二次根式的综合练习
二次根式混合计算练习(附答案)
两次根式混同估计之阳早格格创做1.估计题 (1)(2).2.估计:()218(12)(12)5023212322+-+-+⨯--.3.估计:(2-3)(2+3)+()20101-()2π--121-⎪⎭⎫⎝⎛4.估计(π-3)0-)12)(12(-++2312-+6、估计:)13(9-0+)322(2818)212(2----+2 7.估计(20141+ )(211++321++431++…+201420131+)8.估计:2×(2+12)-1882-212-⎛⎫⎪⎝⎭-|22-3|+38. 9.估计:4832426-÷+⨯.10.估计:(1)3132+218-5150;(2)(5-26)×(2-3);(3)(1+2+3)(1-2-3);(4)(12-481)(231-45.0). 11.估计:(1)11(24)(6)28--+ (2)3212524⨯÷ 12、估计36)22(2)2(2+---(1)327-+2)3(--31-13、估计: (1)11383322+-+(2)(753)(753)++-- 14、33364631125.041027-++---.11(24)2(6)28--+ 15、已知,3232,3232+-=-+=y x 供值:22232y xy x +-.16、估计:⑴()()24632463+-⑵20(3)(3)2732π++-+-17、估计(1)﹣×(2)(6﹣2x )÷3.20.估计:1312248233⎛÷ ⎝3631222⎝21.估计22.(1))235)(235(-++- (2))52453204(52+-22.估计:(1)()222122763⎛⎫+- ⎪⎝⎭(2)()()35233523-+23.化简:(1)83250+(2)2163)1526(-⨯-(3)(2)23()123)(123-+-+;(4)12272431233()? 24.估计(1)2543122÷⨯(2)(3)231|21|27)3(0++-+--(4)11545+204555245(5)()()201211+8π236+22--⨯-()(6)4832426-÷+⨯ (7)20121031(1)5()27(21)2----+(8)113123482732(92225(7)(3)-(10)21(232)8(3325)(3325)3(11)5.081232+-;(12)32212332a a a ⨯÷ (13))2332)(2332(-+(14)18282-+(15)3127112-+(16))31(33122-++参照问案 1.(1)﹣;(2).【剖析】试题分解:(1)先把各个两次根式举止化简,再合并共类两次根式即可; (2)根据两次根式的乘除混同运算规则估计. 解:(1)=3﹣2+﹣3=﹣;(2)=4××=.2.32-【剖析】试题分解:先将所给的各式化简成整数或者最简两次根式,而后合并共类两次根式即可. 试题剖析:本式125282632=-+-- 32=-考面:两次根式的估计. 【问案】766【剖析】试题剖析:解:619624322+-+ 26626463 =(26626463+⎭5666=766考面:两次根式的加减面评:本题主要考查了两次根式的加减运算.最先把两次根式化为最简两次根式,而后再合并共类两次根式. 4.0 【剖析】试题分解:根据真数的运算规则举止估计即可救出问案. 试题剖析:12010)21()2()1()32)(32(----++- π=234-⨯+- =0考面:真数的混同运算. 5.3(2)53.【剖析】试题分解:(1)先估计整次幂、两次根式化简、来千万于值标记、把括号展启,而后举止合并即可供解. (2)把两次根式化成最简两次根式后,合并共类两次根式即可.(1)本式(2)本式=12⨯=.考面:真数的混同运算;2.两次根式的混同运算.6.【剖析】试题分解:先举止两次根式的化简,财举止乘除运算,末尾合并共类两次根式即可供出问案.试题剖析:本式=2913⨯-+9213283=++-+-+=考面: 真数的混同运算.7.2013. 【剖析】试题分解:根据分母有理化的估计,把括号内各项分母有理化,估计后再利用仄圆好公式举止估计即可得解.试题剖析:(1211++321++431++…+201420131+)=(1+…=(1+1) =2014-1=2013.考面: 分母有理化. 8.2 【剖析】解:本式=2+1-=2+13-3+2=29.1+114【剖析】解:本式=4-(3-+4=4-3+4=1+11410.(1)342;(2)112-93;(3)-4-26;(4)8-364. 【剖析】(1)利用2a =a(a ≥0),ab =ab (a ≥0,b ≥0)化简;(2)不妨利用多项式乘法规则,分离上题提示估计; (3)利用仄圆好公式;(4)利用多项式乘法公式化简.11.(12【剖析】试题分解:(1)先把两次根式化成最简两次根式之后,再合并共类两次根式即可供出问案; (2)先把两次根式化成最简两次根式之后,再举止两次根式的乘除法运算.试题剖析:(1)-原式24=---4=;(2)4原式=310⨯考面: 两次根式的化简取估计.12.【剖析】试题分解:先举止两次根式的化简,再合并共类两次根式即可供出问案. 试题剖析:36)22(2)2(2+---=考面: 两次根式的化简供值.13.(1;(2)1--【剖析】试题分解:(1)把两次根式举止化简后,再合并共类两次即可得出问案; (2)先利用仄圆好公式展启后,再利用真足仄圆公式估计即可.试题剖析:(12=22=+=;(2)27=-78=--1=--考面: 两次根式的化简. 14.(1)1 (2)114-【剖析】解:(1)327-+2)3(--31-=.11--33-=+)( (2)33364631125.041027-++---=1111300.5.244---++=-15.385【剖析】解:果为xy y x xy y xy x y xy x +-=++-=+-22222)(2242232,38)32)(32()32()32)(32()32(3232323222=-+---++=+---+=-y x , 1)3232)(3232(=+--+=xy , 所以3851)38(2232222=+⨯=+-y xy x .16.【剖析】试题分解:先化成最简两次根式,再举止估计.试题剖析:-2(24-⨯22--考面:两次根式化简.17.【剖析】试题分解:先化成最简两次根式,再举止估计.试题剖析:--=. 考面:两次根式化简.18.(1)22; (2)6-【剖析】试题分解:(1)根据仄圆好公式,把括号展启举止估计即可供出问案.(2)分别根据仄圆、非整数的整次幂、两次根式、千万于值的意思举止估计即可得出问案. 试题剖析:(1)()()24632463+-22=-=54-32 =22.(2)2(2π+-312=+-6=-考面: 真数的混同运算. 19.(1)1;(2)13【剖析】试题分解:先把两次根式化简后,再举止加减乘除运算,即可得出问案.试题剖析:=32=-1=;(2)2÷=÷=÷13=.考面: 两次根式的混同运算.20.143.【剖析】试题分解:先将两次根式化成最简两次根式,再算括号内里的,末尾算除法.试题剖析:⎛÷⎝÷=143=.考面:两次根式运算.21.0.【剖析】试题分解:根据两次根式运算规则估计即可.=⎝.考面:两次根式估计.22.(1)2)10.【剖析】试题分解:(1)把括号内的项举止拉拢,利用仄圆好公式举止估计即可得到问案;(2)把两次根式化简后,合并共类两次根式,再举止估计即可供出问案.试题剖析:(1))235)(235(-++-25=-55=-+=(2))52453204(52+-=10==考面: 两次根式的混同运算.23.(1)18-(2)33.【剖析】试题分解:(1)根据两次根式化简估计即可;(2)应用仄圆好公式化简即可.试题剖析:(1)(18=-(2)(((22451233=-=-=.考面:两次根式化简.24.(1)92;(2)-【剖析】试题分解:(1)先来分母,再把各两次根式化为最简两次根式,举止估计;(2)曲交利用调配律来括号,再根据两次根式乘法规则估计即可.试题剖析:(1)本式92 =;(2)本式==-.考面:两次根式的混同运算;25.【剖析】试题分解:两次根式的加减,最先要把各项化为最简两次根式,是共类两次根式的才搞合并,没有是共类两次)0,0m n≥≥)0,0m n≥>,需要证明的是公式从左到左是估计,从左到左是两次根式的化简,而且两次根式的估计要对于截止有央供,能启圆的要启圆,根式中没有含分母,分母中没有含根式.试题剖析:解: 本式=18-1+3-考面:两次根式的估计.26.6-【剖析】试题分解:根据两次根式的混同运算程序战运算规则估计即可.试题剖析:22431233266233623662)?()()考面:两次根式的混同运算.27.(1)2103.(2)4.【剖析】试题分解:掌握两次根式的运算本量是解题的闭键.普遍天,两次根式的乘法:abba=•),(00≥≥ba;两次根式的除法:baba=),(0ba≥;两次根式的加减时,先将两次根式化为最简两次根式,再将被启圆数相共的两次根式举止合并.估计时,先算乘除法,能化简的根式要先举止化简再估计,末尾估计加减法,即合并共类项即可. 试题剖析:解:(1)本式=2514334⨯⨯1024334⨯⨯= =2103(2)本式8523+--=4=考面:1、两次根式的化简;2、真数的运算.28.-.【剖析】试题分解: 本题波及整指数幂、两次根式的化简、分母有理化、千万于值化简4个考面.正在估计时,需要针对于每个考面分别举止估计,而后根据真数的运算规则供得估计截止.试题剖析:本式=11-=-考面:1.真数的运算;2.整指数幂;3.分母有理化.29.2+.【剖析】试题分解:根据运算程序化各根式为最简两次根式后合并即可.试题剖析:本式1511322=⋅++=+ 考面:两次根式运算.30.2. 【剖析】试题分解:针对于有理数的乘圆,两次根式化简,整指数幂,背整数指数幂4个考面分别举止估计,而后根据真数的运算规则供得估计截止.试题剖析:本式12=-.考面:1.真数的运算;2.有理数的乘圆;3.两次根式化简;4.整指数幂;5.背整数指数幂. 31.32-22. 【剖析】试题分解:两次根式的乘法规则:)0,0(≥≥=⨯b a ab b a ,两次根式除法规则:)0,0( b a bab a ≥=÷,两次根式的乘除估计完后要化为最简两次根式,而后举止加减运算,两次根式加减的真量是合并共类两次根式.试题剖析:32-2234-223248-32426=+=÷+⨯. 考面:两次根式的混同运算.32.(1)0;(2)【剖析】试题分解:(1)本式=152310-++-=;(2)本式==.考面:1.真数的运算;2.两次根式的加减法.33.(1)1;(2)7-【剖析】试题分解:(1)解:本式=5-7+3=1;(2)解:本式=14(2720)--=7-考面:两次根式的混同运算.34.①、24;②、a 31【剖析】试题分解:根据两次根式的混同运算的规则分离两次根式的本量依次估计即可. 试题剖析:①、242222245.081232=+-=+-; ②、=⨯÷32212332a a a a a a a a 3146132232131122=⨯=⨯⨯⨯⨯⨯. 考面:真数的运算35.(1)-3)6;(4)6- 【剖析】试题分解:本题主要考查根式的根式的混同运算战0次幂运算.根据运算规则先算乘除法,是分式该当先将分式转移为整式,再按运算规则估计.试题剖析:(1)==-原式试题剖析:(2)=原式试题剖析:(3)116=+==原式试题剖析:(4)22439212186=-=⨯-⨯=-=-原式((。
二次根式混合计算练习(附答案)
二次根式混合计算(2 ”「_ _ _ _ _ _ 18 — 2计算:(12)(1 一.. 2) .50 -2.32 .12.3• 、2 .2; 24 - 96 ;、:127- . 48+ ; . 12+ 75计算:(八)(2+ 3)+ -宀亠二°- 2计算(兀-3)0- (J2+1)( J2 -1) + 屁十卜E_2___ 1 1 1 2014 ) ( 1+—11 +V2 J 2+J 3+L 1L +…+——” ” ).3,4. 2013,2014计算:9( —X ;厂 1;8«2「3)计算: 2 x ( 2 + l) - _8V2迈扌-心-31十;计算: ...6 ■: - ‘ 2 八』24 3 48.10.计算: (1)「32 + 18 — 50;3 2 5(2)(5-2.6 ) x ( .2- 3 );11.计算:(3)(1+ . 2 + ,3 )(1-.2 - ,3);(4)(J12 -4J — )(2\8;4®).(1) C ■ 24 - 2 2.12 —--5.2412、计算,(-2)2-、、2(、2 -2) 6<3(1 )3_27 + .. (-3)2 - 3 -1 13、计算: (1) ,8 3 (2) i :75,3)C ,7 - . 5 - . 3)14、 3 -27「;』0 -、1 3 0.1253V4 V_ 2+73 _ 2 15、已知 x = 2 _ 3」=2 ■ 3,求值:2x 1-63 6416、计算:⑴V20+V5 「3xy 2y 2. -W2442}⑵(爲)2 +(兀十V 3)0 — V 27 +73—2 17、计算(「• :「(2)(6-3 :-. 1 / 121 .计算题(1)-■ 1「辽心一、:计算((9二|?恳—^+黑(寸二(^CXI—号co)(号CXI +号co ) —申中哼 +N电—^CXI ) (0 L )(吟2+^二畔2—^2)(書+将^—谒寸)2弋Q)◎co — Q £)(^co + Qu)OL )z ^r Ipl'r — 0(L —号)—或+「(i r g —— gw —) Q) T里)x CXI +2P X粵—『CXI—二十号 + z」L I ) (9)肿(2—吟匸(L —^e )(L +^e)(“)置+§■>ICO, + 2、)(号 +号—等))XI M衣• XICXI —毎co-M 44 ・0|参考答案1 . (1)-_; (2)厶-.10【解析】试题分析:(1)先把各个二次根式进行化简,再合并同类二次根式即可; (2) 根据二次根式的乘除混合运算法则计算. 解: (1 )::;;;— ::. =3 二一2 匚 + 匚一3 耳一匚;(2)一_「「严》「:=[.2. 3. 2【解析】试题分析:先将所给的各式化简成整数或最简二次根式,然后合并同类二次根式即可. 试题解析:原式 =1 _2 ^.2 -8.2・6 _3 _2--3-/2考点:二次根式的计算.试题解析:解:撐/—96鳥=:、6 2'6"6 T=^/6-2^/66- ------ 5?6.6考点:二次根式的加减点评:本题主要考查了二次根式的加减运算•首先把二次根式化为最简二次根式,然后再合并同类二次根式4. 0【解析】试题分析:根据实数的运算法则进行计算即可救出答案试题解析:(2 - -3)(2 • .3) • (-1)2010( ■■ 2 7丄「-(丄)-2=4-3^ -2=0考点:实数的混合运算•5. (1) 2+.3 ; (2) 5 3 .【解析】试题分析:(1)先计算零次幕、二次根式化简、去绝对值符号、把括号展开,然后进行合并即可求解. (2)把二次根式化成最简二次根式后,合并同类二次根式即可.4 41 / 12(1)原式=1-1+2 3 +2- .3 =2+ J 3 ;⑵原式=3 3-4. 32 3 5 3 2= 5,3 .考点:实数的混合运算;2•二次根式的混合运算.6. 4.6.【解析】试题分析:先进行二次根式的化简,财进行乘除运算,最后合并同类二次根式即可求出答案 试题解析:原式=9 V 2.2 21- 3迈•厶° -(2、2)2 •纸6-3= 9 2 1 -3 2 -8 4,6-3 =4.6.考点:实数的混合运算.7. 2013.【解析】试题分析:根据分母有理化的计算,把括号内各项分母有理化,计算后再利用平方差公式进行计算即可得解.111 1试题解析:(1.2014 )( 一1 +——1 +——1+…+ ----------- 1)1 +V2 <2 +V3 J3+U412013+J2014=(1 . 2014 ) ( ,2-1+ ..3- .. 2 + .. 4-、、3+…+ '、2014 - .. 2013 ) =(1.2014) ( 2 1 -)=2014-1=2013.考点:分母有理化.8. 2【解析】=2 + 1 — ,9 + .4 = 3 — 3+ 2= 2【解析】- 3 2解:原式=4—(3 — 2・、2) +—解:原式=2= 4 - 3 + 2 2 + 口 = 1 + —244【解析】(1)利用 一 a 2=a(a > 0) , , ab a . b (a > 0,b > 0)化简;(2) 可以利用多项式乘法法则,结合上题提示计算; (3) 利用平方差公式; (4) 利用多项式乘法公式化简•11.(1) ■ 6 ;(2) 3 . 2 .4 10【解析】试题分析:(1 )先把二次根式化成最简二次根式之后,再合并同类二次根式即可求出答案; (2 )先把二次根式化成最简二次根式之后,再进行二次根式的乘除法运算必6冷-子八6(2)原式=4巧汉一3汇4 5/2=3 .2 10考点:二次根式的化简与计算•12. 32.【解析】试题分析:先进行二次根式的化简,再合并同类二次根式即可求出答案试题解析:i (-2)2 -、2(、,2 -2厂v3=2-2+2、、2+ - 2 =3考点:二次根式的化简求值.13. (1)3 2 3 3; (2) -1-2 石【解析】10. (1)-32 ; (2) 11 .2-9 .3 ; (3) -4-2 .6 ; (4) 8-4.6 3试题解析:(1)原式=(2 .6=3103 / 12试题分析:(1)把二次根式进行化简后,再合并同类二次即可得出答案; (2)先利用平方差公式展开后,再利用完全平方公式计算即可.试题解析:(1)8 W F3、. 2 3.3---- + ------^.2 3.3 ;-2 ;(2)(J :5,.3)( J - .5 - .. 3)=7 -(、一5 '、3)2考点:二次根式的化简14. (1) 111(2) -4【解析】解:(1) 3 -27;(-3)2 - 3 -1 =-3 3-(-1) = 1.15. 385【解析】解:因为 2x 2 -3xy 2y 2 = 2x 2 - 4xy 2y 2 xy = 2(x - y)2 xy所以 2x 2 -3xy 2y 2 =2 (8 .3)21 =385 .16. -.,2 .【解析】试题分析:先化成最简二次根式 ,再进行计算. 试题解析:(J24 - J 》一2( J 1+J6)⑵—43。
二次根式混合计算练习(附标准答案)
二次根式混合计算(2 ”「2 .计算:(1、2)(1 _ • 2) • 50 _2、32 、12 • 3 •丄18 _、2 '. √24. 计算:(2— 3)(2+ 3)+ —f —'—扌5 .计算(兀一3) — (V 2 +1)( 2—1) + J 12 + 1/3—21 +J2014) ( ------- T= + --- +— --------- +…+ ---- ) 1 +√2 J 2+J3 %⅛ +√4 √201^√'20142 × ( .2 + 1 ) — -1^ 8 √2 √2舟S 迈-3|+712、计算,(-2)2 - .2( .2 -2)6 √36、计算: 9( — 2 -A I f (2 2-39 •计算:6 2 、24“ 3 - 48. 10.计算:(1) 1 . 32+1 .8-丄.50; 3 2 5 (2)(5-2 6) × ( 2 - 3); 11.计算: (3)(1+ ,2+..3)(1- .-2-..3); (4)( 12一4」(2 (1) C-24 - 213、计算: (1) , 8 3 1 1 、、3√ √τ(2) ^.7 .5 .3)C-7 - .5-^3) 1 3 0.125 3 1 - 63 4 ■ 64 _ 2+73 _ 2 _ √315、已知 X= 2 - 3 , 丫 = 2 3 ,求值:2χ2 - 3xy 2y 2 .(3J 6 — 4√2 fe√6 + 4√2 )⑵(√3)2 + (兀十 √3)0 —√27 + V 3 — 2 14、1) 16、计算:⑴√20+√5 17、计算(I ) 「- × r(2)(6 ÷3 :■.1 / 12 1 .计算题(1) -■ 1「辽心一、: 3 .摇S-岳弋 S _______ S ______________ A I _____________________ _______•.一 27*48+ 「12+ 75 27 •计算(8.计算:(1)好0—铝+号(寸L) (^0l ^e )(^0+t¾e )l Ξ'÷⅛+」黑—辱0) ⅛ (8) ^'>I B ->÷R >+^y αr (9) (¾cxl +,¾二吗cxl l ,¾2) (2) (OL) (l¾Co I L ¾2)(L ¾CO +L ¾2)O L)(6) Cxl O(L —号)—毎+「(〔r g —— Z J T ) Q) 肿(0—^)+〒^巴亍黑")0) ILC ⅞ 1^4(年+t⅛2)参考答案1 • (1)-飞(2)厶- •LO【解析】试题分析:(1)先把各个二次根式进行化简,再合并同类二次根式即可;(2)根据二次根式的乘除混合运算法则计算.解:(1 )::;;;—: =3 ~-2 ~+ 匚-3 ^=-匚;(2)—「「_=4 X : =-:■2. -3.2【解析】试题分析:先将所给的各式化简成整数或最简二次根式,然后合并同类二次根式即可.试题解析:原式=^2 5 2 -8 2 6 -3 -2-3 2考点:二次根式的计算.【答案】-7飞.6【解析】试题解析:解:、2;•24 - ∙.96「1=J6 2®4' T=I6必66考点:二次根式的加减点评:本题主要考查了二次根式的加减运算.首先把二次根式化为最简二次根式,然后再合并同类二次根式4. 0【解析】试题分析:根据实数的运算法则进行计算即可救出答案试题解析:(2 - 3)(^ 3) (T)2010L 2 -二)■ -(丄)‘=4 —3 * -2=O考点:实数的混合运算•5. (1) 2+ .3 ;(2) 5 3 .【解析】试题分析:(1)先计算零次幕、二次根式化简、去绝对值符号、把括号展开,然后进行合并即可求解.(2)把二次根式化成最简二次根式后,合并同类二次根式即可.2.6-4.61 / 12 (1)原式=1-1+2 X3 +2- ∖ 3=2+、3 ;1 _ _⑵原式=3,3-4,3 2、、3 5.3= 5.3 .考点:实数的混合运算; 2•二次根式的混合运算.6. 4 .6【解析】试题分析:先进行二次根式的化简,财进行乘除运算,最后合并同类二次根式即可求出答案=9 2 1 -3 2 -8 4、、6 -3=46考点:实数的混合运算•7. 