3.3二阶系统

合集下载

3.3 二阶系统分析

3.3 二阶系统分析

tr

d
,其中 d
n
1 2, arccos
3.3 二阶系统的时域分析
峰值时间tp
c(t) 1
1
1 2
e nt sin(d t )
c(tp)=cmax
dc(tp)/dt=0
1
1 2
e nt sin(d t p ) 0
sin d t p 0, d t p k , k
解: k 6,n 2.45, 0.408
ts
4
n
4
M p 22%
k 12,n 3.46, 0.289
ts

4
n
4
M p 40%
K增大,系统的上升时间减小,超调量增大。 系统的响应速度加快,但振荡幅度增大、频率加快
3.3 二阶系统的时域分析
例题3.3 已知某系统的结构和单位阶跃响应的Mp<5%, tS<4秒,求系统的参数。
n n

2
1
,..T2

n
1
n
,
2 1
C(s)
n2
1
(s 1/ T1)(s 1/ T2 ) s
t
t
c(t) 1 e T1

e T2
T2 / T1 1 T1 / T2 1
1 / T2 1/ T1
3.3 二阶系统的时域分析
T1
1
n n
n

K
3.3.6 改善二阶系统性能的措施
1. 比例—微分控制
(1) 方法的思路
r(t)
1
c(t)01
R(s) E(s)
U(s
ωn2

大学自动控制原理_3.3二阶系统时间响应

大学自动控制原理_3.3二阶系统时间响应

1s 5% ts 1.33 2%
例2 如图所示的机械系统,在质量块上 施加9.8牛顿阶跃力后,m的时间响应 如图曲线,试求系统的 m、k 、c 。
Fi (t )
xo (t )
m c
k
解:根据牛顿第二定律,得
Fi (t ) Fk Fc Mo (t ) x Fk kxo (t ) Fc cxo (t )
即:
e
nt 2
1

1 1 1
2
解得: t s
n
ln
4 ln
若 0.02
1 1
2
则t s
n
3 ln
1 1
2
若 0.05
则t s
n
4
0.02) ( 若0 0.7时 ts n ts 32、源自阻尼状态( 0)2
1 X o (s) 2 2 s s n
1 s s s 2 n2
n
xo (t ) 1 cos nt
曲 线 特 点 : 等 幅 振 荡
3、临界阻尼状态
1 X o (s) 2 s (s n )
( 1)
n
5、振荡次数N
在调整时间内响应曲线振荡的次数
ts ts N T 2
d
0 0.7时,
0.02时,t s 0.05时,t s 4
n
3
N N
2 1
2

1. 5 1
2
n

振荡次数N随着 而 。
( 2 1) nt ( 2 1) n t e e 2 2 1

3.3 二阶系统的时域分析

3.3 二阶系统的时域分析

=

e
ζω nts
1 1ζ
=
2
e
ζω nt
sin(ω d t + β ) ≤
e
ζω nt
1ζ 2
1ζ 2

ts =
1
ζω n
(ln
1
+ ln
1 1ζ
2
)
15
当0.4<ζ≤0.8时,可 以采用下面的近似公式 3.5 = 0.05 tS ≤
= 0.02 tS ≤
ts =
1
ζω n
(ln
1
+ ln
18

ωd
ζ一定,即β一定, ωn↑ → tr↓,响应速度越快; ωn一定, ζ ↓ → tr ↓ ,响应速度越慢.
12
h(t ) = 1
1 1ζ 2
e ζω nt sin(ω d t + β )
(t ≥ 0)
(2) 峰值时间tp 根据峰值时间的定义,在峰值处,h(t)的导数为零,故 ζω nt p ζω e ωd dh(t ) ζω t = n sin(ω d t + β ) e n p cos(ω d t + β ) = 0 dt t =t p 1ζ 2 1ζ 2
R C R 实际阻尼系数 ζ= = = 2 L Rc 临界阻尼系数
2
故ζ 称为相对阻尼系数或阻尼比.
一,二阶系统的数学模型
R(s)
2 ωn
C(s)
开环传递函数
2 ωn G(s) = s ( s + 2ζω n )
-
s( s + 2ζω n )
图 3-13 典型二阶系统结构图
闭环传递函数

