二次函数图像信息题
二次函数的图像与性质练习题及答案
二次函数的图像战本量训练题之阳早格格创做一、采用题1.下列函数是二次函数的有( )12)5(;)4();3()3(;2)2(;1)1(222+=++=-==-=x y c bx ax y x x y xy x y (6) y=2(x+3)2-2x 2A 、1个;B 、2个;C 、3个;D 、4个 2.闭于213y x =,2y x =,23y x =的图像,下列道法中没有精确的是( )A .顶面相共B .对付称轴相共C .图像形状相共D .最矮面相共3.扔物线()12212++=x y 的顶面坐标是( )A .(2,1)B .(-2,1)C .(2,-1)D .(-2,-1)4.已知二次函数)2(2-++=m m x mx y 的图象通过本面,则m 的值为 ( )A . 0或者2B . 0C . 2D .无法决定5.已知二次函数213x y -=、2231x y -=、2323x y =,它们的图像启心由小到大的程序是( )A 、321y y y <<B 、123y y y <<C 、231y y y <<D 、132y y y <<6.二条扔物线2y x =与2y x =-正在共一坐标系内,下列道法中没有精确的是( )A .顶面相共B .对付称轴相共C .启心目标差异 D .皆有最小值7.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列论断:①0abc >;b+c<0;;其中精确的论断有( )A .1个B .2个C .3个D .4个8.已知扔物线的顶面为(-1,-2),且通过(1,10),则那条扔物线的表白式为( )A .y=32(1)x --2 B .y=32(1)x ++2C .y=32(1)x +-2D .y=-32)1(-x +29.扔物线23y x =背左仄移1个单位,再背下仄移2个单位,所得到的扔物线是( ) A .23(1)2y x =-- B.23(1)2y x =+- C.23(1)2y x =++ D.23(1)2y x =-+10.扔物线244y x x =--的顶面坐标是( )A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8)11.与扔物线y=-12x 2+3x -5的形状、启心目标皆相共,惟有位子分歧的扔物线是( ) A. y = x 2+3x -5 B. y=-12x 2C. y =12x 2+3x -5D. y=12x 212.对付扔物线y=22(2)x --3与y=-22(2)x -+4的道法没有精确的是( )A .扔物线的形状相共B .扔物线的顶面相共C .扔物线对付称轴相共D .扔物线的启心目标差异13.对付于扔物线21(5)33y x =--+,下列道法精确的是( )A .启心背下,顶面坐标(53),B .启心进与,顶面坐标(53),C .启心背下,顶面坐标(53)-,D .启心进与,顶面坐标(53)-,14.扔物线y=222x mx m -++的顶面正在第三象限,试决定m 的与值范畴是( )A .m <-1或者m >2B .m <0或者m >-1C .-1<m <0D .m <-115.正在共背来角坐标系中,函数y mx m=+战222y mx x =-++(m 是常数,且0m ≠)的图象大概..是( )16(A .曲线x=2 B .曲线a=-2 C .曲线y=2 D .曲线x=417.二次函数y=221x x --+图像的顶面正在( )A .第一象限B .第二象限C .第三象限D .第四象限18.如果扔物线y=26x x c ++的顶面正在x 轴上,那么c 的值为( )ABCDA.0 B.6 C.3 D.919.已知二次函数2y ax bx c=++,如果a>0,b<0,c<0,那么那个函数图像的顶面必正在()A.第一象限 B.第二象限 C.第三象限D.第四象限20.已知正比率函数kxy=的图像如左图所示,则二次函数222kxkxy+-=22.若A(-4,y1),B(-3,y2),C(1,y3)为二次函数y=x2+4x-5的图象上的三面,则y1,y2,y3的大小闭系是()A、y1<y2<y3B、y2<y1<y3C、y3<y1<y2D、y1<y3<y2B.挖空题:23.二次函数2y ax=(0<a)的图像启心背____,对付称轴是____,顶面坐标是____,图像有最___面,x___时,y随x的删大而删大,x___时,y随x的删大而减小.24.扔物线y=-21(2)2x+-4的启心背___,顶面坐标___,对付称轴___,x___时,y随x 的删大而删大,x___时,y随x的删大而减小.25.化243y x x=++为y=a2()x h-k+的形式是____,图像的启心背____,顶面是____,对付称轴是____.26.扔物线y=24x x +-1的顶面是____,对付称轴是____.27.将扔物线y=3x 2背左仄移6个单位,再背下仄移728.已知二次函数2y axbx c =++所示,则面()P a bc ,正在第象限.C .解问题29.通过配圆变形,道出函数2288y x x =-+-的图像的启心目标,对付称轴,顶面坐标,那个函数有最大值仍旧最小值?那个值是几?30.(1)已知二次函数的图象以A (-1,4)为顶面,且过面B (2,-5)供该函数的闭系式;(2)扔物线过(-1,0),(3,0),(1,-5)三面,供二次函数的剖析式;31.已知二次函数y =ax 2+bx +c ,当x =1时,y 有最大值为5,且它的图像通过面(2,3),供那个函数的闭系式.32.已知二次函数y = -x 2+bx +5,它的图像通过面(2,-3).(1)供那个函数闭系式及它的图像的顶面坐标. (2)当x 为何值时,函数y 随着x 的删大而删大?当为x 何值时,函数y 随着x 的删大而减小?33.二次函数c bx ax y ++=2的图像与x轴接于面A (-8,0)、B (20),与y 轴接于面C,∠ACB=90°.(1)、供二次函数的剖析式;(2)、供二次函数的图像的顶面坐标;参照问案一、采用题2.6.D 7.二、挖空题23. 下 y轴(0,0)大 x<0 x>0;24. 下 y轴(-2,-4)曲线x=-2 x<-2 x>-2;25. 1)2(2-+=xy上(-2,-1)曲线x=-1;26. (-2,-5) 曲线x=-2 ; 27.7)6(32-+=xy三、解问题29.解法1:设y=a2(8)x-+9,将x=0,y=1代进上式得a=18-,∴y=21(8)8x--+9=21218x x-++解法2:设y=2ax bx c++,由题意得21,8,249,4cbaac ba⎧⎪=⎪⎪-=⎨⎪⎪-=⎪⎩解之1,82,1.abc⎧=-⎪⎪=⎨⎪=⎪⎩∴y=21218x x-++415,25,45-=-==cba4)1(2++-=x y (1) (2)30.31.5)1(22+--=x y32.(1)b=-2 522+--=x x y (2) (-1,6) x<-1 x>-133.(1) 提示:根据:OB OA OC ⋅=2,可供出OC=4,则C (0,4)。
二次函数有关的中考图像信息题
BatchDoc-Word 文档批量处理工具与二次函数有关的中考图像信息题1、如图(1)是某公共汽车线路收支差额y(票价总收人减去运营成本)与乘客量 x 的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会. 乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏. 公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏. 根据这两种意见,可以把图(1)分别改画成图(2)和图(3). (1)说明图(1)中点 A 和点 B 的实际意义:(2)你认为图(2)和图(3)两个图象中,反映乘客意见的是 ,反映公交公司意见的是 .(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图(4)中画出符合这种办法的 y 与 x 的大致函数关系图象。
2、某种内燃动力机车在青藏铁路实验运行前,测得该种机车机械效率η和海拔高度h (0≤h ≤6.5,单位km )的函数关系式如图所示。
(1)请你根据图象写出机车的机械效率η和海拔高度h (km )的函数关系: (2)求在海拔3km 的高度运行时,该机车的机械效率为多少? 3、有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.下图是反映所挖河渠长度y (米)与挖掘时间x (时)之间关系的部分图象.请解答下列问题:(1)乙队开挖到30米时,用了_____小时.开挖6小时时, 甲队比乙队多挖了______米;(2)请你求出:①甲队在0≤x ≤6的时段内,y 与x 之间的函数关系式; ②乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式; ③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?(3)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?4、某工厂用一种自动控制加工机制作一批工件,该机器运行过程分为加油过程和加工过程:加工过程中,当油箱中油量为10升时,机器自动停止加工进入加油过程,将油箱加满后继续加工,如此往复.已知机器需运行185分钟才能将这批工件加工完.下图是油箱中油量y(升)与机器运行时间x(分)之间的函数图象.根据图象回答下列问题:(1)求在第一个加工过程中,油箱中油量y(升)与机器运行时间x(分)之间的函数关系式(不必写出自变量x 的取值范围);(2)机器运行多少分钟时,第一个加工过程停止? (3)加工完这批工件,机器耗油多少升?时)BatchDoc-Word文档批量处理工具5、某环保器材公司销售一种市场需求较大的新型产品,已知每件产品的进价为40元,经销过程中测出销售量y(万件)与销售单价x(元)存在如图所示的一次函数关系,每年销售该种产品的总开支z(万元)(不含进价)与年销量y(万件)存在函数关系z=10y+42.5.(1)求y关于x的函数关系式;(2)写出该公司销售该种产品年获利w(万元)关于销售单价x(元)的函数关系式;(年获利=年销售总金额-年销售产品的总进价-年总开支金额)当销售单价x为何值时,年获利最大?最大值是多少?(3)若公司希望该产品一年的销售获利不低于57.5万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围.在此条件下要使产品的销售量最大,你认为销售单价应定为多少元?6、市“健益”超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y(千克)与销售单价x(元)(30x≥)存在如图所示的一次函数关系.(1)试求出y与x的函数关系式;(2)设“健益”超市销售该绿色食品每天获得利润p元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?(3)根据市场调查,该绿色食品每天可获利润不超过4480元,现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x的范围(直接写出).7、百舸竞渡,激情飞扬。
二次函数的图像与性质经典练习题(11套)附带详细答案
练习一21.二次函数的图像开口向____,对称轴是____,顶点坐标是___yax_,图像有最___点,x___时,y随x的增大而增大,x___时,y随x的增大而减小。
12222.关于,yx,y3x的图像,下列说法中不正确的是()yx3A.顶点相同B.对称轴相同C.图像形状相同D.最低点相同223.两条抛物线yx与在同一坐标系内,下列说法中不正确的是()yxA.顶点相同B.对称轴相同C.开口方向相反D.都有最小值24.在抛物线上,当y<0时,x的取值范围应为()yxA.x>0B.x<0C.x≠0D.x≥0225.对于抛物线yx与yx下列命题中错误的是()xA.两条抛物线关于轴对称B.两条抛物线关于原点对称C.两条抛物线各自关于y轴对称D.两条抛物线没有公共点26.抛物线y=-bx+3的对称轴是___,顶点是___。
127.抛物线y=-(x2)-4的开口向___,顶点坐标___,对称轴___,x_2__时,y随x的增大而增大,x___时,y随x的增大而减小。