2013.【解析】试题分析:根据分母有理化的计算,把括号内各项分母有理化,计算后再利用平方差公式进行计算即可得解.III 1试题解析:(1 .2014)( 一1 +——1 +——1 +…+ ----------- 1)1 +√2 J 2+J3 丁3+丁4 ¢2013+12014=(1 .2014) ( .2-1+ W+.4- J3+∙∙∙ + ,2014-「2013)=(1 2014) ( 一 241 - )=2014-1=2013.考点:分母有理化.8. 2【解析】=2 + 1 —、、9 + A = 3 — 3+ 2= 211匚9. 1+ 24 【解析】3 2解:原式=4— (3 — 2 2 ) + 一4试题解析:原式 =9 1,2 2 -(2、、2)2 4. 6 -3 解:原式= (2)2+1 -=4 —3 + 2.2 + 3-2= 1 + 11、24 44 LLL L 4 J 6 10• (1) 2 ; (2) 11 2 -9 3 ; ( 3) -4-2 /6 ; (4) 83 3【解析】(1)利用一a2=a(a ≥0) , . ab a .. b (a ≥0,b ≥0)化简;(2)可以利用多项式乘法法则,结合上题提示计算;(3)利用平方差公式;(4)利用多项式乘法公式化简•11. (1) ; (2) 3 2 .4 10【解析】试题分析:(1)先把二次根式化成最简二次根式之后,再合并同类二次根式即可求出答案;(2)先把二次根式化成最简二次根式之后,再进行二次根式的乘除法运算=2&子6∣3 1(2)原式=4,3 -4 5/2考点:二次根式的化简与计算12. 32.【解析】试题分析:先进行二次根式的化简,再合并同类二次根式即可求出答案_____ _ _ 6试题解析:....(-2)2 - ι2C∙ 2 -2) •Λ3=2-2+2、、2+ 2=3 2考点:二次根式的化简求值.13. (1) 32 3 3; (2) -1-2、、15.【解析】试题解析: (1)原式=(2 ,6=31023 / 12 试题分析:(1)把二次根式进行化简后,再合并同类二次即可得出答案;(2)先利用平方差公式展开后,再利用完全平方公式计算即可 .试题解析: 3、2 3「3 = ------ + -------3、2 3.3•— ? 2(2)(万..3、.3)(万-.弓-'、3)=7 -( .5 、、3)2=7 -8 -2、15-2.15.考点:二次根式的化简14. (1) 1 Z X 11(2) - 4【解析】解: (1)封—27+J(—3)2 -幼-1=-3 + 3-(-1 = 1.15. 385【解析】解:因为 2χ2 -3xy 2y 2 = 2χ2 - 4xy 2y 2 xy = 2(x - y)2 xy所以 2x 2 -3Xy 2y 2 =2 (8 .3)2 1 =385 .【解析】试题分析:先化成最简二次根式 ,再进行计算.试题解析:-一2(] .√∙6)16.(2)3 一27 - 0-、 63—3 — 0丄0.5丄」 64 2 44 (2 * 3)2 _ _ 2 + √3 2 _ √3~ ___________________ 2 - 3 2 3 (2 亠)(2 -,3 ) 2 3 2 - 3Xy =( )( )=1 2 - J3 2 + √3 ,(2 - 3)2-=U 3 (2 * ,3)( 2 -、3)' (1)、8 3=(2 6 - =2、6寻訂6考点:二次根式化简.17. .【解析】试题分析:先化成最简二次根式,再进行计算.试题解析:(HE) _2(卜冏=2 庇¥ 一¥ 一2虑一逅.考点:二次根式化简.18. (1)22; (2) 6-4、.3【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案(2)分别根据平方、非零数的零次幕、二次根式、绝对值的意义进行计算即可得出答案试题解析:⑴3∙. 6 -4、. 2 3・、6 4. 2=(3飞)2 -(4、.2)2=54 —32=22.(2)(两2+(兀+何 _松+I y J_2= 3 1 -3 3 2 -、3=6-4、3考点:实数的混合运算19. (1)1;(2)-3【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案试题解析:(1W"5 / 12= (3:.f x - 2 "∙∕x)3 J X1^β.考点:二次根式的混合运算【解析】试题解析:1皿—2上+√4^ ∣÷2√3 =(6√3-ZV 3+4√5)÷2√3 =空√34∙275 \3)3 3 考点:二次根式运算.21. 0.【解析】试题分析:根据二次根式运算法则计算即可 •试题解析:12 、2 产6 ∙ I 3 =2.6-3 . 6 - 1 ,6 =0.J 2 ∖*2 J 2 2考点:二次根式计算.22. (1) 2 6 ; (2) 10.【解析】试题分析:(1)把括号内的项进行组合,利用平方差公式进行计算即可得到答案;(2)把二次根式化简后,合并同类二次根式,再进行计算即可求出答案.试题解析:(1) (^-^ -2). 2)t5 -(、3 - ⑵][、、5 ( .3 -、2)]=5 -(、一3 7'2)2=5-5 2.6= 2,6(2) 2 5(4.20 -3、45 2,5)=2 .5(8 .5 -9.5 2.5)=2 5 .5 =10考点:二次根式的混合运算20. 143试题分析:先将二次根式化成最简二次根式 再算括号里面的,最后算除法.23. (1) 6廖—2^+18—4√2; (2) 33. 3【解析】试题分析:(1)根据二次根式化简计算即可(2)应用平方差公式化简即可 .4 12 324 _2、72 =6.6 _16、3 18_4. 2 3 3 3 — — _ _ 2 2 (2) 35 -2.3 3 5 2 3 =3 .5? -[2.345 —12 =33. 考点:二次根式化简24. ( 1) ; ( 2) ~6州5 .2 【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.(2)原式=、.6、、3-2.153-3、,2 =3、2-6 5-3,2 =-6 5 .考点:二次根式的混合运算; 25. 24-4 .2 .【解析】试题分析:二次根式的加减,首先要把各项化为最简二次根式,是同类二次根式的才能合并,不是同类二次根式的不合并;二次根式的乘除法公式..m 、. n= . mn m _0,n _0 ,左到右是计算,从右到左是二次根式的化简,并且二次根式的计算要对结果有要求,能开方的要开方,根式中不 含分母,分母中不含根式.试题解析:解:原式=18-1 + 3 — 4 . 2 +4=24-4 . 2 .考点:二次根式的计算. 26. 6-6. 2 .【解析】试题分析:根据二次根式的混合运算顺序和运算法则计算即可. 试题解析:(〉27- .24+ 3 :)?' 12=(G- 2^6+、6)?2 .3=(.3-、6)?2 .3=6-考点:二次根式的混合运算.27. (1) (2) 4.10试题解析: (1) 22 ,12试题解析:(1)原式="2 土2 242 9 -_2 -.m=.m 需要说明的是公式从【解析】试题分析:掌握二次根式的运算性质是解题的关键.一般地,二次根式的乘法:ja∙jb = jab( aκθ, b^O);二次根式的二次根式进行合并•计算时,先算乘除法,能化简的根式要先进行化简再计算,最后计算加减法,即合并同类项即可•试题解析:解:(1)原式=4Λ∕3×:竺X」=4 5J2=4 3 仝24 1010(2)原式=3 -2-5 • 8 =4考点:1、二次根式的化简;2、实数的运算.28. ~2 3 .【解析】试题分析:本题涉及零指数幕、二次根式的化简、分母有理化、绝对值化简个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=1 -3、.2-2.3考点:1.实数的运算;2.零指数幕;3.分母有理化.29. 2 2 .5 .【解析】试题分析:根据运算顺序化各根式为最简二次根式后合并即可试题解析:原式=5 5 + 1 2.5 - . 5 445亠5 =、5+ 5 -1 9 = 2 .5 -1 3=2 2.5.5 2 4 5考点:二次根式运算•30. 2.【解析】试题分析:针对有理数的乘方,二次根式化简,零指数幕,负整数指数幕4个考点分别进行计算,然后根据实数的运算法则求得计算结果•试题解析:原式=1+^.2 ∙1-3-.2+∙.2 =2.考点:1.实数的运算;2.有理数的乘方;3.二次根式化简;4.零指数幕;5.负整数指数幕.31. 2,2-2 3.【解析】的除法: Aa( a-0, b AO);二次根式的加减时,先将二次根式化为最简二次根式,再将被开方数相同4个考点.在计算时,需要针对每7 / 12试题分析 次根式的乘法法则:...a ::話b = ab(a _ 0,b _ 0), 次根式除法法则b= a (^0,b 0),二次根式的乘除计算完后要化为最简二次根式,然后进行加减运算,二次根式 ∖ b加减的实质是合并同类二次根式 •试题解析: 6 ∙,2 • 24“、..3- ... 48 =2∙..3 2 2-4^^2-^3.考点:二次根式的混合运算•32. (1) 0; (2) 4 3 •【解析】试题分析:(1)原式=1 -5 • 2 • 3-1 =0 ;(2)原式=6^- ,3 2\3-3、.3=4打. 考点: 1.实数的运算;2.二次根式的加减法.33.( 1) 【解析】试题分析: 1;( 2) 7-2、、6.(1)解:原式=5- 7+3=1;(2)解:原式=14-4、6 2、、6-(27 -20) = 7-2\6 .考点:二次根式的混合运算.■■— 1 34•①、4.2 :②、—a 3【解析】试题分析:根据二次根式的混合运算的法则结合二次根式的性质依次计算即可试题解析:①、\32 -2、1 • .、0.5 =4、2 ∙2 ^2 =4、, 2 ;⅛ 2 2考点:实数的运算35. (1) -3(2 ; (2) ^√3 ; (3) 6; (4) -69 【解析】试题分析:本题主要考查根式的根式的混合运算和 转化为整式,再按运算法则计算。
八年级数学下册《二次根式》综合练习题含答案
八年级数学下册《二次根式》综合练习题测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232B .32321C .281D .241三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525(6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x 5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+-12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式.试写下列各式的有理化因式: (1)25与______; (2)y x 2-与______; (3)mn 与______; (4)32+与______; (5)223+与______; (6)3223-与______. 23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第二十一章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49.5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6. 11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1. 19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b (6);52 (7)49; (8)12; (9)⋅y xy 263 8..cm 62 9..72 10.210.11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1.16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5) ;36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a3.C . 4.C . 5.C .6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab + 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+-- 15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x12.1. 13.错误. 14.C . 15..12+16.⋅-423411 17..321b a + 18.0. 19.原式,32y x +=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n nn n nn (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n n n n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax -4.D . 5.D . 6.B . 7.⋅66 8..1862-- 9..3314218- 10.⋅417 11..215 12..62484- 13.(1)3;(2).55-- 14.B . 15.D .16.⋅-41 17.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.。
二次根式混合计算练习(附标准答案)
二次根式混合计算(2 ”「2 .计算:(1、2)(1 _ • 2) • 50 _2、32 、12 • 3 •丄18 _、2 '. 42 T ■-A4. 计算:(2— 3)(2+ 3)+ —f —'—扌5 .计算(兀一3) — (V 2 +1)(2—1) + J 12 +— 21 +J2014) ( ------- -;= + --- +— --------- +…+ ---- ) 1 +V2 (2+J3 J 3+J4 &2013 + J20142 x ( . 2 + 1 ) — "8 一「8 迈 V 2 舟、2 迈-3|+711.计算:12、计算,(-2)2 - .2( .2 -2)6 J36、计算: 9( — 2 ;)「1f (22-39 •计算:6 2 、24“ 3 - 48. 10.计算: (1) 1 . 32+1 .8 -丄.50; 3 2 5 (2)(5-2 6) x ( 2 - 3); (3)(1+ ,2+ .3)(1- ,2 - .. 3); (4)(12-4」(2 13、计算: (1) , 8 3 1 1 、、3 (2) ^.7 .5 .3)^.7 - .5-^3) 1 3 0.125 3 1 - 63 4 ■ 64 _ 2+73 _ 215、已知 X = 2 - 3 ' 丫 = 2 3,求值:2x 2 - 3xy 2y 2 . (3J6 — 4V2fe<6 + 442}⑵(运)2 +(兀十73)0 — V 27 + V 3—2 14、 1) 16、计算:⑴V20+V5 17、计算(° - x =(2)(6 -3 :-.1 / 12 1 .计算题(1)-■ 1「辽心一、: 3 .摇5-岳弋 ff _______________________ A ( _____________________ ________________•.一 27*48+ 「12+ 75 27 •计算(8 •计算:(1)(1) C-24 - 2好cxl —铝+号(寸二 (^cxl —^e )(^cxl +^e )—「中哼+」黑—^0) 卜1^— 8 寸A -I + ^r —^: (8) 罔'>—2_>小尺>+冬衣£产(9) (呀+%K 呀—哆)(2) (0L ) 十 ££>(9L) (号2—号2)(^2+^2)O L ) 凹了「cxl —置(二) (6) CXI 0(L —号)—毎+「(〔r g ——g z (T ) Q) 号号—』I 十号肿(0—^)+〒^巴亍黑")0) 氏/J (年+ICXI E )参考答案1. ( 1)- _; (2)厶- •10【解析】试题分析:(1)先把各个二次根式进行化简,再合并同类二次根式即可;(2)根据二次根式的乘除混合运算法则计算.解:(1 )::;;;—: :. =3 二-2 匚+ 匚-3 耳-匚;(2)—「「_=4 X :=-:.2. -3.2【解析】试题分析:先将所给的各式化简成整数或最简二次根式,然后合并同类二次根式即可.试题解析:原式=^2 5 2 -8 2_3 _2-3 2考点:二次根式的计算.【答案】-7.、.6.6【解析】试题解析:解:、2;•24 - ..96「1=3左2®4、6 T2.6-4.6=I6必66点评:本题主要考查了二次根式的加减运算.首先把二次根式化为最简二次根式,然后再合并同类二次根式4. 0【解析】试题分析:根据实数的运算法则进行计算即可救出答案试题解析:(2 - 3)(^ 3) (-1)201°( 2 -二)-(丄)‘=4 —3 * -2=0考点:实数的混合运算•5. (1) 2+ .3 ;(2) 5 3 .【解析】试题分析:(1)先计算零次幕、二次根式化简、去绝对值符号、把括号展开,然后进行合并即可求解.(2)把二次根式化成最简二次根式后,合并同类二次根式即可.1 / 12(1)原式=1-1+2、、3+2- \3=2+、3 ;1 _ _⑵原式=3,3-4,3 2、、3 5.3= 5.3 .考点:实数的混合运算; 2•二次根式的混合运算.6. 4 .6【解析】试题分析:先进行二次根式的化简,财进行乘除运算,最后合并同类二次根式即可求出答案=9 2 1 -3 2 -8 4、、6 -3=46考点:实数的混合运算•7. 2013.【解析】试题分析:根据分母有理化的计算,把括号内各项分母有理化,计算后再利用平方差公式进行计算即可得解.111 1试题解析:(1 .2014)( 一1 +——1 +——1 +…+ ----------- 1)1 +V2 <2 +V3 丁 3+J4 12013+12014=(1 .2014) ( .2-1+ W+.4- J3+…+ , 2014 -「2013)=(1 2014) ( 一 241 - )=2014-1=2013.考点:分母有理化.8. 2【解析】=2 + 1 —、、9 + ,4 = 3 — 3+ 2= 211匚9. 1+ 24 【解析】3 2解:原式=4— (3 — 2 2 ) + 一4试题解析:原式 =9 1,2 2 1 3.2 2.22~ 2 2 -(2、、2)2 4. 6 -3解:原式= (2)2+ 1 -2 =4 —3 + 2.2 + 鼻2 = 1 + 11 •- 24 44 L L L L 4 J 6 10 - (1) 2 ; (2) 11 ■•: 2 -9 3 ; ( 3) -4-2 ,/6 ; (4) 8 3 3【解析】(1)利用 一 a 2=a(a > 0) , . ab a , b (a > 0,b > 0)化简;(2) 可以利用多项式乘法法则,结合上题提示计算;(3) 利用平方差公式;(4) 利用多项式乘法公式化简•11. (1) . 6-^^ ; (2) 3 2 . 4 10【解析】试题分析:(1 )先把二次根式化成最简二次根式之后,再合并同类二次根式即可求出答案;(2 )先把二次根式化成最简二次根式之后,再进行二次根式的乘除法运算=2&子-手乜;3 1 (2)原式=4,3 - 4 5/2考点:二次根式的化简与计算12. 32.【解析】试题分析:先进行二次根式的化简,再合并同类二次根式即可求出答案_____ _ _ 6试题解析:....(-2)2 - \2(、. 2 -2厂\3=2-2+2、、2+ 2=3 2考点:二次根式的化简求值.13. (1) 323 3 ; (2) -1-2J5.【解析】试题解析: (1)原式=(2 ,6=32 103 / 12试题分析:(1)把二次根式进行化简后,再合并同类二次即可得出答案;(2)先利用平方差公式展开后,再利用完全平方公式计算即可 .试题解析: 3、2 3「3 = ------ + -------3、2 3.3_ •— ? 2(2)(万馬、.3)(万-.弓-、、3)=7 -( .5 、、3)2=7 -8 -2、15-2.15.考点:二次根式的化简14. (1) 1 /、 11(2) - 4【解析】解: (1)封—27+J(—3)2 -幼—1=-3 + 3-(-1 = 1.15. 385【解析】解:因为 2x 2 -3xy 2y 2 = 2x 2 - 4xy 2y 2 xy = 2(x - y)2 xy所以 2x 2 -3xy 2y 2 =2 (8 .3)2 1 =385 .【解析】试题分析:先化成最简二次根式 ,再进行计算.试题解析:&24 -£)一2(] •「6)16.(2)3 一27 - 0 -、 63—3 — 0丄0.5丄」64 2 44 _ _ 2 + v'3 2 _ 爲 ________________ 2 - 3 2 3 (2 亠)(2 -,3 ) 2 3 2 - 3xy =\ )( )=1 2 - J3 2 + 73 ,(2 * 3)2 (2 - 3)2- =8 "J 3 (2 * ,3)( 2 -、3)' (1) 、8 3=(2 6 -=2、6寻訂6考点:二次根式化简.17. .【解析】试题分析:先化成最简二次根式,再进行计算.试题解析: (屈书_2毎価=2艮乎一乎一2屁J .考点:二次根式化简.18. (1)22; (2) 6-4、.3【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案(2)分别根据平方、非零数的零次幕、二次根式、绝对值的意义进行计算即可得出答案试题解析:⑴ 3.. 6 -4、. 2 3・、6 4. 2=(3飞)2 -(4、.2)2=54 —32=22.(2)(两2+(兀+何_松+応_2= 3 1 -3 3 2 -、3=6-4、3考点:实数的混合运算19. (1) 1; (2)-3【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案试题解析:5 / 12= (3:.fx - 2』x ) 31_3.考点:二次根式的混合运算【解析】试题解析:1*2—2上+74^ 卜2巧=(673-?73+475)斗273 =空73斗273 \3 )33 考点:二次根式运算.21 . 0.