3-3二阶系统的时域分析

3-3二阶系统的时域分析

二阶系统的闭环极点分布
j
特征根: s1, 2 n n 2 1
j
n 1 2
j

n
n 1 2

n

0

n 1 2
0
1
0
n 1 2
0 1
1 0
j
s1 s 2 n 0
1
1
C1 C2 C3 L C1e S t C2 e S t C3 ( s s1 ) ( s s2 ) s
1
1 2
其中
C1
n2
( s1 s2 ) s1
; C2
n2
( s1 s2 ) s2
; C3 1
而s1,s2是ζ和ωn的函数,显然c(t)只与ζ ,ωn有关,即ζ ,ωn决
第三章 时域分析法
第三节 二阶系统时域分析
第三节 二阶系统的时域分析
项目
教学目的
内容
掌握二阶系统的数学模型和时域响应的特点。 能够计算欠阻尼时域性能指标。
欠阻尼时域性能指标的计算。阻尼系数和自 然频率对系输出的影响。
教学重点
教学难点 阻尼 系数 和自然频率 对系统输出 的影响 。 及 其 处 理 MATLAB作图、对比、总结。

环节;
比例+微分(引入零点):在前向通路中串一个PD控制
② 采用测速反馈控制。 3) PD控制与测速反馈控制两种方案比较 (见下页附表)
附表: PD控制与测速反馈控制两种方案比较
性能指标
PD控制


测速反馈控制 增 大 降 低
阻尼比 自然频率 开环增益 稳态误差 超调量 性能 适用场合

3.3二阶系统

3.3二阶系统

tp d 1 2 n
(6)最大超调量的计算:
p
c(t p ) c() c ( )
n t p
100%

1 2
2
e
e
(cos d t p
sin d t p ) 100%
n t p
(cos

1
sin ) 100%
dc(t ) / dt 0


n e
nt p
sin(d t p ) d e
tan(d t p )
nt p
cos(d t p ) 0
2
1

tan
到达第一个峰值时应有
d t p 0, , 2 ,3
d t p
s1 , s2 jn 是一对共轭纯虚数根。
三、二阶系统的单位阶跃响应
对于单位阶跃输入
r (t ) 1(t )
1 R( s) s
于是
2 n 1 C ( s) 2 2 s 2n s n s
由拉氏反变换可以得到二阶系统的单位阶跃响应为
c(t ) L1[C ( s)] 下面按阻尼比分别讨论。
欠阻尼系统单位阶跃响应为
c(t ) 1 e nt cos d t
n t e sin d t d
n
1 e nt (cos d t

1
2
sin d t )
(t 0)
或写为
c(t ) 1 e nt 1
2
( 1
解得 t 1/ n 。 整个暂态过程中,临界阻尼系统阶跃响应都是单调 增长的没有超调。如以达到稳态值的 95% 所经历的时 间做为调整时间,则

欠阻尼二阶系统动态过程分析

欠阻尼二阶系统动态过程分析
3.3.3 欠阻尼二阶系统的动态过程分析
阻尼比希望值为(0.4~0.8)
动态指标:tr 、 tp 、 p %、ts
(1)上升时间trc(t) 1
e nt
1 2
s in( d t
)
tg1
1 2
d n
1 2
依定义,令c(t)=1, c(tr ) 1
因为
entr
1 2
0
,有s in( d t
r
若 lim c(t) 0 t
(渐近)稳定
若 lim c(t)
t
系统不稳定
若 lim c(t) A
t
临界稳定
非零常数
设若n阶全系部统特表征达根式有为负实部,则
(sl)im t
CcR(((tss)))
0ba00ssmn
b1s m 1 a1s n 1
( 渐 近bamn)11ss 稳 ab定mn
(2)K=16,T=0.25,得
0.25 n 8
将n 、 代入动态性能指标公式得
tr
d
0.24(s)
p % e / 1 2 100% 44%
tp
d
0.41(s)
ts
3.5
n
1.75(s)
( 0.05)
例3.7 系统及阶跃响应曲线如图 示,求K1、K2和a。
R(s) k1 _

e nt
1
2
sin(d t
)
(t ts )
所以
ent
1 2
sin(d t
)
ent
1 2

取 =0.707得
因为ts
3.5
snin((d t=5% ))

