人教版选修4-5教案

合集下载

高二数学(人教版)选修4-5教案:第11课时 不等式的证明方法之——放缩法与贝努利不等式

高二数学(人教版)选修4-5教案:第11课时    不等式的证明方法之——放缩法与贝努利不等式

课 题: 第11课时 不等式的证明方法之四:放缩法与贝努利不等式 目的要求: 重点难点: 教学过程: 一、引入:所谓放缩法,即是把要证的不等式一边适当地放大(或缩小),使之得出明显的不等量关系后,再应用不等量大、小的传递性,从而使不等式得到证明的方法。

这种方法是证明不等式中的常用方法,尤其在今后学习高等数学时用处更为广泛。

下面我们通过一些简单例证体会这种方法的基本思想。

二、典型例题:例1、若n 是自然数,求证.213121112222<++++nΛ 证明:.,,4,3,2,111)1(112n k k k k k kΛΘ=--=-< ∴n n n⋅-++⋅+⋅+<++++)1(13212111113121112222ΛΛ =)111()3121()2111(11n n --++-+-+Λ=.212<-n注意:实际上,我们在证明213121112222<++++nΛ的过程中,已经得到一个更强的结论n n1213121112222-<++++Λ,这恰恰在一定程度上体现了放缩法的基本思想。

例2、求证:.332113211211111<⨯⨯⨯⨯++⨯⨯+⨯++n ΛΛ证明:由,212221132111-=⋅⋅⋅⋅<⨯⨯⨯⨯k k ΛΛ(k 是大于2的自然数)得n⨯⨯⨯⨯++⨯⨯+⨯++ΛΛ32113211211111 .3213211211121212121111132<-=--+=++++++<--n nn Λ例3、若a , b , c , d ∈R +,求证:21<+++++++++++<ca d db dc c a c b bd b a a证:记m =ca d db dc c a c b bd b a a +++++++++++三、小结:四、练习:1、设n 为大于1的自然数,求证.2121312111>+++++++n n n n Λ2、设n 为自然数,求证.!1)122()52)(32)(12(n n n n n n ≥-----Λ五、作业:A 组1、对于任何实数x ,求证:(1)4312≥+-x x ;(2).41112≤--x x2、设b a ≠,求证:(1))(2322b a b b a +>+;(2)).(46224224b a ab b b a a +>++ 3、证明不等式3344ab b a b a +≥+.4、若c b a ,,都是正数,求证:.)())((2222333c b a c b a c b a ++≥++++ 5、若,0>>>c b a 求证 .222b a c a c b cbac b a cb a +++>6、如果b a ,同号,且均不为0. 求证:2≥+abb a ,并指出等号成立的条件. 7、设c b a ,,是互不相等的正数,求证:.3>-++-++-+ccb a b b ac a a c b8、已知三个正数c b a ,,的和是1,求证这三个正数的倒数的和必不小于9. 9、若20πθ<<,则2cos sin 1<+<θθ.10、设+∈R y x ,,且,1=+y x 求证:.9)11)(11(≥++yx 11、已知0≠x ,求证:(1)11122>++x x ;(2)22322>++x x .12、设b a ,是互不相等的正数,求证:.81122>⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+b a b a a b b a a b13、已知b a ,都是正数,求证:(1);9)1)(1(22ab b a b a >++++(2).9))((222222b a b a ab b a b a >++++ 14、已知,1,1222222=++=++z y x c b a 求证:.1≤++cz by ax 15、已知,1,12222=+=+y x b a 求证:.1≤+by ax16、已知d c b a ,,,都是正数,且有2222,d c y b a x +=+=求证:))((bc ad bd ac xy ++>17、已知n a a a a Λ,,,321都是正数,且1321=⋅⋅⋅⋅n a a a a Λ,求证:nn a a a a 2)1()1)(1)(1(321≥++++Λ18、设ABC ∆的三条边为,,,c b a 求证)(2222ca bc ab c b a ca bc ab ++<++≤++.19、已知y x b a ,,,都是正数,设.,,1ay bx v by ax u b a +=+==+ 求证:.xy uv ≥20、设n 是自然数,利用放缩法证明不等式.231312111<+++++++nn n n Λ 21、若n 是大于1的自然数,试证.11131211121222n nn -<+++<+-ΛB 组22、已知z y x c b a ,,,,,都是正数,且,c z b y a x <<求证:.c zc b a z y x a x <++++< 23、设0>>b a ,试用反证法证明bx a b x a -+sin sin 不能介于b a b a +-与b a ba -+之间。

高二数学(人教版)选修4-5教案:第10课时 不等式的证明方法之——反证法

高二数学(人教版)选修4-5教案:第10课时    不等式的证明方法之——反证法

课 题: 第10课时 不等式的证明方法之三:反证法目的要求:重点难点:教学过程:一、引入:前面所讲的几种方法,属于不等式的直接证法。

也就是说,直接从题设出发,经过一系列的逻辑推理,证明不等式成立。

但对于一些较复杂的不等式,有时很难直接入手求证,这时可考虑采用间接证明的方法。

所谓间接证明即是指不直接从正面确定论题的真实性,而是证明它的反论题为假,或转而证明它的等价命题为真,以间接地达到目的。

其中,反证法是间接证明的一种基本方法。

反证法在于表明:若肯定命题的条件而否定其结论,就会导致矛盾。

具体地说,反证法不直接证明命题“若p 则q ”,而是先肯定命题的条件p ,并否定命题的结论q ,然后通过合理的逻辑推理,而得到矛盾,从而断定原来的结论是正确的。

利用反证法证明不等式,一般有下面几个步骤:第一步 分清欲证不等式所涉及到的条件和结论;第二步 作出与所证不等式相反的假定;第三步 从条件和假定出发,应用证确的推理方法,推出矛盾结果;第四步 断定产生矛盾结果的原因,在于开始所作的假定不正确,于是原证不等式成立。

二、典型例题:例1、已知0>>b a ,求证:n n b a >(N n ∈且1>n )例1、设233=+b a ,求证.2≤+b a证明:假设2>+b a ,则有b a ->2,从而.2)1(68126,61282233323+-=+->+-+->b b b b a b b b a 因为22)1(62≥+-b ,所以233>+b a ,这与题设条件233=+b a 矛盾,所以,原不等式2≤+b a 成立。

例2、设二次函数q px x x f ++=2)(,求证:)3(,)2(,)1(f f f 中至少有一个不小于21. 证明:假设)3(,)2(,)1(f f f 都小于21,则 .2)3()2(2)1(<++f f f (1)另一方面,由绝对值不等式的性质,有2)39()24(2)1()3()2(2)1()3()2(2)1(=+++++-++=+-≥++q p q p q p f f f f f f (2)(1)、(2)两式的结果矛盾,所以假设不成立,原来的结论正确。

选修4-5教案

选修4-5教案

选修4_5 不等式选讲课 题: 第01课时 不等式的基本性质 目的要求: 重点难点: 教学过程:二、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a0=-⇔=b a b a 0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。

2、不等式的基本性质:①、如果a>b ,那么b<a ,如果b<a ,那么a>b 。

(对称性) ②、如果a>b ,且b>c ,那么a>c ,即a>b ,b>c ⇒a>c 。

③、如果a>b ,那么a+c>b+c ,即a>b ⇒a+c>b+c 。

推论:如果a>b ,且c>d ,那么a+c>b+d .即a>b , c>d ⇒a+c>b+d . ④、如果a>b ,且c>0,那么ac>bc ;如果a>b ,且c<0,那么ac<bc .⑤、如果a>b >0,那么n nba >(n ∈N ,且n>1)⑥、如果a>b >0,那么n n b a > (n ∈N ,且n>1)。

三、典型例题:例1、已知a>b ,c<d ,求证:a-c>b-d .例2已知a>b>0,c<0,求证:bc a c >。

四、练习:选修4_5 不等式选讲课 题: 第02课时 含有绝对值的不等式的解法 目的要求: 重点难点: 教学过程: 一、引入:在初中课程的学习中,我们已经对不等式和绝对值的一些基本知识有了一定的了解。

在此基础上,本节讨论含有绝对值的不等式。

关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。

高二数学(人教版)选修4-5教案:第13课时 几个著名的不等式之——排序不等式

高二数学(人教版)选修4-5教案:第13课时    几个著名的不等式之——排序不等式
分析: 二、排序不等式:
1、基本概念:
一般地,设有两组数: a1 ≤ a2 ≤ a3 , b1 ≤ b2 ≤ b3 ,我们考察这两组数两两对应之
积的和,利用排列组合的知识,我们知道共有 6 个不同的和数,它们是:
对应关系

