人教版九年级上册数学 21.2:一元二次方程的解法(公式法)

合集下载

九年级上册数学21.2 解一元二次方程公式法

九年级上册数学21.2 解一元二次方程公式法

21.2.2公式法1.知道一元二次方程根的判别式的概念.2.会用判别式判断一元二次方程的根的情况及根据一元二次方程的根的情况确定字母的取值范围.3.经历求根公式的推导过程并会用公式法解简单的一元二次方程.一、情境导入老师写了4个一元二次方程让同学们判断它们是否有解,大家都才解第一个方程呢,小强突然站起来说出每个方程解的情况,你想知道他是如何判断的吗?二、合作探究探究点一:一元二次方程的根的情况【类型一】判断一元二次方程根的情况不解方程,判断下列方程的根的情况.(1)2x2+3x-4=0;(2)x2-x+14=0;(3)x2-x+1=0.解析:根据根的判别式我们可以知道当b2-4ac≥0时,方程才有实数根,而b2-4ac<0时,方程没有实数根.由此我们不解方程就能判断一元二次方程根的情况.解:(1)2x2+3x-4=0,a=2,b=3,c=-4,∴b2-4ac=32-4×2×(-4)=41>0.∴方程有两个不相等的实数根.(2)x2-x+14=0,a=1,b=-1,c=14.∴b2-4ac=(-1)2-4×1×14=0.∴方程有两个相等的实数根.(3)x2-x+1=0,a=1,b=-1,c=1.∴b2-4ac=(-1)2-4×1×1=-3<0.∴方程没有实数根.方法总结:给出一个一元二次方程,不解方程,可由b2-4ac的值的符号来判断方程根的情况.当b2-4ac>0时,一元二次方程有两个不相等的实数根;当b2-4ac=0时,一元二次方程有两个相等的实数根;当b2-4ac<0时,一元二次方程无实数根.【类型二】由一元二次方程根的情况确定字母系数的取值已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是( )A.a>2 B.a<2C.a<2且a≠1 D.a<-2解析:由于一元二次方程有两个不相等的实数根,判别式大于0,得到一个不等式,再由二次项系数不为0知a-1不为0.即4-4(a-1)>0且a-1≠0,解得a<2且a≠1.选C.方法总结:若方程有实数根,则b2-4ac≥0.由于本题强调说明方程是一元二次方程,所以,二次项系数不为0.因此本题还是一道易错题.【类型三】说明含有字母系数的一元二次方程根的情况已知:关于x 的方程2x 2+kx -1=0,求证:方程有两个不相等的实数根.证明:Δ=k 2-4×2×(-1)=k 2+8,无论k 取何值,k 2≥0,所以k 2+8>0,即Δ>0,∴方程2x 2+kx -1=0有两个不相等的实数根.方法总结:要说明一个含字母系数的一元二次方程的根的情况,只需求出该方程根的判别式,分析其正、负情况,即可得出结论.【类型四】一元二次方程的根的情况的实际应用小林准备进行如下操作实验:把一根长为40cm 的铁丝剪成两段,并把每一段各围成一个正方形.小峰对小林说:“这两个正方形的面积之和不可能等于48cm 2”,他的说法对吗?请说明理由.解:假设能围成.设其中一个正方形的边长为x ,则另一个正方形的边长是(10-x ),由题可得,x 2+(10-x )2=48.化简得x 2-10x +26=0.因为b 2-4ac =(-10)2-4×1×26=-4<0,所以此方程没有实数根.所以小峰的说法是对的.探究点二:公式法解一元二次方程【类型一】用公式法解一元二次方程用公式法解下列方程: (1)2x 2+x -6=0;(2)x 2+4x =2;(3)5x 2-4x +12=0;(4)4x 2+4x +10=1-8x .解析:方程(1)(3)是一元二次方程的一般形式,可以直接确定a ,b ,c 的值,并计算b 2-4ac 的值,然后代入求根公式,即可求出方程的根;方程(2)(4)则需要先化成一般形式,再求解.解:(1)这里a =2,b =1,c =-6,b2-4ac =12-4×2×(-6)=1+48=49.∴x =-b ±b 2-4ac 2a =-1±492×2=-1±74,即原方程的解是x 1=-2,x 2=32.(2)将方程化为一般形式,得x 2+4x -2=0.∵b 2-4ac =24,∴x =-4±242=-2± 6.∴原方程的解是x 1=-2+6,x 2=-2- 6.(3)∵b 2-4ac =-224<0,∴原方程没有实数根.(4)整理,得4x 2+12x +9=0.∵b 2-4ac =0,∴x 1=x 2=-32.方法总结:用公式法解一元二次方程时,一定要先将方程化为一般形式,再确定a ,b ,c 的值.【类型二】一元二次方程解法的综合运用三角形的两边分别为2和6,第三边是方程x 2-10x +21=0的解,则第三边的长为( )A .7B .3C .7或3D .无法确定解析:解一元二次方程x 2-10x +21=0,得x 1=3,x 2=7.根据三角形三边的关系,第三边还应满足4<x <8.所以第三边的长x =7.故选A.方法总结:解题的关键是正确求解一元二次方程,并会运用三角形三边的关系进行取舍.三、板书设计教学过程中,强调用判别式去判断方程根的情况,首先需把方程化为一般形式.同时公式法的得出是通过配方法来的,用公式法解方程∴前提是Δ≥0.。

公式法-九年级数学上册(人教版)

公式法-九年级数学上册(人教版)
∴Δ=b2-4ac=(k+3)2-4×3k=k2-6k+9=(k-3)2,
∴方程有两个相等的实数根或者不相等的两个实数根,
即方程一定有两个实数根.
课堂小结
人教版数学九年级上册
1.由配方法解一般的一元二次方程 若b2-4ac≥0得
求根公式 :
2.用公式法解一元二次方程的一般步骤:
(1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0.
5
小试牛刀
人教版数学九年级上册
1.用公式法解方程 4x 2-12x=3,得到( D
3 6
A.x=
2
3 6
B.x=
2
3 2 3
C.x=
2
3 2 3
D.x=
2
).
小试牛刀
人教版数学九年级上册
2.不解方程,判别下列方程的根的情况.
(1)x2-6x+1=0 (2)2x2-x+2=0 (3)x2-4x+4=0 (4)(x-2)2+3=1
a=5,b=-4,c=-1.
a=1,b=-8,c=17.
Δ=b2-4ac=(-4)2-4×5×(-1)=36>0
Δ=b2-4ac=(-8)2-4×1×17=-4<0
方程有两个不等的实数根
方程无实数根 .
b b 2 4ac (4) 36 4 6
即x


2a
25
10
1
x1 1,x2
A.2x2-3x-5=0
B.x2+2x+2=0
C.x2-4x=0
D.x2-4=0
2.若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,

人教版九年级上册数学第21章21.2一元二次方程解法--公式法

人教版九年级上册数学第21章21.2一元二次方程解法--公式法

一元二次方程解法--公式法一、基本知识1. 把方程4x 2+4x+10=1-8x 化为一般形式为: ,二次项系数是 ,一次项系数是 ,常数项是 .2. 用公式法解方程4x 2-12x=3,得到( ).A .x=32-± B .x=32± C .x=32-± D .x=32± 3. 下列方程①012=+x ;②02=+x x ;③012=-+x x ;④02=-x x 中,无实根的方程是 .4. 已知关于x 的方程022=+-mx x 有两个相等的实数根,那么m 的值是 . 思路与步骤:1. 解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b-4ac ≥0时,•将a 、b 、c 代入式子. 合作探究1:用公式法解下列方程.(1)2x 2-4x-1=0 (2)5x+2=3x 2对应练习:1. 用公式法解下列一元二次方程(1)(x-2)(3x-5)=0 (2)4x 2-3x+1=0(3)3x 2+5(2x+1)=0 (4)0432=-+x x根的判别式1. 一元二次方程 ax 2+bx+c=0 (a ≠0)根的判别式为:△=b 2-4ac.2.(1)△=b 2-4ac >0有 的实根.(2)△=b 2-4ac =0有 的实根.(3)△=b 2-4ac <.(3)△=b 2-4ac ≥.二、典型例题:例1:当m 分别满足什么条件时,方程2x 2-(4m+1)x +2m 2-1=0,(1)有两个相等实根;(2)有两个不相实根;(3)无实根;(4)有两个实根.对应练习:1. 若关于x 的一元二次方程230x x m -+=有实数根,则m 的取值范围是 .2. 关于x 的方程()22410x x m -+-=有两个不相等的实数根,则m 的取值范围是 .例题2:若关于x 的方程x 2+2(a +1)x +(a 2+4a -5)=0有实数根,试求正整数a 的值.【提示】:要注意两个条件:①有实数根,②a 是正整数.例题3:如图,某校广场有一段25米长的旧围栏,现打算利用该围栏的一部分(或全部)为一边,围成一块100平方米的长方形草坪(如图CDEF ,CD <CF )已知整修旧围栏的价格是每米1.75元,建新围栏的价格是每米4.5元。