自动控制原理3.3~3.4 二阶系统时域分析

自动控制原理3.3~3.4 二阶系统时域分析

闭环特征方程: D( s ) s 2 2 s 2 0 n n 闭环特征根: s1, 2 n n
2
1
二、二阶系统单位阶跃响应
单位阶跃输入r(t)=1(t)时,其二阶系统的输出的拉氏变换为
2 2 n n 1 C ( s ) ( s ) R( s ) 2 2 s 2 n s n s s( s s1 )(s s2 )
e
(ζ ζ 2 1 ) n t
ζ 2 1 ) n t
c(t ) 1
1
2 ζ 2 1 (ζ ζ 2 1) 1 (ζ e 2 ζ 2 1 (ζ ζ 2 1)
e
(ζ ζ 2 1 ) n t
ζ 2 1 ) n t
c(t)
1
0 t
单调上升过程
2.0 1.8 1.6 1.4 1.2 c(t) 1.0 0.8 0.6 0.4 0.2 0
=0
0.4 0.5 0.6 0.7 0.8
0.1 0.2 0.3
1.0 2.0
1
2
3
4
5
• 在0<<1, 越小,超调量越大,平稳性越差,调节时间ts长; • =0.7,调节时间短,而超调量%<5%,平稳性也好,故称 ζ=0.7为最佳阻尼比。工程希望=0.4~0.8为宜; •在≥1 , 越大,系统响应速度慢,调节时间ts也长。
例题:设角度随动系统如图所示,T=0.1为伺服电机时间常数, 若要求系统的单位阶跃响应无超调,且调节时间ts≤1s,问K应 取多大?此时上升时间等于多少?
Θi(s)
_
K s(Ts 1)
Θo(s)
解:闭环传递函数为
K K K /T s (Ts 1) (s) 2 2 K Ts s K s s / T K / T 1 s (Ts 1)

3.3二阶系统的动态性能(上)解析

3.3二阶系统的动态性能(上)解析


s 2n 1 s [( s n ) jd )][( s n ) jd ]

s 2n 1 s 2n 1 s ( s n )2 ( jd )2 s ( s n )2 d 2
at
s n n 1 s (s n )2 d 2 (s n )2 d 2 n 1 2 1 s n 1 2 2 s ( s n ) d ( s n )2 d 2
5.84 n ts 4.75 n
4、稳态误差为0,说明典型二阶系统跟踪阶跃输入信号时,无稳态误差, 系统为无静差系统。
4.过阻尼(ζ>1)状态
闭环特征方程
特征根
2 s 2 2n s n 0
s1 n n 2 1
s2 n n 2 1
nt
d
L[e at cos t ]
上式取拉氏反变换,得
y(t ) 1 e
1 1
cos d t

1
2
sa ( s a)2 2 L[e at sin t ] ( s a)2 2
ent sin d t
e nt 1 2 e
Δ 2 Δ 5
4T1 1.25 ts 3T 1
Δ 2 Δ 5
1.34
3、稳态误差为0,说明典型二阶系统跟踪阶跃输入信号时,无稳态误 Y(t) 差,系统为无静差系统。
2
4、需要说明的是,对于临界阻尼和过阻 尼的二阶系统,其单位阶跃响应都没有 振荡和超调,系统的调节时间随ζ的增加 而变大,在所有无超调的二阶系统中, 临界阻尼时,响应速度最快。
2 n 1 1 s Y ( s ) ( s ) R( s ) 2 2 2 s n s s s 2 n

欠阻尼系统的特征根为

欠阻尼系统的特征根为

二不等负实根
东北大学《自动控制原理》课程组
3
输出量的拉氏变换:
X c (s)

Xr
s WB
s

1 s

(s2

n2 2ns

n2 )

n2
A0 A1 A2
s(s p1)(s p2 ) s s p1 s p2
A0 [ X c (s)s]s0 1
东北大学《自动控制原理》课程组
9
n 1, 0.1~ 0.9 时的响应曲线。
0.1 0.2 0.3 0.4
0.8
振荡程度与 有关:n 一定时,随 的增大,系统的响 应速度变慢,超调量减小。 越小,超调量越大,振荡
越剧烈。
东北大学《自动控制原理》课程组
10
3.3 二阶系统的阶跃响应
近似为一阶系统响应。
p1 p2 , A1 A2
东北大学《自动控制原理》课程组
6
3.3 二阶系统的阶跃响应
(2)欠阻尼( 0 1 )
系统的特征根为 p1 ( j 1 2 )n p2 ( j 1 2 )n
cos
sin
12
arctan
东北大学《自动控制原理》课程组
12
3.3 二阶系统的阶跃响应
(4)无阻尼( =0)
系统的特征根为
p1 jn , p2 jn
输出量的拉氏变换为
Xc (s)
3.3 二阶系统的阶跃响应
1.典型二阶系统的暂态特性
典型二阶系 统标准形式
开环传函:
Wk
(s)

(s s
n2 2n)
闭环传函:

