一般的一元二次方程的解法—知识讲解(基础)+巩固练习
初中数学中考总复习:一元二次方程、分式方程的解法及应用--巩固练习题及答案(基础)
中考总复习:一元二次方程、分式方程的解法及应用—巩固练习(基础)【巩固练习】 一、选择题1. 用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -= C .()229x += D .()229x -=2.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( ) A .1 B .12C .13D .253.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B . 1k >-且0k ≠C .1k <D . 1k <且0k ≠4.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( )A .1B .2C .1或2D .05.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ).A .213014000x x +-= B .2653500x x +-= C .213014000x x --= D .2653500x x --=6.甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度( ) A.B.C.D.二、填空题7.若ax 2+bx+c=0是关于x 的一元二次方程,则不等式3a+6>0的解集是____ ____. 8.如果方程ax 2+2x +1=0有两个不等实根,则实数a 的取值范围是___ ___.9.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 __ .10.当m 为 时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根;此时这两个实数根是 .11.如果分式方程1+x x =1+x m 无解, 则 m = . 12.已知关于x 的方程 x 1 - 1-x m= m 有实数根,则 m 的取值范围是 .三、解答题 13. (1)解方程:x x x x 4143412+-=---; (2)解方程:x x x x 221103+++=.14.一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车的速度.15.关于x 的一元二次方程1201x p x x 有两实数根=-+-、.2x (1)求p 的取值范围;(2)若p x x x x 求,9)]1(2)][1(2[2211=-+-+的值.16.如图,利用一面墙,用80米长的篱笆围成一个矩形场地(1)怎样围才能使矩形场地的面积为750平方米? (2)能否使所围的矩形场地面积为810平方米,为什么?【答案与解析】 一、选择题 1.【答案】B ;【解析】根据配方法的步骤可知在方程两边同时加上一次项系数一半的平方,整理即可得到B 项是正确的.2.【答案】C ;【解析】∵22127x x += ∴221212)22(21)7x x x x m m +-=--=(, 解得m=5(此时不满足根的判别式舍去)或m=-1.原方程化为230x x +-=,212()x x -=21212()411213.x x x x +-=+=3.【答案】B ;【解析】由题意得方程有两个不相等的实数根,则△=b 2-4ac>0,即4+4k>0.解得1k >-且0k ≠. 4.【答案】B ;【解析】有题意2320,10m m m -+=-且≠,解得2m =.5.【答案】B ;【解析】(80+2x )(50+2x )=5400,化简得2653500+-=x x . 6.【答案】B ;【解析】由已知,此人步行的路程为av 千米,所以乘车的路程为千米。
九年级上第02讲 一元二次方程的解法(公式法、因式分解法)讲义+练习
因式分解法解一元二次方程.
【知识导图】
1、观察一元二次方程 ,结合我们上节课学的知识解此方程.
2、思考这个一元二次方程还有没有其它的解法?
3、今天我们学习一元二次方程另外的解法:公式法、因式分解法.
1、形成表象,提出问题
用配方法解下列一元二次方程:
(1)x2+4x+2=0 ; (2)3x2-6x+1=0;
∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,
x2﹣3x=0,
x(x﹣3)=0,
x1=0,x2=3;
把m=﹣1代入方程mx2﹣3mx+m﹣1=0得:﹣x2+3x﹣2=0,
x2﹣3x+2=0,
(x﹣1)(x﹣2)=0,
x1=1,x2=2;
(3)|m|≤2不成立,理由是:
由(1)知:k≥﹣1且k≠1且k≠2,
一元二次方程的解法
(配方法和因式分解法)
适用学科
初中数学
适用年级
初三
适用区域
人教版区域
课时时长(分钟)
120
知识点
1、根的判别式;
2、公式法解一元二次方程;
3、因式分解法解方程.
教学目标
1、掌握公式法解一元二次方程的方法.
2、掌握应用因式分解法解某些系数较为特殊的一元二次方程的方法.
教学重点
能根据题目的要求及特点用恰当的方法求解方程.
我们仍以方程x2=4为例.
移项,得x2-4=0,
对x2-4分解因式,得(x+2)(x-2)=0.
我们知道:
∴x+2=0,x-2=0.
即x1=-2,x2=2.
一元二次方程全章复习与巩固—知识讲解
《一元二次方程》全章复习与巩固—知识讲解(提高)【学习目标】1.了解一元二次方程及有关概念;2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;3.掌握依据实际问题建立一元二次方程的数学模型的方法.【知识网络】【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.要点诠释:判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.要点二、一元二次方程的解法1.基本思想一元二次方程−−−→降次一元一次方程2.基本解法直接开平方法、配方法、公式法、因式分解法. 要点诠释:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.要点三、一元二次方程根的判别式及根与系数的关系 1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆.(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.2.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,ac x x =21.注意它的使用条件为a ≠0, Δ≥0. 要点诠释:1.一元二次方程 的根的判别式正反都成立.利用其可以解决以下问题:(1)不解方程判定方程根的情况; (2)根据参系数的性质确定根的范围; (3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.要点四、列一元二次方程解应用题1.列方程解实际问题的三个重要环节: 一是整体地、系统地审题; 二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等);设 (设未知数,有时会用未知数表示相关的量);列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰);验 (检验方程的解能否保证实际问题有意义);答 (写出答案,切忌答非所问).4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.要点诠释:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.【典型例题】类型一、一元二次方程的有关概念1.已知(m-1)x|m|+1+3x-2=0是关于x的一元二次方程,求m的值.【答案与解析】依题意得|m|+1=2,即|m|=1,解得m=±1,又∵m-1≠0,∴m≠1,故m=-1.【总结升华】依题意可知m-1≠0与|m|+1=2必须同时成立,因此求出满足上述两个条件的m的值即可.特别是二次项系数应为非零数这一隐含条件要注意.举一反三:【变式】若方程2(2)310mm x mx---=是关于x的一元二次方程,求m的值.【答案】根据题意得22,20,mm⎧=⎪⎨-≠⎪⎩解得所以当方程2(2)310mm x mx--=是关于x的一元二次方程时,2m=-.类型二、一元二次方程的解法2.解下列一元二次方程.(1)224(3)25(2)0x x---=; (2)225(3)9x x-=-; (3)2(21)4(21)40x x++++=.【答案与解析】(1)原方程可化为:22[2(3)][5(2)]0x x---=,即(2x-6)2-(5x-10)2=0,∴ (2x-6+5x-10)(2x-6-5x+10)=0,即(7x-16)(-3x+4)=0,∴ 7x-16=0或-3x+4=0,∴116 7x=,24 3x=. (2)25(3)(3)(3)x x x-=+-,25(3)(3)(3)0x x x--+-=,∴ (x-3)[5(x-3)-(x+3)]=0,即(x-3)(4x-18)=0,∴ x-3=0或4x-18=0,∴13x=,292x=.(3)2(21)4(21)40x x++++=,∴2(212)0x++=.即2(23)0x+=,∴1232x x==-.【总结升华】 (1)方程左边可变形为22[2(3)][5(2)]x x---,因此可用平方差公式分解因式;(2)中方程右边分解后为(x-3)(x+3),与左边中的(x-3)2有公共的因式,可移项后提取公因式(x-3)后解题;(3)的左边具有完全平方公式的特点,可用公式变为(2x+1+2)2=0再求解.举一反三:【变式】解方程: (1)3x+15=-2x2-10x; (2)x2-3x=(2-x)(x-3).【答案】(1)移项,得3x+15+(2x2+10x)=0,∴ 3(x+5)+2x(x+5)=0,即(x+5)(3+2x)=0,∴ x+5=0或3+2x=0,∴15x=-,232x=-.(2)原方程可化为x(x-3)=(2-x)(x-3),移项,x(x-3)-(2-x)(x-3)=0,∴ (x-3)(2x-2)=0,∴ x-3=0或2x-2=0,∴13x=,21x=.类型三、一元二次方程根的判别式的应用3.关于x 的方程2(5)410a x x ---=有实数根.则a 满足( )A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠5【答案】A ;【解析】①当50a -=,即5a =时,有410x --=,14x =-,有实数根;②当50a -≠时,由△≥0得2(4)4(5)(1)0a --⨯-⨯-≥,解得1a ≥且5a ≠. 综上所述,使关于x 的方程2(5)410a x x ---=有实数根的a 的取值范围是1a ≥.答案:A【总结升华】注意“关于x 的方程”与“关于x 的一元二次方程”的区别,前者既可以是一元一次方程,也可以是一元二次方程,所以必须分类讨论,而后者隐含着二次项系数不能为0.4. k 为何值时,关于x 的二次方程2690kx x -+=(1)k 满足 时,方程有两个不等的实数根; (2)k 满足 时,方程有两个相等的实数根;(3)k 满足 时,方程无实数根. 【答案】(1)10k k ≠<,且;(2)1k =;(3)1k >. 【解析】求判别式,注意二次项系数的取值范围. 【总结升华】根据判别式ac b 42-=∆及k ≠0求解.类型四、一元二次方程的根与系数的关系5.已知关于x 的方程222(2)0x m x m --+=,试探求:是否存在实数m 使方程的两个实数根的平方和等于56,若存在,求出m 的值;若不存在,请说明理由.【答案与解析】存在.设方程两根为x 1、x 2,根据题意,得122(2)x x m +=-,212x x m =,221256x x +=, 而222121212()2x x x x x x +=+-,于是有[]222(2)256m m --=,整理得28200m m --=, 解这个方程得110m =, 22m =-,当10m =时,△= 2224[2(2)]41440b ac m m -=---=-<, 当2m =-时,△=2224[2(2)]4480b ac m m -=---=>, 所以符合条件的m 的值为-2.【总结升华】由两个实数根的平方和等于56,列出关系式,再由根与系数关系求出m的值,通过判别式去验证m值是否符合题意,从而得出结论.举一反三:【变式】已知关于x的方程2(1)(23)10k x k x k-+-++=有两个不相等的实数根1x、2x.(1)求k的取值范围;(2)是否存在实数k,使方程的两实数根互为相反数如果存在,求出k的值;如果不存在,请说明理由.【答案】(1)根据题意,得△=(2k-3)2-4(k-1)(k+1)=224129412130k k k k-+-=-+>,所以1312k<.由k-1≠0,得k≠1.当1312k<且k≠1时,方程有两个不相等的实数根;(2) 不存在.如果方程的两个实数根互为相反数,则12231kx xk -+=-=-,解得32k=.当32k=时,判别式△=-5<0,方程没有实数根.所以不存在实数k,使方程的两个实数根互为相反数.类型五、一元二次方程的应用6.甲、乙两人分别骑车从A、B两地相向而行,甲先行1小时后,乙才出发,又经过4小时两人在途中的C地相遇,相遇后两人按原来的方向继续前进.乙在由C 地到达A地的途中因故停了20分钟,结果乙由C地到达A地时比甲由C地到达B 地还提前了40分钟,已知乙比甲每小时多行驶4千米,求甲、乙两人骑车的速度.【答案与解析】设甲的速度为x千米/时,则乙的速度为(x+4)千米/时.根据题意,得54(4)2040460x xx x++=-+解之,得x1=16,x2=-2.经检验:x1=16,x2=-2都是原方程的根,但x2=-2不合题意,舍去.∴当x=16时,x+4=20.答:甲每小时行驶16千米,乙每小时行驶20千米.【总结升华】注意解题的格式,解分式方程应用题要双检验,即验根、符合题意.举一反三:【变式】某工程队在我市实施棚户区改造过程中承包了一项拆迁工程。
一般的一元二次方程的解法(直接开平方法,因式分解法)知识讲解
一般的一元二次方程的解法(直接开平方法,因式分解法)知识讲解1.直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.2.因式分解法解一元二次方程(1)用因式分解法解一元二次方程的步骤①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.(2)常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、用直接开平方法解一元二次方程【总结升华】应当注意,如果把x+m看作一个整体,那么形如(x+m)2=n(n≥0)的方程就可看作形如x2=k的方程,也就是可用直接开平方法求解的方程;这就是说,一个方程如果可以变形为这个形式,就可用直接开平方法求出这个方程的根.所以,(x+m)2=n可成为任何一元二次方程变形的目标.举一反三:类型二、因式分解法解一元二次方程【总结升华】若把各项展开,整理为一元二次方程的一般形式,过程太烦琐.观察题目结构,可将x+1看作m,将(2-x)看作n,则原方程左端恰好为完全平方式,于是此方程利用分解因式法可解.举一反三:【变式】方程(x-1)(x+2)=2(x+2)的根是________.【答案】将(x+2)看作一个整体,右边的2(x+2)移到方程的左边也可用提取公因式法因式分解.即(x-1)(x+2)-2(x+2)=0,(x+2)[(x-1)-2]=0.∴ (x+2)(x-3)=0,∴ x+2=0或x-3=0.∴ x1=-2 x2=3.【总结升华】如果把视为一个整体,则已知条件可以转化成一个一元二次方程的形式,用因式分解法可以解这个一元二次方程.此题看似求x、y 的值,然后计算,但实际上如果把看成一个整体,那么原方程便可化简求解。