【解析】试题分析:根据二次根式运算法则计算即可 •试题解析:12 、2 产6 • I 3 =2.6-3 . 6 - 1 ,6 =0. I 2 I 2 2考点:二次根式计算.22. (1) 2 6 ; (2) 10.【解析】试题分析:(1)把括号内的项进行组合,利用平方差公式进行计算即可得到答案;(2)把二次根式化简后,合并同类二次根式,再进行计算即可求出答案.试题解析:(1) (•. 5 - 3 •、一 2)( •. 5」3 - 2)t5 -(、3 - ⑵][、、5 ( .3 -、2)]=5 -(、一3 7'2)2=5-5 2.6= 2,6(2) 2 5(4.20 -3、45 2,5)=2 .5(8 .5 -9.5 2.5)=2 5 .5 =10考点:二次根式的混合运算20. 143试题分析:先将二次根式化成最简二次根式 再算括号里面的,最后算除法.23. (1) 6廖—2^+18—4运;(2) 33. 3【解析】试题分析:(1)根据二次根式化简计算即可(2)应用平方差公式化简即可 .4 12 324 _2、72 =6.6 _16、3 18_4. 2 3 3 3 — — _ _ 2 2 (2) 35 -2.3 3 5 2 3 =3 .5? -[2.345 —12 =33. 考点:二次根式化简24. ( 1) ; ( 2) -6舛5 .2 【解析】试题分析:(1 )先去分母,再把各二次根式化为最简二次根式,进行计算;(2 )直接利用分配律去括号,再根据二次根式乘法法则计算即可.(2)原式=、.6、、3-2.15 3-3、, 2 =3、2-6 5-3,2 =-6 5 .考点:二次根式的混合运算; 25. 24-4 .2 .【解析】试题分析:二次根式的加减,首先要把各项化为最简二次根式,是同类二次根式的才能合并,不是同类二次根式 的不合并;二次根式的乘除法公式..m 、. n= . mn m _0,n _0 ,左到右是计算,从右到左是二次根式的化简,并且二次根式的计算要对结果有要求,能开方的要开方,根式中不 含分母,分母中不含根式.试题解析:解:原式=18-1 + 3 — 4 . 2 +4=24-4 . 2 .考点:二次根式的计算. 26. 6-6. 2 .【解析】试题分析:根据二次根式的混合运算顺序和运算法则计算即可. 试题解析:(〉27- .24+ 3 :)?' 12=(G- 2^6+、6)?2 .3=(.3-、6)?2 .3=6-考点:二次根式的混合运算.27. (1) (2) 4.10试题解析: (1) 22 ,12试题解析:(1)原式="2 土2 2429 -_2 -.m=.m 需要说明的是公式从7 / 12【解析】试题分析:掌握二次根式的运算性质是解题的关键 .一般地,二次根式的乘法: ja.jb = jab ( a^O, b^O );二次根式 的二次根式进行合并•计算时,先算乘除法,能化简的根式要先进行化简再计算,最后计算加减法,即合并同类 项即可•试题解析: 解:(1)原式=4弋3汇空X 丄=4 5J2=4 3 仝 2 4 1010(2)原式=3 -2-5 • 8 =4考点:1、二次根式的化简;2、实数的运算.28. -2 ■. 3 .【解析】试题分析: 本题涉及零指数幕、二次根式的化简、分母有理化、绝对值化简 个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=1-3.3 .2-1 .3- 2= -2.3考点:1.实数的运算;2.零指数幕;3.分母有理化. 29. 2 2 5 .【解析】试题分析:根据运算顺序化各根式为最简二次根式后合并即可 试题解析:原式=5 5 + - 2.5 - . 5 4 45亠5 =、5+ 5 -1 9 = 2 .5 -1 3=2 2.5.5 2 4 5 考点:二次根式运算•30. 2.【解析】试题分析:针对有理数的乘方,二次根式化简,零指数幕,负整数指数幕4个考点分别进行计算,然后根据实数的运算法则求得计算结果•试题解析:原式 =1+2,. 2・1-3'.2+・.2 =2.考点:1.实数的运算;2.有理数的乘方;3.二次根式化简;4.零指数幕;5.负整数指数幕. 31. 2,2-2 3.【解析】的除法: ♦ I a- b A0);二次根式的加减时,先将二次根式化为最简二次根式,再将被开方数相同4个考点.在计算时,需要针对每试题分析 次根式的乘法法则:...a ::話b = ab(a _ 0,b _ 0), 次根式除法法则b= a (^0,b 0),二次根式的乘除计算完后要化为最简二次根式,然后进行加减运算,二次根式\ b加减的实质是合并同类二次根式 •试题解析: 6 ・,2 • 24“、..3- ... 48 =2、.3 2 2-4 ^^2-^3.考点:二次根式的混合运算•32. (1) 0; (2) 4 3 •【解析】试题分析:(1)原式=1 -5 • 2 • 3-1 =0 ;(2)原式=6_3-,3 2\3-3、.3=4打. 考点: 1.实数的运算;2.二次根式的加减法.33.( 1) 【解析】试题分析: 1;( 2) 7-2、、6.(1 )解:原式=5- 7+3=1;(2)解:原式=14-4、6 2、、6 -(27 -20) = 7-2\6 .考点:二次根式的混合运算.■■― 1 34•①、4.2 :②、—a 3【解析】试题分析:根据二次根式的混合运算的法则结合二次根式的性质依次计算即可试题解析:①、\32 -2、1 • .、0.5 =4、、2「2 ^2 =4、, 2 ;\8 2 2考点:实数的运算35. (1) -3(2 ; (2) ^73 ; ( 3) 6; (4)七 9【解析】试题分析:本题主要考查根式的根式的混合运算和 转化为整式,再按运算法则计算。
二次根式的应用综合练习题
二次根式的应用综合练习题1. 题目一:小明要在一个边长为6米的正方形花坛周围铺一圈沙子,他打算买三角形花坛边长为1米的石块来铺。
问他至少要买多少块石块?解析:首先计算正方形花坛的周长:6米 × 4边 = 24米然后计算需要的石块数量:24米 ÷ 1米 = 24块答案:小明至少需要买24块石块。
2. 题目二:一个圆形花坛的半径为9米,小红打算围绕花坛铺一圈边长为1.5米的砖块。
问她最少需要购买多少块砖块?解析:首先计算圆形花坛的周长:2 × π × 半径 = 2 × 3.14 × 9 =56.52米然后计算需要的砖块数量:56.52米 ÷ 1.5米≈ 37.68块,因为砖块数量不能为小数,所以上取整为38块答案:小红最少需要购买38块砖块。
3. 题目三:一个长方形花园的长为18米,宽为12米,小华打算围绕花园铺一圈长度为2.5米的木板。
问他最少需要购买多少块木板?解析:首先计算长方形花园的周长:(长 + 宽) × 2 = (18米 + 12米) ×2 = 60米然后计算需要的木板数量:60米 ÷ 2.5米 = 24块答案:小华最少需要购买24块木板。
4. 题目四:一个正方形花坛的周长为15米,小明打算围绕花坛铺一圈边长为0.8米的砖块。
问他最少需要购买多少块砖块?解析:首先计算正方形花坛的边长:周长 ÷ 4 = 15米 ÷ 4 = 3.75米(每条边的长度)然后计算需要的砖块数量:3.75米 ÷ 0.8米≈ 4.69块,因为砖块数量不能为小数,所以上取整为5块答案:小明最少需要购买5块砖块。
5. 题目五:一个边长为5米的正方形花坛周围需要铺放砖块,每个砖块的边长为1米。
问需要购买多少块砖块才能铺满整个花坛?解析:首先计算正方形花坛的面积:边长 ×边长 = 5米 × 5米 = 25平方米然后计算砖块的面积:边长 ×边长 = 1米 × 1米 = 1平方米最后计算需要的砖块数量:25平方米 ÷ 1平方米 = 25块答案:需要购买25块砖块才能铺满整个花坛。
(完整版)二次根式综合练习题
二次根式综合练习题第一部分(选择题共30分)一.选择题(共10小题,每小题3分,满分30分)1.、、、、是二次根式的有()A.2个B.3个C.4个D.5个2.若yx2是二次根式、则下列说法正确的是()A.0,0≥≥yx B. 0,0>≥yxC.yx,同号 D.≥yx3.下列各式中、是最简二次根式的是()A.51B.C.D.4.对于二次根式92+x ,下列说法中不正确的是( )A.它是一个非负数B.它是一个无理数C.它是一个最简二次根式D.它的最小值为3 5.若3)1()2(22=++-x x ,则x的取值范围是( ) A.0=xB.21≤≤-xC.2≥xD.1-≤x6.已知直角三角形有两条的长分别是3cm 、4cm ,那么第三条边的长是( )A.cm 5B.cm 7C.cm 5或者cm 7D. cm5 7.下列二次根式中、是同类二次根式的一组是( )A.与B.与C.与D.与8.下列各式:、、、、、、、其中与是同类二次根式的有( )A.1个B.2个C.3个D.4个 9.如果1≤a ,那么化简=-3)1(a ()A.aa --1)1( B.1)1(--a aC.1)1(--a aD.a a --1)1(10.化简22)32(144--+-x x x 得( ) A.2 B2.x 44-C.44-xD.2-第二部分(非选择题 共120分) 二.填空题(共6小题,每小题3分,满分18分)11.若+有意义,则x 的取值范围是。
12.写出两个与是同类二次根式的式子。
13.若最简二次根式与的被开方式相同、则a的值为 。
14.若与n 与都是最简二次根式、并且是同类二次根式、则=+n m 。
15.当1<x 时,=+-122x x ,当51<≤x 时,=-+-5)1(2x x16.若2440y y +-+=,则xy 的值 。
三.解答题(共9小题,满分102分) 17.(本小题满分10分)若22≤≤-a ,化简-.18.(本小题满分10分) (1)(()2771+---(2)21)2()12(18---+++19.(本小题满分10分)(1) 43)85(41)1(12+⨯--÷-- (2)4401425.0)14.3()21(⨯+---π20.(本小题满分10分) 已知12+=x ,求(22121x x x x x x +---+)÷1x 的值.21.(本小题满分10分) 已知:132-=x ,求12+-x x 的值.22.(本小题满分12分)已知:11a a+=+、求221a a+的值。
二次根式混合计算练习(附答案)
二次根式混合计算1.计算题(1)(2).2.计算:218(12)(12)5023212322-+.3.619624322+-+127-48+12+7524.计算:(23)(23)+()20101-()02π--121-⎪⎭⎫ ⎝⎛5.计算(π-3)0-)12)(12(-++2312-+6、计算:)13(9-0+)322(2818)212(2----+ 27.计算(20141+)(211++321++431++…+201420131+)8×) 212-⎛⎫ ⎪⎝⎭--3|.9.计算:4832426-÷+⨯.10.计算:(1)3132+218-5150; (2)(5-26)×(2-3);(3)(1+2+3)(1-2-3); (4)(12-481)(231-45.0).11.计算:(1)-(2)12、计算36)22(2)2(2+---(1)327-+2)3(--31-13、计算: (1(2)14、33364631125.041027-++--- .11(24)2(6)28--+15、已知,3232,3232+-=-+=y x 求值:22232y xy x +-.16、计算:⑴ ()()24632463+- ⑵ 20(3)(3)2732π++-+-17、计算(1)﹣× (2)(6﹣2x )÷3.20.计算:1312248233⎛÷ ⎝3631222⎝21.计算22.(1))235)(235(-++- (2))52453204(52+-22.计算:(1)(222122763 (2)(35233523-23.化简:(1)83250+ (2)2163)1526(-⨯- (3)(2)23()123)(123-+-+; (4) 12272431233()?-+24.计算(1)2543122÷⨯(2)(3)231|21|27)3(0++-+-- (4)11545+204555245(5)()()2012011+8π236+22--⨯-() (6)4832426-÷+⨯(7)20121031(1)5()27(21)2----++ (8)113123482732(92225(7)(3)- (10)21(232)8(3325)(335)3(11)5.081232+-; (12)32212332a a a ⨯÷ (13))2332)(2332(-+ (14)18282-+(15)3127112-+(16)0)31(33122-++参考答案1.(1)﹣;(2).【解析】试题分析:(1)先把各个二次根式进行化简,再合并同类二次根式即可;(2)根据二次根式的乘除混合运算法则计算.解:(1)=3﹣2+﹣3=﹣;(2)=4××=. 2.32-【解析】试题分析:先将所给的各式化简成整数或最简二次根式,然后合并同类二次根式即可. 试题解析:原式125282632=-+--32=-考点:二次根式的计算. 【答案】766 【解析】 试题解析:解:619624322+-+ 26626463 =(266264636+⎭ 56266=766 考点:二次根式的加减点评:本题主要考查了二次根式的加减运算.首先把二次根式化为最简二次根式,然后再合并同类二次根式. 4.0【解析】试题分析:根据实数的运算法则进行计算即可救出答案. 试题解析:12010)21()2()1()32)(32(----++-οπ =234-⨯+-=0考点:实数的混合运算.5.;(2) .【解析】试题分析:(1)先计算零次幂、二次根式化简、去绝对值符号、把括号展开,然后进行合并即可求解.(2)把二次根式化成最简二次根式后,合并同类二次根式即可.(1)原式(2)原式=12⨯=.考点:实数的混合运算;2.二次根式的混合运算.6.【解析】试题分析:先进行二次根式的化简,财进行乘除运算,最后合并同类二次根式即可求出答案.试题解析:原式=2913⨯++-+9213283=++-+-+=考点: 实数的混合运算.7.2013.【解析】试题分析:根据分母有理化的计算,把括号内各项分母有理化,计算后再利用平方差公式进行计算即可得解.试题解析:(1+(211++321++431++…+201420131+)=(1++…=(1+1)=2014-1=2013.考点: 分母有理化.8.2【解析】解:原式=)2+1-=2+1=3-3+2=29.1+114【解析】解:原式=4-(3-)+4=4-3+=1+11410.(1)342;(2)112-93;(3)-4-26;(4)8-364. 【解析】(1)利用2a =a(a ≥0),ab =a b (a ≥0,b ≥0)化简;(2)可以利用多项式乘法法则,结合上题提示计算;(3)利用平方差公式;(4)利用多项式乘法公式化简.11.(14(2. 【解析】试题分析:(1)先把二次根式化成最简二次根式之后,再合并同类二次根式即可求出答案;(2)先把二次根式化成最简二次根式之后,再进行二次根式的乘除法运算.试题解析:(1)(24-+原式24=---4=;(2)原式=310⨯考点: 二次根式的化简与计算.12.【解析】试题分析:先进行二次根式的化简,再合并同类二次根式即可求出答案.试题解析: 36)22(2)2(2+---=考点: 二次根式的化简求值.13.(1;(2)1--. 【解析】试题分析:(1)把二次根式进行化简后,再合并同类二次即可得出答案;(2)先利用平方差公式展开后,再利用完全平方公式计算即可.试题解析:(122=+22=+=;(2)27=-78=--1=--考点: 二次根式的化简.14.(1)1 (2)114- 【解析】解: (1)327-+2)3(--31-=.11--33-=+)( (2)33364631125.041027-++---=1111300.5.244---++=- 15.385 【解析】解:因为 xy y x xy y xy x y xy x +-=++-=+-22222)(2242232,38)32)(32()32()32)(32()32(3232323222=-+---++=+---+=-y x , 1)3232)(3232(=+--+=xy , 所以3851)38(2232222=+⨯=+-y xy x .16..【解析】试题分析:先化成最简二次根式,再进行计算.试题解析:-224-⨯22--=考点:二次根式化简.17..【解析】试题分析:先化成最简二次根式,再进行计算.试题解析:---=. 考点:二次根式化简.18.(1)22; (2) 6-【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.(2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) ()()24632463+-22=-=54-32 =22.(2)20(2π+312=+--6=-考点: 实数的混合运算.19.(1)1;(2)1 3【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案.试题解析:3=-⨯32=-1=;(2)2÷=÷=÷=13=.考点: 二次根式的混合运算.20.143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.21.0.【解析】试题分析:根据二次根式运算法则计算即可.=⎝.考点:二次根式计算.22.(1)(2)10.【解析】试题分析:(1)把括号内的项进行组合,利用平方差公式进行计算即可得到答案;(2)把二次根式化简后,合并同类二次根式,再进行计算即可求出答案.试题解析:(1))235)(235(-++-25=-55=-+=(2))52453204(52+-=10==考点: 二次根式的混合运算.23.(1)18-(2)33. 【解析】试题分析:(1)根据二次根式化简计算即可;(2)应用平方差公式化简即可.试题解析:(1)(18==-.(2)(((22451233=-=-=. 考点:二次根式化简.24.(1)92;(2)-. 【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式92=;(2)原式==-考点:二次根式的混合运算;25..【解析】试题分析:二次根式的加减,首先要把各项化为最简二次根式,是同类二次根式的才能合并,不是同类二次根式)0,0m n≥≥)0,0m n≥>,需要说明的是公式从左到右是计算,从右到左是二次根式的化简,并且二次根式的计算要对结果有要求,能开方的要开方,根式中不含分母,分母中不含根式.试题解析:解: 原式=18-1+3-.考点:二次根式的计算.26.6-【解析】试题分析:根据二次根式的混合运算顺序和运算法则计算即可.试题解析:6=?=?=-考点:二次根式的混合运算.27.(1)2103.(2)4.【解析】试题分析:掌握二次根式的运算性质是解题的关键.一般地,二次根式的乘法:abba=•),(00≥≥ba;二次根式的除法:baba=),(00φba≥;二次根式的加减时,先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并.计算时,先算乘除法,能化简的根式要先进行化简再计算,最后计算加减法,即合并同类项即可.试题解析:解:(1)原式=2514334⨯⨯1024334⨯⨯==2103(2)原式8523+--=4=考点:1、二次根式的化简;2、实数的运算.28.-【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-+=-考点:1.实数的运算;2.零指数幂;3.分母有理化.29.2+.【解析】试题分析:根据运算顺序化各根式为最简二次根式后合并即可.试题解析:原式1511322=⋅==+=+. 考点:二次根式运算.30.2.【解析】试题分析:针对有理数的乘方,二次根式化简,零指数幂,负整数指数幂4个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式12=-.考点:1.实数的运算;2.有理数的乘方;3.二次根式化简;4.零指数幂;5.负整数指数幂.31.32-22.【解析】试题分析:二次根式的乘法法则:)0,0(≥≥=⨯b a ab b a ,二次根式除法法则:)0,0(φb a ba b a ≥=÷,二次根式的乘除计算完后要化为最简二次根式,然后进行加减运算,二次根式加减的实质是合并同类二次根式. 试题解析:32-2234-223248-32426=+=÷+⨯.考点:二次根式的混合运算.32.(1)0;(2)【解析】试题分析:(1)原式=152310-++-=;(2)原式==.考点:1.实数的运算;2.二次根式的加减法.33.(1)1;(2)7-【解析】试题分析:(1)解:原式=5-7+3=1;(2)解:原式=14(2720)--=7-考点:二次根式的混合运算.34.①、24;②、a 31【解析】试题分析:根据二次根式的混合运算的法则结合二次根式的性质依次计算即可. 试题解析:①、242222245.081232=+-=+-; ②、=⨯÷32212332a a a a a a a a 3146132232131122=⨯=⨯⨯⨯⨯⨯. 考点:实数的运算35.(1)-(3)6;(4)6- 【解析】试题分析:本题主要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除法,是分式应该先将分式转化为整式,再按运算法则计算。
二次根式混合计算练习(附答案)