孙炳达版《自动控制原理》第3章控制系统的时域分析法

孙炳达版《自动控制原理》第3章控制系统的时域分析法
2、 阻尼比ζ一定时,ωn越大,系统衰减越迅 速,能够更快达到稳态值,响应的快速性越好。
3.3 二阶系统分析
3、实际工程系统只有在0< ζ <1时才具有现 实意义。除了一些不允许产生振荡的应用,阻 尼比ζ通常选择在0.4~0.8之间,以保证系统的快 速性同时又不至于产生过大的振荡。 特别的,把ζ =0.707的二阶系统称为二阶最
表明,无阻尼时二阶系 统的单位阶跃响应为等 幅振荡曲线,为不衰减 的振荡,超调量为100%, 系统不稳定。
t
1
0
3.3 二阶系统分析
2、欠阻尼( 0<ζ <1)情况 系统特征根为:
s1, 2 n jn 1
1 1 2
2
阶跃响应为: yt
1.0 2.0
1
2
3
4
5
6 nt
7
8
9
10 11 12
3.3 二阶系统分析
二阶系统单位阶跃响应特点: 1、二阶系统的阻尼比ζ 决定了其振荡特性: 1) ζ =0时,等幅振荡; 2)0< ζ <1时,有振荡, ζ愈小,振荡愈严重, 但响应愈快; 3)ζ ≥1 时,无振荡、无超调,过渡过程长。
3.3 二阶系统分析
1 2
% y( t p ) 100% e
100%
3.3 二阶系统分析
4 调节时间 ts
单位阶跃响应进入± 误差带的最小时间。
采用近似方法解得:
3 ts ( 5%) n

4 ts n
( 2%)
3.3 二阶系统分析
结构参数ζ对单位阶跃响应性能的影响 阻尼比ζ越小,超调量越大,平稳性越差,调 节时间ts长; ζ过大时,系统响应迟钝,调节时间ts也长, 快速性差; ζ =0.707,调节时间最短,快速性最好,而超 调量%<5%,平稳性也好,故称ζ =0.707为最佳 阻尼比。 若使二阶系统具有满意的性能指标,必须选 合适的ζ和ωn。ωn增大可使ts下降,可以通过提高 开环放大系数k来实现;增大阻尼比,可减小振荡, 可通过降低开环放大系数实现。

北航机电控制工程基础(自动控制原理)第三章2-时域分析法-一阶系统分析二阶系统分析

北航机电控制工程基础(自动控制原理)第三章2-时域分析法-一阶系统分析二阶系统分析

北京航空航天大学
机电控制工程基础
Fundamentals of Mechatronic Control Engineering
(3 )调节时间Regulation time :t s 根据调节时间的定义,当t≥ts时 |h(t)-h(∞)|≤ h(∞) ×Δ%。
e nt
1 2
sin(d t
tg1
1 2
袁松梅教授 Tel:82339630 Email:yuansm@
北京航空航天大学
• 定性分析 (1) 平稳性Stability ---> % ---> %
机电控制工程基础
Fundamentals of Mechatronic Control Engineering
d n 1 2
1 1
s1,2 n n 2 1 s1,2 n
欠阻尼 underdamping
0
1
s1,2
n
jn
1 2
零阻尼 undamping
0
s1,2 jn
负阻尼
0
negative damping
s1,2 n n 2 1
两个不等负实根 两个相等负实根 两个负实部共轭复根 两个纯虚根 正实部特征根
北京航空航天大学
机电控制工程基础
Fundamentals of Mechatronic Control Engineering
3.3 二阶系统分析(Second-order System analysis)
3.3.1 数学模型 (Mathematical Model)
dc2 (t) dt2
2 n
dc(t) dt
dtp 0, ,2 ,
得:
tp

二阶系统的阶跃响应

二阶系统的阶跃响应
4 6 8 10 12
8
3.3 二阶系统的阶跃响应
输入阶跃信号和阶跃响应之间的误差 :
Step Response
e(t ) r (t ) y (t ) 1 y (t )
Amplitude
1
=0.3,n=10
0.8

e nt 1
2
sin(n 1 2 t ),t 0
3
3.3 二阶系统的阶跃响应
二、典型二阶系统的阶跃响应 1 当输入为单位阶跃函数时,R ( s ) ,有: s 2 1 n 1 C ( s ) ( s ) 2 2 s s 2 n s n s 2 1 n 1 1 1 c(t ) L [( s) ] L [ 2 ] 2 s s 2 n s n s
3.3 二阶系统的阶跃响应
第三节 二阶系统的阶跃响应
1
3.3 二阶系统的阶跃响应
一、典型二阶系统的数学模型 由二阶微分方程描述的系统称为二阶系统。它在控制工程 中的应用极为广泛。许多高阶系统在一定的条件下,也可简化 为二阶系统来研究。 2 C ( s) n R( s ) s( s 2 n ) 典型结构的二阶系统如图所示。 2 n 开环传递函数为: G( s) 2 s 2 n s 2 n G( s ) 闭环传递函数为: (s) 2 2 1 G(s) s 2 n s n ( s ) 称为典型二阶系统的传递函数, n 称为 称为阻尼系数, 无阻尼振荡频率或自然频率。这两个参数称为二阶系统特征参 数。
9
3.3 二阶系统的阶跃响应
两阶系统的瞬态响应
⒊当 1 时,极点为:
阶跃响应函数为:
2
s1, 2 n
1 n n2 1 1 n C ( s) 2 s s 2n s n 2 s( s n )2 s s n ( s n )2