(完整版)用因式分解法解一元二次方程(知识点+经典例题+综合练习)---详细答案
用因式分解法解一元二次方程【主体知识归纳】1.因式分解法 若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,x 2-9=0,这个方程可变形为(x +3)(x -3)=0,要(x +3)(x -3)等于0,必须并且只需(x +3)等于0或(x -3)等于0,因此,解方程(x +3)(x -3)=0就相当于解方程x +3=0或x -3=0了,通过解这两个一次方程就可得到原方程的解.这种解一元二次方程的方法叫做因式分解法.2.因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程.其理论根据是:若A ·B =0A =0或B =0.【基础知识讲解】1.只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程.分解因式时,要根据情况灵活运用学过的因式分解的几种方法.2.在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程.但对某些特殊形式的一元二次方程,有的用直接开平方法简便,有的用因式分解法简便.因此,在遇到一道题时,应选择适当的方法去解.配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法.而在以后的学习中,会常常用到因式分解法,所以要掌握这个重要的数学方法.【例题精讲】例1:用因式分解法解下列方程:(1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1.解:(1)方程可变形为(y +1)(y +6)=0,y +1=0或y +6=0,∴y 1=-1,y 2=-6.(2)方程可变形为t (2t -1)-3(2t -1)=0,(2t -1)(t -3)=0,2t -1=0或t -3=0,∴t 1=21,t 2=3.(3)方程可变形为2x 2-3x =0.x (2x -3)=0,x =0或2x -3=0.∴x 1=0,x 2=23. 说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考?例2:用适当方法解下列方程: (1)3(1-x )2=27;(2)x 2-6x -19=0;(3)3x 2=4x +1;(4)y 2-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0;(6)4(3x +1)2=25(x -2)2.剖析:方程(1)用直接开平方法,方程(2)用配方法,方程(3)用公式法,方程(4)化成一般式后用因式分解法,而方程(5)、(6)不用化成一般式,而直接用因式分解法就可以了.解:(1)(1-x )2=9,(x -1)2=3,x -1=±3,∴x 1=1+3,x 2=1-3.(2)移项,得x 2-6x =19,配方,得x 2-6x +(-3)2=19+(-3)2,(x -3)2=28,x -3=±27, ∴x 1=3+27,x 2=3-27.(3)移项,得3x 2-4x -1=0,∵a =3,b =-4,c =-1, ∴x =37232)1(34)4()4(2±=⨯-⨯⨯--±--, ∴x 1=372+,x 2=372-. (4)移项,得y 2-2y -15=0,把方程左边因式分解,得(y -5)(y +3)=0;∴y -5=0或y +3=0,∴y 1=5,y 2=-3.(5)将方程左边因式分解,得(x -3)[5x -(x +1)]=0,(x -3)(4x -1)=0,∴x -3=0或4x -1=0,∴x 1=3,x 2=41. (6)移项,得4(3x +1)2-25(x -2)2=0,[2(3x +1)]2-[5(x -2)]2=0,[2(3x +1)+5(x -2)]·[2(3x +1)-5(x -2)]=0,(11x -8)(x +12)=0,∴11x -8=0或x +12=0,∴x 1=118,x 2=-12. 说明:(1)对于无理系数的一元二次方程解法同有理数一样,只不过要注意二次根式的化简.(2)直接因式分解就能转化成两个一次因式乘积等于零的形式,对于这种形式的方程就不必要整理成一般式了.例3:解关于x 的方程:(a 2-b 2)x 2-4abx =a 2-b 2.解:(1)当a 2-b 2=0,即|a |=|b |时,方程为-4abx =0.当a =b =0时,x 为任意实数.当|a |=|b |≠0时,x =0.(2)当a 2-b 2≠0,即a +b ≠0且a -b ≠0时,方程为一元二次方程.分解因式,得[(a +b )x +(a -b )][(a -b )x -(a +b )]=0,∵a +b ≠0且a -b ≠0,∴x 1=b a a b +-,x 2=ba b a -+. 说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不同情况分别求解.本题实际上是分三种情况,即①a =b =0;②|a |=|b |≠0;③|a |≠|b |.例4:已知x 2-xy -2y 2=0,且x ≠0,y ≠0,求代数式22225252y xy x y xy x ++--的值. 剖析:要求代数式的值,只要求出x 、y 的值即可,但从已知条件中显然不能求出,要求代数式的分子、分母是关于x 、y 的二次齐次式,所以知道x 与y 的比值也可.由已知x 2-xy -2y 2=0因式分解即可得x 与y 的比值.解:由x 2-xy -2y 2=0,得(x -2y )(x +y )=0,∴x -2y =0或x +y =0,∴x =2y 或x =-y . 当x =2y 时,135y13y 5y 5y y 22)y 2(y 5y y 22)y 2(y 5xy 2x y 5xy 2x 2222222222-=-=+⋅⋅+-⋅⋅-=++--. 当x =-y 时,21y 4y 2y 5y )y (2)y (y 5y )y (2)y (y 5xy 2x y 5xy 2x 222222222-=-=+⋅-⋅+--⋅-⋅--=++--2. 说明:因式分解法体现了“降次”“化归”的数学思想方法,它不仅可用来解一元二次方程,而且在解一元高次方程、二元二次方程组及有关代数式的计算、证明中也有着广泛的 应用.【同步达纲练习】1.选择题(1)方程(x -16)(x +8)=0的根是( )A .x 1=-16,x 2=8B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )A ..x =21B .x =2C .x =1D .x =-1(3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53C .x 1=-53,x 2=-3D .x 1=53,x 2=-3 (4)方程(y -5)(y +2)=1的根为( )A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对 (5)方程(x -1)2-4(x +2)2=0的根为( )A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5 (6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )A .1B .2C .-4D .4 (7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )A .5B .5或11C .6D .11 (8)方程x 2-3|x -1|=1的不同解的个数是( )A .0B .1C .2D .32.填空题(1)方程t (t +3)=28的解为_______.(2)方程(2x +1)2+3(2x +1)=0的解为__________.(3)方程(2y +1)2+3(2y +1)+2=0的解为__________.(4)关于x 的方程x 2+(m +n )x +mn =0的解为__________.(5)方程x (x -5)=5 -x 的解为__________.3.用因式分解法解下列方程:(1)x 2+12x =0;(2)4x 2-1=0; (3)x 2=7x ;(4)x 2-4x -21=0;(5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x2-x-3=0;(8)(x-1)2-4(x-1)-21=0.4.用适当方法解下列方程:(1)x2-4x+3=0;(2)(x-2)2=256;(3)x2-3x+1=0;(4)x2-2x-3=0;(5)(2t+3)2=3(2t+3);(6)(3-y)2+y2=9;(7)(1+2)x2-(1-2)x=0;(8)5x2-(52+1)x+10=0;(9)2x2-8x=7(精确到0.01);(10)(x+5)2-2(x+5)-8=0.5.解关于x的方程:(1)x2-4ax+3a2=1-2a;(2)x2+5x+k2=2kx+5k+6;(3)x2-2mx-8m2=0; (4)x2+(2m+1)x+m2+m=0.6.已知x 2+3xy -4y 2=0(y ≠0),试求yx y x +-的值.7.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.8.请你用三种方法解方程:x (x +12)=864.9.已知x 2+3x +5的值为9,试求3x 2+9x -2的值.10.一跳水运动员从10米高台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系式h =-5(t -2)(t +1).求运动员起跳到入水所用的时间.11.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则y 2=(x 2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,∴x =±2.当y =4时,x 2-1=4,x 2=5,∴x =±5.∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5.以上方法就叫换元法,达到了降次的目的,体现了转化的思想.(1)运用上述方法解方程:x 4-3x 2-4=0.(2)既然可以将x 2-1看作一个整体,你能直接运用因式分解法解这个方程吗参考答案【同步达纲练习】1.(1)B (2)C (3)D (4)D (5)B (6)A (7)A (8)D2.(1)t 1=-7,t 2=4(2)x 1=-21,x 2=-2(3)y 1=-1,y 2=-23(4)x 1=-m ,x 2=-n (5)x 1=5,x 2=-1 3.(1)x 1=0,x 2=-12;(2)x 1=-21,x 2=21;(3)x 1=0,x 2=7;(4)x 1=7,x 2=-3;(5)x 1=-5,x 2=3;(6)x 1=-1,x 2=31; (7)x 1=53,x 2=-21;(8)x 1=8,x 2=-2. 4.(1)x 1=1,x 2=3;(2)x 1=18,x 2=-14;(3)x 1=253+,x 2=253-;(4)x 1=3,x 2=-1; (5)t 1=0,t 2=-23;(6)y 1=0,y 2=3;(7)x 1=0,x 2=22-3; (8)x 1=55,x 2=10;(9)x 1≈7.24,x 2=-3.24;(10)x 1=-1,x 2=-7. 5.(1)x 2-4ax +4a 2=a 2-2a +1,(x -2a )2=(a -1)2,∴x -2a =±(a -1),∴x 1=3a -1,x 2=a +1.(2)x 2+(5-2k )x +k 2-5k -6=0, x 2+(5-2k )x +(k +1)(k -6)=0,[x -(k +1)][x -(k -6)]=0,∴x 1=k +1,x 2=(k -6).(3)x 2-2mx +m 2=9m 2,(x -m )2=(3m )2∴x 1=4m ,x 2=-2m(4)x 2+(2m +1)x +m (m +1)=0,(x +m )[x +(m +1)]=0,∴x 1=-m ,x 2=-m -16.(x +4y )(x -y )=0, x =-4y 或x =y当x =-4y 时,y x y x +-=3544=+---y y y y ; 当x =y 时,y x y x +-=y y y y +-=0. 7.(x 2+y 2)(x 2+y 2-1)-12=0,(x 2+y 2)2-(x 2+y 2)-12=0,(x 2+y 2-4)(x 2+y 2+3)=0,∴x 2+y 2=4或x 2+y 2=-3(舍去)8.x 1=-36,x 2=249.∵x 2+3x +5=9,∴x 2+3x =4,∴3x2+9x-2=3(x2+3x)-2=3×4-2=10 10.10=-5(t-2)(t+1),∴t=1(t=0舍去) 11.(1)x1=-2,x2=2(2)(x2-2)(x2-5)=0,(x+2)(x-2)(x+5)(x-5)=0。
一元二次方程的解法因式分解法知识点总结
一元二次方程的解法--公式法,因式分解法—知识讲解(基础)【学习目标】1.理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;2.正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;3.通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想.【要点梳理】要点一、公式法解一元二次方程1.一元二次方程的求根公式一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式; ②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选择.(2)一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+=.①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:21,242b b acx a -±-=.②当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a =-.③当240b ac ∆=-<时,右端是负数.因此,方程没有实根.要点二、因式分解法解一元二次方程 1.用因式分解法解一元二次方程的步骤 (1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. 2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等. 要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式. 【典型例题】类型一、公式法解一元二次方程1.用公式法解下列方程.(1)x 2+3x+1=0;(2)2241x x =-; (3)2x 2+3x-1=0.【答案与解析】(1)a=1,b=3,c=1∴x==.∴x 1=,x 2=.(2)原方程化为一般形式,得22410x x -+=.∵2a =,4b =-,1c =,∴224(4)42180b ac -=--⨯⨯=>.∴42221222x ±==±⨯,即1212x =+,2212x =-.