2017年上海春季高考数学试题(含答案)
2017年上海春季高考数学试卷(附简析)
;
x
10.
设椭圆
x2 2
y2
1的左、右焦点分别为 F1 、 F2 ,点 P 在该椭圆上,则使得△ F1F2P 是
等腰三角形的点 P 的个数是
;
11. 设 a1 、 a2 、…、 a6 为 1、2、3、4、5、6 的一个排列,则满足 | a1 a2 | | a3 a4 |
| a5 a6 | 3 的不同排列的个数为
17. 如图,长方体 ABCD A1B1C1D1 中, AB BC 2 , AA1 3 ; (1)求四棱锥 A1 ABCD 的体积; (2)求异面直线 A1C 与 DD1 所成角的大小;18.设 a 来自R ,函数f (x)
2x a 2x 1
;
(1)求 a 的值,使得 f (x) 为奇函数; (2)若 f (x) a 2 对任意 x R 成立,求 a 的取值范围;
16. 如图所示,正八边形 A1A2 A3 A4 A5 A6 A7 A8 的边长为 2,若 P 为该正八边形边上的动点,
则 A1A3 A1P 的取值范围为( )
A. [0,8 6 2]
B. [2 2,8 6 2]
C. [8 6 2, 2 2]
D. [8 6 2,8 6 2]
三. 解答题(本大题共 5 题,共 14+14+14+16+18=76 分)
C. (, 0]
D. (,1]
14. 设 a R ,“ a 0 ”是“ 1 0 ”的( a
A. 充分非必要
B. 必要非充分
)条件 C. 充要
D. 既非充分也非必要
15. 过正方体中心的平面截正方体所得的截面中,不可能的图形是( )
A. 三角形
B. 长方形
(314)2017年上海高考数学真题试卷(word解析版)
绝密★启用前2017年普通高等学校招生全国统一考试(上海卷)数学试卷(满分150分,考试时间120分钟)1、考生注意2、1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.3、2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.4、3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.5、4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 已知集合{1,2,3,4}A =,集合{3,4,5}B =,则AB =2. 若排列数6654mP =⨯⨯,则m =3. 不等式11x x->的解集为 4. 已知球的体积为36π,则该球主视图的面积等于 5. 已知复数z 满足30z z+=,则||z = 6. 设双曲线22219x y b-=(0)b >的焦点为1F 、2F ,P 为该 双曲线上的一点,若1||5PF =,则2||PF =7. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐 标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为8. 定义在(0,)+∞上的函数()y f x =的反函数为1()y f x -=,若31,0()(),0x x g x f x x ⎧-≤⎪=⎨>⎪⎩为奇函数,则1()2f x -=的解为9. 已知四个函数:① y x =-;② 1y x=-;③ 3y x =;④ 12y x =. 从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为10. 已知数列{}n a 和{}n b ,其中2n a n =,*n ∈N ,{}n b 的项是互不相等的正整数,若对于 任意*n ∈N ,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg()lg()b b b b b b b b =11. 设1a 、2a ∈R ,且121122sin 2sin(2)αα+=++,则12|10|παα--的最小值等于12. 如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“ ”的点在正方形的顶点处,设集合1234{,,,}P P P P Ω=,点P ∈Ω,过P 作直线P l ,使得不在P l 上的“ ”的点分布在P l 的两侧. 用1()P D l 和2()P D l 分别表示P l 一侧 和另一侧的“ ”的点到P l 的距离之和. 若过P 的直 线P l 中有且只有一条满足12()()P P D l D l =,则Ω中 所有这样的P 为二. 选择题(本大题共4题,每题5分,共20分)13. 关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式D 为( )A.0543 B. 1024 C. 1523 D. 605414. 在数列{}n a 中,1()2n n a =-,*n ∈N ,则lim n n a →∞( ) A. 等于12-B. 等于0C. 等于12D. 不存在 15. 已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c =++,*n ∈N ,则“存在*k ∈N ,使得100k x +、200k x +、300k x +成等差数列”的一个必要条件是( )A. 0a ≥B. 0b ≤C. 0c =D. 20a b c -+=16. 在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=. P 为1C 上的动 点,Q 为2C 上的动点,w 是OP OQ ⋅的最大值. 记{(,)|P Q P Ω=在1C 上,Q 在2C 上,且}OP OQ w ⋅=,则Ω中元素个数为( )A. 2个B. 4个C. 8个D. 无穷个三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积; (2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小.18. 已知函数221()cos sin 2f x x x =-+,(0,)x π∈. (1)求()f x 的单调递增区间;(2)设△ABC 为锐角三角形,角A所对边a =,角B 所对边5b =,若()0f A =,求△ABC 的面积.19. 根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤⎪=⎨-+≥⎪⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20. 在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点.(1)若P在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标; (3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =, 求直线AQ 的方程.21. 设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤.(1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值.函数()()()h x f x g x =. 证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.2017年普通高等学校招生全国统一考试上海--数学试卷考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果.1.已知集合}{}{1,2,3,4,3,4,5A B ==,则AB =.【解析】本题考查集合的运算,交集,属于基础题 【答案】}{3,42.若排列数6P 654m=⨯⨯,则m =.【解析】本题考查排列的计算,属于基础题 【答案】3 3.不等式11x x->的解集为. 【解析】本题考查分式不等式的解法,属于基础题 【答案】(),0-∞4.已知球的体积为36π,则该球主视图的面积等于.【解析】本题考查球的体积公式和三视图的概念,343633R R ππ=⇒=,所以29S R ππ==,属于基础题【答案】9π 5.已知复数z 满足30z z+=,则z =. 【解析】本题考查复数的四则运算和复数的模,2303z z z+=⇒=-设z a bi =+, 则22230,3a b abi a b i -+=-⇒==±,22z a b =+,属于基础题【答案】36.设双曲线()222109x y b b -=>的焦点为12F F 、,P 为该双曲线上的一点.若15PF =,则2PF =. 【解析】本题考查双曲线的定义和性质,1226PF PF a -==(舍),2122611PF PF a PF -==⇒= 【答案】117.如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系.若1DB 的坐标为(4,3,2),则1AC 的坐标是.【解析】本题考查空间向量,可得11(400)(03,2)(432)A C AC ⇒=-,,,,,,,属于基础题 【答案】(432)-,,8.定义在(0,)+∞上的函数()y f x =的反函数-1()y f x =.若31,0,()(),0x x g x f x x ⎧-≤=⎨>⎩为奇函数,则-1()=2f x 的解为.【解析】本题考查函数基本性质和互为反函数的两个函数之间的关系,属于中档题10,0,()31()()13x x x x g x g x g x ->-<-=-=-⇒=-,所以1()13x f x =-, 当2x =时,8()9f x =,所以18()29f -= 【答案】89x =9.已知四个函数:①y x =-;②1y x=-;③3y x =;④12y x =.从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为.【解析】本题考查事件的概率,幂函数的图像画法和特征,属于基础题 总的情况有:42C 6=种,符合题意的就两种:①和③,①和④【答案】1310.已知数列}{n a 和}{n b ,其中2,N n a n n *=∈,}{n b 的项是互不相等的正整数.若对于任意}{N n n b *∈,中的第na 项等于}{n a 中的第n b 项,则()()149161234lg lg b b b b b b b b =.【解析】本题考查数列概念的理解,对数的运算,属于中档题由题意可得:222222114293164(),,,n n a b n n b a b b b b b b b b b b =⇒=⇒====, 所以()()()()214916123412341234lg lg =2lg lg b b b b b b b b b b b b b b b b =【答案】211.设12R αα∈,,且121122sin 2sin(2)αα+=++,则1210παα--的最小值等于.【解析】考查三角函数的性质和值域,121111,1,12sin 32sin(2)3αα⎡⎤⎡⎤∈∈⎢⎥⎢⎥++⎣⎦⎣⎦,,要使121122sin 2sin(2)αα+=++,则111122221=122sin 2,,1=12sin(2)4k k k Z k παπαπαπα⎧⎧=-+⎪⎪+⎪⎪⇒∈⎨⎨⎪⎪=-+⎪⎪+⎩⎩ 1212min min31010(2)44k k ππααπππ--=+-+=,当122=11k k +时成立【答案】4π12.如图,用35个单位正方形拼成一个矩形,点1234,,,P P P P 以及四个标记为“▲”的点在正方形的顶点处.设集合}{1234=,,,P P P P Ω,点P ∈Ω.过P 作直线P l ,使得不在P l 上的“▲”的点分布在P l 的两侧.用1()P D l 和2()P D l 分别表示P l 一侧和另一侧的“▲”的点到P l 的距离之和.若过P 的直线P l 中有且只有一条满足12()=()P P D l D l ,则Ω中所有这样的P 为.【解析】本题考查有向距离,以左下角的顶点为原点建立直角坐标系。
2017年数学真题及解析_2017年上海市高考数学试卷
