平行线的判定和性质课件
平行线的性质ppt课件
等的线段,得到关键点的对应点;
(4) 连: 按原图顺次连结对应点 .
知4-讲
特别警示
确定一个图形平行移动后的位置需要三个条件:
(1)图形原来的位置;
(2)平行移动的方向;
(3)平行移动的距离.
这三个条件缺一不可.
知4-练
例4 如图 4.2-33,现要把方格纸(每个小正方形的边长均为
知1-讲
特别警示
1. 两条直线平行是前提,只有在这个前提下才
有同位角相等.
2. 按格式进行书写时,顺序不能颠倒,与判定
不能混淆.
知1-讲
3. 平行线的性质与平行线的判定的区别
(1) 平行线的判定是根据两角的数量关系得到两条直线的位
置关系,而平行线的性质是根据两条直线的位置关系得
到两角的数量关系;
又∵ EG 平分∠ BEF,∴∠ BEG=
∠
BEF=70° .
∵ AB ∥ CD, ∴∠ 2= ∠ BEG=70° .
答案:A
知2-练
2-1. [中 考·烟 台]一杆 古 秤 在 称 物 时 的状 态 如 图
所 示,已 知∠ 1=102°,则 ∠ 2 的度数为
78°
______.
感悟新知
知识点 3 平行线的性质3
若是,可直接求出;若不是,还需要
通过中间角进行转化 .
知1-练
1-1. [中考·台州]用一张等宽的纸条折成如图所示的图
140° .
案,若∠ 1=20 ° ,则 ∠ 2的度数为_______
感悟新知
知识点 2 平行线的性质2
知2-讲
1. 性质 2 两条平行直线被第三条直线所截,内错角相等 .
平行线的性质 课件(共22张PPT)
3
∴∠2=∠3(两直线平行,同位角相等),
∵∠1=∠3(对顶角相等),
∴∠1=∠2(等量代换).
你发现了什么?
两条平行直线被第三条直线所截,内错角相等. 简写成:两直线平行,内错角相等. 表达方式:如图,
∵a∥b(已知),
∴∠1=∠2(两直线平行,内错角相等).
如图,直线a∥b,直线a、b被直线c所截
试一试
翻开你的数学练习横格本,每一页上都有许多如图所示的互 相平行的横线条,随意画一条斜线与这些横线条相交, 找出其中 任意一对同位角.观察或用量角器度量这对同位角,你有什么发现?
∠1=∠2
那么,一般情况下,如图,如果直线a与直线b平行,直线l与 直线a、b分别交于点O和点P,其中的同位角∠1与∠2也必定相等吗?
A.65°
B.55°
C.45°
D.35°
课堂小结
知识点 平行线的性质
1.两直线平行,同位角 相等 . 2.两直线平行,内错角 相等 . 3.两直线平行,同旁内角 互补 .
已知
同位角相等 内错角相等 同旁内角互补
得到
判定 性质
得到 两直线平行
已知
(2)从∠1=110o可以知道 ∠3是多少度?为什么?
(3)从 ∠1=110 o可以知道∠4 是多少度?为什么?B
D
解:(1)∠2=110o 理由:两直线平行,内错角相等;
(2)∠3=110o 理由:两直线平行,同位角相等;
(3)∠4=70o 理由:两直线平行,同旁内角互补.
C 2E 43
2.如图,直线a∥b,∠1=50°,∠2=40°,则∠3的度数为 ( B )
例3 将如左图所示的方格图中的图形向右平行移动4格,再向上 平行移动3格,画出平行移动后的图形.
七年级数学下册教学课件《平行线的判定与性质的综合运用》
(2)由(1)可知AB∥EF, ∴∠3=∠ADE(两直线平行,内错角相等). 又∠3=∠B(已知), ∴∠ADE=∠B(等量代换). ∴DE∥BC(同位角相等,两直线平行). ∴∠EDG=∠BGD=55°(两直线平行,内错角相等). ∵DE平分∠ADG(已知), ∴∠ADG=2∠EDG=110°(角平分线的定义). 又AB∥EF, ∴∠1=∠ADG=110°(两直线平行,同位角相等).
