含风电场电力系统电压波动的随机潮流计算与分析
含风电场电力系统的潮流计算方法综述
含风电场电力系统的潮流计算方法综述【摘要】含风电场电力系统的潮流计算对分析风电场并网后对电力系统稳定运行的影响具有十分重要的意义。
本文在介绍在风电场潮流计算模型的基础上,分析和总结了目前含风电场电力系统的确定性潮流计算方法和不确定性潮流计算方法的研究现状和特点。
【关键词】风电场;电力系统;确定性潮流;不确定性潮流0.引言随着能源结构的调整,风力发电的比重日益加大,我国政府一直积极支持风力发电的发展,制定了一系列鼓励风力发电的政策,支持风力发电的快速发展,使得风力发电的成本已大幅下降,成为了可再生能源中发展速度最快和最有前途的发电方式之一[1]。
但风能所具有的随机性和不可控性决定了风电机组的出力具有波动性和间歇性的特点。
与传统发电方式相比,风电场容量可信度较低,随着风电场规模的不断扩大和风力发电装置容量的显著增加,风电并网后对原有电力系统的影响也加大了,因此对其的研究也更加迫切。
当风电机组装机容量在电网总容量的比例较大时,风力发电将改变输电系统中的网损及其原有的潮流分布,输电网运行的安全性将受到较大的挑战,其运行的经济性也可能受到一定的影响[2-5]。
因此,为了研究风电机组接入电网以后对整个电力系统的影响,就必须对风电并网前后的系统潮流分布进行计算。
目前,对风电场潮流计算的研究已经具有一定的基础,风电场潮流计算主要包括含普通异步电机的风电场潮流计算和含双馈异步电机的风电场潮流计算[6]。
从上世纪80年代起,随着并网风电场的出现,人们就开始关注含风电场电力系统的潮流计算问题。
在电力系统潮流计算中,传统节点主要分为PV节点、PQ节点和平衡节点。
一般异步电机本身没有励磁调节装置,不能有效地调整节点电压,因此不能与常规的同步电机一样看作电压幅值恒定的PV节点。
异步电机向系统注入有功功率时也要从系统吸收一定的无功功率,吸收无功大小与发电机发出的有功功率、滑差率和机端电压等有着紧密的联系,因此不能简单的处理为恒功率的PQ节点[7]。
含风电场的电力系统潮流计算
含风电场的电力系统潮流计算一、本文概述随着全球能源结构的转型和可再生能源的大力发展,风电作为一种清洁、可再生的能源形式,其在电力系统中的比重日益增加。
风电场的大规模接入对电力系统的运行和控制带来了新的挑战,尤其是风电场出力的随机性和波动性对电力系统的潮流分布、电压稳定性以及保护控制等方面产生了显著影响。
因此,对含风电场的电力系统进行准确的潮流计算,对于电力系统的规划、设计、运行和控制具有重要的理论价值和现实意义。
本文旨在研究含风电场的电力系统潮流计算方法,分析风电场接入对电力系统潮流分布的影响,提出相应的潮流计算模型和算法。
文章首先介绍了风电场的基本特性及其在电力系统中的接入方式,然后详细阐述了含风电场的电力系统潮流计算的基本原理和方法,包括风电场出力模型的建立、潮流计算的基本方程和求解算法等。
在此基础上,文章进一步探讨了风电场接入对电力系统潮流分布的影响,包括风电场出力波动对电压稳定性、线路潮流和节点功率分布的影响等。
文章提出了针对含风电场的电力系统潮流计算的一些改进措施和优化策略,为提高电力系统的运行效率和稳定性提供参考。
通过本文的研究,可以为含风电场的电力系统潮流计算提供理论支持和实践指导,有助于更好地理解和解决风电场接入带来的电力系统运行问题,推动可再生能源在电力系统中的广泛应用和持续发展。
二、风电场特性及建模风电场作为可再生能源的重要组成部分,具有随机性、间歇性和不可预测性等特点。
这些特性使得风电场在电力系统中的建模和潮流计算变得复杂。
风电场的出力受到风速、风向、湍流等多种因素的影响,因此,准确描述风电场的特性并建立合适的模型是电力系统潮流计算的关键。
在风电场建模中,通常将风电场看作一个由多个风电机组组成的集合。
每个风电机组的出力取决于其装机容量、风速以及控制策略等因素。
为了简化计算,通常将风电场视为一个等效的电源,其出力等于所有风电机组出力的总和。