备注
( a1 , a2 , a3 ) ( b1 , b2 , b3 )
S1 a1b1 a2b2 a3b3
5、若 a1,a2,…,an
为两两不等的正整数,求证: n ak k2
k 1
பைடு நூலகம்
n1

k 1 k
6、若
x1,x2,…,xn≥0,x1+x2+…+xn≤
1 2
,则
(1
x1 )(1
x2
)L
(1 xn )
1

2
反序时最小,即:
a1b1 a2b2 L anbn a1c1 a2c2 L ancn a1bn a2bn1 L anb1 , 等号当且仅当 a1 a2 L an 或 b1 b2 L bn 时成立。
分析:用逐步调整法
四、小结:
五、练习:
六、作业:
1、求证: a 2 b2 c 2 d 2 ab bc cd da 。
一般地,设有两组实数: a1 , a2 , a3 ,…, an 与 b1 , b2 , b3 ,…, bn ,且它们满
足:
a1 ≤ a2 ≤ a3 ≤…≤ an , b1 ≤ b2 ≤ b3 ≤…≤ bn ,
若 c1 , c2 , c3 ,…, cn 是 b1 , b2 , b3 ,…, bn 的任意一个排列,则和数 a1c1 a2c2 L ancn 在 a1 , a2 , a3 ,…, an 与 b1 , b2 , b3 ,…, bn 同序时最大,

新人教选修4-5教案柯西不等式的证明及应用

新人教选修4-5教案柯西不等式的证明及应用

柯西不等式的证明及应用柯西(Cauchy )不等式()22211n n b a b a b a +++Λ()()222221222221nnb b ba a a ++++++≤ΛΛ()n i Rb a ii Λ2,1,=∈等号当且仅当021====n a a a Λ或i i ka b =时成立(k 为常数,n i Λ2,1=)现将它的证明介绍如下:证明1:构造二次函数 ()()()2222211)(n n b x a b x a b x a x f ++++++=Λ=()()()22222121122122n nn n n n a a a x a b a b a b x b b b +++++++++++L L L 22120n n a a a +++≥Q L()0f x ∴≥恒成立()()()2222211*********n n n n n n a b a b a b a a a b b b ∆=+++-++++++≤Q L L L即()()()2222211221212nn n n nn a b a b a b a a a bb b +++≤++++++L L L当且仅当()01,2i i a x b x i n +==L 即1212n na a ab b b ===L 时等号成立 证明(2)数学归纳法(1)当1n =时 左式=()211a b 右式=()211a b 显然 左式=右式 当2n =时, 右式 ()()()()2222222222121211222112a a b b a b a b a b a b =++=+++()()()2221122121212222a b a b a a b b a b a b ≥++=+=右式仅当即 2112a b a b = 即1212a ab b =时等号成立 故1,2n =时 不等式成立(2)假设n k =(),2k k ∈N ≥时,不等式成立 即 ()()()2222211221212kk k k kk a b a b a b a a a bb b +++≤++++++L L L当 i i ka b =,k 为常数,1,2i n =L 或120k a a a ====L 时等号成立设22212k a a a A ====L 22212k b b b B ====L1122k k C a b a b a b =+++L则()()2222211111k k k k k a b ba b +++++A +B +=AB +A +()22221111112k k k k k k C Ca b a b C a b ++++++≥++=+ ()()22222222121121k k k k a a a a bb b b ++∴++++++++L L()2112211k k k k a b a b a b a b ++≥++++L当 i i ka b =,k 为常数,1,2i n =L 或120k a a a ====L 时等号成立即 1n k =+时不等式成立综合(1)(2)可知不等式成立柯西不等式是一个非常重要的不等式,灵活巧妙的应用运用它,可以使一些较为困难的问题迎刃而解,这个不等式结构和谐,应用灵活广泛,利用柯西不等式可处理以下问题: 1) 证明相关命题例1. 用柯西不等式推导点到直线的距离公式。

高中数学人教A版选修 选修4-5 1.2.1 绝对值三角不等式 教案

高中数学人教A版选修 选修4-5 1.2.1 绝对值三角不等式 教案

1.2.1 绝对值三角不等式教学目标:1:了解绝对值三角不等式的含义,理解绝对值三角不等式公式及推导方法, 会进行简 单的应用。

2:充分运用观察、类比、猜想、分析证明的数学思维方法,体会转化和数形结合的数学思想,并能运用绝对值三角不等式公式进行推理和证明。

教学重点:绝对值三角不等式的含义,绝对值三角不等式的理解和运用。

教学难点:绝对值三角不等式的发现和推导、取等条件。

教学过程: 一、复习引入:关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。

本节课探讨不等式证明这类问题。

1.请同学们回忆一下绝对值的意义。

⎪⎩⎪⎨⎧<-=>=0000x x x x x x ,如果,如果,如果。

几何意义:在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值。

2.证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质:(1)a a ≥,当且仅当0≥a 时等号成立,.a a -≥当且仅当0≤a 时等号成立。

(2)2a a =, (3)b a b a ⋅=⋅, (4))0(≠=b baba 那么?b a b a +=+?b a b a +=- 二、讲解新课:结论:a b a b ++≤(当且仅当0ab ≥时,等号成立.)探究: ,,a b a b +, 之间的什么关系?b a -baa b+已知,a b 是实数,试证明:a b a b ++≤(当且仅当0ab ≥时,等号成立.) 方法一:证明:10.当ab ≥0时, 20. 当ab <0时,综合10, 20知定理成立.方法二:分析法,两边平方(略)定理1 如果,a b 是实数,则a b a b ++≤(当且仅当0ab ≥时,等号成立.)(1)若把b a ,换为向量b a,情形又怎样呢?根据定理1,有b b a b b a -+≥-++,就是,a b b a ≥++。