2017年上海市高考数学试卷一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.(4分)已知集合A={1,2,3,4},集合B={3,4,5},则A∩B=.2.(4分)若排列数=6×5×4,则m=.3.(4分)不等式>1的解集为.4.(4分)已知球的体积为36π,则该球主视图的面积等于.5.(4分)已知复数z满足z+=0,则|z|=.6.(4分)设双曲线﹣=1(b>0)的焦点为F1、F2,P为该双曲线上的一点,若|PF1|=5,则|PF2|=.7.(5分)如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标是.8.(5分)定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),若g(x)=为奇函数,则f﹣1(x)=2的解为.9.(5分)已知四个函数:①y=﹣x,②y=﹣,③y=x3,④y=x,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为.10.(5分)已知数列{a n}和{b n},其中a n=n2,n∈N*,{b n}的项是互不相等的正整数,若对于任意n∈N*,{b n}的第a n项等于{a n}的第b n项,则= .11.(5分)设a 1、a 2∈R ,且,则|10π﹣a 1﹣a 2|的最小值等于 .12.(5分)如图,用35个单位正方形拼成一个矩形,点P 1、P 2、P 3、P 4以及四个标记为“▲”的点在正方形的顶点处,设集合Ω={P 1,P 2,P 3,P 4},点P ∈Ω,过P 作直线l P ,使得不在l P 上的“▲”的点分布在l P 的两侧.用D 1(l P )和D 2(l P )分别表示l P 一侧和另一侧的“▲”的点到l P 的距离之和.若过P 的直线l P 中有且只有一条满足D 1(l P )=D 2(l P ),则Ω中所有这样的P 为 .二、选择题(本大题共4题,每题5分,共20分) 13.(5分)关于x 、y 的二元一次方程组的系数行列式D 为( )A .B .C .D .14.(5分)在数列{a n }中,a n =(﹣)n ,n ∈N *,则a n ( )A .等于B .等于0C .等于D .不存在15.(5分)已知a 、b 、c 为实常数,数列{x n }的通项x n =an 2+bn +c ,n ∈N *,则“存在k ∈N *,使得x 100+k 、x 200+k 、x 300+k 成等差数列”的一个必要条件是( ) A .a ≥0B .b ≤0C .c=0D .a ﹣2b +c=016.(5分)在平面直角坐标系xOy 中,已知椭圆C 1:=1和C 2:x 2+=1.P为C 1上的动点,Q 为C 2上的动点,w 是的最大值.记Ω={(P ,Q )|P 在C 1上,Q 在C 2上,且=w },则Ω中元素个数为( )A.2个 B.4个 C.8个 D.无穷个三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB 和AC的长分别为4和2,侧棱AA1的长为5.(1)求三棱柱ABC﹣A1B1C1的体积;(2)设M是BC中点,求直线A1M与平面ABC所成角的大小.18.(14分)已知函数f(x)=cos2x﹣sin2x+,x∈(0,π).(1)求f(x)的单调递增区间;(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求△ABC的面积.19.(14分)根据预测,某地第n(n∈N*)个月共享单车的投放量和损失量分别为a n和b n(单位:辆),其中a n=,b n=n+5,第n个月底的共享单车的保有量是前n个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n个月底的单车容纳量S n=﹣4(n﹣46)2+8800(单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20.(16分)在平面直角坐标系xOy中,已知椭圆Γ:=1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,M为x正半轴上的动点.(1)若P在第一象限,且|OP|=,求P的坐标;(2)设P(),若以A、P、M为顶点的三角形是直角三角形,求M的横坐标;(3)若|MA|=|MP|,直线AQ与Γ交于另一点C,且,,求直线AQ的方程.21.(18分)设定义在R上的函数f(x)满足:对于任意的x1、x2∈R,当x1<x2时,都有f(x1)≤f(x2).(1)若f(x)=ax3+1,求a的取值范围;(2)若f(x)是周期函数,证明:f(x)是常值函数;(3)设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M是g(x)的最大值.函数h(x)=f(x)g(x).证明:“h(x)是周期函数”的充要条件是“f(x)是常值函数”.2017年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.(4分)已知集合A={1,2,3,4},集合B={3,4,5},则A∩B={3,4} .【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2,3,4},集合B={3,4,5},∴A∩B={3,4}.故答案为:{3,4}.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.(4分)若排列数=6×5×4,则m=3.【分析】利用排列数公式直接求解.【解答】解:∵排列数=6×5×4,∴由排列数公式得,∴m=3.故答案为:m=3.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意排列数公式的合理运用.3.(4分)不等式>1的解集为(﹣∞,0).【分析】根据分式不等式的解法求出不等式的解集即可.【解答】解:由>1得:,故不等式的解集为:(﹣∞,0),故答案为:(﹣∞,0).【点评】本题考查了解分式不等式,考查转化思想,是一道基础题.4.(4分)已知球的体积为36π,则该球主视图的面积等于9π.【分析】由球的体积公式,可得半径R=3,再由主视图为圆,可得面积.【解答】解:球的体积为36π,设球的半径为R,可得πR3=36π,可得R=3,该球主视图为半径为3的圆,可得面积为πR2=9π.故答案为:9π.【点评】本题考查球的体积公式,以及主视图的形状和面积求法,考查运算能力,属于基础题.5.(4分)已知复数z满足z+=0,则|z|=.【分析】设z=a+bi(a,b∈R),代入z2=﹣3,由复数相等的条件列式求得a,b 的值得答案.【解答】解:由z+=0,得z2=﹣3,设z=a+bi(a,b∈R),由z2=﹣3,得(a+bi)2=a2﹣b2+2abi=﹣3,即,解得:.∴.则|z|=.故答案为:.【点评】本题考查复数代数形式的乘除运算,考查了复数相等的条件以及复数模的求法,是基础题.6.(4分)设双曲线﹣=1(b>0)的焦点为F1、F2,P为该双曲线上的一点,若|PF1|=5,则|PF2|=11.【分析】根据题意,由双曲线的方程可得a的值,结合双曲线的定义可得||PF1|﹣|PF2||=6,解可得|PF2|的值,即可得答案.【解答】解:根据题意,双曲线的方程为:﹣=1,其中a==3,则有||PF1|﹣|PF2||=6,又由|PF1|=5,解可得|PF2|=11或﹣1(舍)故|PF2|=11,故答案为:11.【点评】本题考查双曲线的几何性质,关键是掌握双曲线的定义.7.(5分)如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标是(﹣4,3,2).【分析】由的坐标为(4,3,2),分别求出A和C1的坐标,由此能求出结果.【解答】解:如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,∵的坐标为(4,3,2),∴A(4,0,0),C1(0,3,2),∴.故答案为:(﹣4,3,2).【点评】本题考查空间向量的坐标的求法,考查空间直角坐标系等基础知识,考查运算求解能力,考查数形结合思想,是基础题.8.(5分)定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),若g(x)=为奇函数,则f﹣1(x)=2的解为.【分析】由奇函数的定义,当x>0时,﹣x<0,代入已知解析式,即可得到所求x>0的解析式,再由互为反函数的两函数的自变量和函数值相反,即可得到所求值.【解答】解:若g(x)=为奇函数,可得当x>0时,﹣x<0,即有g(﹣x)=3﹣x﹣1,由g(x)为奇函数,可得g(﹣x)=﹣g(x),则g(x)=f(x)=1﹣3﹣x,x>0,由定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),且f﹣1(x)=2,可由f(2)=1﹣3﹣2=,可得f﹣1(x)=2的解为x=.故答案为:.【点评】本题考查函数的奇偶性和运用,考查互为反函数的自变量和函数值的关系,考查运算能力,属于基础题.9.(5分)已知四个函数:①y=﹣x,②y=﹣,③y=x3,④y=x,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为.【分析】从四个函数中任选2个,基本事件总数n=,再利用列举法求出事件A:“所选2个函数的图象有且只有一个公共点”包含的基本事件的个数,由此能求出事件A:“所选2个函数的图象有且只有一个公共点”的概率.【解答】解:给出四个函数:①y=﹣x,②y=﹣,③y=x3,④y=x,从四个函数中任选2个,基本事件总数n=,③④有两个公共点(0,0),(1,1).事件A:“所选2个函数的图象有且只有一个公共点”包含的基本事件有:①③,①④共2个,∴事件A:“所选2个函数的图象有且只有一个公共点”的概率为P(A)==.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.10.(5分)已知数列{a n}和{b n},其中a n=n2,n∈N*,{b n}的项是互不相等的正整数,若对于任意n∈N*,{b n}的第a n项等于{a n}的第b n项,则= 2.【分析】a n=n2,n∈N*,若对于一切n∈N*,{b n}中的第a n项恒等于{a n}中的第b项,可得==.于是b1=a1=1,=b4,=b9,=b16.即n可得出.【解答】解:∵a n=n2,n∈N*,若对于一切n∈N*,{b n}中的第a n项恒等于{a n}中的第b n项,∴==.∴b1=a1=1,=b4,=b9,=b16.∴b1b4b9b16=.∴=2.故答案为:2.【点评】本题考查了数列递推关系、对数的运算性质,考查了推理能力与计算能力,属于中档题.11.(5分)设a1、a2∈R,且,则|10π﹣a1﹣a2|的最小值等于.【分析】由题意,要使+=2,可得sinα1=﹣1,sin2α2=﹣1.求出α1和α2,即可求出|10π﹣α1﹣α2|的最小值【解答】解:根据三角函数的性质,可知sinα1,sin2α2的范围在[﹣1,1],要使+=2,∴sinα1=﹣1,sin2α2=﹣1.则:,k1∈Z.,即,k2∈Z.那么:α1+α2=(2k1+k2)π,k1、k2∈Z.∴|10π﹣α1﹣α2|=|10π﹣(2k1+k2)π|的最小值为.故答案为:.【点评】本题主要考察三角函数性质,有界限的范围的灵活应用,属于基本知识的考查.12.(5分)如图,用35个单位正方形拼成一个矩形,点P1、P2、P3、P4以及四个标记为“▲”的点在正方形的顶点处,设集合Ω={P1,P2,P3,P4},点P∈Ω,过P作直线l P,使得不在l P上的“▲”的点分布在l P的两侧.用D1(l P)和D2(l P)分别表示l P一侧和另一侧的“▲”的点到l P的距离之和.若过P的直线l P中有且只有一条满足D1(l P)=D2(l P),则Ω中所有这样的P为P1、P3、P4.【分析】根据任意四边形ABCD两组对边中点的连线交于一点,过此点作直线,使四边形的四个顶点不在该直线的同一侧,则该直线两侧的四边形的顶点到直线的距离之和相等;由此得出结论.【解答】解:设记为“▲”的四个点是A,B,C,D,线段AB,BC,CD,DA的中点分别为E,F,G,H,易知EFGH为平行四边形,如图所示;又平行四边形EFGH的对角线交于点P2,则符合条件的直线l P一定经过点P2,且过点P2的直线有无数条;由过点P1和P2的直线有且仅有1条,过点P3和P2的直线有且仅有1条,过点P4和P2的直线有且仅有1条,所以符合条件的点是P1、P3、P4.故答案为:P1、P3、P4.【点评】本题考查了数学理解力与转化力的应用问题,也考查了对基本问题的阅读理解和应用转化能力.二、选择题(本大题共4题,每题5分,共20分)13.(5分)关于x、y的二元一次方程组的系数行列式D为()A.B.C.D.【分析】利用线性方程组的系数行列式的定义直接求解.【解答】解:关于x、y的二元一次方程组的系数行列式:D=.故选:C.【点评】本题考查线性方程组的系数行列式的求法,是基础题,解题时要认真审题,注意线性方程组的系数行列式的定义的合理运用.14.(5分)在数列{a n}中,a n=(﹣)n,n∈N*,则a n()A.等于 B.等于0 C.等于D.不存在【分析】根据极限的定义,求出a n=的值.【解答】解:数列{a n}中,a n=(﹣)n,n∈N*,则a n==0.故选:B.【点评】本题考查了极限的定义与应用问题,是基础题.15.(5分)已知a 、b 、c 为实常数,数列{x n }的通项x n =an 2+bn +c ,n ∈N *,则“存在k ∈N *,使得x 100+k 、x 200+k 、x 300+k 成等差数列”的一个必要条件是( )A .a ≥0B .b ≤0C .c=0D .a ﹣2b +c=0【分析】由x 100+k ,x 200+k ,x 300+k 成等差数列,可得:2x 200+k =x 100+k x 300+k ,代入化简即可得出.【解答】解:存在k ∈N *,使得x 100+k 、x 200+k 、x 300+k 成等差数列,可得:2[a (200+k )2+b (200+k )+c ]=a (100+k )2+b (100+k )+c +a (300+k )2+b (300+k )+c ,化为:a=0.∴使得x 100+k ,x 200+k ,x 300+k 成等差数列的必要条件是a ≥0.故选:A .【点评】本题考查了等差数列的通项公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.16.(5分)在平面直角坐标系xOy 中,已知椭圆C 1:=1和C 2:x 2+=1.P 为C 1上的动点,Q 为C 2上的动点,w 是的最大值.记Ω={(P ,Q )|P 在C 1上,Q 在C 2上,且=w },则Ω中元素个数为( )A .2个B .4个C .8个D .无穷个【分析】设出P (6cosα,2sinα),Q (cosβ,3sinβ),0≤α\β<2π,由向量数量积的坐标表示和两角差的余弦公式和余弦函数的值域,可得最大值及取得的条件,即可判断所求元素的个数.【解答】解:椭圆C 1:=1和C 2:x 2+=1.P 为C 1上的动点,Q 为C 2上的动点,可设P (6cosα,2sinα),Q (cosβ,3sinβ),0≤α\β<2π, 则=6cosαcosβ+6sinαsinβ=6cos (α﹣β), 当α﹣β=2kπ,k ∈Z 时,w 取得最大值6,则Ω={(P,Q)|P在C1上,Q在C2上,且=w}中的元素有无穷多对.另解:令P(m,n),Q(u,v),则m2+9n2=36,9u2+v2=9,由柯西不等式(m2+9n2)(9u2+v2)=324≥(3mu+3nv)2,当且仅当mv=nu,即O、P、Q共线时,取得最大值6,显然,满足条件的P、Q有无穷多对,D项正确.故选:D.【点评】本题考查椭圆的参数方程的运用,以及向量数量积的坐标表示和余弦函数的值域,考查集合的几何意义,属于中档题.三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB 和AC的长分别为4和2,侧棱AA1的长为5.(1)求三棱柱ABC﹣A1B1C1的体积;(2)设M是BC中点,求直线A1M与平面ABC所成角的大小.