5.2.2平行线的判定

合集下载

最新人教版七年级数学下册第五章5.2.2 平行线的判定

最新人教版七年级数学下册第五章5.2.2  平行线的判定

判定两条直线平行的方法
文字叙述
符号语言
图形
同位角 相等 ∵∠1=∠2 (已知) c
两直线平行 ∴a∥b
内错角 相等 ∵∠3=∠2
(已知)
3
1 4
a
两直线平行 ∴a∥b
2
同旁内角 互 ∵∠2+∠4=180°
b
补,两直线平行 ∴a∥b
例题1
已 知 ∠ 3=45 ° , ∠ 1 与 ∠ 2 互 余 , 你 能 得
③∠2+∠3=180°;④∠4=∠7.其中能说明
a ∥ b 的条件序号为( A )
A.①② B.①③ C.①④
D.③④
应用练习
4、如图,哪些直线平行,哪些直线不平行?
l4
50o
120o
60 o
l3
60 o
l2
l1
l3 与 l4平行, l1 与 l2不平行
应用练习
5.如图:可以确定AB∥CE的条件是( C )
__同__旁__内__角__互补,两直.线平行
应用练习
2、如图,∠1=∠2,则下列结论正确的是( )C
(A)AD//BC (B)AB//CD
A
D
1
(C)AD//EF (D)EF//BC
E
2
F
B
C
应用练习
3.如图所示,直线 a ,b 被直线 c 所截,现给
出下列四个条件:①∠1=∠5;②∠1=∠7;
A.∠2=∠B
B. ∠1=∠A
A
E
C. ∠3=∠B
D. ∠3=∠A
B D
2
1
3
C
6.如图,已知∠1=30°,∠2或 ∠3 ∠2=150

5.2.2 平行线的判定(第2课时)

5.2.2 平行线的判定(第2课时)

6.如图,下列条件:①AC⊥AD,AC⊥BC; ②∠1=∠2,∠3=∠D;③∠4=①∠②5④;④ ∠BAD+∠ABC=180°.其中,可得到 AD∥BC的是__________.(填序号)
7.如图,—个由4条线段构成的“鱼”形图 案,其中∠1=50°,∠2=50°,∠3= 130°,找出图中的平行线,并说明理由.
(2)求证:BE∥CD.
(1)解:因为∠A=∠ADE,所以AC∥DE, 所以∠EDC+∠C=180°.又因为∠EDC= 3∠C,所以4∠C=180°,即∠C=45°.
(2)证明:由(1)可知AC∥DE,所以∠E= ∠ABE.又因为∠C=∠E,所以∠C=∠ABE,
所以BE∥CD.(同位角相等,两直线平行)
D.第一次右拐50°,第二次右拐50°
10.学习了平行线后,小明同学想出了“过 已知直线m外一点P画这条直线的平行线的新 方法”,他是通过折一张半透明的正方形纸 得到的(如图1~图4).
第一次折叠后(如图2所示),得到的折痕AB与 直线m之间的位置关系是垂直;将正方形纸 展开,再进行第二次折叠(如图3所示),得到 的折痕CD与第一次折痕③④之间的位置关系是垂 直;再将正方形纸展开(如图4所示),可得第 二次折痕CD所在的直线即为过点P的已知直 线m的平行线.下列说法:①两直线平行, 同位角相等;②两直线平行,内错角相等;
D
()
A.60° B.80° C.100° D.120°
2.如图,在四边形ABCD中,若∠1=∠2C, 则AD∥BC,理由是 ( )
A.两直线平行,内错角相等 B.两直线平行,同位角相等 C.内错角相等,两直线平行 D.同位角相等,两直线平行
3.如图,能判定EC∥AB的条件是