自动控制原理 3-3二阶系统的时域分析

自动控制原理 3-3二阶系统的时域分析

σ%=33% 无振荡有超调
相当于无零点时 0.333
j
ts可能大了可能小了
上升时间减小
0
结论:
1 零点有削弱阻尼的作用
2 零点越靠近原点该作用越明显
证明(补充)
ab (s c) (s) c
(s a)(s b)
h(t) 1 b(c a) eat a(c b) ebt c(b a) c(a b)
(a)根分布
(b)单位阶跃响应
图3-12 临界阻尼情况(z =1)
3. >1,称为过阻尼情况 当阻尼比 >1时,系统有两个不相等的实数根:
s1,2 ( 2 1)n 对于单位阶跃输入,C(s)为
(3.27)
C(s) 1 [2 2 1(
2 1)]1 [2 2 1(
2 1)]1
3.917 3.932 3.959
0.4 3.083
0.4 3.999
0.5 3.140 0.6 3.219
20.5
0.6
4.056 4.135
0.7 3.332
0.7 4.269
0.8 3.506
ts
ln
1
1 2 h(
)e5%nt
n 1h(2 ) 2%
0.8
4.423
1 1 ent 12
ts
2%, 0.78; 5%, 0.7
当0< <0.9时,则
ts
3
n
3T
(按到达稳态值的95%~105%计)

ts
4
n
4T
(按到达稳态值的98%~102%计)
(3.40)
由此可见, n大,ts就小,当n一定,则ts与成反比,这与tp, tr与的关系正好相反。

大学自动控制原理3.3二阶系统时间响应

大学自动控制原理3.3二阶系统时间响应

极点位置影响响应的衰减速度,零点 位置影响响应的振荡频率。
特点
二阶系统的单位阶跃响应具有振荡和 衰减的特性,其形状由系统的极点和 零点决定。
单位冲激响应
定义
01
单位冲激响应是系统在单位冲激函数输入下的输出响应。
特点
02
与单位阶跃响应类似,二阶系统的单位冲激响应也具有振荡和
衰减的特性。
与单位阶跃响应的区别
根轨迹分析
通过分析系统的根轨迹来判断系统的稳定性。
李雅普诺夫稳定性分析
通过分析系统的李雅普诺夫函数来判断系统的稳定性。
05
二阶系统的设计方法
串联校正
串联校正是指通过在系统输出端串联一个适当的装置,以改善系统的性能。常用的 串联校正装置有滞后器、超前器和积分器等。
串联校正的优点是结构简单,易于实现,适用于各种类型的系统。
二阶系统的分类
根据系统参数的性质,二阶系统可以分为欠阻尼、临界阻尼 和过阻尼三种类型。
欠阻尼系统的输出在达到稳态值之前会有一个振荡过程;临 界阻尼系统的输出则不会出现振荡过程;过阻尼系统的输出 则会有一个较大的超调量。
03
二阶系统的时域分析
单位阶跃响应
定义
极点与零点对响应的影响
单位阶跃响应是系统在单位阶跃函数 输入下的输出响应。
电机控制系统
电机控制系统的稳定性
二阶系统的时间响应特性对于电机控制系统的稳定性至关重要, 能够保证电机在各种工况下的正常运行。
电机控制系统的动态性能
二阶系统的快速响应能力有助于提高电机控制系统的动态性能,实 现更精确的速度和位置控制。
电机控制系统的鲁棒性
二阶系统的鲁棒性使其在电机控制系统中具有广泛的应用,能够适 应各种不确定性和干扰。