(2)∵DE∥BC,∴∠C = ∠AED = 40°(两直线平行,
同位角相等)
4.已知:如图,∠1+∠B=∠C.试说明BD∥CE.
解:如图,作射线AP,使AP∥BD, ∴∠PAB=∠B(两直线平行,内错角相等). P 又∠1+∠B=∠C(已知), ∴∠1+∠PAB=∠C(等量代换), 即∠PAC=∠C. ∴AP∥CE(内错角相等,两直线平行). 又AP∥BD, ∴BD∥CE(如果两条直线都与第三条直线平 行,那么这两条直线也互相平行).
解:∵∠1=∠2(已知),∠2=∠DHE(对顶角相等), ∴∠1=∠DHE(等量代换). ∴AB∥CD (同位角相等,两直线平行). ∴∠B+∠D =180°(两直线平行,同旁内角互补). ∵∠D=50°(已知), ∴∠B=180°-∠D=180°-50°=130°.
②如图,已知AB∥CD,DA平分∠CDE,∠A =∠AGB.
拓展提升
如图 , 点E在AB上 , 点F在CD上 , CE , BF分别交AD于 点G,H.已知∠A =∠AGE,∠D=∠DGC. (1)AB与CD平行吗? 请说明理由. ( 2 ) 若∠2+∠1=180° , 且∠BEC=2∠B+30° , 求∠C 的度数.
解:(1)AB∥CD.理由如下: ∵∠A=∠AGE,∠D=∠DGC,∠AGE=∠DGC(对 顶角相等),∴∠A=∠D (等量代换). ∴AB∥CD (内错角相等,两直线平行).
人教版七年级数学下册《平行线的判定》课件ppt
思考:根据平行线的定义,如果同一平面内的两条直线不相交,就可以判断 这两条直线平行.但是,由于直线无限延伸,检验它们是否相交有困难,所 以难以直接根据两条直线是否相交来判定是否平行,那么有没有其他判定方 法呢?
1.放 2.靠 3.推
4.画
平行线画法
E C
A
D B
F
思考 (1)画图过程中,什么角始终保持相等? (2)直线a,b位置关系如何?
图1
2.如图2
∵∠B=∠_C__G__F__,∴ AB∥ CD(同位角相等,两直线平行.)
∵∠BGC=∠__F_____,∴ CD∥ EF(同位角相等,两直线平行.)
∵AB∥ CD ,CD∥ EF,
∴ AB∥___E__F__(如果两条直线都与第三条直线平行,那么这 )
图2
两条直线也互相平行.
3.下图中若∠1=55° ,∠2=55°,直线AB、CD平行吗?为什么?
也互相平行.)
已知∠3=45 °,∠1与∠2互余,试说明 AB//CD ?
解:∵∠1=∠2(对顶角相等)
A C
∠1+∠2=90°(已知Байду номын сангаас ∴∠1=∠2=45°
3
1
2
∵ ∠3=45°(已知) ∴∠ 2=∠3
B
D
∴ AB∥CD(内错角相等,两直线平行)
做一做
内错角相等, 两直线平行.
同旁内角互补, 两直线平行.
c
a 3 2
1 b
3.如图.(1)从∠1=∠4,可以推出 AB ∥ CD ,理由是内错角相等,两直线平行 . (2)从∠ABC +∠BCD =180°,可以推出AB∥CD ,理由是同旁内角互补,两直线平行. (3)从∠ 3 =∠ 2 ,可以推出AD∥BC,理由是 内错角相等,两直线平行 . (4)从∠5=∠ ABC ,可以推出AB∥CD,理由是 同位角相等,两直线平行 .
平行线的判定++平行线的性质++知识考点梳理(课件)2024-2025学年北师大版数学八年级上册
∴EF∥BC(同旁内角互补,两直线平行).
又 ∵AD∥BC,
∴EF∥AD(平行于同一条直线的两条直线平行);
7.4 平行线的性质
重
难
题
型
突
破
返回目录
(2)由(1)知∠FCB=38°,又 CE 平分∠FCB,
∴∠BCE=
∠FCB=19°(角平分线的定义).