【分析】(1)三棱柱ABC﹣A1B1C1的体积V=S△ABC×AA1=,由此能求出结果.(2)连结AM,∠A1MA是直线A1M与平面ABC所成角,由此能求出直线A1M 与平面ABC所成角的大小.【解答】解:(1)∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.∴三棱柱ABC﹣A1B1C1的体积:V=S△ABC×AA1===20.(2)连结AM,∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5,M是BC中点,∴AA1⊥底面ABC,AM==,∴∠A1MA是直线A1M与平面ABC所成角,tan∠A1MA===,∴直线A1M与平面ABC所成角的大小为arctan.【点评】本题考查三棱柱的体积的求法,考查线面角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.18.(14分)已知函数f(x)=cos2x﹣sin2x+,x∈(0,π).(1)求f(x)的单调递增区间;(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求△ABC的面积.【分析】(1)由二倍角的余弦公式和余弦函数的递增区间,解不等式可得所求增区间;(2)由f(A)=0,解得A,再由余弦定理解方程可得c,再由三角形的面积公式,计算即可得到所求值.【解答】解:(1)函数f(x)=cos2x﹣sin2x+=cos2x+,x∈(0,π),由2kπ﹣π≤2x≤2kπ,解得kπ﹣π≤x≤kπ,k∈Z,k=1时,π≤x≤π,可得f(x)的增区间为[,π);(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,即有cos2A+=0,解得2A=π,即A=π,由余弦定理可得a2=b2+c2﹣2bccosA,化为c2﹣5c+6=0,解得c=2或3,若c=2,则cosB=<0,即有B为钝角,c=2不成立,则c=3,△ABC的面积为S=bcsinA=×5×3×=.【点评】本题考查二倍角公式和余弦函数的图象和性质,考查解三角形的余弦定理和面积公式的运用,考查运算能力,属于中档题.19.(14分)根据预测,某地第n(n∈N*)个月共享单车的投放量和损失量分别为a n和b n(单位:辆),其中a n=,b n=n+5,第n个月底的共享单车的保有量是前n个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n个月底的单车容纳量S n=﹣4(n﹣46)2+8800(单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【分析】(1)计算出{a n}和{b n}的前4项和的差即可得出答案;(2)令a n≥b n得出n≤42,再计算第42个月底的保有量和容纳量即可得出结论.【解答】解:(1)∵a n=,b n=n+5∴a1=5×14+15=20a2=5×24+15=95a3=5×34+15=420a4=﹣10×4+470=430b1=1+5=6b2=2+5=7b3=3+5=8b4=4+5=9∴前4个月共投放单车为a1+a2+a3+a4=20+95+420+430=965,前4个月共损失单车为b1+b2+b3+b4=6+7+8+9=30,∴该地区第4个月底的共享单车的保有量为965﹣30=935.(2)令a n≥b n,显然n≤3时恒成立,当n≥4时,有﹣10n+470≥n+5,解得n≤,∴第42个月底,保有量达到最大.当n≥4,{a n}为公差为﹣10等差数列,而{b n}为等差为1的等差数列,∴到第42个月底,单车保有量为×39+535﹣×42=×39+535﹣×42=8782.S42=﹣4×16+8800=8736.∵8782>8736,∴第42个月底单车保有量超过了容纳量.【点评】本题考查了数列模型的应用,等差数列的求和公式,属于中档题.20.(16分)在平面直角坐标系xOy中,已知椭圆Γ:=1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,M为x正半轴上的动点.(1)若P在第一象限,且|OP|=,求P的坐标;(2)设P(),若以A、P、M为顶点的三角形是直角三角形,求M的横坐标;(3)若|MA|=|MP|,直线AQ与Γ交于另一点C,且,,求直线AQ的方程.【分析】(1)设P(x,y)(x>0,y>0),联立,能求出P点坐标.(2)设M(x0,0),A(0,1),P(),由∠P=90°,求出x0=;由∠M=90°,求出x0=1或x0=;由∠A=90°,则M点在x轴负半轴,不合题意.由此能求出点M的横坐标.(3)设C(2cosα,sinα),推导出Q(4cosα,2sinα﹣1),设P(2cosβ,sinβ),M(x0,0)推导出x0=cosβ,从而4cosα﹣2cosβ=﹣5cosβ,且2sinα﹣sinβ﹣1=﹣4sinβ,cosβ=﹣cosα,且sinα=(1﹣2sinα),由此能求出直线AQ.【解答】解:(1)设P(x,y)(x>0,y>0),∵椭圆Γ:=1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,P在第一象限,且|OP|=,∴联立,解得P(,).(2)设M(x0,0),A(0,1),P(),若∠P=90°,则•,即(x0﹣,﹣)•(﹣,)=0,∴(﹣)x0+﹣=0,解得x0=.如图,若∠M=90°,则•=0,即(﹣x0,1)•(﹣x0,)=0,∴=0,解得x0=1或x0=,若∠A=90°,则M点在x轴负半轴,不合题意.∴点M的横坐标为,或1,或.(3)设C(2cosα,sinα),∵,A(0,1),∴Q(4cosα,2sinα﹣1),又设P(2cosβ,sinβ),M(x0,0),∵|MA|=|MP|,∴x02+1=(2cosβ﹣x0)2+(sinβ)2,整理得:x0=cosβ,∵=(4cosα﹣2cosβ,2sinα﹣sinβ﹣1),=(﹣cosβ,﹣sinβ),,∴4cosα﹣2cosβ=﹣5cosβ,且2sinα﹣sinβ﹣1=﹣4sinβ,∴cosβ=﹣cosα,且sinα=(1﹣2sinα),以上两式平方相加,整理得3(s inα)2+sinα﹣2=0,∴sinα=,或sinα=﹣1(舍去),此时,直线AC的斜率k AC=﹣=(负值已舍去),如图.∴直线AQ为y=x+1.【点评】本题考查点的坐标的求法,考查直线方程的求法,考查椭圆、直线方程、三角函数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方思想,是中档题.21.(18分)设定义在R上的函数f(x)满足:对于任意的x1、x2∈R,当x1<x2时,都有f(x1)≤f(x2).(1)若f(x)=ax3+1,求a的取值范围;(2)若f(x)是周期函数,证明:f(x)是常值函数;(3)设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M是g(x)的最大值.函数h(x)=f(x)g(x).证明:“h(x)是周期函数”的充要条件是“f(x)是常值函数”.【分析】(1)直接由f(x1)﹣f(x2)≤0求得a的取值范围;(2)若f(x)是周期函数,记其周期为T k,任取x0∈R,则有f(x0)=f(x0+T k),证明对任意x∈[x0,x0+T k],f(x0)≤f(x)≤f(x0+T k),可得f(x0)=f(x0+nT k),n∈Z,再由…∪[x0﹣3T k,x0﹣2T k]∪[x0﹣2T k,x0﹣T k]∪[x0﹣T k,x0]∪[x0,x0+T k]∪[x0+T k,x0+2T k]∪…=R,可得对任意x∈R,f(x)=f(x0)=C,为常数;(3)分充分性及必要性证明.类似(2)证明充分性;再证必要性,然后分类证明.【解答】(1)解:由f(x1)≤f(x2),得f(x1)﹣f(x2)=a(x13﹣x23)≤0,∵x1<x2,∴x13﹣x23<0,得a≥0.故a的范围是[0,+∞);(2)证明:若f(x)是周期函数,记其周期为T k,任取x0∈R,则有f(x0)=f(x0+T k),由题意,对任意x∈[x0,x0+T k],f(x0)≤f(x)≤f(x0+T k),∴f(x0)=f(x)=f(x0+T k).又∵f(x0)=f(x0+nT k),n∈Z,并且…∪[x0﹣3T k,x0﹣2T k]∪[x0﹣2T k,x0﹣T k]∪[x0﹣T k,x0]∪[x0,x0+T k]∪[x0+T k,x0+2T k]∪…=R,∴对任意x∈R,f(x)=f(x0)=C,为常数;(3)证明:充分性:若f(x)是常值函数,记f(x)=c1,设g(x)的一个周期为T g,则h(x)=c1•g(x),则对任意x0∈R,h(x0+T g)=c1•g(x0+T g)=c1•g(x0)=h(x0),故h(x)是周期函数;必要性:若h(x)是周期函数,记其一个周期为T h.若存在x1,x2,使得f(x1)>0,且f(x2)<0,则由题意可知,x1>x2,那么必然存在正整数N1,使得x2+N1T k>x1,∴f(x2+N1T k)>f(x1)>0,且h(x2+N1T k)=h(x2).又h(x2)=g(x2)f(x2)<0,而h(x2+N1T k)=g(x2+N1T k)f(x2+N1T k)>0≠h(x2),矛盾.综上,f(x)>0恒成立.由f(x)>0恒成立,任取x0∈A,则必存在N2∈N,使得x0﹣N2T h≤x0﹣T g,即[x0﹣T g,x0]⊆[x0﹣N2T h,x0],∵…∪[x0﹣3T k,x0﹣2T k]∪[x0﹣2T k,x0﹣T k]∪[x0﹣T k,x0]∪[x0,x0+T k]∪[x0+T k,x0+2T k]∪…=R,∴…∪[x0﹣2N2T h,x0﹣N2T h]∪[x0﹣N2T h,x0]∪[x0,x0+N2T h]∪[x0+N2T h,x0+2N2T h]∪…=R.h(x0)=g(x0)•f(x0)=h(x0﹣N2T h)=g(x0﹣N2T h)•f(x0﹣N2T h),∵g(x0)=M≥g(x0﹣N2T h)>0,f(x0)≥f(x0﹣N2T h)>0.因此若h(x0)=h(x0﹣N2T h),必有g(x0)=M=g(x0﹣N2T h),且f(x0)=f(x0﹣N2T h)=c.而由(2)证明可知,对任意x∈R,f(x)=f(x0)=C,为常数.综上,必要性得证.【点评】本题考查抽象函数及其应用,考查逻辑思维能力与理论运算能力考查分类讨论的数学思想方法,题目设置难度过大.。
2017年上海市春季高考数学试卷(含答案详解)
2017年上海市春季高考数学试卷一.填空题(本大题共12题,满分48分,第1~6题每题4分,第7~12题每题5分)1.设集合A={1,2,3},集合B={3,4},则A∪B= .2.不等式|x﹣1|<3的解集为.3.若复数z满足2﹣1=3+6i(i是虚数单位),则z= .4.若,则= .5.若关于x、y的方程组无解,则实数a= .6.若等差数列{an }的前5项的和为25,则a1+a5= .7.若P、Q是圆x2+y2﹣2x+4y+4=0上的动点,则|PQ|的最大值为.8.已知数列{an}的通项公式为,则= .9.若的二项展开式的各项系数之和为729,则该展开式中常数项的值为.10.设椭圆的左、右焦点分别为F1、F2,点P在该椭圆上,则使得△F1F2P是等腰三角形的点P的个数是.11.设a1、a2、…、a6为1、2、3、4、5、6的一个排列,则满足|a1﹣a2|+|a3﹣a4|+|a5﹣a6|=3的不同排列的个数为.12.设a、b∈R,若函数在区间(1,2)上有两个不同的零点,则f(1)的取值范围为.二.选择题(本大题共4题,每题5分,共20分)13.函数f(x)=(x﹣1)2的单调递增区间是()A.[0,+∞)B.[1,+∞)C.(﹣∞,0] D.(﹣∞,1]14.设a∈R,“a>0”是“”的()条件.A.充分非必要 B.必要非充分C.充要D.既非充分也非必要15.过正方体中心的平面截正方体所得的截面中,不可能的图形是()A.三角形B.长方形C.对角线不相等的菱形 D.六边形16.如图所示,正八边形A1A2A3A4A5A6A7A8的边长为2,若P为该正八边形边上的动点,则的取值范围为()A.B.C D.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=3;(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1C与DD1所成角的大小.18.(12分)设a∈R,函数;(1)求a的值,使得f(x)为奇函数;(2)若对任意x∈R成立,求a的取值范围.19.(12分)某景区欲建造两条圆形观景步道M1、M2(宽度忽略不计),如图所示,已知AB⊥AC,AB=AC=AD=60(单位:米),要求圆M1与AB、AD分别相切于点B、D,圆M2与AC、AD分别相切于点C、D;(1)若∠BAD=60°,求圆M1、M2的半径(结果精确到0.1米)(2)若观景步道M1与M2的造价分别为每米0.8千元与每米0.9千元,如何设计圆M1、M2的大小,使总造价最低?最低总造价是多少?(结果精确到0.1千元)20.(12分)已知双曲线(b>0),直线l:y=kx+m(km≠0),l与Γ交于P、Q两点,P'为P关于y轴的对称点,直线P'Q与y轴交于点N(0,n);(1)若点(2,0)是Γ的一个焦点,求Γ的渐近线方程;(2)若b=1,点P的坐标为(﹣1,0),且,求k的值;(3)若m=2,求n关于b的表达式.21.(12分)已知函数f (x )=log 2;(1)解方程f (x )=1;(2)设x ∈(﹣1,1),a ∈(1,+∞),证明:∈(﹣1,1),且f ()﹣f (x )=﹣f ();(3)设数列{x n }中,x 1∈(﹣1,1),x n+1=(﹣1)n+1,n ∈N *,求x 1的取值范围,使得x 3≥x n 对任意n ∈N *成立.2017年上海市春季高考数学试卷参考答案与试题解析一.填空题(本大题共12题,满分48分,第1~6题每题4分,第7~12题每题5分)1.设集合A={1,2,3},集合B={3,4},则A∪B= {1,2,3,4} .2.不等式|x﹣1|<3的解集为(﹣2,4).3.若复数z满足2﹣1=3+6i(i是虚数单位),则z= 2﹣3i .4.若,则= .5.