3-3 二阶系统

3-3 二阶系统

0
s1
s2
0
n
s2
7
1
0
二阶系统单位阶跃 响应定性分析
1 1
1
Φ(s)=
j
n 2 s2 +2 ns + n2
jj 00 j
>1 >1 =1
T s1,2= -n T n √2 - 1 ± =1
2
0
h(t)= s+ Te 11,2=
2
t T1
T1
1
-e + Tn
15
(3)临界阻尼二阶系统的单位阶跃响应
n 2 n 2 闭环传递函数 (s) 2 2 2 s 2n s n ( s n )
1
单位阶跃响应为
n n 1 1 1 C ( s) 2 2 ( s n ) s s ( s n ) s n
s n n 1 2 2 2 s ( s n ) d ( s n ) 2 d
10
d n 1 2
s n n 1 C ( s) 2 2 2 2 s ( s n ) d ( s n ) d
dc(t ) 2 斜率k n te nt 0, 当t趋向无穷时 k 0 dt
wn=2,ζ=1.0
稳态值为1,无 稳态误差 响应过程是单调 上升的
1 0.8 0.6 0.4 0.2 0
0
1
2
3
4
5
6
7
8
17
(4)过阻尼二阶系统的单位阶跃 响应 过阻尼时,系统有两个负实根
s1, 2 n n 2 1
利用如下公式对C(s)求拉氏逆变换
L1[ sa 1 1 ] e at cos t , L1[ ] e at sin t ( s a) 2 2 ( s a) 2 2

第三章二阶系统

第三章二阶系统
3.3.2 二阶系统的单位阶跃响应
ωn C ( s) = 2 φ ( s) = R( s ) S + 2ξωn s + ωn 2
2
R(s)
_
ωn
ωn2 S(S+2ξωn)
C(s)
-自然频率(或无阻尼振荡频率) -阻尼比(相对阻尼系数)
图3-8 标准形式的二阶系统方块图
ξ
二阶系统的标准形式,相应的方块图如图3-8所示 二阶系统的动态特性,可以用 ξ 和 ω n 加以描述,二阶系统的特征方程:
(3)过阻尼( ξ > 1 )
S1, 2 = ξω n ± ω n ξ 2 1
ωn 1 C ( s) = = ( S S1 )( S S 2 ) S [ S + ω n (ξ ξ 2 1)][ S + ω n (ξ + ξ 2 1)]S
2
ωn2
A3 A A2 = 1+ + S S + ω n (ξ ξ 2 1) ξ + ω n (ξ + ξ 2 1)
π + (ln ) σ
2
1
= 0.4
2
=
3.14 3 1 0.4
2
= 1.14
R(s)
②闭环传递函数
E(s)

K s(Ts + 1)
C(s)
C (s) K = = 2 R ( s ) TS + S + K
K T 1 S2 + S + K T T
ωn
2
K = T
1 T= = = 1.09 2ξω n 2 × 0.4 × 1.14 K = Tω n = 1.09 × 1.14 2 = 1.42

二阶系统

二阶系统
0.99*t)/x).*sin(x*t+acos (0.99)) plot(t,h1,t,h2,t,h3),grid
由曲线看出,实际响应曲线比指数曲线的包络线 收敛速度要快,因此可用包络线来估算调节时间。
二阶系统单位阶跃响应的通用曲线如下,可以利用它来 分析系统系统结构参数ξ、Wn对阶跃响应性能的影响。
dh(t) dt

(s ind t p
)
n e ntp 0 1 2
所以有
tp

0, d
, 2 d
,.......
由于tp定义为第一次到达峰值的时间,所以应该取:


tp

d

n
1 2
3、超调量σ%
将t=tp代入代入系统阶跃响应的表达式,且h(∞)=1,

h(t p ) 1 e 1 2
由曲线看出,当T1=T2时,即ζ= 1的临界阻尼情况ts =4.75 T1 ; 当T1=4T2,即ζ=1.25时, ts ≈3.3T1;当T1>4T2,即ζ>1.25 时, ts ≈3T1
结论:当一个系统的一个负实 根比另一个大四倍以上,即两 个惯性环节时间常数相差四倍 以上,则系统可以等效为一阶 系统,其时间调节时间可以近
么响应的动态性能有何影响?
G(s)
5Ka
s(s 34.5)
解:系统属于单位负反馈,所以它的闭环传递函数为:
(s)

C(s) R(s)

s2

5Ka 34.5s
5Ka
将K=200代入得:
(s)