【人教版数学七年级下册】《5.2.2 平行线的判定(第1课时)》教学设计教学反思

【人教版数学七年级下册】《5.2.2 平行线的判定(第1课时)》教学设计教学反思

5.2.2 平行线的判定第1课时一、教学目标【知识与技能】1.通过用直尺和三角尺画平行线的方法理解平行线的判定方法1。

2.能用平行线的判定方法1来推理判定方法2和判定方法3。

3.能够根据平行线的判定方法进行简单的推理。

【过程与方法】经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.【情感态度与价值观】经历探究直线平行的判定方法的过程,掌握直线平行的判定方法,领悟归纳和转化的数学思想方法.二、课型新授课三、课时第1课时共2课时四、教学重难点【教学重点】探索并掌握直线平行的判定方法.【教学难点】直线平行的判定方法的应用.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2-3)图1, 图2中的直线平行吗?你是怎么判断的?相交在同一平面内平行同一平面内,不相交的两直线叫做平行线.判定两条直线平行的方法有两种:定义:在同一平面内,不相交的两条直线叫平行线.平行公理的推论(平行线的传递性):如果两条直线平行于同一条直线,那么两条直线平行.同学们想一想:除应用以上两种方法以外,是否还有其它方法呢?(二)探索新知1.出示课件5-7,探究同位角相等两直线平行教师问:我们已经学习过用三角尺和直尺画平行线的方法.如何画平行线呢?学生答:一、放;二、靠;三、推;四、画.教师问:画图过程中,你发现什么角始终保持相等?学生答:同位角始终保持相等.教师问:直线a,b位置关系如何?学生答:直线a,b位置关系是平行.教师问:将其最初和最终的两种特殊位置抽象成几何图形,你能画出来吗?学生答:如下图所示:教师问:由上面的操作过程,你能发现判定两直线平行的方法吗?师生一起解答:同位角相等,两直线平行.总结点拨:(出示课件8)判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.教师问:你能利用几何语言描述一下平行线的判定方法1吗?学生答:∵∠1=∠2,∴l1∥l2.教师总结如下:几何语言:∵∠1=∠2 (已知),∴l1∥l2 (同位角相等,两直线平行).考点1:利用同位角相等判定两直线平行下图中,如果∠1=∠7,能得出AB∥CD吗?写出你的推理过程.(出示课件9)师生共同讨论解答如下:解:∵∠1=∠7(已知),∠1=∠3 (对顶角相等)∴∠7=∠3(等量代换)∴AB∥CD (同位角相等,两直线平行 .)总结点拨:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同位角(“F”型)相等,从而可以应用“同位角相等,两直线平行”.出示课件10,学生自主练习后口答,教师订正.2.出示课件11,探究内错角相等两直线平行教师问:两条直线被第三条直线所截,同时得到同位角、内错角和同旁内角.由同位角相等可以判定两直线平行,那么,能否利用内错角来判定两直线平行呢?学生答:猜想可以利用内错角来判断两直线平行.教师问:如图,由∠3=∠2,可推出a//b吗?如何推出?师生一起解答:解:∵∠2=∠3(已知),∠3=∠1(对顶角相等),∴∠1=∠2.(等量代换)∴ a//b(同位角相等,两直线平行).总结点拨:(出示课件12)判定方法2:两条直线被第三条直线所截 ,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.教师问:你能利用几何语言描述一下平行线的判定方法2吗?学生答:几何语言:∵∠3=∠2(已知),∴a∥b(内错角相等,两直线平行).考点2:利用内错角相等判定两直线平行完成下面证明:如图所示,CB平分∠ACD,∠1=∠3. 求证:AB∥CD. (出示课件13)学生独立思考后,师生共同解答.证明:∵CB平分∠ACD,∴∠1=∠2(角平分线的定义).∵∠1=∠3,∴∠2=∠3.∴AB∥CD(内错角相等,两直线平行).总结点拨:准确识别三种角是判断两条直线平行的前提条件,本题中易得到内错角(“Z”型)相等,从而可以应用“内错角相等,两直线平行”.出示课件14,学生自主练习后口答,教师订正.3.出示课件15,利用同旁内角互补判定两直线平行教师问:如图,如果∠1+∠2=180°,你能判定a//b吗?学生答:能判定a//b.教师问:请写出解答过程.学生答:证明:∵∠1+∠2=180°(已知),∠1+∠3=180°(邻补角的性质),∴∠2=∠3(同角的补角相等) .∴a//b(同位角相等,两直线平行) .总结点拨:(出示课件16)判定方法3:两条直线被第三条直线所截 ,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.教师问:你能利用几何语言描述一下平行线的判定方法2吗?学生答:几何语言:∵∠1+∠2=180°(已知),∴a∥b(同旁内角互补,两直线平行).考点3:利用同旁内角互补判定两直线平行如图:直线AB、CD都和AE相交,且∠1+∠A=180º .求证:AB//CD .(出示课件17)学生独立思考后,师生共同解答.证明:∵∠1+∠A=180º(已知),∠1=∠2 (对顶角相等),∴∠2+∠A=180º(等量代换)∴AB∥CD.(同旁内角互补,两直线平行).师生共同归纳:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同旁内角(“U”型)相等,从而可以应用“同旁内角互补,两直线平行”.出示课件18,学生自主练习,教师给出答案.教师:学了前面的知识,接下来做几道练习题看看你掌握的怎么样吧.(三)课堂练习(出示课件19-26)练习课件第19-26页题目,约用时20分钟.(四)课堂小结(出示课件27) ),),(五)课前预习预习下节课(5.2.2第2课时)的相关内容.知道判定平行线的方法,会灵活应用平行线的判定方法解决问题.七、课后作业1、教材第14页练习第1,2题.2、七彩课堂第18-19页第5、6、9题.八、板书设计:1.知识梳理平行线的判定⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫同位角相等内错角相等同旁内角互补两直线平行2.考点讲解考点1 考点2 考点3教学反思:成功之处:1.本节课从学生所熟悉的知识----平行线的画法入手,引入平行线的判定方法1,在此基础上提出:两条直线被第三条直线所截形成的内错角相等时,是否两直线也平行?同旁内角之间又分别有怎样的关系时两直线平行呢?由此激发学生求知的欲望,也给学生提供了探索所学内容的平台,鼓励学生大胆猜想、积极思考,培养学生主动参与的热情。