在同一平面内,垂直于
同一条直线的两条直线
如图,∵b⊥a,c⊥a,
∴b∥c
平行
其他
方法
如 图 ,∵a ∥b,a ∥c,
平行于同一条直线的
两条直线平行
∴b∥c
7.3 平行线的判定
返回目录
归纳总结
考
点
要判断两条直线是否平行,首先要观察图形中与要判断
清
单 的两条直线有关的同位角、内错角、同旁内角的关系,这是
7.3 平行线的判定
返回目录
[解析]汽车行驶的方向不变,则汽车拐弯前与拐弯后
重
难
题 的行驶路线互相平行,如图所示.先右转后左转的两个角是
型 同位角,根据同位角相等,两直线平行,可知选项 D 正确
突
破 .
[答案] D
7.3 平行线的判定
返回目录
变式衍生 如图,已知∠1=90°,为保证两条铁轨平
重
难
∵∠1=60°(已知),∠ABC=∠1(对顶角相等),
∴∠ABC=60°(等量代换).
∵∠2=120°(已知),
∴∠ABC+∠2=180°,
∴AB∥CD(同旁内角互补,两直线平行).
∵∠2+∠BCD=180°(平角的定义),
平行线ppt课件
02
平行线判定方法的 误用
提醒学生注意不同判定方法的使 用条件和限制,避免误用或混淆。
03
忽略平行线的存在 性
提醒学生在解题时,不要忽略题 目中可能存在的平行线,否则可 能导致解题错误。
拓展延伸内容推荐
平行线与相似三角形的关系
探讨平行线与相似三角形之间的联系,以及如 何利用平行线的性质解决相似三角形的问题。
交通信号灯
交通信号灯中的红灯、绿灯、黄灯等灯光的排列 也遵循平行线的原则,使得驾驶员和行人能够清 晰地辨认交通信号。
导向标志 道路两侧的导向标志牌上的文字、图案等也采用 平行线排列,方便驾驶员快速获取道路信息。
日常生活用品设计美学体现
家居用品
家居用品中的桌子、椅子、床等家具的设计中经常运用到平行线, 使得家具外观简洁大方,符合现代审美。
图形示例
判定步骤
首先确定两条被截直线和截线,然后 找出同旁内角并测量其角度之和是否 为180度,如果是,则两条直线平行。
在图形中,画出两条被第三条直线所 截的直线,并标出同旁内角。
实际应用场景分析
建筑设计中
在建筑设计中,平行线的概念经常被用来确保建筑物的稳定性和美观性。例如,在设计墙壁、 地板和天花板时,需要确保它们是平行的,以避免出现倾斜或不平整的情况。
在物理学中,平行线的概念被广泛应用于光 学、力学等领域的研究中,如光的反射、折 射等现象都与平行线密切相关。
计算机图形学
工程测量与建设
在计算机图形学中,平行线的绘制和处理是 图形渲染、图像处理等任务中的重要环节之 一。
在工程测量与建设中,平行线的运用可以确 保建筑物的精确度和稳定性,提高工程质量。
05
预备工作
建议学生提前预习相关知识点,回顾平行线的定义、性质及判 定方法,并尝试思考一些与平行线相关的实际问题,为下一讲 的学习做好准备。
《平行线的判定》精品ppt课件
B
C
D
E
F
பைடு நூலகம்
1
3
2
∠1 +∠2=180°(已知), ∠2 +∠3=180°(邻补角互补),
∠1 =∠3(同角的补角相等).
AB∥CD
(同位角相等,两直线平行).
∵ ∠4+∠7=180 °(已知) ∠4+∠1=180°(邻补角的定义)
∴ ∠7=∠1(同角的补角相等)
∴ AB∥CD(内错角相等, 两直线平行)
思考:
下图中,如果∠1=∠7,能得出AB∥CD吗? 写出你的推理过程
∵∠1=∠7 ∠1=∠3
∴ ∠7=∠3
∴ AB∥CD
B
1
A
C
D
F
3
7
E
( )
已知
( )
对顶角相等
( )
等量代换
( )
C.∠4+∠5=180° D.∠2+∠4=180°
B
达标检测 反思目标
2.如图,BE是AB的延长线。由∠CBE=∠A可以判定____∥___根据是________________________由∠CBE=∠C可以判定___∥____根据是___________________________
解:根据∠OEB+∠EOD=180°得到 AB∥CD
上交作业:课本15—16 页 第4、7 题
课后作业
·
A
B
P
还记得如何用三角板和直尺画平行线吗?