28.抛物线y2(x1)3的顶点坐标是()A.(1,3)B.(1,3)C.(1,3)D.(1,3)为()9.已知抛物线的顶点为(1,2),且通过达式(1,10),则这条抛物线的表22A.y=3(x1)-2B.y=3(x1)+222C.y=3-2D.y=-3-2(x1)(x1)210.二次函数的图像向左平移2个单位,向下平移3个单位,所得新函数表达yax式为()22A.y=a+3B.y=a-3(x2)(x2)22C.y=a(x2)+3D.y=a(x2)-324411.抛物线的顶点坐标是()yxxA.(2,0)B.(2,-2)C.(2,-8)D.(-2,-8)2212.对抛物线y=2(x2)-3与y=-2(x2)+4的说法不正确的是()A.抛物线的形状相同B.抛物线的顶点相同C.抛物线对称轴相同D.抛物线的开口方向相反213.函数y=a+c与y=ax+c(a≠0)在同一坐标系内的图像是图中的()x243243214.化yxx为y=xx为ya(x h)k的形式是____,图像的开口向____,顶点是____,对称轴是____。
二次函数图像信息题
二次函数图像信息题(总18页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--二次函数图表信息题一.选择题(共18小题)1.已知二次函数y=x 2+bx+c 的图象过点A (1,m ),B (3,m ),若点M (﹣2,y 1),N (﹣1,y 2),K (8,y 3)也在二次函数y=x 2+bx+c 的图象上,则下列结论正确的是( ) A . y 1<y 2<y 3 B . y 2<y 1<y 3 C . y 3<y 1<y 2 D . y 1<y 3<y 22.抛物线y=x 2﹣2x+1与坐标轴交点为( ) A . 二个交点 B . 一个交点 C . 无交点 D . 三个交点3.已知a≠0,在同一直角坐标系中,函数y=ax 与y=ax 2的图象有可能是( ) A .B .C .D .4.抛物线y=2x 2,y=﹣2x 2,共有的性质是( )A . 开口向下B . 对称轴是y 轴C . 都有最高点D . y 随x 的增大而增大5.如图是二次函数y=ax 2+bx+c 的图象的一部分,对称轴是直线x=1. ①b 2>4ac ; ②4a﹣2b+c <0;③不等式ax 2+bx+c >0的解集是x≥;④若(﹣2,y 1),(5,y 2)是抛物线上的两点,则y 1<y 2.上述4个判断中,正确的是( )A . ①②B . ①④C . ①③④D . ②③④6.抛物线y=ax 2+bx+c 的顶点为D (﹣1,2),与x 轴的一个交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b 2﹣4ac <0;②a+b+c<0;③c﹣a=2;④方程ax 2+bx+c ﹣2=0有两个相等的实数根. 其中正确结论的个数为( ) A . 1个 B . 2个 C . 3个 D . 4个7.已知抛物线y=ax 2+bx+c (a≠0)经过点(1,1)和(﹣1,0).下列结论:①a﹣b+c=0②b 2>4ac③当a <0时,抛物线与x 轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为x=﹣.其中结论正确的个数有( ) A . 4个 B . 3个 C . 2个 D . 1个8.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac﹣b 2<0;②4a+c<2b ;③3b+2c<0;④m(am+b )+b <a (m≠﹣1),其中正确结论的个数是( ) A . 4个 B . 3个 C . 2个 D . 1个9.如图是二次函数y=ax 2+bx+c (a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c <0;③a﹣b+c=﹣9a ;④若(﹣3,y 1),(,y 2)是抛物线上两点,则y 1>y 2, 其中正确的是( ) A . ①②③ B . ①③④ C . ①②④ D . ②③④10.(2014?天津)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0B.1C.2D.311.如图,二次函y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc <0;②a+b=0;③4a+2b+c<0;④若(﹣2,y1),(,y2)是抛物线上的两点,则y1<y2,其中说法正确的是()A.①②④B.③④C.①③④D.①②12.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A.1B.2C.3D.413.二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正确的有()A.①②③B.②④C.②⑤D.②③⑤14.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个15.已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2,其中正确的结论有()A.1个B.2个C.3个D.4个16.已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2其中正确的个数有()A.1B.2C.3D.417.二次函数y=ax2+bx+c图象如图,下列正确的个数为()①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A.2B.3C.4D.518.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④参考答案与试题解析一.选择题(共18小题)1.(2014?承德二模)已知二次函数y=x2+bx+c的图象过点A(1,m),B(3,m),若点M(﹣2,y1),N(﹣1,y2),K(8,y3)也在二次函数y=x2+bx+c的图象上,则下列结论正确的是()A.y<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y21考点:二次函数图象上点的坐标特征.专题:计算题.分析:利用A点与B点为抛物线上的对称点得到对称轴为直线x=2,然后根据点M、N、K离对称轴的远近求解.解答:解:∵二次函数y=x2+bx+c的图象过点A(1,m),B(3,m),∴抛物线开口向上,对称轴为直线x=2,∵M(﹣2,y1),N(﹣1,y2),K(8,y3),∴K点离对称轴最远,N点离对称轴最近,∴y2<y1<y3.故选B.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标特征满足其解析式.2.(2014?宁波一模)抛物线y=x2﹣2x+1与坐标轴交点为()A.二个交点B.一个交点C.无交点D.三个交点考点:抛物线与x轴的交点.分析:因为x2﹣2x+1=0中,△=(﹣2)2﹣4×1×1=0,有两个相等的实数根,图象与x轴有一个交点,再加当y=0时的点即可.解答:解:当x=0时y=1,当y=0时,x=1∴抛物线y=x2﹣2x+1与坐标轴交点有两个.故选:A.点评:解答此题要明确抛物线y=x2﹣2x+1的图象与x轴交点的个数与方程x2﹣2x+1=0解的个数有关,还得考虑与y轴相交.3.(2014?宁夏)已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C.D.考点:二次函数的图象;正比例函数的图象.专题:数形结合.分析:本题可先由一次函数y=ax图象得到字母系数的正负,再与二次函数y=ax2的图象相比较看是否一致.(也可以先固定二次函数y=ax2图象中a的正负,再与一次函数比较.)解答:解:A、函数y=ax中,a>0,y=ax2中,a>0,但当x=1时,两函数图象有交点(1,a),故A错误;B、函数y=ax中,a<0,y=ax2中,a>0,故B错误;C、函数y=ax中,a<0,y=ax2中,a<0,但当x=1时,两函数图象有交点(1,a),故C正确;D、函数y=ax中,a>0,y=ax2中,a<0,故D错误.故选:C.点评:函数中数形结合思想就是:由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.4.(2014?毕节地区)抛物线y=2x2,y=﹣2x2,共有的性质是()A.开口向下B.对称轴是y轴C.都有最高点D.y随x的增大而增大考点:二次函数的性质.分析:根据二次函数的性质解题.解答:解:(1)y=2x2开口向上,对称轴为y轴,有最低点,顶点为原点;(2)y=﹣2x2开口向下,对称轴为y轴,有最高点,顶点为原点;(3)y=x2开口向上,对称轴为y轴,有最低点,顶点为原点.故选:B.点评:考查二次函数顶点式y=a(x﹣h)2+k的性质.二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.5.(2014?达州)如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x≥;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述4个判断中,正确的是()A.①②B.①④C.①③④D.②③④考点:二次函数图象与系数的关系;二次函数图象上点的坐标特征;二次函数与不等式(组).专题:数形结合.分析:根据抛物线与x轴有两个交点可得b2﹣4ac>0,进而判断①正确;根据题中条件不能得出x=﹣2时y的正负,因而不能得出②正确;如果设ax2+bx+c=0的两根为α、β(α<β),那么根据图象可知不等式ax2+bx+c>0的解集是x<α或x>β,由此判断③错误;先根据抛物线的对称性可知x=﹣2与x=4时的函数值相等,再根据二次函数的增减性即可判断④正确.解答:解:①∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故①正确;②x=﹣2时,y=4a﹣2b+c,而题中条件不能判断此时y的正负,即4a﹣2b+c可能大于0,可能等于0,也可能小于0,故②错误;③如果设ax2+bx+c=0的两根为α、β(α<β),那么根据图象可知不等式ax2+bx+c>0的解集是x<α或x>β,故③错误;④∵二次函数y=ax2+bx+c的对称轴是直线x=1,∴x=﹣2与x=4时的函数值相等,∵4<5,∴当抛物线开口向上时,在对称轴的右边,y随x的增大而增大,∴y1<y2,故④正确.故选:B.点评:主要考查图象二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,以及二次函数与不等式的关系,根的判别式的熟练运用.6.(2014?孝感)抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系;抛物线与x轴的交点.专题:数形结合.分析:由抛物线与x轴有两个交点得到b2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=﹣1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(﹣1,2)得a﹣b+c=2,由抛物线的对称轴为直线x=﹣=﹣1得b=2a,所以c﹣a=2;根据二次函数的最大值问题,当x=﹣1时,二次函数有最大值为2,即只有x=﹣1时,ax2+bx+c=2,所以说方程ax2+bx+c﹣2=0有两个相等的实数根.解答:解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,所以①错误;∵顶点为D(﹣1,2),∴抛物线的对称轴为直线x=﹣1,∵抛物线与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确;∵抛物线的顶点为D(﹣1,2),∴a﹣b+c=2,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,∴a﹣2a+c=2,即c﹣a=2,所以③正确;∵当x=﹣1时,二次函数有最大值为2,即只有x=﹣1时,ax2+bx+c=2,∴方程ax2+bx+c﹣2=0有两个相等的实数根,所以④正确.故选:C.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x 轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.7.(2014?