次根式混合计算1 •计算题(1) - : ■- - (2)..:2 •计算: (1 . 2)(1 .2) .50 2 323 23 24 96 d4 •计算: (2- 3 ) (2+、.3 )+ 12010 25 •计算(-3)0-(迈 1)(豆1) + 迈V36、计算: -18 -8(2.2___ 111.2014 ) (—1+ —1+1+…+1 4242 43 43 441 ___ 1 1(1) — 32 + — .8——50 ; ⑵(5-23 2 58 •计算: (2)x( ... 2 +-3| +9 •计算:6 2 . 24 3 48.7 •计算(.2013 .201410.计算: 11.计算:12、计算(3)(1+ . 2 + ,3 )(1- .. 2 - ,3 ); ,(2)22( 2 2) 6v'3(4)((1 ) 3 27 + .. ( 3)2 - 3 1(2) 0 7 .5 .3)0.7 x 5 .3)(1)(云、12 -1 -4 0-5).13、计算:2 V 32 V 3已知 x 2 3,y23,求值:2x 2 3xy 2y 2.计算:⑴ 3茜 4迈 3茜 4迈 ⑵(73)2(V3)0 >/27 |^3 2计算(1)「,- (2) (6.」2x =14、15、16、17、20.21 .22.23.计算:3,12 2 1、、48 2、3 ,12 2 亠6V3 2 2计算 22. (1) ( 5 3 .2)( . 5 3 、2) (2) 2 5(4 20 3 45 2 5)计算:(1)2 212 27 3 6(2) 35 2 3 3 5 2 3化简: • 50 •、32<8(2) (、6 2. 15)、3 624 •计算(1) 2 12 3 5 24(2)爲4护^-丁(-习」+(】>/7)亠(7) ( 1)2012| 5 (1)1 V27(72 1)0(3) ( 3)027|1"2|,3 .2(5)2012 一1 +. 8n 2 0-.3 .6+2 ( 2厂(6)」6 2 . 24 ■. 3 48(9) ,25 ,( 7)2(■,3)2(10) (2、.3 、2)2(3、3 2.5)(3、、32 .5)(13) (2、. 3 ^.2)(2. 3 3 2)(16)2 12 、3(15) 12(8) 3.12参考答案1.( 1)- ■-■; (2)工:•1 10【解析】试题分析:(1)先把各个二次根式进行化简,再合并同类二次根式即可; (2)根据二次根式的乘除混合运算法则计算.解: (1)奶-施+应-叼=3並-2更负-咖=-逅;2. 3.2【解析】试题分析:先将所给的各式化简成整数或最简二次根式,然后合并同类二次根式即可.试题解析:原式 1 2 52 82 6 3 23.2考点:二次根式的计算.试题解析:解:2224 、96 . 1 .3 \6=Z晶 2屁 4 一63 6=2飞乜 2.63 6=5 .6 2.66=7.66考点:二次根式的加减点评:本题主要考查了二次根式的加减运算.首先把二次根式化为最简二次根式,然后再合并同类二次根式4.0【解析】试题分析:根据实数的运算法则进行计算即可救出答案ji—f—/—4试题解析:(2 .3)(2 ,3) ( 1)2010( ■■ 2 ) ( ) 12=4 3 2=0考点:实数的混合运算•5.(1) 2+ .3 ; (2) 5 3 .【解析】试题分析:(1)先计算零次幕、二次根式化简、去绝对值符号、把括号展开,然后进行合并即可求解.(2)把二次根式化成最简二次根式后,合并同类二次根式即可.=2+ J 3 ;_ 1 _ _⑵原式=3 3 4、3 — 2 3 5.32= 5,3 .考点:实数的混合运算; 2•二次根式的混合运算. 6. 4.6. 【解析】试题分析: 先进行二次根式的化简,财进行乘除运算,最后合并冋类二次根式即可求出答案 试题解析: 原式=9 12 .2 2 \3迈 2迈(2、、2)2纸6 39213284, 63 4.6.考点:实数的混合运算• 7. 2013. 【解析】试题分析:根据分母有理化的计算,把括号内各项分母有理化,计算后再利用平方差公式进行计算即可得解.11 1 -2014)(1 2 + 23 + .3 .4 I*=(1 2014 ) ( J 2 -1+ 打3 --门3 +…+ :■、.:2014 -:茫;2013 ) =(1.. 2014 ) ( .2014 1)=2014-1=2013. 考点:分母有理化. 8. 2 【解析】解:原式=(..2)2+ 1 -18、8暑V2=2 + 1 — ,9 + .4 = 3 — 3+ 2= 211匚9. 1+ 24【解析】3、、2解:原式=4— (3 — 2.2、+一试题解析:(1 1.2013 .20144 =4 — 3 + 2& + 辽=1 + 11 <2444 L10.(1) 2 ;3【解析】(1)利用a2=a(a > 0) , ab = ••. a . b (a > 0,b > 0)化简;(2)可以利用多项式乘法法则,结合上题提示计算;(3)利用平方差公式;(4)利用多项式乘法公式化简.11.(1) . 6 土2; (2) 3;2 .4 10【解析】试题分析:(1 )先把二次根式化成最简二次根式之后,再合并同类二次根式即可求出答案;(2 )先把二次根式化成最简二次根式之后,再进行二次根式的乘除法运算=3 210考点:二次根式的化简与计算12.3、2.【解析】试题分析:先进行二次根式的化简,再合并同类二次根式即可求出答案6试题解析:,(2)22(2 2)"3=2-2+2、、2+ - 23 一2考点:二次根式的化简求值.13. (1) 3 2 3 3; (2) 1 2.15.试题解析:(1)2 原式=16云)(2)原式=4-、315.2=310 4:,62【解析】试题分析:(1)把二次根式进行化简后,再合并同类二次即可得出答案;(2)先利用平方差公式展开后,再利用完全平方公式计算即可.2.23 .2 2 3^3 23.2 (2) 1 2试题解析:(1)、、. 83.3;(.5,5 .3)( J考点:二次根式的化简•14. (1) 1 (2) 114 【解析】解:(1) 3 :(2) 32715. 385【解析】解:因为2x22 15.13 0.1253xyx27xy 所以12 3(8 3)21385 .2 316.【解析】试题分析:先化成最简二次根式试题解析: (云 /)2(=(2'■ 63)、...(3)2- 3 1=-33-(-11. 0.5 4 112y2 22x 4xy(2 £(2 3)(2,再进行计算.2y2xy 2(x y)2V3)2(2 3)( 2 、3)(2xy,考点:二次根式化简.17..2 .【解析】试题分析:先化成最简二次根式,再进行计算.试题解析:C.24 、1)2仁1 -“6)=2 .6 2 2 2.6 :.2 .\2V8 2 2考点:二次根式化简.18.(1)22; (2)6 4、、3【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案(2)分别根据平方、非零数的零次幕、二次根式、绝对值的意义进行计算即可得出答案试题解析:(1) 3 6 4、2 3・.6 4 2(3、、6)2(4、、2)2=54 — 32=22.(2)(也彳(摘。
二次根式练习10套(附答案)
二次根式演习01一.填空题 1.下列和数1415926.3)1(.3.0)2(722)3(2)4(38)5(-2)6(π (3030030003).0)7( 个中无理数有________,有理数有________(填序号)2.94的平方根________,216.0的立方根________. 3.16的平方根________,64的立方根________. 4.算术平方根等于它本身的数有________,立方根等于本身的数有________.5.若2562=x ,则=x ________,若2163-=x ,则=x ________.6.已知ABC Rt ∆双方为3,4,则第三边长________.7.若三角形三边之比为3:4:5,周长为24,则三角形面积________.8.已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形.9.假如0)6(42=++-y x ,则=+y x ________. 10.假如12-a 和a -5是一个数m 的平方根,则.__________,==m a11.三角形三边分离为8,15,17,那么最长边上的高为________.12.直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________. 二.选择题13.下列几组数中不克不及作为直角三角形三边长度的是( )A.25,24,6===c b aB.5.2,2,5.1===c b aC.45,2,32===c b aD.17,8,15===c b a14.小强量得家里彩电荧屏的长为cm 58,宽为cm 46,则这台电视机尺寸是( )A. 9英寸(cm 23)B. 21英寸(cm 54)C.29英寸(cm 74) D .34英寸(cm 87)15.等腰三角形腰长cm 10,底边cm 16,则面积( )A.296cmB.248cmC.224cmD.232cm16.三角形三边c b a ,,知足ab c b a 2)(22+=+,则这个三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形17.2)6(-的平方根是( )A .6-B .36C.±6D.6±18.下列命题准确的个数有:a a a a ==233)2(,)1((3)无穷小数都是无理数(4)有限小数都是有理数(5)实数分为正实数和岁实数两类( )A .1个 B. 2个 C .3个D.4个19.x 是2)9(-的平方根,y 是64的立方根,则=+y x ( )A. 3B.7C.3,7D. 1,720.直角三角形边长度为5,12,则斜边上的高( )A. 6B.8C.1318D.1360 21.直角三角形边长为b a ,,斜边上高为h ,则下列各式总能成立的是( )A.2h ab =B.2222h b a =+C.h b a 111=+ D.222111hb a =+22.如图一向角三角形纸片,两直角边cm BC cm AC 8,6==,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A.cm 2 B.cm 3 C.cm 4D.cm 5三.盘算题23.求下列各式中x 的值:24.用盘算器盘算:(成果保存3个有用数字)四.作图题25.在数轴上画出8-的点.26.下图的正方形网格,每个正方形极点叫格点,请在图中画一个面积为10的正方形. 五.解答题27.已知如图所示,四边形ABCD中,,12,13,4,3cm CD cm BC cm AD cm AB ====090=∠A 求四边形ABCD 的面积.28.如图所示,在边长为c 直角边为b a ,勾股定理吗?写出来由.29.如图所示,15cm 60)堆在一路,30.如图所示,在ABC Rt ∆中,∠若AD=8,BD=2,求CD.31.在△ABC 中ABC 周长.二次根式演习01AEBDC第22题图第25题图第26题图第28题图 A第30题图AD答案:一.填空题:1.4.6.7,1.2.3.5;2.32±,0.6;3.±2,2;4.0和1,0和±1;5.±16,-4;6.5或7;7.24;8.直角;9.-2;10.-4,81;11.17120;12.1 二.选择题:13-22:ACBCCBDDDB 三.盘算题:23.(1)x=47±;(2)x=6或x=-4;(3)x=-1;(4)x=6;24.用盘算器盘算答案略 四.作图题:(略)五.解答题:27.提醒:贯穿连接BD,面积为56;28.提醒:应用面积证实;29.327.8;30.CD=4;31.周长为42.二次根式演习02一.选择题(每小题2分,共30分) 1.25的平方根是( )A.5B.–5C.5±D.5± 2.2)3(-的算术平方根是( )A.9B.–3C.3±D.3 3.下列论述准确的是( )2.0± B.32)(--的立方根不消失C.6±是36的算术平方根D.–27的立方根是–34.下列等式中,错误的是( ) A.864±=± B.1511225121±= C.62163-=- D.1.0001.03-=- 5.下列各数中,无理数的个数有( )A.1B.2C.3D.46.假如x -2有意义,则x 的取值规模是( )A.2≥xB.2<xC.2≤xD.2>x 7.化简1|21|+-的成果是( )A.22-B.22+C.2D.28.下列各式比较大小准确的是( )A.32-<-B.6655->-C.14.3-<-πD.310->-9.用盘算器求得333+的成果(保存4个有用数字)是( )A.3.1742B.3.174 C 10.假如mmm m -=-33成立,则实数m 的取值规模是( )A.3≥mB.0≤mC.30≤<mD.30≤≤m11.盘算5155⨯÷,所得成果准确的是( )A.5B.25C.1D.5512.若0<x ,则xx x 2-的成果为( )A.2B.0C.0或–2D.–213.a.b 为实数,在数轴上的地位如图所示,则2a b a +-的值是( )A.-bB.bC.b -2aD.2a -ba 0 b14.下列算式中准确的是( )A.333n m n m -=-B.ab b a 835=+C.1037=+x xD.52523521=+ 15.在二次根式:①12;④27中,与3是同类二次根式的是( )A.①和③B.②和③C.①和④D.③和④二.填空题(每小题2分,共20分)16.–125的立方根是_____.17.假如9=x ,那么x =________;假如92=x ,那么=x ________.18.要使53-x 有意义,则x 可以取的最小整数是. 19.平方根等于本身的数是________;立方根等于本身的数是_______20.x 是实数,且02122=-x ,则.____=x21.若b a 、是实数,012|1|=++-b a ,则._____22=-b a 22.盘算:①____;)32(2=-②._____1964522=-23.2.645==,24.盘算:._____1882=++ 25.已知正数a 和b ,有下列命题: (1)若2=+b a ,则ab ≤1 (2)若3=+b a ,则ab ≤23(3)若6=+b a ,则ab ≤3依据以上三个命题所供给的纪律猜测:若9=+b a ,则ab ≤________. 三.解答题(共50分) 26.直接写出答案(10分)④⑦348-⑧()225+⑨27.盘算.化简:(请求有须要的解答进程)(18分) ①8612⨯②)7533(3-③32 -321+2④123127+-⑤(2+2363327⨯-+28.探讨题(10分)=______.依据盘算成果,答复:(1)a吗?你发明个中的纪律了吗?请你用本身的说话描写出来.(2).应用你总结的纪律,盘算①若2x〈,则=②29.(6分)已知一个正方形边长为3cm,另一个正方形的面积是它的面积的4倍,求第二个正方形的边长.(准确到)30.(6分)已知yx、知足0|22|132=+-+--yxyx,求yx542-的平方根.附加题:31.(5分)已知21,31==yx,求下列各式的值①3223441yxyxyx++②32241yxyyx+-32.(5分)已知ABC∆的三边为cba、、.化简根式002参考答案一.CDDBCCDCBCCACDC二.-5; ±9; ±3; 2; 0; ±1.0; ±0.5; 2;12;314;122.8;;92;三.12;±23;-0.4;5;;9+33;0.5;6;34;13;0;不必定.a=;2-x; 3.14π-;6cm;±4c.二次根式演习03一.填空题(每题2分,共28分)1.4的平方根是_____________.2.的平方根是_____________.7.在实数规模内分化因式:a4-4=____________.二.选择题(每题4分,共20分)15.下列说法准确的是( ).(A) x≥1 (B)x>1且x≠-2(C) x≠-2 (D) x≥1且x≠-2(A)2x-4 (B)-2 (C)4-2x (D)2三.盘算题(各小题6分,共30分)四.化简求值(各小题5分,共10分)五.解答题(各小题8分,共24分)29. 有一块面积为(2a + b)2π的图形木板,挖去一个圆后剩下的木板的面积是(2a - b)2π,问所挖去的圆的半径若干?32cm2,假如将这个正方形做成一个圆柱,请问这个圆柱底圆的半径是若干(保存3个有用数字)?根式003答案1.±22. ±23. –ab4. –25. 0或46. m≥112. -x-y13. x≤414.15. B 16. A 17. D 18. A 19.A 20. D23. 2430.二次根式演习04一.填空题(每题3分,共54分)2.-27的立方根=.二.选择题(每题4分,共20分)15.下列式子成立的是( ). 17.下列盘算准确的是( ).三.盘算题(各小题6分,共30分)四.化简求值(各小题8分,共16分)五.解答题(各小题8分,共24分)根式004答案2. -33. -a-66. 07. 18. ≤012. 200315. D 16. C 17. C 18. C 19.B 20. A二次根式演习05二次根式:1..2. 当__________时.3.11m+意义,则m的取值规模是.4. 当__________x时是二次根式.5. 在实数规模内分化因式:429__________,2__________x x-=-+=.6. 2x=,则x的取值规模是.7. 2x=-,则x的取值规模是.8. )1x的成果是.9. 当15x≤时5_____________x-=.10. 把.11.11x=+成立的前提是.12.若1a b-+互为相反数,则()2005_____________ab-=.13. 在式子)()()230,2,12,20,3,1,x y y x x x x y+=--++中,二次根式有()A. 2个B. 3个C. 4个D. 5个14. 下列各式必定是二次根式的是()15. 若23a,)A. 52a- B. 12a- C. 25a- D. 21a-16.若A==()A. 24a+ B. 22a+ C. ()222a+ D.()224a+17. 若1a≤,)A. (1a-B. (1a-C. (1a-D. (1a-18.=成立的x的取值规模是()A. 2x ≠ B. 0x≥ C. 2x D. 2x≥19.的值是()A. 0B. 42a- C. 24a- D. 24a-或42a-20. 下面的推导中开端出错的步调是()A. ()1B. ()2C. ()3D. ()421. 2440y y-+=,求xy的值.22. 当a取什么值时,1取值最小,并求出这个最小值.23. 去失落下列各根式内的分母:24. 已知2310x x-+=,.25. 已知,ab为实数,(10b-=,求20052006a b-的值.二次根式演习05答案:二次根式:1. 4x ≥;2. 122x -≤≤; 3. 01m m ≤≠-且; 4. 随意率性实数;5. ()((223;x x x x +; 6. 0x ≥;7. 2x ≤; 8.1x -;9. 4; 10. 1x ≥; 12. -1; 13——20:CCCABCDB21. 4; 22. 12a =-,最小值为1; 23.()()3121x x +;二次根式演习061. 当0a ≤,0b时__________=.2.,则_____,______m n ==.3.__________==.4.盘算:_____________=.5.面积为,则长方形的长约为(准确到0.01).6. 下列各式不是最简二次根式的是( )7. 已知0xy ,化简二次根式( )8. 对于所有实数,a b ,下列等式总能成立的是( )A. 2a b =+a b =+22a b =+a b =+9.-和-)A. 32-- B. 32--C. -=-D. 不克不及肯定10.以下说法中不准确的是( )A. 它是一个非负数B. 它是一个无理数C. 它是最简二次根式D. 它的最小值为3 11. 盘算: 12. 化简:13. 把根号外的因式移到根号内:二次根式演习0621.2 二次根式的乘除:1. - 6——10: DDCAB11. ()()()()()()2221.6,2.15,3.20,4.5.1,6.x a b ab a -- 12. ()()()123.0ab ;13. ()()1.2. 根式013答案: 1——5: ABDDD6. 25x ≤≤; 7. 8; 8. ; 9. ()(22x x x +; 10. 0;11.36-15. 底面边长为; 高为; 16. 26x -; 17. ()41.3x y =⎧⎨=⎩. ()2.5 二次根式演习071. 下列根式中,)2. 下面说法准确的是( )A. 被开方数雷同的二次根式必定是同类二次根式D. 同类二次根式是根指数为2的根式3.)4. 下列根式中,是最简二次根式的是()D.5. 若12x,()A. 21x- B. 21x-+ C. 3 D. -36.10=,则x的值等于()A. 4B. 2±C. 2D. 4±7.x,小数部分为y,y-的值是()A. 38. 下列式子中准确的是()=a b=-C. (a b=-22==9.,.是同类二次根式,则____,____a b==.11.,则它的周长是cm.12.式,则______a=.13.已知x y==则33_________x y xy+=.14.已知x =则21________x x -+=.15. )()20002001232______________+=.16. 盘算:⑴.⑵(231⎛++ ⎝⑶. (()2771+--⑷. ((((22221111+17. 盘算及化简:⑴. 22-⑵⑶⑷. a b a b ⎛⎫+--18.已知:x y ==求32432232x xy x y x y x y -++的值.19. 已知:11a a +=+求221a a +的值.20. 已知:,xy 为实数,且13yx -+,化简:3y -.21. 已知11039322++=+-+-y x x x y x ,求的值. 二次根式演习07答案21.3 二次根式的加减:1——8:BAACCCCC9. ; 10. 1.1; 11. (; 12. 1; 13. 10;14. 42; 16. ()()()()122,3.454.4-+; 17. ()()()()()21.4,23.,4.1x yy x-+-;18. 5; 19. 9+二次根式演习08一.选择题1.假如-3x+5是二次根式,则x的取值规模是()A.x≠-5B.x>-5C.x<-5D.x≤-52.等式x2-1 =x+1 ·x-1 成立的前提是()A.x>1B.x<-1C.x≥1D.x≤-13.已知a=15 -2,b=15 +2,则a2+b2+7 的值为()A.3B.4C.5D.64.下列二次根式中,x的取值规模是x≥2的是()A.2-xB.x+2C.x-2D.1 x-25.鄙人列根式中,不是最简二次根式的是()A.a2 +1 B.2x+1 C.2b4D.0.1y6.下面的等式总能成立的是()A.a2 =aB.a a2 =a2C. a · b =abD.ab = a · b7.m为实数,则m2+4m+5 的值必定是()A.整数B.正整数C.正数D.负数8.已知xy>0,化简二次根式x-yx2的准确成果为()A.yB.-yC.-yD.--y9.若代数式(2-a)2 +(a-4)2的值是常数2,则a的取值规模是()A.a≥4B.a≤2C.2≤a≤4D.a=2或a=410.下列根式不克不及与48 归并的是()A.0.12B.18C.113D.-7511.