一放、二靠、三推、四画。
从画图过程,三角板起到什么作用?
C
D
1
2
两条直线被第三条直线所截, 如果同位角相等,那么这两条直线平行.
《平行线的判定定理》课件
平行线的同旁内角互补定理
总结词
同旁内角互补是判断两直线平行的关键条件。
详细描述
当两条直线被第三条直线所截,如果同旁内角互补,则这两条直线平行。具体来 说,如果同旁内角之和等于180度,则这两条直线平行。
平行线的内错角相等定理
总结词
内错角相等是判断两直线平行的又一 重要条件。
详细描述
当两条直线被第三条直线所截,如果 内错角相等,则这两条直线平行。具 体来说,如果内错角相等,则这两条 直线平行。
平行线表示方法
用“//”表示两条直线平行。
平行线性质符号表示
同位角相等(∠1=∠2),内错角相等(∠3=∠4),同旁内角互补( ∠5+∠6=180°)。
平行线的性质
平行线的性质
同位角相等、内错角相等、同旁内角 互补。
平行线性质的应用
证明两直线平行、计算角度大小、解 决几何问题。
02
平行线的判定定理
键之一。
04
练习题与解析
基础练习题
01
基础练习题1:题目1 、2、3
02
基础练习题2:题目4 、5、6
03
基础练习题3:题目7 、8、9
进阶练习题
1 2
3
进阶练习题1
题目10、11、12
进阶练习题2
题目13、14、15
进阶练习题3
题目16、17、18
综合练习题
综合练习题1 综合练习题2 综合练习题3
题。
角的度量与计算
02
介绍角的度量单位和方法,以及如何进行角的计算。
复习与巩固
03
对本单元所学知识进行复习巩固,强化学生对平行线和相交线
知识的掌握。
THANKS
认识平行线ppt优秀课件
平行线理论的发展历程
随着数学的发展,人们对平行线 理论的认识逐渐深入。
中世纪欧洲数学家进一步探索了 平行线的性质和定理,并尝试解
决一些关于平行线的难题。
19世纪,非欧几里德几何学的 出现对平行线理论产生了深远影 响,人们开始认识到平行线并非
总是相交于无穷远点。
平行线在现代数学中的应用
01
02
03
02 平行线的应用
CHAPTER
几何作图中的应用
平行线在几何作图中具有重要作用, 可以用于确定图形的基本形状和尺寸 。
平行线还可以用于解决几何作图问题 ,例如通过平行线将一个复杂图形分 解为简单图形,便于分析和计算。
通过平行线,可以绘制出各种几何图 形,如三角形、四边形、圆形等,为 进一步研究几何性质和定理奠定基础 。
03 平行线的历史与发展
CHAPTER
平行线理论的起源
平行线理论最早可以追溯到古 希腊时期,当时数学家们开始 研究几何学,并探索了平行线 的性质和定义。
欧几里德在《几何原本》中首 次给出了平行线的定义,并研 究了它们的性质和定理。
古希腊数学家还发现了一些关 于平行线的有趣定理,如“平 行线间的角相等”和“同位角 相等”。
平行线具有传递性、同位角相等、内 错角相等、同旁内角互补等性质。
平行线的表示方法
用平行符号“//”表示两条直线平行 。
平行线的性质
同位角相等
内错角相等
两条平行线被一条横截线所截,同位角相 等。
两条平行线被一条横截线所截,内错角相 等。
同旁内角互补
平行线的性质的应用
两条平行线被一条横截线所截,同旁内角 互补,即两个同旁内角之和为180度。
在线性代数中,向量空间中的子空间可以由平行线定义,而线性变换可以用来研究平行线的 性质和行为。
平行线判定和性质的应用课件
条件
图形
结论.