(3)∵a=2,b=3,c=﹣1∴b 2﹣4ac=17>0∴x=∴x 1=,x 2=.【总结升华】用公式法解一元二次方程的关键是对a 、b 、c 的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定a ,b ,c 的值并计算24b ac -的值;(3)若24b ac -是非负数,用公式法求解. 举一反三:【变式】用公式法解方程:(2014•武汉模拟)x 2﹣3x ﹣2=0.【答案】解:∵a=1,b=﹣3,c=﹣2;∴b 2﹣4ac=(﹣3)2﹣4×1×(﹣2)=9+8=17;∴x==, ∴x 1=,x 2=.2.用公式法解下列方程: (1)(2014•武汉模拟)2x 2+x=2;(2)(2014秋•开县期末)3x 2﹣6x ﹣2=0 ;(3)(2015•黄陂区校级模拟)x 2﹣3x ﹣7=0.【思路点拨】针对具体的试题具体分析,不是一般式的先化成一般式,再写出a,b,c 的值,代入求值即可.【答案与解析】解:(1)∵2x 2+x ﹣2=0,∴a=2,b=1,c=﹣2,∴x===,∴x 1=,x 2=.(2)∵a=3,b=﹣6,c=﹣2,∴b 2﹣4ac=36+24=60>0,∴x=, ∴x 1=,x 2=(3)∵a=1,b=﹣3,b=﹣7.∴b 2﹣4ac=9+28=37.x==,解得 x 1=,x 2=.【总结升华】首先把每个方程化成一般形式,确定出a 、b 、c 的值,在240b ac -≥的前提下,代入求根公式可求出方程的根. 举一反三:【变式】用公式法解下列方程: 2221x x +=; 【答案】解:移项,得22210x x +-=.∵ 2a =,2b =,1c =-,224242(1)120b ac -=-⨯⨯-=>,∴ 21213222x -±-±==⨯, ∴ 1132x --=,2132x -+=.类型二、因式分解法解一元二次方程3.用因式分解法解下列方程:(1)3(x+2)2=2(x+2); (2)(2x+3)2-25=0; (3)x (2x+1)=8x ﹣3.【思路点拨】 用因式分解法解方程,一定要注意第1小题,等号的两边都含有(x+2)这一项,切不可在方程的两边同除以(x+2),化简成3(x+2)=2,因为你不知道(x-2)是否等于零.第2小题,运用平方差公式可以,用直接开方也可以.第3小题化成一般式之后,再运用分解因式法解方程. 【答案与解析】(1)移项.得3(x+2)2-2(x+2)=0,(x+2)(3x+6-2)=0.∴ x+2=0或3x+4=0,∴ x 1=-2,243x =-. (2)(2x+3-5)(2x+3+5)=0,∴ 2x-2=0或2x+8=0, ∴ x 1=1,x 2=-4.(3)去括号,得:2x 2+x=8x ﹣3,移项,得:2x 2+x ﹣8x+3=0合并同类项,得:2x 2﹣7x+3=0, ∴(2x ﹣1)(x ﹣3)=0, ∴2x﹣1=0或 x ﹣3=0,∴,x 2=3.【总结升华】(1)中方程求解时,不能两边同时除以(x+2),否则要漏解.用因式分解法解一元二次方程必须将方程右边化为零,左边用多项式因式分解的方法进行因式分解.因式分解的方法有提公因式法、公式法、二次三项式法及分组分解法.(2)可用平方差公式分解.4.解下列一元二次方程: (1)(2x+1)2+4(2x+1)+4=0; (2)(31)(1)(41)(1)x x x x --=+-.【答案与解析】(1)(2x+1)2+4(2x+1)+4=0,(2x+1+2)2=0.即2(23)0x +=, ∴ 1232x x ==-. (2)移项,得(3x-1)(x-1)-(4x+1)(x-1)=0,即(x-1)(x+2)=0,所以11x =,22x =-.【总结升华】解一元二次方程时,一定要先从整体上分析,选择适当的解法.如 (1)可以用完全平方公式.用含未知数的整式去除方程两边时,很可能导致方程丢根,(2)容易丢掉x =1这个根. 举一反三:【变式】(1)(x+8)2-5(x+8)+6=0 (2)3(21)42x x x +=+【答案】(1)(x+8-2)(x+8-3)=0(x+6)(x+5)=0 X 1=-6,x 2=-5. (2)3x(2x+1)-2(2x+1)=0(2x+1)(3x-2)=01212,23x x =-=.5.探究下表中的奥秘,并完成填空:一元二次方程 两个根 二次三项式因式分解 x 2﹣2x+1=0 x 1=1,x 2=1 x 2﹣2x+1=(x ﹣1)(x ﹣1) x 2﹣3x+2=0 x 1=1,x 2=2 x 2﹣3x+2=(x ﹣1)(x ﹣2) 3x 2+x ﹣2=0 x 1=,x 2=﹣1 3x 2+x ﹣2=3(x ﹣)(x+1) 2x 2+5x+2=0x 1=﹣,x 2=﹣2 2x 2+5x+2=2(x+)(x+2)4x 2+13x+3=0 x 1= ,x 2= 4x 2+13x+3=4(x+ )(x+ )将你发现的结论一般化,并写出来.【思路点拨】利用因式分解法,分别求出表中方程的解,总结规律,得出结论. 【答案与解析】填空:﹣,﹣3;4x 2+13x+3=4(x+)(x+3).发现的一般结论为:若一元二次方程 ax 2+bx+c=0的两个根为x 1、x 2,则 ax 2+bx+c=a (x ﹣x 1)(x ﹣x 2).【总结升华】考查学生综合分析能力,要根据求解的过程,得出一般的结论,解一元二次方程——因式分解法.一元二次方程的解法--公式法,因式分解法—巩固练习(基础)【巩固练习】 一、选择题 1.(2014•泗县校级模拟)下列方程适合用因式方程解法解的是( ) A .x 2﹣3x+2=0 B .2x 2=x+4 C .(x ﹣1)(x+2)=72 D .x 2﹣11x ﹣10=02.方程(1)2x x -=的解是( )A .1x =-B .2x =-C .11x =-,22x =D .11x =,22x =-3.一元二次方程2340x x +-=的解是( ) A .11x =;24x =- B .11x =-;24x = C .11x =-;24x =- D .11x =;24x =4.方程x 2-5x-6=0的两根为( )A .6和1B .6和-1C .2和3D .-2和3 5.方程(x-5)(x-6)=x-5的解是 ( )A .x =5B .x =5或x =6C .x =7D .x =5或x =7 6.已知210x x --=,则3222012x x -++的值为 ( )A . 2011B .2012C . 2013D .2014 二、填空题7.(2015•厦门)方程x 2+x =0的解是___ _____; 8.方程(x-1)(x+2)(x-3)=0的根是_____ ___.9.请写一个两根分别是1和2的一元二次方程___ _____.10.若方程x 2-m =0的根为整数,则m 的值可以是_____ ___.(只填符合条件的一个即可) 11.已知实数x 、y 满足2222()(1)2x y x y ++-=,则22x y +=________.12.已知y =(x-5)(x+2).(1)当x 为 值时,y 的值为0; (2)当x 为 值时,y 的值为5.三、解答题 13.(2014秋•宝坻区校级期末)解方程 (1)2(x ﹣3)2=8(直接开平方法)(2)4x 2﹣6x ﹣3=0(运用公式法)(3)(2x ﹣3)2=5(2x ﹣3)(运用分解因式法) (4)(x+8)(x+1)=﹣12(运用适当的方法)14.用因式分解法解方程(1)x 2-6x-16=0.(2)(2x+1)2+3(2x+1)+2=0.15(2)请观察上表,结合24b ac -的符号,归纳出一元二次方程的根的情况. (3)利用上面的结论解答下题.当m 取什么值时,关于x 的一元二次方程(m-2)x 2+(2m+1)x+m-2=0, ①有两个不相等的实数根; ②有两个相等的实数根; ③没有实数根.【答案与解析】 一、选择题 1.【答案】C ;【解析】解:根据分析可知A 、B 、D 适用公式法.而C 可化简为x 2+x ﹣72=0,即(x+9)(x ﹣8)=0, 所以C 适合用因式分解法来解题.故选C .2.【答案】C ;【解析】整理得x 2-x-2=0,∴ (x-2)(x+1)=0.3.【答案】A ;【解析】可分解为(x-1)(x+4)=04.【答案】B ;【解析】要设法找到两个数a ,b ,使它们的和a+b =-5,积ab =-6,∴ (x+1)(x-6)=0,∴ x+1=0或x-6=0. ∴ x 1=-1,x 2=6. 5.【答案】D ;【解析】此方程左右两边含有相同的因式(x-5),应移项后用因式分解法求解.即(x-5)(x-6)-(x-5)0.∴ (x-5)(x-6-1)=0,∴ 15x =,27x =6.【答案】C ;【解析】由已知得x 2-x =1,∴ 322222012()20122012120122013x x x x x x x x 2-++=--++=-++=+=.二、填空题 7.【答案】x 1=0,x 2=-1.【解析】可提公因式x ,得x(x+1)=0.∴ x =0或x+1=0,∴ x 1=0,x 2=-1. 8.【答案】x 1=1,x 2=-2,x 3=3.【解析】由x-1=0或x+2=0或x-3=0求解. 9.【答案】2320x x -+=;【解析】逆用因式分解解方程的方法,两根为1、2的方程就是(x-1)(x-2)=0,然后整理可得答案. 10.【答案】4;【解析】 m 应是一个整数的平方,此题可填的数字很多. 11.【答案】2;【解析】由(x 2+y 2)2-(x 2+y 2)-2=0得(x 2+y 2+1)(x 2+y 2-2)=0又由x ,y 为实数,∴ x 2+y 2>0,∴ x 2+y 2=2. 12.【答案】 (1) x =5或x =-2;(2) 3692x +=或3692x -=. 【解析】(1)当y =0时(x-5)(x+2)=0,∴ x-5=0或x+2=0,∴ x =5或x =-2.(2)当y =5时(x-5)(x+2)=5,∴ 23150x x --=,3941(15)369212x ±-⨯⨯-±==⨯,∴ 3692x +=或3692x -=. 三、解答题13.【解析】解:(1)(x ﹣3)2=4x ﹣3=2或x ﹣3=﹣2, 解得,x 1=1或x 2=5; (2)a=4,b=﹣6,c=﹣3,b 2﹣4ac=(﹣6)2﹣4×4×(﹣3)=84,x==,,;(3)移项得,(2x ﹣3)2﹣5(2x ﹣3)=0,因式分解得,(2x ﹣3)(2x ﹣3﹣5)=0,,x 2=4;(4)化简得,x 2+9x+20=0,(x+4)(x+5)=0,解得,x 1=﹣4,x 2=﹣5.14.【解析】(1)(x-8)(x+2)=0,∴ x-8=0或x+2=0,∴ 18x =,22x =-.(2)设y =2x+1,则原方程化为y2+3y+2=0,∴ (y+1)(y+2)=0,∴ y+1=0或y+2=0, ∴ y =-1或y =-2.当1y =-时,211x +=-,1x =-;当2y =-时,212x +=-,32x =-. ∴ 原方程的解为11x =-,232x =-.15.【解析】(2)①当240b ac ->时,方程有两个不相等的实数根; ②当240b ac -=时,方程有两个相等的实数根;③当240b ac -<时,方程没有实数根. (3)242015b ac m -=-,①当原方程有两个不相等的实数根时,2420150b ac m -=->,即34m >且m ≠2; ②当原方程有两个相等的实数根时,b 2 -4ac =20m -15=0,即34m =; ③当原方程没有实数根时, 2420150b ac m -=-<,即34m <.一元二次方程的解法--公式法,因式分解法—知识讲解(提高)【学习目标】1.理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;2.正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;3.通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想.【要点梳理】要点一、公式法解一元二次方程 1.一元二次方程的求根公式一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式; ②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.(2)一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+= ①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:21,242b b acx a--=②当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=-③当240b ac ∆=-<时,右端是负数.因此,方程没有实根. 要点二、因式分解法解一元二次方程1.用因式分解法解一元二次方程的步骤(1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、公式法解一元二次方程1.解关于x 的方程2()(42)50m n x m n x n m ++-+-=.【答案与解析】(1)当m+n =0且m ≠0,n ≠0时,原方程可化为(42)50m m x m m +--=.∵ m ≠0,解得x =1.(2)当m+n ≠0时,∵ a m n =+,42b m n =-,5c n m =-,∴ 2224(42)4()(5)360b ac m n m n n m m -=--+-=≥,∴ 2243624|6|2()2()n m m n m m x m n m n -±-±==++, ∴ 11x =,25n m x m n-=+. 【总结升华】解关于字母系数的方程时,应该对各种可能出现的情况进行讨论.举一反三:【高清ID 号:388515关联的位置名称(播放点名称):用公式法解含有字母系数的一元二次方程---例2练习】【变式】解关于x 的方程2223(1)x mx mx x m ++=+≠;【答案】原方程可化为2(1)(3)20,m x m x -+-+= ∵1,3,2,a m b m c =-=-=∴ 2224(3)8(1)(1)0b ac m m m -=---=+≥,∴ 23(1)3(1),2(1)2(1)m m m m x m m -±+-±+==-- ∴ 122, 1.1x x m==- 2. 用公式法解下列方程: (m-7)(m+3)+(m-1)(m+5)=4m ;【答案与解析】方程整理为224214540m m m m m --++--=,∴ 22130m m --=,∴ a =1,b =-2,c =-13,∴ 224(2)41(13)56b ac -=--⨯⨯-=,∴ 24(2)56221b b ac m a -±---±==⨯22141142±==±, ∴ 1114m =+,2114m =-.【总结升华】先将原方程化为一般式,再按照公式法的步骤去解.举一反三:【高清ID 号:388515关联的位置名称(播放点名称):用因式分解法解含字母系数的一元二次方程---例5(3)】【变式】用公式法解下列方程:【答案】∵21,3,2,a b m c m ==-= ∴22224(3)4120b ac m m m -=--⨯⨯=≥ ∴23322m m m m x ±±== ∴122,.x m x m ==类型二、因式分解法解一元二次方程3.(2015•东西湖区校级模拟)解方程:x 2﹣1=2(x+1).【答案与解析】解:∵x 2﹣1=2(x+1),∴(x+1)(x ﹣1)=2(x+1),∴(x+1)(x ﹣3)=0,∴x 1=﹣1,x 2=3.【总结升华】本题主要考查了因式分解法解一元二次方程的知识,左边先平方差公式分解,然后提取公因式(x+1),注意不要两边同除(x+1),这样会漏解.举一反三:【变式】解方程(2015·茂名校级一模)(1)x 2-2x-3=0; (2)(x-1)2+2x(x-1)=0.【答案】解:(1)分解因式得:(x-3)(x+1)=0∴x-3=0,x+1=0∴x 1=3,x 2=-1.(2)分解因式得:(x-1)(x-1+2x )=0∴x-1=0,3x-1=0∴x 1=1,x 2=13.4.如果2222()(2)3x y x y ++-=,请你求出22x y +的值.【答案与解析】设22x y z +=,∴ z(z-2)=3.整理得:2230z z --=,∴ (z-3)(z+1)=0.∴ z 1=3,z 2=-1.∵ 220z x y =+>,∴ z =-1(不合题意,舍去)∴ z =3.即22x y +的值为3.【总结升华】如果把22x y +视为一个整体,则已知条件可以转化成一个一元二次方程的形式,用因式分解法可以解这个一元二次方程.此题看似求x 、y 的值,然后计算22x y +,但实际上如果把22x y +看成一个整体,那么原方程便可化简求解。