假如最简根式3a-8 与17-2a 是同类二次根式,那么使4a-2x 有意义的x的规模是()A.x≤10B.x≥10C.x<10D.x>1012.若实数x.y知足x2+y2-4x-2y+5=0,则x +y3y-2x的值是()A.1B.32+ 2 C.3+2 2 D.3-2 2二.填空题1.要使x-13-x有意义,则x的取值规模是.2.若a+4 +a+2b-2 =0,则ab=.3.若1-a2与a2-1 都是二次根式,那么1-a2 +a2-1 =.4.若y=1-2x +2x-1 +(x-1)2 ,则(x+y)2003=.5.若 2 x>1+ 3 x,化简(x+2)2-3(x+3)3 =.6.若(a+1)2 =(a-1)2 ,则a=.7.比较大小:⑴3 5 2 6 ⑵11 -10 14 -138.若最简根式m2-3 与5m+3 是同类二次根式,则m=.9.已知223=223,338=338,4415=4415,…请你用含n的式子将个中蕴涵的纪律暗示出来:.10.若 5 的整数部分是a,小数部分是b,则a-1b=.11.已知x =1a- a ,则4x+x2 =.12.已知a=3- 5 -3+ 5 ,则化简a得.三.盘算与化简1.( 3 + 2 )-1+(-2)2 +3-82.13 +1+15 - 3+15 +33.(1+ 2 - 3 )(1- 2 + 3 )+2 64.9a + a31a +12aa 3 四.先化简再求值1.已知a=3,b= 4,求[4( a + b )( a - b ) +a +b ab ( b - a ) ]÷ a - bab的值.2.化简:a+2+a 2-4 a+2-a 2-4 - a+2-a 2-4 a+2+a 2-4 取本身爱好的a 的值盘算.3.当a= 3 + 2 3 - 2 ,b= 3 - 2 3 + 2 时,求a 2-3ab+b 2的值.4.当a= 21- 3 时,求a 2-1a -1 - a 2+2a+1 a 2+a - 1a 的值.五.解答下列各题1.解方程: 3 (x -1)= 2 (x+1)2.3.已知直角三角形两直角边长分离为a= 12 3 -11 ,b= 12 3 +11 ,求斜边的长.4.先浏览下列的解答进程,然后作答:形如m ±2n 的化简,只要我们找到两个数a.b 使a+b=m,ab=n,如许( a )2+( b )2=m, a · b =n,那么便有m ±2n =( a ± b )2= a ± b (a>b)例如:化简7+4 3 解:起首把7+4 3 化为7+212 ,这里m=7,n=12;因为4+3=7,4×3=12,即( 4 )2+( 3 )2=7, 4 · 3 =12 ,∴7+4 3 =7+212 =( 4 + 3 )2=2+ 3 由上述例题的办法化简:⑴13-242 ⑵7-40 ⑶2- 3二次根式演习08参考答案一.选择题1.C2.C3.)C4.C5.D6.C7.C8.D9.C10.B11.A12.C二.填空题1.1≤x<32.-123.04.15.-2x-56.07.>>8.69.n+nn2-1=nnn2-1(n≥2且n为整数)10.- 511.1a-a12.- 2三.盘算与化简1. 3 - 22. 3 +13.-4+4 64.236 a四.先化简再求值1. 3 -22.a3.954.- 3五.解答下列各题1.x=5+2 62.x=2 3 -2 y=6-2 33.464.⑴7 - 6 ⑵ 5 - 2 ⑶ 2 - 62二次根式演习09一.选择题1.若一个正数的算术平方根是a,则比这个数大3的正数的平方根是( )A.a 2+3 B.-a 2+3 C.±a 2+3 D.±a+3 2.若式子(x -1)2+|x -2|化简的成果为2x -3,则x的取值规模是( )A.x ≤1B.x ≥2C.1≤x ≤2D.x>03.下列说法错误的是( )A.a 2-6x+9 是最简二次根式 B. 4 是二次根式 C.a 2+b 2长短负数 D.a 2+16 的最小值是44.式子m m +6mm 4 -5m 21m的值是( ) A.正数 B.负数 C.非负数 D.可为正数也可为负数 5.等式x ÷1-x =x1-x成立的前提是( )A.0≤x ≤1B.x<1C.x ≥0D.0≤x <16.下列各组代数式中,互为有理化因式的是( )A.3x +1与1-3xB.x +y 与-x -yC.2-x 与x -2D.x 与 3 x7.下列断定中准确的是( )A.m -n 的有理化因式是m+nB.3-2 2 的倒数是2 2 -3C. 2 - 5 的绝对值是 5 - 2D. 3 不是方程x+1x -1-3x=2的解 8.下列盘算准确的是( )A. 2 + 3 = 5B.2+ 2 =2 2C.63 +28 =57D.8 +18 2= 4 +99.已知a<0,那么(2a -|a|)2的值是( ) A.a B.-a C.3a D.-3a10.在5a ,8b ,m 4,a 2+b 2 ,a 3中,是最简二次根式的有( )A.1个B.2个C.3个D.4个11.不等式(2- 5 )x<1的解集为( )A.x<-2- 5B.x>-2- 5C.x<2- 5D.x>-2+ 512.已知ba -ab =3 2 2 ,那么b a +a b的值为( )A.52B.72C.92D.132 二.填空题1. 2 2分数(填“是”或“不是”)2.最简二次根式a 2+a 与a+9 是同类二次根式,则a=. 3.将a-1a根号外的因式移入根号内的成果是.4.代数式(x +1)2 +(x -3)2的最小值是. 5.代数式2-a +9 的最值是.6.合适不等式15 ≤x ≤27 的整数x 的值是.7.化简:aa -ba 2-ab a 3-2a 2b+ab2 (a>b)=. 8.化简:(12 +1 +13 + 2 +14 + 3 +…+12006 +2005)(2006 +1)=.9.分化因式x 2(x - 3 )-3(x - 3 )=. 10.当a 时,a+2a -4是二次根式. 11.若(-2a )2=2a,则a=. 12.已知x+1x =4,则x -1x = .三.盘算与化简1. 6 ÷(12 +13 )2.22(212 +418-348 ) 3.22 -( 3 -2)0+20 4.22- 3 -12 +( 3 +1)25.aa -ab - ba -b 6.(ab -ab a +ab)·ab -ba -b7.a -9 a +3 8.1x +3 四.化简求值1.已知x= 3 +1,,求x21+2x+x2 的值.2.已知a= 2 5 +2 ,y=10 +2 2 ,求x 2+2xy+y 2+18 (x-y)的值.五.解答题1.解不等式: 2 x-1< 3 x2.解方程组:3.设等式a(x-a) +a(y-a) =x-a -a-y 在实数规模内成立,个中a.x.y是两两不合的实数,求3x2+xy-y2x2-xy+y2的值.4.已知x>0,y>0,且有x (x +2y )=y (6x+5y )求x+xy -y2x+xy +3y的值.5.若a+b=2ab (a>0,b>0),求a+b3a+5b的值.6.已知实数a知足|2003-a|+a-2004 =a,则a-20032的值是若干?二次根式演习09参考答案一.选择题1.C2.B3.A4.负数5.D6.A7.C8.C9.D10.B11.B12.D二.填空题1.不是2.-33.--a4.45.大 26.4或57.a(a-b)2a-b8.20059.(x- 3 )2(x+ 3 )10.a>4或a≤-211.012.±3 3三.盘算与化简1.6 3 -6 22.2-8 33. 2 -1+2 54.8+2 35.16.a7. a -38.当x≠9时,原式=x -3x-9当x≠9时,原式=16四.化简求值1. 3 -12.16五.解答题1. x>- 2 - 32.x=3 2 +2 35,y=3 3 -2 253.36.2004二次根式演习10一.选择题1.下列断定⑴12 3 和1348 不是同类二次根式;⑵145和125不是同类二次根式;⑶8x 与8x不是同类二次根式,个中错误的个数是( ) A.3 B.2 C.1 D.02.假如a 是随意率性实数,下列各式中必定有意义的是( ) A. a B.1a2 C.3-a D.-a 23.下列各组中的两个根式是同类二次根式的是( ) A.52x 和3x B.12ab 和13abC.x 2y 和xy 2D. a 和1a2 4.下列二次根式中,是最简二次根式的是( ) A.8x B.x 2-3 C.x -y xD.3a 2b 5.在27 .112.112中与 3 是同类二次根式的个数是( )A.0B.1C.2D.36.若a<0,则|a 2-a|的值是( ) A.0 B.2a C.2a 或-2a D.-2a 7.把(a -1)11-a根号外的因式移入根号内,其成果是( )A.1-aB.-1-aC.a -1D.-a -1 8.若a+b4b 与3a +b 是同类二次根式,则a.b 的值为( )A.a=2.b=2B.a=2.b=0C.a=1.b=1D.a=0.b=2 或a=1.b=19.下列说法错误的是( )A.(-2)2的算术平方根是2 B. 3 - 2 的倒数是3 + 2C.当2<x<3时,x 2-4x+4 (x -3)2 = x -2x -3 D.方程x+1 +2=0无解10.若 a + b 与 a - b 互为倒数,则( )A.a=b -1B.a=b+1C.a+b=1D.a+b=-1 11.若0<a<1,则a 2+1a 2 -2 ÷(1+1a )×11+a可化简为( )A.1-a 1+aB.a -11+aC.1-a 2D.a 2-112.在化简x -y x +y时,甲.乙两位同窗的解答如下:甲:x -y x +y = (x -y)(x -y )(x +y )(x -y )=(x -y)(x -y )(x )2-(y )2 =x -y 乙:x -y x +y =(x )2-(y )2x +y =(x -y )(x +y )x +y=x -yA.两人解法都对B.甲错乙对C.甲对乙错D.两人都错( )二.填空题1.要使1-2x x+3 +(-x)0有意义,则x 的取值规模是.2.若a 2=( a )2,则a 的取值规模是.3.若x 3+3x 2=-x x+3 ,则x 的取值规模是.4.不雅察下列各式:1+13 =213 ,2+14=314,3+15=415,……请你将猜测到的纪律用含天然数n(n ≥1)的代数式暗示出来是. 5.若a>0,化简-4ab =.6.若o<x<1,化简(x -1x)2+4 -(x+1x)2-4 =.7.化简:||-x 2-1|-2|=.8.在实数规模内分化因式:x 4+x 2-6=.9.已知x>0,y>0且x -2xy -15y=0,则2x+xy +3yx+xy -y =.10.若5+7 的小数部分是a,5-7 的小数部分是b,则ab+5b=.11.设 3 =a,30 =b,则0.9 =. 12.已知a<0,化简4-(a+1a)2-4+(a -1a)2=.三.盘算与化简 1.13(212 -75 ) 2.24 - 1.5 +223 - 3 + 2 3 - 23.(-2 2 )2-( 2 +1)2+( 2 -1)-14.7a 8a -2a218a+7a 2a 5.2nm n -3mn m 3n 3 +5m m 3n (m<0.n<0) 6.1a+ b7.x 2-4x+4 +x 2-6x+9 (2≤x ≤3) 8.x+xyxy +y+xy -y x -xy 四.化简求值1.已知x= 2 +12 -1 ,y= 3 -13 +1,求x 2-y 2的值.2.已知x=2+ 3 ,y=2- 3 ,求x +yx -y -x -yx +y的值.3.当a= 12+ 3 时,求1-2a+a 2a -1 - a 2-2a+1a 2-a 的值. 五.已知x +1x =4,求x -1x的值.二次根式演习10参考答案 一.选择题 1.B 2.C 3.B 4.B 5.C 6.D7.B 8.D 9.C 10.B 11.A 12.B 二.填空题1.x ≤x ≠-3,x ≠02.a ≥03.-3≤x ≤04. -55 (n+1) 1n+25.-2b -ab6.2x7.18.(x+ 3 )(x+ 2 )(x - 2 ) 9.2927 10.2 11.3a b12.-4三.盘算与化简 1. -1 2. 6 6 -53.6- 24.412 a 2a5.-10mn6. (1)当a ≠ b 时,原式=12a 或 b2b (2)当a= b 时,原式=a - ba 2-b7.18.(x+y)xy xy四.化简求值1.-11+12 2 +16 62.2 3 33.3五.±2 3。
二次根式综合练习
1二次根式综合练习一、单选题1.下列各式成立的是( )A .√(−3)2=−3B .√x 2=xC .√(−5)2=5D .√a 2+1=a +1 2.二次根式 √x −5 中字母x 的取值可以是( )A .x =5B .x =1C .x =2D .x =-1 3.当a <1时,化简√−a 3(1−a)的结果是( )A .a √(a −1)B .−a √a(a −1)C .a √a(−a)D .−a √a(−a) 4.二次根式 √2x −1 有意义时,x 的取值范围是( ). A .x >12 B .x ≥12 C .x <12 D .x ≤12 5.下列根式中,最简二次根式的是( )A .√4B .√12C .√12D .√106.计算并化简√5×√45 的结果为( ) A .2 B .√4 C .±2 D .±√47.下列运算正确的是( )A .√2+√3=√5B .√3−√2=1C .√2×√3=√5D .√24÷√8=√3 8.函数y =√x+3中,自变量x 的取值范围是( ) A .x >﹣3且x≠0 B .x >﹣3 C .x≥﹣3D .x≠﹣39.下列等式何者不成立( ) A .4√3+2√3=6√3 B .4√3−2√3=2√3 C .4√3×2√3=8√3 D .4√3÷2√3=2 10.下列二次根式是最简二次根式的为( )A .√10B .√20C .√23D .√3.6 11.已知y =√x −3+√3−x +1,则x +y 的平方根是( )A .2B .-2C .±2D .±112.实数a 、b 在数轴上的位置如图所示化简,√(a −b)2+√a 2−√b 2的结果为( )A .2a +2bB .−2aC .−2bD .2a −2b 13.把代数式 (a −1)√11−a中的 a −1 移到根号内,那么这个代数式等于()2A .−√1−aB .√a −1C .√1−aD .−√a −1 14.计算√2×√8+√−273的结果为( )A .﹣1B .1C .4−3√3D .7 15.若一个直角三角形的两条直角边长分别为 √13 cm 和 √14 cm ,那么此直角三角形的斜边长是( ) A .3 √2 cm B .3 √3 cm C .9cm D .27 cm 16.已知 √7 =a , √70 =b ,则 √10 等于( )A .a+bB .b-aC .abD .b a17.如图,长方形内三个相邻的正方形面积分别为4,3,和2,则图中阴影部分的面积为( )A .2B .√6C .2√3+√6−2√2−3D .2√3+2√2−5 18.√16 的值为( ) A .4 B .-4 C .±4 D .219.下列计算正确的是( ) A .√(−3)2=−3 B .√9=±3C .√−83=2D .√(−4)33=−4 20.估计 2√6 的大小应( )A .在2~3之间B .在3~4之间C .在4~5之间D .在5~6之间 21.若式子 √3−x 在实数范围内有意义,则x 的取值范围是( )A .x <3B .x ≤3C .x ≥3D .x ≠3 22.下列二次根式中,最简二次根式是( ) A .√12B .√17C .√75D .√5a 3 23.如果 a =√3+2, b =√3−2 ,那么 a 与 b 的关系是( ) A .a +b =0 B .a =b C .a =1b D .a <b 24.下列计算正确的是( )A .√2+√3=√5B .3√2−2√2=1C .√2×√3=√6D .√24÷√6=4 25.计算 4√12+3√13−√8 的结果是( ) A .√3+√2 B .√3 C .√33 D .√3−√226.下列计算正确的是( )3A .(3−2√2)(3−2√2)=9−2×3=3B .(2√x +√y )(√x −√y )=2x −yC .(3−√3)2=32−(√3)2=6D .(√x +√x +1)(√x +1−√x )=1 27.已知x 为实数,化简√−x 3−x √−1x的结果为( ) A .(x −1)√−x B .(−1−x )√−x C .(1−x )√−x D .(1+x )√−x二、填空题28.若二次根式 √x −3 在实数范围内有意义,则x 的取值范围是 . 29.二次根式 √x +4 中,字母x 的取值范围是 . 30.(√6+√5)2021×(√6−√5)2022 = . 31.若一个二次根式与 √12 的积为有理数,则这个二次根式可以是 32.计算√−83+√36−√49= ;33.如果最简二次根式√2x −1与√5是同类二次根式,那么x 的值为 . 34.已知实数a ,b ,c 表示一个三角形的三边长,它们满足 √a −3 +|b-3|+ √c −4 =0,则该三角形的形状为 35.已知1<a <3,则化简 √1−2a +a 2 ﹣ √a 2−8a +16 的结果是 .36.函数y = √x+5x 的自变量x 的取值范围为 . 37.比较大小: 1√6−√5 1√7−√6(用 >,< 或 = 填空) 38.①比较大小:- 3√2 -4;②√33的倒数为 . 39.若x 、y 满足y= √x −2 + √2−x +4,xy= . 40.如果最简二次根式 √2a −3 与 √7 是同类二次根式,那么a 的值是 .三、计算题41.计算: (1)4√12−√18+√8 (2)√12×√36√6 (3)(√2−√3)2−(√3+√2)(√3−√2) .四、解答题42.计算: 3√3−√27+(π−2020)0+√24÷√2 43.若 x , y 为实数,且 x =√y 2−1+√1−y 2+y y+1,求 x −3+y 的值.44.已知a ,b 分别为等腰三角形的两条边长,且a ,b 满足 b =3+√3a −6+5√2−a ,求此三角形的周4 长.45.有一道练习题是:对于式子 2a −√a 2−4a +4 先化简,后求值.其中 a =√2 . 小明的解法如下:2a −√a 2−4a +4 = 2a −√(a −2)2 =2a ﹣(a ﹣2)=a+2= √2 +2. 小明的解法对吗?如果不对,请改正.46.如果最简二次根式 √3a −8 与 √17−2a 是同类二次根式,那么要使式 √4a −2x +√x −a 有意义,x 的取值范围是什么?47.实数a 、b 、c 在数轴上的对应点位置如图所示,化简: √(−c)2+|a −b|+√(a +b)33−|b −c|48.古希腊的几何学家海伦给出了求三角形面积的公式:S= √p(p −a)(p −b)(p −c) ,其中a ,b ,c 为三角形的三边长,p= a+b+c 2.若一个三角形的三边长分别为2,3,4,求该三角形的面积.49.若a 、b 、c 是△ABC 的三条边长,且满足等式 √a −1+(b −√3)2+(c −2)2=0 求证:△ABC 是直角三角形50.如图所示是工人师傅做的一块三角形铁板材料,BC 边的长为2 √35 cm ,BC 边上的高AD 为 √28 cm ,求该三角形铁板的面积.每天进步一点点,就是迈向卓越的开始 5 答案解析部分1.【答案】C2.【答案】A3.【答案】B4.【答案】B5.【答案】D6.【答案】A7.【答案】D8.【答案】B9.【答案】C10.【答案】A11.【答案】C12.【答案】B13.【答案】A14.【答案】B15.【答案】B16.【答案】D17.【答案】D18.【答案】A19.【答案】D20.【答案】C21.【答案】B22.【答案】B23.【答案】A24.【答案】C25.【答案】B26.【答案】D27.【答案】C28.【答案】x≥329.【答案】x≥-430.【答案】√6−√531.【答案】√3632.【答案】-333.【答案】334.【答案】等腰三角形35.【答案】2a−536.【答案】x≥-5且x≠037.【答案】< 38.【答案】<;√339.【答案】840.【答案】541.【答案】(1)解:原式=2 √2 -3 √2 +2 √2 = √2 (2)解:原式= √12×√3×√66 =√12×3×66 =√6 (3)解:原式=5- 2 √6 -(3--2)=4- 2 √6 42.【答案】解:原式= √3−3√3+1+2√3 =143.【答案】解:由题意得,y 2-1≥0且1-y 2≥0, 所以,y 2≥1且y 2≤1,所以,y 2=1所以,y=±1,又∵y+1≠0,∴y≠-1,所以,y=1,所以,x= 11+1=12 ,∴x −3+y =(12)−3+1=944.【答案】解:∵b =3+√3a −6+5√2−a ∴3a -6≥0,2-a≥0∴a=2∴b=3∵a ,b 分别为等腰三角形的两条边长 ∴等腰三角形的另一条边为2或3∴等腰三角形的周长为:2+2+3=7或2+3+3=845.【答案】解:小明的解法不对.改正如下:7 2a −√a 2−4a +4 = 2a −√(a −2)2 =2a ﹣|a ﹣2|, ∵a= √2 ,∴a ﹣2<0,∴原式=2a+a ﹣2=3a ﹣2,把a= √2 代入得原式=3 √2 ﹣246.【答案】解:由题意,得3a ﹣8=17﹣2a ,解得a=5;4a ﹣2x≥0且x ﹣a≥,解得5≤x≤10,√4a −2x +√x −a 有意义,x 的取值范围是5≤x≤1047.【答案】解:原式=|-c|+|a-b|+a+b-|b-c|, =c+(-a+b )+a+b-(-b+c ),=c-a+b+a+b+b-c ,=3b.48.【答案】解:设a=2,b=3,c=4, ∴p= a+b+c 2=2+3+42=92∴S= √p(p −a)(p −b)(p −c)= √92(92−2)×(92−3)×(92−4) = 3√154∴该三角形的面积为 3√15449.【答案】证明:由题意,得a= 1,b= √3 ,c= 2,∵a 2+b 2= 4,c 2= 4,∴a 2+b 2=c 2, ∴△ABC 是直角三角形50.【答案】解:解:根据题意可知,S △ABC =12×BC ×AD =12×2√35×√28=√35×28=14√5故三角形铁板的面积为14 √5 cm 2。
同类二次根式综合强化练习(1)
4.下列二次根式中,与 是同类二次根式的是()
A. 与 是同类二次根式,则x为( )
A.﹣2B.2C.4D.﹣4
6.下列根式中能与 合并的是()
