上一个动点,设M(t,t,0).根据AM∥平面BEF,则直线AM的方向向量与平面BEF法向量垂直,数量积为0,构造关于t的方程,解方程,即可确定M点的位置.【解答】证明:(Ⅰ)因为DE⊥平面ABCD,所以DE⊥AC.因为ABCD是正方形,所以AC⊥BD,从而AC⊥平面BDE.…(4分)解:(Ⅱ)因为DA,DC,DE两两垂直,所以建立空间直角坐标系D﹣xyz如图所示.因为BE与平面ABCD所成角为600,即∠DBE=60°,所以.由AD=3,可知,.则A(3,0,0),,,B(3,3,0),C(0,3,0),所以,.设平面BEF的法向量为=(x,y,z),则,即.令,则=.因为AC⊥平面BDE,所以为平面BDE的法向量,.所以cos.因为二面角为锐角,所以二面角F﹣BE﹣D的余弦值为.…(8分)(Ⅲ)点M是线段BD上一个动点,设M(t,t,0).则.因为AM∥平面BEF,所以=0,即4(t﹣3)+2t=0,解得t=2.此时,点M坐标为(2,2,0),即当时,AM∥平面BEF.…(12分)20.【答案】证明见解析.【解析】考点:平面的基本性质与推论.21.【答案】【解析】解:(I)由∵cosA=,0<A<π,∴sinA==,∵5(a2+b2﹣c2)=3ab,∴cosC==,∵0<C<π,∴sinC==,∴cos2C=2cos2C﹣1=,∴cosB=﹣cos(A+C)=﹣cosAcosC+sinAsinC=﹣×+×=﹣∵0<B<π,∴B=.(II)∵=,∴a==c,∵a﹣c=﹣1,∴a=,c=1,∴S=acsinB=××1×=.【点评】本题主要考查了正弦定理和余弦定理的综合运用,两角和与差的正弦公式等知识.考查学生对基础知识的综合运用.22.【答案】【解析】解:(Ⅰ)证明:取AC中点O,连接PO,BO,由于四边形ABCD为菱形,∴PA=PC,BA=BC,∴PO⊥AC,BO⊥AC,又PO∩BO=O,∴AC⊥平面POB,又PB⊂平面POB,∴AC⊥PB.(Ⅱ)∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PO⊂平面PAC,PO⊥AC,∴PO⊥面ABC,∴OB,OC,OP两两垂直,故以O为原点,以方向分别为x,y,z轴正方向建立空间直角坐标系,∵∠ABC=60°,菱形ABCD 的边长为2,∴,,设平面PBC的法向量,直线AB与平面PBC成角为θ,∴,取x=1,则,于是,∴,∴直线AB与平面PBC成角的正弦值为.(Ⅲ)法一:设∠ABC=∠APC=α,α∈(0,π),∴,,又PO⊥平面ABC,∴=(),∴,∴,当且仅当,即时取等号,∴四面体PABC体积的最大值为.法二:设∠ABC=∠APC=α,α∈(0,π),∴,,又PO⊥平面ABC,∴=(),设,则,且0<t <1,∴,∴当时,V'PABC >0,当时,V'PABC <0,∴当时,V PABC取得最大值,∴四面体PABC体积的最大值为.法三:设PO=x ,则BO=x,,(0<x <2)又PO ⊥平面ABC ,∴,∵,当且仅当x 2=8﹣2x 2,即时取等号,∴四面体PABC体积的最大值为.【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,直线与平面所成角的求法,几何体的体积的最值的求法,考查转化思想以及空间思维能力的培养.23.【答案】(1)增函数,证明见解析;(2)最小值为,最大值为2.5. 【解析】试题分析:(1)在[]2,5上任取两个数12x x <,则有1212123()()()0(1)(1)x x f x f x x x --=<++,所以()f x 在[]2,5上是增函数;(2)由(1)知,最小值为(2)2f =,最大值为5(5)2f =.试题解析:在[]2,5上任取两个数12x x <,则有12121233()()11x x f x f x x x -=-++12123()(1)(1)x x x x -=++0<,所以()f x 在[]2,5上是增函数. 所以当2x =时,min ()(2)2f x f ==, 当5x =时,max 5()(5)2f x f ==. 考点:函数的单调性证明.【方法点晴】本题主要考查利用定义法求证函数的单调性并求出单调区间,考查化归与转化的数学思想方法.先在定义域内任取两个数12x x <,然后作差12()()f x f x -,利用十字相乘法、提公因式法等方法化简式子成几个因式的乘积,判断最后的结果是大于零韩式小于零,如果小于零,则函数为增函数,如果大于零,则函数为减函数.1 24.【答案】【解析】解:(1)∵向量=(,1),=(cos ,),记f (x )=.∴f (x )=cos +=sin +cos +=sin (+)+,∴最小正周期T==4π,2k π﹣≤+≤2k π+,则4k π﹣≤x ≤4k π+,k ∈Z .故函数f (x )的单调递增区间是[4k π﹣,4k π+],k ∈Z ;(2))∵将函数y=f (x )=sin (+)+的图象向右平移个单位得到函数解析式为:y=g (x )=sin[(x ﹣+)]+ =sin (﹣)+,∴则y=g (x )﹣k=sin (x ﹣)+﹣k ,∵x ∈[0,],可得:﹣≤x ﹣≤π,∴﹣≤sin (x ﹣)≤1,∴0≤sin (x ﹣)+≤,∴若函数y=g (x )﹣k 在[0,]上有零点,则函数y=g (x )的图象与直线y=k 在[0,]上有交点,∴实数k 的取值范围是[0,].∴当k <0或k >时,函数y=g (x )﹣k 在的零点个数是0;当0≤k<1时,函数y=g(x)﹣k在的零点个数是2;当k=0或k=时,函数y=g(x)﹣k在的零点个数是1.【点评】本题是中档题,考查向量的数量积的应用,三角函数的化简求值,函数的单调增区间的求法,函数零点的判断方法,考查计算能力.。

相关文档
最新文档