5-2-2平行线的判定-七年级下册人教版数学课件

5-2-2平行线的判定-七年级下册人教版数学课件

课堂练习
1.如图5.2-35,己知∠1=145°,∠2=145°,则AB∥CD,依据是 _同___位__角__相__等___,__两__直__线___平__行___.
图5.2-35
课堂练习
2.如图5.2-36 是一条街道的两个拐角,∠ABC与∠BCD均为140°,则 街道AB与CD的关系是_________,这是因___________________.
中考在线 考点:平行线的判定
【例1】如图5.2-27,下列说法错误的是( C ).
A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥c
C.若∠3=∠2,则b∥c
D.若∠3+∠5=180°,则a∥c
知识梳理
图5.2-27
【解析】根据平行线的判定进行判断:A.若a∥b,b∥c,则a∥c,利用了 平行公理,正确;B.若∠1=∠2,则a∥c,利用了内错角相等,两直线平行, 正确;C.∠3=∠2,不能判断b∥c,错误;D.若∠3+∠5=180°,则a∥c,利 用同旁内角互补,两直线平行,正确;故选C.
【答案】证明:∵AB⊥BC,BC⊥CD, ∴∠ABC=∠DCB=90°,∵∠1=∠2, ∴∠ABC-∠1=∠DCB-∠2, ∴∠CBE=∠BCF,∴BE∥CF.
图5.2-51
课后习题
9.如图5.2-52所示,已知∠1=50°,∠2=65°,CD平分∠ECF,则 CD∥FG.请说明理由.
图5.2-52
第5章 相交线与平行线
5.2.2 平行线的判定
教学新知
方法1:平行线的定义. 方法2:两条直线都与第三条直线平行,那么这两条直线也平行. 方法3:同位角相等,两直线平行. 方法4:内错角角相等,两直线平行. 方法5:同旁内角互补,两直线平行.