十堰)已知抛物线y=ax2+bx+c(a≠0)经过点(1,1)和(﹣1,0).下列结论:①a﹣b+c=0;②b2>4ac;③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为x=﹣.其中结论正确的个数有()A.4个B.3个C.2个D.1个考点:二次函数图象与系数的关系.专题:常规题型.分析:将点(﹣1,0)代入y=ax2+bx+c,即可判断①正确;将点(1,1)代入y=ax2+bx+c,得a+b+c=1,又由①得a﹣b+c=0,两式相加,得a+c=,两式相减,得b=.由b2﹣4ac=﹣4a(﹣a)=﹣2a+4a2=(2a﹣)2,当a=时,b2﹣4ac=0,即可判断②错误;③由b2﹣4ac=(2a﹣)2>0,得出抛物线y=ax2+bx+c与x轴有两个交点,设另一个交点的横坐标为x,根据一元二次方程根与系数的关系可得﹣1?x==﹣1,即x=1﹣,再由a<0得出x>1,即可判断③正确;④根据抛物线的对称轴公式为x=﹣,将b=代入即可判断④正确.解答:解:①∵抛物线y=ax2+bx+c(a≠0)经过点(﹣1,0),∴a﹣b+c=0,故①正确;②∵抛物线y=ax2+bx+c(a≠0)经过点(1,1),∴a+b+c=1,又a﹣b+c=0,两式相加,得2(a+c)=1,a+c=,两式相减,得2b=1,b=.∵b2﹣4ac=﹣4a(﹣a)=﹣2a+4a2=(2a﹣)2,当2a﹣=0,即a=时,b2﹣4ac=0,故②错误;③当a<0时,∵b2﹣4ac=(2a﹣)2>0,∴抛物线y=ax2+bx+c与x轴有两个交点,设另一个交点的横坐标为x,则﹣1?x===﹣1,即x=1﹣,∵a<0,∴﹣>0,∴x=1﹣>1,即抛物线与x轴必有一个交点在点(1,0)的右侧,故③正确;④抛物线的对称轴为x=﹣=﹣=﹣,故④正确.故选:B.点评:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,一元二次方程根与系数的关系及二次函数的性质,不等式的性质,难度适中.8.(2014?资阳)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个B.3个C.2个D.1个考点:二次函数图象与系数的关系.专题:数形结合.分析:利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.解答:解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x=﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b+2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选:B.点评:此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法,同时注意特殊点的运用.9.(2014?聊城)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④考点:二次函数图象与系数的关系.专题:数形结合.分析:利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.解答:解:∵抛物线的对称轴是直线x=﹣1,∴﹣=﹣1,b=2a,∴b﹣2a=0,故①正确;∵抛物线的对称轴是直线x=﹣1,和x轴的一个交点是(2,0),∴抛物线和x轴的另一个交点是(﹣4,0),∴把x=﹣2代入得:y=4a﹣2b+c>0,故②错误;∵图象过点(2,0),代入抛物线的解析式得:4a+2b+c=0,又∵b=2a,∴c=﹣4a﹣2b=﹣8a,∴a﹣b+c=a﹣2a﹣8a=﹣9a,故③正确;根据图象,可知抛物线对称轴的右边y随x的增大而减小,∵抛物线和x轴的交点坐标是(2,0)和(﹣4,0),抛物线的对称轴是直线x=﹣1,∴点(﹣3,y1)关于对称轴的对称点的坐标是((1,y1),∵(,y2),1<,∴y1>y2,故④正确;即正确的有①③④,故选:B.点评:此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法.同时注意特殊点的运用.10.(2014?天津)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0B.1C.2D.3考点:二次函数图象与系数的关系.专题:数形结合.分析:由图象可知二次函数y=ax2+bx+c与x轴有两个交点,进而判断①;先根据抛物线的开口向下可知a<0,由抛物线与y轴的交点判断c与0的关系,根据对称轴在y轴右侧得出b与0的关系,然后根据有理数乘法法则判断②;一元二次方程ax2+bx+c﹣m=0没有实数根,则可转化为ax2+bx+c=m,即可以理解为y=ax2+bx+c和y=m没有交点,即可求出m的取值范围,判断③即可.解答:解:①∵二次函数y=ax2+bx+c与x轴有两个交点,∴b2﹣4ac>0,故①正确;②∵抛物线的开口向下,∴a<0,∵抛物线与y轴交于正半轴,∴c>0,∵对称轴x=﹣>0,∴ab<0,∵a<0,∴b>0,∴abc<0,故②正确;③∵一元二次方程ax2+bx+c﹣m=0没有实数根,∴y=ax2+bx+c和y=m没有交点,由图可得,m>2,故③正确.故选:D.点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.11.(2014?齐齐哈尔)如图,二次函y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣2,y1),(,y2)是抛物线上的两点,则y1<y2,其中说法正确的是()A.①②④B.③④C.①③④D.①②考点:二次函数图象与系数的关系.专题:数形结合.分析:①根据抛物线开口方向、对称轴位置、抛物线与y轴交点位置求得a、b、c的符号;②根据对称轴求出b=﹣a;③把x=2代入函数关系式,结合图象判断函数值与0的大小关系;④求出点(﹣2,y1)关于直线x=的对称点的坐标,根据对称轴即可判断y1和y2的大小.解答:解:①∵二次函数的图象开口向下,∴a<0,∵二次函数的图象交y轴的正半轴于一点,∴c>0,∵对称轴是直线x=,∴﹣=,∴b=﹣a>0,∴abc<0.故①正确;②∵由①中知b=﹣a,∴a+b=0,故②正确;③把x=2代入y=ax2+bx+c得:y=4a+2b+c,∵抛物线经过点(2,0),∴当x=2时,y=0,即4a+2b+c=0.故③错误;④∵(﹣2,y1)关于直线x=的对称点的坐标是(3,y1),又∵当x>时,y随x的增大而减小,<3,∴y1<y2.故④正确;综上所述,正确的结论是①②④.故选:A.点评:本题考查了二次函数的图象和系数的关系的应用,注意:当a>0时,二次函数的图象开口向上,当a<0时,二次函数的图象开口向下.12.(2014?威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:抛物线与y轴交于原点,c=0,(故①正确);该抛物线的对称轴是:,直线x=﹣1,(故②正确);当x=1时,y=a+b+c∵对称轴是直线x=﹣1,∴﹣b/2a=﹣1,b=2a,又∵c=0,∴y=3a,(故③错误);x=m对应的函数值为y=am2+bm+c,x=﹣1对应的函数值为y=a﹣b+c,又∵x=﹣1时函数取得最小值,∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,∵b=2a,∴am2+bm+a>0(m≠﹣1).(故④正确).故选:C.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.13.(2014?南充)二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正确的有()A.①②③B.②④C.②⑤D.②③⑤考点:二次函数图象与系数的关系.专题:数形结合.分析:根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣=1,得到b=﹣2a>0,即2a+b=0,由抛物线与y轴的交点位置得到c>0,所以abc<0;根据二次函数的性质得当x=1时,函数有最大值a+b+c,则当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm;根据抛物线的对称性得到抛物线与x轴的另一个交点在(﹣1,0)的右侧,则当x=﹣1时,y<0,所以a﹣b+c<0;把ax12+bx1=ax22+bx2先移项,再分解因式得到(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,则a(x1+x2)+b=0,即x1+x2=﹣,然后把b=﹣2a代入计算得到x1+x2=2.解答:解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为性质x=﹣=1,∴b=﹣2a>0,即2a+b=0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线对称轴为性质x=1,∴函数的最大值为a+b+c,∴当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm,所以③正确;∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为性质x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧∴当x=﹣1时,y<0,∴a﹣b+c<0,所以④错误;∵ax12+bx1=ax22+bx2,∴ax12+bx1﹣ax22﹣bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b=0,即x1+x2=﹣,∵b=﹣2a,∴x1+x2=2,所以⑤正确.故选:D.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a 共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.14.(2014?烟台)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.专题:代数几何综合题;数形结合.分析:根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.解答:解:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,(故①正确);∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,(故②错误);∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,(故③正确);∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,(故④错误).故选:B.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.15.(2014?贵港)已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2,其中正确的结论有()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:①由抛物线的开口方向,抛物线与y轴交点的位置、对称轴即可确定a、b、c的符号,即得abc的符号;②由抛物线与x轴有两个交点判断即可;③分别比较当x=﹣2时、x=1时,y的取值,然后解不等式组可得6a+3c<0,即2a+c<0;又因为a<0,所以3a+c<0.故错误;④将x=1代入抛物线解析式得到a+b+c<0,再将x=﹣1代入抛物线解析式得到a﹣b+c>0,两个不等式相乘,根据两数相乘异号得负的取符号法则及平方差公式变形后,得到(a+c)2<b2,解答:解:①由开口向下,可得a<0,又由抛物线与y轴交于正半轴,可得c>0,然后由对称轴在y轴左侧,得到b与a同号,则可得b<0,abc>0,故①错误;②由抛物线与x轴有两个交点,可得b2﹣4ac>0,故②正确;③当x=﹣2时,y<0,即4a﹣2b+c<0 (1)当x=1时,y<0,即a+b+c<0 (2)(1)+(2)×2得:6a+3c<0,即2a+c<0又∵a<0,∴a+(2a+c)=3a+c<0.