(完整版)用因式分解法解一元二次方程(知识点+经典例题+综合练习)---详细答案
用因式分解法解一元二次方程【主体知识归纳】1.因式分解法若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,X2—9= 0, 这个方程可变形为(x+ 3)( X—3) = 0,要(x + 3)( x —3)等于0,必须并且只需(x+ 3)等于0或(x—3)等于0, 因此,解方程(x + 3)( x—3) = 0就相当于解方程x+ 3= 0或x—3 = 0 了,通过解这两个一次方程就可得到原方程的解•这种解一元二次方程的方法叫做因式分解法.2•因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程•其理论根据是:若A- B=吐A=0 或B= 0.【基础知识讲解】1 •只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程•分解因式时,要根据情况灵活运用学过的因式分解的几种方法.2 •在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程•但对某些特殊形式的一元二次方程,有的用直接开平方法简便,有的用因式分解法简便•因此,在遇到一道题时,应选择适当的方法去解. 配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法•而在以后的学习中,会常常用到因式分解法,所以要掌握这个重要的数学方法.【例题精讲】例1 :用因式分解法解下列方程:2(1) y + 7y + 6 = 0; (2) t (2 t —1) = 3(2 t —1); ⑶(2 x —1)( x—1) = 1.解:(1)方程可变形为(y+ 1)( y+ 6) = 0, y+ 1 = 0 或y + 6 = 0,「. y1 = —1, y2=— 6.1(2) 方程可变形为t(2t —1) —3(21 —1) = 0, (2t —1)( t —3) = 0, 2t —1 = 0 或t —3= 0,二t1= , t22=3.(3) 方程可变形为2x2—3x = 0. x(2x—3) = 0, x= 0 或2x — 3 = 0.3--X1 = 0, X2 =2说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x—a)(x —b) = c的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x —e)( x—f) = 0的形式,这时才有X1= e, %= f,否则会产生错误,如(3)可能产生如下的错解:原方程变形为:2x— 1 = 1 或x — 1 = 1 .••• x i = 1, X2= 2.(3)在方程(2)中,为什么方程两边不能同除以(2t —1),请同学们思考?例2 :用适当方法解下列方程:—2 ------------------------------------ 2 2 2(1) ..3(1 —x) = ..27 ; (2) x —6x—19= 0; (3)3 x = 4x+ 1; (4) y —15= 2y;(5)5 x(x—3) —(x—3)( x+ 1) = 0 ;2 2(6)4(3 x + 1) = 25(x —2).剖析:方程(1)用直接开平方法,方程(2)用配方法,方程(3)用公式法,方程(4)化成一般式后用因式分解法,而方程(5)、(6)不用化成一般式,而直接用因式分解法就可以了.解:(1)(1 —x)2= , 9 , (x—1) 2= 3, x —1 = ± , 3 , • X1 = 1 + . 3 , X2= 1 — .、3 .(2) 移项,得x2—6x = 19,配方,得x2—6x+ ( —3)2= 19+ ( —3)2, (x—3)2= 28, x — 3 =± 2 ,7 ,•-X1 = 3+ 2 .7 , X2= 3— 2 7 .⑶移项,得3x —4x—1= 0,a= 3, b=—4, c =—1,•x ( 4) V( 4)2 4 3 ( 1) 2 <7--x =2 3 32 V7 2 47•• X1 = , X2 =3 32 __⑷移项,得y—2y —15 = 0,把方程左边因式分解,得(y —5)( y+ 3) = 0;•y —5= 0 或y+ 3= 0, • y1 = 5, y2 = —3.⑸将方程左边因式分解,得(x—3) :5x —(x+ 1) ]= 0, (X —3)(4 x —1) = 0,•x —3= 0 或4x— 1 = 0,c 1--X1 = 3, X2 =42 2(6)移项,得4(3x + 1) —25(x —2) = 0,2 2[2(3 x+ 1): —[ 5( x—2): = 0,:2(3 x+ 1) + 5(x —2): • : 2(3 x+ 1) —5( x —2) ]= 0,(11 X—8)( x + 12) = 0,• 11x—8 = 0 或x + 12= 0,二X1 = — , X2=—12.11说明:(1)对于无理系数的一元二次方程解法同有理数一样,只不过要注意二次根式的化简.(2) 直接因式分解就能转化成两个一次因式乘积等于零的形式, 般式了.2 2 2 2 2例3:解关于x 的方程:(a — b )x — 4abx = a - b .解:⑴ 当 a 2— b 2= 0,即 | a | = | b | 时,方程为一4abx = 0. 当a = b = 0时,x 为任意实数.当| a | = | b |z 0时,x = 0. (2)当a 2— b 2^ 0,即a + 0且a — b *0时,方程为一元二次方程.分解因式,得[(a + b )x + (a — b ) ] [(a — b )x — (a + b ) ]= 0,a +b * 0 且 a — b * 0,b a a b X 1=, X 2 =a ba b说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不同情况分别求解.本题实际上是 分三种情况,即① a = b = 0 :②丨a | = | b |* 0 :③丨a | *| b | .例4:已知x 2— xy — 2y 2= 0,且x * 0, y * 0,求代数式剖析:要求代数式的值,只要求出x 、y 的值即可,但从已知条件中显然不能求出, 要求代数式的分子、分母是关于x 、y 的二次齐次式,所以知道 x 与y 的比值也可.由已知 x 2— xy — 2y 2= 0因式分解即可得 x 与y 的比值.2 2解:由 x — xy — 2y = 0,得(x — 2y )( x + y ) = 0,二 x — 2y = 0 或 x + y = 0,. x = 2y 或 x =— y .“化归”的数学思想方法,它不仅可用来解一元二次方程,而且在解元高次方程、二元二次方程组及有关代数式的计算、证明中也有着广泛的应用.【同步达纲练习】 1•选择题(1)方程(x — 16)( x + 8) = 0 的根是()对于这种形式的方程就不必要整理成一2 2x 2 2xy 5y2 的值x 2xy 5y当x = 2y 时, 2 2 x2xy52 2 2(2y) 2 2y y 5y 5y (2y)2 2 2y y 5y 2 13y 2 5 13当x = — y 时,x 2 2xy 5y 22 2x 2xy 5y(y)22 ( y) y 5y 2 2(y) 2 ( y) y 5y y 24y 2 说明:因式分解法体现了“降次”A. X1 = —16, X2= 8B. X1 = 16, X2= —8C. X1 = 16, X2= 8D. X1 = —16, X2=—8__ 2 2 2(2)下列方程 4x - 3x — 1= 0, 5x - 7x + 2= 0, 13x - 15x + 2 = 0 中,有一个公共解是 ()方程 5x (x + 3) = 3(x + 3)解为( 方程(y -5)( y + 2) = 1的根为(22方程(x - 1) -4(x + 2) = 0 的根为()A .1 B.2 C. - 4 D. 4⑺ 已知三角形两边长为4和7,第三边的长是方程 x 2- 16X + 55= 0的一个根,则第三边长是 ( )A. 5B. 5 或 11C. 6D.11(8) 方程 x 2- 3|x - 1| = 1的不同解的个数是()A . 0 B. 1 C. 2 D. 32 .填空题(1)方程t (t + 3) = 28的解为 __________ .2⑵方程(2x + 1) + 3(2 x + 1) = 0的解为 _____________ .2⑶ 方程(2y + 1) + 3(2 y + 1) + 2 = 0 的解为 ____________ .⑷关于x 的方程x + (m+ n )x + mr = 0的解为 ______________⑸方程x (x - J5) =5 -x 的解为 _____________A . . x =12B. x = 2C. x = 1D.x =- 1A . X 1= 3, X 2= 3 B. 3x=-5 C.3X 1 = - — , X 2 =- 35D.3 X 1 = , X 2=- 35A . y 1 = 5, y =- 2B. y = 5C. y =-2D.以上答案都不对A. X 1 = 1, X =- 5B. X 1=- 1, X 2=- 5C.X 1 = 1, X 2= 5 D. X 1 =- 1, X 2 = 5元二次方程 x 2+ 5x = 0的较大的一个根设为 m,3x + 2 = 0较小的根设为 n ,贝U n 的值为2 (1) x + 12x = 0;2(3) x = 7x ;2⑷ x — 4x — 21 = 0;(5)( X - 1)( x + 3) = 12;2(6)3 x + 2x - 1= 0;2 2(6)(3 — y ) + y = 9;⑺(1 + , 2)x 3 — (1 — , 2)x = 0;(8) . 5 x 2— (5 2 + 1)x + ,10 = 0;201) ; (10)( x + 5) — 2( x + 5) — 8 = 0.5 .解关于x 的方程:(1) x 2 — 4ax + 3a 2= 1 — 2a ; (2) x 2 + 5x + k 2 = 2kx + 5k + 6 ;6 .已知 x 2+ 3xy — 4y 2= 0( y ^ 0),试求 的值.3 2 2 2(3) x — 2mx- 8m = 0; (4) x + (2 耐 1)x + m + m = 0.2 (7)10 x — x — 3= 0; 2(8)( x — 1) — 4( x — 1) — 21 = 0.4 .用适当方法解下列方程:2(1) x — 4x + 3 = 0; (4) x 2— 2x — 3 = 0;2(2)( x — 2) = 256; 2(3) x — 3x + 1 = 0;⑸(2 t + 3) 2= 3(21 + 3);2(9)2 x — 8x = 7(精确到 0.x y2 2 2 2 2 27.已知(x + y)( x — 1 + y ) —12= 0 .求x + y 的值.&请你用三种方法解方程:x(x + 12) = 864.9 .已知x2+ 3x+ 5的值为9,试求3x2+ 9x—2的值.10.一跳水运动员从10米高台上跳水,他跳下的高度h(单位:米)与所用的时间t(单位:秒)的关系式h=—5(t —2)( t + 1) •求运动员起跳到入水所用的时间.11•为解方程(x2—1)2—5(x2—1) + 4 = 0,我们可以将x2—1视为一个整体,然后设x2— 1 = y,则y2= (x2—1)2,原方程化为y2—5y + 4 = 0,解此方程,得y1 = 1, y2= 4.当y = 1 时,x2— 1 = 1, x2= 2,「. x=±2 .当y = 4 时,x2— 1 = 4, x2= 5,「. x=±、5 .原方程的解为X1=—2 , x2= , 2 , X3=—:.『5 , X4 =、.. 5 .以上方法就叫换元法,达到了降次的目的,体现了转化的思想.(1) 运用上述方法解方程:x4—3x2—4= 0.(2) 既然可以将x2—1看作一个整体,你能直接运用因式分解法解这个方程吗参考答案【同步达纲练习】1. (1)B (2)C (3)D (4)D (5)B (6)A (7)A (8)D12. (1) 11=—7 , 12 =4(2)X1=—— , X2=—2(3) y’ = —1 , y2= —-(4) X1 ==—m X2=—n(5) X1==.5 , X2 =—1221 13. (1) X1 = 0 , X2=—12; (2) X1=—— , X2 = ; (3) X1 =0 , X2 =7; (4) X1==7, X2= —3; (5) X1 =—5 , X2 = 3; (6) X1 = —1 ,2 21X2 =33 1(7)x i= , X2 = —一;(8)x i= 8, X2=— 2 .5 23 5 3 54. (1) x i= 1 , X2= 3; (2) x i= 18, X2=—14;⑶x i= , X2 = ; (4) x i =3, X2=—1;2 2(5) t1= 0, t2=—3; (6) y1= 0, y2 = 3; (7) X1 = 0, X2= 2 2 —3;2(8)X1=上,X2 = . 10 ; (9) X1~ 7.24 , X2=—3.24 ; (10) X1=—1 , X2 =—7.55. (1) x2—4ax+4a2=a2—2a + 1,(x —2a)2= (a—1)2,二x—2a=± (a—1),二X1= 3a—1, X2= a+ 1.(2) x2+ (5 —2k)x + k2—5k—6 = 0,x2+ (5 —2k)x + (k+ 1)( k—6) = 0,:x—(k + 1) ] [x —(k —6)]= 0 ,二X1= k +1 , X2 = ( k—6).(3) x2—2mx^ m = 9用,(x—m)2= (3 m)2二X1= 4m X2=—2m2(4) x + (2 m^ 1) x + m m^ 1) = 0 ,(x + m [x+ ( m^ 1) ]= 0,二X1=—m X2 = —m-16. (x+ 4y)( x —y) =0,x=—4y 或x=y当x=—4y 时,—=^^ 5;x y 4y y 3当x= y 时,—=3 = 0 .x y y y7. (x2+ y2)( X2+ y2—1) —12 = 0,2 2 2 2 2(x + y) —(x +y) —12 = 0,(x2+ y2—4)( x2+ y2+3) = 0,x2+ y2= 4 或x2+ y2= —3(舍去)8. X1=—36, X2= 249. :X + 3x + 5= 9, . x?+ 3x= 4 ,/• 3x2+ 9x-2= 3(x2+ 3x) - 2 = 3X 4- 2= 1010. 10=- 5( t - 2)( t + 1),二t = 1(t = 0 舍去)11 .⑴x i=- 2, X2 = 2(2)( x2- 2)( x2-5) =0,(x + , 2 )( x- 2 )(x + .. 5 )( x-、5) = 03 .用因式分解法解下列方程:2(2)4 X - 1= 0;。