人教版七年级数学下册教案5.2.2平行线的判定

人教版七年级数学下册教案5.2.2平行线的判定
五、教学反思
今天我们在课堂上学习了平行线的判定,回顾整个教学过程,我觉得有几个方面值得反思。
首先,关于平行线定义的讲解,我是否让学生们充分理解了“同一平面内”和“永不相交”这两个关键条件?在讲解过程中,我是否通过生动的例子让学生们感受到这两个条件的必要性?我想在今后的教学中,可以尝试让学生们自己举例,加深对平行线定义的理解。
三、教学难点与重点
1.教学重点
-平行线的定义:准确理解平行线的概念,掌握其基本属性。
-平行线的判定方法:掌握同位角相等、内错角相等、同旁内角互补三种判定方法,并能够熟练运用。
-实际应用:能够将判定方法应用于解决实际问题,如判断给定图形中的直线是否平行。
举例解释:
-在讲解平行线的定义时,教师需强调“同一平面内”和“永不相交”两个关键条件,确保学生对平行线概念的理解准确无误。
人教版七年级数学下册教案5.2.2平行线的判定
一、教学内容
本节课选自人教版七年级数学下册第五章5.2.2节,主要教学内容包括:
1.平行线的定义:在同一平面内,两条永不相交的直线叫做平行线。
2.平行线的判定方法:
a)同位角相等,两直线平行;
b)内错角相等,两直线平行;
c)同旁内角互补,两直线平行。
3.举例说明如何运用以上判定方法判断两条直线是否平行。
-对于平行线的判定方法,教师应通过具体例题详细讲解每种方法的适用场景和操作步骤,使学生能够熟练掌握并应用于解题过程中。
2.教学难点
-理解和区分同位角、内错角、同旁内角:学生对这些角度概念的理解往往存在困难,需要通过具体图形和实例进行讲解。
-空间想象能力的培养:在判断平行线时,学生需要具备一定的空间想象能力,这对于部分学生来说可能是个难点。

5.2.2平行线的判定(课件)七年级数学下册(人教版)

5.2.2平行线的判定(课件)七年级数学下册(人教版)
CD
AB
A
D
1
B
C
人教版数学七年级下册
谢谢聆听
∴∠1=∠2(同角的补角相等)
∴a∥b(同位角相等,两直线平行)
1
3 4
a
2
b
探究新知
人教版数学七年级下册
判定两条直线平行的方法:
判定方法3:两条直线被第三条直线所截,如果同旁内角互补,
那么这两条直线平行.
1
a
3 4
简单说成:同旁内角互补,两直线平行.
2
符号语言表示:∵∠2+∠4=180°(已知)
人教版数学七年级下册
课后作业
人教版数学七年级下册
2.如图:
如果∠1=∠D,那么______∥________;
AD
BC
如果∠1=∠B,那么______∥________;
CD
AB
如果∠A+∠B=180°,那么______∥________;
BC
AD
如果∠A+∠D=180°,那么______∥________.
人教版数学七年级下册
2.如图:
AD
BC
如果∠B=∠1,则可得____//___
同位角相等,两直线平行
根据是_____________________
AB
CD
如果∠D=∠1,则可得到____//___
B
内错角相等,两直线平行
根据是_______________________
A
1
D
C
巩固练习
人教版数学七年级下册
但是,由于直线无限延伸,检验它们是否相交有困难,
所以难以直接根据两条直线是否相交来判定是否平行,那么

数学人教版七年级下册5.2.2平行线的判定

数学人教版七年级下册5.2.2平行线的判定
ห้องสมุดไป่ตู้
教学目标:
学习目标:
(1)理解平行线的判定方法. (2)经历平行线判定的探究过程,从中体会 转化的思想和研究平行线判定的方法. 学习重点: 探讨平行线的判定方法,会由判定1,推出 判定2、3.并且理解推理过程及几何解题的基 本格式。
教学难点:
定理的形成过程中逻辑推理及书写格式。
一、 教学过程:
(一)你还记得如何用直尺和三角尺画平行 线吗? 除了平行线的基本事实及其推论可判定两 条直线平行外,还有没有其它方法可以判定 两条直条线平行呢?(学生回答,教师点评)