人教版九年级数学上册课件:21.2.2公式法

人教版九年级数学上册课件:21.2.2公式法

21.2.2 公式法
(2)方程整理,得 x2-2 5x+10=0,
∵Δ=b2-4ac=(-2 5)2-4×1×10=-20<0,∴此方程无实数根.
(3)方程整理,得 x2+4x-2=0.∵a=1,b=4,c=-2,
∴b2-4ac=16+8=24>0,∴x=-42±×1 24,
∴x1=-2+ 6,x2=-2- 6. (4)原方程可化为 x2-9x+2=0.∵a=1,b=-9,c=2,
1)·(-2)=9+8(a-1)≥0,且 a-1≠0,即得 a≥-81且 a≠1.
21.2.2 公式法
13.已知等腰三角形的腰长为 x,周长为 20,则方程 x2- 12x+31=0 的根为___6+___5__.
【解析】由方程 x2-12x+31=0 得 a=1,b=-12,c=31,b2-4ac=(-12)2 12± 20
(2)方程的根为 x= ,即 x =2,x =k+1.∵方程总有一个根 艰闹群垛漆除蛾多悠纷铝终锰炕毅贞绵粳压谣灸艇磁诧酱述凶妖喧朝芋疡人教版九年级数学上册课件:211.
2
2 2公式法作业本人教版九年级数学上册课件:21.
馏亥磨甩僵钾河纪灿翼大实刃昂拎赣崇捍您戌登棺秤渣肃例笆荚弗窿鼻冗人教版九年级数学上册课件:21.
2公式法作业本人教版九年级数学上册课件:21.
【解析】∵点 P(a,c)在第二象限,∴a<0,c>0, 第二十一章 一元二次方程
敞憨厦打员寨玩缠厦驰农头宗怂在例沫呢蒲绥河谣泞躲结旧双峻饯喘兽纸人教版九年级数学上册课件:21.
敞憨厦打员寨玩缠厦驰农头宗怂在例沫呢蒲绥河谣泞躲结旧双峻饯喘兽纸人教版九年级数学上册课件:21.
21.2.2 公式法
14.用公式法解下列方程:

九年级数学: 21.2.2解一元二次方程(公式法)教案

九年级数学: 21.2.2解一元二次方程(公式法)教案


必做:课本12页练习。
自主学习中的能力提升部分。
选做:自主学习中的拓展问题.
教师布置作业,并提出要求.
学生课下独立完成,延续课堂.
三、【板书设计】
21.2.3解一元二次方程(公式法)教案
求根公式:
四、【教后反思】
教学
重点
推导求根公式的过程,理解根的判别式的作用.
教学
难点
熟练运用根的判别式解决根,字母系数的取值等相关问题.
二、【教学流程】
教学环节
教学问题设计
师生活动
二次备课




【问题1】
我们知道,任意一个一元二次方程都可以化为一般形式是:
ax2+bx+c=0(a≠0)
你能用配方法求得它的解吗?
通过问题,激发学生对旧知的回忆.即配方法的一般步骤.


1.通过本节课的学习你有什么收获?
2.你还有哪些疑惑?
学生独立思考,师生梳理本课的知识点及方法
1.求根公式的推导过程.
2.用公式法解一元二次方程的一般步骤:先确定a、b、c的值、再算出判别式的值、最后代入求根公式求解.
3.用判别式判定一元二次方程根的情况.及求相关字母的取值范围.
注意:字母系数。
21.2.2解一元二次方程(公式法)教案
一、【教材分析】


目标知识目标 Nhomakorabea1.会用公式法解一元二次方程,理解用根的判别式判别根的情况及求相关的字母的取值范围.
能力
目标
1.经历推导求根公式的过程,加强推理技技能训练,进一步发展逻辑思维能力.体验类比、转化、降次的数学思想方法.
情感
目标

人教版九年级数学上册21.2.2用公式法解一元二次方程

人教版九年级数学上册21.2.2用公式法解一元二次方程

无实数根.

纳 一般地,式子b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)
根的判别式.通常用希腊字母 ∆表示它,即∆= b2-4ac.
当∆>0时,方程有两个不相等的实数根;
当∆=0 时,方程有两个相等的实数根;
当∆<0时,方程无实数根.
一般地,对于一元二次方程 ax2+bx+c=0(a≠0)
不等的实数根吗?给出答案并说明理由.
例4 已知关于x的方程 x2(m1)x1m20. 4
(1) 若方程有两个不相等的实数根,求m的取值范围; (2) 若方程有两个相等的实数根,求m的值; (3) 若方程有两个实数根,求m的取值范围; (4) 若方程无实数根,求m的取值范围.
练习 关于x的一元二次方程 x22xm0有两个实数
0时,它的根是 :
x b b2 4ac . b2 4ac 0 . 2a
上面这个式子称为一元二次方程的求根公式. 用求根公式解一元二次方程的方法称为公式法.
例2 用公式法解方程:
(1) x2-4x-7=0;
(2) 6x2-7x+1=0.
解a 1, b 4, c 7
b 2 4 a ( c 4 )2 4 ( 7 ) 4 0 4
ax2+bx+c = 0(a≠0) ①
你能否也用配方法得出①的解呢?
移项,得 ax2 bx c.
二次项系数化为1,得 x2 b x c .
a
a
配方,得
x2
b a
x
b 2a
ห้องสมุดไป่ตู้
2
c a
b 2a
2
,

x
b 2a
2
b2 4ac 4a2

人教版九年级数学上册第21章 一元二次方程2 公式法

人教版九年级数学上册第21章  一元二次方程2 公式法
定的?
( − 的值)
小组讨论
两人一组编题互判,首先根据根的判别式独立编制
出三个不同根的情况的一元二次方程,然后将所编
方程让同桌判断根的情况,并用公式法求解.
小组展示
越展越优秀
提疑惑:你有什么疑惑?
教师讲评
知识点1:根的判别式(难点)
一般地,式子 − 叫方程a +bx+c=0(a≠0)根的判别式.
元一次方程)
自主探究
2.请同学们利用配方法解方程 ² + + = ≠ .
(原方程可变形为
所以 +




+

=

,


,

− + −
− − −
=
, =
)


自主探究
3.请同学们思考以下问题:
2.回忆用配方法解方程的一般步骤.
(1)移常数项,二次项系数化为1;(2)配方, 两边都加上一次项系数
一半的平方;(3)写成(x+n)²=p(p≥0)的形式;(4)直接开平方法解方程.
对于一元二次方程的一般形式ax2+bx+c=0(a≠0),
能不能利用配方法求出它的解呢?应该怎样做呢?
请同学们任意选择一个方程求解:
洁美,产生热爱数学的情感.
旧知回顾
1.用配方法解下列方程:
(1)2x2-9x+8=0 ;
(2)3x2+2x+1=0.
(1)原方程可变形为 −


(2)原方程可变形为 +


=

,所以

人教版九年级数学上册:21.2解一元二次方程---公式法(解析版)

人教版九年级数学上册:21.2解一元二次方程---公式法(解析版)