人教A版数学高二选修4-5教案 绝对值不等式的解法

人教A版数学高二选修4-5教案   绝对值不等式的解法

1.2.2 绝对值不等式的解法一、教学目标1.理解绝对值的几何意义,掌握去绝对值的方法.2.会利用绝对值的几何意义求解以下类型的不等式:|ax +b |≤c ;|ax +b |≥c ;|x -a |+|x -b |≥c ;|x -a |+|x -b |≤c .3.能利用绝对值不等式解决实际问题. 二、课时安排 1课时 三、教学重点理解绝对值的几何意义,掌握去绝对值的方法. 四、教学难点会利用绝对值的几何意义求解以下类型的不等式:|ax +b |≤c ;|ax +b |≥c ;|x -a |+|x -b |≥c ;|x -a |+|x -b |≤c .五、教学过程 (一)导入新课解关于x 的不等式|2x -1|<2m -1(m ∈R ).【解】 若2m -1≤0,即m ≤12,则|2x -1|<2m -1恒不成立,此时,原不等式无解;若2m -1>0,即m >12,则-(2m -1)<2x -1<2m -1,所以1-m <x <m . 综上所述:当m ≤12时,原不等式的解集为∅,当m >12时,原不等式的解集为{x |1-m <x <m }.(二)讲授新课教材整理1 绝对值不等式|x |<a 与|x |>a 的解集教材整理2 |ax +b |≤c ,|ax +b |≥c (c >0)型不等式的解法 1.|ax +b |≤c ⇔ .2.|ax +b |≥c ⇔ .教材整理3 |x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的解法 1.利用绝对值不等式的几何意义求解. 2.利用零点分段法求解.3.构造函数,利用函数的图象求解. (三)重难点精讲题型一、|ax +b|≤c 与|ax +b|≥c 型不等式的解法 例1求解下列不等式.(1)|3x -1|≤6;(2)3≤|x -2|<4;(3)|5x -x 2|<6.【精彩点拨】 关键是去绝对值符号,转化为不含绝对值符号的不等式. 【自主解答】 (1)因为|3x -1|≤6⇔-6≤3x -1≤6, 即-5≤3x ≤7,从而得-53≤x ≤73,所以原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪-53≤x ≤73. (2)∵3≤|x -2|<4,∴3≤x -2<4或-4<x -2≤-3,即5≤x <6或-2<x ≤-1. 所以原不等式的解集为{x |-2<x ≤-1或5≤x <6}. (3)法一 由|5x -x 2|<6,得|x 2-5x |<6. ∴-6<x 2-5x <6.∴⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-5x -6<0,∴⎩⎪⎨⎪⎧(x -2)(x -3)>0,(x -6)(x +1)<0,即⎩⎪⎨⎪⎧x <2或x >3,-1<x <6. ∴-1<x <2或3<x <6.∴原不等式的解集为{x |-1<x <2或3<x <6}. 法二 作函数y =x 2-5x 的图象,如图所示.|x 2-5x |<6表示函数图象中直线y =-6和直线y =6之间相应部分的自变量的集合.解方程x 2-5x =6,得x 1=-1,x 2=6.解方程x 2-5x =-6,得x ′1=2,x ′2=3.即得到不等式的解集是{x |-1<x <2或3<x <6}. 规律总结:1.形如a <|f (x )|<b (b >a >0)型不等式的简单解法是利用等价转化法,即a <|f (x )|<b (0<a <b )⇔a <f (x )<b 或-b <f (x )<-a .2.形如|f (x )|<a ,|f (x )|>a (a ∈R )型不等式的简单解法是等价命题法,即 (1)当a >0时,|f (x )|<a ⇔-a <f (x )<a . |f (x )|>a ⇔f (x )>a 或f (x )<-a . (2)当a =0时,|f (x )|<a 无解. |f (x )|>a ⇔|f (x )|≠0.(3)当a <0时,|f (x )|<a 无解. |f (x )|>a ⇔f (x )有意义. [再练一题] 1.解不等式: (1)3<|x +2|≤4; (2)|5x -x 2|≥6.【解】 (1)∵3<|x +2|≤4,∴3<x +2≤4或-4≤x +2<-3,即1<x ≤2或-6≤x <-5,所以原不等式的解集为{x |1<x ≤2或-6≤x <-5}.(2)∵|5x -x 2|≥6,∴5x -x 2≥6或5x -x 2≤-6,由5x -x 2≥6,即x 2-5x +6≤0,∴2≤x ≤3, 由5x -x 2≤-6,即x 2-5x -6≥0,∴x ≥6或x ≤-1, 所以原不等式的解集为{x |x ≤-1或2≤x ≤3或x ≥6}. 题型二、含参数的绝对值不等式的综合问题 例2已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围. 【精彩点拨】 解f (x )≤3,由集合相等,求a →求y =f (x )+f (x +5)的最小值,确定m 的取值范围【自主解答】 (1)由f (x )≤3,得|x -a |≤3, 解得a -3≤x ≤a +3.又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5,解得a =2.(2)法一 由(1)知a =2,此时f (x )=|x -2|,设g (x )=f (x )+f (x +5)=|x -2|+|x +3|, 于是g (x )=⎩⎪⎨⎪⎧-2x -1,x <-3,5,-3≤x ≤2,2x +1,x >2.利用g (x )的单调性,易知g (x )的最小值为5. 因此g (x )=f (x )+f (x +5)≥m 对x ∈R 恒成立, 知实数m 的取值范围是(-∞,5]. 法二 当a =2时,f (x )=|x -2|. 设g (x )=f (x )+f (x +5)=|x -2|+|x +3|.由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立),得g (x )的最小值为5.因此,若g (x )=f (x )+f (x +5)≥m 恒成立, 则实数m 的取值范围是(-∞,5]. 规律总结:1.第(2)问求解的关键是转化为求f (x )+f (x +5)的最小值,法一是运用分类讨论思想,利用函数的单调性;法二是利用绝对值不等式的性质(应注意等号成立的条件).2.将绝对值不等式与函数以及不等式恒成立交汇、渗透,这是命题的新动向.解题时应强化函数、数形结合与转化化归思想方法的灵活运用.[再练一题]2.关于x 的不等式lg(|x +3|-|x -7|)<m . (1)当m =1时,解此不等式;(2)设函数f (x )=lg(|x +3|-|x -7|),当m 为何值时,f (x )<m 恒成立?【解】 (1)当m =1时,原不等式可变为0<|x +3|-|x -7|<10,可得其解集为{x |2<x <7}. (2)设t =|x +3|-|x -7|,则由对数定义及绝对值的几何意义知0<t ≤10, 因y =lg x 在(0,+∞)上为增函数, 则lg t ≤1,当t =10,x ≥7时,lg t =1, 故只需m >1即可,即m >1时,f (x )<m 恒成立. 题型三、含两个绝对值的不等式的解法例3 (1)解不等式|x +2|>|x -1|;(2)解不等式|x +1|+|x -1|≥3.【精彩点拨】 (1)可以两边平方求解,也可以讨论去绝对值符号求解,还可以用数轴上绝对值的几何意义来求解;(2)可以分类讨论求解,也可以借助数轴利用绝对值的几何意义求解,还可以左、右两边构建相应函数,画图象求解.【自主解答】 (1)|x +2|>|x -1|,可化为(x +2)2-(x -1)2>0,即6x +3>0,解得x >-12,∴|x +2|>|x -1|的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >-12. (2)如图,设数轴上与-1,1对应的点分别为A ,B ,那么A ,B 两点间的距离为2,因此区间[-1,1]上的数都不是不等式的解.设在A 点左侧有一点A 1到A ,B 两点的距离和为3,A 1对应数轴上的x .所以-1-x +1-x =3,得x =-32.同理设B 点右侧有一点B 1到A ,B 两点的距离和为3,B 1对应数轴上的x , 所以x -1+x -(-1)=3. 所以x =32.从数轴上可看到,点A 1,B 1之间的点到A ,B 的距离之和都小于3;点A 1的左边或点B 1的右边的任何点到A ,B 的距离之和都大于3,所以原不等式的解集是⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞. 规律总结:|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的三种解法:分区间(分类)讨论法、图象法和几何法.分区间讨论的方法具有普遍性,但较麻烦;几何法和图象法直观,但只适用于数据较简单的情况.[再练一题]3.已知函数f (x )=|x -8|-|x -4|.(1)作出函数f (x )的图象;(2)解不等式f (x )>2. 【解】 (1)f (x )=⎩⎪⎨⎪⎧4,x ≤4,12-2x ,4<x ≤8,-4,x >8.函数的图象如图所示.(2)不等式|x -8|-|x -4|>2,即f (x )>2. 由-2x +12=2,得x =5, 根据函数f (x )的图象可知, 原不等式的解集为 (-∞,5). (四)归纳小结绝对值不等式的解法—⎪⎪⎪⎪—绝对值的几何意义—|ax +b |≤c 与|ax +b |≥c 型不等式—含两个绝对值的不等式的解法—含参数的绝对值不等式问题(五)随堂检测1.不等式|x |·(1-2x )>0的解集是( )A.⎝⎛⎭⎫-∞,12 B .(-∞,0)∪⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫0,12 【解析】 原不等式等价于⎩⎪⎨⎪⎧x ≠0,1-2x >0,解得x <12且x ≠0,即x ∈(-∞,0)∪⎝⎛⎭⎫0,12. 【答案】 B2.不等式|x 2-2|<2的解集是( ) A .(-1,1) B .(-2,2) C .(-1,0)∪(0,1) D.(-2,0)∪(0,2)【解析】 由|x 2-2|<2,得-2<x 2-2<2,即0<x 2<4,所以-2<x <0或0<x <2,故解集为(-2,0)∪(0,2).【答案】 D3.不等式|x +1||x +2|≥1的实数解为________.【解析】|x +1||x +2|≥1⇔|x +1|≥|x +2|,且x +2≠0. ∴x ≤-32且x ≠-2.【答案】 ⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-32且x ≠-2六、板书设计七、作业布置同步练习1.2.2:绝对值不等式的解法八、教学反思。