C(s) R(s)

s2

1000 34.5s 1000

二阶系统的时间响应及动态性能

二阶系统的时间响应及动态性能

ξ = 1 + (T1 T2 ) = 1.25 > 1 2 T1 T2
查图 3-7 可得 ts T1 = 3.3 ,计算得 ts = 3.3T1 = 3.3 × 0.5 = 1.65s 。图 3-8 给出了系统单
位阶跃响应曲线。
当阻尼比 ξ = 1时,系统处于临界阻尼状态,此时闭环极点是一对相等的实根,即
(3-9)
2.欠阻尼二阶系统的单位阶跃响应
由式(3-5),可得系统单位阶跃响应的拉氏变换为
C(s)
= Φ (s)R(s)
=
s2
+
ω
2 n
2ξωn s
+
ω
2 n
1 s
=
1 s

(s
s+ + ξω n )2
2ξω n + (1 − ξ
2

2 n
= 1−
s + ξωn
−ξ
1−ξ 2ωn
s (s + ξωn )2 + (1− ξ 2 )ωn2
s2 + 1 s + K = (s + 1 )2 = s2 + 2 s + 1 = 0
TT
T1
T1
T12
比较系数得
⎩⎨⎧KT1
= =
2T = T T12
2 × 0.1 = 0.2 = 0.1 0.22 =
2.5
查图 3-7,可得系统调节时间 ts = 4.75T1 = 0.95 s,满足系统要求。
3.3.3 欠阻尼二阶系统动态性能指标计算
性。
66
例 3-3 某系统闭环传递函数 Φ(s) =
16
,计算系统的动态性能指标。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

若允许误差带是±Δ(如±2%),可以认为调整时间 就是包络线衰减到± Δ区域所需的时间,则有
e n ts 1
2

解得
ts
1
n
1
(ln
1 1 ln ) 2 1
当Δ=5%时,
当Δ=2%时, 当 0 0.8时,
ts ts
n
1
(3 ln (4 ln
• 典型二阶系统是一个前向通道为惯性环节和积分 环节串联的单位负反馈系统。
• 令
K1 K 2 1


2 n

2n
则二阶系统传递函数的标准形式为
2 n C (s) G( s) 2 2 R( s ) s 2n s n
其中ζ称为阻尼比,τ为时间常数,ωn为系统的自然 振荡角频率(无阻尼自振角频率)。
e
nt p
100%
1 2
p e

100%
p
越小, p 越大(只与ζ有关)

(7)调整时间ts的计算:
欠阻尼二阶系统的单位阶跃响应曲线位于一对曲线
y (t ) 1 e nt 1
2
以内,这对曲线称为响应曲线 的包络线。
可以采用包络线代替实际响应曲线估算调整时间,所 得结果一般略偏大。
解得 t 1/ n 。 整个暂态过程中,临界阻尼系统阶跃响应都是单调 增长的没有超调。如以达到稳态值的 95% 所经历的时 间做为调整时间,则
t s 4.7 1
n

临界阻尼二阶系统多在记录仪表中使用。
3. 欠阻尼(0<ζ<1)
此时,系统具有一对共轭复数极点,则
2 n C ( s) 2 s ( s 2 2n s n )
1 c() lim sG( s) R( s) lim s 1; s 0 s 0 ( s s1 )( s s2 ) s
2
e( ) 0
过渡过程时间(按近似后一阶系统求出)
ts (3 ~ 4)
1 ( 2 1)n
单调上升,无振荡,过渡过程时间长,无稳态误差。
d n 1 2
(2)振荡周期为
Td 2
d

2
n 1 2
(3)ζ 越大,振幅衰减越快,振荡周期越长(频率越 低)。
(4)上升时间tr的计算:
c(tr ) 1 e
n tr
(cos d tr

1
2
sin d tr ) 1

即 所以
cos d tr
2 A2 C ( s )( s ) n s n n

单位阶跃响应为
c(t ) 1 ent (1 n t )
临界阻尼系统单位阶跃响应的误差及终值
e(t ) r (t ) c(t ) ent (1 n t )
单位阶跃响应的变化率为:
R( s)
+ -
K s( s 1)
1 K As
C (s)

4. 无阻尼(ζ=0)
无阻尼情况下系统的阶跃响应是等幅正(余)弦
振荡曲线,振荡角频率是 n
c(t ) 1 cos nt
2.0 1.8 1.6 1.4 1.2 c(t) 1.0 0.8 0.6 0.4 0.2
=0
2
d

2
n 1
2
2t p
1
n
(3 ln
)
ts ts N Td 2t p
设计二阶系统时,可先由超调量确定阻尼比,再 由其他指标(如调整时间)和已确定的阻尼比给 出自然振荡角频率。
• 例3-2:设一个带速度反馈的伺服系统,其结 构图如图所示。要求系统的性能指标为 σp=20%, tp=1s. 试确定系统的 K 和 KA 值,并计 算性能指标tr、ts和N.
欠阻尼系统单位阶跃响应为
c(t ) 1 e nt cos d t
n t e sin d t d
n
1 e nt (cos d t