人教版九年级数学上册:21.2解一元二次方程---公式法一.选择题(共8小题)1.已知关于x的一元二次方程x2﹣px+q=0有两个根,则这两个根是()A.x=B.x=C.x=D.x=2.下列方程中,解为的是()A.x2﹣1=3B.(x+1)2=2C.(x﹣1)2=2D.(x﹣2)2=1 3.一元二次方程x2﹣px+q=0的两个根是(4q<p2)()A.B.C.D.4.用公式法解一元二次方程x2﹣5x=6,解是()A.x1=3,x2=2B.x1=﹣6,x2=﹣1C.x1=6,x2=﹣1D.x1=﹣3,x2=﹣25.用公式法解方程x2﹣3x﹣1=0正确的解为()A.x1,2=B.x1,2=C.x1,2=D.x1,2=6.用公式法解方程(x+2)2=6(x+2)﹣4时,b2﹣4ac的值为()A.52B.32C.20D.﹣127.方程ax2+bx+c=0(a<0)有两个实根,则这两个实根的大小关系是()A.≥B.>C.≤D.<8.下列各数中,是方程x2﹣(1+)x+=0的解的有()①1+;②1﹣;③1;④﹣A.0个B.1个C.2个D.3个二.填空题(共11小题)9.一元二次方程x2+x=3中,a=,b=,c=,则方程的根是.10.用公式法解方程x2=﹣8x﹣15,其中b2﹣4ac=.x1=,x2=.11.完成下面的解题过程:用公式法解下列方程:(1)2x2﹣3x﹣2=0.解:a=,b=,c=.b2﹣4ac==>0.==,x1=,x2=.(2)x(2x﹣)=x﹣3.解:整理,得.a=,b=,c=.b2﹣4ac==.==,x1=x2=.(3)(x﹣2)2=x﹣3.解:整理,得.a=,b=,c=.b2﹣4ac==<0.方程实数根.12.完成下面的解题过程:用公式法解方程:2x(x﹣1)+6=2(0.5x+3)解:整理,得.a=,b=,c=.b2﹣4ac==>0.x==,x1=,x2=.13.用公式法解方程(2x﹣1)2+4=(x+2)2﹣4,先把它整理为,它的根为.14.有求根公式可知,一元二次方程最多有个实数根,也可能有实数根;或者实数根.15.把方程(x+3)(x﹣1)=x(1﹣x)整理成ax2+bx+c=0的形式,b2﹣4ac的值是.16.将方程(4y﹣3)(3y﹣1)=4化成一般形式为ay2+by+c=0,则b2﹣4ac=,此方程的根是.17.若x=1是一元二次方程ax2+bx+c=O(a≠O)的根,则判别式△=b2﹣4ac和完全平方式M=(2a+b)2的关系是:△M.(填“>”“<”或“=”)18.用公式法解方程2x2﹣x﹣1=0的根是.19.如果x2+1与4x2﹣3x﹣5互为相反数,则x的值为.三.解答题(共4小题)20.用公式法解方程:(1)x2﹣4x+1=0(2)5x2=4x﹣1(3)2x2﹣2x﹣1=0(4)4x(x﹣)=8.21.用公式法解方程.(1)4x2﹣3x﹣2=0(2)x2+2=2.22.下列解方程的过程是否有错误?若有,请你写出正确的解答过程.解方程;x2﹣8x﹣4=0.解:∵a=1,b=﹣8,c=﹣4,∴b2﹣4ac=(﹣8)2﹣4×1×(﹣4)=64﹣16=48,x=,∴,.23.用公式法解下列方程:(1)x2+2x﹣1=0(2)16x2+8x=3.参考答案一.选择题(共8小题)1.已知关于x的一元二次方程x2﹣px+q=0有两个根,则这两个根是()A.x=B.x=C.x=D.x=【解答】解:x2﹣px+q=0,△=(﹣p)2﹣4q=p2﹣4q,x=,故选:A.2.下列方程中,解为的是()A.x2﹣1=3B.(x+1)2=2C.(x﹣1)2=2D.(x﹣2)2=1【解答】解:A、方程变形得:x2=4,开方得:x=±2,故选项错误;B、开方得:x+1=±,解得:x=﹣1±,故选项错误;C、开方得:x﹣1=±,解得:x=1±,故选项正确;D、开方得:x﹣2=±1,解得:x1=3,x2=1,故选项错误.故选:C.3.一元二次方程x2﹣px+q=0的两个根是(4q<p2)()A.B.C.D.【解答】解:∵a=1,b=﹣p,c=q,∴b2﹣4ac=p2﹣4q,∵4q<p2,∴b2﹣4ac=p2﹣4q>0,∴x==,故选:A.4.用公式法解一元二次方程x2﹣5x=6,解是()A.x1=3,x2=2B.x1=﹣6,x2=﹣1C.x1=6,x2=﹣1D.x1=﹣3,x2=﹣2【解答】解:∵x2﹣5x=6∴x2﹣5x﹣6=0∵a=1,b=﹣5,c=﹣6∴b2﹣4ac=(﹣5)2﹣4×1×(﹣6)=49∴x=∴x1=6,x2=﹣1.故选:C.5.用公式法解方程x2﹣3x﹣1=0正确的解为()A.x1,2=B.x1,2=C.x1,2=D.x1,2=【解答】解:∵a=1,b=﹣3,c=﹣1∴b2﹣4ac=13>0∴x=.故选D.6.用公式法解方程(x+2)2=6(x+2)﹣4时,b2﹣4ac的值为()A.52B.32C.20D.﹣12【解答】解:∵(x+2)2=6(x+2)﹣4∴x2﹣2x﹣4=0∴a=1,b=﹣2,c=﹣4∴b2﹣4ac=4+16=20.故选:C.7.方程ax2+bx+c=0(a<0)有两个实根,则这两个实根的大小关系是()A.≥B.>C.≤D.<【解答】解:在△=b2﹣4ac中,当b2=4ac时,有两根相等的情况,又a<0,∴≥.故选A.8.下列各数中,是方程x2﹣(1+)x+=0的解的有()①1+;②1﹣;③1;④﹣A.0个B.1个C.2个D.3个【解答】解:a=1,b=﹣(1+),c=△=(1+)2﹣4=(1﹣)2>0∴x=∴x1=1,x2=,所以四个选项中,是方程的解的只有一个1,故选B.二.填空题(共11小题)9.一元二次方程x2+x=3中,a=,b=1,c=﹣3,则方程的根是x1=﹣1+,x2=﹣1﹣.【解答】解:移项得,x+x﹣3=0∴a=,b=1,c=﹣3∴b2﹣4ac=7∴x1=﹣1+,x2=﹣1﹣.10.用公式法解方程x2=﹣8x﹣15,其中b2﹣4ac=4.x1=﹣3,x2=﹣5.【解答】解:x2=﹣8x﹣15,x2+8x+15=0,b2﹣4ac=82﹣4×1×15=4,x=,x1=﹣3,x2=﹣5,故答案为:4,﹣3,﹣5.11.完成下面的解题过程:用公式法解下列方程:(1)2x2﹣3x﹣2=0.解:a=2,b=﹣3,c=﹣2.b2﹣4ac=9+16=25>0.==,x1=2,x2=﹣.(2)x(2x﹣)=x﹣3.解:整理,得2x2﹣2x+3=0.a=2,b=﹣2,c=3.b2﹣4ac=24﹣24=0.==,x1=x2=.(3)(x﹣2)2=x﹣3.解:整理,得x2﹣5x+7=0.a=1,b=﹣5,c=7.b2﹣4ac=25﹣28=﹣3<0.方程没有实数根.【解答】解:(1)2x2﹣3x﹣2=0,a=2,b=﹣3,c=﹣2,△=9+16=25,x==,∴x1=2,x2=﹣;(2)方程整理得:2x2﹣2x+3=0,a=2,b=﹣2,c=3,△=24﹣24=0,x=,∴x1=x2=;(3)方程整理得:x2﹣5x+7=0,△=25﹣28=﹣3<0,∴方程没有实数根.12.完成下面的解题过程:用公式法解方程:2x(x﹣1)+6=2(0.5x+3)解:整理,得2x2﹣3x=0.a=2,b=﹣3,c=0.b2﹣4ac=(﹣3)2﹣4×2×0=9>0.x==,x1=0,x2=.【解答】解:去括号,移项,整理得,2x2﹣3x=0,∴a=2,b=﹣3,c=0,∴△=(﹣3)2﹣4×2×0=9>0,∴x==,∴x1=0,x2=.故答案为:2x2﹣3x=0;2,﹣3,0;(﹣3)2﹣4×2×0,9;,;0,.13.用公式法解方程(2x﹣1)2+4=(x+2)2﹣4,先把它整理为3x2﹣8x+5=0,它的根为x1=,x2=1.【解答】解:方程整理得:3x2﹣8x+5=0,这里a=3,b=﹣8,c=5,∵△=64﹣60=4,∴x=,解得:x1=,x2=1,故答案为:3x2﹣8x+5=0;x1=,x2=114.有求根公式可知,一元二次方程最多有2个实数根,也可能有两个相等实数根;或者无实数根.【解答】解:有求根公式可知,一元二次方程最多有2个实数根,也可能有两个实数根;或者无实数根.故答案为:2;两个相等;无15.把方程(x+3)(x﹣1)=x(1﹣x)整理成ax2+bx+c=0的形式2x2+x﹣3=0,b2﹣4ac的值是25.【解答】解:方程(x+3)(x﹣1)=x(1﹣x)整理得:2x2+x﹣3=0,b2﹣4ac=25.故答案为:2x2+x﹣3=0;25.16.将方程(4y﹣3)(3y﹣1)=4化成一般形式为ay2+by+c=0,则b2﹣4ac=217,此方程的根是.【解答】解:方程(4y﹣3)(3y﹣1)=4,整理得:12y2﹣13y﹣1=0,这里a=12,b=﹣13,c=﹣1,∵△=169+48=217,∴y=.故答案为:217;17.若x=1是一元二次方程ax2+bx+c=O(a≠O)的根,则判别式△=b2﹣4ac和完全平方式M=(2a+b)2的关系是:△=M.(填“>”“<”或“=”)【解答】解:∵x=1是一元二次方程ax2+bx+c=O(a≠O)的根,∴a+b+c=0,即b=﹣a﹣c,∴△=b2﹣4ac=(﹣a﹣c)2﹣4ac=a2﹣2ac+c2=(a﹣c)2,M=(2a+b)2=(2a﹣a ﹣c)2=(a﹣c)2,则△=M.故答案为:=.18.用公式法解方程2x2﹣x﹣1=0的根是.【解答】解:a=2,b=﹣,c=﹣1∴b2﹣4ac=10>0∴x=.19.如果x2+1与4x2﹣3x﹣5互为相反数,则x的值为或﹣.【解答】解:据题意得,(x2+1)+(4x2﹣3x﹣5)=0;∴x2﹣3x﹣4=0;∴a=,b=﹣3,c=﹣4;∴b2﹣4ac=81∴x=∴x1=,x2=﹣.三.解答题(共4小题)20.用公式法解方程:(1)x2﹣4x+1=0(2)5x2=4x﹣1(3)2x2﹣2x﹣1=0(4)4x(x﹣)=8.【解答】解:(1)这里a=1,b=﹣4,c=1,∵△=16﹣4=12,∴x==2±;(2)方程整理得:5x2﹣4x+1=0,这里a=5,b=﹣4,c=1,∵△=16﹣20=﹣4<0,∴方程无解;(3)这里a=2,b=﹣2,c=﹣1,∵△=4+8=12,∴x=,解得:x1=,x2=;(4)方程整理得:2x2﹣5x﹣4=0,这里a=2,b=﹣5,c=﹣4,∵△=25+32=57,∴x=,则x1=,x2=.21.用公式法解方程.(1)4x2﹣3x﹣2=0(2)x2+2=2.【解答】解:(1)这里a=4,b=﹣3,c=﹣2,∵△=9+32=41,∴x=;(2)方程整理得:x2﹣2x+2=0,这里a=1,b=﹣2,c=2,∵△=8﹣8=0,∴x==,则x1=x2=.22.下列解方程的过程是否有错误?若有,请你写出正确的解答过程.解方程;x2﹣8x﹣4=0.解:∵a=1,b=﹣8,c=﹣4,∴b2﹣4ac=(﹣8)2﹣4×1×(﹣4)=64﹣16=48,x=,∴,.【解答】解:解答过程有误,正确解法为:x2﹣8x﹣4=0.∵a=1,b=﹣8,c=﹣4,∴b2﹣4ac=(﹣8)2﹣4×1×(﹣4)=64+16=80,x==4±2,∴x1=4+2,x2=4﹣2.23.用公式法解下列方程:(1)x2+2x﹣1=0(2)16x2+8x=3.【解答】解:(1)x2+2x﹣1=0,b2﹣4ac=22﹣4×1×(﹣1)=8,x=,x1=﹣1+,x2=﹣1﹣;(2)16x2+8x=3,16x2+8x﹣3=0,b2﹣4ac=82﹣4×16×(﹣3)=256,x=,x1=,x2=﹣.。