高中数学 第三讲《柯西不等式与排序不等式》教案(1) 新人教版选修4-5

高中数学 第三讲《柯西不等式与排序不等式》教案(1) 新人教版选修4-5

第一课时 3.1 二维形式的柯西不等式(一)教学要求:认识二维柯西不等式的几种形式,理解它们的几何意义, 并会证明二维柯西不等式及向量形式.教学重点:会证明二维柯西不等式及三角不等式. 教学难点:理解几何意义.教学过程:一、复习准备:1. 提问: 二元均值不等式有哪几种形式?答案:(0,0)2a ba b +≥>>及几种变式. 2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+证法:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥二、讲授新课:1. 教学柯西不等式:① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. → 即二维形式的柯西不等式 → 什么时候取等号? ② 讨论:二维形式的柯西不等式的其它证明方法? 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方)证法三:(向量法)设向量(,)m a b =,(,)n c d =,则22||m a b =+,2||n c d =+∵m n ac bd •=+,且||||cos ,m n m n m n =<>,则||||||m n m n ≤. ∴….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则22()()()f x ax c bx d =-+-≥0恒成立.∴22222[2()]4()()ac bd a b c d ∆=-+-++≤0,即….. ③ 讨论:二维形式的柯西不等式的一些变式? 222||c d ac bd +≥+ 或222||||c d ac bd +≥+222c d ac bd +≥+.④ 提出定理2:设,αβ是两个向量,则||||||αβαβ≤. 即柯西不等式的向量形式(由向量法提出 )→ 讨论:上面时候等号成立?(β是零向量,或者,αβ共线)⑤ 练习:已知a 、b 、c 、d . 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式:① 出示定理3:设1122,,,x y x y R ∈分析其几何意义 → 如何利用柯西不等式证明→ 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点)三、巩固练习:1. 练习:试写出三维形式的柯西不等式和三角不等式2. 作业:教材P 37 4、5题.第二课时 3.1 二维形式的柯西不等式(二)教学要求:会利用二维柯西不等式及三角不等式解决问题,体会运用经典不等式的一般方法——发现具体问题与经典不等式之间的关系,经过适当变形,依据经典不等式得到不等关系. 教学重点:利用二维柯西不等式解决问题. 教学难点:如何变形,套用已知不等式的形式.教学过程:一、复习准备:1. 提问:二维形式的柯西不等式、三角不等式? 几何意义?答案:22222()()()a b c d ac bd ++≥+2. 讨论:如何将二维形式的柯西不等式、三角不等式,拓广到三维、四维?3. 如何利用二维柯西不等式求函数y =? 要点:利用变式222||ac bd c d +≤+.二、讲授新课:1. 教学最大(小)值:① 出示例1:求函数y =分析:如何变形? → 构造柯西不等式的形式 → 板演→ 变式:y =→ 推广:,,,,,)y a b c d e f R +=∈ ② 练习:已知321x y +=,求22x y +的最小值.解答要点:(凑配法)2222222111()(32)(32)131313x y x y x y +=++≥+=. 讨论:其它方法 (数形结合法) 2. 教学不等式的证明:① 出示例2:若,x y R +∈,2x y +=,求证:112x y+≥.分析:如何变形后利用柯西不等式? (注意对比 → 构造)要点:2222111111()()]22x y x y x y +=++=++≥… 讨论:其它证法(利用基本不等式)② 练习:已知a 、b R +∈,求证:11()()4a b a b++≥.3. 练习:① 已知,,,x y a b R +∈,且1a bx y+=,则x y +的最小值.要点:()()a bx y x y x y+=++=…. → 其它证法② 若,,x y z R +∈,且1x y z ++=,求222x y z ++的最小值. (要点:利用三维柯西不等式)变式:若,,x y z R +∈,且1x y z ++=.3. 小结:比较柯西不等式的形式,将目标式进行变形,注意凑配、构造等技巧.三、巩固练习:1. 练习:教材P 37 8、9题2. 作业:教材P 37 1、6、7题第三课时 3.2 一般形式的柯西不等式教学要求:认识一般形式的柯西不等式,会用函数思想方法证明一般形式的柯西不等式,并应用其解决一些不等式的问题.教学重点:会证明一般形式的柯西不等式,并能应用. 教学难点:理解证明中的函数思想.教学过程:一、复习准备: 1. 练习:2. 提问:二维形式的柯西不等式?如何将二维形式的柯西不等式拓广到三维?答案:22222()()()a b c d ac bd ++≥+;2222222()()()a b c d e f ad be cf ++++≥++二、讲授新课:1. 教学一般形式的柯西不等式:① 提问:由平面向量的柯西不等式||||||αβαβ≤,如果得到空间向量的柯西不等式及代数形式?② 猜想:n 维向量的坐标?n 维向量的柯西不等式及代数形式? 结论:设1212,,,,,,,n n a a a b b b R ∈,则222222212121122()()()n n n n a a a b b b a b a b a b +++++≥+++讨论:什么时候取等号?(当且仅当1212n na a ab b b ===时取等号,假设0i b ≠)联想:设1122n n B a b a b a b =+++,22212n A a a a =++,22212n C b b b =+++,则有20B AC -≥,可联想到一些什么?③ 讨论:如何构造二次函数证明n 维形式的柯西不等式? (注意分类)要点:令2222121122)2()n n n f x a a a x a b a b a b x =++⋅⋅⋅++++⋅⋅⋅+()(22212()n b b b +++⋅⋅⋅+ ,则 2221122()()())0n n f x a x b a x b a x b =++++⋅⋅⋅+≥+(.又222120n a a a ++⋅⋅⋅+>,从而结合二次函数的图像可知,[]22221122122()4()n n n a b a b a b a a a ∆=+++-++22212()n b b b +++≤0即有要证明的结论成立. (注意:分析什么时候等号成立.)④ 变式:222212121()n n a a a a a a n++≥++⋅⋅⋅+. (讨论如何证明)2. 教学柯西不等式的应用:① 出示例1:已知321x y z ++=,求222x y z ++的最小值.分析:如何变形后构造柯西不等式? → 板演 → 变式:② 练习:若,,x y z R +∈,且1111x y z ++=,求23y zx ++的最小值.③ 出示例2:若a >b >c ,求证:ca cb b a -≥-+-411. 要点:21111()()[()()]()(11)4a c a b b c a b b c a b b c-+=-+-+≥+=---- 3. 小结:柯西不等式的一般形式及应用;等号成立的条件;根据结构特点构造证明.三、巩固练习:1. 练习:教材P 41 4题2. 作业:教材P 41 5、6题第四课时 3.3 排序不等式教学要求:了解排序不等式的基本形式,会运用排序不等式分析解决一些简单问题,体会运用经典不等式的一般方法.教学重点:应用排序不等式证明不等式. 教学难点:排序不等式的证明思路.教学过程:一、复习准备:1. 提问: 前面所学习的一些经典不等式? (柯西不等式、三角不等式)2. 举例:说说两类经典不等式的应用实例. 二、讲授新课:1. 教学排序不等式: ① 看书:P 42~P 44.② 提出排序不等式(即排序原理): 设有两个有序实数组:12a a ≤≤···n a ≤;12b b ≤≤···n b ≤.12,,c c ···n c 是12,b b ,···,n b 的任一排列,则有1122a b a b ++···+n n a b (同序和) 1122a c a c ≥++···+n n a c (乱序和) 121n n a b a b -≥++···+1n a b (反序和) 当且仅当12a a ==···=n a 或12b b ==···=n b 时,反序和等于同序和. (要点:理解其思想,记住其形式) 2. 教学排序不等式的应用:① 出示例1:设12,,,n a a a ⋅⋅⋅是n 个互不相同的正整数,求证:32122211112323n a a a a n n +++⋅⋅⋅+≤+++⋅⋅⋅+. 分析:如何构造有序排列? 如何运用套用排序不等式? 证明过程:设12,,,n b b b ⋅⋅⋅是12,,,n a a a ⋅⋅⋅的一个排列,且12n b b b <<⋅⋅⋅<,则121,2,,n b b b n ≥≥⋅⋅⋅≥.又222111123n>>>⋅⋅⋅>,由排序不等式,得3322112222222323n n a a b b a b a b n n +++⋅⋅⋅+≥+++⋅⋅⋅+≥… 小结:分析目标,构造有序排列. ② 练习:已知,,a b c 为正数,求证:3332222()()()()a b c a b c b a c c a b ++≥+++++. 解答要点:由对称性,假设a b c ≤≤,则222a b c ≤≤,于是 222222a a b b c c a c b a c b ++≥++,222222a a b b c c a b b c c a ++≥++, 两式相加即得.3. 小结:排序不等式的基本形式.三、巩固练习:1. 练习:教材P 45 1题2. 作业:教材P 45 3、4题。

人教版高中数学选修4-5教案【第13课时】几个著名的不等式:排序不等式

人教版高中数学选修4-5教案【第13课时】几个著名的不等式:排序不等式

课题:第13课时几个有名的不等式之二:排序不等式目的要求:要点难点:教课过程:一、引入:1、问题:若某网吧的 3 台电脑同时出现了故障,对其维修分别需要45min , 25 min 和30 min ,每台电脑耽搁 1 min,网吧就会损失 0.05 元。

在只好逐台维修的条件下,按怎么样的次序维修,才能使经济损失降到最小?剖析:二、排序不等式:1、基本观点:一般地,设有两组数:a1≤ a2≤ a3, b1≤ b2≤ b3,我们观察这两组数两两对应之积的和,利用摆列组合的知识,我们知道共有 6 个不一样的和数,它们是:对应关系和备注(a1, a2, a3)同序和S1a1b1a2 b2a3b3( b1, b2, b3)( a1, a2, a3)乱序和S2a1 b1a2b3a3 b2( b1, b3, b2)( a1, a2, a3)乱序和S3a1b2a2b1a3 b3( b2, b1, b3)( a1, a2, a3)乱序和S4a1 b2a2b3a3 b1(b2, b3, b1)( a1, a2, a3)乱序和S5a1b3a2b1a3 b2( b3, b1, b2)( a1, a2, a3)反序和S6a1 b3a2b2a3b1(b3, b2, b1)依据上边的猜想,在这 6 个不一样的和数中,应有结论:同序和 a1b1a2 b2a3b3最大,反序和a1b3a2b2a3b1最小。

2、引例的:关系和注(1,2,3)a1b1a2b2a3 b3220S1(25, 30,45)同序和(1,2,3)a1 b1a2b3a3b2205S2(25, 45,30)乱序和(1,2,3)a1b2a2b1a3b3215S3(30, 25,45)乱序和(1,2,3)a1b2a2b3a3 b1195S4(30, 45,25)乱序和(1,2,3)a1 b3a2b1a3 b2185S5(45, 25,30)乱序和(1,2,3)a1b3a2b2a3 b1180S6(45, 30,25)反序和3、似的:5 个人各拿一只水桶到水接水,假如水注4 分, 8 分,6 分, 10 分, 5 分。