故③错误;④∵x=1时,y=a+b+c<0,x=﹣1时,y=a﹣b+c>0,∴(a+b+c)(a﹣b+c)<0,即[(a+c)+b][(a+c)﹣b]=(a+c)2﹣b2<0,∴(a+c)2<b2,故④正确.综上所述,正确的结论有2个.故选:B.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.16.(2014?莱芜)已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2其中正确的个数有()A.1B.2C.3D.4考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线开口方向得a<0,由抛物线对称轴在y轴的左侧得a、b同号,即b<0,由抛物线与y轴的交点在x轴上方得c>0,所以abc>0;根据抛物线对称轴的位置得到﹣1<﹣<0,则根据不等式性质即可得到2a﹣b<0;由于x=﹣2时,对应的函数值小于0,则4a﹣2b+c<0;同样当x=﹣1时,a﹣b+c>0,x=1时,a+b+c<0,则(a﹣b+c)(a+b+c)<0,利用平方差公式展开得到(a+c)2﹣b2<0,即(a+c)2<b2.解答:解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的左侧,∴x=﹣<0,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,(故①正确);∵﹣1<﹣<0,∴2a﹣b<0,(故②正确);∵当x=﹣2时,y<0,∴4a﹣2b+c<0,(故③正确);∵当x=﹣1时,y>0,∴a﹣b+c>0,∵当x=1时,y<0,∴a+b+c<0,∴(a﹣b+c)(a+b+c)<0,即(a+c﹣b)(a+c+b)<0,∴(a+c)2﹣b2<0,(故④正确).综上所述,正确的个数有4个;故选:D.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x 轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.17.(2014?深圳)二次函数y=ax2+bx+c图象如图,下列正确的个数为()①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A.2B.3C.4D.5考点:二次函数图象与系数的关系.分析:根据抛物线开口向上可得a>0,结合对称轴在y轴右侧得出b<0,根据抛物线与y轴的交点在负半轴可得c<0,再根据有理数乘法法则判断①;再由不等式的性质判断②;根据对称轴为直线x=1判断③;根据图象与x轴的两个交点分别在原点的左右两侧判断④;由x=1时,y<0判断⑤;根据二次函数的增减性判断⑥.解答:解:①∵抛物线开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号即b<0,∵抛物线与y轴的交点在负半轴,∴c<0,∴bc>0,故①正确;②∵a>0,c<0,∴2a﹣3c>0,故②错误;③∵对称轴x=﹣<1,a>0,∴﹣b<2a,∴2a+b>0,故③正确;④由图形可知二次函数y=ax2+bx+c与x轴的两个交点分别在原点的左右两侧,即方程ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0,故④正确;⑤由图形可知x=1时,y=a+b+c<0,故⑤错误;⑥∵a>0,对称轴x=1,∴当x>1时,y随x增大而增大,故⑥错误.综上所述,正确的结论是①③④,共3个.故选:B.点评:主要考查图象与二次函数系数之间的关系,二次函数的性质,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.18.(2014?黔东南州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=﹣1时,x=2时二次函数的值的情况进行推理,进而对所得结论进行判断.解答:解:由二次函数的图象开口向上可得a>0,根据二次函数的图象与y轴交于正半轴知:c>0,由对称轴直线x=2,可得出b与a异号,即b<0,则abc<0,故①正确;把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c,由函数图象可以看出当x=﹣1时,二次函数的值为正,即a+b+c >0,则b<a+c,故②选项正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c,由函数图象可以看出当x=2时,二次函数的值为负,即4a+2b+c <0,故③选项错误;由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2﹣4ac>0,故④D选项正确;故选:B.点评:本题考查二次函数图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=4a+2b+c,然后根据图象判断其值.。
二次函数的图像与性质经典练习题(11套)附带详细答案
练习一1.二次函数的图像开口向____,对称轴是____,顶点坐标是____,图像有最___点,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。
2.关于,,的图像,下列说法中不正确的是( ) A .顶点相同 B .对称轴相同 C .图像形状相同 D .最低点相同 3.两条抛物线与在同一坐标系内,下列说法中不正确的是( ) A .顶点相同 B .对称轴相同 C .开口方向相反 D .都有最小值 4.在抛物线上,当y <0时,x 的取值范围应为( ) A .x >0 B .x <0 C .x ≠0 D .x ≥0 5.对于抛物线与下列命题中错误的是( ) A .两条抛物线关于轴对称 B .两条抛物线关于原点对称 C .两条抛物线各自关于轴对称 D .两条抛物线没有公共点6.抛物线y=-b +3的对称轴是___,顶点是___。
7.抛物线y=--4的开口向___,顶点坐标___,对称轴___,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。
8.抛物线的顶点坐标是( )A .(1,3)B .(1,3)C .(1,3)D .(1,3)9.已知抛物线的顶点为(1,2),且通过(1,10),则这条抛物线的表达式为( ) A .y=3-2 B .y=3+22y ax =213y x =2y x =23y x =2y x =2y x =-2y x =-2y x =2y x =-x y 2x 21(2)2x +22(1)3y x =+-------2(1)x -2(1)x +C .y=3-2D .y=-3-210.二次函数的图像向左平移2个单位,向下平移3个单位,所得新函数表达式为( )A .y=a +3B .y=a -3C .y=a +3D .y=a -3 11.抛物线的顶点坐标是( )A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8)12.对抛物线y=-3与y=-+4的说法不正确的是( ) A .抛物线的形状相同 B .抛物线的顶点相同 C .抛物线对称轴相同 D .抛物线的开口方向相反13.函数y=a +c 与y=ax +c(a ≠0)在同一坐标系内的图像是图中的( )14.化为y=为a 的形式是____,图像的开口向____,顶点是____,对称轴是____。
二次函数的图像和性质练习题
二次函数的图像和性质练习题二次函数是高中数学中的重要内容之一,在数学学习中起着重要的作用。
理解和掌握二次函数的图像和性质对于解题和解决实际问题至关重要。
本文将为您提供一些关于二次函数图像和性质的练习题,以帮助您更好地理解和掌握相关内容。
1. 下列函数中哪个是二次函数?A. y = 3x + 2B. y = x^2 + 2x - 1C. y = √xD. y = |x|解答:答案是B。
只有函数B是含有二次项的函数,其他函数均不是二次函数。
2. 给定一个二次函数 y = ax^2 + bx + c,若 a > 0,那么这个二次函数的图像是什么样的?解答:当 a > 0 时,二次函数的图像开口向上。
这是因为二次函数的图像开口方向与二次项系数 a 的符号相关,当 a > 0 时,函数的图像开口向上,表示函数的最小值在图像的顶点处。
3. 给定一个二次函数 y = -2x^2 + 4x - 1,那么它的顶点坐标是多少?解答:二次函数的顶点坐标可通过公式 x = -b/2a 和 y = f(x) 计算得出。
对于这个二次函数,a = -2,b = 4,c = -1。
代入公式计算可得:x = -4/(2*(-2)) = -4/(-4) = 1y = -2(1)^2 + 4(1) - 1 = 1因此,这个二次函数的顶点坐标为 (1, 1)。
4. 给定一个二次函数的图像为一个开口向下的抛物线,该二次函数的开口向上对称的点是什么?解答:根据二次函数的性质,开口向下的二次函数的开口向上对称的点为顶点。
因此,开口向下的抛物线的开口向上对称的点即为顶点。
可以通过平移顶点的方法来求得这个点的坐标。
5. 给定一个二次函数 y = x^2 + 3x + 2,那么它的零点是什么?解答:二次函数的零点即为方程 y = 0 的解,也就是函数与 x 轴交点的横坐标。
对于这个二次函数,我们需要求解方程x^2 + 3x + 2 = 0。
二次函数的性质与图像题目
二次函数的性质与图像题目1. 已知二次函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。
若f(x)的图像开口向上,则a的值应该是()A. a > 0B. a < 0C. a = 0D. 无法确定2. 二次函数f(x) = ax^2 + bx + c的图像与x轴相交的点,称为函数的()A. 顶点B. 零点C. 焦点D. 交点3. 已知二次函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。
若f(x)的图像开口向下,则a的值应该是()A. a > 0B. a < 0C. a = 0D. 无法确定4. 二次函数f(x) = ax^2 + bx + c的图像与y轴相交的点,称为函数的()A. 顶点B. 零点C. 焦点D. 交点5. 已知二次函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。
若f(x)的图像对称轴是x = 1,则b的值应该是()A. 1B. -1C. 0D. 无法确定6. 二次函数f(x) = ax^2 + bx + c的图像,当a > 0时,开口向上,当a < 0时,开口向下,当a = 0时,函数是()A. 一次函数B. 常数函数C. 指数函数D. 对数函数7. 已知二次函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。
若f(x)的图像顶点在点(1, -2),则c的值应该是()A. -2B. 2C. 0D. 无法确定8. 二次函数f(x) = ax^2 + bx + c的图像,当a > 0时,函数在x轴下方的部分随着x的增加而()A. 增加B. 减少C. 保持不变D. 无法确定9. 已知二次函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。
若f(x)的图像顶点在点(-1, 2),则b的值应该是()A. 2B. -2C. 0D. 无法确定10. 二次函数f(x) = ax^2 + bx + c的图像,当a > 0时,函数在x轴上方的部分随着x的增加而()A. 增加B. 减少C. 保持不变D. 无法确定11. 已知二次函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。
(完整版)二次函数的图像与性质练习题及答案