部编数学九年级上册专题21.2一元二次方程的解法【八大题型】(人教版)(解析版)含答案

部编数学九年级上册专题21.2一元二次方程的解法【八大题型】(人教版)(解析版)含答案

专题21.2 一元二次方程的解法【八大题型】【人教版】【题型1 用直接开平方法解一元二次方程】 (1)【题型2 用配方法解一元二次方程】 (2)【题型3 用公式法解一元二次方程】 (4)【题型4 用因式分解法解一元二次方程】 (5)【题型5 用指定方法解一元二次方程】 (6)【题型6 用适当的方法解一元二次方程】 (12)【题型7 用换元法解一元二次方程】 (14)【题型8 配方法的应用】 (17)【题型1 用直接开平方法解一元二次方程】【例1】(2022•建华区二模)解方程:−13(x ﹣2)2+34=0(开平方法).【分析】先把方程变形为(x ﹣2)2=94,再两边开方得到x ﹣2=±32,然后解两个一次方程即可.【解答】解:−13(x ﹣2)2+34=0,−13(x ﹣2)2=−34,(x ﹣2)2=94,x ﹣2=±32,所以x 1=72,x 2=12.【变式1-1】(2022•齐齐哈尔)解方程:(2x +3)2=(3x +2)2(开平方法).【分析】方程开方转化为一元一次方程,求出解即可.【解答】解:方程:(2x+3)2=(3x+2)2,开方得:2x+3=3x+2或2x+3=﹣3x﹣2,解得:x1=1,x2=﹣1.【变式1-2】(2021秋•徐汇区校级月考)解方程:4(x+1)2﹣9(x﹣2)2=0(开平方法).【分析】直接开方,再解一元一次方程即可.【解答】解:4(x+1)2=9(x﹣2)2,∴2(x+1)=±3(x﹣2),∴x1=8,x2=4 5.【变式1-3】(2022春•黄浦区校级期中)解关于x的方程:x2﹣3=1+ax2(a≠1)(开平方法).【分析】方程整理后,利用平方根定义开方即可求出解.【解答】解:方程整理得:(a﹣1)x2=﹣4,即x2=41−a,当1﹣a>0,即a<1时,x=当1﹣a<0,即a>1时,无解.来求出它的解,如果右边是一个负数,则判定此方程无实数解.【题型2 用配方法解一元二次方程】【例2】(2022春•淄川区期中)(1)请用配方法解方程2x2﹣6x+3=0;(2)请用配方法解一元二次方程ax2+bx+c=0(a≠0).【分析】(1)方程二次项系数化为1,常数项移到右边,两边加上一次项系数一半系数平方,利用完全平方公式变形,开方即可求出解;(2)方程二次项系数化为1,常数项移到右边,两边加上一次项系数一半系数平方,利用完全平方公式变形,开方即可求出解.【解答】解:(1)方程整理得:x 2﹣3x =−32,配方得:x 2﹣3x +94=94−32,即(x −32)2=34,开方得:x −32=解得:x 1=32+x 2=32−(2)方程整理得:x 2+b a x =−c a ,配方得:x 2+b a x +b 24a 2=b 24a 2−c a ,即(x +b 2a )2=b 2−4ac 4a 2,开方得:x +b 2a =解得:x 1=x 2=【变式2-1】(2022秋•松江区期末)用配方法解方程:x 2=4.【分析】两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得.【解答】解:∵x 2=4,∴x 2﹣+5=4+5,即(x 2=9,∴x 3或x =−3,∴x 1=3x 2=﹣3+【变式2-2】(2022秋•伊川县期中)用配方法解方程:4x 2﹣8x ﹣7=0.【分析】根据配方法的步骤先把二次项系数化为1,再在等式左右两边同时加上一次项系数的一半的平方,然后开方即可.【解答】解:4x 2﹣8x ﹣7=0,4x 2﹣8x =7,x 2﹣2x =74,配方得x 2﹣2x +12=74+1,(x ﹣1)2=114,x ﹣1=x =∴x1=1x2=1【变式2-3】(2022秋•潢川县期末)解方程:2x2﹣5x+1=0(用配方法)【分析】将常数项移到右边后把二次项系数化为1,再两边配上一次项系数一半的平方求解可得.【解答】解:∵2x2﹣5x=﹣1,∴x2−52x=−12,∴x2−52x+2516=−12+2516,即(x−54)2=1716,则x−5 4 =∴x【题型3 用公式法解一元二次方程】【例3】(2022春•通州区校级月考)用公式法解方程:2a2﹣3=﹣4a.【分析】先把原方程化成一元二次方程的一般形式,再利用公式法进行计算即可解答.【解答】解:2a2﹣3=﹣4a,整理得:2a2+4a﹣3=0,∵Δ=42﹣4×2×(﹣3)=16+24=40,∴a=∴a1a2=【变式3-1】(2022秋•徐汇区校级月考)解方程:5x+2=(3x﹣1)(2x+2)(公式法).【分析】整理成一般式,先求出b2﹣4ac的值,再代入公式求出即可.【解答】解:方程整理得:6x2﹣x﹣4=0,∵a=6,b=﹣1,c=﹣4,∴b2﹣4ac=(﹣1)2﹣4×6×(﹣4)=97>0,∴x=∴x1x2=【变式3-2】(2022秋•金山区校级期中)用公式法解方程:x2﹣﹣3=0.【分析】先求出b2﹣4ac的值,再代入公式求出方程的解即可.【解答】解:x2﹣﹣3=0,∵a=1,b=﹣c=﹣3,∴Δ=b2﹣4ac=(﹣2﹣4×1×(﹣3)=20>0,∴x=∴x1=x2=【变式3-3】(2022•市中区二模)用公式法解一元二次方程:2x2﹣7x+6=0.【分析】方程利用公式法求出解即可.【解答】解:方程2x2﹣7x+6=0,这里a=2,b=﹣7,c=6,∵Δ=49﹣48=1>0,∴x=7±1 4,则x1=2,x2=1.5.转化为解两个一元一次方程,这种解一元二次方程的方法叫做因式分解法.【题型4 用因式分解法解一元二次方程】【例4】(2022秋•莲湖区期中)用因式分解法解方程:2(x﹣3)=3x(x﹣3).【分析】移项后,利用提公因式法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可.【解答】解:∵2(x﹣3)=3x(x﹣3),∴2(x﹣3)﹣3x(x﹣3)=0,则(x﹣3)(2﹣3x)=0,∴x﹣3=0或2﹣3x=0,解得x1=3,x2=2 3.【变式4-1】(2022秋•徐汇区校级月考)解方程:(4﹣3x)+(3x﹣4)2=0(因式分解法).【分析】利用提取公因式(4﹣3x),将左边因式分解,再进一步求解即可.【解答】解:∵(4﹣3x)+(3x﹣4)2=0,∴(4﹣3x)(5﹣3x)=0,则4﹣3x=0或5﹣3x=0,解得x1=43,x2=53.【变式4-2】(2022秋•长白县期中)用因式分解法解方程:(x+3)2=(1﹣2x)2.【分析】方程整理后,利用因式分解法求出解即可.【解答】解:方程整理得:(x+3)2﹣(1﹣2x)2=0,分解因式得:(x+3+1﹣2x)(x+3﹣1+2x)=0,即(4﹣x)(3x+2)=0,可得4﹣x=0或3x+2=0,解得:x1=4,x2=−2 3.【变式4-3】(2022秋•简阳市月考)用因式分解法解方程:x2+0【分析】利用因式分解法把方程化为x=0或x+=0,然后解一次方程即可.【解答】解:(x x+0,x=0或x+=0,所以x1=x2=【题型5 用指定方法解一元二次方程】【例5】(2022秋•兴平市校级月考)按规定的方法解下列方程:(1)(x+1)2﹣144=0(直接开平方法);(2)x2=8x+9(配方法);(3)2y2+7y+3=0(公式法);(4)3(x﹣2)2=x(x﹣2)(因式分解法).【分析】(1)移项,然后开平方即可求解;(2)首先移项,然后配方,利用直接开平方法即可求解;(3)利用公式法即可求解;(4)移项,然后利用因式分解法即可求解.【解答】解:(1)(x+1)2=144,则x+1=12或x+1=﹣12,解得:x1=﹣13,x2=11;(2)移项,得:x2﹣8x=9,配方,得x2﹣8x+16=25,则(x﹣4)2=25,即x﹣4=5或x﹣4=﹣5,解得:x1=9,x2=﹣1;(3)a=2,b=7,c=3,△=49﹣4×2×3=49﹣24=25>0.