例1:在同一平面内,两条直线垂直于同一条直 线,这两条直线平行吗?为什么?
答:垂直于同一条直线的两条直线平行. c b 理由:如图, ∵ b⊥a,c⊥a(已知) a
1 2
∴∠1=∠2=90°(垂直定义)
∴b∥c(同位角相等,两直线平行)
四、巩固加深
1、 如图, BE是AB的延长线. (1) 由∠CBE=∠C可以判定哪两条直线平行? 根据是什么? 答: AE∥CD .根据内错角相等,两直线平行.
C D
F A E B
归纳小结
(1)本节课,你学习了哪些平行线的判 定方法? (2)你能用几何的语言表示出来吗?
(3)你能根据题目的条件灵活选择判定 方法吗?
同位角相等
平行条件 内错角相等 两直线平行
同旁内角互补
条件: 角的关系 平行关系
4. 在同一平面内,垂直于同一条直线的两直线平行 5.平行线的定义.
那么内错角、同旁内角具有怎样的关系也能 E 判断两直线平行呢?
A 4 2 F 3 1 B D
平行线的判定方法2:
C
两条直线被第三条直线所截,如 果内错角相等,那么这两条直线平行。 简称:内错角相等,两直线平行

5.2.2平行线的判定知识总结(实用含解析)

5.2.2平行线的判定知识总结(实用含解析)

5.2.2平行线的判定知识点总结1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线。

平行用符号“‖”表示,如“AB‖CD”,读作“AB平行于CD”。

同一平面内,两条直线的位置关系只有两种:相交或平行。

注意:(1)平行线是无限延伸的,无论怎样延伸也不相交。

(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

2、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

3、平行线的判定平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

简称:同位角相等,两直线平行。

平行线的两条判定定理:(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

简称:内错角相等,两直线平行。

(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

简称:同旁内角互补,两直线平行。

补充平行线的判定方法:(1)平行于同一条直线的两直线平行。

(2)垂直于同一条直线的两直线平行。

(3)平行线的定义。

公理:同位角相等,两直线平行。

定理1:内错角相等,两直线平行。

条件2:同旁内角互补,两直线平行。

注:这三个判定都是由角的数量关系(相等或互补)来确定直线的位置关系(平行)的,因此能否找到两直线平行的条件,关键是能否正确地找到或识别出同位角,内错角或同旁内角。

补充平行线的判定方法:(1)平行于同一条直线的两条直线平行。

(2)垂直于同一条直线的两直线平行。

(3)平行线的定义。

定理1:两直线平行,同位角相等。

定理2:两直线平行,内错角相等。

定理3:两直线平行,同旁内角互补。

定理:平行于同一条直线的两条直线平行复习提纲1、平行线判定定理1:同位角相等,两直线平行。

如下图所示,只要满足∠1=∠2(或者∠3=∠4;∠5=∠7;∠6=∠8),就可以得到AB//CD。

2、平行线判定定理2:内错角相等,两直线平行。

七年级下 5.2.2 平行线的判定

七年级下 5.2.2 平行线的判定

七年级下5.2.2 平行线的判定一.【内容和内容解析】判定定理1:同位角相等,两直线平行判定定理2:内错角相等,两直线平行判定定理3:同旁内角互补,两直线平行平行线的判定是本章的重点内容之一,是图形与几何领域的基础知识,在以后的学习中经常用到。