若关于x、y的方程组无解,则实数a= 6 .6.若等差数列{an }的前5项的和为25,则a1+a5= 10 .7.若P、Q是圆x2+y2﹣2x+4y+4=0上的动点,则|PQ|的最大值为 2 .8.已知数列{an}的通项公式为,则= .9.若的二项展开式的各项系数之和为729,则该展开式中常数项的值为160 .10.设椭圆的左、右焦点分别为F1、F2,点P在该椭圆上,则使得△F1F2P是等腰三角形的点P的个数是 6 .11.设a1、a2、…、a6为1、2、3、4、5、6的一个排列,则满足|a1﹣a2|+|a3﹣a4|+|a5﹣a6|=3的不同排列的个数为48 .12.设a、b∈R,若函数在区间(1,2)上有两个不同的零点,则f(1)的取值范围为(0,1).解:函数在区间(1,2)上有两个不同的零点,即方程x2+bx+a=0在区间(1,2)上两个不相等的实根,⇒⇒,如图画出数对(a,b)所表示的区域,目标函数z=f(1)═a+b+1∴z的最小值为z=a+b+1过点(1,﹣2)时,z的最大值为z=a+b+1过点(4,﹣4)时∴f(1)的取值范围为(0,1)故答案为:(0,1)二.选择题(本大题共4题,每题5分,共20分)13.函数f(x)=(x﹣1)2的单调递增区间是( B )A.[0,+∞)B.[1,+∞)C.(﹣∞,0] D.(﹣∞,1]14.设a∈R,“a>0”是“”的( C )条件.A.充分非必要 B.必要非充分C.充要D.既非充分也非必要15.过正方体中心的平面截正方体所得的截面中,不可能的图形是( A )A.三角形B.长方形C.对角线不相等的菱形 D.六边形16.如图所示,正八边形A1A2A3A4A5A6A7A8的边长为2,若P为该正八边形边上的动点,则的取值范围为( B )A.B.C.D.解:由题意,正八边形A1A2A3A4A5A6A7A8的每一个内角为135°,且,,,.再由正弦函数的单调性及值域可得,当P与A8重合时,最小为==.结合选项可得的取值范围为.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(12分)长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=3;(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1C与DD1所成角的大小.解:(1)∵长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=3,∴四棱锥A1﹣ABCD的体积:====4.(2)∵DD1∥CC1,∴∠A1CC1是异面直线A1C与DD1所成角(或所成角的补角),∵tan∠A1CC1===,∴=.∴异面直线A1C与DD1所成角的大小为;18.(12分)设a∈R,函数;(1)求a的值,使得f(x)为奇函数;(2)若对任意x∈R成立,求a的取值范围.解:(1)由f(x)的定义域为R,且f(x)为奇函数,可得f(0)=0,即有=0,解得a=﹣1.则f(x)=,f(﹣x)===﹣f(x),则a=﹣1满足题意;(2)对任意x∈R成立,即为<恒成立,等价为<,即有2(a﹣1)<a(2x+1),当a=0时,﹣1<0恒成立;当a>0时,<2x+1,由2x+1>1,可得≤1,解得0<a≤2;当a<0时,>2x+1不恒成立.综上可得,a的取值范围是[0,2].19.(12分)某景区欲建造两条圆形观景步道M1、M2(宽度忽略不计),如图所示,已知AB⊥AC,AB=AC=AD=60(单位:米),要求圆M1与AB、AD分别相切于点B、D,圆M2与AC、AD分别相切于点C、D;(1)若∠BAD=60°,求圆M1、M2的半径(结果精确到0.1米)(2)若观景步道M1与M2的造价分别为每米0.8千元与每米0.9千元,如何设计圆M1、M2的大小,使总造价最低?最低总造价是多少?(结果精确到0.1千元)解:(1)M1半径=60tan30°≈34.6,M2半径=60tan15°≈16.1;(2)设∠BAD=2α,则总造价y=0.8•2π•60tanα+0.9•2π•60tan(45°﹣α),设1+tanα=x,则y=12π•(8x+﹣17)≥84π,当且仅当x=,tanα=时,取等号,∴M1半径30,M2半径20,造价42.0千元.20.(12分)已知双曲线(b>0),直线l:y=kx+m(km≠0),l与Γ交于P、Q两点,P'为P关于y轴的对称点,直线P'Q与y轴交于点N(0,n);(1)若点(2,0)是Γ的一个焦点,求Γ的渐近线方程;(2)若b=1,点P的坐标为(﹣1,0),且,求k的值;(3)若m=2,求n关于b的表达式.解:(1)∵双曲线(b>0),点(2,0)是Γ的一个焦点,∴c=2,a=1,∴b2=c2﹣a2=4﹣1=3,∴Γ的标准方程为: =1,Γ的渐近线方程为.(2)∵b=1,∴双曲线Γ为:x2﹣y2=1,P(﹣1,0),P′(1,0),∵=,设Q(x2,y2),则有定比分点坐标公式,得:,解得,∵,∴,∴=.(3)设P (x 1,y 1),Q (x 2,y 2),k PQ =k 0,则,由,得(b 2﹣k 2)x 2﹣4kx ﹣4﹣b 2=0,,,由,得()x 2﹣2k 0nx ﹣n 2﹣b 2=0,﹣x 1+x 2=,﹣x 1x 2=,∴x 1x 2==,即,即=,====,化简,得2n 2+n (4+b 2)+2b 2=0,∴n=﹣2或n=,当n=﹣2,由=,得2b 2=k 2+k 02,由,得,即Q (,),代入x 2﹣=1,化简,得:,解得b 2=4或b 2=kk 0,当b 2=4时,满足n=,当b 2=kk 0时,由2b 2=k 2+k 02,得k=k 0(舍去),综上,得n=.21.(12分)已知函数f (x )=log 2;(1)解方程f (x )=1;(2)设x ∈(﹣1,1),a ∈(1,+∞),证明:∈(﹣1,1),且f ()﹣f (x )=﹣f ();(3)设数列{x n }中,x 1∈(﹣1,1),x n+1=(﹣1)n+1,n ∈N *,求x 1的取值范围,使得x 3≥x n 对任意n ∈N *成立.解:(1)∵f (x )=log 2=1,∴=2,解得;(2)令g (x )=,ax a a x g --+-=21)(∵a ∈(1,+∞),∴g (x )在(﹣1,1)上是增函数,又g (﹣1)=,g (1)==1,∴﹣1<g (x )<1,即∈(﹣1,1).∵f (x )﹣f ()=log 2﹣log 2=log 2﹣log 2=log 2()=log 2,f ()=log 2=log 2.∴f ()=f (x )﹣f (),∴f ()﹣f (x )=﹣f ().(3)∵f (x )的定义域为(﹣1,1),f (﹣x )=log 2=﹣log 2=﹣f (x ),∴f (x )是奇函数.∵x n+1=(﹣1)n+1,∴x n+1=.①当n 为奇数时,f (x n+1)=f ()=f (x n )﹣f ()=f (x n )﹣1,∴f (x n+1)=f (x n )﹣1;②当n 为偶数时,f (x n+1)=f (﹣)=﹣f ()=1﹣f (x n ),∴f (x n+1)=1﹣f (x n ).∴f (x 2)=f (x 1)﹣1,f (x 3)=1﹣f (x 2)=2﹣f (x 1),f (x 4)=f (x 3)﹣1=1﹣f (x 1),f (x 5)=1﹣f (x 4)=f (x 1),f (x 6)=f (x 5)﹣1=f (x 1)﹣1,…∴f (x n )=f (x n+4),n ∈N +. 设12111)(---=-+=x x x x h∴h (x )在(﹣1,1)上是增函数,∴f (x )=log 2=log 2h (x )在(﹣1,1)上是增函数.∵x 3≥x n 对任意n ∈N *成立,∴f (x 3)≥f (x n )恒成立,∴,即,1)≤1,即log2≤1,∴0<≤2,解得:﹣1<x1≤.解得:f(x。
2017年高考数学真题试卷(上海卷)及解析
2017年高考数学真题试卷(上海卷)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、选择题1.关于x、y的二元一次方程组{x+5y=02x+3y=4的系数行列式D为()A.|0543|B.|1024|C.|1523|D.|6054|2.在数列{an}中,an=(﹣12)n,n∈N*,则limn→∞an()A.等于−12B.等于0C.等于12D.不存在3.已知a、b、c为实常数,数列{xn}的通项xn=an2+bn+c,n∈N*,则“存在k∈N*,使得x100+k、x200+k、x300+k成等差数列”的一个必要条件是()A.a≥0B.b≤0C.c=0D.a﹣2b+c=04.在平面直角坐标系xOy中,已知椭圆C1:x236+y24=1和C2:x2+ y29=1.P为C1上的动点,Q为C2上的动点,w是OP→⋅OQ→的最大值.记Ω={(P,Q)|P在C1上,Q在C2上,且OP→⋅OQ→=w},则Ω中元素个数为()A.2个B.4个C.8个D.无穷个第II卷(非选择题)请点击修改第II卷的文字说明答案第2页,总16页○…………订…………※订※※线※※内※※答※※题※※○…………订…………二、填空题(题型注释)5.已知集合A={1,2,3,4},集合B={3,4,5},则A∩B= .6.若排列数 P 6m =6×5×4,则m= .7.不等式x−1x>1的解集为 .8.已知球的体积为36π,则该球主视图的面积等于 . 9.已知复数z 满足z+ 3z =0,则|z|= .10.设双曲线 x 29 ﹣ y 2b2 =1(b >0)的焦点为F 1、F 2 , P 为该双曲线上的一点,若|PF 1|=5,则|PF 2|= .11.如图,以长方体ABCD ﹣A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若 DB 1→ 的坐标为(4,3,2),则 AC 1→的坐标是 .12.定义在(0,+∞)上的函数y=f (x )的反函数为y=f ﹣1(x ),若g (x )= {3x −1,x ≤0f(x),x >0为奇函数,则f ﹣1(x )=2的解为 .13.已知四个函数:①y=﹣x ,②y=﹣ 1x ,③y=x 3 , ④y=x12 ,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为 .14.已知数列{a n }和{b n },其中a n =n 2 , n∈N * , {b n }的项是互不相等的正整数,若对于任意n∈N * , {b n }的第a n 项等于{a n }的第b n 项,则 lg(b 1b 4b 9b 16)lg(b 1b 2b 3b 4) = .15.设a 1、a 2∈R,且 12+sinα1+ 12+sin(2α2) =2,则|10π﹣α1﹣α2|的最小值等于 .16.如图,用35个单位正方形拼成一个矩形,点P 1、P 2、P 3、P 4以及四个标记为“▲”的点在正方形的顶点处,设集合Ω={P 1 , P 2 , P 3 , P 4},点P∈Ω,过P 作直线l P , 使得不在l P 上的“▲”的点分布在l P 的两侧.用D 1(l P )和D 2(l P )分别表示l P 一侧和另一侧的“▲”的点到l P 的距离之和.若过P 的直线l P 中有且只有一条满足D 1(l P )=D 2(l P ),…订…………○………线…………○…_____考号:___________…订…………○………线…………○…则Ω中所有这样的P 为 .三、解答题(题型注释)17.如图,直三棱柱ABC ﹣A 1B 1C 1的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱AA 1的长为5. (1)求三棱柱ABC ﹣A 1B 1C 1的体积;(2)设M 是BC 中点,求直线A 1M 与平面ABC 所成角的大小. 18.已知函数f (x )=cos 2x ﹣sin 2x+ 12 ,x∈(0,π). (1)求f (x )的单调递增区间;(2)设△ABC 为锐角三角形,角A 所对边a= √19 ,角B 所对边b=5,若f (A )=0,求△ABC 的面积. 19.根据预测,某地第n (n∈N *)个月共享单车的投放量和损失量分别为a n 和b n (单位:辆),其中a n = {5n 4+15,1≤n ≤3−10n +470,n ≥4,b n =n+5,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量S n =﹣4(n ﹣46)2+8800(单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量? 20.在平面直角坐标系xOy 中,已知椭圆Γ: x 24+y 2 =1,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点. (1)若P 在第一象限,且|OP|= √2 ,求P 的坐标;(2)设P ( 85 , 35 ),若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标; (3)若|MA|=|MP|,直线AQ 与Γ交于另一点C ,且 AQ →=2AC →, PQ →=4PM →,求直线AQ 的方程.21.设定义在R 上的函数f (x )满足:对于任意的x 1、x 2∈R,当x 1<x 2时,都有f (x 1)≤f (x 2).(1)若f (x )=ax 3+1,求a 的取值范围;答案第4页,总16页(2)若f (x )是周期函数,证明:f (x )是常值函数;(3)设f (x )恒大于零,g (x )是定义在R 上的、恒大于零的周期函数,M 是g (x )的最大值.函数h (x )=f (x )g (x ).证明:“h(x )是周期函数”的充要条件是“f(x )是常值函数”.参数答案1.C【解析】1.解:关于x 、y 的二元一次方程组 {x +5y =02x +3y =4的系数行列式:D= |1523| . 故选:C .利用线性方程组的系数行列式的定义直接求解. 2.B【解析】2.解:数列{a n }中,a n =(﹣ 12 )n ,n∈N *,则 lim n→∞ a n = lim n→∞(−12)n=0. 故选:B .根据极限的定义,求出 lim n→∞ a n = lim n→∞(−12)n的值.3.A【解析】3.