二次函数的图像和性质练习题一、选择题1.下列函数是二次函数的有( )12)5(;)4();3()3(;2)2(;1)1(222+=++=-==-=x y c bx ax y x x y xy x y (6) y=2(x+3)2-2x 2A 、1个;B 、2个;C 、3个;D 、4个 2.关于213y x =,2y x =,23y x =的图像,下列说法中不正确的是( ) A .顶点相同 B .对称轴相同 C .图像形状相同 D .最低点相同 3.抛物线()12212++=x y 的顶点坐标是( ) A .(2,1) B .(-2,1) C .(2,-1) D .(-2,-1)4.已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为 ( )A . 0或2B . 0C . 2D .无法确定 5.已知二次函数213x y -=、2231x y -=、2323x y =,它们的图像开口由小到大的顺序是( )A 、321y y y <<B 、123y y y <<C 、231y y y <<D 、132y y y <<6.两条抛物线2y x =与2y x =-在同一坐标系内,下列说法中不正确的是( )A .顶点相同B .对称轴相同C .开口方向相反D .都有最小值7.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:①0abc >;②a+b+c>0③a-b+c<0;A .1个B .2个C .3个D .4个8.已知抛物线的顶点为(-1,-2),且通过(1,10),则这条抛物线的表达式为( )A .y=32(1)x --2 B .y=32(1)x ++2 C .y=32(1)x +-2 D .y=-32)1(-x +29.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A .23(1)2y x =-- B.23(1)2y x =+- C.23(1)2y x =++ D.23(1)2y x =-+10.抛物线244y x x =--的顶点坐标是( )A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8)11.与抛物线y=-12x 2+3x -5的形状、开口方向都相同,只有位置不同的抛物线是( )A. y = x 2+3x -5B. y=-12x 2xC. y =12x 2+3x -5D. y=12x 212.对抛物线y=22(2)x --3与y=-22(2)x -+4的说法不正确的是( )A .抛物线的形状相同B .抛物线的顶点相同C .抛物线对称轴相同D .抛物线的开口方向相反13.对于抛物线21(5)33y x =--+,下列说法正确的是( )A .开口向下,顶点坐标(53),B .开口向上,顶点坐标(53),C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,14.抛物线y=222x mx m -++的顶点在第三象限,试确定m 的取值范围是( )A .m <-1或m >2B .m <0或m >-1C .-1<m <0D .m <-1 15.在同一直角坐标系中,函数y mx m =+和222y mx x =-++(m 是常数,且0m ≠)的图象可能..是( )16.函数y=12-2x +2x -5的图像的对称轴是( ) A .直线x=2 B .直线a=-2 C .直线y=2 D .直线x=4 17.二次函数y=221x x --+图像的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限 18.如果抛物线y=26x x c ++的顶点在x 轴上,那么c 的值为( )A .0B .6C .3D .9ABCD19.已知二次函数2y ax bx c =++,如果a >0,b <0,c <0,那么这个函数图像的顶点必在( )A .第一象限B .第二象限C .第三象限D .第四象限 20.已知正比例函数kx y =的图像如右图所示,则二次函数222k x kx y +-= 21.如图所示,满足a >0,b <0的函数y=2ax bx +的图像是( )22.若A (-4,y 1),B (-3,y 2),C (1,y 3)为二次函数y=x 2+4x-5的图象上的三点,则y 1,y 2,y 3的大小关系是( )A 、y 1<y 2<y 3B 、y 2<y 1<y 3C 、y 3<y 1<y 2D 、y 1<y 3<y 2二、填空题:23.二次函数2y ax =(0<a )的图像开口向____,对称轴是____,顶点坐标是____,图像有最___点,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。
初中数学二次函数图像性质练习题(附答案)
初中数学二次函数图像性质练习题(附答案)1、函数y=a(x-h)²的图像与性质:顶点坐标为(h,0),当x=h时,y有最小值。
2、抛物线y=3x²经过下列平移后得到的抛物线的解析式及对称轴和顶点坐标:1)y=3(x-2)²,对称轴为x=2,顶点坐标为(2,0);2)y=3(x+1)²,对称轴为x=-1,顶点坐标为(-1,0);3)y=3(x-3)²+1,对称轴为x=3,顶点坐标为(3,1)。
3、函数y=(x+1)²和y=x²+1具有的共同性质:对称轴都为x轴,顶点坐标都为(-1,1)。
4、已知a=1/2,OA=OC,抛物线的解析式为y=1/2(x-1)²。
5、抛物线y=3(x-3)²与x轴交点为(3,0),与y轴交点为(0,27),△AOB的面积为27.6、二次函数y=a(x-4)²,当自变量x由增加到2时,函数值y增加6.解得a=3/4,关系式为y=3/4(x-4)²,函数值y随x值的变化情况为随着x的减小而增加。
7、顶点在坐标轴上的抛物线y=x²-(k+2)x+9的顶点坐标为(1,k+6),由对称性可知对称轴为x=1,即k+2=2,解得k=0.22、y=a(x-h)²+k的图像与性质:顶点坐标为(h,k),开口方向由a的正负决定,当x=h时,y有最小值或最大值。
1、以(2,3)为顶点,开口向上的二次函数为y=a(x-2)²+3.2、二次函数y=(x-1)²+2,当x=1时,y有最小值为2.3、函数y=(x-1)²+3,当x增大时,y也随之增大。
4、函数y=(x+3)²-2的图像可由函数y=x²的图像向左平移3个单位,再向下平移2个单位得到。
5、已知抛物线顶点坐标为(2,1),过点(3,5),则抛物线的关系式为y=(1/2)(x-2)²+1.6、抛物线顶点坐标为P(1,3),函数y随自变量x的增大而减小的x的取值范围是x<1.7、函数y=-3(x-2)²+9的开口方向向下,对称轴为x=2,顶点坐标为(2,9);当x=2时,抛物线有最值9;当x增大时,y随之减小;当x减小时,y随之增大。
二次函数的图像和性质练习(含答案)
二次函数的图像和性质一、选择题(每题3分)1.下列四个函数中,一定是二次函数的是( )A .21y x x=+ B .y=ax 2+bx+c C .y=x 2﹣(x+7)2 D .y=(x+1)(2x ﹣1)【答案】D【解析】试题分析:因为形如y=ax 2+bx+c (0a ≠)的函数叫二次函数,所以选项A 、B 、C 错误,D 正确,故选:D .考点:二次函数的概念.2.若函数y=-2(x-1)2+(a-1)x 2为二次函数,则a 的取值范围为( ) A.a≠0 B.a≠1 C.a≠2 D.a≠3【答案】D .【解析】试题分析:根据二次函数的定义化成一般式为()2342y a x x =-+-, 则30a -≠3a ≠故选D .考点:二次函数的定义.3.下列函数中,不是二次函数的是( )A .y =1-x 2B .y =2(x -1)2+4C .y =(x -1)(x +4)D .y =(x -2)2-x 2【答案】D .【解析】试题分析:选项A ,y=1-x 2=-x 2+1,是二次函数,选项A 正确;选项B ,y=2(x-1)2+4=2x 2-4x+6,是二次函数,选项B 正确;选项C ,y=(x-1)(x+4)=x 2+x-2,是二次函数,选项C 正确;选项 D ,y=(x-2)2-x 2=-4x+4,是一次函数,选项D 错误.故答案选D .考点:二次函数的定义.二、填空题(每题3分)4.若函数y =(m -3)是二次函数,则m =______. 【答案】5.【解析】试题分析:已知函数y =(m -3)是二次函数,可得且m -3≠0,解得m=-5. 考点:二次函数的定义.5..一个圆柱的高等于底面半径,写出它的表面积S 与底面半径r 的函数关系式为_________.【答案】S=4π2r【解析】试题分析:根据题意可得h=2r ,则S=2πrh=4π2r .考点:二次函数的实际应用(时间:15分钟,满分25分)班级:___________姓名:___________得分:___________一、选择题(每题3分)1.下列函数中,不属于二次函数的是( )A .y=(x ﹣2)2B .y=﹣2(x+1)(x ﹣1)C .y=1﹣x ﹣x 2D .y=211x 【答案】D【解析】试题分析:整理一般形式后根据二次函数的定义判定即可:A 、整理为y=x 2﹣4x+4,是二次函数,不合题意;B 、整理为y=﹣2x 2+2,是二次函数,不合题意;C 、整理为y=﹣x 2﹣x+1,是二次函数,不合题意;D 、不是整式方程,符合题意.故选:D .考点:二次函数的定义2.下列函数中属于二次函数的是( )A .12-=x yB .12-=ax yC .222)1(2x x y --=D .)2)(1(π+-=x x y【答案】D .【解析】试题分析:A .12-=x y 是一次函数,故本选项错误;B .当0a =时,12-=ax y 不是二次函数,故本选项错误;C .222)1(2x x y --==42x -+是一次函数,故本选项错误;D )2)(1(π+-=x x y 是二次函数,故本选项正确.故选D .考点:二次函数的定义.3.若函数222(1)(1)y x a x =--+-为二次函数,则a 的取值范围为( )A .0a ≠B .1a ≠C .2a ≠D .3a ≠【答案】D .【解析】试题分析:由原函数解析式得到:222(1)(1)y x a x =--+-=2(3)42a x x -+-.∵函数 222(1)(1)y x a x =--+-为二次函数,∴30a -≠,解得3a ≠.故选D .考点:二次函数的定义.二、填空题(每题3分)4.在边长为16cm 的正方形铁皮上剪去一个圆,则剩下的铁皮的面积S (cm 2)与圆的半径r (cm )之间的函数表达式为 (不要求写自变量的取值范围).【答案】2256r S π-=【解析】试题分析:剩下的面积为:正方形的面积-圆的面积=162-πr 2=256-πr 2故答案为:2256r S π-=考点:函数的表达式.5..用长为8米的铝合金制成如图所示的窗框,若设窗框的宽为x 米,窗户的透光面积为S 平方米, 则S 关于x 的函数关系式 .【答案】S=x x 4232+-【解析】试题分析:设窗框的宽为x 米,则长为238x -米 ∴S=x x x x 4232382+-=⨯- 考点:实际问题抽象二次函数三、计算题(每题10分)6.已知,若函数2(1)3m y m x =-+是关于x 的一次函数.(1)求m 的值,并写出解析式;(2)若函数是关于x 的二次函数,求m 的值,.【答案】(1)1m =-;(2)m =.【解析】试题分析:(1)先根据一次函数的定义求出m 的值;(2)由22m =可得出m =试题解析:(1)∵函数2(1)3m y m x =-+是一次函数,∴21m =,解得1m =或1m =-,又∵10m -≠,∴1m ≠,∴1m =-,∴函数为:23y x =-+;m=可得出m=(2)由22考点:1.一次函数的定义;2.二次函数的定义.。
人教版九上数学 专题训练_四_ 二次函数图象信息题