新人教A版高中数学(选修4-5)《二维形式的柯西不等式》word教案

新人教A版高中数学(选修4-5)《二维形式的柯西不等式》word教案

选修4-5学案 §3.1.3柯西不等式 姓名☆学习目标: 1. 熟悉一般形式的柯西不等式,理解柯西不等式的证明; 2. 会应用柯西不等式解决函数最值、方程、不等式,等一些问题☻知识情景:1. 柯西主要贡献简介:柯西(Cauchy ),法国人,生于1789年,是十九世纪前半叶最杰出的分析家. 他奠定了数学分析的理论基础. 数学中很多定理都冠以柯西的名字,如柯西收敛原理、柯西中值定理、柯西积分不等式、柯西判别法、柯西方程等等.2.二维形式的柯西不等式: 若,,,a b c d R ∈,则 .当且仅当 时, 等号成立.变式10. 若,,,a b c d R ∈,则||2222bd ac d c b a ++⋅+或bd ac d c b a ++⋅+2222;变式20. 若,,,a b c d R ∈,;变式30.(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则:3. 一般形式的柯西不等式:设n 为大于1的自然数,,i ia b R ∈(=i 1,2,…,n ),则: .当且仅当 时, 等号成立.(若0=i a 时,约定0=i b ,=i 1,2,…,n ).变式10. 设,0(1,2,,),i i a R b i n ∈>= 则:∑∑∑≥=i i ni iib a b a 212)( . 当且仅当 时, 等号成立.变式20. 设0(1,2,,),i i a b i n ⋅>= 则:∑∑∑≥=ii ini i i b a a b a 21)(.当且仅当n b b b === 21时,等号成立. 变式30. (积分形式)设)(x f 与)(x g 都在],[b a 可积,则dx x g dx x f dx x g x f ba b a b a )()()()(222⎰⎰⎰⋅≤⎥⎦⎤⎢⎣⎡,当且仅当)()(x g t x f ⋅=时,等号成立.如果一个定理与很多学科或者一个学科的很多分支有着密切联系,那么这个定理肯定很重要. 而柯西不等式与我们中学数学中的代数恒等式、复数、向量、几何、三角、函数等各方面都有联系. 所以, 它的重要性是不容置疑的!☆ 柯西不等式的应用:例1. 已知实数,,a b c ,d 满足3a b c d +++=, 22222365a b c d +++=. 试求a 的最值例2 在实数集内 解方程22294862439x y z x y y ⎧++=⎪⎨⎪-+-=⎩例3 设P 是三角形ABC 内的一点,,,x y z 是p 到三边,,a b c 的距离,R 是ABC 外接圆的半径,例4 (证明恒等式) 已知,11122=-+-a b b a 求证:122=+b a 。

选修4-5平均值不等式教案

选修4-5平均值不等式教案

选修4-5平均值不等式教案本教案旨在帮助老师教授选修4-5内容中的平均值不等式。

通过本教案的学习,学生将了解什么是平均值不等式,为什么这个定理对于数学是至关重要的,以及如何使用平均值不等式来解决实际问题。

一、课程目标通过本课程的学习,学生将能够:1. 了解平均值不等式的内容和定义,并且理解这个定理为什么对于数学是至关重要的。

2. 学习如何使用平均值不等式来解决实际问题,并且掌握这个应用定理的使用方法。

3. 通过讲解和练习的形式,加深对平均值不等式的理解,并且能够熟练地运用到实践中。

二、教学过程1. 课前准备在上课之前,老师需要给学生留阅读预习材料,以让他们更好地准备上课内容。

下面是一个例子,为本课程中的平均值不等式提供了一个简单的介绍和例子:平均值不等式:对于一组非负数,他们的平均数要大于等于其几何平均数,小于等于其算术平均数。

换句话说,我们可以将这个定理表述为:a1,a2,a3,...,an为一组非负数,那么这组数的算术平均数大于等于它们的几何平均数,小于等于它们的和除以n。

对于一组数a1, a2, a3, a4,我们可以使用平均值不等式解决如下问题:证明a1a2a3a4 ≤(a1+a2+a3+a4)/4 。

2. 上课讲解上课时,老师可以使用板书或投影仪展示用来解释平均值不等式的定义和例子。

老师可以将这个定理分为两部分来解释,如下:部分1:一组非负数的平均数要大于等于其几何平均数。

部分2:一组非负数的平均数要小于等于其算术平均数。

老师可以使用讲解和实例的形式来阐述每部分的意义和用法,并且使用图像来演示平均值不等式的基本原理。

3. 练习应用学生可以参与不同类型的练习应用来加深对平均值不等式的理解和使用。

以下是三个练习应用例子:实例1:给定一个非负数a,证明a^3 + 1 ≥ 2a^2.解法:考虑将a^3和1作为两个非负数,然后使用平均值不等式,得到:(a^3 + 1)/2 ≥ a^(3+1)/2(a^3 + 1)/2 ≥ a^2a^3 +1 ≥ 2a^2然后我们使用平均值不等式成功证明了这个不等式。

人教版高中数学选修4-5《二维形式的柯西不等式》教案

人教版高中数学选修4-5《二维形式的柯西不等式》教案

《二维形式的柯西不等式》教课设计一、教课目的①认识二维形式的柯西不等式的三角形式②柯西不等式的一些简单应用二、教课要点:①认识二维形式的柯西不等式的几种形式②运用柯西不等式剖析解决一些简单问题,领会运用经典不等式的一般方法——发现详细问题与经典不等式之间的联系,经过适合变形,以经典不等式为依照得出详细问题中的不等关系三、教课难点:运用柯西不等式证明不等式四、教课过程:教课教学程序设计意图环节问题:上节课我们学习了二维形式的柯本节课其实是柯西不等式的一导西不等式,你能简要的归纳一下些简单应用,所以先让学生回首柯入吗?西不等式以及变形后的两个等价形(复习定理 1(二维形式的柯西不等式)式 :导入)若 a,b,c,d 都是实数 ,则a2b2c2d2ac bd(a 2+b2)(c2+d2) ≥(ac+bd)2当且仅当 ad=bc 时 ,等号建立 .a2b2c2d2ac | |bd ①察看:课本 P34 图 3.1-4①让学生经过察看得出二维形新在平面直角坐标系中,设点p1, p2式的三角不等式课x12 y12x22 y22(x1 x2)2 ( y1 y2 )2讲的坐标分别为 x1 , y1 , x1, y1,依据进而获得定理3(二维形式的授三角不等式)过△ Op1 p2的边长关系,你能发现②指引学生利用柯西不等式证程明定理 3,即以经典不等式为x1 , y1 , x2 , y2这四个实数蕴涵着何种大依照得出定理 3 中的不等关系,这是柯西不等式的一个小关系吗?简单的应用。

经过察看剖析推理后得出定理3③例 3的解决也是柯西不等式②以上是从几何的角度得出的结论,你的一个简单的应用,让学生引探可否利用柯西不等式,从代数的角度证领会柯西不等式的用途明这个不等式?④在解决问题的过程中,让学③解说例题(例3)生领会用柯西不等式这个重要的数学结论去解决详细问题的方法。