一元二次方程的解法(二)配方法—巩固练习
一元二次方程的解法(二)配方法—巩固练习【基础练习】 一、选择题1.用配方法解一元二次方程x 2+4x ﹣3=0时,原方程可变形为( ) A .(x +2)2=1 B .(x +2)2=7 C .(x +2)2=13 D .(x +2)2=19 2.下列各式是完全平方式的是( )A .277x x ++B .244m m --C .211216n n ++ D .222y x -+ 3.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .3±D .以上都不对 4.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1 B .(a+2)2-1 C .(a+2)2+1 D .(a-2)2-1 5.把方程x 2+3=4x 配方,得( )A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=26.用配方法解方程x 2+4x=10的根为( ) A .2±10 B .-2±14 C .-2+10 D .2-10二、填空题 7.(1)x 2+4x+ =(x+ )2;(2)x 2-6x+ =(x- )2;(3)x 2+8x+ =(x+ )2. 8.用配方法将方程x 2-6x+7=0化为(x +m )2=n 的形式为 .9.若226x x m ++是一个完全平方式,则m 的值是________.10.求代数式2x 2-7x+2的最小值为 .11.当x= 时,代数式﹣x 2﹣2x 有最大值,其最大值为 . 12.已知a 2+b 2-10a-6b+34=0,则的值为 .三、解答题13. 用配方法解方程 (1)(2)221233x x +=14.已知a 2+b 2﹣4a+6b+13=0,求a+b 的值.15.已知a ,b ,c 是△ABC 的三边,且2226810500a b c a b c ++---+=.(1)求a ,b ,c 的值; (2)判断三角形的形状.【提高练习】 一、选择题1.一元二次方程x 2﹣6x ﹣5=0配方组可变形为( )A .(x ﹣3)2=14B .(x ﹣3)2=4C .(x +3)2=14D .(x +3)2=4 2.用配方法解下列方程时,配方有错误的是( )A .22990x x --=化为2(1)100x -=B .22740t t --=化为2781416t ⎛⎫-= ⎪⎝⎭C .2890x x ++=化为2(4)25x +=D .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭3.把一元二次方程x 2﹣6x+4=0化成(x+n )2=m 的形式时,m+n 的值为( )A .8B .6C .3D .2 4.不论x 、y 为何实数,代数式22247x y x y ++-+的值 ( )A .总小于2B .总不小于7C .为任何实数D .不能为负数 5.已知,则的值等于( )A.4B.-2C.4或-2D.-4或2 6.若t 是一元二次方程的根,则判别式和完全平方式的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定 二、填空题 7.(1)x 2-43x+ =( )2; (2)x 2+px+ =( )2. 8.把代数式x 2﹣4x ﹣5化为(x ﹣m )2+k 的形式,其中m ,k 为常数, 则4m+k= .9.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.10.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为____ ___,•所以方程的根为_________.11.把一元二次方程3x 2-2x-3=0化成3(x+m)2=n 的形式是___ ________;若多项式x 2-ax+2a-3是一个完全平方式,则a=_________. 12.已知.则的值为 .三、解答题13. 用配方法解方程.(1)解方程:x 2﹣2x=4. (2)解方程:x 2﹣6x ﹣4=0.14.分解因式44x +.15.当x ,y 取何值时,多项式x 2+4x+4y 2﹣4y+1取得最小值,并求出最小值.【基础答案与解析】 一、选择题 1.【答案】B .【解析】x 2+4x=3,x 2+4x +4=7,(x +2)2=7. 2.【答案】C ;【解析】211216n n ++214n ⎛⎫=+ ⎪⎝⎭.3.【答案】C ; 【解析】 若x 2+6x+m 2是一个完全平方式,则m 2=9,解得m=3±; 4.【答案】A ;【解析】a 2-4a+5= a 2-4a+22-22+5=(a-2)2+1 ; 5.【答案】C ;【解析】方程x 2+3=4x 化为x 2-4x=-3,x 2-4x+22=-3+22,(x-2)2=1. 6.【答案】B ;【解析】方程x 2+4x=10两边都加上22得x 2+4x+22=10+22,x=-2±14.二、填空题 7.【答案】(1)4;2; (2)9;3; (3)16;4. 【解析】配方:加上一次项系数一半的平方. 8.【答案】(x ﹣3)2=2.【解析】移项,得x 2﹣6x=﹣7,在方程两边加上一次项系数一半的平方得,x 2﹣6x +9=﹣7+9, (x ﹣3)2=2. 9.【答案】±3; 【解析】2239m ==.∴ 3m =±. 10.【答案】-338;【解析】∵2x 2-7x+2=2(x 2-72x )+2=2(x-74)2-338≥-338,∴最小值为-338, 11.【答案】-1,1【解析】∵﹣x 2﹣2x=﹣(x 2+2x )=﹣(x 2+2x+1﹣1)=﹣(x+1)2+1,∴x=﹣1时,代数式﹣x 2﹣2x 有最大值,其最大值为1; 故答案为:﹣1,1. 【解析】 -3x 2+5x+1=-3(x-56)2+3712≤3712,• ∴最大值为3712. 12.【答案】4.【解析】∵a 2+b 2-10a-6b+34=0∴a 2-10a+25+b 2-6b+9=0∴(a-5)2+(b-3)2=0,解得a=5,b=3, ∴=4.三、解答题13.【答案与解析】 (1)x 2-4x-1=0x 2-4x+22=1+22(x-2)2=5 x-2=5± x 1=2+5x 2=2-5 (2)221233x x +=226x x +=2132x x += 222111()3()244x x ++=+ 2149()416x +=1744x +=±132x =22x =- 14.【答案与解析】解:∵a 2+b 2﹣4a+6b+13=0,∴a 2﹣4a+4+b 2+6b+9=0, ∴(a ﹣2)2+(b+3)2=0, ∴a ﹣2=0,b+3=0, ∴a=2,b=﹣3, ∴a+b=2﹣3=﹣1.15.【答案与解析】(1)由2226810500a b c a b c ++---+=,得222(3)(4)(5)0a b c -+-+-=又2(3)0a -≥,2(4)0b -≥,2(5)0c -≥, ∴ 30a -=,40b -=,50c -=,∴ 3a =,4b =,5c =.(2)∵ 222345+= 即222a b c +=,∴ △ABC 是以c 为斜边的直角三角形.【提高答案与解析】 一、选择题 1.【答案】A .【解析】x 2﹣6x ﹣5=0,x 2﹣6x=5,x 2﹣6x +9=5+9,(x ﹣3)2=14,故选:A . 2.【答案】C ;【解析】选项C :2890x x ++=配方后应为2(4)7x +=.3.【答案】D ;【解析】 x 2﹣6x=﹣4,∴ x 2﹣6x+9=﹣4+9,即得(x ﹣3)2=5,∴ n=﹣3,m=5,∴ m+n=5﹣3=2.故选D .4.【答案】D ; 【解析】2222247(1)(2)22x y x y x y ++-+=++-+≥.5.【答案】A ;【解析】原方程化简为:(x 2+y 2)2-2(x 2+y 2)-8=0,解得x 2+y 2=-2或4,-2不符题意舍去.故选A. 6.【答案】A .【解析】由t 是方程的根得at 2+bt+c=0,M=4a 2t 2+4abt+b 2=4a(at 2+bt)+b 2= b 2-4ac=△.故选A.二、填空题7.【答案】(1)49;23x -; (2)24p ;2p x +.【解析】配方:加上一次项系数一半的平方.8.【答案】﹣1;【解析】x 2﹣4x ﹣5=x 2﹣4x+4﹣4﹣5=(x ﹣2)2﹣9, ∴ m=2,k=﹣9,∴ 4m+k=4×2﹣9=﹣1.故答案为﹣1.9.【答案】4;【解析】4x 2-ax+1=(2x-b)2化为4x 2-ax+1=4x 2-4bx+b 2, 所以241a bb =-⎧⎨=⎩- 解得41a b =⎧⎨=⎩或41a b =-⎧⎨=-⎩所以4ab =.10.【答案】(x-1)2=5;15± .【解析】方程两边都加上1的平方得(x-1)2=5,解得x=15±.11.【答案】;2或6.【解析】3x 2-2x-3=0化成;即2(-)232aa =-,a=2或6.12.【答案】5; 【解析】原式三、解答题13.【答案与解析】 解:(1)配方x 2﹣2x +1=4+1 ∴(x ﹣1)2=5 ∴x=1±∴x 1=1+,x 2=1﹣.(2015•大连)解方程:x 2﹣6x ﹣4=0.(2)解:移项得x 2﹣6x=4, 配方得x 2﹣6x +9=4+9, 即(x ﹣3)2=13, 开方得x ﹣3=±, ∴x 1=3+,x 2=3﹣. 14. 【答案与解析】4222224()22222x x x x +=++-g g g g22222(2)(2)(22)(22)x x x x x x =+-=++-+.15. 【答案与解析】解:x 2+4x+4y 2﹣4y+1=x 2+4x+4+4y 2﹣4y+1﹣4 =(x+2)2+(2y ﹣1)2﹣4,又∵(x+2)2+(2y ﹣1)2的最小值是0, ∴x 2+4x+4y 2﹣4y+1的最小值为﹣4.∴当x=﹣2,y=时有最小值为﹣4.。
一般的一元二次方程的解法—知识讲解(基础)+巩固练习
一元二次方程的解法(二)一般的一元二次方程的解法一知识讲解(基础)【学习目标】1•了解配方法和公式法的概念、一元二次方程求根公式的推导过程,会用配方法和公式法解一元二次方程;2•掌握运用配方法和公式法解一元二次方程的基本步骤;3•通过用配方法将一元二次方程变形的过程,通过求根公式的推导,进一步体会转化的思想方法,并增强数学应用意识和能力•培养学生数学推理的严密性及严谨性,渗透分类的思想.【要点梳理】要点一、一元二次方程的解法---配方法1.配方法解一元二次方程:(1)配方法解一元二次方程:将一元二次方程配成,|丨的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:J . - - ■ I I .(3)用配方法解一元二次方程的一般步骤:①把原方程化为1- - - ■1的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为 1 ;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方(3)配方法的理论依据是完全平方公式a2 2ab b2 (a b)2.要点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.要点三、公式法解一元二次方程1•一元二次方程的求根公式元二次方程,当_ .1 7丄时,L -2•—元二次方程根的判别式元二次方程根的判别式:上]二一•3.用公式法解一元二次方程的步骤用公式法解关于X的一元二次方程T!的步骤:①把一元二次方程化为一般形式;②确定a、b、c的值(要注意符号);③求出一:的值;④若「一 -亠二:,则利用公式求出原方程的解;2a若匸:,.,则原方程无实根•要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用•2(2)一元二次方程ax2 bx c 0(a 0),用配方法将其变形为:(x ―)2 -訂2a 4a2①当b2 4ac 0时,右端是正数•因此,方程有两个不相等的实根:b ■. b24acX l,2 2a②当2b 4ac 0时,右端是零•因此,方程有两个相等的实根:bX1 21,22a③当2b 4ac 0时,右端是负数•因此,方程没有实根•①当丄{: _]「:-.时,②当丄f :【时,原方程有两个不等的实数根原方程有两个相等的实数根原方程没有实数根•【典型例题】类型一、用配方法解一元二次方程X2-7X -1= 0.举一反三:【变式】用配方法解方程(1)X2-4X-2 = 0;(2)X2+6X +8= 0.类型二、配方法在代数中的应用若代数式M 10a2 b2 7a N a2 b2 5a 1,则M N 的值(A. —定是负数B. —定是正数 c. 一定不是负数D. —定不是正数代数式X2+8X+17的值总大于0.用配方法说明:举一反三:【变式】求代数式X2+8X+17的最小值4. (2016春金堂县校级月考)已知 2 100 1b 2a 6b 10 0,求2 a 3 b 的值.举一反三:【变式】用公式法解方程3x 2 4x 16 •用公式法解下列方程: (1) x 24、3x 100 ;举一反三:【变式】(2014秋泽州县校级期中)用公式法解方程:5x 2-4x -类型三、 公式法解一元二次方程用公式法解下列方程.2(1)3x 3x 1⑵2x 2 4x 1 .⑵(x 1)(x 1) 2\2X12 = 0.【巩固练习】 -、选择题1.用配方法解方程X 22x 5 0时,原方程变形为()F 列各式是完全平方式的是(D .方程2x 2- 6x -7=0,可化为 (8.若 x 2mx 3 (x 2)21,那么 m = _________________2 29 .若x 6x m 是一个完全平方式,则 m 的值是 5x 2m 7的最小值是匚,则m的值为———时,代数式-2X 2+6X +4有最大值,最大值= 12.已知 a 2+b 2-10a-6b+34=0,则「,的值为三、解答题13.用配方法解方程(1) -x 2+ 4x + 1 = 0A . (X 1)26 B . (x21) 6 C. (x2)2D. (X 2) 91 n 2(2015春长清区期末)用配方法解下列方程时,配方正确的是A. 方程 x 2- 6x - 5=0,可化为(x -3) 2=4 B. 方程 y 2- 2y - 2015=0,可化为(y - 1) 2=2015A2f2A . x 7x 7 B. m24m 4 C. nD . y 22x 24x 5,通过配方能说明它的值- —定是A .非正数B .非负数C.正数5 .把方程x 2+3=4x 配方,得()A . (x-2) 2=7 B . (x+2) 2=21C. (x-2) 2=16 .用公式法解方程X2+4X =10的根为()A . 2 ± 10B . -2 + 14C . -2+10D.负数D. (x+2) 2=2D . 2- - 1010. (2016春•乳山市期中)代数式 x 211. (2015春北京校级期中)当 x= ____(2016春•顺义区期末)对于代数式4.14.(2014 秋万州区校级期中)按照指定的方法解下列方程:(1)4x2- 4x-仁0 (配方法)(2)5X2+2X-仁0 (公式法)15. 若y2 x2 2x 6y 10 0,求x,y 的值.2 2 250 0 .16.已知a, b, c是厶ABC的三边,且a b c 6a 8b 10c⑴求a, b, c的值;( )判断三角形的形状.。
《一元二次方程》全章复习与巩固—知识讲解(基础)--初中数学【名校学案+详细解答】