则x=−7±54,则x1=﹣3,x2=−1 2;(4)原式即3(x﹣2)2﹣x(x﹣2)=0,因式分解得:(x﹣2)【3(x﹣2)﹣x】=0,即(x﹣2)(2x﹣6)=0,则x﹣2=0或2x﹣6=0,解得:x1=2,x2=3.【变式5-1】(2022秋•宁县校级月考)用适当的方法解方程:(1)x(x﹣2)+x﹣2=0(用因式分解法)(2)x2﹣4x+3=0(用配方法解)(3)x2+5x+1=0(用公式法解)(4)(x﹣4)2=(5﹣2x)2(用直接开平方法)【分析】(1)先提取公因式(x﹣2)因式分解,再求解即可;(2)先利用完全平方公式配方,然后开平方求解即可;(3)写出a、b、c的值,然后利用求根公式法求解;(4)直接开平方求解即可.【解答】解:(1)因式分解得,(x﹣2)(x+1)=0,由此得,x﹣2=0,x+1=0,所以,x1=2,x2=﹣1;(2)配方得,x2﹣4x+4﹣4+3=0,即(x﹣2)2=1,所以,x﹣2=±1,所以,x1=3,x2=1;(3)a=1,b=5,c=1,Δ=b2﹣4ac=52﹣4×1×1=25﹣1=24,xx1x2=(4)开平方得,x﹣4=±(5﹣2x),所以,x﹣4=5﹣2x或x﹣4=2x﹣5,解得x1=3,x2=1.【变式5-2】(2022秋•简阳市月考)解下列方程(1)(2x﹣1)2=7(直接开平方法)(2)2x2﹣7x﹣4=0(用配方法)(3)2x2﹣10x=3(公式法)(4)(3x﹣4)2=(3﹣4x)2(因式分解法)(5)x2+=26(用换元法解)(6)(2x2+1)2﹣2x2﹣3=0(用换元法解)【分析】(1)用直接开平方法求解就可以了;(2)先将常数项移到等号的右边,再将二次项系数化为1,然后配方为完全平方公式后直接用开平方法求解就可以;(3)先化为一般形式,然后确定a、b、c的值,最后代入求根公式求解就可以了;(4)先移项,然后用平方差公式分解因式就可以求出结论;(5a,将原方程变形为a2﹣a=30,再解一个关于a的一元二次方程求解;(6)将原方程变形为:(2x2+1)2﹣(2x2+1)﹣2=0,再设2x2+1=a,就可以变为a2﹣a﹣2=0,最后可以运用因式分解法求解.【解答】解:(1)开平方,得2x﹣1=∴x1x2(2)移项,得2x2﹣7x=4,化二次项的系数为1,得x2−72x=2,配方,得x2−72x+4916=2+4916,(x−74)2=8116开平方,得x−74=±94,∴x1=4,x2=−1 2;(3)移项,得2x2﹣10x﹣3=0,∴a=2,b=﹣10,c=﹣3,∴△=100+24=124>0,∴x∴x1x2=(4)移项,得(3x﹣4)2﹣(3﹣4x)2=0分解因式,得(3x﹣4+3﹣4x)(3x﹣4﹣3+4x)=0,∴﹣x﹣1=0或7x﹣7=0,∴x1=﹣1,x2=1;(5)原方程变形为:x2+30,a,将原方程变形为:a2﹣a=30,移项,得a2﹣a﹣30=0,因式分解,得(a+5)(a﹣6)=0,∴a+5=0或a﹣6=0,∴a1=﹣5(舍去),a2=6,6,解得:x=经检验,x=(6)原方程变形为:(2x2+1)2﹣(2x2+1)﹣2=0,设2x2+1=a,则原方程变为:a2﹣a﹣2=0,解得:a1=﹣1,a2=2,当a=﹣1时,2x2+1=﹣1,Δ<0,原方程无解,当a=2时,2x2+1=2,解得:x=【变式5-3】(2022秋•恩阳区月考)解方程:①x2+x+=0(因式分解法)②5x2+2x﹣1=0(公式法)③y 2+6y +2=0(配方法)④9(x ﹣2)2=121(x +1)2(直接开平方法)⑤x 1x 2−2x 2x 1=1(换元法)⑥(x 2﹣x )2﹣5(x 2﹣x )+6=0(适当方法)【分析】①根据方程特点,采用因式分解法解答.②根据方程的系数特点,应准确确定各个项系数,利用求根公式求得.③可以先移项,然后利用配方法解答.④利用直接开平方法解答;⑤移项整理,利用换元法求得未知数的解即可.⑥利用换元法解答.【解答】解:①x 2+x +0,(x x +0,∴x +=0或x +=0,∴x 1=x 2=②5x 2+2x ﹣1=0,a =5,b =2,c =﹣1,Δ=b 2﹣4ac =4+20=24,x所以x 1=x 2③y 2+6y +2=0,y 2+6y =﹣2,y 2+6y +9=﹣2+9,即(y +3)2=7,∴y +3∴y 1=﹣3+y 2=﹣3④9(x ﹣2)2=121(x +1)2,3(x ﹣2)=±11(x +1),∴3(x ﹣2)=11(x +1)或3(x ﹣2)=﹣11(x +1),∴x 1=−178,x 2=−514;⑤x 1x 2−2x 2x 1=1,x 1x 2−2x 2x 1−1=0,设y =x 1x 2,则原方程为y −2y −1=0,y 2﹣y ﹣2=0,解得:y =﹣1,或y =2,当y =﹣1,x 1x 2=−1,此方程无解;当y =2,x 1x 2=2,解得:x 1=1,x 2=−12,经检验,x 1=1,x 2=−12是原分式方程的解,所以原方程的解为x 1=1,x 2=−12.⑥(x 2﹣x )2﹣5(x 2﹣x )+6=0,设y =x 2﹣x ,则原方程为y 2﹣5y +6=0,解得:y =3,或y =2,当y =3,x 2﹣x =3,x 1=x 2=当y =2,x 2﹣x =2,解得:x 3=2,x 4=﹣1;所以原方程的解为x 1x 2x 3=2,x 4=﹣1.【题型6 用适当的方法解一元二次方程】【例6】(2022春•富阳区校级期中)用适当的方法解下列一元二次方程:(1)(x +4)2﹣5(x +4)=0;(2)x 2﹣2x ﹣15=0.【分析】(1)等式左边可提取公因式(x +4),转化为(x +4)(x ﹣1)=0求解;(2)根据十字相乘法可将方程变形为(x +3)(x ﹣5)=0,由此可得同解方程x +3=0或x ﹣5=0,据此求解.【解答】解:(1)(x +4)2﹣5(x +4)=0,将方程变形,得(x+4)(x﹣1)=0,即x+4=0,x﹣1=0,解得:x1=﹣4,x2=1.(2)x2﹣2x﹣15=0,将方程变形,得(x+3)(x﹣5)=0,则x+3=0或x﹣5=0,解得x1=﹣3,x2=5.【变式6-1】(2022春•大观区校级期中)用适当的方法解方程(1)x2﹣x﹣1=0;(2)(x+1)2﹣3(x+1)=0.【分析】(1)利用公式法解方程;(2)利用因式分解法解方程.【解答】解:(1)Δ=(﹣1)2﹣4×(﹣1)=5>0,x所以x1=x2=(2)(x+1)2﹣3(x+1)=0.(x+1)(x+1﹣3)=0,x+1=0或x+1﹣3=0,所以x1=﹣1,x2=2.【变式6-2】(2022春•萧山区期中)用适当的方法解下列方程:(1)x2﹣x﹣6=0;(2)4(x﹣1)2=9(x﹣5)2.【分析】(1)利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可;(2)先移项,再利用公式法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可.【解答】解:(1)∵x2﹣x﹣6=0,∴(x﹣3)(x+2)=0,则x ﹣3=0或x +2=0,解得x 1=3,x 2=﹣2;(2)∵4(x ﹣1)2=9(x ﹣5)2,∴4(x ﹣1)2﹣9(x ﹣5)2=0,∴[2(x ﹣1)+3(x ﹣5)][2(x ﹣1)﹣3(x ﹣5)]=0,则2(x ﹣1)+3(x ﹣5)=0或2(x ﹣1)﹣3(x ﹣5)=0,解得x 1=13,x 2=175.【变式6-3】(2022春•柯桥区期中)选用适当的方法解下列方程.(1)2x (x ﹣1)=3(x ﹣1);(2)12x 2﹣5=0.【分析】(1)方程移项后,利用因式分解法求出解即可;(2)方程整理后,利用配方法求出解即可.【解答】解:(1)方程移项得:2x (x ﹣1)﹣3(x ﹣1)=0,分解因式得:(x ﹣1)(2x ﹣3)=0,所以x ﹣1=0或2x ﹣3=0,解得:x 1=1,x 2=32;(2)方程整理得:x 2=10,配方得:x 2+8=18,即(x 2=18,开方得:x =解得:x 1=x 2=﹣【题型7 用换元法解一元二次方程】【例7】(2022秋•安居区期末)为解方程(x 2﹣1)2﹣5(x 2﹣1)+4=0,我们可以将x 2﹣1视为一个整体,然后设x 2﹣1=y ,则原方程可化为y 2﹣5y +4=0,解此方程得y 1=1,y 2=4.