本节不仅要求学生通过观察、思考、探究等活动归纳出定理,还要求学生能进行一些“简单推理”。

对平行线判定定理的研究遵循“直观感知、简单推理、归纳总结、初步运用”等认知过程展开。

通过该内容的学习,使学生建立化归的思想,让学生理解并掌握“简单推理”的过程,学会利用平行线的判定定理解决一些简单的图形与几何问题。

二.【目标和目标解析】1.知识与技能:理解并掌握平行线的判定定理(1)理解并掌握平行线的判定定理2,判定定理3证明过程中的简单推理。

(2)掌握推理、证明的格式。

(3)理解并掌握平行线的三个判定定理,会通过同位角相等、内错角相等、同旁内角互补判定直线平行。

2.过程与方法:(1)在判定定理2、判定定理3的证明过程中,体会化归思想。

(2)在判定定理2、判定定理3的证明过程中,以及用判定定理解题的过程中,体会简单推理的过程。

3.情感态度、价值观:在定理证明与解题过程中,培养学生的推理能力。

三.【教学重点与难点】(1)重点:判定定理的运用(2)难点:判定定理的推导四.【教学支持条件分析】为了有效实现教学目标,条件许可准备投影仪、多媒体课件,三角板。

学生自备学具,三角板,直尺。

五.【教学过程设计】1.教师引导学生复习平行线的性质:性质1:两直线平行,同位角相等性质2:两直线平行,内错角相等性质3:两直线平行,同旁内角互补2.教师引导学生复习平行线的绘图方法(已知一条直线a,过直线外一点作与a平行的直线b),让学生注意在绘制过程中三角板起什么作用。

学生在纸上作出后,教师在黑板上演示。

如图所示,我们实际上画a的平行线b就是在找与∠1相等的∠2(以三角板的那个顶点为观察对象),如果按位置关系来分类,那么∠1与∠2正好是a,b 被直线c所截的同位角。

5.2.2平行线的判定2

5.2.2平行线的判定2

课内作业
la
1.如图,直线 a , b 被直线 l 所截 . 若
1 620, 2 1180,则 a 与 b 平行吗?
1b
请说明理由.
2
2.电子屏幕上显示的数字“9”的形
状如图,根据图形填空:
(1) 1 2 ( 已知)
D
3C
_A_B_∥_E_F_ (
同位角相等, 两直线平行
)
(2) 4 5 ( 已知 )
42
E
F
5
__B_C∥__E_D
(
内错角相等, 两直线平行
)
A
1 B
(3) 1 3 1800 __A_B∥_C_D_ ( 两同直旁线内平角行互补)
补充练习
如图。由下列条件可判定哪两条直线
平行?请说明理由。
(1)1 2;
D 1
C
AB∥CD
_A_D_∥__B_C (
同位角相等, 两直线平行
)
A2
D 3
2 3. ( 已知 )
1
_A_B_ ∥_C_D_
(
内错角相等, 两直线平行
)
B
C
探究活动
有一条纸带如图 1-10 所示 ,如果工 具只有圆规,怎样检验纸带的两条边沿是 否平行?如果没有工具呢?请说出你的方 法和依据.
图 1-10
(2)3 A;
A
243
B
E
AD∥BC
(3)A 2 4 1800. AD∥BC
5.2.2平行线的判定(2)
判断两直线平行有什么方法?
两条直线被第三条直线所截 ,如果同位 角相等, 那么这两条直线平行.简单地说,同 位角相等,两直线平行.

5.2.2平行线的判定

5.2.2平行线的判定

A
2 1 4
E 3
B D
几何语言表述:
C
6 7 5 8
∵∠1=∠7 (已知) ∴AB∥CD(内错角相等,两直线 平行)
练一练


已知:∠1=∠A=∠C, (1)从∠1=∠A,可以判断哪两条直线 平行?它的依据是什么? (2)从∠1=∠C,可以判断哪两条直线 平行?它的依据是什么?
如图:如果 2+4=180° 能判定AB//CD 吗?
判定方法 3 :两条直线被第 三条直线所截,如果同旁内 角互补,那么两直线平行. 简单说成:同旁内角互补, 两直线平行
几何语言:
Hale Waihona Puke A1 4 2E 3
B
C
F
D
∵∠2+∠4=180°(已知) ∴AB∥CD(同旁内角互补,两条直线平
行)
例:在同一平面内,两条直线垂直于同一条直 线,这两条直线平行吗?为什么?
复习巩固 在同一平面内,不 相交的两条直线叫平行 线.
5.2.2 平行线的判定
一放 二靠 三推 四画