A. B. C. D.
7.下列运算正确的是( )
A. + = B.4 ×3 =12 C.x5•x6= D.(x2)5=
参考答案:
1.C
2.A
3.A
4.C
5.B
6.B
7.C
8.D
9.
10.2
11.1
12.5
13.2
14.
15.1
16.
17.(1)4;(2)2 ;(3) .
18.
19.(1)a的值是0,b的值是2;(2)
20.(1)a=3;(2)4
21.(1) ;(2) .
22.(1)12﹣4 ;(2)﹣6 .
18.
19.已知 和 是相等的最简二次根式.
(1)求a,b的值;
(2)求 的值.
20.如果最简二次根式 与 是同类二次根式.
(1)求出a的值;
(2)若a≤x≤2a,化简:|x﹣2|+ .
21.计算:
(1) ;(2) .
22.计算
(1)(2 ﹣1)2+( +2)( ﹣2)
(2)( ﹣2 )× ﹣6 .
同类二次根式综合强化练习(1)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.下列二次根式中,不能与 合并的是( )
A. B. C. D.
2.下列二次根式能与 合并的是().
A. B. C. D.
初三上第二十一章_二次根式综合练习
初三上第二十一章 二次根式综合练习一、选择题 1、如果-3x+5是二次根式,则x 的取值范围是( )A 、x≠-5 B 、x>-5 C 、x<-5 D 、x≤-5 2、等式x 2-1 =x+1 ·x -1 成立的条件是( )A 、x>1 B 、x<-1 C 、x ≥1 D 、x ≤-1 3、已知a=15 -2 ,b=15 +2,则a 2+b 2+7 的值为( )A 、3 B 、4 C 、5 D 、6 4、下列二次根式中,x 的取值范围是x ≥2的是( )A 、2-x B 、x+2 C 、x -2 D 、1x -25、在下列根式中,不是最简二次根式的是( )A 、a 2+1 B 、2x+1 C 、2b4D 、0.1y 6、下面的等式总能成立的是( )A 、a 2=a B 、a a 2=a 2C 、 a · b =abD 、ab = a · b 7、m 为实数,则m 2+4m+5 的值一定是( )A 、整数 B 、正整数 C 、正数 D 、负数 8、已知xy>0,化简二次根式x-yx2 的正确结果为( )A 、y B 、-y C 、-y D 、--y 9、若代数式(2-a)2 +(a -4)2的值是常数2,则a 的取值范围是( ) A 、a ≥4 B 、a ≤2 C 、2≤a ≤4 D 、a=2或a=410、下列根式不能与48 合并的是( )A 、0.12 B 、18 C 、113D 、-75 11、如果最简根式3a -8 与17-2a 是同类二次根式,那么使4a -2x 有意义的x 的范围是( ) A 、x ≤10 B 、x ≥10 C 、x<10 D 、x>10 12、若实数x 、y 满足x 2+y 2-4x -2y+5=0,则x +y3y -2x的值是( )A 、1 B 、32 + 2 C 、3+2 2 D 、3-2 2二、填空题 1、要使x -13-x有意义,则x 的取值范围是 。
二次根式(压轴题综合测试卷)(沪科版)(解析版)
二次根式(满分100)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,每小题3分,满分30分)1.(2022上·安徽·九年级校联考阶段练习)若α≤0,1<β<4(β为整数),则下列式子中一定为最简二次根式的是( )A .√α+βB .√β-2C .√α0D .√β【思路点拨】根据最简二次根式的概念判断即可.【解题过程】解:A 、α≤0,1<β<4(β为整数),则√α+β不一定是最简二次根式,例如α取−12,β取2,则√α+β=√32不是最简二次根式,A 错误;B 、1<β<4(β为整数),则β等于2或3,√β−2为√14或√19,均不是最简二次根式,B 错误;C 、α≤0,当α=0时,√α0无意义;α<0时,√α0=1,C 错误;D 、1<β<4(β为整数),则β等于2或3,√β为√2或√3,均是最简二次根式,D 正确. 故选:D .2.(2023上·辽宁丹东·八年级校考期中)设(2√21+√7)÷√7的整数部分是m ,小数部分是n ,则n 的值是( )A .2√3+1B .2√3−1C .2√3−2D .2√3−3 【思路点拨】本题考查了二次根式的混合运算,无理数的估算,熟练掌握无理数的估算方法是解题的关键.先根据二次根式的运算法则计算得出结果2√3+1,然后估算2√3+1取值范围即可得出其整数部分和小数部分.【解题过程】解:(2√21+√7)÷√7=2√3+1,∵√1<√3<√4,即1<√3<2,∴2<2√3<4,又∵2√3>3∴4<2√3+1<5,∴2√3+1的整数部分是m=4,小数部分是n=2√3+1−4=2√3−3,故选:D.3.(2023上·山西晋中·八年级校联考期中)已知a,b均为有理数,若(√3−1)2=a+b√3,则a−b的算术平方根是()A.√3B.2C.√5D.√6【思路点拨】由(√3−1)2=a+b√3,可得3−2√3+1=4−2√3=a+b√3,由a,b均为有理数,可得a=4,b=−2,a−b=6,然后求a−b的算术平方根√a−b即可.【解题过程】解:∵(√3−1)2=a+b√3,∴3−2√3+1=4−2√3=a+b√3,∵a,b均为有理数,∴a=4,b=−2,a−b=6,∴a−b的算术平方根为√6,故选:D.4.(2022下·北京海淀·八年级101中学校考期中)已知m、n是两个连续自然数(m<n),且q=mn,设p=√q+n+√q−m,则下列对p的表述中正确的是()A.总是偶数B.总是奇数C.总是无理数D.有时是有理数,有时是无理数【思路点拨】由题意可知,n=m+1,q=mn,代入p=√q+n+√q−m,根据非负数的算术平方根求解即可.【解题过程】解:由题意可知,n=m+1,q=mn,而p=√q+n+√q−m,则p=√mn+n+√mn−m=√n(m+1)+√m(n−1)=m+1+m=2m+1,由于m是自然数,所以2m+1是奇数,故选B5.(2024上·江苏南通·八年级统考期末)已知正实数m,n满足2m+√2mn+n=2,则√mn的最大值为()A.13B.√23C.√33D.23【思路点拨】本题考查二次根式的性质,完全平方公式,平方的非负性.根据二次根式的性质将2m+√2mn+n=2变形为(√2m)2+√2mn+(√n)2=2,配方得到(√2m−√n)2=2−3√2mn,根据(√2m−√n)2≥0得到2−3√2mn≥0,进而求解即可.【解题过程】解:∵m,n均为正实数,∴2m+√2mn+n=2可化为(√2m)2+√2mn+(√n)2=2,∴(√2m)2−2√2mn+(√n)2=2−3√2mn,即(√2m−√n)2=2−3√2mn,∵(√2m−√n)2≥0,∴2−3√2mn≥0,∴√mn≤√23,∴√mn的最大值为√23.故选:B6.(2024·全国·八年级竞赛)已知正整数a、m、n满足√a2−4√5=√m−√n.则这样的a、m、n的取值().A.有一组B.有二组C.多于二组D.不存在【思路点拨】本题主要考查了二次根式的性质,解题的关键是熟练掌握二次根式混合运算法则进行计算.根据√a2−4√5=√m−√n,得出a2−4√5=m+n−2√mn,即可得出a2=m+n,mn=20,m>n,根据20=20×1=10×2=5×4,分三种情况求出a2的值进行验证即可.【解题过程】解:∵√a2−4√5=√m−√n,∴a2−4√5=m+n−2√mn,∴a2=m+n,mn=20,m>n,又∵20=20×1=10×2=5×4,当m=20,n=1时,a2=21不合题意,当m=10,n=2时,a2=12不合题意,当m=5,n=4时,a2=9符合题意,∴满足条件的取值只有1组.故选:A.7.(2024·全国·八年级竞赛)若a、b、m满足如下关系式:√3a+5b−m−3+√a+b−2013=3√2013−a−b−2√2a+3b−m,则m−2012的平方根为().A.1B.2C.±1D.±2【思路点拨】本题主要考查了二次根式有意义的条件,求一个数的平方根,解题的关键是熟练掌握二次根式有意义的条件,求出a+b=2013,得出√3a+5b−m−3+2√2a+3b−m=0,根据算术平方公的非负性得出{5a+5b−m−3=02a+3b−m=0,整理得出a b=m−3,从而得出m−3=2013,求出m=2016,最后求出结果即可.【解题过程】解:根据题意得:a+b−2013≥0,2013−a−b≥0,∴a+b=2013,①∴√3a+5b−m−3+2√2a+3b−m=0,∴{5a+5b−m−3=02a+3b−m=0,∴2(2a+3b−m)−(3a+5b−m−3)=0,∴a+b=m−3,②由①②得m−3=2013,解得:m=2016,∴m−2012=4,∴m−2012平方根即为4的平方根,为±2.故选:D.8.(2023上·广东·九年级华南师大附中校考阶段练习)已知x=1,则x6−2√2020x5−x4+x3−√2021−√20202√2021x2+2x−√2021的值为()A.0B.1C.√2020D.√2021【思路点拨】由x的值进行化简到x=√2021+√2020,再求得x−√2020=√2021,把式子两边平方,整理得到x2−2√2020x=1,再把x−√2021=√2020两边平方,再整理得到x2−2√2021x=−1,原式x6−2√2020x5−x4+x3−2√2021x2+2x−√2021可变形为x4(x2−2√2020x−1)+x(x2−2√2021x+2)−√2021,利用整体代入即可求得答案.【解题过程】解∵x=12021−2020=√2021+√2020(√2021−√2020)(√2021+√2020)=√2021+√2020∴x−√2020=√2021∴(x−√2020)2=(√2021)2=整理得x2−2√2020x+2020=2021∴x2−2√2020x=1∵x−√2021=√2020∴(x−√2021)2=(√2020)2=2020整理得x2−2√2021x+2021=2020∴x2−2√2021x+1=0∴x2−2√2021x=−1∴x6−2√2020x5−x4+x3−2√2021x2+2x−√2021=x4(x2−2√2020x−1)+x(x2−2√2021x+2)−√2021=x4×0+x(−1+2)−√2021=x−√2021=√2021+√2020−√2021=√2020故选:C9.(2023下·重庆铜梁·八年级重庆市巴川中学校校考期末)若a和b都是正整数且a<b,√a和√b是可以合并的二次根式,下列结论中正确的个数为()①只存在一组a和b使得√a+√b=√18;②只存在两组a和b使得√a+√b=√75;③不存在a和b使得√a+√b=√260;④若只存在三组a和b使得√a+√b=√c,则ca的值为49或64A.1个B.2个C.3个D.4个【思路点拨】直接利用同类二次根式的定义得出√a和√b是同类二次根式,进而得出答案.【解题过程】解:①a和b都是正整数且a<b,√a和√b可以合并的二次根式,∵√a+√b=√18,∴√a+√b=√18=3√2,当a=2时b=8,故该选项①正确;②√a+√b=√75=5√3,当a=3,则b=48,当a=12,则b=27.故选项②正确;③√a+√b=√260=2√65,当a=65时,b=65,a<b,所以不存在,故该选项③正确;④∵√a+√b=√c,∴1+√ba =√ca,当ca =49时,1+√ba=7,∴√ba=6,∴b=36a,有无数a和b满足等式,故该选项④错误.故选:C.10.(2024上·重庆北碚·九年级统考期末)已知两个二次根式:√x+1,√x(x≥0),将这两个二次根式进行如下操作:第一次操作:将√x+1与√x的和记为M1,差记为N1;第二次操作:将M1与N1的和记为M2,差记为N2;第三次操作:将M2与N2的和记为M3,差记为N3;⋅⋅⋅;以此类推.下列说法:①当x=1时,N2+N4+N6+N8=30;②M12=64√x+1;③M2n+1⋅N2n+1=22n(n为自然数).其中正确的个数是()A.0B.1C.2D.3【思路点拨】本题主要考查了二次根式的混合运算,规律探索,解题的关键是根据题意得出一般规律,熟练掌握二次根式混合运算法则.①根据题意得出N2=2,N4=4,N6=8,N8=16,然后相加即可;②根据题意得出一般规律:M2n=2n√x+1,N2n=2n√x,M2n+1=2n(√x+1+√x),M2n+1=2n(√x+1+√x),求出M12=64√x+1即可;③根据二次根式混合运算法则,求出M2n+1⋅N2n+1=22n即可.【解题过程】解:①当x=1时,M1=√2+1,N1=√2−1,M2=√2+1+√2−1=2√2,N2=√2+1−√2+1=2,M3=2√2+2,N3=2√2−2,M4=2√2+2+2√2−2=4√2,N4=2√2+2−2√2+2=4,…按照此规律:N2=2,N4=4,N6=8,N8=16,∴N2+N4+N6+N8=2+4+8+16=30,故①正确;②M1=√x+1+√x,N1=√x+1−√x,M2=√x+1+√x+√x+1−√x=2√x+1,N2=√x+1+√x−√x+1+√x=2√x,M3=2√x+1+2√x,N3=2√x+1−2√x,M4=2√x+1+2√x+2√x+1−2√x=4√x+1,N4=2√x+1+2√x−2√x+1+2√x=4√x,…按照此规律可得:M2n=2n√x+1,N2n=2n√x,M2n+1=2n(√x+1+√x),M2n+1=2n(√x+1+√x),∴M12=26√x+1=64√x+1,故②正确;③根据以上规律可知,M2n+1=2n(√x+1+√x),M2n+1=2n(√x+1+√x),∴M2n+1⋅N2n+1=2n(√x+1+√x)⋅2n(√x+1−√x)=22n[(√x+1)2−(√x)2]=22n(x+1−x)=22n,故③正确.综上分析可知,正确的有3个,故D正确.故选:D.二、填空题(本大题共5小题,每小题3分,满分15分)11.(2022上·上海虹口·八年级上外附中校考阶段练习)设x=√t+1−√t√t+1+√t ,y=√t+1+√t√t+1−√t,当t为时,代数式20x2+62xy+20y2=2022.【思路点拨】根据x,y的表达式,可以观察出xy=1,x+y=2t+2,再将20x2+62xy+20y2改写为含有x+y与xy的形式,代入解出t即可.【解题过程】解:∵x=√t+1−√t√t+1+√t ,y=√t+1+√t√t+1−√t∴x+y=√t+1+√t)2√t+1−√t)2(√t+1+√t)(√t+1−√t)=2(t+1+t)t+1−t=4t+2,xy=√t+1−√t)(√t+1+√t)(√t+1+√t)(√t+1−√t)=1∵20x2+62xy+20y2=20x2+40xy+20y2+22xy=20(x+y)2+22xy=2022∴20(4t+2)2+22=2022,解得t1=−3(舍去),t2=2.故答案为:212.(2024·全国·八年级竞赛)设a是√3+√5−√3−√5的小数部分,b为√6+3√3−√6−3√3的小数部分,则1a −1b的值为.【思路点拨】本题考查了无理数的估算,求代数式的值及二次根式的运算;令t=√3+√5√3−√5,则可求得t的值,进而求得a;同理,令p=√6+3√3−√6−3√3,则可求得p的值,进而求得b,最后即可求得代数式的值.【解题过程】解:令t=√3+√5√3−√5,则t2=2,∴t=√2,∴a=√2−1,1a =√2−1=√2+1;令p=√6+3√3−√6−3√3,则p2=6,∴p=√6,∴b=√6−2,1b =√6−2=√6+22,∴1 a −1b=2√2−√62.故答案为:2√2−√62.13.(2023下·四川攀枝花·七年级攀枝花市第十五中学校校考阶段练习)设x、y、z是两两不等的实数,且满足下列等式:√x3(y−x)3−√x3(z−x)3=√y−x−√x−z,则x3+y3+z3−3xyz的值为.【思路点拨】利用二次根式被开方数非负性得到x、y、z大小关系,最后由符号之间的关系推导得到x=0及y、z等量关系,最后直接计算整式x3+y3+z3−3xyz的值即可.【解题过程】解:∵√y−x及√x−z且x、y、z是两两不等的实数,∴y−x>0且x−z>0,∴y>x>z,∵x3(y−x)3≥0,x3(z−x)3≥0,∴x与(y−x)、(z−x)均同号,或x=0,又∵y−x>0,z−x<0,故(y−x)、(z−x)不同号,∴x=0,∴√x3(y−x)3−√x3(z−x)3=0=√y−x−√x−z=√y−√−z,∴y=−z,∴x3+y3+z3−3xyz=0+y3+(−y3)−0=0故答案为0.14.(2023上·四川成都·八年级校考阶段练习)若a,b,c是实数,且a+b+c=2√a−1+4√b−1+6√c−2−10,则2b+c=.【思路点拨】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a,b,c的值,从而得到答案.【解题过程】解:∵a+b+c=2√a−1+4√b−1+6√c−2−10∴a−2√a−1+b−4√b−1+c−6√c−2+10=0∴[(√a−1)2−2√a−1+1]+[(√b−1)2−4√b−1+4]+[(√c−2)2−6√c−2+9]=0∴(√a−1−1)2+(√b−1−2)2+(√c−2−3)2=0∴{√a−1=1√b−1=2√c−2=3∴{a−1=1 b−1=4 c−2=9∴{a=2 b=5 c=11∴2b +c =2×5+11=21.15.(2023上·福建泉州·八年级校考阶段练习)若y =√1−x +√x −12的最大值为a ,最小值为b ,则a 2+b 2的值为 . 【思路点拨】本题主要考查了完全平方公式的应用,根据二次根式有意义的条件和二次根式的非负性,根据二次根式有意义的条件和二次根式的非负性即可求出x 的取值范围和y 的取值范围,然后将等式两边平方得到y 2=12+2√−(x −34)2+116,利用偶次方的非负数和二次根式的非负数求出2√−(x −34)2+116的最大值和最小值,从而求出y 2的最大值和最小值,即为a 2、b 2,代入即可. 【解题过程】解:∵y =√1−x +√x −12 ∴y ≥0,{1−x ≥0x −12≥0解得:12≤x ≤1,将等式两边平方,得y 2=(√1−x)2+2(√1−x)(√x −12)+(√x −12)2, ∴y 2=1−x +2√(1−x )(x −12)+x −12, ∴y 2=12+2√x −x 2−12+12x ∴y 2=12+2√−x 2+32x −12, ∴y 2=12+2√−(x −34)2+116,∵(x −34)2≥0,∴−(x −34)2≤0, ∴−(x −34)2+116≤116, ∴y 2=12+2√−(x −34)2+116≤12+2×14=1, ∴a 2=1,当x =12时,√−(12−34)2+116=√0=0,又∵√−(x−34)2+116≥0,∴y2=12+2√−(x−34)2+116≥12,∴b2=12∴a2+b2=1+12=32故答案为:32.三、解答题(本大题共9小题,满分55分)16.(2023下·天津·八年级校考阶段练习)计算(1)(√5−2)2+(√5+1)(√5+3)(2)√12−√18−√0.5+√13;【思路点拨】(1)先计算完全平方和二次根式的乘法,再合并同类二次根式即可;(2)先化简每一个二次根式,再合并同类二次根式即可;本题主要考查了二次根式的混合运算,熟练掌握二次根式的化简和二次根式乘法法则是解题的关键.