人教版九上数学专题训练_四_ 二次函数图象信息题1.已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:① abc>0;② b−2a<0;③ a−b+c>0;④ a+b>n(an+b)(n≠1);⑤ 2c<3b.正确的是( )A.①③B.②⑤C.③④D.④⑤2.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC,则下列结论:① abc<0;② b 2−4ac4a>0;③ ac−b+1=0;④ OA⋅OB=−ca.其中正确结论的序号是.3.已知一次函数y=bax+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是( )A.B.C.D.4.在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是( )A.B.C.D.5.如图是某个二次函数的图象,根据图象可知,该二次函数的解析式是( )A.y=x2−x−2B.y=−12x2−12x+2C.y=−12x2−12x+1D.y=−x2+x+26.如图,二次函数y=x2+bx+c(c≠0)的图象经过点A(−2,m)(m<0),与y轴交于点B,与x轴交于C,D两点(C在D的左侧),AB∥x轴,且AB:OB=2:3.(1) 求m的值;(2) 求二次函数的解析式.7.如图,以(1,−4)为顶点的二次函数y=ax2+bx+c的图象与x轴负半轴交于A点,则一元二次方程ax2+bx+c=0的正数解的范围是( )A.2<x<3B.3<x<4C.4<x<5D.5<x<68.如图是二次函数y=a(x+1)2+2图象的一部分,则关于x的不等式a(x+1)2+2>0的解集是( )A.x<2B.x>−3C.−3<x<1D.x<−3或x>19.如图,抛物线y=ax2+c与直线y=mx+n交于A(−1,p),B(3,q)两点,则不等式ax2+mx+c>n的解集是.10.抛物线y=ax2+bx+c经过点A(−3,0),B(4,0)两点,则关于x的一元二次方程a(x−1)2+c=b−bx的解是11.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自D点出发沿折线DC−CB以每秒2cm的速度运动,到达B点时运动同时停止,设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是( )A.B.C.D.12.某校校园内有一个大正方形花坛,如图①所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图②所示,DG=1米,AE=AF=x 米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是( )A.B.C.D.13.从地面竖直向上抛出一小球,小球的高度ℎ(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度ℎ=30m时,t=1.5s.其中正确的是( )A.①④B.①②C.②③④D.②③14.如图①,菱形ABCD的对角线交于点O,AC=2BD,点P是AO上一个动点,过点P作AC的垂线交菱形的边于M,N两点.设AP=x,△OMN的面积为y,表示y与x的函数关系的图象大致如图②,则菱形的周长为.答案1. 【答案】D【解析】①由图象可知:a<0,b>0,c>0,abc<0,故此选项错误;②由于a<0,∴−2a>0.又b>0,∴b−2a>0,故此选项错误;③当x=−1时,y=a−b+c<0,故此选项错误;④当x=1时,y的值最大,此时,y=a+b+c,而当x=n时,y=an2+bn+c,∴a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此选项正确;⑤当x=3时函数值小于0,y=9a+3b+c<0,且该抛物线对称轴是直线x=−b2a=1,即a=−b2,代入得9(−b2)+3b+c<0,得2c<3b,故此选项正确.故④⑤正确.2. 【答案】①③④3. 【答案】A【解析】由一次函数y=ba x+c的图象可知ba<0,c>0,∵ba<0,∴−b2a>0,∴二次函数y=ax2+bx+c的图象的对称轴在y轴右侧,∵c>0,∴二次函数y=ax2+bx+c的图象与y轴交于正半轴.故选A.4. 【答案】C5. 【答案】D6. 【答案】(1) ∵AB∥x轴,A(−2,m),∴AB=2.∵AB:OB=2:3,∴OB=3,∴点B的坐标为(0,−3),∴m=−3.(2) ∵二次函数的图象与y轴交于点B,∴c=−3.又∵图象过点A(−2,−3),∴−3=4−2b−3,∴b=2,∴二次函数的解析式为y=x2+2x−3.7. 【答案】C【解析】∵二次函数y=ax2+bx+c的顶点为(1,−4),∴对称轴为直线x=1,而对称轴左侧图象与x轴交点横坐标的取值范围是−3<x<−2,∴右侧交点横坐标的取值范围是4<x<5.8. 【答案】C9. 【答案】x<−3或x>1【解析】∵抛物线y=ax2+c与直线y=mx+n交于A(−1,p),B(3,q)两点,∴−m+n=p,3m+n=q,∴抛物线y=ax2+c与直线y=−mx+n交于P(1,p),Q(−3,q)两点,观察函数图象可知:当x<−3或x>1时,直线y=−mx+n在抛物线y=ax2+bx+c的下方,∴不等式ax2+mx+c>n的解集为x<−3或x>1.10. 【答案】x1=−2,x2=511. 【答案】A12. 【答案】A13. 【答案】D【解析】①由图象知小球在空中达到的最大高度是40m,故①错误;②小球抛出3秒后开始下降,速度越来越快,故②正确;③小球抛出3秒时达到最高点,即速度为0,故③正确;④设函数解析式为ℎ=a(t−3)2+40,,把O(0,0)代入得0=a(0−3)2+40,解得a=−409(t−3)2+40,∴函数解析式为ℎ=−409(t−3)2+40,把ℎ=30代入解析式,得30=−409解得t=4.5或t=1.5,∴小球的高度ℎ=30m时,t=1.5s或4.5s,故④错误.故选D.14. 【答案】2√5。
二次函数图像练习题
二次函数图像练习题一. 图像的基本性质二次函数的标准形式为:y = ax^2 + bx + c,其中a、b、c为常数,且a≠0。
1. 请画出以下二次函数的图像,并写出其对应的二次函数公式:1) y = x^22) y = -x^23) y = (x - 1)^24) y = -(x - 1)^25) y = 2x^26) y = -2x^27) y = x^2 + 1二. 图像的平移、反转、缩放1. 请在第一题的基础上,画出以下二次函数的图像,并写出其对应的二次函数公式:1) y = (x + 2)^22) y = -(x + 2)^23) y = (x - 3)^24) y = -(x - 3)^25) y = 2(x - 1)^26) y = -2(x - 1)^27) y = (x + 1)^2 + 2三. 二次函数的最值1. 求出以下二次函数的最值,并说明最值点坐标:1) y = x^2 - 4x + 32) y = -2x^2 + 4x - 13) y = 2x^2 + 4x + 14) y = -x^2 - 2x + 3四. 二次函数的开口方向和对称轴1. 判断以下二次函数的开口方向,并写出其对称轴方程:1) y = -x^2 + 4x - 32) y = x^2 + 4x + 43) y = -2x^2 - 5x - 24) y = 3x^2 - 6x五. 解方程1. 解以下方程,其中a、b、c为常数:1) x^2 - 5x + 6 = 02) 3x^2 + 2x - 1 = 03) 2x^2 + 5x + 3 = 04) 4x^2 - 4x + 1 = 0六. 给定二次函数y = -2x^2 + 4x - 1,回答以下问题:1. 该函数的开口方向是向上还是向下?2. 该函数的最值点坐标是多少?3. 该函数的对称轴方程是什么?4. 画出该函数的图像。
5. 求出此函数的零点,并用图像验证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数图表信息题一.选择题(共18小题)1.已知二次函数y=x2+bx+c的图象过点A(1,m),B(3,m),若点M(﹣2,y1),N(﹣1,y2),K(8,y3)也在二次函数y=x2+bx+c的图象上,则下列结论正确的是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y22.抛物线y=x2﹣2x+1与坐标轴交点为()A.二个交点B.一个交点C.无交点D.三个交点3.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C.D.4.抛物线y=2x2,y=﹣2x2,共有的性质是()A.开口向下B.对称轴是y轴C.都有最高点D.y随x的增大而增大5.如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x≥;④若(﹣2,y1),(5,y 2)是抛物线上的两点,则y1<y2.上述4个判断中,正确的是()A.①②B.①④C.①③④D.②③④6.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()A.1个B.2个C.3个D.4个7.已知抛物线y=ax2+bx+c(a≠0)经过点(1,1)和(﹣1,0).下列结论:①a﹣b+c=0②b2>4ac③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为x=﹣.其中结论正确的个数有()A.4个B.3个C.2个D.1个8.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个B.3个C.2个D.1个9.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④10.(2014?天津)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A . 0B . 1C . 2D . 311.如图,二次函y=ax 2+bx+c (a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣2,y 1),(,y 2)是抛物线上的两点,则y 1<y 2,其中说法正确的是( )A . ①②④B . ③④C . ①③④D . ①②12.已知二次函数y=ax 2+bx+c (a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a ;④am 2+bm+a >0(m≠﹣1). 其中正确的个数是( ) A . 1B . 2C . 3D . 413.二次函数y=ax 2+bx+c (a≠0)图象如图,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b >am 2+bm ;④a﹣b+c >0;⑤若ax 12+bx 1=ax 22+bx 2,且x 1≠x 2,x 1+x 2=2. 其中正确的有( )A . ①②③B . ②④C . ②⑤D . ②③⑤14.二次函数y=ax 2+bx+c (a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b ;③8a+7b+2c>0;④当x >﹣1时,y 的值随x 值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个15.已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2,其中正确的结论有()A.1个B.2个C.3个D.4个16.已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2其中正确的个数有()A.1B.2C.3D.4 17.二次函数y=ax2+bx+c图象如图,下列正确的个数为()①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A.2B.3C.4D.5 18.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④参考答案与试题解析一.选择题(共18小题)1.(2014?承德二模)已知二次函数y=x2+bx+c的图象过点A(1,m),B(3,m),若点M(﹣2,y1),N(﹣1,y2),K(8,y3)也在二次函数y=x2+bx+c的图象上,则下列结论正确的是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2考点:二次函数图象上点的坐标特征.专题:计算题.分析:利用A点与B点为抛物线上的对称点得到对称轴为直线x=2,然后根据点M、N、K离对称轴的远近求解.解答:解:∵二次函数y=x2+bx+c的图象过点A(1,m),B(3,m),∴抛物线开口向上,对称轴为直线x=2,∵M(﹣2,y1),N(﹣1,y2),K(8,y3),∴K点离对称轴最远,N点离对称轴最近,∴y2<y1<y3.故选B.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标特征满足其解析式.2.(2014•宁波一模)抛物线y=x2﹣2x+1与坐标轴交点为()A.二个交点B.一个交点C.无交点D.三个交点考点:抛物线与x轴的交点.分析:因为x2﹣2x+1=0中,△=(﹣2)2﹣4×1×1=0,有两个相等的实数根,图象与x轴有一个交点,再加当y=0时的点即可.