解:存在k∈N *,使得x 100+k 、x 200+k 、x 300+k 成等差数列,可得:2[a (200+k )2+b (200+k )+c]=a (100+k )2+b (100+k )+c+a (300+k )2+b (300+k )+c ,化为:a=0. ∴使得x 100+k ,x 200+k ,x 300+k 成等差数列的必要条件是a≥0. 故选:A .由x 100+k ,x 200+k ,x 300+k 成等差数列,可得:2x 200+k =x 100+k x 300+k ,代入化简即可得出. 4.D【解析】4.解:椭圆C 1: x 236+y 24 =1和C 2:x2+ y 29 =1.P为C 1上的动点,Q 为C 2上的动点,可设P (6cosα,2sinα),Q (cosβ,3sinβ),0≤α\β<2π, 则 OP →⋅OQ →=6cosαcosβ+6sinαsinβ=6cos(α﹣β), 当α﹣β=2kπ,k∈Z 时,w 取得最大值6,则Ω={(P ,Q )|P 在C 1上,Q 在C 2上,且 OP →⋅OQ →=w}中的元素有无穷多对. 另解:令P (m ,n ),Q (u ,v ),则m 2+9n 2=36,9u 2+v 2=9, 由柯西不等式(m 2+9n 2)(9u 2+v 2)=324≥(3mu+3nv )2, 当且仅当mv=nu ,即O 、P 、Q 共线时,取得最大值6, 显然,满足条件的P 、Q 有无穷多对,D 项正确. 故选:D .答案第6页,总16页…○……※※…○……设出P (6cosα,2sinα),Q (cosβ,3sinβ),0≤α\β<2π,由向量数量积的坐标表示和两角差的余弦公式和余弦函数的值域,可得最大值及取得的条件,即可判断所求元素的个数.5.{3,4}【解析】5.解:∵集合A={1,2,3,4},集合B={3,4,5}, ∴A∩B={3,4}.所以答案是:{3,4}.【考点精析】掌握集合的交集运算是解答本题的根本,需要知道交集的性质:(1)A∩B A ,A∩BB ,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB ,反之也成立.6.3【解析】6.解:∵排列数 P 6m =6×5×4, ∴由排列数公式得 P 63=6×5×4 ,∴m=3.所以答案是:m=3.【考点精析】根据题目的已知条件,利用排列与排列数的公式的相关知识可以得到问题的答案,需要掌握从n 个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. 7.(﹣∞,0)【解析】7.解:由x−1x >1得:1−1x>1⇒1x<0⇒x <0 ,故不等式的解集为:(﹣∞,0), 所以答案是:(﹣∞,0).8.9π【解析】8.解:球的体积为36π, 设球的半径为R ,可得 43 πR 3=36π, 可得R=3,该球主视图为半径为3的圆, 可得面积为πR 2=9π. 所以答案是:9π.装……………………线…………○…名:__________装……………………线…………○…【考点精析】掌握简单空间图形的三视图是解答本题的根本,需要知道画三视图的原则:长对齐、高对齐、宽相等. 9.【解析】9.解:由z+ 3z =0,得z 2=﹣3,设z=a+bi (a ,b∈R),由z 2=﹣3,得(a+bi )2=a 2﹣b 2+2abi=﹣3,即 {a 2−b 2=−32ab =0,解得: {a =0b =±√3 . ∴ z =±√3i . 则|z|= √3 . 所以答案是: √3 .【考点精析】利用复数的乘法与除法对题目进行判断即可得到答案,需要熟知设则;.10.11【解析】10.解:根据题意,双曲线的方程为: x 29 ﹣ y 2b2 =1,其中a= √9 =3,则有||PF 1|﹣|PF 2||=6, 又由|PF 1|=5,解可得|PF 2|=11或﹣1(舍) 故|PF 2|=11,所以答案是:11.11.(﹣4,3,2)【解析】11.解:如图,以长方体ABCD ﹣A 1B 1C 1D 1的顶点D 为坐标原点, 过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,答案第8页,总16页…………订…………线…………○内※※答※※题…………订…………线…………○∵ DB 1→的坐标为(4,3,2),∴A(4,0,0),C 1(0,3,2), ∴ AC 1→=(−4,3,2) . 所以答案是:(﹣4,3,2). 12.【解析】12.解:若g (x )= {3x −1,x ≤0f(x),x >0为奇函数,可得当x >0时,﹣x <0,即有g (﹣x )=3﹣x ﹣1, 由g (x )为奇函数,可得g (﹣x )=﹣g (x ), 则g (x )=f (x )=1﹣3﹣x ,x >0,由定义在(0,+∞)上的函数y=f (x )的反函数为y=f ﹣1(x ), 且f ﹣1(x )=2,可由f (2)=1﹣3﹣2= 89 , 可得f ﹣1(x )=2的解为x= 89 . 故答案为: 89 .由奇函数的定义,当x >0时,﹣x <0,代入已知解析式,即可得到所求x >0的解析式,再由互为反函数的两函数的自变量和函数值相反,即可得到所求值. 13.【解析】13.解:给出四个函数:①y=﹣x ,②y=﹣ 1x ,③y=x 3,④y=x12 ,从四个函数中任选2个,基本事件总数n= C 42=6 ,③④有两个公共点(0,0),(1,1).事件A :“所选2个函数的图象有且只有一个公共点”包含的基本事件有: ①③,①④共2个,……装…_______姓名:_……装…∴事件A :“所选2个函数的图象有且只有一个公共点”的概率为P (A )= 26 = 13 . 故答案为: 13 .从四个函数中任选2个,基本事件总数n= C 42=6 ,再利用列举法求出事件A :“所选2个函数的图象有且只有一个公共点”包含的基本事件的个数,由此能求出事件A :“所选2个函数的图象有且只有一个公共点”的概率. 14.2【解析】14.解:∵a n =n 2,n∈N *,若对于一切n∈N *,{b n }中的第a n 项恒等于{a n }中的第b n 项,∴ b a n = a b n = (b n )2.∴b 1=a 1=1, (b 2)2 =b 4, (b 3)2 =b 9, (b 4)2=b 16. ∴b 1b 4b 9b 16= (b 1b 2b 3b 4)2. ∴ lg(b 1b 4b 9b 16)lg(b 1b 2b 3b 4) =2.故答案为:2.a n =n 2,n∈N *,若对于一切n∈N *,{b n }中的第a n 项恒等于{a n }中的第b n 项,可得 b a n = a b n =(b n )2 .于是b 1=a 1=1, (b 2)2 =b 4, (b 3)2 =b 9, (b 4)2 =b 16.即可得出.15.【解析】15.解:根据三角函数的性质,可知sinα1,sin2α2的范围在[﹣1,1], 要使 12+sinα1+ 12+sin2α2=2,∴sinα1=﹣1,sin2α2=﹣1. 则: α1=−π2+2k 1π ,k 1∈Z.2α2=−π2+2k 2π ,即 α2=−π4+k 2π ,k 2∈Z.那么:α1+α2=(2k 1+k 2)π −3π4,k 1、k 2∈Z.∴|10π﹣α1﹣α2|=|10π +3π4﹣(2k 1+k 2)π|的最小值为 π4 .故答案为: π4 .答案第10页,总16页…外…………订…………○……内※※答※※题※※…内…………订…………○……由题意,要使 12+sinα1+ 12+sin2α2=2,可得sinα1=﹣1,sin2α2=﹣1.求出α1和α2,即可求出|10π﹣α1﹣α2|的最小值16.P 1、P 3、P 4【解析】16.解:设记为“▲”的四个点为A ,B ,C ,D ,线段AB ,BC ,CD ,DA 的中点分别为E ,F ,G ,H ,易知EFGH 为平行四边形;如图所示,四边形ABCD 两组对边中点的连线交于点P 2, 即符合条件的直线l P 一定经过点P 2, 因此:经过点P 2的直线有无数条; 同时经过点P 1和P 2的直线仅有1条, 同时经过点P 3和P 2的直线仅有1条, 同时经过点P 4和P 2的直线仅有1条, 所以符合条件的点为P 1、P 3、P 4. 故答案为:P 1、P 3、P 4.根据任意四边形ABCD 两组对边中点的连线交于一点,过此点作直线,让四边形的四个顶点不在该直线的同一侧,那么该直线两侧的四边形的顶点到直线的距离之和是相等的;由此得出结论. 17.(1)解:∵直三棱柱ABC ﹣A 1B 1C 1的底面为直角三角形, 两直角边AB 和AC 的长分别为4和2,侧棱AA 1的长为5. ∴三棱柱ABC ﹣A 1B 1C 1的体积: V=S △ABC ×AA 1 == =20(2)解:连结AM ,○…………外…………○…………装…………○订…………○…………线…………○…学校:___________姓名:___________班考号:___________○…………内…………○…………装…………○订…………○…………线…………○…∵直三棱柱ABC ﹣A 1B 1C 1的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱AA 1的长为5,M 是BC 中点, ∴AA 1⊥底面ABC ,AM==,∴∠A 1MA 是直线A 1M 与平面ABC 所成角, tan∠A 1MA===,∴直线A 1M 与平面ABC 所成角的大小为arctan .【解析】17.(1)三棱柱ABC ﹣A 1B 1C 1的体积V=S △ABC ×AA 1= 12×AB ×AC ×AA 1 ,由此能求出结果.(2)连结AM ,∠A 1MA 是直线A 1M 与平面ABC 所成角,由此能求出直线A 1M 与平面ABC 所成角的大小. 18.(1)解:函数f (x )=cos 2x ﹣sin 2x+=cos2x+ ,x∈(0,π),由2kπ﹣π≤2x≤2kπ,解得kπ﹣ π≤x≤kπ,k∈Z,k=1时, π≤x≤π,可得f (x )的增区间为[ ,π)(2)解:设△ABC 为锐角三角形, 角A 所对边a=,角B 所对边b=5,若f (A )=0,即有cos2A+ =0,答案第12页,总16页外…………○………………○………线………○装※※订※※线※※题※※内…………○………………○………线………○解得2A= π,即A= π,由余弦定理可得a 2=b 2+c 2﹣2bccosA , 化为c 2﹣5c+6=0, 解得c=2或3, 若c=2,则cosB=<0,即有B 为钝角,c=2不成立, 则c=3,△ABC 的面积为S= bcsinA= ×5×3× =【解析】18.(1)由二倍角的余弦公式和余弦函数的递增区间,解不等式可得所求增区间;(2)由f (A )=0,解得A ,再由余弦定理解方程可得c ,再由三角形的面积公式,计算即可得到所求值. 19.(1)解:∵a n =,b n =n+5∴a 1=5×14+15=20 a 2=5×24+15=95 a 3=5×34+15=420 a 4=﹣10×4+470=430 b 1=1+5=6 b 2=2+5=7 b 3=3+5=8 b 4=4+5=9∴前4个月共投放单车为a 1+a 2+a 3+a 4=20+95+420+430=965, 前4个月共损失单车为b 1+b 2+b 3+b 4=6+7+8+9=30,∴该地区第4个月底的共享单车的保有量为965﹣30=935(2)解:令a n ≥b n ,显然n≤3时恒成立, 当n≥4时,有﹣10n+470≥n+5,解得n≤,∴第42个月底,保有量达到最大.当n≥4,{a n }为公差为﹣10等差数列,而{b n }为等差为1的等比数列,…………装………线…………○…校:___________姓名:_______…………装………线…………○…∴到第42个月底,单车保有量为 ×39+535﹣ ×42= ×39+535﹣ ×42=8782.S 42=﹣4×16+8800=8736. ∵8782>8736,∴第42个月底单车保有量超过了容纳量【解析】19.(1)计算出{a n }和{b n }的前4项和的差即可得出答案;(2)令a n ≥b n 得出n≤42,再计算第42个月底的保有量和容纳量即可得出结论. 20.(1)解:设P (x ,y )(x >0,y >0), ∵椭圆Γ: x 24+y 2 =1,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点, P 在第一象限,且|OP|= √2,∴联立 {x 24+y 2=1x 2+y 2=2,解得P (2√33 , √63)(2)解:设M (x 0,0),A (0,1), P ( 85,35 ),若∠P=90°,则 PA →• PM →,即(x 0﹣ 85 ,﹣ 35 )•(﹣ 85 , 25 )=0, ∴(﹣ 85 )x 0+ 6425 ﹣ 625 =0,解得x 0= 2920 .如图,若∠M=90°,则 MA →• MP →=0,即(﹣x 0,1)•( 85 ﹣x 0, 35 )=0, ∴ x 02−85x 0+35 =0,解得x 0=1或x 0= 35 ,答案第14页,总16页○…………装…………※※请※※不※※要※※在※※装※○…………装…………∴点M 的横坐标为 2920 ,或1,或 35(3)解:设C (2cosα,sinα), ∵ AQ →=2AC →,A (0,1),∴Q(4cosα,2sinα﹣1),又设P (2cosβ,sinβ),M (x 0,0),∵|MA|=|MP|,∴x 02+1=(2cosβ﹣x 0)2+(sinβ)2, 整理得:x 0= 34 cosβ,∵ PQ →=(4cosα﹣2cosβ,2sinα﹣sinβ﹣1), PM →=(﹣ 54 cosβ,﹣sinβ), PQ→=4PM →,∴4cosα﹣2cosβ=﹣5cosβ, 且2sinα﹣sinβ﹣1=﹣4sinβ,∴cosβ=﹣ 43 cosα,且sinα= 13 (1﹣2sinα),以上两式平方相加,整理得3(sinα)2+sinα﹣2=0,∴sinα= 23 ,或sinα=﹣1(舍去),此时,直线AC 的斜率k AC =﹣ 1−sinα2cosα = √510 (负值已舍去),如图.∴直线AQ 为y= √510 x+1.【解析】20.(1)设P (x ,y )(x >0,y >0),联立 {x 24+y 2=1x 2+y 2=2,能求出P 点坐标.