注意:最后结果必须化成最简二次根式.【解题过程】解:(1)(√5−2)2+(√5+1)(√5+3)=(5−4√5+4)+(5+3√5+√5+3)=9−4√5+8+4√5=17(2)√12−√18−√0.5+√13=2√3−3√2−√22+√33=73√3−72√217.(2023下·黑龙江绥化·八年级校考期中)计算 (1)(a 2√nm −ab m√mn +n m √m n )÷a 2b 2√nm ; (2)(√a √ab a+√b)÷(√ab+b√ab−a√ab)(a ≠b ).【思路点拨】(1)先将除法转化为乘法计算,然后利用乘法的分配率分别相乘,根据二次根式、分式的运算法则计算即可;(2)先对括号内分别通分计算加减法,将除法转化为乘法计算,根据二次根式、分式的运算法则计算即可. 【解题过程】 (1)解:(a 2√nm −ab m√mn +n m √m n )÷a 2b 2√nm=(a 2√n m −ab m √mn +n m √m n )⋅1a 2b 2√mn=1b 2√nm⋅m n−1mab√mn ⋅m n+n ma 2b 2√m n ⋅mn=1b 2-1ab +1a 2b 2 =a 2−ab+1a 2b 2.(2)解:(√a √ab √a+√b )÷(√ab+b√ab−a√ab=√ab √ab√a +√b√a(√a √b)√b(√a √b)√ab(√a +√b)(√a −√b)=√a +√b2√ab √ab 222√ab(√a +√b)(√a −√b)=√a +√b √ab(a √ab(√a +√b)(√a −√b) =a+b √a+√b·√ab(√a−√b)(√a+√b)−√ab(a+b)=−√a +√b .18.(2024上·湖南长沙·八年级湖南师大附中校考期末)已知x ,y ,z 为△ABC 的三边长,且有(√x +√y +√z)2=3(√xy +√xz +√yz).试判断△ABC 的形状并加以证明. 【思路点拨】该题主要考查了完全平方公式的应用,平方根的性质等知识点,解题的关键是对所给条件进行化简; 根据(√x +√y +√z)2=3(√xy +√xz +√yz)推出x =y =z,即可求解;【解题过程】解:∵(√x+√y+√z)2=3(√xy+√xz+√yz),∴x+y+z+2√xy+2√yz+2√xz−3√xy−3√yz−3√xz=0,∴x+y+z−√xy−√xz−√yz=0,∴2x+2y+2z−2√xy−2√xz−2√yz=0,∴(√x−√y)2+(√y−√z)2+(√x−√z)2=0,∴√x−√y=0,√y−√z=0,√x−√z=0,∴x=y=z,∴△ABC是等边三角形.19.(2022上·湖南长沙·八年级校考期末)已知△ABC三条边的长度分别是√x+1,√(5−x)2,4−(√4−x)2,记△ABC的周长为C△ABC.(1)当x=2时,△ABC的周长C△ABC=__________(请直接写出答案).(2)请用含x的代数式表示△ABC的周长C△ABC(结果要求化简),并求出x的取值范围.如果一个三角形的三边长分别为a,b,c,三角形的面积为S,则S=√14[a2b2−(a2+b2−c22)2].若x为整数,当C△ABC取得最大值时,请用秦九韶公式求出△ABC的面积.【思路点拨】(1)利用x=2分别计算△ABC三条边的长度,然后求和即可获得答案;(2)依据二次根式有意义的条件可得x的取值范围,进而化简得到△ABC的周长;由于x为整数,且要使C△ABC 取得最大值,所以x的值可以从大到小依次验证,即可得出△ABC的面积.【解题过程】(1)解:当x=2时,√x+1=√2+1=√3,√(5−x)2=√(5−2)2=3,4−(√4−2)2=4−2=2,∴C△ABC=√3+3+2=5+√3.故答案为:5+√3;(2)根据题意,可得{x+1≥04−x≥0,解得−1≤x≤4,∴5−x>0∴C△ABC=√x+1+√(5−x)2+4−(√4−x)2 =√x+1+5−x+4−(4−x)=5+√x+1;∵x为整数,且C△ABC有最大值,∴x=4或3或2或1或0或−1,当x=4时,三角形三边长分别为√4+1=√5,√(5−4)2=1,4−(√4−4)2=4,∵√5+1<4,∴此时不满足三角形三边关系,故x≠4,当x=3时,三角形三边长分别为√3+1=2,√(5−3)2=2,4−(√4−2)2=2,满足三角形三边关系,可设a=2,b=2,c=3,∴S△ABC=√14×[22×22−(22+22−322)2]=34√7.20.(2024上·河北保定·八年级统考期末)任意一个无理数介于两个整数之间,我们定义,若无理数T:m<T<n,(其中m、n为连续..的整数),则称无理数的“美好区间”为(m,n),如1<√2<2,所以√2的“美好区间”为(1,2).(1)无理数−√13的“美好区间”是______;(2)若一个无理数的“美好区间”为(m,n),且满足10<m+√n<20,其中{x=my=√n是关于x,y的二元一次方程mx−ny=C的一组正整数解....,求C的值.(3)实数x,y,m(2x+3y+m)2+(3x+2y−3m)2=√x+y−2024+√2024−x−y,求m的算术平方根的“美好区间”.【思路点拨】本题主要考查无理数的估算,以及二次根式有意义的条件:(1)根据“美好区间”的定义,确定−√13在哪两个相邻整数之间,即可得出“美好区间”;(2)根据“美好区间”的定义和二元一次方程正整数解这两个条件,找到符合的情况即可求出C的值;(3)先根据x+y−2024≥0,2024−x−y≥0,得出x+y=2024,进而得出2x+3y+m=0,3x+2y−3m=0,两式相加得5(x+y)−2m=0,得,m=5060,再根据“美好区间”的定义即可求解..【解题过程】(1)∵9<13<16,∴3<√13<4,∴−4<−√13<−3∴无理数−√13的“美好区间”是(−4,−3),故答案为:(−4,−3)(2)∵(m,n)为“美好区间”∴m,n为连续的整数又∵{x=my=√n是关于x,y的二元一次方程mx−ny=C的一组正整数解∴n是一个平方数又∵10<m+√n<20∴满足题意的m,n的值为{m=8n=9或{m=15n=16当{m=8n=9时,{x=8y=3∴8×8−9×3=C ∴C=37,当{m=15n=16时,{x=15y=4,∴15×15−16×4=C,∴C=161,综上所述:C的值为37或161.(3)∵(2x+3y+m)2+(3x+2y−3m)2=√x+y−2024+√2024−x−y,∴x+y−2024≥0,2024−x−y≥0,∴x+y=2024,∴(2x+3y+m)2+(3x+2y−3m)2=0,∴2x+3y+m=0,3x+2y−3m=0,两式相加得5(x+y)−2m=0∴m=5060∴m的算术平方根为√5060∵71<√5060<72m的算术平方根的美好区间为(71,72).21.(2023下·湖北黄冈·八年级校考阶段练习)阅读材料:把根式√x±2√y进行化简,若能找到两个数m、n,是m2+n2=x且mn=√y,则把x±2√y变成m2+n2±2mm=(m±n)2开方,从而使得√x±2√y化简.如:√3+2√2=√1+2√2+2=√(√1)2+2×1×√2+(√2)2=√(1+√2)2=|1+√2|=1+√2解答问题:(1)填空:√5+2√6=______.(2)化简:√7−4√3(请写出计算过程)(3)√3+2√2√5+2√6√7+2√12√9+4√5【思路点拨】(1)根据材料提供计算步骤,把√5+2√6化为√(√3)2+2√6+(√2)2,根据完全平方公式进行计算即可;(2)根据材料提供计算步骤,把√7−4√3化为√(2)2−4√3+(√3)2,根据完全平方公式进行计算即可;(3)根据材料提供计算步骤,对√3+2√2√5+2√6+√7+2√12√9+4√5进行化简,进行计算即可.【解题过程】(1)解:√5+2√6=√3+2√6+2=√(√3)2+2√6+(√2)2=√(√3+√2)2=|√3+√2|=√3+√2;故答案为:√3+√2;(2)√7−4√3=√4−4√3+3=√(√4)2−4√3+(√3)2=√(2−√3)2=|2−√3|=2−√3;故答案为:2−√3;(3)1√3+2√21√5+2√61√7+2√121√9+4√5=√(√2+1)√(√3+√2)√(2+√3)√(√5+2)=1√2+11√3+√2+12+√31√5+2=√2−1+√3−√2+2−√3+√5−2=√5−1故答案为:√5−1.22.(2024上·湖南郴州·八年级统考期末)我们学习了《二次根式》和《乘法公式》,可以发现:当a>0,b>0时,有(√a−√b)2=a−2√ab+b≥0,∴a+b≥2√ab,当且仅当a=b时取等号.(1)当x>0时,x+1x 的最小值为______;当x<0时,−x−2x的最小值为______.(2)当x<0时,求x2+2x+6x的最大值;(3)如图,四边形ABCD的对角线AC、BD相交于点O,△AOB、△COD的面积分别为8和18,设△BOC的面积为x,求四边形ABCD的最小面积.【思路点拨】本题主要考查了二次根式的应用,三角形面积的计算,解题的关键是理解题意,准确计算.(1)根据题目中给出的信息进行解答即可;(2)先将x2+2x+6x 变形得到x+6x+2,然后根据题目中给出的信息进行解答即可;(3)设S△BOC=x,根据等高三角形性质得出S△BOCS△COD =S△AOBS△AOD=BODO,求出S△AOD=144x,根据四边形ABCD的面积为18+8+x+144x,根据题干的信息,求出最小值即可.【解题过程】(1)解:∵当x>0时,x+1x ≥2√x⋅1x=2,即x+1x≥2,∴x+1x的最小值为2;∵当x<0时,−x>0,∴−x+(−2x )≥2√(−x)⋅(−2x)=2√2,即−x+(−2x)≥2√2,∴−x−2x≥2√2,∴−x−2x的最小值为2√2;故答案为:2;2√2;(2)解:x2+2x+6x =x+6x+2,∵x<0,∴−x>0∴−x+(−6x )≥2√(−x)⋅(−6x)=2√6,即−x+(−6x)≥2√6∴x+6x≤−2√6,∴x+6x +2≤−2√6+2,即x2+2x+6x≤−2√6+2∴x2+2x+6x的最大值为−2√6+2.(3)解:已知S△BOC=x,S△AOB=8,S△COD=18,则由等高三角形性质可知,S△BOCS△COD =S△AOBS△AOD=BODO,∴x 18=8S△AOD,∴S△AOD=144x,因此四边形ABCD的面积=18+8+x+144x ≥26+2√x⋅144x=50,当且仅当x=12时取等号,即四边形ABCD面积的最小值为50.23.(2023上·福建福州·八年级福建省福州延安中学校考阶段练习)若三个实数x,y,z满足xyz≠0,且x+y+z=0,则有:√1x2+1y2+1z2=|1x+1y+1z|(结论不需要证明)例如:√122+132+152=√122+132+1(−5)2=|12+13+1(−5)|=1930【基础训练】(1)求√112+122+132的值;【能力提升】(2)设S=√1+112+122+√1+122+132+⋯+√1+120192+120202,求S的整数部分.【拓展升华】(3)已知x+y+z=0(xyz≠0,x>0),其中,且y+z=3yz.当√1x2+1y2+1z2+|1x−1y−1z|取得最小值时,求x的取值范围.【思路点拨】(1)根据范例中提供的计算方法进行计算即可;(2))利用题目的仅能式将其进行化简,再确定整数部分;(3)将原式化简为|1x +3|+|1x−3|,再根据|1x+3|+|1x−3|||取最小值时,确定x的取值范围.【解题过程】(1)√112+122+132=√112+122+1(−32)=|11+12−13|=76(2)S=√1+112+122+√1+122+132+⋯+√1+120192+120202=√112+112+1(−2)2+√112+122+1(−3)2+√112+132+1(−4)2+⋯+√112+120192+1(−2020)2=|11+11+1−2|+|11+12+1−3|+|11+13+1−4|+⋯+|11+12019+1−2020|=1+1−12+1+12−13+1+13−14+⋯+1+12019−12020=2019×1+1−12020,∴S的整数部分2019;(3)由已知得:y+z=−x,且y+z=3yz,√1x2+1y2+1z2+|1x−1y−1z|=|1x+1y+1z|+|1x−1y−1z|=|1x+zyz+yyz|+|1x−zyz−yyz|=|1x+y+zyz|+|1x−y+zyz|=|1x+3yzyz|+|1x−3yzyz|=|1x+3|+|1x−3|=|1+3xx |+|1−3xx|,∵x>0,∴原式=|1+3xx |+|1−3xx|=|3x+1|+|3x−1|x,当0<3x≤1时,|3x+1|+|3x−1|=3x+1+1−3x=2;当3x>1时,|3x+1|+|3x−1|=3x+1+3x−1=6x>2;∴当0<3x≤1,即0<x≤13时,|3x+1|+|3x−1|取得最小值为2,∴代数式取得最小值时,x的取值范围是:0<x≤13.24.(2023上·吉林长春·九年级东北师大附中校联考期中)定义:我们将(√a+√b)与(√a−√b)称为一对“对偶式”.因为(√a+√b)(√a−√b)=(√a)2−(√b)2=a−b,可以有效的去掉根号,所以有一些题可以通过构造“对偶式”来解决.例如:已知√18−x−√11−x=1,求√18−x+√11−x的值,可以这样解答:因为(√18−x−√11−x)×(√18−x+√11−x)=(√18−x)2−(√11−x)2=18−x−11+x=7,所以√18−x+√11−x=7.(1)已知:√20−x+√4−x=8,求:①√20−x−√4−x=;②结合已知条件和第①问的结果,解方程:√20−x+√4−x=8;(2)代数式√10−x+√x−2中x的取值范围是;(3)计算:131+3+153+35175+57⋯+120232021+20212023=.【思路点拨】(1)仿照题意,进行计算即可得到答案;(2)根据二次根式有意义的条件列出不等式组,解不等式组即可得到答案;(3【解题过程】(1)解:①∵(√20−x+√4−x)(√20−x−√4−x)=(√20−x)2−(√4−x)2=20−x−4+x=16,√20−x+√4−x=8,∴√20−x−√4−x=2;故答案为:2②由①得√20−x−√4−x=2,已知√20−x+√4−x=8,两式相加得到,2√20−x=10,即√20−x=5,则20−x=25,解得x=−5,经检验,x=−5是原方程的根,即方程√20−x+√4−x=8的解是x=−5;(2)解:√10−x+√x−2由二根式有意义的条件得到{10−x≥0x−2≥0,解得2≤x≤10,即x的取值范围是2≤x≤10,故答案为:2≤x≤10;(3)解:3√1+√35√3+3√57√5+5√7⋯2023√2021+2021√2023=√3(√3+1)√15(√5+√3)√35(√7+√5)+⋯+√2023×2021(√2023+√2021)=√3√3(√3+1)(√3−1)√5√3√15(√5+√3)(√5−√3)√7√5)√35(√7+√5)(√7−√5)⋯+√2023√2021√2023×2021(√2023+√2021)(√2023−√2021)=√32√3√5√32√15+√7√52√35⋯√2023√20212√2023×2021=12(1−1√31√31√51√5−1√7+⋯1√20211√2023)=12(1−√2023)=12−√20234046,故答案为:12−√20234046.。
100道二次根式混合运算
100道二次根式混合运算这里提供100道二次根式混合运算练习题,供大家练习。
第一组:1. $\sqrt{2}+\sqrt{3}$2. $\sqrt{5}+\sqrt{10}$3. $\sqrt{8}+\sqrt{27}$4. $\sqrt{7}-\sqrt{3}$5. $3\sqrt{3}-\sqrt{12}$6. $\sqrt{15}-2\sqrt{6}$7. $\sqrt{14}+3\sqrt{7}$8. $2\sqrt{18}-3\sqrt{8}$9. $\sqrt{10}-\sqrt{40}$10. $\sqrt{28}+\sqrt{10}$第二组:1. $\sqrt{18}\cdot\sqrt{20}$2. $\sqrt{16}\cdot\sqrt{50}$3. $\sqrt{8}\cdot\sqrt{7}$4. $\sqrt{27}\cdot\sqrt{12}$5. $\sqrt{15}\cdot\sqrt{5}$6. $\sqrt{40}\cdot\sqrt{10}$7. $\sqrt{14}\cdot\sqrt{28}$8. $\sqrt{32}\cdot\sqrt{2}$9. $\sqrt{98}\cdot\sqrt{196}$10. $\sqrt{36}\cdot\sqrt{9}$第三组:1. $\sqrt{\frac{1}{2}}$2. $\sqrt{\frac{3}{4}}$3. $\sqrt{\frac{7}{3}}$4. $\sqrt{\frac{2}{5}}$5. $\sqrt{\frac{9}{8}}$6. $\sqrt{\frac{16}{3}}$7. $\sqrt{\frac{50}{25}}$8. $\sqrt{\frac{45}{15}}$9. $\sqrt{\frac{2}{3}}-\sqrt{\frac{1}{4}}$10. $\sqrt{\frac{11}{4}}+\sqrt{\frac{14}{16}}$第四组:1. $\frac{\sqrt{12}}{\sqrt{3}}$2. $\frac{\sqrt{18}}{\sqrt{6}}$3. $\frac{\sqrt{42}}{\sqrt{7}}$4. $\frac{3\sqrt{16}}{\sqrt{8}}$5. $\frac{\sqrt{27}}{\sqrt{9}}$6. $\frac{2\sqrt{50}}{\sqrt{5}}$7. $\frac{\sqrt{20}}{\sqrt{5}}-\frac{\sqrt{5}}{\sqrt{20}}$8. $\frac{\sqrt{49}}{\sqrt{98}}+\frac{\sqrt{81}}{\sqrt{27}}$9. $\frac{\sqrt{75}}{\sqrt{25}}\cdot\frac{\sqrt{8}}{\sqrt{2}}$10. $\frac{2\sqrt{18}}{\sqrt{50}}\cdot\frac{3\sqrt{8}}{\sqrt{20}}$第五组:1. $\sqrt{7+\sqrt{24}}$2. $\sqrt{10+2\sqrt{21}}$3. $\sqrt{3+\sqrt{8}}$4. $\sqrt{17+4\sqrt{14}}$5. $\sqrt{20+4\sqrt{21}}$6. $\sqrt{12+\sqrt{143}}$7. $\sqrt{9+2\sqrt{10}}$8. $\sqrt{25+10\sqrt{6}}$9. $\sqrt{11+3\sqrt{20}}$10. $\sqrt{14+2\sqrt{65}}$以上100道二次根式混合运算题,可以帮助大家巩固练习二次根式的知识,加深对二次根式运算的理解。
(完整版)二次根式混合计算练习(附答案)
(1)原式=1-1+2 +2-
=2+ ;
(2)原式=
= .