《一元二次方程》全章复习与巩固—知识讲解(基础)【学习目标】1.了解一元二次方程及有关概念;2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;3.掌握依据实际问题建立一元二次方程的数学模型的方法.【知识网络】【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 要点诠释:判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.要点二、一元二次方程的解法1.基本思想一元二次方程−−−→降次一元一次方程 2.基本解法直接开平方法、配方法、公式法、因式分解法.要点诠释:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解 法,再考虑用公式法.要点三、一元二次方程根的判别式及根与系数的关系1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.2.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.要点诠释:1.一元二次方程 的根的判别式正反都成立.利用其可以解决以下问题:(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.要点四、列一元二次方程解应用题1.列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等);设 (设未知数,有时会用未知数表示相关的量);列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰);验 (检验方程的解能否保证实际问题有意义);答 (写出答案,切忌答非所问).4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.要点诠释:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.【典型例题】 类型一、一元二次方程的有关概念1.下列方程中是关于x 的一元二次方程的是( )A .2210x x +=B .20ax bx c ++=C .(1)(2)1x x -+=D .223250x xy y --= 【答案】C ;【解析】A :不是整式方程,故本选项错误;B :当a =0时,即ax 2+bx +c =0的二次项系数是0时,该方程就不是一元二次方程;故本选项错误;C :由原方程,得x 2+x-3=0,符号一元二次方程的要求;故本选项正确;D :方程3x 2-2xy -5y 2=0中含有两个未知数;故本选项错误.故选C .【总结升华】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.举一反三:【变式】关于x 的方程22(28)(2)10a a x a x --++-=,当a 时为一元一次方程;当a 时为一元二次方程.【答案】a =4;a ≠4且a ≠-2.类型二、一元二次方程的解法2.用适当的方法解一元二次方程(1) 0.5x2-=0; (2) (x+a)2=;(3) 2x2-4x-1=0; (4) (1-)x2=(1+)x.【答案与解析】(1)原方程可化为0.5x2=∴x2=用直接开平方法,得方程的根为∴x1=,x2=-.(2)原方程可化为x2+2ax+a2=4x2+2ax+∴x2=a2用直接开平方法,得原方程的根为∴x1=a,x2=-a.(3) a=2,b=-4,c=-1b2-4ac=(-4)2-4×2×(-1)=24>0x=∴x1=,x2=.(4)将方程整理,得(1-)x2-(1+)x=0用因式分解法,得x[(1-)x-(1+)]=0∴ x1=0,x2=-3-2.【总结升华】在以上归纳的几种解法中,因式分解法是最简便、最迅捷的方法,但只有一部分方程可以运用这种方法,所以要善于及时观察标准的二次三项式在有理数范围内是否能直接因式分解,凡能直接因式分解的,应首先采取这种方法.公式法是可以解任何类型的一元二次方程,但是计算过程较繁琐,所以只有选择其他解法不顺利时,才考虑用这种解法.虽然先配方,再开平方的方法也适用于任何类型的一元二次方程,但是对系数复杂的一元二次方程,配方的过程比运用公式更繁琐,所以,配方法适用于系数简单的一元二次方程的求解.举一反三:【变式】解方程. (1)(3x-2)2+(2-3x)=0; (2)2(t-1)2+t =1.【答案】(1)原方程可化为:(3x-2)2-(3x-2)=0,∴ (3x-2)(3x-2-1)=0.∴ 3x-2=0或3x-3=0,∴ 123x =,21x =. (2)原方程可化为:2(t-1)2+(t-1)=0.∴ (t-1)[2(t-1)+1]=0.∴ (t-1)(2t-1)=0,∴ t-1=0或2t-1=0.∴ 11t =,212t =. 类型三、一元二次方程根的判别式的应用3.若关于x 的一元二次方程x 2﹣4x+5﹣a=0有实数根,则a 的取值范围是( )A .a ≥1B . a >1C . a ≤1D .a <1【答案】A ;【解析】∵关于x 的一元二次方程x 2﹣4x+5﹣a=0有实数根,∴△=(﹣4)2﹣4(5﹣a )≥0,∴a ≥1.故选A .【总结升华】本题考查的是一元二次方程根的判别式,根据方程有两个实数根,得到判别式大于等于零,求出a 的取值范围.类型四、一元二次方程的根与系数的关系4.已知x 1、x 2是关于x 的方程2220x x t -++=的两个不相等的实数根,(1)求t 的取值范围; (2)设2212s x x =+,求s 关于t 的函数关系式. 【答案与解析】(1)因为一元二次方程有两个不相等的实数根.所以△=(-2)2-4(t+2)>0,即t <-1.(2)由一元二次方程根与系数的关系知:122x x +=,122x x t =+g ,从而2212s x x =+21212()2x x x x =+-222(2)2t t =-+=-,即2(1)s t t =-<-.【总结升华】利用根与系数关系求函数解析式综合题.举一反三:【变式】已知关于x 的一元二次方程222(1)x m x m =--的两实数根为1x ,2x .(1)求m 的取值范围;(2)设12y x x =+,当y 取得最小值时,求相应m 的值,并求出最小值.【答案】(1)将原方程整理为222(1)0x m x m +-+=.∵ 原方程有两个实数根.∴ 22[2(1)]4840m m m =--=-+≥△,∴ 12m ≤. (2) 1222y x x m =+=-+,且12m ≤. 因为y 随m 的增大而减小,故当12m =时,取得最小值1.类型五、一元二次方程的应用5.如图所示,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去的小正方形的边长.【答案与解析】设小正方形的边长为xcm ,由题意得4x 2=10×8×(1-80%).解得x 1=2,x 2=-2.经检验,x 1=2符合题意,x 2=-2不符合题意舍去.∴ x =2.答:截去的小正方形的边长为2cm .【总结升华】设小正方形的边长为x cm ,因为图中阴影部分面积是原矩形面积的80%,所以4个小正方形面积是原矩形面积的20%.举一反三:【变式】(2015春•启东市月考)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN 最长可利用25m ),现在欲砌50m 长的墙,砌成一个面积300m 2的矩形花园,则BC 的长为多少 m?【答案】解:设AB=x 米,则BC=(50﹣2x )米.根据题意可得,x (50﹣2x )=300,解得:x 1=10,x 2=15,当x=10,BC=50﹣10﹣10=30>25,故x 1=10(不合题意舍去),50﹣2x=50﹣30=20.答:BC 的长为20m .6.某旅行社有100张床位,每床每晚收费10元,空床可全部租出;若每床每晚提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去,为了每晚获得1120元的利润,每床每晚应提高多少元?【答案与解析】设每床每晚提高x个2元,则每床每晚收费为(10+2x)元,每晚出租出去的床位为(100-10x)张,根据题意,得(10+2x)(100-10x)=1120.整理,得x2-5x+6=0.解得,x1=2,x2=3.∴当x=2时,2x=4;当x=3时,2x=6.答:每床每晚提高4元或6元均可.【总结升华】这是商品经营问题,总利润=每张床费×床数.可设每床每晚提高x个2元,则床费为(10+2x)元,由于每晚每床提高2元,出租出去的床位减少10张,则出租出去的总床位为(100-10x)张,据此可列方程.。
中考总复习一元二次方程分式方程的解法及应用--知识讲解
中考总复习一元二次方程分式方程的解法及应用--知识讲解一、一元二次方程的解法一元二次方程是指一个未知数的平方最高次数为2的方程。
一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b和c为已知常数,且a≠0。
解一元二次方程的方法有以下几种:1.因式分解法:对方程进行因式分解,然后令每个因式等于0,求解得到方程的解。
2. 公式法:利用求根公式(-b±√(b^2-4ac))/2a,计算出方程的根。
3.完全平方式:对一元二次方程进行配方处理,将其化为完全平方的形式,然后求解。
4.图像法:将方程的解与图像相结合,通过观察图像的交点来确定方程的解。
二、一元二次方程的应用1.抛物线问题:一元二次方程常用来描述抛物线的形状与运动轨迹。
在物理学、工程学等领域中,抛物线的特性与运动轨迹有很多应用。
2.几何问题:一元二次方程可以用来解决与几何问题相关的计算和推理。
如求解一个平面图形的面积、找到一个图形的对称轴等。
3.速度问题:一元二次方程可以用来描述具有变速度的运动过程。
在物理学和运动学中,可以通过一元二次方程来计算运动物体的速度、加速度等相关参数。
4.财务问题:一元二次方程可以用来解决与财务相关的问题,如计算利润、成本和销售量之间的关系等。
5.人口增长问题:一元二次方程可以用来描述人口增长的模型。
通过一元二次方程的解,可以预测人口增长的趋势和规律。
总结:一元二次方程是数学中常见的一种方程形式,掌握解一元二次方程的方法对于提高数学学习的能力和解决实际问题具有重要意义。
在解题过程中,要根据具体情况选择合适的方法,并灵活运用数学知识解决问题。
一元二次不等式解法专题知识梳理及典型练习题(含答案)
一元二次不等式解法专题一.一元二次不等式与相应的二次函数及一元二次方程的关系判别式Δ=b 2-4ac Δ>0 Δ=0 Δ<0二次函数y =ax 2+bx +c (a >0)的图象一元二次方程ax 2+bx +c =0 (a >0)的根有两相异实根x 1,x 2(x 1<x 2) 有两相等实根x 1=x 2=-b2a没有实数根ax 2+bx +c >0 (a >0)的解集{x |x >x 2或x <x 1} ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠-b 2aRax 2+bx +c <0 (a >0)的解集 {x |x 1<x <x 2}Φ Φ二.穿针引线法例 1 解下列不等式:(1)x x ≥-2414 (2)0822≥+--x x (3)0)3)(2(>-+x x例2 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =_____.例3(穿针引线法) 解不等式:(x-1)2(x+1)(x-2)(x+4)<0例4 不等式xx ->+111的解集为( ) A .{x|x >0}B .{x|x≥1}C.{x|x >1} D .{x|x >1或x =0}解不等式化为+->,通分得>,即>,1x 000111122----xx x x x∵x 2>0,∴x-1>0,即x >1.选C . 例5 与不等式023≥--xx 同解得不等式是( ) A .(x -3)(2-x)≥0B.0<x -2≤1C .≥230--xx D .(x -3)(2-x)≤0 练习1:1.不等式x 2-3x +2<0的解集为( ). A .(-∞,-2)∪(-1,+∞) B .(-2,-1) C .(-∞,1)∪(2,+∞) D .(1,2)答案 D2.(2011·XX)不等式2x 2-x -1>0的解集是( ). A.⎝ ⎛⎭⎪⎫-12,1B .(1,+∞) C .(-∞,1)∪(2,+∞) D.⎝⎛⎭⎪⎫-∞,-12∪(1,+∞) 故原不等式的解集为⎝⎛⎭⎪⎫-∞,-12∪(1,+∞). 答案 D3.不等式9x 2+6x +1≤0的解集是( ).A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠-13B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-13C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-13≤x ≤13D .R答案 B4.若不等式ax 2+bx -2<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-2<x <14,则ab =( ).A .-28B .-26C .28D .26 答案 C5.函数f (x )=2x 2+x -3+log 3(3+2x -x 2)的定义域为________.解析 依题意知⎩⎨⎧2x 2+x -3≥0,3+2x -x 2>0,解得⎩⎨⎧x ≤-32或x ≥1,-1<x <3.∴1≤x <3.故函数f (x )的定义域为[1,3).答案 [1,3)6.已知函数f (x )=⎩⎨⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,解不等式f (x )>3.[审题视点] 对x 分x ≥0、x <0进行讨论从而把f (x )>3变成两个不等式组. 解 由题意知⎩⎨⎧x ≥0,x 2+2x >3或⎩⎨⎧x <0,-x 2+2x >3,解得:x >1.故原不等式的解集为{x |x >1}.例不等式<的解为<或>,则的值为7 1{x|x 1x 2}a axx -1A aB aC aD a .<.>.=.=-12121212分析可以先将不等式整理为<,转化为 0()a x x -+-111[(a -1)x +1](x -1)<0,根据其解集为{x|x <1或x >2}可知-<,即<,且-=,∴=.a 10a 12a 1112a - 选C .例解不等式≥.8 237232x x x -+-解 先将原不等式转化为3723202x x x -+--≥即≥,所以≤.由于++=++>,---+-+++-2123212314782222x x x x x x x x 002x x 12(x )022∴不等式进一步转化为同解不等式x 2+2x -3<0,即(x +3)(x -1)<0,解之得-3<x <1.解集为{x|-3<x <1}. 说明:解不等式就是逐步转化,将陌生问题化归为熟悉问题. 练习21.(x+4)(x+5)2(2-x)3<0.2.解下列不等式(1);22123+-≤-x x 127314)2(22<+-+-x x x x3.解下列不等式1x 5x 2)2(;3x 1x 1+>+-≤-)(4.解下列不等式()()12log 6log 1log )2(;08254)1(21212121≥-++≥+⋅-+x x x x5解不等式1)123(log 2122<-+-x x x .。
用因式分解法解一元二次方程(知识点+经典例题+综合练习)---详细答案【范本模板】