(2)设M (x 0,0),A (0,1),P ( 85,35 ),由∠P=90°,求出x 0= 2920 ;由∠M=90°,求出x 0=1或x 0= 35 ;由∠A=90°,则M 点在x 轴负半轴,不合题意.由此能求出点M 的横坐标.(3)设C (2cosα,sinα),推导出Q (4cosα,2sinα﹣1),设P (2cosβ,sinβ),M (x 0,0)推导出x 0= 34 cosβ,从而 4cosα﹣2cosβ=﹣5cosβ,且2sinα﹣sinβ﹣1=﹣4sinβ,cosβ=﹣ 43 cosα,且sinα= 13 (1﹣2sinα),由此能求出直线AQ .21.(1)解:由f (x 1)≤f(x 2),得f (x 1)﹣f (x 2)=a (x 13﹣x 23)≤0, ∵x 1<x 2,∴x 13﹣x 23<0,得a≥0. 故a 的范围是[0,+∞)(2)证明:若f (x )是周期函数,记其周期为T k ,任取x 0∈R,则有 f (x 0)=f (x 0+T k ),由题意,对任意x∈[x 0,x 0+T k ],f (x 0)≤f(x )≤f(x 0+T k ), ∴f(x 0)=f (x )=f (x 0+T k ).又∵f(x 0)=f (x 0+nT k ),n∈Z,并且 …∪[x 0﹣3T k ,x 0﹣2T k ]∪[x 0﹣2T k ,x 0﹣T k ]∪[x 0﹣T k ,x 0]∪[x 0,x 0+T k ]∪[x 0+T k ,x 0+2T k ]∪…=R, ∴对任意x∈R,f (x )=f (x 0)=C ,为常数(3)证明:充分性:若f (x )是常值函数,记f (x )=c 1,设g (x )的一个周期为T g ,则 h (x )=c 1•g(x ),则对任意x 0∈R,h (x 0+T g )=c 1•g(x 0+T g )=c 1•g(x 0)=h (x 0), 故h (x )是周期函数;必要性:若h (x )是周期函数,记其一个周期为T h .若存在x 1,x 2,使得f (x 1)>0,且f (x 2)<0,则由题意可知, x 1>x 2,那么必然存在正整数N 1,使得x 2+N 1T k >x 1, ∴f(x 2+N 1T k )>f (x 1)>0,且h (x 2+N 1T k )=h (x 2). 又h (x 2)=g (x 2)f (x 2)<0,而h (x 2+N 1T k )=g (x 2+N 1T k )f (x 2+N 1T k )>0≠h(x 2),矛盾. 综上,f (x )>0恒成立. 由f (x )>0恒成立,任取x 0∈A,则必存在N 2∈N,使得x 0﹣N 2T h ≤x 0﹣T g , 即[x 0﹣T g ,x 0]⊆[x 0﹣N 2T h ,x 0],∵…∪[x 0﹣3T k ,x 0﹣2T k ]∪[x 0﹣2T k ,x 0﹣T k ]∪[x 0﹣T k ,x 0]∪[x 0,x 0+T k ]∪[x 0+T k ,x 0+2T k ]∪…=R,∴…∪[x 0﹣2N 2T h ,x 0﹣N 2T h ]∪[x 0﹣N 2T h ,x 0]∪[x 0,x 0+N 2T h ]∪[x 0+N 2T h ,x 0+2N 2T h ]∪…=R. h (x 0)=g (x 0)•f(x 0)=h (x 0﹣N 2T h )=g (x 0﹣N 2T h )•f(x 0﹣N 2T h ), ∵g(x 0)=M≥g(x 0﹣N 2T h )>0,f (x 0)≥f(x 0﹣N 2T h )>0.因此若h (x 0)=h (x 0﹣N 2T h ),必有g (x 0)=M=g (x 0﹣N 2T h ),且f (x 0)=f (x 0﹣N 2T h )=c . 而由(2)证明可知,对任意x∈R,f (x )=f (x 0)=C ,为常数. 综上,必要性得证【解析】21.(1)直接由f (x 1)﹣f (x 2)≤0求得a 的取值范围;(2)若f (x )是周期函数,记其周期为T k ,任取x 0∈R,则有f (x 0)=f (x 0+T k ),证明对任意x∈[x 0,x 0+T k ],f (x 0)≤f(x )≤f(x 0+T k ),可得f (x 0)=f (x 0+nT k ),n∈Z,再由…∪[x 0﹣3T k ,x 0﹣答案第16页,总16页f (x )=f (x 0)=C ,为常数;(3)分充分性及必要性证明.类似(2)证明充分性;再证必要性,然后分类证明.。
(完整word版)20xx年上海春考数学试卷.doc
2017年上海市普通高校春季招生统一文化考试数学试卷一填空题(本大题共有12 题,满分54 分,第 1~6 题每题 4 分,第 7~12 题每题 5 分)考生应在答题纸的相应位置直接填写结果.1. 设集合 A 1,2,3 ,集合 B 3,4,则A B .2. 不等式 x 1 3 的解集为。
3. 若复数 z 满足 2z 1 3 6i ( i 是虚数单位),则z 。
4. 若 cos 1,则 sin 。
3 25. 若关于 x 、y的方程组x 2 y 43x ay 无解,则实数 a 。
66. 若等差数列a n的前5项的和为25 ,则a1 a5= 。
7. 若 P 、Q是圆x2 y2 2x 4 y 4 0 上的动点,则PQ 的最大值为。
8. 已知数列a n的通项公式 a n 3n,则 lima1a2 a3 a n 。
n a n2 n9. 的二项展开式的各项系数之和为729,则该展开式中常数项的值为。
若 xx10. 设椭圆 x 2 y2 1 的左、右焦点分别为 F1、 F2,点P在该椭圆上,则使得F1F2P 是2等腰三角形的点P 的个数是。
11. 设 a1, a2 , , a6为 1,2,3,4,5,6 的一个排列,则满足a1 a2 a3 a4 a5 a6 3 的不同排列的个数为。
12. 设 a ,b R ,函数 f ( x) x a1,2 上有两个不同的零点,则 f 1 的取值b 在区间x范围为。
二、选择题(A) 0, (B) 1, (C) ,0 (D) ,114. 设a R ,“ a 0 ”是“1”的()。
a(A) 充分非必要条件(B) 必要非充分条件(C) 充要条件(D) 既非充分又非必要条件15.过正方体中心(即到正方体的八个顶点距离相等的点)的平面截正方体所得的截面中,不可能的图形是()。
(A) 三角形(B) 长方形(C) 对角线不相等的菱形(D) 六边形16. 如图所示,正八边形A1 A2 A3 A4 A5 A6 A7 A8的边长为2 .若P为该正八边形上的动点,则A1 A3 A1 P 的取值范围为()A6 A5 P(A) 0, 8 6 2 (B) 2 2, 8 6 2A7(C) 8 6 2,2 2 (D) 8 6 2, 8 6 2 A8三、解答题A1 A2 17. 如图,长方体ABCD A1B1C1 D1中,AB BC 2, AA1 3 .(1)求四棱锥A1ABCD的体积;(2)求异面直线A1C与DD1所成角的大小 .A4 A318. 设 a 函数2x aR , f (x) .2x 1( 1)求a的值,使得 f ( x) 为奇函数;a 2对任意 x R 成立,求a的取值范围. ( 2)若f x219.某景区欲建造两条圆形观景步道M 1、M 2(宽度忽略不计),如图所示,已知AB AC ,AB AC AD 60(单位:米),要求圆M1与 AB 、 AD 分别相切于点B 、 D ,圆M2与 AC 、 AD分别相切于点C、 D.( 1)若BAD 60 ,圆 M 1和圆 M 2的半径(结果精确到0.1 米);( 2)若观景步道M 1与 M 2的造价分别为每米0.8 千元与每米 0.9 千元。
(word完整版)2017上海高考数学试题(Word版含解析)
2017年上海市高考数学试卷.填空题(本大题共 12题,满分54分,第1~6题每题4分,第7~12题每题5 分)1.已知集合 A {1,2,3,4},集合 B {3,4,5},则 AI B ______________2. 若排列数P m 6 5 4,则m ______________x 13. 不等式1的解集为 ________x4. 已知球的体积为 36,则该球主视图的面积等于 _____________5. 已知复数z 满足z 30,则|z| ______z2 26. 设双曲线— 爲 1(b 0)的焦点为F 1、F 2,P 为该9 b双曲线上的一点,若| PR | 5,则| PF 2 | __________7. 如图,以长方体ABCD AB1GD 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐uu u UUUD标轴,建立空间直角坐标系,若 DB 1的坐标为(4,3,2),则AC 1的坐标为 ___________3x 1 x 08. 定义在(0,)上的函数y f(x)的反函数为y f lx),若g(x) ' 为f(x), x 0奇函数,则f 1(x)2的解为 ________1 3 f9. 已知四个函数:① y x :②y :③yx ;④yx 2.从中任选2个,则事 x件“所选2个函数的图像有且仅有一个公共点”的概率为 _____________2 *10.已知数列{a n }和{b n },其中a n n , n N , {0}的项是互不相等的正整数,若对于12.如图,用35个单位正方形拼成一个矩形,点 P 、P 2、B 、F 4以及四个标记为“”的点在正方形的顶点处,设集合{P,巳,卩3,巳},点P ,过P 作直线I P ,使得不在I P 上的“ ”的点 分布在I P 的两侧.用D(l p )和D 2(I P )分别表示I P 一侧 和另一侧的“ ”的点到I p 的距离之和.若过P 的直 线I P 中有且只有一条满足 DdI p ) D 2(I P ),则 中 所有这样的P 为 ___________二.选择题(本大题共 4题,每题5分,共20分)2017.6任意n N *,{b n }的第a n 项等于{a n }的第b n 项,则Iggbqdbw)Ig(bb 2b 3b 4)11.设 a 1、a 2 R,且 2 sin 112 sin(2 2)2,则 |10 2|的最小值等于x 5v 013.关于x 、y 的二元一次方程组' 的系数行列式D 为(2x 3y 4A.0 5 B. 1 0C.1 5D.6 04 32 42 35 4uuu uuirOP OQ w },贝U中元素个数为().解答题(本大题共 5题,共14+14+14+16+18=76分)17.如图,直三棱柱 ABC A 1B 1C 1的底面为直角三角形,两直角边 AB 和AC 的长分别为4和2,侧棱AA 的长为5.(1 )求三棱柱 ABC ABG 的体积; (2)设M 是BC 中点,求直线AM 与平面ABC 所成角的大小.2 218.已知函数 f (x) cos x sin x(1 )求f(x)的单调递增区间;A 所对边a 19,角B 所对边b 5,若f (A) 0,求△ ABC 的面积.A. a 0B. b 0C. cD. a 2b c0 16. 在平面直角坐标系 2 x xOy 中,已知椭圆C : 2y 21 和 C 2: X 2- 1 P 为C 1上的动36 4 9uuu urnr占 八Q 为C 2上的动点, w 是OP OQ 的最大值. 记{(P,Q)|P 在 C 1 上, Q 在C 2上,且)使得Moo k 、X 200 k 、X 300 k 成等差数列”的一个必要条件是14.在数列{a n }中, a n,则 lim a n (nA.等于-2B.等于0C.等于-2D.不存在15.已知a 、b 、c 为实常数,数列{X n }的通项2X n anbn,则“存在A. 2个B. 4个C. 8个D.无穷个12,x (0,).(2)设厶ABC 为锐角三角形,角19. 根据预测,某地第n (n N )个月共享单车的投放量和损失量分别为a n和b (单位:辆), "亠5n 15, 1 n 3其中a n , b n n 5,第n个月底的共享单车的保有量是前n个月的10n 470, n 4累计投放量与累计损失量的差•(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n个月底的单车容纳量S n 4(n 46)2 8800 (单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?x220. 在平面直角坐标系xOy中,已知椭圆: y 1,A为的上顶点,P为上异于4上、下顶点的动点,M为x正半轴上的动点.(1 )若P在第一象限,且|OP| 2,求P的坐标;(2)设P(8,3),若以A、P、M 为顶点的三角形是直角三角形,求M的横坐标;5 5umr uuir uuu uuun(3)若| MA | |MP |,直线AQ 与交于另一点C,且AQ 2AC,PQ 4 PM,求直线AQ的方程.21.设定义在R上的函数f (x)满足:对于任意的X1、X2 R,当x, X2时,都有f(X1) f(X2).(1 )若f (x) ax31,求a的取值范围;(2)若f(x)为周期函数,证明:f(x)是常值函数;(3)设f(x)恒大于零,g(x)是定义在R上、恒大于零的周期函数,M是g(x)的最大值.函数h(x) f(x)g(x).证明:“ h(x)是周期函数”的充要条件是“ f (x)是常值函数”.2017年上海市高考数学试卷.填空题(本大题共 12题,满分54分,第1~6题每题4分,第7~12题每题5 分) 1. 已知集合 A {1,2,3,4},集合 B {3,4,5},则 AI B ________ 【解析】AI B {3,4}2. 若排列数P m 6 5 4,则m ______________【解析】m 32 26.设双曲线工占 1(b9 b 2则 | PF 2 | ______ 【解析】2a 6| PF 2 | 117. 如图,以长方体ABCD AB1GD 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐uu u UUUD标轴,建立空间直角坐标系,若 DB 1的坐标为(4,3,2),则AC 1的坐标为 ___________UUUU 【解析】A(4,0,0),C 1(0,3,2),AC 1( 4,3,2)13x 1, x 0 込 8. 定义在(0,)上的函数y f (x)的反函数为y f (x),若g(x)为f(x), x 01奇函数,则f (x) 2的解为 ________ 【解析】f (x)3x 1f(2)9 18 f 1(x)2 的解为 x 81 3 -9. 