定义、判定
定义、判定
知3-练
• 1 (202X·十堰)如图,AB∥EF,CD⊥EF于点D, 若∠ABC=40°,则∠BCD等于( ) •A.140° •B.130° •C.120° •D.110°
知3-练
2 如图,如果AB∥DE,∠1=∠2,那么AE∥DC, 请说明理由.
从图形中得出结论是图形的性质;而从具备什么条 件推理出图形是图形的判定;特别说明,图形的定义既 是图形的判定,也是图形的性质;即:
所以∠ABC=∠BCD(两直线平行,内错角相等).
因为∠1=∠2(已知),
所以∠ABC-∠1=∠BCD-∠2(等式的性质),
即∠PBC=∠BCQ.
所以PB∥CQ(内错角相等,两直线平行).
所以∠P=∠Q(两直线平行,内错角相等).
总结
知3-讲
一个数学问题的构成含有四个要素:题目的条件、 解题的根据、解题的方法、题目的结论,如果题目所 含的四个要素解题者已经知道或者结论虽未指明,但 它是完全确定的,这样的问题就是封闭性的数学问题.
例2 •如图,将一张长方形的纸片沿EF折叠后,点D, •C分别落在D′,C′位置上,ED′与BC的交点为点 •G,若∠EFG=50°,求∠EGB的度数.
知1-讲
导引:本题根据长方形的定义得出其对边是平行的, 利用平行线的性质:两直线平行,内错角相等, 先求∠DEF=50°, 再根据折叠前后的对应角相等求得∠D′EF=50°, 然后根据平角的定义得∠AEG=80°, 最后根据两直线平行,同旁内角互补求得∠EGB =100°.
知1-讲
•所以∠AEG=180°-∠DEF-∠D′EF=80°(平 • 角的定义). •又因为AD∥BC, •所以∠AEG+∠EGB=180°(两直线平行,同旁 内 • 角互补), •即∠EGB=180°-∠AEG=180°-80°= 100°.
认识平行线课件
认识平行线课件汇报人:日期:•平行线的定义与性质•平行线的应用•平行线的作法与技巧目录•平行线的判定方法与证明•平行线的应用题解析•总结与回顾01平行线的定义与性质两条直线在同一平面内不相交。
同一平面内两条直线永远不会相交。
永不相交两条直线相互平行。
相互平行如果两条直线都与第三条直线平行,那么这两条直线也相互平行。
传递性对角线性质相似三角形平行线之间的对角线性质,即两条平行线被一条横截线所截,它们之间的对角线长度相等。
平行线之间的三角形是相似的,即它们的对应角相等,对应边成比例。
030201当两条直线被第三条直线所截,如果它们的同位角相等,则这两条直线平行。
同位角相等当两条直线被第三条直线所截,如果它们的内错角相等,则这两条直线平行。
内错角相等当两条直线被第三条直线所截,如果它们的同旁内角互补,则这两条直线平行。
同旁内角互补平行线的判定方法02平行线的应用平行线的定义和性质在几何图形中,平行线是同一平面内不相交的两条直线。
它们具有一些重要的性质,如传递性、同位角相等、内错角相等等。
平行线的判定方法在几何图形中,可以通过不同的方法来判定两条直线是否平行,如同位角相等、内错角相等、同旁内角互补等。
平行线的应用实例在几何图形中,平行线有着广泛的应用,如平行四边形的性质和判定、梯形的性质和判定、三角形的中位线等。
在城市规划和建设中,为了确保道路和铁路的行车安全,通常会使用平行线来指示车辆和行人的行驶方向。
道路和铁路在家具和建筑设计中,平行线也被广泛使用,如门、窗户、墙壁等的设计,以确保建筑物的稳定性和美观性。
家具和建筑在艺术和设计中,平行线也经常被用来创造对称和平衡的视觉效果,如绘画、摄影、平面设计等。
艺术和设计工程学在工程学中,平行线被用来确定物体的位置和方向,如建筑物的定位、机械零件的安装等。
物理学在物理学中,平行线被用来描述光线的传播路径和方向,如光的反射、折射等现象。
计算机科学在计算机科学中,平行线被用来描述图形的边界和方向,如计算机图形学中的二维图形、三维模型等。
《平行线的性质》课件(共33张PPT)000
如图,是举世闻名的三星堆考古中发掘出 的一个梯形残缺玉片,工作人员从玉片上已经 量得∠A=115°,∠D=110°。已知梯形的两底 AD//BC,请你求出另外两个角的度数。
A
D
115° 110°
B
C
苹果
草莓
梨子
桃子
香蕉
桔子
西瓜
桃子题:
如图,梯子的各条横档互相平行, ∠1=1000,求∠2的度数。
解:∠1=∠3; ∠2 =∠4 理由如下:
∵AB∥DE (已知) A
DC
F
∴∠1=∠3(两直线平行, 同位角相等) ∵ ∠1=∠2 ,∠3=∠4
1
23
4
B
E
∴ ∠2=∠4 (等量代换)
(2 )反射光线BC与EF也平行吗?