1
2
sin d t )
(t 0)
或写为
c(t ) 1 e nt 1
2
( 1
为阻尼振荡
欠阻尼二阶系统单位阶跃响应性能指标计算公式
arctan( 1 2 ) tr 2 d n 1 n 1 2
tp d n 1 2
p e
ts


1 2
100%
1 1
2
Td
2
cos d t sin d t )
1
e nt 1
2
sin(d t )
(t 0)
arctan( 1 2 )
d n 1 2
讨论: (1)欠阻尼情况下,二阶系统的单位阶跃响应是衰减的 正弦振荡曲线。衰减速度取决于特征根实部的绝对值 ζωn 的大小,振荡角频率是特征根虚部的绝对值,即 有阻尼自振角频率ωd,
注意:
• 控制工程中,二阶系统的典型应用极为普
遍; • 为数众多的高阶系统在一定条件下可近似 为二阶系统。
二、二阶系统的特征根(极点)分布

求解二阶系统特征方程,
2 s2 2n s n 0
可得两个特征根(极点)
s1 , s2 n n 1
2
( 1) ( <1)
n jn 1 2
j
j
[s]
2
j
[s]
s1
j n 1
n 0

2
s1 s 2
n
0

s2
j n 1
(a) 0 1
j
(b) 1
[s]
j
[s]
s1
s1
s2
n
0

s2
0

(c) 1
(d) 0
1 1 1 1
2 2
) )
n
ts
3
n
( 5%)
ts
4Leabharlann n( 2%)设计二阶系统时,常取 0.707 为最佳阻尼比。
(8).振荡次数

振荡次数是指在调节时间内, xc (t ) 振荡的次 数。根据这一定义,可得振荡次数为
ts tf
tf 式中, d n 1 2 的周期时间。 2 2
惯性环节来近似原来的二阶系统。即有
n n 2 1 s1 C ( s) R( s ) s n n 2 1 s s1
• 近似原则:用其中一个惯性环节近似原二
阶系统,需要保证近似前后初值和终值相 等,并且要用到待定系数法!

过阻尼系统稳态值和最终误差
tp d 1 2 n
(6)最大超调量的计算:
p
c(t p ) c() c ( )
n t p
100%

1 2
2
e
e
(cos d t p
sin d t p ) 100%
n t p
(cos

1
sin ) 100%
s n n 1 2 2 2 2 2 2 s ( s n ) (1 )n ( s n ) (1 )n
s n n d 1 2 2 2 s ( s n ) d d ( s n ) 2 d
s1 , s2 jn 是一对共轭纯虚数根。
三、二阶系统的单位阶跃响应
对于单位阶跃输入
r (t ) 1(t )
1 R( s) s
于是
2 n 1 C ( s) 2 2 s 2n s n s
由拉氏反变换可以得到二阶系统的单位阶跃响应为
c(t ) L1[C ( s)] 下面按阻尼比分别讨论。
1.
过阻尼(ζ>1)
n n 2 1
这种情况下,系统存在两个不等的负实根,则
2 2 n n C (s) 2 2 s ( s 2n s n ) s ( s s1 )( s s2 )
A0 A1 A2 s s s1 s s2
A0 C (s)s s 0 1
tan d tr

1
2
sin d t r 0
tan( )
1 2

arctan( 1 2 ) tr 2 d n 1 n 1 2
(5)峰值时间tp的计算:
出现峰值时,阶跃响应随时间的变化率为0,即
0.4 0.5 0.6 0.7 0.8
0.1 0.2 0.3
1.0
2.0
0
1
2
3
4
5
6 nt
7
8
9
10 11 12
不同ζ下,二阶系统的单位阶跃响应曲线图
几点结论:
1)二阶系统的阻尼比ζ决定了其振荡特性:



ζ< 0 时,阶跃响应发散, 系统不稳定(负阻尼) ζ= 0时,出现等幅振荡 0<ζ<1 时 , 有 振 荡 , ζ 愈 小,振荡愈严重,但响 应愈快 ζ≥1 时,无振荡、无超调, 过渡过程长
t 0 t 0
所以,整个暂态过程中, 阶跃响应都是单调增长的 .
2. 临界阻尼(ζ=1)
此时,系统具有二重负实极点,则
2 n A0 A1 A2 C ( s) 2 s ( s n ) s s n ( s n ) 2
A0 1
d 2 A1 C ( s )( s ) 1 n ds s n
相关文档
最新文档