用因式分解法解一元二次方程【主体知识归纳】1.因式分解法 若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,x 2-9=0,这个方程可变形为(x +3)(x -3)=0,要(x +3)(x -3)等于0,必须并且只需(x +3)等于0或(x -3)等于0,因此,解方程(x +3)(x -3)=0就相当于解方程x +3=0或x -3=0了,通过解这两个一次方程就可得到原方程的解.这种解一元二次方程的方法叫做因式分解法.2.因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程.其理论根据是:若A ·B =0A=0或B =0.【基础知识讲解】1.只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程.分解因式时,要根据情况灵活运用学过的因式分解的几种方法.2.在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程.但对某些特殊形式的一元二次方程,有的用直接开平方法简便,有的用因式分解法简便.因此,在遇到一道题时,应选择适当的方法去解.配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法.而在以后的学习中,会常常用到因式分解法,所以要掌握这个重要的数学方法.【例题精讲】例1:用因式分解法解下列方程:(1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1. 解:(1)方程可变形为(y +1)(y +6)=0,y +1=0或y +6=0,∴y 1=-1,y 2=-6. (2)方程可变形为t (2t -1)-3(2t -1)=0,(2t -1)(t -3)=0,2t -1=0或t -3=0,∴t 1=21,t 2=3.(3)方程可变形为2x 2-3x =0.x (2x -3)=0,x =0或2x -3=0. ∴x 1=0,x 2=23. 说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考? 例2:用适当方法解下列方程:(1)3(1-x )2=27;(2)x 2-6x -19=0;(3)3x 2=4x +1;(4)y 2-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0;(6)4(3x +1)2=25(x -2)2.剖析:方程(1)用直接开平方法,方程(2)用配方法,方程(3)用公式法,方程(4)化成一般式后用因式分解法,而方程(5)、(6)不用化成一般式,而直接用因式分解法就可以了.解:(1)(1-x )2=9,(x -1)2=3,x -1=±3,∴x 1=1+3,x 2=1-3.(2)移项,得x 2-6x =19,配方,得x 2-6x +(-3)2=19+(-3)2,(x -3)2=28,x -3=±27, ∴x 1=3+27,x 2=3-27. (3)移项,得3x 2-4x -1=0, ∵a =3,b =-4,c =-1,∴x =37232)1(34)4()4(2±=⨯-⨯⨯--±--, ∴x 1=372+,x 2=372-. (4)移项,得y 2-2y -15=0,把方程左边因式分解,得(y -5)(y +3)=0; ∴y -5=0或y +3=0,∴y 1=5,y 2=-3.(5)将方程左边因式分解,得(x -3)[5x -(x +1)]=0,(x -3)(4x -1)=0, ∴x -3=0或4x -1=0, ∴x 1=3,x 2=41. (6)移项,得4(3x +1)2-25(x -2)2=0, [2(3x +1)]2-[5(x -2)]2=0,[2(3x +1)+5(x -2)]·[2(3x +1)-5(x -2)]=0, (11x -8)(x +12)=0, ∴11x -8=0或x +12=0,∴x 1=118,x 2=-12. 说明:(1)对于无理系数的一元二次方程解法同有理数一样,只不过要注意二次根式的化简.(2)直接因式分解就能转化成两个一次因式乘积等于零的形式,对于这种形式的方程就不必要整理成一般式了.例3:解关于x 的方程:(a 2-b 2)x 2-4abx =a 2-b 2.解:(1)当a 2-b 2=0,即|a |=|b |时,方程为-4abx =0. 当a =b =0时,x 为任意实数.当|a |=|b |≠0时,x =0. (2)当a 2-b 2≠0,即a +b ≠0且a -b ≠0时,方程为一元二次方程. 分解因式,得[(a +b )x +(a -b )][(a -b )x -(a +b )]=0, ∵a +b ≠0且a -b ≠0, ∴x 1=b a a b +-,x 2=ba ba -+. 说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不同情况分别求解.本题实际上是分三种情况,即①a =b =0;②|a |=|b |≠0;③|a |≠|b |.例4:已知x 2-xy -2y 2=0,且x ≠0,y ≠0,求代数式22225252yxy x y xy x ++--的值. 剖析:要求代数式的值,只要求出x 、y 的值即可,但从已知条件中显然不能求出,要求代数式的分子、分母是关于x 、y 的二次齐次式,所以知道x 与y 的比值也可.由已知x 2-xy -2y 2=0因式分解即可得x 与y 的比值.解:由x 2-xy -2y 2=0,得(x -2y )(x +y )=0,∴x -2y =0或x +y =0,∴x =2y 或x =-y .当x =2y 时,135y 13y 5y 5y y 22)y 2(y 5y y 22)y 2(y 5xy 2x y 5xy 2x 2222222222-=-=+⋅⋅+-⋅⋅-=++--. 当x =-y 时,21y 4y 2y 5y )y (2)y (y 5y )y (2)y (y 5xy 2x y 5xy 2x 222222222-=-=+⋅-⋅+--⋅-⋅--=++--2. 说明:因式分解法体现了“降次”“化归”的数学思想方法,它不仅可用来解一元二次方程,而且在解一元高次方程、二元二次方程组及有关代数式的计算、证明中也有着广泛的 应用.【同步达纲练习】 1.选择题(1)方程(x -16)(x +8)=0的根是( ) A .x 1=-16,x 2=8 B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( ) A ..x =21B .x =2C .x =1D .x =-1(3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53C .x 1=-53,x 2=-3D .x 1=53,x 2=-3(4)方程(y -5)(y +2)=1的根为( ) A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对(5)方程(x -1)2-4(x +2)2=0的根为( ) A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5(6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )A .1B .2C .-4D .4(7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( ) A .5B .5或11C .6D .11(8)方程x 2-3|x -1|=1的不同解的个数是( ) A .0B .1C .2D .32.填空题(1)方程t (t +3)=28的解为_______.(2)方程(2x +1)2+3(2x +1)=0的解为__________. (3)方程(2y +1)2+3(2y +1)+2=0的解为__________. (4)关于x 的方程x 2+(m +n )x +mn =0的解为__________. (5)方程x (x -5)=5 -x 的解为__________. 3.用因式分解法解下列方程: (1)x 2+12x =0; (2)4x 2-1=0;(3)x 2=7x ;(4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x2-x-3=0;(8)(x-1)2-4(x-1)-21=0.4.用适当方法解下列方程:(1)x2-4x+3=0; (2)(x-2)2=256;(3)x2-3x+1=0;(4)x2-2x-3=0;(5)(2t+3)2=3(2t+3);(6)(3-y)2+y2=9;(7)(1+2)x2-(1-2)x=0;(8)5x2-(52+1)x+10=0;(9)2x2-8x=7(精确到0.01);(10)(x+5)2-2(x+5)-8=0.5.解关于x的方程:(1)x2-4ax+3a2=1-2a;(2)x2+5x+k2=2kx+5k+6;(3)x2-2mx-8m2=0;(4)x2+(2m+1)x+m2+m=0.6.已知x 2+3xy -4y 2=0(y ≠0),试求yx yx +-的值.7.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.8.请你用三种方法解方程:x (x +12)=864.9.已知x 2+3x +5的值为9,试求3x 2+9x -2的值.10.一跳水运动员从10米高台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系式h =-5(t -2)(t +1).求运动员起跳到入水所用的时间.11.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则y 2=(x 2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,∴x =±2. 当y =4时,x 2-1=4,x 2=5,∴x =±5.∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5. 以上方法就叫换元法,达到了降次的目的,体现了转化的思想. (1)运用上述方法解方程:x 4-3x 2-4=0.(2)既然可以将x 2-1看作一个整体,你能直接运用因式分解法解这个方程吗参考答案【同步达纲练习】1.(1)B (2)C (3)D (4)D (5)B (6)A (7)A (8)D2.(1)t 1=-7,t 2=4(2)x 1=-21,x 2=-2(3)y 1=-1,y 2=-23(4)x 1=-m ,x 2=-n (5)x 1=5,x 2=-1 3.(1)x 1=0,x 2=-12;(2)x 1=-21,x 2=21;(3)x 1=0,x 2=7;(4)x 1=7,x 2=-3;(5)x 1=-5,x 2=3;(6)x 1=-1,x 2=31;(7)x 1=53,x 2=-21;(8)x 1=8,x 2=-2.4.(1)x 1=1,x 2=3;(2)x 1=18,x 2=-14;(3)x 1=253+,x 2=253-;(4)x 1=3,x 2=-1;(5)t 1=0,t 2=-23;(6)y 1=0,y 2=3;(7)x 1=0,x 2=22-3;(8)x 1=55,x 2=10;(9)x 1≈7.24,x 2=-3。
用因式分解法解一元二次方程(知识点+经典例题+综合练习)---详细答案
用因式分解法解一元二次方程【主体知识归纳】1.因式分解法 若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,x 2-9=0,这个方程可变形为(x +3)(x -3)=0,要(x +3)(x -3)等于0,必须并且只需(x +3)等于0或(x -3)等于0,因此,解方程(x +3)(x -3)=0就相当于解方程x +3=0或x -3=0了,通过解这两个一次方程就可得到原方程的解.这种解一元二次方程的方法叫做因式分解法.2.因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程.其理论根据是:若A ·B =0A =0或B =0.【基础知识讲解】1.只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程.分解因式时,要根据情况灵活运用学过的因式分解的几种方法.2.在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程.但对某些特殊形式的一元二次方程,有的用直接开平方法简便,有的用因式分解法简便.因此,在遇到一道题时,应选择适当的方法去解.配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法.而在以后的学习中,会常常用到因式分解法,所以要掌握这个重要的数学方法.【例题精讲】例1:用因式分解法解下列方程:(1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1.解:(1)方程可变形为(y +1)(y +6)=0,y +1=0或y +6=0,∴y 1=-1,y 2=-6.(2)方程可变形为t (2t -1)-3(2t -1)=0,(2t -1)(t -3)=0,2t -1=0或t -3=0,∴t 1=21,t 2=3. (3)方程可变形为2x 2-3x =0.x (2x -3)=0,x =0或2x -3=0.∴x 1=0,x 2=23. 说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解: 原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考例2:用适当方法解下列方程: (1)3(1-x )2=27;(2)x 2-6x -19=0;(3)3x 2=4x +1;(4)y 2-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0;(6)4(3x +1)2=25(x -2)2.剖析:方程(1)用直接开平方法,方程(2)用配方法,方程(3)用公式法,方程(4)化成一般式后用因式分解法,而方程(5)、(6)不用化成一般式,而直接用因式分解法就可以了.解:(1)(1-x )2=9,(x -1)2=3,x -1=±3,∴x 1=1+3,x 2=1-3.(2)移项,得x 2-6x =19,配方,得x 2-6x +(-3)2=19+(-3)2,(x -3)2=28,x -3=±27, ∴x 1=3+27,x 2=3-27.(3)移项,得3x 2-4x -1=0,∵a =3,b =-4,c =-1,∴x =37232)1(34)4()4(2±=⨯-⨯⨯--±--, ∴x 1=372+,x 2=372-. (4)移项,得y 2-2y -15=0,把方程左边因式分解,得(y -5)(y +3)=0;∴y -5=0或y +3=0,∴y 1=5,y 2=-3.(5)将方程左边因式分解,得(x -3)[5x -(x +1)]=0,(x -3)(4x -1)=0,∴x -3=0或4x -1=0,∴x 1=3,x 2=41. (6)移项,得4(3x +1)2-25(x -2)2=0,[2(3x +1)]2-[5(x -2)]2=0,[2(3x +1)+5(x -2)]·[2(3x +1)-5(x -2)]=0,(11x -8)(x +12)=0,∴11x -8=0或x +12=0,∴x 1=118,x 2=-12. 说明:(1)对于无理系数的一元二次方程解法同有理数一样,只不过要注意二次根式的化简.(2)直接因式分解就能转化成两个一次因式乘积等于零的形式,对于这种形式的方程就不必要整理成一般式了.例3:解关于x 的方程:(a 2-b 2)x 2-4abx =a 2-b 2.解:(1)当a 2-b 2=0,即|a |=|b |时,方程为-4abx =0.当a =b =0时,x 为任意实数.