平行:∵ ∠2=∠4 ∴ BC∥EF(同位角相等,两直
线平行)
比一比 、乐一乐:(分组比赛)
4
31
56
8
7
∠1=∠5
a b
探索新知
①已知直线a,画直线b,使b∥a,c
②任画截线c,使它与a、
11718°25°8°b
b都相交,则图中∠1与 ∠2是什么角?它们的 大小有什么关系?
21185728°° a
③旋转截线c,同位角
∠1与∠2的大小关系又
如何? ∠1=∠2
通过上面的实验测量,可以得到性质1(公理):
3 2
目前,它与 地面所成的 较小的角
为∠1=85º
1
苹果
草莓
梨子
桃子
香蕉
桔子
西瓜
杨梅
草莓题:
1 A
D
B
C
1、如果AD//BC,根据___________ 可得∠B= _______
七年级数学下册教学课件《平行线的判定》
中能判定AB//CD的是( C )
A.∠2=35° B.∠2=45° C.∠2=55° D.∠2=125°
2.如图,若∠1=∠2,则 _A_B__//_D__E_;若∠2=∠3, 则_B__C_∥__E_F_.
问题3 能否利用内错角,或同旁内角来判定两条直线
同一个平面内,两条直线 不__相__交___
同__位__角__相__等__,两直线平行
内__错__角__相__等__,两直线平行
同__旁__内__角__互__补__,两直线平行
作业布置 1.教材P15习题5.2第1,2,4,5题.
(1)由∠CBE=∠A可以判定哪两条直线平行?
根据是什么?
D
C
答:(1)AD∥BC,根据是
“同位角相等,两直线平行”;
A
B
E
(2)由∠CBE=∠C可以判定哪两条直线平行? 根据是什么?
D
(2)DC∥AB,根据是“内
错角相等,两直线平行”;
A
C
B
E
知识结构
随堂训练,课堂总结
平行线的 判定
定义法 判定方法
总结
判定方法2:两条直线被第三条直线所截,如果 内错角相等,那么这两条直线平行. 简单说成:内错角相等,两直线平行.
c 3
a
2 b
符号语言: 因为∠2=∠3 , 所以 a∥b.
对应训练
1.如图是一条街道的两个拐角,若∠ABC与∠BCD均 为140°,则街道AB与CD的位置关系是__A_B__//_C_D__.
例 (1)如图,当∠1=∠3时,直线a,b平行吗? (2)当∠2+∠3=180°时,直线a,b平行吗? 为什么?