当y =1时,x 2﹣1=1,所以x =±当y =4时,x 2﹣1=4,所以x =±所以原方程的根为x 1=x 2=x 3x 4=以上解方程的方法叫做换元法,利用换元法达到了降次的目的,体现了数学的转化思想.运用上述方法解下列方程:(1)(x2﹣x)(x2﹣x﹣4)=﹣4;(2)x4+x2﹣12=0.【分析】(1)设x2﹣x=a,原方程可化为a2﹣4a+4=0,求出a的值,再代入x2﹣x=a求出x即可;(2)设x2=y,原方程化为y2+y﹣12=0,求出y,再把y的值代入x2=y求出x即可.【解答】解:(1)(x2﹣x)(x2﹣x﹣4)=﹣4,设x2﹣x=a,则原方程可化为a2﹣4a+4=0,解此方程得:a1=a2=2,当a=2时,x2﹣x=2,即x2﹣x﹣2=0,因式分解得:(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1,所以原方程的解是x1=2,x2=﹣1;(2)x4+x2﹣12=0,设x2=y,则原方程化为y2+y﹣12=0,因式分解,得(y﹣3)(y+4)=0,解得:y1=3,y2=﹣4,当y=3时,x2=3,解得:x=±当y=﹣4时,x2=﹣4,无实数根,所以原方程的解是x1=x2=【变式7-1】(2021春•龙口市月考)阅读下面材料:方程x4﹣6x2+8=0是一个一元四次方程,根据该方程的特点,它的解法通常是设x2=y,则x4=y2,∴原方程可化为y2﹣6y+8=0,解方程求得y的值,进而得到原方程的四个根x1=x2=x3=2,x4=﹣2.以上方法叫做换元法,通过换元达到降次的目的,体现了数学的转化思想,运用上述方法解答下列问题.(1)解方程2(x2+3x)2﹣3(x2+3x)﹣2=0;(2)已知实数a满足(a2+2﹣3a2=2的值.【分析】(1)先设y=x2+3x,则原方程变形为2y2﹣3y﹣2=0,运用因式分解法解得y1=2,y2=−1 2,再把y=2和−12分别代入y=x2+3x得到关于x的一元二次方程,然后解两个一元二次方程,最后确定原方程的解;(2)设y =a 2y 2﹣3y ﹣10=0,运用因式分解法解得y 1=﹣2,y 2=5,再把y =5代y =a 2得到a 2+5,即可求得a 2=52的值.【解答】解:(1)设y =x 2+3x ,则2y 2﹣3y ﹣2=0,则(y ﹣2)(2y +1)=0,解得y 1=2,y 2=−12,当x 2+3x =2,即x 2+3x ﹣2=0时,解得x =当x 2+3x =−12,即x 2+3x +12=0时,解得x =综上所述,原方程的解为x 1=x 2x 3x 4=(2)(a 2+2﹣3a 2=a 22﹣3(a 2﹣10=0,设y =a 2+y 2﹣3y ﹣10=0,则(y +2)(y ﹣5)=0,解得y 1=﹣2,y 2=5,当y =﹣2时,则a 2+=−2,无意义,舍去;当y =5时,则a 2+5,得到a 2=5∴2=53﹣故2的值为3﹣【变式7-2】(2022秋•邵东市期末)请你先认真阅读下列材料,再参照例子解答问题:已知(x +y ﹣3)(x +y +4)=﹣10,求x +y 的值.解:设t =x +y ,则原方程变形为(t ﹣3)(t +4)=﹣10,即t 2+t ﹣2=0∴(t +2)(t ﹣1)=0得t 1=﹣2,t 2=1∴x +y =﹣2或x +y =1已知(x 2+y 2﹣4)(x 2+y 2+2)=7,求x 2+y 2的值.【分析】根据举例进行解答即可.【解答】解:设t =x 2+y 2>0∴(t ﹣4)(t +2)=7t 2﹣2t ﹣15=0,解得:t 1=5,t 2=﹣3(舍去)∴x 2+y 2=5.【变式7-3】(2022秋•甘井子区月考)【例】解方程(x ﹣1)2﹣5(x ﹣1)+4=0.解:设x ﹣1=y ,则原方程可化为y 2﹣5y +4=0.解得y 1=1,y 2=4.当y =1时,即x ﹣1=1,解得x =2;当y =4时,即x ﹣1=4,解得x =5.所以原方程的解为x 1=2,x 2=5.上述解法称为“整体换元法”.(1)请运用“整体换元法”解方程:(2x ﹣5)2﹣(2x ﹣5)﹣2=0;(2)已知x 2﹣xy ﹣y 2=0,求x y 的值.【分析】(1)先设y =2x ﹣5,则原方程变形为y 2﹣y ﹣2=0,运用因式分解法解得y 1=2,y 2=﹣1,再把y =2和﹣1分别代y =2x ﹣5得到关于x 的一元二次方程,然后解两个一元二次方程,最后确定原方程的解;(2)x 2﹣xy ﹣y 2=0,方程两边同时除以y 2,可得x 2−xy−y 2y 2=0,设x y =m ,方程可化为m 2﹣m ﹣1=0,类似(1)的减法可得x y 的值.【解答】解:(1)设y =2x ﹣5,则原方程变形为y 2﹣y ﹣2=0,解得y 1=2,y 2=﹣1,当y =2时,即2x ﹣5=2,解得x =3.5;当y =﹣1时,2x ﹣5=﹣1,解得x =2.所以原方程的解为x 1=3.5,x 2=2;(2)x 2﹣xy ﹣y 2=0,方程两边同时除以y 2,得x 2−xy−y 2y 2=0,设x y =m ,方程可化为m 2﹣m ﹣1=0,解得m 1m 2∴x y 的值为【题型8 配方法的应用】【例8】(2022秋•饶平县期末)已知a ,b ,c 满足a 2+2b =7,b 2﹣2c =﹣1,c 2﹣6a =﹣17,则a +b ﹣c 的值为( )A.1B.﹣5C.﹣6D.﹣7【分析】题目中的式子相加,然后利用配方法变形为完全平方的形式,再利用非负数的性质即可求得所求式子的值.【解答】解:∵a2+2b=7,b2﹣2c=﹣1,c2﹣6a=﹣17,∴(a2+2b)+(b2﹣2c)+(c2﹣6a)=7+(﹣1)+(﹣17),∴a2+2b+b2﹣2c+c2﹣6a=﹣11,∴(a2﹣6a+9)+(b2+2b+1)+(c2﹣2c+1)=0,∴(a﹣3)2+(b+1)2+(c﹣1)2=0,∴a﹣3=0,b+1=0,c﹣1=0,解得,a=3,b=﹣1,c=1,∴a+b﹣c=3﹣1﹣1=1.故选:A.【变式8-1】(2022•武汉模拟)若实数a,b,x满足a﹣b=2,a2﹣b2=﹣4x,则多项式a2+ab﹣b2的值可能为( )A.﹣5B.﹣6C.﹣7D.﹣8【分析】将多项式a2+ab﹣b2进行变形,利用配方法可得(b+3)2﹣5,再根据偶次方的非负数性质解答即可.【解答】解:∵a﹣b=2,∴a=b+2,∴a2+ab﹣b2=(b+2)2+b(a﹣b)=b2+4b+4+2b=b2+6b+4=(b+3)2﹣5,∴a2+ab﹣b2的最小值是﹣5.故选:A.【变式8-2】(2022春•仪陇县校级月考)已知a+b+c+3=+则a+b+c的值是 .【分析】先将条件配方成)2)2)2=0,根据完全平方式的非负性求出a、b和c的值即可.【解答】解:∵a+b+c+3=++∴+++1=0,即)2)2)2=0,1=0=0=0,解得a=1,b=5,c=3.∴a+b+c=1+5+3=9.故答案为:9.【变式8-3】(2022春•临湘市期中)阅读材料例:求代数式2x2+4x﹣6的最小值.解:2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8.根据上面的方法解决下列问题:(1)m2﹣4m﹣5最小值是 .(2)多项式a2+b2﹣4a+6b+18最小值可以是 .【分析】(1)将多项式加4再减4,利用配方法后可得结论;(2)将多项式重新分组,改写成(a2﹣4a+4)+(b2+6b+9)+5,配方后可得结论.【解答】解:(1)∵m2﹣4m﹣5=m2﹣4m+4﹣9=(m﹣2)2﹣9,∴当m=2时,m2﹣4m﹣5有最小值,最小值是﹣9.故答案为:﹣9;(2)∵a2+b2﹣4a+6b+18=(a2﹣4a+4)+(b2+6b+9)+5=(a﹣2)2+(b+3)2+5,∴当a=2,b=﹣3时,多项式a2+b2﹣4a+6b+18有最小值,最小值是5.故答案为:5.。