等效电源的出力特性可以通过统计方法得到,如威布尔分布、贝塔分布等。
电力系统中的潮流计算与分析
电力系统中的潮流计算与分析摘要本文介绍了电力系统中的潮流计算与分析,潮流计算是电力系统计算的基础,通过对电力系统中的电流、电压和功率进行计算和分析,可以有效地评估电力系统的稳定性和安全性。
在本文中,我们讨论了潮流计算的原理和方法,并介绍了一种基于改进的高斯-赛德尔迭代算法的潮流计算方法。
同时,我们还介绍了一种基于Python语言的潮流计算程序的设计和实现,该程序可以对电力系统进行潮流计算和分析,并生成相关的报告和图表。
最后,我们利用该程序对IEEE 14节点测试系统进行了潮流计算和分析,并分析了系统的稳定性和安全性。
关键词:电力系统;潮流计算;高斯-赛德尔迭代算法;Python语言AbstractThis paper introduces the load flow calculation and analysis in power system. Load flow calculation is the basis of power system calculation. By calculating and analyzing the current, voltage and power in the power system, the stability and safety of the power system can be effectively evaluated. In this paper, we discuss the principles and methods of load flow calculation, and introduce an improved Gauss-Seidel iterative algorithm based load flow calculation method. At the same time, we also introduce the design and implementation of a load flow calculation program based on the Python language. The program can perform load flow calculation and analysis on the power system, and generate relevant reports and charts. Finally, we use the program to perform load flow calculation and analysis on the IEEE 14-bus test system, and analyze the stability and safety of the system.Keywords: power system; load flow calculation; Gauss-Seidel iterative algorithm; Python language一、引言电力系统是现代工业和生活的基础设施之一,它承担着输送和分配电能的重要任务。
含风力发电机组的配电网潮流计算
含风力发电机组的配电网潮流计算一、概述随着全球能源结构的转型和可再生能源的大力发展,风电作为一种清洁、可再生的能源形式,其在电力系统中的比重日益增加。
风电场的大规模接入为电力系统带来了新的活力,但同时也带来了诸多挑战。
尤其在配电网层面,风力发电机组的接入使得配电网从一个无源网络转变为有源网络,其潮流特性、电压分布以及网损情况都发生了显著变化。
含风力发电机组的配电网潮流计算,是电力系统分析与控制领域的重要课题。
通过潮流计算,可以准确描述风力发电机组接入后配电网的运行状态,分析其对系统电压稳定性、潮流分布以及网损的影响。
这不仅有助于电力系统的规划与设计,更对于电力系统的安全稳定运行和优化调度具有重要意义。
在含风力发电机组的配电网潮流计算中,风电场的特性建模是关键环节。