考点:实数的混合运算;2.二次根式的混合运算.
6. .
【解析】
试题分析:先进行二次根式的化简,财进行乘除运算,最后合并同类二次根式即可求出答案.
试题解析:原式=
.
考点: 实数的混合运算.
15.385
【解析】解:因为 ,
,
,
所以 .
16. .
【解析】
试题分析:先化成最简二次根式,再进行计算.
试题解析:
.
考点:二次根式化简.
17. .
【解析】
试题分析:先化成最简二次根式,再进行计算.
试题解析: .
考点:二次根式化简.
18.(1)22; (2)
【解析】
试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.
=2+1- + =3-3+2=2
9.1+
【解析】
解:原式=4-(3-2 )+
=4-3+2 + =1+
10.(1) ;(2)11 -9 ;(3)-4-2 ;(4)8- .
【解析】(1)利用 =a(a≥0), = (a≥0,b≥0)化简;
(2)可以利用多项式乘法法则,结合上题提示计算;
(3)利用平方差公式;
点评:本题主要考查了二次根式的加减运算.首先把二次根式化为最简二次根式,然后再合并同类二次根式.
4.0
【解析】
试题分析:根据实数的运算法则进行计算即可救出答案.
试题解析:
=
=0
考点:实数的混合运算.
5.(1) 2+ ;(2) .
二次根式练习题50道(含答案)
二次根式 50 题(含解析)1.计算:2.先分解因式,再求值:b2-2b+1-a2,其中a=-3,b=+4.3.已知,求代数式(x+1)2-4(x+1)+4的值.4.先化简,再求值:.5.(1)计算:;(2)化简,求值:,其中x=-1.6.先化简、再求值:+,其中x=,y=.7.计算:(1)(-2)2+3×(-2)-()-2;(2)已知x=-1,求x2+3x-1的值.8.先化简,再求值:,其中.9.已知a=2+,b=2-,试求的值.10.先化简,再求值:,其中a=+1,b=.11.先化简,再求值:,其中,.12.先化简,再求值:,其中a=-1.13.先化简,再求值:(x+1)2-2x+1,其中x=.14.化简,将代入求值.15.已知:x=+1,y=-1,求下列各式的值.(1)x2+2xy+y2;(2)x2-y2.16.先化简,再求值:,其中.17.先化简,再求值:,其中.18.求代数式的值:,其中x=2+.19.已知a为实数,求代数式的值.20.已知:a=-1,求的值.21.已知x=1+,求代数式的值.22.先化简,再求值:,其中x=1+,y=1-.23.有这样一道题:计算-x2(x>2)的值,其中x=1005,某同学把“x=1 005”错抄成“x=1 050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.24.已知:x=,y=-1,求x2+2y2-xy的值.25.已知实数x、y、a满足:,试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.26.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.27.(1)计算28.(2)解不等式组.29.已知a=+2,b=-2,则的值为()30.已知a=2,则代数式的值等于()31.已知x=,则代数式的值为()32.已知x=,则•(1+)的值是()33.若,则的值为()34.已知,则的值为()35.如果最简二次根式与是同类二次根式,则a=.36.若最简根式与是同类二次根式,则ab=.37.计算:①= ;②=.38.化简-= .39.化简-的结果是.40.计算:= .41.计算:+=.42.化简:= .43.化简:-+=.44.计算:= .45.先化简-(-),再求得它的近似值为(精确到0.01,≈1.414,≈1.732).46.化简:的结果为.47.计算:= .48.化简:= .49.化简:+(5-)=.50.计算:= .解析:1.解:原式=2+(2+)-(7+4)=--5.2.当a=-3,b=+4时,原式=×(+6)=3+6.3.解:原式=(x+1-2)2=(x-1)2,当时,原式==3.4.解:原式=-===.当时,=.5.解:(1)原式=4--4+2=;(2)原式===x+1,当x=-1时,原式=.6.解:原式=-===x-y,当x=,y=时,(2)方法一:当x=-1时,x2+3x-1=(-1)2+3(-1)-1=2-2+1+3-3-1=-1;方法二:因为x=-1,所以x+1=,所以(x+1)2=()2即x2+2x+1=2,所以x2+2x=1所以x2+3x-1=x2+2x+x-1=1+x-1=-1.8.解:原式====-x-4,当时,原式===.9.解:∵a=2+,b=2-,∴a+b=4,a-b=2,ab=1.而=,∴===8.10.原式==,∵∴.11.解:===,把,代入上式,得原式=.12.解:====;当a=-1时,原式====-(-1)=1.13.解:原式=x2+2x+1-2x+1=x2+2;当.14.解:原式=•=x-3;当x=3-,原式=3--3=.15.解:(1)当x=+1,y=-1时,原式=(x+y)2=(+1+-1)2=12;(2)当x=+1,y=-1时,原式=(x+y)(x-y)=(+1+-1)(+1-+1)=4.16.解:===x-2;当时,原式=.17.解:原式=a2-3-a2+6a=6a-3,当a=时,原式=6+3-3=6.18.解:原式=+=+=;当x=2+时,原式==.19.解:∵-a2≥0∴a2≤0而a2≥0∴a=0∴原式=.20.解:原式=,当a=-1时,原式=.21.解:原式=-==,当x=1+时,原式=.22.解:原式===;当x=1+,y=1-时,原式=.23.解:原式==+-x2=-x2=-2.∵化简结果与x的值无关,∴该同学虽然抄错了x的值,计算结果却是正确的.24.解:当时,x2+2y2-xy==.25.解:根据二次根式的意义,得,解得x+y=8,∴+=0,根据非负数的意义,得解得x=3,y=5,a=4,∴可以组成三角形,且为直角三角形,面积为6.26.解:(1)S=,=;P=(5+7+8)=10,又S=;(2)=(-)=,=(c+a-b)(c-a+b)(a+b+c)(a+b-c),=(2p-2a)(2p-2b)•2p•(2p-2c),=p(p-a)(p-b)(p-c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)27.解:27.(1)原式=3--+1=3--+1=+1;28.(2)由①得x+1>3-x,即x>1;由②得4x+16<3x+18,即x<2;不等式组的解集为1<x<2.29.解:原式=====5.30.解:当a=2时,=2-=2-=2-3-2=-3.31.解:=.32.当x=时,=-1,∴原式=1-()=2-.33.解:原式==•-•=a-b,34.解:∵a==,b==,∴==5.35.解:∵最简二次根式与是同类二次根式,∴3a-8=17-2a,解得:a=5.36.解:∵最简根式与是同类二次根式,∴,解得:,∴ab=1.37.解:①×===4;②-=2-=.38.解:原式=2-3=-.39.解:原式=2-=.故答案为:.40.解:原式=3-4+=0.41.解:原式=2+=3.42.解:原式=4-=3.43.(2010•聊城)化简:-+=.44.解:原式=2-=.45.解:原式=-(-)=-(-)=-+=3≈3×1.732≈5.196≈5.2046.解:原式=-20=-14.47.解:原式=2-3=-.48.解:=5.49.解:原式=+5-=5.50.解:原式=2-+=2.。
(完整版)二次根式混合运算125题(含答案)
二次根式混合运算125题(含答案)1、2、3、4、5、6、7、.8、9、.11、.12、;13、;14、.15、;16、.17、.19、20、;21、22、.23、24、25、26、;.27、28、;;29、;30、31、;(5);32、33、;34、;35、36、3﹣9+337、÷(3×)38、39、40、;.41、43、44、45、;46、.47、(﹣)2﹣;48、;49、;51、;52、.53、3﹣﹣+(﹣2)(+2)54、55、56、57、59、2÷﹣(2﹣)260、﹣2+(﹣1)261、(+2)﹣.62、63、64、65、.66、69、70、3﹣(﹣)71、72、﹣273、74、75、76、78、×+÷﹣79、80、81、﹣.82、83、84、85、(+1)2﹣286、(+1)(1﹣)﹣(﹣1)2+(+1)287、88、89、90、;91、.92、;93、;;94、95、;96、;97、98、|﹣|+﹣;99、;;100、101、(+)2008(﹣)2009.102、;103、;104、.105、(3+)÷;106、107、;108、;109、.110、﹣1111、(﹣)(+)+2+|﹣3|﹣2﹣1(4)(﹣2)×﹣6 114、115、(2﹣);116、;117、118、.119、.120、121、122、+6a;﹣×.123、124、(2)(7+4)(7﹣4)+(2+)125、参考答案1、原式=2﹣3=﹣;2、原式=×==30;3、原式=2﹣12=﹣10.4、原式==2.5、原式===﹣6a.6、原式=;7、原式=()2﹣(﹣1)2=2﹣(3﹣2+1)=8、原式=.9、.原式=(3﹣2+3)×=(+3)×=1+10、原式=﹣+=;11、原式=(4+)÷3=12、原式=2+3﹣=;13、原式==;14、原式=(7+)(7+)=14×2=15、原式==3+6﹣10=﹣1;16、原式=2﹣=﹣2.17、原式=﹣2+=3﹣2+=18、原式=(3﹣2)(3+2)=18﹣12=6;19、原式=(2﹣+)=(+)=+120、原式=﹣3•5÷=﹣15÷=﹣15;21、原式=3+﹣2+﹣3=;22、原式=3a+﹣2b23、原式=3﹣2+1﹣(2﹣3)=5﹣2.24、原式==25、原式=2+1﹣(﹣)=3﹣1=2.26、原式=17﹣(19﹣)=﹣2+;27、原式=2﹣3﹣2=﹣3.28、原式=4+12=;29、原式=+2﹣10=;30、原式=4﹣+=;31、原式=6﹣5=1;32、原式=12+18﹣12=;33、原式=(2+)×﹣2=3﹣2=1;34、原式=+×6﹣m=2m+3m﹣m=0;35、原式=++1=﹣1++1=36、原式=12=(12﹣3﹣+6)=;37、原式=6÷(×)=6÷6=38、原式=+3﹣2=3+3﹣2=3+.39、原式=++×1=6+1+=7+.40、原式=×3+6×﹣2x•=2+3﹣2=3;41、原式=2﹣+3﹣2=2﹣2+142、原式=(6﹣+﹣2)÷2﹣3=3﹣+﹣﹣3=﹣+﹣;43、原式===444、=(4÷2)=45、原式=2+3﹣7=﹣2;46、原式===14.47、原式=10﹣7+=3+;48、原式=×(2﹣+)=+×=+1;49、原式=﹣1;50、原式=2+3+2﹣(2﹣3)=5+2+1=6+251、原式=4+﹣4=;52、原式=(4﹣2+6)÷=2+253、原式=6﹣3﹣+5﹣4=(6﹣3﹣)+1=+154、原式==;55、原式==.56、原式=[﹣(﹣)][+(﹣)]=5﹣(﹣)2=5﹣(5﹣2)=2.57、原式=4×2﹣16+12﹣16﹣8=﹣4﹣16;58、原式=+﹣+3=59、原式=2﹣(4﹣4+2)=2﹣6+4=6﹣6.60、原式=×2﹣2×3+5﹣2+1=﹣6﹣2+6=6﹣7.61、原式=a+2=2.62、原式=;63、原式=﹣+=﹣+=0.64、=2+﹣2=.65、=﹣=66、原式=9﹣14+4=﹣;67、原式=﹣43=﹣12=﹣11.68、原式=2×=12;69、原式=×3×=﹣;70、原式=12﹣2+6=16;71、原式=(4﹣2+6)×=2+272、原式=27÷(3×)×﹣8=3×﹣8=﹣8;73、原式=()2﹣()2=3﹣(2+2+5)=﹣4﹣274、原式=3+8=11;75、原式=2﹣12=﹣10;76、原式=5+﹣6=0;77、原式=÷=÷=1.78、原式=﹣==4+=4+.79、原式===;80、原式==9+6=1581、原式=(+)2﹣=3+2+2﹣=5+82、原式==;83、原式=;84、原式=5﹣6=﹣1;85、原式=4+=86、(1+)(1﹣)﹣(﹣1)2+(+1)2=1﹣()2﹣(2﹣2+1)+2+2+1=1﹣2﹣2+2﹣1+2+2+1=4﹣1.87、原式=+4×﹣+1=++1=1+.88、原式=(40)=30=15;89、原式=2+2=2+.90、原式===;91、原式===12.92、原式=2+2+4+2=;93、原式=9﹣14+24=;94、原式=(7+4)(7﹣4)+4﹣3=49﹣48+1=2;95、原式=﹣4×+9﹣12﹣()=﹣8+9﹣12﹣+1=﹣11;96、原式=﹣+=2x+=;97、原式=2a(b﹣×+)=2ab﹣+ab=98、原式=﹣+3﹣5=2﹣4;99、原式=12﹣4+1=13﹣4;100、原式=2+﹣=;101、原式=()=102、原式=3×2﹣2×3+5×4=6﹣6+20=20;103、原式=7﹣3+2=6;104、原式=•(﹣)×=﹣=﹣105、原式=3÷+÷=3+=;106、原式=3﹣1﹣=2﹣107、原式=+1﹣×2=2+1﹣2=1;108、原式=3﹣2+1﹣1=3﹣2;109、原式=+4﹣3=110、﹣1=﹣1=﹣1=0;111、()()+2=﹣+2=5﹣7+2=0;112、+|﹣3|﹣2﹣1=1+3﹣=3;113、(﹣2)×﹣6=﹣4﹣=﹣9﹣=﹣114、原式=4﹣5=﹣1;115、原式=×=1;116、原式=5﹣2﹣5+2=;117、原式=4﹣2+﹣1=3﹣118、原式==3﹣2=1.119、原式==120、原式=+1=121、原式=3+6a=2a+3a=5a;122、原式=﹣=﹣=3﹣2=1.123、原式==12;124、原式=49﹣48+2+=3+.125、原式===.。
七年级数学下册二次根式的加减综合练习题
七年级数学下册二次根式的加减综合练习题在七年级数学下册中,二次根式的加减是一个重要的知识点。
为了帮助同学们更好地掌握这一内容,本文将提供一些综合练习题,帮助大家加深对二次根式的理解。
练习题1:简化下列二次根式,并进行加减运算。
1) $\sqrt{12}$ + $\sqrt{27}$ - $\sqrt{48}$2) $3\sqrt{8}$ + $4\sqrt{18}$ - $5\sqrt{32}$练习题2:计算下列表达式的值。
3) $(\sqrt{15} + \sqrt{11})^2$4) $(\sqrt{20} - \sqrt{5})^2$练习题3:计算下列算式的值。
5) $2\sqrt{27} + \sqrt{12} - \sqrt{75}$6) $3\sqrt{16} - \sqrt{100} + 5\sqrt{9} - 2\sqrt{25}$解答:练习题1:1) $\sqrt{12}$可以化简为$2\sqrt{3}$,$\sqrt{27}$可以化简为$3\sqrt{3}$,$\sqrt{48}$可以化简为$4\sqrt{3}$。
因此,$\sqrt{12}$ + $\sqrt{27}$ - $\sqrt{48}$ = $2\sqrt{3} + 3\sqrt{3} - 4\sqrt{3}$ = $\sqrt{3}$。
2) $3\sqrt{8}$可以化简为$6\sqrt{2}$,$4\sqrt{18}$可以化简为$12\sqrt{2}$,$5\sqrt{32}$可以化简为$20\sqrt{2}$。
因此,$3\sqrt{8}$ + $4\sqrt{18}$ - $5\sqrt{32}$ = $6\sqrt{2}$ + $12\sqrt{2}$ - $20\sqrt{2}$ = $-2\sqrt{2}$。
练习题2:3) $(\sqrt{15} + \sqrt{11})^2$ = $\sqrt{15}^2 + 2\sqrt{15}\sqrt{11} + \sqrt{11}^2$ = $15 + 2\sqrt{165} + 11$ = $26 + 2\sqrt{165}$。