九年级数学人教版(上册)21.2.2公式法解一元二次方程

九年级数学人教版(上册)21.2.2公式法解一元二次方程
ax2 bx c 0 (a 0) ∵ a 0,4a2 0 当 b2 4ac 0

b
b2 4ac
x
2a
2a
特别提醒
b b2 4ac x
2a
一元二次方程 的求根公式
x1 b
b2 2a
4ac
,
x2
b
b2 4ac .
2a
由上可知,一元二次方程 ax2 bx c 0 (a 0).
b
x1
x2
; 2a
(3)当 b2 4ac 0 时,没有实数根。
用公式法解一元二次方程的一般步骤:
1、把方程化成一般形式,并写出 a、b、c 的值。
2、求出 b2 4ac 的值,
注意:当 b2 4ac 0 时,方程无解。 3、代入求根公式: x b b2 4ac
2a
4、写出方程的解: x1、x2
师生互动 巩固新知
1 3x2 6x 2 0
解: a 3,b 6, c 2.
b2 4ac 62 4 3 2 60.
x 6 60 6 2 15 3 15 ,
6
6
3
x1
3 3
15
,
x2
3 15 3
.
2 4x2 6x 0
解: a 4,b 6, c 0.
b2 4ac 62 4 4 0 36.
x 6 36 6 6 ,
24
8
x1
0,
x2
3. 2
3 x2 4x 8 4x 11
解:化为一般式 x2 3 0 . a 1,b 0, c 3.
b2 4ac 02 41 3 12.
x 0 12 2 3 ,
21
2
x1 3 x2 3

人教版九年级上册数学精品教学课件 第21章 一元二次方程 降次 —— 一元二次方程的解法 公式法

人教版九年级上册数学精品教学课件 第21章 一元二次方程 降次 —— 一元二次方程的解法 公式法

A. k > −1
B. k > −1 且 k≠0
C. k < 1
D. k < 1 且 k≠0
分析:方程有两个不等的实数根 (-2)2 + 4k > 0 k > −1
二次项系数不为 0 k≠0
且 k≠0
归纳 当一元二次方程二次项系数是字母时,一定要注 意二次项系数不为 0,再根据“Δ”求字母的取值范围.
化为一般式,得 3x2 - 7x + 8 = 0, a = 3,b = -7,c = 8,
∴ Δ = b2 - 4ac = (-7 )2 – 4×3×8 = 49–96 = - 47 < 0,
∴ 原方程没有实数根.
4. 解方程:2x2 - 3 3 x + 3 = 0. 解: a = 2,b = − 3 3,c = 3 . ∴ Δ = b2 - 4ac = 27 - 4×2×3 = 3 > 0 ,
典例精析
b b2 4ac
x
例4 用公式法解下列方程:
2a
(1) x2 − 4x − 7 = 0; 解:a = 1,b = −4,c = −7.
Δ = b2-4ac = (−4)2-4×1×(−7) = 44>0.
方程有两个不等的实数根
x b
b2 4ac (4)
44 2
11 ,
2a
21
用配方法解一般形式一元二次方程 ax2 + bx + c = 0 (a ≠ 0).
解:移项,得 ax2 bx c.
பைடு நூலகம்
方程两边都除以 a,得 x2 b x c .
a
a
配方,得
x2
b a

初中数学九年级上册(人教版)精品课件-21.2.2公式法.ppt

初中数学九年级上册(人教版)精品课件-21.2.2公式法.ppt

a 1、 b -2 3、 c 3.
Q b2 4ac ( 2 3)2 41 3 0,
x (-2 3)
ห้องสมุดไป่ตู้
0 2
3
3.
21
2
即 :x1 x2 3.
b b2 4ac x
2a
例3 解方程:x2 x 1 0(精确到0.001).
解: a 1,b 1,c 1,
b2 4ac 12 41 (1) 5 0
x 1 5 2
用计算器求得: 5 2.2361
x1 0.618, x2 1.618.
例4 解方程:4x2-3x+2=0 解: Q a 4,b 3,c 2. b2 4ac (3)2 4 4 2 9 32 23 0.
第二十一章 一元二次方程
21.2 解一元二次方程
21.2.2 公式法
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.经历求根公式的推导过程.(难点) 2.会用公式法解简单系数的一元二次方程.(重点) 3.理解并会计算一元二次方程根的判别式. 4.会用判别式判断一元二次方程的根的情况.
导入新课
复习引入
解析:原方程变形为x2+x-1=0.∵b2-4ac=1-4×1× (-1)=5>0,∴该方程有两个不相等的实数根, 故选B.
方法归纳
判断一元二次方程根的情况的方法: 利用根的判别式判断一元二次方程根的情况时,
要先把方程转化为一般形式ax2+bx+c=0(a≠0).
•b2 - 4ac > 0时,方程有两个不相等的实数根. •b2 - 4ac = 0时,方程有两个相等的实数根. •b2 - 4ac < 0时,方程无实数根.