思考:三角板可以使哪些角相等?
A
1
l1 l2
2
如果∠1=∠2 那么l1∥l2
B
平行线判定方法1:
,
两条直线被第三条直线所截 ,如果同位角相等 那么这两条直线平行.
简单说成:同位角相等,两直线平行
B C
第2题 3. 在同一平面内 , 若直线 a,b,c满足 a⊥b,a⊥c, b∥c 则b与c的位置关系是______.


4.如图1所示,下列条件中,能判断AB∥CD的 是( ) A.∠BAD=∠BCD B.∠1=∠2; C.∠3=∠4 D.∠BAC=∠ACD

平行线的判定

平行线的判定

平行线的判定示意图 判定
同位角相等 内错角相等 同旁内角互补
两直线平行
数量关系
位置关系
知识点三 用同旁内角判定两直线平行
如图,如果1+2=180° ,你能判定a∥b吗?
解:能, ∵1+2=180°(已知) 1+3=180°(邻补角的性质)
∴2=3(同角的补角相等)
∴a∥b(同位角相等,两直线平行)
c
3
a
1
2
b
判定方法3 两条直线被第三条直线所截,如果同旁 内角互补,那么这两条直线平行.
③还可通过度量图中的 ∠4,若∠4=90°, 则∠2=∠4 =90°(对顶角相等),有∠1+ ∠2=180°.根据“同旁内角互补,两直线平 行”,从而平安大街与长安街互相平行. ④通过度量图中的∠5,若∠5=90°,则 ∠1=∠5.根据“内错角相等,两直线平行”, 得出平安大街与长安街互相平行.
知识点五 平行线判定方法的灵活应用
∴∠1=∠2=90°(垂直定义).
∴b∥c(内错角相等,两直线平行).
解法3:如图,∵ b⊥a,c⊥a(已知),
∴∠1=∠2=90°(垂直定义). ∴ ∠1+∠2=180°.
∴b∥c(同旁内角互补,两直线平行).
bc
1
a
2
b
c
12
a
判定方法4 同一平面内,垂直于同一条直线的两条 直线平行.
几何语言:
判定两条直线是否平行的方法有: 1.平行线的定义. 2.如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 3.平行线的判定方法: (1)同位角相等, 两直线平行. (2)内错角相等, 两直线平行. (3)同旁内角互补, 两直线平行 4.如果两条直线都与第三条直线垂直,那么这两条直线也互相平行.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市中小学“京教杯”青年教师教学设计大赛
图 1 图 2 图 3
图4
学生活动:先观察、独立思考,再互相交流.
教师总结:我们发现只要保证这两个角相等,画出的两条直线就是是平行的.
设计意图:学生经历对两个问题的深入思考,对保证“同位角
相等”这个条件认识更加深刻,由此得出“两直线平行”的结论让学生更加信服.
2.教师提问:这两个角除了数量关系,是否存在位置关系呢?
引导学生进行如下操作:请你试着从实物图片中,抽象出这两个角的几何图形.
C
• P
• P •
学生活动:画一条直线与图中直线相交,量同位角的度数
本节课我们借助截线,用角的数量关系判定两直线的位置关系,那内错角,或同旁内角能否判定两条直线平行吗?我们下节继续探究.
七、布置作业
1.基础作业:数学书P16-17 7(1)、9、12;
2.探究作业:利用本节课所学的知识,探究内错角,或同旁内角是否能判定两条直线平行
学习效果评价设计
评价方式
评价项目
课堂发言反映出的思维深度。

相关文档
最新文档