当|a |=|b |≠0时,x =0.(2)当a 2-b 2≠0,即a +b ≠0且a -b ≠0时,方程为一元二次方程.分解因式,得[(a +b )x +(a -b )][(a -b )x -(a +b )]=0,∵a +b ≠0且a -b ≠0,∴x 1=b a a b +-,x 2=ba b a -+. 说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不同情况分别求解.本题实际上是分三种情况,即①a =b =0;②|a |=|b |≠0;③|a |≠|b |.例4:已知x 2-xy -2y 2=0,且x ≠0,y ≠0,求代数式22225252y xy x y xy x ++--的值. 剖析:要求代数式的值,只要求出x 、y 的值即可,但从已知条件中显然不能求出,要求代数式的分子、分母是关于x 、y 的二次齐次式,所以知道x 与y 的比值也可.由已知x 2-xy -2y 2=0因式分解即可得x 与y 的比值.解:由x 2-xy -2y 2=0,得(x -2y )(x +y )=0,∴x -2y =0或x +y =0,∴x =2y 或x =-y .当x =2y 时,135y 13y 5y 5y y 22)y 2(y 5y y 22)y 2(y 5xy 2x y 5xy 2x 2222222222-=-=+⋅⋅+-⋅⋅-=++--. 当x =-y 时,21y4y 2y 5y )y (2)y (y 5y )y (2)y (y 5xy 2x y 5xy 2x 222222222-=-=+⋅-⋅+--⋅-⋅--=++--2. 说明:因式分解法体现了“降次”“化归”的数学思想方法,它不仅可用来解一元二次方程,而且在解一元高次方程、二元二次方程组及有关代数式的计算、证明中也有着广泛的 应用.【同步达纲练习】1.选择题(1)方程(x -16)(x +8)=0的根是( )A .x 1=-16,x 2=8B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )A ..x =21 B .x =2 C .x =1 D .x =-1(3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53C .x 1=-53,x 2=-3D .x 1=53,x 2=-3 (4)方程(y -5)(y +2)=1的根为( )A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对(5)方程(x -1)2-4(x +2)2=0的根为( )A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5(6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )A .1B .2C .-4D .4(7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )A .5B .5或11C .6D .11(8)方程x 2-3|x -1|=1的不同解的个数是( )A .0B .1C .2D .32.填空题(1)方程t (t +3)=28的解为_______.(2)方程(2x +1)2+3(2x +1)=0的解为__________.(3)方程(2y +1)2+3(2y +1)+2=0的解为__________.(4)关于x 的方程x 2+(m +n )x +mn =0的解为__________.(5)方程x (x -5)=5 -x 的解为__________.3.用因式分解法解下列方程:(1)x 2+12x =0;(2)4x 2-1=0; (3)x 2=7x ;(4)x 2-4x -21=0;(5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x 2-x -3=0;(8)(x -1)2-4(x -1)-21=0.4.用适当方法解下列方程:(1)x 2-4x +3=0;(2)(x -2)2=256; (3)x 2-3x +1=0;(4)x 2-2x -3=0;(5)(2t +3)2=3(2t +3);(6)(3-y )2+y 2=9;(7)(1+2)x 2-(1-2)x =0;(8)5x 2-(52+1)x +10=0;(9)2x 2-8x =7(精确到0.01);(10)(x +5)2-2(x +5)-8=0.5.解关于x 的方程:(1)x 2-4ax +3a 2=1-2a ;(2)x 2+5x +k 2=2kx +5k +6;(3)x 2-2mx -8m 2=0; (4)x 2+(2m +1)x +m 2+m =0.6.已知x 2+3xy -4y 2=0(y ≠0),试求yx y x +-的值.7.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.8.请你用三种方法解方程:x(x+12)=864.9.已知x2+3x+5的值为9,试求3x2+9x-2的值.10.一跳水运动员从10米高台上跳水,他跳下的高度h(单位:米)与所用的时间t(单位:秒)的关系式h=-5(t-2)(t+1).求运动员起跳到入水所用的时间.11.为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1视为一个整体,然后设x2-1=y,则y2=(x2-1)2,原方程化为y2-5y+4=0,解此方程,得y1=1,y2=4.当y=1时,x2-1=1,x2=2,∴x=±2.当y=4时,x2-1=4,x2=5,∴x=±5.∴原方程的解为x1=-2,x2=2,x3=-5,x4=5.以上方法就叫换元法,达到了降次的目的,体现了转化的思想.(1)运用上述方法解方程:x4-3x2-4=0.(2)既然可以将x2-1看作一个整体,你能直接运用因式分解法解这个方程吗参考答案【同步达纲练习】1.(1)B (2)C (3)D (4)D (5)B (6)A (7)A (8)D2.(1)t 1=-7,t 2=4(2)x 1=-21,x 2=-2(3)y 1=-1,y 2=-23(4)x 1=-m ,x 2=-n (5)x 1=5,x 2=-1 3.(1)x 1=0,x 2=-12;(2)x 1=-21,x 2=21;(3)x 1=0,x 2=7;(4)x 1=7,x 2=-3;(5)x 1=-5,x 2=3;(6)x 1=-1,x 2=31; (7)x 1=53,x 2=-21;(8)x 1=8,x 2=-2. 4.(1)x 1=1,x 2=3;(2)x 1=18,x 2=-14;(3)x 1=253+,x 2=253-;(4)x 1=3,x 2=-1; (5)t 1=0,t 2=-23;(6)y 1=0,y 2=3;(7)x 1=0,x 2=22-3; (8)x 1=55,x 2=10;(9)x 1≈,x 2=-;(10)x 1=-1,x 2=-7. 5.(1)x 2-4ax +4a 2=a 2-2a +1,(x -2a )2=(a -1)2,∴x -2a =±(a -1),∴x 1=3a -1,x 2=a +1.(2)x 2+(5-2k )x +k 2-5k -6=0,x 2+(5-2k )x +(k +1)(k -6)=0,[x -(k +1)][x -(k -6)]=0,∴x 1=k +1,x 2=(k -6).(3)x 2-2mx +m 2=9m 2,(x -m )2=(3m )2∴x 1=4m ,x 2=-2m(4)x 2+(2m +1)x +m (m +1)=0,(x +m )[x +(m +1)]=0,∴x 1=-m ,x 2=-m -16.(x +4y )(x -y )=0,x =-4y 或x =y当x =-4y 时,y x y x +-=3544=+---y y y y ; 当x =y 时,y x y x +-=yy y y +-=0. 7.(x 2+y 2)(x 2+y 2-1)-12=0,(x 2+y 2)2-(x 2+y 2)-12=0,(x 2+y 2-4)(x 2+y 2+3)=0,∴x 2+y 2=4或x 2+y 2=-3(舍去)8.x 1=-36,x 2=24 9.∵x 2+3x +5=9,∴x 2+3x =4,∴3x2+9x-2=3(x2+3x)-2=3×4-2=10 10.10=-5(t-2)(t+1),∴t=1(t=0舍去) 11.(1)x1=-2,x2=2(2)(x2-2)(x2-5)=0,(x+2)(x-2)(x+5)(x-5)=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程的解法(二)
一般的一元二次方程的解法—知识讲解(基础)
【学习目标】
1.了解配方法和公式法的概念、一元二次方程求根公式的推导过程,会用配方法和公式法解一元二次方程;
2.掌握运用配方法和公式法解一元二次方程的基本步骤;
3.通过用配方法将一元二次方程变形的过程,通过求根公式的推导,进一步体会转化的思想方法,并增强数学应用意识和能力. 培养学生数学推理的严密性及严谨性,渗透分类的思想.
【要点梳理】
要点一、一元二次方程的解法---配方法
1.配方法解一元二次方程:
(1)配方法解一元二次方程:
将一元二次方程配成
的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.
(2)配方法解一元二次方程的理论依据是公式:
. (3)用配方法解一元二次方程的一般步骤:
①把原方程化为的形式;
②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;
④再把方程左边配成一个完全平方式,右边化为一个常数;
⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.
要点诠释:
(1)配方法解一元二次方程的口诀:一除二移三配四开方;
(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.
(3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±.
要点二、配方法的应用
1.用于比较大小:
在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.
2.用于求待定字母的值:
配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.
3.用于求最值:
“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.
4.用于证明:
“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.
要点诠释:
“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.
要点三、公式法解一元二次方程
1.一元二次方程的求根公式
一元二次方程,当时,.
2.一元二次方程根的判别式 一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根; ②当时,原方程有两个相等的实数根;
③当时,原方程没有实数根. 3.用公式法解一元二次方程的步骤
用公式法解关于x 的一元二次方程
的步骤:
①把一元二次方程化为一般形式;
②确定a 、b 、c 的值(要注意符号);
③求出的值; ④若,则利用公式求出原方程的解;
若,则原方程无实根.
要点诠释:
(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.
(2)一元二次方程2
0 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+= ①当2
40b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:21,242b b ac x a -±-= ② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a
=- ③ 当240b ac ∆=-<时,右端是负数.因此,方程没有实根.
【典型例题】
类型一、用配方法解一元二次方程
1.用配方法解方程x 2-7x-1=0.
举一反三:
【变式】用配方法解方程.
(1)x 2-4x-2=0; (2)x 2+6x+8=0.
类型二、配方法在代数中的应用
2.若代数式221078M
a b a =+-+,2251N a b a =+++,则M N -的值( ) A .一定是负数
B .一定是正数
C .一定不是负数
D .一定不是正数
3.用配方法说明: 代数式 x 2+8x+17的值总大于0.
举一反三:
【变式】求代数式 x 2+8x+17的最小值
4.(2016春•金堂县校级月考)已知2226100a b a b +-++=,求100123a b -⋅-⋅的值.
类型三、公式法解一元二次方程
5. 用公式法解下列方程.
(1)23310x x --=; (2)2
241x x =-.
举一反三:
【变式】用公式法解方程 2341x x =+
6.用公式法解下列方程: (1)243100x x -+=; (2)(1)(1)22x x x +-= .
举一反三:
【变式】(2014秋•泽州县校级期中)用公式法解方程:5x 2﹣4x ﹣12=0.
【巩固练习】
一、选择题
1.用配方法解方程2250x x --=时,原方程变形为( )
A .2(1)6x +=
B .2(1)6x -=
C .2(2)9x +=
D .2(2)9x -=
2.下列各式是完全平方式的是( )
A .277x x ++
B .244m m --
C .211216
n n ++ D .222y x -+ 3.(2015春•长清区期末)用配方法解下列方程时,配方正确的是( )
A .方程x 2﹣6x ﹣5=0,可化为(x ﹣3)2=4
B .方程y 2﹣2y ﹣2015=0,可化为(y ﹣1)2=2015
C .方程a 2+8a+9=0,可化为(a+4)2=25
D .方程2x 2﹣6x ﹣7=0,可化为
4.(2016春·顺义区期末)对于代数式245x x -+-,通过配方能说明它的值一定是( )
A .非正数
B .非负数
C .正数
D .负数
5.把方程x 2+3=4x 配方,得( )
A .(x-2)2=7
B .(x+2)2=21
C .(x-2)2=1
D .(x+2)2=2
6.用公式法解方程x 2+4x=10的根为( )
A .2±10
B .-2±14
C .-2+10
D .2-10
二、填空题
7.(1)x 2+4x+ =(x+ )2;(2)x 2-6x+ =(x- )2;(3)x 2+8x+ =(x+ )2.
8.若223(2)1x mx x ++=--,那么m =________.
9.若226x x m ++是一个完全平方式,则m 的值是________.
10.(2016春·乳山市期中)代数式2527x x m -+-的最小值是214-
,则m 的值为 . 11.(2015春•北京校级期中)当x= 时,代数式﹣2x 2+6x+4有最大值,最大值= .
12.已知a 2+b 2-10a-6b+34=0,则
的值为 .
三、解答题
13. 用配方法解方程
(1)
(2)221233
x x +=
14.(2014秋•万州区校级期中)按照指定的方法解下列方程:
(1)4x 2﹣4x ﹣1=0(配方法)
(2)5x 2+2x ﹣1=0(公式法)
15. 若2226100y x x y +-++=,求x ,y 的值.
16.已知a ,b ,c 是△ABC 的三边,且2226810500a b c a b c ++---+=.
(1)求a ,b ,c 的值;
(2)判断三角形的形状.。