人教版九年级数学上册21.2解一元二次方程-21.2.2公式法教案

人教版九年级数学上册21.2解一元二次方程-21.2.2公式法教案
另外,对于一元二次方程在实际生活中的应用,学生们提出了很多有趣的观点,这超出了我的预期。这说明学生们能够将所学知识与现实生活联系起来,这是非常可贵的。但同时,我也发现,将理论应用到具体问题中,对学生们的抽象思维能力要求较高。我需要设计更多的实际问题,帮助学生提高这方面的能力。
在课程总结时,我强调了理解和掌握一元二次方程的重要性,并鼓励学生们在课后继续思考和练习。从他们的反馈来看,大部分学生对今天的课程内容表示理解,但也有部分学生表示还需要进一步巩固。我计划在下一节课开始时,用一些简单的练习题来复习今天的知识点,确保学生们能够扎实掌握。
2.教学难点
-理解并运用求根公式中根的判别式,判断方程的根的性质;
-在解题过程中,对公式法解一元二次方程的步骤进行熟练操作;
-在应用一元二次方程解决实际问题时,如何将问题抽象成一元二次方程。
举例解释:
-难点一:学生对判别式的理解,包括何时方程有两个不同实数根、何时有两个相同实数根、何时无实数根;
-难点二:在应用求根公式解题时,学生可能会在计算过程中出现错误,如符号错误、计算次序错误等;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元二次方程的基本概念、求根公式、根的判别式以及在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对一元二次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元二次方程的基本概念。一元二次方程是形如ax^2 + bx + c = 0(a≠0)的方程。它在数学和生活中有着广泛的应用,能够帮助我们解决很多实际问题。

九年级数学上册 21.2解一元二次方程21.2.2公式法2_1-5

九年级数学上册  21.2解一元二次方程21.2.2公式法2_1-5

=
3 − 15 3
.
(2)4x2 − 6x = 0 解: a = 4 , b = − 6 , c = 0 .
b2 − 4ac = (−6)2 − 4 4 0 = 36.
− (−6)
x=
3ห้องสมุดไป่ตู้ = 6 6 ,
24
8
3
x1
=
0, x2
=
. 2
他病好下床后,没用真正的牛来酬谢众神,而用面团做成了一百头牛,放在祭坛上烧了,并念念有词地祷告说:“诸位神明,请接受我所许下的承诺吧。它梦见,身子长了整整半尺,自己在吞食梭鱼。 几个月过去了,一只猎鹰已能傲然飞翔,另一只却一直待在枝头纹丝不动。
2、求出b2-4ac的值, 注意:当 b2 − 4ac 0 时,方程无解。 −b b2 − 4ac
3、代入求根公式: x = 2a
4、写出方程的解: x1、x2
四、课堂练习
1.用公式法解下列方程: (1)3x2-6x-2=0 (2)4x2-6x=0 (3) x2+4x+8=4x=11 (4) x(2x-4) =5-8x
玛特迪夫
“真是的,到现在还没来收。 镜子又问:“你不再考虑一下了吗?”狗蛋再次摇了摇头。,猴子在它的果园里种了桃树,兔子在房前菜地里种上蔬菜,山猫则在屋后不远处挖了个鱼塘养鱼
例2 用公式法解下列方程:
(4) x2 +17 = 8x
−b b2 − 4ac x=
2a
解:方程可化为: x2 − 8x +17 = 0
a =1,b = −8,c =17
= b2 − 4ac = (−8)2 − 4117 = −40
∴方程无实数根。
用公式法解一元二次方程的一般步骤:

人教版九年级数学上册第21章第2节《公式法》课件

人教版九年级数学上册第21章第2节《公式法》课件
△=b2﹣4ac=4+4=8>0,
方程有两个不相等的实数根,
课堂检测
21.2 解一元二次方程/
基础巩固题
1.方程x2-4x+4=0的根的情况是( B ) A.有两个不相等的实数根 B.有两个相等的实数根 C.有一个实数 D.没有实数根
课堂检测
21.2 解一元二次方程/
基础巩固题
2. 关于x的一元二次方程kx2-2x-1=0有两个不等 的实根,则k的取值范围是 ( B )
探究新知
21.2 解一元二次方程/
(3)4x2+1=-3x
(4)x²-2mx+4(m-1)=0
解:移项,得4x2+3x+1=0, 解:a=1,b=-2m ,c=4(m-1)
a=4,b=3 ,c=1
∵ △= b2-4ac
=9-4×4×1=-7<0 ∴该方程没有实数根
∵ △= b2-4ac
=(-2m)²-4×1×4(m-1) =4m2-16(m-1) =4m2-16m+16 =(2m-4)2≥0
2a
二次方程的求根公式,利用它解一元二次方程的方法叫做公式法,由求根
公式可知,一元二次方程最多有两个实数根.
当 b-4ac <0 时,方程有实数 根吗?
探究新知
21.2 解一元二次方程/
素养考点 1 公式法解方程
例1 用公式法解方程:
(1)x2-4x-7=0;
解:∵a=1,b=-4,c=-7, ∴b2-4ac=(-4)2-4×1×(-7)=44>0.
例2 不解方程,判断下列方程根的情况:
(1)x2 2 6x 6 0
(2)x2+4x=2
解:a=﹣1,b= 2 6,c=﹣6 解: 移项,得 x2+4x-2=0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
——公式法
罗汉中学:陈 辉
一、创设情境 导入新课
1、 用配方法解下列方程: (1)x2-7x+11=0,(2)9x2=12x+14.
2、用配方法解关于x的方程: x2+2px+q=0.
二、合作探索 真实感知
用配方法解一般形式的一元二次方程
ax2 bx c 0
解: 把方程两边都除以 a
x2 b x c 0 aa
解: a=1,b=2,c=2 ∵b²-4ac=2²-4×1×2=4<0
∴此方程无实数解
(3)2x2-7x=0
解:a=2,b=-7,c=0 b²-4ac=(-7)²-4×2×0=49>0
Х= Х1=
=
Х2=0
(4)4x²+1=-4x
解:移项,得4x²+4x+1=0 a=4,b=4,c=1,b²-4ac=4²-4×4×1=0
五、智力挑战
1、 m取什么值时,方程 x2+(2m+1)x+m2-4=0 有两个相等的实数解
2、关于x的一元二次方程x²-mx-5=0。 当m 满足什么条件时,
1、解一元二次方程有通法——公式法 2、解一元二次方程各式各法
X=
=-
X1=X2 =-
巩固练习 (1)x²+3x-4=0
(2) x²- x=1
四、练习提升
用适当的方法解下列一元二次方程
1、x(2x-7)=2x
2、x²+4x=3
3、x²-5x=-4
4、2x²-3x-1=0
五、探索发现
X1=
X2=
1、从两根的代数式结构上有什么特点?
2、根据这种结构可以进行什么运算? 你发现了什么?
三、应用迁移 归纳方法
例1.用公式法解方程
(1)3x2+5x-1=0
(2)x2+2x+2=0
(3)2x2-7x=0
(4)4x²+1=-4x
你对刚才的解法有什么看法?
(1)3x2+5x-1=0 解:a=3,b=5,c=-1, b²-4ac=5²-4×3×(-1)=37>0
X=
=
Х1=
Х2=
(2)x2+2x+2=0
移项,得 配方,得
x2 b x c
a
a
x2
b a
x
b 2a
2
c a
b 2a
2

x
b 2a
2
b2 4ac 4a2
2
b
b 4ac
x 2a
4a 2

b
b2 4ac
x
一元二次方程的
2a
2a
求根公式
b b2 4ac x
2a
(a≠0, b2-4ac≥0)
你有什么不同的看法或补充?
相关文档
最新文档