④练习 P37 第7题第6题本节课其实是柯西不等式的一些小简单应用,柯西不等式是一个经典不等式,是一个重要的数学结论,在此后的结证明某些不等式时有重要作用。

人教课标版高中数学选修4-5:《综合法与分析法》教案-新版

人教课标版高中数学选修4-5:《综合法与分析法》教案-新版

2.2 课时6 综合法与分析法一、教学目标(一)核心素养通过对综合法与分析法的学习,体会数学证明的基本思想及逻辑思路.(二)学习目标1.结合已经学过的数学实例,了解直接证明的综合法.2.了解直接证明分析法,注意格式规范.2.了解分析法和综合法的思考过程.(三)学习重点会用综合法证明问题;了解综合法的思考过程.(四)学习难点根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第23页至第25页,思考:什么是综合法?什么是分析法?(2)想一想:两种方法有什么区别与联系?2.预习自测(1)综合法又叫顺推证法,它的特点是.【知识点】综合法【数学思想】【解题过程】由因到果【思路点拨】了解综合法的原理【答案】由因到果(2)分析法的特点是.【知识点】分析法【数学思想】【解题过程】执果索因.【思路点拨】了解分析法的原理【答案】执果索因(32+<,最好用什么方法? 【知识点】分析法 【数学思想】2+<,只需证22(2<+,只需证<<,只需证1820<,显然成立,原命题成立. 【思路点拨】分析法由果寻因,证明问题很方便 【答案】分析法 (二)课堂设计 1.知识回顾(1)如果,a b ∈R ,那么222a b ab +≥,当且仅当a b =时,等号成立.(2)如果,0a b >,那么2a b+≥,当且仅当a b =时,等号成立. (3)如果,a b c d >>,那么a c b d +>+;如果0,0a b c d >>>>,那么ac bd >. 2.问题探究探究一 综合法与分析法 ●活动① 综合法与分析法的定义综合法和分析法是数学中常用的两种直接证明方法,也是不等式证明中的基本方法.由于两者在证明思路上存在着明显的互逆性,这里将其放在一起加以认识、学习,以便于对比研究两种思路方法的特点.所谓综合法,即从已知条件出发,根据不等式的性质或已知的不等式,逐步推导出要证的不等式.而分析法,则是由结果开始,倒过来寻找原因,直至原因成为明显的或者在已知中.前一种是“由因及果”,后一种是“执果索因”.打一个比方:张三在山里迷了路,救援人员从驻地出发,逐步寻找,直至找到他,这是“综合法”;而张三自己找路,直至回到驻地,这是“分析法”.以前得到的结论,可以作为证明的根据.特别的,AB B A 222≥+是常常要用到的一个重要不等式.例1 b a ,都是正数,求证:.2≥+abb a【知识点】综合法;基本不等式 【数学思想】【解题过程】证明:由重要不等式AB B A 222≥+可得.22=≥+ab b a a b b a 【思路点拨】基本不等式:一正二定三取等 【答案】见解析同类训练 证明:当1x >时, 1+31x x ≥-. 【知识点】综合法;基本不等式 【数学思想】【解题过程】证明:因为1x >,所以11+(1)++11)+1=3111x x x x x =-≥---. 【思路点拨】配凑定值,用基本不等式可证 【答案】见解析例2 设0,0>>b a ,求证.2233ab b a b a +≥+ 【知识点】综合法;分析法 【数学思想】【解题过程】证法一 综合法ab b ab a b ab a b a ≥+-⇒≥+-⇒≥-22222020)(,注意到0,0>>b a ,即0>+b a ,由上式即得)())((22b a ab b ab a b a +≥+-+,从而2233ab b a b a +≥+成立.证法二 分析法要证2233ab b a b a +≥+成立.只需证)())((22b a ab b ab a b a +≥+-+成立, 又因0>+b a ,只需证ab b ab a ≥+-22成立,又需证0222≥+-b ab a 成立, 即需证0)(2≥-b a 成立.而0)(2>-b a 显然成立. 由此命题得证. 【思路点拨】因式分解化简不等式. 【答案】见解析同类训练 求证2252(2)a b a b ++≥- 【知识点】综合法;分析法【数学思想】【解题过程】证法一 综合法因为22(2)(1)0a b -++≥,所以224250a b a b +-++≥,所以2252(2)a b a b ++≥-. 证法二 分析法要证2252(2)a b a b ++≥-,只需证22542a b a b ++≥-,只需证224250a b a b +-++≥,只需证22(2)(1)0a b -++≥,显然成立,所以原不等式成立.【思路点拨】一元二次,配方. 【答案】见解析议一议:根据上面的例证,你能指出综合法和分析法的主要特点吗? 【设计意图】理解和掌握综合法与分析法. 探究二 综合法与分析法的特点 ●活动① 综合法与分析法的特点如果用Q P ⇒或P Q ⇐表示命题P 可以推出命题Q (命题Q 可以由命题P 推出),那么采用综合法的证法一就是).1()2()3()4(⇒⇒⇒采用分析法的证法二就是).4()3()2()1(⇐⇐⇐如果命题P 可以推出命题Q ,命题Q 也可以推出命题P ,即同时有P Q Q P ⇒⇒,,那么我们就说命题P 与命题Q 等价,并记为.Q P ⇔例3 证明:ca bc ab c b a ++≥++222. 【知识点】综合法;分析法 【数学思想】化归与转化思想【解题过程】证法一 因为ab b a 222≥+,bc c b 222≥+,ca a c 222≥+ 所以三式相加得)(2)(2222ca bc ab c b a ++≥++, 两边同时除以2即得ca bc ab c b a ++≥++222. 证法二 因为,0)(21)(21)(21)(222222≥-+-+-=++-++a c c b b a ca bc ab c b a 所以ca bc ab c b a ++≥++222成立.【思路点拨】基本不等式,不等式的可加性. 【答案】见解析同类训练 求证:222222222a b b c c a a bc ab c abc ++≥++. 【知识点】综合法;分析法 【数学思想】化归与转化思想【解题过程】证明:因为222222a b b c ab c +≥,222222b c c a abc +≥,222222c a a b a bc +≥ 所以三式相加得2222222222()2()a b b c c a a bc ab c abc ++≥++, 两边同时除以2即得222222222a b b c c a a bc ab c abc ++≥++. 【思路点拨】基本不等式,不等式的可加性. 【答案】见解析例4 证明:.)())((22222bd ac d c b a +≥++ 【知识点】分析法【数学思想】化归与转化思想 【解题过程】证明 要证.)())((22222bd ac d c b a +≥++只需证0)())((22222≥+-++bd ac d c b a只需证0)2(222222222222≥++-+++d b abcd c a d b d a c b c a 只需证022222≥-+abcd d a c b 只需证 0)(2≥-ad bc ,显然成立,原不等式成立. 此时显然成立.因此.)())((22222bd ac d c b a +≥++成立. 【思路点拨】化简,配方. 【答案】见解析同类训练 已知1m n >>,求证:2m n mn m +>+. 【知识点】分析法【数学思想】化归与转化思想【解题过程】证明 要证2m n mn m +>+,只需证2()()0m m n mn -+->,只需证(1)(1)0m m n m -+->,只需证(1)()0m m n -->,因为1m n >>,所以(1)()0m m n -->.【思路点拨】化简,因式分解. 【答案】见解析【设计意图】体会综合法与分析法在证明不等式时的异同. 探究三 巩固提升 ●活动① 巩固提升例5 已知c b a ,,都是正数,求证.3333abc c b a ≥++并指出等号在什么时候成立? 【知识点】综合法【数学思想】化归与转化思想【解题过程】证明 abc c b a 3333-++=))((222ca bc ab c b a c b a ---++++ =].)()())[((21222a c c b b a c b a -+-+-++由于c b a ,,都是正数,所以.0>++c b a 而0)()()(222≥-+-+-a c c b b a ,可知03333≥-++abc c b a ,即abc c b a 3333≥++(等号在c b a ==时成立)【思路点拨】本题可以考虑利用因式分解公式))((3222333ca bc ab c b a c b a abc c b a ---++++=-++着手. 【答案】见解析同类训练 已知0,0,0a b c >>>,且1abc =,111+a b c≤+. 【知识点】综合法【数学思想】化归与转化思想【解题过程】证明 由1abc =,得111+=ab bc ac a b c +++,又由基本不等式及0,0,0a b c >>>得ab bc +≥=bc ac +≥=,ab ac +≥=,111+a b c+≤+ 【思路点拨】基本不等式. 【答案】见解析同类训练 如果将不等式abc c b a 3333≥++中的333,,c b a 分别用c b a ,,来代替,并在两边同除以3,会得到怎样的不等式?并利用得到的结果证明不等式:27)1)(1)(1(>++++++a c c b b a ,其中c b a ,,是互不相等的正数,且1=abc .【知识点】基本不等式;综合法 【数学思想】【解题过程】,,0)3a b c a b c ++≥>,当且仅当a b c ==时取等号. ,31,31,31333ac a c bc c b ab b a ≥++≥++≥++三式相乘的,得 127)1)(1)(1(32=>++++++)(abc a c c b b a ,所以27)1)(1)(1(≥++++++a c c b b a ,当且仅当⎪⎩⎪⎨⎧======c a c b b a 111,即1===c b a 时取等号,因为c b a ,,是互不相等的正数,所以27)1)(1)(1(>++++++a c c b b a .【思路点拨】注意取等三个正数的均值不等式的条件 【答案】见解析【设计意图】掌握用综合法与分析法证明不等式. 3. 课堂总结 知识梳理(1)解不等式时,在不等式的两边分别作恒等变形,在不等式的两边同时加上(或减去)一个数或代数式,移项,在不等式的两边同时乘以(或除以)一个正数或一个正的代数式,得到的不等式都和原来的不等式等价。

人教版高中化学选修4第五章 电解质溶液整章精品教案

人教版高中化学选修4第五章 电解质溶液整章精品教案

人教版高中化学选修4第五章电解质溶液整章精品教案第一节弱电解质的电离平衡[基础知识精析]复习目标1.电解质与非电解质的概念、判断。

2.电解质溶液的导电性。

3.强电解质与弱电解质的概念、判断。

4.弱电解质的电离平衡及平衡移动。

5.电离方程式的书写。

6.能正确书写电离方程式。

一.电解质、非电解质和强、弱电解质电解质和非电解质的概念在水溶液里和熔融状态下能导电的化合物...叫电解质;在以上两种情况下都不能导电的化合物...叫非电解质:强电解质和弱电解质:在水溶液中完全电离的电解质叫做强电解质,部分电离的电解质叫弱电解质。

强电解质和弱电解质研究的条件是稀的水溶液,本质区别是电解质在水分子的作用下电离出离子能力的大小(可通过电解质溶液的导电实验验证)。

注意:不能简单地根据溶液导电能力的强弱来判断电解质的相对强弱,因为溶液的导电能力强弱还与温度、浓度等因素有关。

(1)强电解质(强酸、强碱、大多数盐,包括一些难溶性盐)完全电离(2)弱电解质的电离(弱酸、弱碱、少数盐)不能完全电离二、电解质、非电解质与导电情况的关系页:11、电解质不是在任何情况下都导电,如食盐晶体、氯化氢气体等不导电。

在水中不导电不一定不是电解质,在水中导电也不一定就是电解质,非电解质溶于水形成的溶液不一定不导电。

2、不能简单地根据溶液导电能力的强弱来判断电解质的相对强弱,因为溶液的导电能力强弱与溶液中自由移动的离子浓度和价态、温度等因素有关。

一、弱电解质的电离平衡:(一)、*电离度1.概念:表示弱电解质在水溶液中电离程度的相对大小。

当弱电解质在水溶液里达到电离平衡时,溶液中已经电离的电解质分子数占原来总分子数(包括已电离的和未电离的)的百分数。

2.计算公式:α=%100子总数溶液中原有电解质的分数已经电离的电解质分子 只适用于处于电离平衡状态的弱电解质。

意义:(1)原有分子总数=已电离分子数+未电离的分子数例如:在醋酸溶液中, α = %100)()()(HAc n H n H n +++若α=1.32%,表示每10000个醋酸分子中有132个发生电离。