平行线的判定及性质课件
05
总结与展望
总结
01
02
03
04
05
直线平行的定义
直线平行的判定 方法
直线平行的性质
平行线在实际生 活中的应用
平行线在数学中 的地位
在同一平面内,不相交的 两条直线叫做平行线。
同位角相等,两直线平行 ;内错角相等,两直线平 行;同旁内角互补,两直 线平行。
两直线平行,同位角相等 ;两直线平行,内错角相 等;两直线平行,同旁内 角互补。
在几何图形中,平行线具 有非常重要的应用价值, 如矩形、菱形、正方形等 都有平行线的性质。
平行线是数学几何学中的 重要概念之一,是研究平 面图形性质的基础之一。 掌握平行线的判定方法和 性质对于学习数学几何学 非常重要。
展望
进一步探索平行线的性质
加强实际应用
除了已经学习的平行线的基本性质外,还 有许多复杂的性质和定理,值得进一步探 索和学习。
详细描述
在制造业中,机器人使用平行线来定位和移动物体,进行高效和精确的生产操作。例如 ,在汽车制造中,机器人通过使用平行线来定位和抓取车辆部件,以提高生产效率和质 量。在医疗领域,手术机器人使用平行线来精确控制手术器械,提高手术的准确性和安
全性。
04
平行线在数学问题中 的应用
代数中与平行线相关的知识点
在道路交通中,平行线是确保车辆安全行驶的重要标志。它们被用来划分车道、标识道路边缘以及引 导驾驶员在正确的车道上行驶。在高速公路上,平行线被用来表示应急车道和车道分隔线,帮助驾驶 员在紧急情况下做出正确的反应。
机器人在工作中的应用
总结词
机器人广泛应用于生产制造、医疗服务和军事等领域,平行线在机器人的工作中发挥着 重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.如图,直线l1∥l2∥l3,点A,B,C分别在直线l1,l2,l3上,若∠1= 120 70°,∠2=50°,则∠ABC=__ __度. 4.如图,D,E,F,G是△ABC边上的点,且BD∥EF,GD∥BC,求 证:∠1=∠2.
证明:∵DG∥BC(已知),∴∠1=∠3(两直线平行,内错角相等), ∵BD∥EF(已知),∴∠2=∠3(两直线平行,同位角相等),∴∠1=
5.如图,DE平分∠BDF,AF平分∠BAC,且∠1=∠2,求证:DF∥AC.
证明:∵DE平分∠BDF,∴∠2=∠BDE,∵AF平分∠BAC,∴∠1=
∠BAF,又∵∠1=∠2,∴∠BDE=∠BAF,∴DE∥AF(同位角相等, 两直线平行),∴∠2=∠DFA(两直线平行,内错角相等),又∵∠1=
∠2,∴∠1=∠DFA,∴DF∥AC(内错角相等,两直线平行)
1.如图,直线AD与BC相交于点O,如果∠AOB=∠B,∠COD= ∠C,求证:AB∥CD.
证明:∵∠AOB=∠B(已知),∠AOB=∠COD(对顶角相等),∴∠B=
∠COD(等量代换),又∵∠COD=∠C(已知),∴∠B=∠C(等量代换), ∴AB∥CD(内错角相等,两直线平行)
2.如图,在四边形ABCD中,∠BCD=130°,CE是∠BCD的平分线. (1)若∠B=50°,求证:AB∥CD; (2)若∠AEC=115°,求证:AD∥BC.
∠2(等量代换)
三、平行线的判定和性质综合
先从求证的结论入手,分析要得到这个结论需要哪些条件,再结合已知
条件进行推证,找到解题思路. 例3:已知直线a,b被c,d所截,且c⊥a,c⊥b.∠1=70°,则∠2=
70° . ________
解析:先由平行线的判定得到a∥b,再由平行线的性质得到∠2=∠3= ∠1=70°
第七章
平行线的证明
专题课堂(七) 平行线的的同位角、内错角、同旁内角,找出一组角的关系符
合判定公理,则可证明两直线平行.
例1:如图,下列条件中不能判断AB∥CD的是( D ) A.∠1=∠D B.∠3=∠5 C.∠2+∠3+∠D=180° D.∠2=∠4 解析:A满足同位角相,等两直线平行,B满足内解错相等,两直线平 行,C满足同内角互补,两直线平行,故选D
证明:(1)∵∠B=50°,∠BCD=130°(已知),∴∠B+∠BCD= 180°,∴AB∥CD(同旁内角互补,两直线平行) (2)∵CE是∠BCD的平分线,∠BCD=130°,∴∠BCE=65°,又
∵∠AEC=115°,∴∠BCE+∠AEC=180°,∴AD∥BC(同旁内
角互补,两直线平行)
二、平行线的性质 通过平行线所截得的角的位置关系得到相应的数量关系. 例2:如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°, AB=AC,若∠1=20°,则∠2的度数为( B ) A.25° B.65° C.70° D.75° 解析:∵∠3=180°-∠1-45°=115°,又∵a∥b,∴∠2+∠3= 180°,∠2=180°-115°=65°,故选B