解答:解:当x=0时y=1,当y=0时,x=1∴抛物线y=x2﹣2x+1与坐标轴交点有两个.故选:A.点评:解答此题要明确抛物线y=x2﹣2x+1的图象与x轴交点的个数与方程x2﹣2x+1=0解的个数有关,还得考虑与y轴相交.3.(2014•宁夏)已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C.D.考点:二次函数的图象;正比例函数的图象.专题:数形结合.分析:本题可先由一次函数y=ax图象得到字母系数的正负,再与二次函数y=ax2的图象相比较看是否一致.(也可以先固定二次函数y=ax2图象中a的正负,再与一次函数比较.)解答:解:A、函数y=ax中,a>0,y=ax2中,a>0,但当x=1时,两函数图象有交点(1,a),故A错误;B、函数y=ax中,a<0,y=ax2中,a>0,故B错误;C、函数y=ax中,a<0,y=ax2中,a<0,但当x=1时,两函数图象有交点(1,a),故C正确;D、函数y=ax中,a>0,y=ax2中,a<0,故D错误.故选:C.点评:函数中数形结合思想就是:由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.4.(2014•毕节地区)抛物线y=2x2,y=﹣2x2,共有的性质是()A.开口向下B.对称轴是y轴C.都有最高点D.y随x的增大而增大考点:二次函数的性质.分析:根据二次函数的性质解题.解答:解:(1)y=2x2开口向上,对称轴为y轴,有最低点,顶点为原点;(2)y=﹣2x2开口向下,对称轴为y轴,有最高点,顶点为原点;(3)y=x2开口向上,对称轴为y轴,有最低点,顶点为原点.故选:B.点评:考查二次函数顶点式y=a(x﹣h)2+k的性质.二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x <﹣时,y随x的增大而减小;x >﹣时,y随x的增大而增大;x=﹣时,y 取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x <﹣时,y随x的增大而增大;x >﹣时,y随x的增大而减小;x=﹣时,y 取得最大值,即顶点是抛物线的最高点.5.(2014•达州)如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x≥;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述4个判断中,正确的是()A.①②B.①④C.①③④D.②③④考点:二次函数图象与系数的关系;二次函数图象上点的坐标特征;二次函数与不等式(组).专题:数形结合.分析:根据抛物线与x轴有两个交点可得b2﹣4ac>0,进而判断①正确;根据题中条件不能得出x=﹣2时y的正负,因而不能得出②正确;如果设ax2+bx+c=0的两根为α、β(α<β),那么根据图象可知不等式ax2+bx+c>0的解集是x<α或x>β,由此判断③错误;先根据抛物线的对称性可知x=﹣2与x=4时的函数值相等,再根据二次函数的增减性即可判断④正确.解答:解:①∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b 2>4ac ,故①正确;②x=﹣2时,y=4a ﹣2b+c ,而题中条件不能判断此时y 的正负,即4a ﹣2b+c 可能大于0,可能等于0,也可能小于0,故②错误;③如果设ax 2+bx+c=0的两根为α、β(α<β),那么根据图象可知不等式ax 2+bx+c >0的解集是x <α或x >β,故③错误; ④∵二次函数y=ax 2+bx+c 的对称轴是直线x=1, ∴x=﹣2与x=4时的函数值相等, ∵4<5,∴当抛物线开口向上时,在对称轴的右边,y 随x 的增大而增大, ∴y 1<y 2,故④正确. 故选:B .点评: 主要考查图象二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,以及二次函数与不等式的关系,根的判别式的熟练运用.6.(2014•孝感)抛物线y=ax 2+bx+c 的顶点为D (﹣1,2),与x 轴的一个交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b 2﹣4ac <0;②a+b+c<0;③c﹣a=2;④方程ax 2+bx+c ﹣2=0有两个相等的实数根. 其中正确结论的个数为( )A . 1个B . 2个C . 3个D . 4个考二次函数图象与系数的关系;抛物线与x 轴的交点.点:专题:数形结合.分析:由抛物线与x轴有两个交点得到b2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=﹣1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(﹣1,2)得a﹣b+c=2,由抛物线的对称轴为直线x=﹣=﹣1得b=2a,所以c﹣a=2;根据二次函数的最大值问题,当x=﹣1时,二次函数有最大值为2,即只有x=﹣1时,ax2+bx+c=2,所以说方程ax2+bx+c﹣2=0有两个相等的实数根.解答:解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,所以①错误;∵顶点为D(﹣1,2),∴抛物线的对称轴为直线x=﹣1,∵抛物线与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确;∵抛物线的顶点为D(﹣1,2),∴a﹣b+c=2,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,∴a﹣2a+c=2,即c﹣a=2,所以③正确;∵当x=﹣1时,二次函数有最大值为2,即只有x=﹣1时,ax2+bx+c=2,∴方程ax2+bx+c﹣2=0有两个相等的实数根,所以④正确.故选:C.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.7.(2014•十堰)已知抛物线y=ax2+bx+c(a≠0)经过点(1,1)和(﹣1,0).下列结论:①a﹣b+c=0;②b2>4ac;③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为x=﹣.其中结论正确的个数有()A.4个B.3个C.2个D.1个考点:二次函数图象与系数的关系.专题:常规题型.分析:将点(﹣1,0)代入y=ax2+bx+c,即可判断①正确;将点(1,1)代入y=ax2+bx+c,得a+b+c=1,又由①得a﹣b+c=0,两式相加,得a+c=,两式相减,得b=.由b2﹣4ac=﹣4a (﹣a)=﹣2a+4a2=(2a ﹣)2,当a=时,b2﹣4ac=0,即可判断②错误;③由b2﹣4ac=(2a ﹣)2>0,得出抛物线y=ax2+bx+c与x轴有两个交点,设另一个交点的横坐标为x ,根据一元二次方程根与系数的关系可得﹣1•x==﹣1,即x=1﹣,再由a<0得出x>1,即可判断③正确;④根据抛物线的对称轴公式为x=﹣,将b=代入即可判断④正确.解答:解:①∵抛物线y=ax2+bx+c(a≠0)经过点(﹣1,0),∴a﹣b+c=0,故①正确;②∵抛物线y=ax2+bx+c(a≠0)经过点(1,1),∴a+b+c=1,又a﹣b+c=0,两式相加,得2(a+c)=1,a+c=,两式相减,得2b=1,b=.∵b2﹣4ac=﹣4a (﹣a)=﹣2a+4a2=(2a ﹣)2,当2a ﹣=0,即a=时,b2﹣4ac=0,故②错误;③当a<0时,∵b2﹣4ac=(2a ﹣)2>0,∴抛物线y=ax2+bx+c与x轴有两个交点,设另一个交点的横坐标为x,则﹣1•x===﹣1,即x=1﹣,∵a<0,∴﹣>0,∴x=1﹣>1,即抛物线与x轴必有一个交点在点(1,0)的右侧,故③正确;④抛物线的对称轴为x=﹣=﹣=﹣,故④正确.故选:B.点评:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,一元二次方程根与系数的关系及二次函数的性质,不等式的性质,难度适中.8.(2014•资阳)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个B.3个C.2个D.1个考点:二次函数图象与系数的关系.专题:数形结合.分析:利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.解答:解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x=﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b+2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选:B.点评:此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法,同时注意特殊点的运用.9.(2014•聊城)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④考点:二次函数图象与系数的关系.专题:数形结合.分析:利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.解答:解:∵抛物线的对称轴是直线x=﹣1,∴﹣=﹣1,b=2a,∴b﹣2a=0,故①正确;∵抛物线的对称轴是直线x=﹣1,和x轴的一个交点是(2,0),∴抛物线和x轴的另一个交点是(﹣4,0),∴把x=﹣2代入得:y=4a﹣2b+c>0,故②错误;∵图象过点(2,0),代入抛物线的解析式得:4a+2b+c=0,又∵b=2a,∴c=﹣4a﹣2b=﹣8a,∴a﹣b+c=a﹣2a﹣8a=﹣9a,故③正确;根据图象,可知抛物线对称轴的右边y随x的增大而减小,∵抛物线和x轴的交点坐标是(2,0)和(﹣4,0),抛物线的对称轴是直线x=﹣1,∴点(﹣3,y1)关于对称轴的对称点的坐标是((1,y1),∵(,y2),1<,∴y1>y2,故④正确;即正确的有①③④,故选:B.点评:此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法.同时注意特殊点的运用.10.(2014•天津)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0B.1C.2D.3考点:二次函数图象与系数的关系.专题:数形结合.分析:由图象可知二次函数y=ax2+bx+c与x轴有两个交点,进而判断①;先根据抛物线的开口向下可知a<0,由抛物线与y轴的交点判断c与0的关系,根据对称轴在y轴右侧得出b与0的关系,然后根据有理数乘法法则判断②;一元二次方程ax2+bx+c﹣m=0没有实数根,则可转化为ax2+bx+c=m,即可以理解为y=ax2+bx+c和y=m没有交点,即可求出m的取值范围,判断③即可.解答:解:①∵二次函数y=ax2+bx+c与x轴有两个交点,∴b2﹣4ac>0,故①正确;②∵抛物线的开口向下,∴a<0,∵抛物线与y轴交于正半轴,∴c>0,∵对称轴x=﹣>0,∴ab<0,∵a<0,∴b>0,∴abc<0,故②正确;③∵一元二次方程ax2+bx+c﹣m=0没有实数根,∴y=ax2+bx+c和y=m没有交点,由图可得,m>2,故③正确.故选:D.点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.11.(2014•齐齐哈尔)如图,二次函y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣2,y1),(,y 2)是抛物线上的两点,则y1<y2,其中说法正确的是()A.①②④B.③④C.①③④D.①②考点:二次函数图象与系数的关系.专数形结合.题:分析:①根据抛物线开口方向、对称轴位置、抛物线与y轴交点位置求得a、b、c的符号;②根据对称轴求出b=﹣a;③把x=2代入函数关系式,结合图象判断函数值与0的大小关系;④求出点(﹣2,y1)关于直线x=的对称点的坐标,根据对称轴即可判断y1和y2的大小.解答:解:①∵二次函数的图象开口向下,∴a<0,∵二次函数的图象交y轴的正半轴于一点,∴c>0,∵对称轴是直线x=,∴﹣=,∴b=﹣a>0,∴abc<0.故①正确;②∵由①中知b=﹣a,∴a+b=0,故②正确;③把x=2代入y=ax2+bx+c得:y=4a+2b+c,∵抛物线经过点(2,0),∴当x=2时,y=0,即4a+2b+c=0.