高中数学教案 选修4-5教案 第一讲 不等式和绝对值不等式 二 绝对值不等式(1)——绝对值三角不等式

高中数学教案 选修4-5教案 第一讲 不等式和绝对值不等式 二 绝对值不等式(1)——绝对值三角不等式

绝对值三角不等式目的要求: 理解绝对值的几何意义,并能利用绝对值不等式的几何意义证明不等式 重点难点: 绝对值三角不等式。

教学设计:一、 引入:实数a 的绝对值|a|的几何意义是表示数轴上坐标为a 的点A 到原点的距离:任意两个实数a,b 在数轴上的对应点分别为A 、B ,那么|a-b|的几何意义是A 、B 两点间的距离。

二、 给出定理1.综上所述可得定理:定理1 如果a, b 是实数,则|a+b|≤|a|+|b|,当且仅当ab ≥0时,等号成立。

(这个不等式称为绝对值三角不等式。

)2.探究 如果把定理1中的实数a, b 分别换成向量a, b, 能得出什么结果?你能解释它的几何意义吗?3.探究 当向量a, b 共线时,有怎样的结论?Ob ba b a ab +=+>有当,0)1(xOba+b 时当0)2(<ab ba b a b a i +<+<>有时当,0,0)(.,,之间的关系下面研究b a b a +ab b a +xyO.||||||,,,,,,,,,,b a b a b a b a b a b a b a +<++不等式因此我们有向量形式的构成三角形向量三角形法则的法加量由向么那时不共线当向量分别替换用向量在上面的不等式中.边形的两边之和大于第三它的几何意义就是三角4..,1度给出它的证明我们再从代数推理的角为了更好地理解定理:5.5.等之间的关系与与与例如吗系关间的其他之等探究一下的研究思路根据定理能你探究|||||||,||||||,||||:|?||,||,||,||,1b a b a b a b a b a b a b a b a b a ---++--+ 我们有例如题实数的绝对值不等式问我们可以讨论涉及多个方法根据这样的思想最基本、最重要的是这个实数的绝对值不等式以上我们讨论了关于两,.,.,?2的几何解释吗你能给定理探究三、 教学实例:关于绝对值三角不等式的简单应用,只要对不等式稍加变形即可.我们有一般地,.||||||b a b a +≤+|,|,0ab ab ab =≥时当证明()2||b a b a +=+22||||2||b ab a ++=()2||||b a +=||b a +=|,|,0ab ab ab -=<时当()2||b a b a +=+22||||2||b ab a +-=22||2bab a ++<22||||2||b ab a ++=()2||||b a +=||b a +=.||||||b a b a +≤+所以.,0等号成立时当且仅当≥ab ∙∙∙xa bcCBA52.1-图∙∙∙xa bcCBA62.1-图.2.,,62.1的几何解释情形时定理请同学们自己给出其他之间时的一种情形不在给出了当点如图C A B -.||||||||||,,.,b a b a b a b a +≤-≤-那么是实数例如果的结论我们可以得出许多正确事实上()().,0,||||||,,,2等号成立时当且仅当那么是实数如果定理≥---+-≤-c b b a c b b a c a c b a .||||||,,,,,,,,,52.1c b b a c a C A B C B A c b a -+-=--之间时在当点所对应的点分别为在数轴上如图.5|3232|,||,||,01εεεε<--+<-<->b a y x b y a x 求证已知例有关绝对值三角不等式的实际应用题,首先把实际问题转化为数学问题,在求解。

高二数学(人教版)选修4-5教案:第14课时 几个著名的不等式之——平均不等式

高二数学(人教版)选修4-5教案:第14课时    几个著名的不等式之——平均不等式

课 题: 第14课时 几个著名的不等式之三:平均不等式目的要求:重点难点:教学过程:一、引入:1、定理1:如果R b a ∈,,那么ab b a 222≥+(当且仅当b a =时取“=”) 证明:222)(2b a ab b a -=-+ ⇒⎭⎬⎫>-≠=-=0)(0)(22b a b a b a b a 时,当时,当ab b a 222≥+ 1.指出定理适用范围:R b a ∈,强调取“=”的条件b a =。

2、定理2:如果b a ,是正数,那么ab b a ≥+2(当且仅当b a =时取“=”) 证明:∵ab b a 2)()(22≥+ ∴ab b a 2≥+即:ab b a ≥+2 当且仅当b a =时 ab b a =+2注意:1.这个定理适用的范围:+∈R a ;2.语言表述:两个正数的算术平均数不小于它们的几何平均数。

3、定理3:如果+∈R c b a ,,,那么abc c b a 3333≥++(当且仅当c b a ==时取“=”) 证明:∵abc ab b a c b a abc c b a 333)(32233333---++=-++ )(3])())[((22c b a ab c c b a b a c b a ++-++-+++=]32)[(222ab c bc ac b ab a c b a -+--++++=))((222ca bc ab c b a c b a ---++++=])()())[((21222a c c b b a c b a -+-+-++= ∵+∈R c b a ,, ∴上式≥0 从而abc c b a 3333≥++指出:这里+∈R c b a ,, ∵0<++c b a 就不能保证。

推论:如果+∈R c b a ,,,那么33abc c b a ≥++。

(当且仅当c b a ==时取“=”) 证明:3333333333)()()(c b a c b a ⋅⋅≥++a b D B O A C ⇒33abc c b a ≥++⇒33abc c b a ≥++ 4、算术—几何平均不等式: ①.如果++∈>∈N n n R a a a n 且1,,,,21Λ 则:n a a a n +++Λ21叫做这n 个正数的算术平均数,n n a a a Λ21叫做这n 个正数的几何平均数;②.基本不等式: na a a n +++Λ21≥n n a a a Λ21(n i R a N n i ≤≤∈∈+1,,*) 这个结论最终可用数学归纳法,二项式定理证明(这里从略)语言表述:n 个正数的算术平均数不小于它们的几何平均数。

高二数学(人教版)选修4-5教案:第08课时 不等式的证明方法之——比较法

高二数学(人教版)选修4-5教案:第08课时    不等式的证明方法之——比较法

课 题: 第08课时 不等式的证明方法之一:比较法目的要求:重点难点:教学过程:一、引入:要比较两个实数的大小,只要考察它们的差的符号即可,即利用不等式的性质:0>-⇔>b a b a0=-⇔=b a b a0<-⇔<b a b a二、典型例题:例1、设b a ≠,求证:)(2322b a b b a +>+。

例2、若实数1≠x ,求证:.)1()1(32242x x x x ++>++证明:采用差值比较法: 2242)1()1(3x x x x ++-++=3242422221333x x x x x x x ------++=)1(234+--x x x=)1()1(222++-x x x=].43)21[()1(222++-x x ,043)21(,0)1(,122>++>-≠x x x 且从而 ∴ ,0]43)21[()1(222>++-x x ∴ .)1()1(32242x x x x ++>++讨论:若题设中去掉1≠x 这一限制条件,要求证的结论如何变换?例3、已知,,+∈R b a 求证.a b b a b a b a ≥ 本题可以尝试使用差值比较和商值比较两种方法进行。

证明:1) 差值比较法:注意到要证的不等式关于b a ,对称,不妨设.0>≥b a0)(0≥-=-∴≥---b a b a b b a b b a b a b a b a b a b a ,从而原不等式得证。

2)商值比较法:设,0>≥b a,0,1≥-≥b a ba .1)(≥=∴-b a a b b a b a b a b a 故原不等式得证。

注:比较法是证明不等式的一种最基本、最重要的方法。

用比较法证明不等式的步骤是:作差(或作商)、变形、判断符号。

例4、甲、乙两人同时同地沿同一路线走到同一地点。

甲有一半时间以速度m 行走,另一半时间以速度n 行走;乙有一半路程以速度m 行走,另一半路程以速度n 行走。

2020年高二数学(人教版)选修4-5教案:第14课时 几个著名的不等式之——平均不等式

2020年高二数学(人教版)选修4-5教案:第14课时    几个著名的不等式之——平均不等式

课 题: 第14课时 几个著名的不等式之三:平均不等式 目的要求: 重点难点: 教学过程: 一、引入:1、定理1:如果R b a ∈,,那么ab b a 222≥+(当且仅当b a =时取“=”) 证明:222)(2b a ab b a -=-+⇒⎭⎬⎫>-≠=-=0)(0)(22b a b a b a b a 时,当时,当ab b a 222≥+ 1.指出定理适用范围:R b a ∈, 强调取“=”的条件b a =。

2、定理2:如果b a ,是正数,那么ab ba ≥+2(当且仅当b a =时取“=”) 证明:∵ab b a 2)()(22≥+ ∴ab b a 2≥+即:ab b a ≥+2 当且仅当b a =时 ab ba =+2注意:1.这个定理适用的范围:+∈R a ;2.语言表述:两个正数的算术平均数不小于它们的几何平均数。

3、定理3:如果+∈R c b a ,,,那么abc c b a 3333≥++(当且仅当c b a ==时取“=”) 证明:∵abc ab b a c b a abc c b a 333)(32233333---++=-++)(3])())[((22c b a ab c c b a b a c b a ++-++-+++= ]32)[(222ab c bc ac b ab a c b a -+--++++= ))((222ca bc ab c b a c b a ---++++=])()())[((21222a c c b b a c b a -+-+-++=∵+∈R c b a ,, ∴上式≥0 从而abc c b a 3333≥++ 指出:这里+∈R c b a ,, ∵0<++c b a 就不能保证。