已知四个函数:① y x :②y :③yx ;④yx 2.从中任选2个,则事x件“所选2个函数的图像有且仅有一个公共点”的概率为 _____________ 【解析】①③、①④的图像有一个公共点,.••概率为2017.6x1【解析】1 -10 x 0 ,解集为(xx4.已知球的体积为 36 ,则该球主视图的面积等于4【解析】43r 3 36 r 3 S 95.已知复数 z 满足3 z -z 0,则 |z| 【解析】z 23 z |z| .3,0)0)的焦点为F 1、F 2,P 为该双曲线上的一点,若2 *10.已知数列{a n}和{b n},其中a n n , n N , {b n}的项是互不相等的正整数,若对于任意n N * , {0}的第a n 项等于{a n }的第b n 项,则lg(blb4b9bl6)©(b^b q )【解析】b a n a b n b n 2 b n 2 bAb g% (bfeb s b q )2即 sin 1sin (2 2 )1,二 12k,2k , I10 1 2〔min2 4412.如图,用35个单位正方形拼成一个矩形,点 R 、P 2、P 3、P 4以及四个标记为“”的点在正方形的顶点处,设集合{P,P 2,P 3,P 4},点P ,过P 作直线I p ,使得不在I p 上的“ ”的点 分布在I P 的两侧.用D 1(I P )和D 2(I P )分别表示I P 一侧 和另一侧的“ ”的点到I p 的距离之和.若过P 的直线I p 中有且只有一条满足 D 1(I p ) D 2(I p ),则 中 所有这样的P 为__________ 【解析】P 、F 3A.0 5 B. 1 0C.1 5 D .6 04 32 42 35 4【解析】C【解析】k 、x 200 k 、x 300 k 成等差数列”的一个必要条件是©(bb q b g bj 2 IgglbAb q )11.设 a-i 、a 2,且2 sin i2,则 |102 sin(2 2)12|的最小值等于I解析】人[1,1],口1冇[1,1],1 1 1 ,2 si n t 2 sin(2 2)二.选择题(本5分,共 20分)13.关于x 、y 的二元一次方程组x 5y 2x 3y的系数行列式4 D 为( )14.在数列{a n }中,(J ,,则 Iim a n (nA.等于B.等于0C. 1等于12D.不存在15.已知 b 、c 为实常数,数列{X n }的通项 2X n anbn c ,n N *,则“存在 k N *,使得X ,oo A. a 0 【解析】AB. b 0C. c 0D. a 2b c 02累计投放量与累计损失量的差(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第 n 个月底的单车容纳量 S n 4(n 46)2 8800 (单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?2 2一 一 x y16.在平面直角坐标系 xOy 中,已知椭圆G :盘 -1和C 2:x 2鲁1.P为C 1上的动uuu urnr点,Q 为C 2上的动点,w 是OP OQ uuu uuirOP OQ w},贝U中元素个数为( 的最大值•记 {(P,Q)|P 在G 上,Q 在C 2上,且A. 2个B. 4个C. 8个D.无穷个【解析】D三.解答题(本大题共 5题,共14+14+14+16+18=76 分)17.如图,直三棱柱 ABC AB1G 的底面为直角三角形,两直角边 AB 和AC 的长分别为4和2,侧棱AA 的长为5.(1 )求三棱柱 ABC ARG 的体积;(2)设M 是BC 中点,求直线AM 与平面ABC 所成角的大小•【解析】(1) V S h 20(2) tan5.5 ,线面角为arcta n ■. 518.已知函数 2f (x) cos x sinx 1 , x (0,).(1 )求f(x)的单调递增区间;(2)设厶ABC 为锐角三角形, A 所对边a ■ 19,角B 所对边b 5,若f (A)0,求△ ABC 的面积.【解析】(1) f(x)cos2xx (0,),单调递增区间为[―,) 2(2) cos2A根据锐角三角形,cosB2A 25 c 191…ccosAc 2 或 c 3 ,2 5c 20,二 c 3 , S - bcsin A ^^432 4 19.根据预测,某地第n 4甘出5n 15, 1其中a n10n 470,(nN *)个月共享单车的投放量和损失量分别为a n 和b n (单位:辆),3, b n n 5,第n 个月底的共享单车的保有量是前4n 个月的(1 )若P 在第一象限,且|OP| 耳,求P 的坐标;求直线AQ 的方程. 3 uuu uuur 3 1 3y 0.Q( -x 0, 3y 。
2017上海高考数学试题(含解析) (1)
2017年上海市高考数学试卷2017.6一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 已知集合{1,2,3,4}A =,集合{3,4,5}B =,则A B =2. 若排列数6654m P =⨯⨯,则m =3. 不等式11x x->的解集为 4. 已知球的体积为36π,则该球主视图的面积等于 5. 已知复数z 满足30z z+=,则||z = 6. 设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =,则2||PF =7. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐 标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为8. 定义在(0,)+∞上的函数()y f x =的反函数为1()y f x -=,若31,0()(),0x x g x f x x ⎧-≤⎪=⎨>⎪⎩为奇函数,则1()2f x -=的解为9. 已知四个函数:① y x =-;② 1y x=-;③ 3y x =;④ 12y x =. 从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为10. 已知数列{}n a 和{}n b ,其中2n a n =,*n ∈N ,{}n b 的项是互不相等的正整数,若对于任意*n ∈N ,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg()lg()b b b b b b b b =11. 设1a 、2a ∈R ,且121122sin 2sin(2)αα+=++,则12|10|παα--的最小值等于12. 如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“ ”的 点在正方形的顶点处,设集合1234{,,,}P P P P Ω=,点P ∈Ω,过P 作直线P l ,使得不在P l 上的“ ”的点分布在P l 的两侧. 用1()P D l 和2()P D l 分别表示P l 一侧 和另一侧的“ ”的点到P l 的距离之和. 若过P 的直 线P l 中有且只有一条满足12()()P P D l D l =,则Ω中 所有这样的P 为二. 选择题(本大题共4题,每题5分,共20分)13. 关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式D 为( )A. 0543B. 1024C. 1523D. 605414. 在数列{}n a 中,1()2n n a =-,*n ∈N ,则lim n n a →∞( )A. 等于12-B. 等于0C. 等于12D. 不存在 15. 已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c =++,*n ∈N ,则“存在*k ∈N , 使得100k x +、200k x +、300k x +成等差数列”的一个必要条件是( )A. 0a ≥B. 0b ≤C. 0c =D. 20a b c -+=16. 在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=. P 为1C 上的动点,Q 为2C 上的动点,w 是OP OQ ⋅的最大值. 记{(,)|P Q P Ω=在1C 上,Q 在2C 上,且}OP OQ w ⋅=,则Ω中元素个数为( )A. 2个B. 4个C. 8个D. 无穷个三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积; (2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小.18. 已知函数221()cos sin 2f x x x =-+,(0,)x π∈. (1)求()f x 的单调递增区间;(2)设△ABC 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求△ABC 的面积.19. 根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤⎪=⎨-+≥⎪⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20. 在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点.(1)若P 在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标; (3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =, 求直线AQ 的方程.21. 设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤.(1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值. 函数()()()h x f x g x =. 证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.2017年上海市高考数学试卷2017.6一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 已知集合{1,2,3,4}A =,集合{3,4,5}B =,则A B =【解析】{3,4}AB =2. 若排列数6654m P =⨯⨯,则m = 【解析】3m =3. 不等式11x x ->的解集为 【解析】111100x x x->⇒<⇒<,解集为(,0)-∞4. 已知球的体积为36π,则该球主视图的面积等于 【解析】3436393r r S πππ=⇒=⇒= 5. 已知复数z 满足30z z+=,则||z =【解析】23||z z z =-⇒=⇒=6. 设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =, 则2||PF =【解析】226||11a PF =⇒=7. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐 标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为 【解析】(4,0,0)A ,1(0,3,2)C ,1(4,3,2)AC =-8. 定义在(0,)+∞上的函数()y f x =的反函数为1()y f x -=,若31,0()(),0x x g x f x x ⎧-≤⎪=⎨>⎪⎩为奇函数,则1()2f x -=的解为【解析】()31(2)918x f x f =-+⇒=-+=-,∴1()2f x -=的解为8x =-9. 已知四个函数:① y x =-;② 1y x=-;③ 3y x =;④ 12y x =. 从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为 【解析】①③、①④的图像有一个公共点,∴概率为24213C = 10. 已知数列{}n a 和{}n b ,其中2n a n =,*n ∈N ,{}n b 的项是互不相等的正整数,若对于任意*n ∈N ,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg()lg()b b b b b b b b =【解析】222149161491612341234lg()()2lg()n n a b n n b b b b b a b b b b b b b b b b b b b b =⇒=⇒=⇒=11. 设1a 、2a ∈R ,且121122sin 2sin(2)αα+=++,则12|10|παα--的最小值等于【解析】111[,1]2sin 3α∈+,211[,1]2sin(2)3α∈+,∴121112sin 2sin(2)αα==++,即12sin sin(2)1αα==-,∴122k παπ=-+,24k παπ=-+,12min |10|4ππαα--=12. 如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“ ”的 点在正方形的顶点处,设集合1234{,,,}P P P P Ω=,点P ∈Ω,过P 作直线P l ,使得不在P l 上的“ ”的点分布在P l 的两侧. 用1()P D l 和2()P D l 分别表示P l 一侧 和另一侧的“ ”的点到P l 的距离之和. 若过P 的直 线P l 中有且只有一条满足12()()P P D l D l =,则Ω中 所有这样的P 为 【解析】1P 、3P二. 选择题(本大题共4题,每题5分,共20分)13. 关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式D 为( )A.0543 B. 1024 C. 1523 D. 6054【解析】C14. 在数列{}n a 中,1()2n n a =-,*n ∈N ,则lim n n a →∞( )A. 等于12-B. 等于0C. 等于12D. 不存在 【解析】B15. 