故③错误;④∵(﹣2,y1)关于直线x=的对称点的坐标是(3,y1),又∵当x >时,y 随x 的增大而减小,<3,∴y 1<y 2.故④正确;综上所述,正确的结论是①②④.故选:A .点评: 本题考查了二次函数的图象和系数的关系的应用,注意:当a >0时,二次函数的图象开口向上,当a <0时,二次函数的图象开口向下.12.(2014•威海)已知二次函数y=ax 2+bx+c (a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a ;④am 2+bm+a >0(m≠﹣1). 其中正确的个数是( )A . 1B . 2C . 3D . 4考点:二次函数图象与系数的关系. 分析: 由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.解答: 解:抛物线与y 轴交于原点,c=0,(故①正确);该抛物线的对称轴是:,直线x=﹣1,(故②正确);当x=1时,y=a+b+c∵对称轴是直线x=﹣1,∴﹣b/2a=﹣1,b=2a,又∵c=0,∴y=3a,(故③错误);x=m对应的函数值为y=am2+bm+c,x=﹣1对应的函数值为y=a﹣b+c,又∵x=﹣1时函数取得最小值,∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,∵b=2a,∴am2+bm+a>0(m≠﹣1).(故④正确).故选:C.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.13.(2014•南充)二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x 1≠x2,x1+x2=2.其中正确的有()A.①②③B.②④C.②⑤D.②③⑤考点:二次函数图象与系数的关系.专题:数形结合.分析:根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣=1,得到b=﹣2a>0,即2a+b=0,由抛物线与y轴的交点位置得到c>0,所以abc<0;根据二次函数的性质得当x=1时,函数有最大值a+b+c,则当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm;根据抛物线的对称性得到抛物线与x轴的另一个交点在(﹣1,0)的右侧,则当x=﹣1时,y<0,所以a﹣b+c<0;把ax12+bx1=ax22+bx2先移项,再分解因式得到(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,则a(x1+x2)+b=0,即x1+x2=﹣,然后把b=﹣2a代入计算得到x1+x2=2.解答:解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为性质x=﹣=1,∴b=﹣2a>0,即2a+b=0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线对称轴为性质x=1,∴函数的最大值为a+b+c,∴当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm,所以③正确;∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为性质x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧∴当x=﹣1时,y <0, ∴a﹣b+c <0,所以④错误; ∵ax 12+bx 1=ax 22+bx 2, ∴ax 12+bx 1﹣ax 22﹣bx 2=0,∴a(x 1+x 2)(x 1﹣x 2)+b (x 1﹣x 2)=0, ∴(x 1﹣x 2)[a (x 1+x 2)+b]=0, 而x 1≠x 2,∴a(x 1+x 2)+b=0,即x 1+x 2=﹣, ∵b=﹣2a ,∴x 1+x 2=2,所以⑤正确. 故选:D .点评: 本题考查了二次函数图象与系数的关系:二次函数y=ax 2+bx+c (a≠0),二次项系数a决定抛物线的开口方向和大小:当a >0时,抛物线开口向上;当a <0时,抛物线开口向下;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左侧;当a 与b 异号时(即ab <0),对称轴在y 轴右侧;常数项c 决定抛物线与y 轴交点.抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac=0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.14.(2014•烟台)二次函数y=ax 2+bx+c (a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b ;③8a+7b+2c>0;④当x >﹣1时,y 的值随x 值的增大而增大. 其中正确的结论有( )A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.专题:代数几何综合题;数形结合.分析:根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.解答:解:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,(故①正确);∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,(故②错误);∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,(故③正确);∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,(故④错误).故选:B.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.15.(2014•贵港)已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2,其中正确的结论有()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:①由抛物线的开口方向,抛物线与y轴交点的位置、对称轴即可确定a、b、c的符号,即得abc的符号;②由抛物线与x轴有两个交点判断即可;③分别比较当x=﹣2时、x=1时,y的取值,然后解不等式组可得6a+3c<0,即2a+c <0;又因为a<0,所以3a+c<0.故错误;④将x=1代入抛物线解析式得到a+b+c<0,再将x=﹣1代入抛物线解析式得到a﹣b+c >0,两个不等式相乘,根据两数相乘异号得负的取符号法则及平方差公式变形后,得到(a+c)2<b2,解答:解:①由开口向下,可得a<0,又由抛物线与y轴交于正半轴,可得c>0,然后由对称轴在y轴左侧,得到b与a同号,则可得b<0,abc>0,故①错误;②由抛物线与x轴有两个交点,可得b2﹣4ac>0,故②正确;③当x=﹣2时,y<0,即4a﹣2b+c<0 (1)当x=1时,y<0,即a+b+c<0 (2)(1)+(2)×2得:6a+3c<0,即2a+c<0又∵a<0,∴a+(2a+c)=3a+c<0.故③错误;④∵x=1时,y=a+b+c<0,x=﹣1时,y=a﹣b+c>0,∴(a+b+c)(a﹣b+c)<0,即[(a+c)+b][(a+c)﹣b]=(a+c)2﹣b2<0,∴(a+c)2<b2,故④正确.综上所述,正确的结论有2个.故选:B.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.16.(2014•莱芜)已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2其中正确的个数有()A.1B.2C.3D.4考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线开口方向得a<0,由抛物线对称轴在y轴的左侧得a、b同号,即b<0,由抛物线与y轴的交点在x轴上方得c>0,所以abc>0;根据抛物线对称轴的位置得到﹣1<﹣<0,则根据不等式性质即可得到2a﹣b<0;由于x=﹣2时,对应的函数值小于0,则4a﹣2b+c<0;同样当x=﹣1时,a﹣b+c>0,x=1时,a+b+c<0,则(a﹣b+c)(a+b+c)<0,利用平方差公式展开得到(a+c)2﹣b2<0,即(a+c)2<b2.解答:解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的左侧,∴x=﹣<0,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,(故①正确);∵﹣1<﹣<0,∴2a﹣b<0,(故②正确);∵当x=﹣2时,y<0,∴4a﹣2b+c<0,(故③正确);∵当x=﹣1时,y>0,∴a﹣b+c>0,∵当x=1时,y<0,∴a+b+c<0,∴(a﹣b+c)(a+b+c)<0,即(a+c﹣b)(a+c+b)<0,∴(a+c)2﹣b2<0,(故④正确).综上所述,正确的个数有4个;故选:D.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.17.(2014•深圳)二次函数y=ax2+bx+c图象如图,下列正确的个数为()①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A.2B.3C.4D.5考点:二次函数图象与系数的关系.分析:根据抛物线开口向上可得a>0,结合对称轴在y轴右侧得出b<0,根据抛物线与y轴的交点在负半轴可得c<0,再根据有理数乘法法则判断①;再由不等式的性质判断②;根据对称轴为直线x=1判断③;根据图象与x轴的两个交点分别在原点的左右两侧判断④;由x=1时,y<0判断⑤;根据二次函数的增减性判断⑥.解答:解:①∵抛物线开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号即b<0,∵抛物线与y轴的交点在负半轴,∴c<0,∴bc>0,故①正确;②∵a>0,c<0,∴2a﹣3c>0,故②错误;③∵对称轴x=﹣<1,a>0,∴﹣b<2a,∴2a+b>0,故③正确;④由图形可知二次函数y=ax2+bx+c与x轴的两个交点分别在原点的左右两侧,即方程ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0,故④正确;⑤由图形可知x=1时,y=a+b+c<0,故⑤错误;⑥∵a>0,对称轴x=1,∴当x>1时,y随x增大而增大,故⑥错误.综上所述,正确的结论是①③④,共3个.故选:B.点评:主要考查图象与二次函数系数之间的关系,二次函数的性质,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.18.(2014•黔东南州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④考二次函数图象与系数的关系.点:分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=﹣1时,x=2时二次函数的值的情况进行推理,进而对所得结论进行判断.解答:解:由二次函数的图象开口向上可得a>0,根据二次函数的图象与y轴交于正半轴知:c>0,由对称轴直线x=2,可得出b与a异号,即b<0,则abc<0,故①正确;把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c,由函数图象可以看出当x=﹣1时,二次函数的值为正,即a+b+c>0,则b<a+c,故②选项正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c,由函数图象可以看出当x=2时,二次函数的值为负,即4a+2b+c<0,故③选项错误;由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2﹣4ac>0,故④D 选项正确;故选:B.点评:本题考查二次函数图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=4a+2b+c,然后根据图象判断其值.。