推论:如果+∈R c b a ,,,那么33abc c b a ≥++。

(当且仅当c b a ==时取“=”) 证明:3333333333)()()(c b a c b a ⋅⋅≥++⇒33abc c b a ≥++⇒33abc c b a ≥++ 4、算术—几何平均不等式:①.如果++∈>∈N n n R a a a n 且1,,,,21 则:na a a n+++ 21叫做这n 个正数的算术平均数,n n a a a 21叫做这n 个正数的几何平均数;②.基本不等式:na a a n +++ 21≥n n a a a 21(n i R a N n i ≤≤∈∈+1,,*)这个结论最终可用数学归纳法,二项式定理证明(这里从略) 语言表述:n 个正数的算术平均数不小于它们的几何平均数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修4_5 不等式选讲课 题: 第01课时 不等式的基本性质 目的要求: 重点难点: 教学过程: 一、引入:不等关系是自然界中存在着的基本数学关系。

《列子•汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。

要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。

而且,不等式在数学研究中也起着相当重要的作用。

本专题将介绍一些重要的不等式(含有绝对值的不等式、柯西不等式、贝努利不等式、排序不等式等)和它们的证明,数学归纳法和它的简单应用等。

人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。

还可从引言中实际问题出发,说明本章知识的地位和作用。

生活中为什么糖水加糖甜更甜呢?转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么?分析:起初的糖水浓度为a b ,加入m 克糖 后的糖水浓度为m a m b ++,只要证m a m b ++>ab 即可。

怎么证呢?二、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a0=-⇔=b a b a 0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。

2、不等式的基本性质:①、如果a>b ,那么b<a ,如果b<a ,那么a>b 。

(对称性) ②、如果a>b ,且b>c ,那么a>c ,即a>b ,b>c ⇒a>c 。

③、如果a>b ,那么a+c>b+c ,即a>b ⇒a+c>b+c 。

推论:如果a>b ,且c>d ,那么a+c>b+d .即a>b , c>d ⇒a+c>b+d . ④、如果a>b ,且c>0,那么ac>bc ;如果a>b ,且c<0,那么ac<bc .⑤、如果a>b >0,那么n nb a >(n ∈N ,且n>1)⑥、如果a>b >0,那么nn b a >(n ∈N ,且n>1)。

三、典型例题:例1、已知a>b ,c<d ,求证:a-c>b-d .例2已知a>b>0,c<0,求证:bc a c 。

四、练习:五、作业:选修4_5 不等式选讲课 题: 第02课时 含有绝对值的不等式的解法 目的要求: 重点难点: 教学过程: 一、引入:在初中课程的学习中,我们已经对不等式和绝对值的一些基本知识有了一定的了解。

在此基础上,本节讨论含有绝对值的不等式。

关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。

下面分别就这两类问题展开探讨。

1、解在绝对值符号内含有未知数的不等式(也称绝对值不等式),关键在于去掉绝对值符号,化成普通的不等式。

主要的依据是绝对值的意义.请同学们回忆一下绝对值的意义。

在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值。

即⎪⎩⎪⎨⎧<-=>=0000x x x x x x ,如果,如果,如果。

2、含有绝对值的不等式有两种基本的类型。

第一种类型。

设a 为正数。

根据绝对值的意义,不等式a x <的解集是 }|{a x a x <<-,它的几何意义就是数轴上到原点的距离小于a 的点的集合是开区间(-a ,a ),如图所示。

a - 图1-1 a如果给定的不等式符合上述形式,就可以直接利用它的结果来解。

第二种类型。

设a 为正数。

根据绝对值的意义,不等式a x >的解集是 {|x a x >或a x -<}它的几何意义就是数轴上到原点的距离大于a 的点的集合是两个开区间),(),,(∞--∞a a 的并集。

如图1-2所示。

–a a 图1-2同样,如果给定的不等式符合这种类型,就可以直接利用它的结果来解。

二、典型例题:例1、解不等式213+<-x x 。

例2、解不等式x x ->-213。

方法1:分域讨论★方法2:依题意,x x ->-213或213-<-x x ,(为什么可以这么解?)例3、解不等式52312≥-++x x 。

例4、解不等式512≥-+-x x 。

解 本题可以按照例3的方法解,但更简单的解法是利用几何意义。

原不等式即数轴上的点x 到1,2的距离的和大于等于5。

因为1,2的距离为1,所以x 在2的右边,与2的距离大于等于2(=(5-1))2÷;或者x 在1的左边,与1的距离大于等于2。

这就是说,4≥x 或.1-≤x例5、不等式 31++-x x >a ,对一切实数x 都成立,求实数a 的取值范围。

三、小结:四、练习:解不等式1、 .1122>-x2、01314<--x3、 423+≤-x x .4、 x x -≥+21.5、 1422<--x x 6、 212+>-x x . 7、 42≥-+x x 8、 .631≥++-x x 9、 21<++x x 10、 .24>--x x五、作业:选修4_5 不等式选讲课 题: 第03课时 含有绝对值的不等式的证明 目的要求: 重点难点: 教学过程: 一、引入:证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质:(1)b a b a +≥+ (2)b a b a +≤- (3)b a b a ⋅=⋅ (4))0(≠=b baba 请同学们思考一下,是否可以用绝对值的几何意义说明上述性质存在的道理? 实际上,性质b a b a ⋅=⋅和)0(≠=b baba 可以从正负数和零的乘法、除法法则直接推出;而绝对值的差的性质可以利用和的性质导出。

因此,只要能够证明b a b a +≥+对于任意实数都成立即可。

我们将在下面的例题中研究它的证明。

现在请同学们讨论一个问题:设a 为实数,a 和a 哪个大?显然a a ≥,当且仅当0≥a 时等号成立(即在0≥a 时,等号成立。

在0<a 时,等号不成立)。

同样,.a a -≥当且仅当0≤a 时,等号成立。

含有绝对值的不等式的证明中,常常利用a a +≥、a a -≥及绝对值的和的性质。

二、典型例题:例1、证明 (1)b a b a +≥+, (2)b a b a -≥+。

证明(1)如果,0≥+b a 那么.b a b a +=+所以.b a b a b a +=+≥+如果,0<+b a 那么).(b a b a +-=+所以b a b a b a b a +=+-=-+-≥+)()( (2)根据(1)的结果,有b b a b b a -+≥-++,就是,a b b a ≥++。

所以,b a b a -≥+。

例2、证明 b a b a b a +≤-≤-。

例3、证明 c b c a b a -+-≤-。

思考:如何利用数轴给出例3的几何解释?(设A ,B ,C 为数轴上的3个点,分别表示数a ,b ,c ,则线段.CB AC AB +≤当且仅当C 在A ,B 之间时,等号成立。

这就是上面的例3。

特别的,取c =0(即C 为原点),就得到例2的后半部分。

)探究:试利用绝对值的几何意义,给出不等式b a b a +≥+的几何解释?含有绝对值的不等式常常相加减,得到较为复杂的不等式,这就需要利用例1,例2和例3的结果来证明。

例4、已知 2,2cb yc a x <-<-,求证 .)()(c b a y x <+-+ 证明 )()()()(b y a x b a y x -+-=+-+ b y a x -+-≤ (1)2,2c b y c a x <-<- , ∴c cc b y a x =+<-+-22 (2) 由(1),(2)得:c b a y x <+-+)()( 例5、已知.6,4ay a x <<求证:a y x <-32。

证明 6,4a y a x <<,∴23,22a y a x <<, 由例1及上式,a aa y x y x =+<+≤-223232。

注意: 在推理比较简单时,我们常常将几个不等式连在一起写。

但这种写法,只能用于不等号方向相同的不等式。

三、小结:四、练习:1、已知.2,2cb Bc a A <-<-求证:c b a B A <---)()(。

2、已知.6,4cb yc a x <-<-求证:c b a y x <+--3232。

五、作业:选修4_5 不等式选讲课 题: 第07课时 不等式的证明方法之一:比较法 目的要求: 重点难点: 教学过程: 一、引入:要比较两个实数的大小,只要考察它们的差的符号即可,即利用不等式的性质:0>-⇔>b a b a0=-⇔=b a b a 0<-⇔<b a b a二、典型例题:例1、设b a ≠,求证:)(2322b a b b a +>+。

例2、若实数1≠x ,求证:.)1()1(32242x x x x ++>++ 证明:采用差值比较法:2242)1()1(3x x x x ++-++=3242422221333x x x x x x x ------++ =)1(234+--x x x =)1()1(222++-x x x =].43)21[()1(222++-x x,043)21(,0)1(,122>++>-≠x x x 且从而∴ ,0]43)21[()1(222>++-x x ∴ .)1()1(32242x x x x ++>++讨论:若题设中去掉1≠x 这一限制条件,要求证的结论如何变换?例3、已知,,+∈R b a 求证.ab b a b a b a ≥本题可以尝试使用差值比较和商值比较两种方法进行。

证明:1) 差值比较法:注意到要证的不等式关于b a ,对称,不妨设.0>≥b a)(0≥-=-∴≥---ba ba bbabbabab a b a b a b a ,从而原不等式得证。

相关文档
最新文档