已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c =++,*n ∈N ,则“存在*k ∈N ,使得100k x +、200k x +、300k x +成等差数列”的一个必要条件是( )A. 0a ≥B. 0b ≤C. 0c =D. 20a b c -+= 【解析】A16. 在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=. P 为1C 上的动点,Q 为2C 上的动点,w 是OP OQ ⋅的最大值. 记{(,)|P Q P Ω=在1C 上,Q 在2C 上,且}OP OQ w ⋅=,则Ω中元素个数为( )A. 2个B. 4个C. 8个D. 无穷个 【解析】D三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积; (2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小. 【解析】(1)20V S h =⋅=(2)tanθ== 18. 已知函数221()cos sin 2f x x x =-+,(0,)x π∈. (1)求()f x 的单调递增区间;(2)设△ABC 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求△ABC 的面积.【解析】(1)1()cos22f x x =+,(0,)x π∈,单调递增区间为[,)2ππ (2)1cos223A A π=-⇒=,∴225191cos 2252c A c c +-==⇒=⋅⋅或3c =,根据锐角三角形,cos 0B >,∴3c =,1sin 2S bc A ==19. 根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤⎪=⎨-+≥⎪⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【解析】(1)12341234()()96530935a a a a b b b b +++-+++=-= (2)10470542n n n -+>+⇒≤,即第42个月底,保有量达到最大12341234(42050)38(647)42()()[965]878222a a a ab b b b +⨯+⨯+++⋅⋅⋅+-+++⋅⋅⋅+=+-=2424(4246)88008736S =--+=,∴此时保有量超过了容纳量.20. 在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点.(1)若P 在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标; (3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =, 求直线AQ 的方程.【解析】(1)联立22:14x y Γ+=与222x y +=,可得P (2)设(,0)M m ,283833(,1)(,)055555MA MP m m m m m ⋅=-⋅-=-+=⇒=或1m =8283864629(,)(,)0555********PA MP m m m ⋅=-⋅-=-+=⇒=(3)设00(,)P x y ,线段AP 的中垂线与x 轴的交点即03(,0)8M x ,∵4PQ PM =,∴003(,3)2Q x y --,∵2AQ AC =,∴00133(,)42y C x --,代入并联立椭圆方程,解得09x =,019y =-,∴1()3Q ,∴直线AQ 的方程为110y x =+21. 设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤.(1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值. 函数()()()h x f x g x =. 证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”. 【解析】(1)0a ≥;(2)略;(3)略.。
上海市春季高考数学试卷(含答案).doc
上海市普通高等学校春季招生考试数学试卷一•填空题(本大题满分36分)本大题共有12题,要求直接填写结果,每题填对得3分,否则一律得0分。
1.函数y = log2(x + 2)的定义域是 _________________2.方程2v = 8的解是_________________3.抛物线/=8x的准线方程是___________________4.函数y = 2sin x的最小正周期是_________________5.已知向量5 = (1, k),方= (9M —6)。
若万〃方,则实数k= _______________6.函数j = 4sinx + 3cosx的最大值是__________________7.复数2 + 3/ (d是虚数单位)的模是__________________8.在AABC中,角A、B、C所对边长分别为a、b、c ,若a = 5,/? = & 3 = 60°,贝ijb二—9.在如图所示的正方体ABCD_A、B\C\D\中,异面直线A/与所成角的大小为 ____________________________ 110.从4名男同学和6名女同学屮随机选取3人参加某社团活动,选岀的3人屮男女同学都有的概率为________ (结果用数值表示)。
11.若等差数列的前6项和为23,前9项和为57,则数列的前"项和»二_________________ o12.36的所有正约数之和可按如下方法得到:因为36=22X32,所以36的所有正约数之和为(1+3+32)+(2+2X3+2X32)+(22+22X3+22X32)=(1+2+22)(1+3+32)=91参照上述方法,可求得2000的所有正约数之和为________________________________二.选择题(本大题满分36分)本大题共有12题,每题都给出四个结论,其中有且只有一个结论是正确的。
2017-2018学年上海市春季高考数学模拟试卷一Word版含答案
2017-2018学年上海市春季高考数学模拟试卷一Word版含答案2017-2018学年上海市春季高考模拟试卷一一、填空题:(本大题共12小题,每小题3分,共36分.请将答案填入答题纸填空题的相应答题线上.)1、函数的定义域是.2、已知全集,集合,则= .3、已知函数是函数的反函数,则(要求写明自变量的取值范围).4、双曲线的渐近线方程是.5、若函数与函数的最小正周期相同,则实数a= .6、已知数列是首项为1,公差为2的等差数列,是数列的前n项和,则= .7、直线,,则直线与的夹角为= .8、已知,是方程的根,则= .9、的二项展开式中的常数项是(用数值作答) .10、已知是平面上两个不共线的向量,向量,.若,则实数m= .11、已知圆柱M的底面圆的半径与球O的半径相同,若圆柱M 与球O的表面积相等,则它们的体积之比= (用数值作答).12、已知角的顶点在坐标原点,始边与x轴的正半轴重合,角的终边与单位圆交点的横坐标是,角的终边与单位圆交点的纵坐标是,则= .二、选择题:(本大题共12小题,每小题3分,共36分.请将答案填入答题纸填空题的相应答题线上.)13、已知,.若是的必要非充分条件,则实数a的取值范围是( )A.B.C.D..14、已知直线,点在圆C:外,则直线与圆C的位置关系是( )A .相交 B.相切 C.相离 D.不能确定15、现给出如下:①若直线与平面内无穷多条直线都垂直,则直线;②空间三点确定一个平面;③先后抛两枚硬币,用事件A表示“第一次抛出现正面向上”,用事件B表示“第二次抛出现反面向上”,则事件A和B相互独立且=;④样本数据的标准差是1.则其中正确的序号是( )A.①④B.①③C.②③④D.③④16、在关于的方程,,中,已知至少有一个方程有实数根,则实数的取值范围为()A. B. 或 C. 或 D.17、不等式的解集是()A.B.C.D.18、已知α,β表示两个不同的平面,m为平面α内的一条直线,则是的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件19、已知是椭圆的两个焦点,是椭圆上的任意一点,则的最大值是()A.、9B.16C.D.20、函数与在同一坐标系的图像有公共点的充要条件是()A. B. C. D.21、设函数,则的值为()A.0 B.1 C.10 D.不存在22、已知,则()A.B.C.D.23、将正三棱柱截去三个角(如图1所示A、B、C分别是三边的中点)得到的几何体如图2,则按图2所示方向侧视该几何体所呈现的平面图形为()24、已知方程的根大于,则实数满足()A.B.C.D.三、解答题25、(本题满分7分)在中,记(角的单位是弧度制),的面积为S,且,.求函数的最大值、最小值.26、(本题满分7分)已知正方体的棱长为a.求点到平面的距离.27、(本题满分8分)用行列式讨论关于的二元一次方程组的解的情况,并说明各自的几何意义.28、(本题满分13分)已知函数是奇函数,定义域为区间D(使表达式有意义的实数x 的集合).(1)求实数m的值,并写出区间D;(2)若底数,试判断函数在定义域D内的单调性,并说明理由;(3)当(,a是底数)时,函数值组成的集合为,求实数的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年上海市春季高考数学试卷
一、填空题:(第1—6题每题4分,第7—12题每题5分,共54分)
1.设集合{}1,2,3A =,集合{}3,4B =,则A B =U
2.不等式13x -<的解集为
3.若复数z 满足2136z i -=+(i 为虚数单位),则z =
4.若1cos 3α=,则sin()2
πα-= 5.若关于x 、y 的方程组2436x y x ay +=⎧⎨+=⎩
无解,则实数a = 6.若等差数列{}n a 的前5项和为25,则15a a +=
7.若P 、Q 为圆222440x y x y +-++=上的动点,则PQ 的最大值为
8.已知数列{}n a 的通项公式为3n n a =,则123lim n n n
a a a a a →∞++++=L 9.若2
()n
x x +的二项展开式的各项系数之和为729,则该展开式中常数项的值为 10.设椭圆2
212
x y +=的左、右焦点分别为1F 、2F ,点P 在该椭圆上,则使得12PF F ∆是 等腰三角形的点P 的个数是
11.设1a 、2a 、…、6a 为1、2、3、4、5、6的一个排列,则满足123456a a a a a a -+-+- 3=的不同排列的个数为
12.设a 、b R ∈,若函数()a f x x b x =+
+在区间(1,2)上有两个不同的零点,则(1)f 的取值范围为
二、选择题(共4题,每题5分,共20分)
13.函数2()(1)f x x =-的单调递增区间是( )
A [0,)+∞
B [1,)+∞
C (,0]-∞
D (,1]-∞
14.设a R ∈,“0a >”是“10a
>”的( )条件 A 充分非必要 B 必要非充分 C 充要 D 既非充分也非必要
15.过正方体中心的平面截正方体所得的截面中,不可能的图形是( )
A 三角形
B 长方形
C 对角线不相等的菱形
D 六边形
16.如图所示,正八边形12345678A A A A A A A A 的边长为2,
若P 为该正八边形边上的动点,
则131A A A P ⋅u u u u r u u u r 的取值范围是( ) A [0,862]+ B [22,82]-+ C [82,2]-- D [862,862]--+
三、解答题(共5大题,共141414161876++++=分)
17.如图,长方体1111ABCD A B C D -中,2AB BC ==,13AA =,
(1)求四棱锥1A ABCD -的体积;
(2)求异面直线1A C 与1DD 所成角的大小.
18.设a R ∈,函数2()21
x x a f x +=+, (1)求a 的值,使得()f x 为奇函数;
(2)若2()2
a f x +<
对任意x R ∈成立,求a 的取值范围.
19.某景区欲建造两条圆形观景步道1M 、2M (宽度忽略不计),如图所示,已知AB AC ⊥, 60AB AC AD ===,(单位:米),要求圆1M 与AB 、AD 分别相切于点B 、D ,
圆2M 与AC 、AD 分别相切于点C 、D ,
(1)若6BAD π
∠=,求圆1M 、2M 的半径(结果精确到0.1米);
(2)若观景步道1M 与2M 的造价分别为每米0.8千元与每米0.9千元,如何设计圆1M 、2M 的大小,使总造价最低?最低总造价是多少?(结果精确到0.1千元)
20.已知双曲线2
2
2:1y x b Γ-=(0b >),直线:l y kx m =+(0km ≠),l 与Γ交于P 、Q 两点,P '为P 关于y 轴的对称点,直线P Q '
与y 轴交于点(0,)N n ,
(1)若点(2,0)是Γ的一个焦点,求Γ的渐近线方程; (2)若1b =,点P 的坐标为(1,0)-,且32
NP P Q ''=u u u u r u u u u r ,求k 的值; (3)若2m =,求n 关于b 的表达式.
21.已知函数21()log 1x f x x
+=-, (1)解方程()1f x =;
(2)设(1,1)x ∈-,(1,)a ∈+∞,证明:1(1,1)ax a x -∈--,且11()()()ax f f x f a x a
--=--; (3)设数列{}n x 中,1(1,1)x ∈-,1131(1)3n n n n
x x x ++-=--,*n N ∈,求1x 的取值范围,
使得3n x x ≥对任意*
n N ∈成立.
【简答】
一、填空题:
1. {}1,2,3,4
2. (2,4)-
3. 23i -
4. 13-
5. 6
6. 10
7. 2
8. 32
9. 160 10. 6 11. 48 12.
(0,3-
二、选择题:
13. D 14. C 15. A 16. B
三、解答题:
17. (1)4;(2); 18. (1)1a =-;(2)[0,2]
19. (1)1M 的半径为16.1,2M 的半径为34.6;
(2)1M 的半径为30,2M 的半径为20,总造价为263.9
20. (1)y =;(2)2k =±
; 21. (1)13
;(2)作差法。