由于风速的随机性、间歇性和不可预测性,风电场的出力具有极大的不确定性。
在建模过程中需要充分考虑这些因素,建立准确的风电场出力模型。
配电网的结构特点、负荷分布以及控制策略等也是影响潮流计算的重要因素。
针对含风力发电机组的配电网潮流计算已有多种方法,如前推回代法、牛顿拉夫逊法等。
这些方法各有优缺点,需要根据实际情况进行选择和优化。
随着智能电网和分布式发电技术的不断发展,配电网潮流计算也面临着新的挑战和机遇。
本文旨在深入研究含风力发电机组的配电网潮流计算方法,分析风力发电机组接入对配电网潮流分布的影响,提出相应的优化策略和建议。
通过本文的研究,可以为含风力发电机组的配电网潮流计算提供理论支持和实践指导,有助于推动可再生能源在电力系统中的广泛应用和持续发展。
1. 风力发电机组在配电网中的应用背景随着全球能源结构的转型和可再生能源的大力发展,风力发电作为一种清洁、可再生的能源形式,其在配电网中的应用愈发广泛。
风力发电机组,作为风力发电的核心设备,在配电网中发挥着举足轻重的作用。
环境问题日益严重,化石燃料燃烧导致的碳排放量不断增加,加剧了全球气候变暖的速度。
电力系统中的潮流计算与稳定分析
电力系统中的潮流计算与稳定分析潮流计算与稳定分析是电力系统中重要的技术手段,用于预测和评估电力系统的运行状态和稳定性。
本文将从潮流计算和稳定分析的基本概念、方法和工程应用等方面进行探讨。
一、潮流计算潮流计算是电力系统中对电压、电流、功率等变量进行分析和计算的过程。
其目的是求解电网中的电压和功率分布,以评估系统的稳定性、计算线路功率损耗、定位设备故障并提供临界信息等。
潮流计算的结果可用于电力系统的规划、设计和运行管理等方面。
潮流计算的基本思想是基于节点法和分支法建立电力系统的节点电压与功率平衡方程。
通过构造节点电压相位差和功率平衡方程组,利用牛顿-拉夫逊法、高尔顿法等迭代计算方法,求解节点电压和功率未知量。
潮流计算的关键是确定等值负荷、节点类型、线路参数、发电机数据和变压器等参数。
潮流计算在电力系统规划中的应用非常重要。
通过潮流计算,可以评估系统的稳定性和可靠性,确定线路容量和电压降、决策最优的网络配置、分析运行状态和故障查找、以及进行负荷预测和管理等。
二、稳定分析稳定分析是对电力系统中的电压、电流和功率等参数进行分析和评估,以判断系统在外部扰动或负荷变化下的稳定性。
稳定分析的主要目的是查找系统中存在的潜在问题,并提出相关措施来确保系统的稳定工作。
稳定分析主要包括动态稳定分析和静态稳定分析。
动态稳定分析主要研究系统在负荷扰动、短路故障或设备故障等异常情况下的稳定性。
通过建立系统的等值模型,利用数值方法进行仿真和分析,得到系统的过渡过程和稳定状态的参数。
静态稳定分析主要研究系统在负荷变化、电压偏差或设备调整等正常情况下的稳定性。
通过潮流计算等方法,评估系统的电压稳定裕度、功率裕度和负荷响应等指标。
稳定分析在电力系统的运行和规划中起着重要的作用。
通过稳定分析,可以预测系统的稳定界限和临界条件,确定并改进控制策略,提高系统的稳定性和响应速度,降低发生事故的概率和风险,并进行设备选型和容量决策等。
三、工程应用潮流计算和稳定分析在电力系统工程中有着广泛的应用。
含风电场配电网随机潮流计算及其电压安全分析
( )有 功 功 率 概 率 函 数 可 得 : 1 ,
P ) F ’P ) = ( =
式 中 : 为节 点 电压 幅 值 和 相 位 的 状 态 向量 ; z
为
} )p竿 ) ㈥ ( c[ 竿 -_ ] l( e x
同理 , 功 功 率 概 率 密 度 函 数 亦 可 得 到 。 无 至 此 .风 力 发 电 机 组 输 出 功 率 概 率 模 型 已 经 建 立 , 在 随 机 潮 流 计 算 中 的 应 用 将 在 下 一 节 中介 绍 。 其
中 风 电 机 组 节 点 被 描 述 为 P 节 点 .其 中 无 功 功 率 Q
p 可 表 示 为 : p = tn0 a ( 4)
定 性 潮 流 就 不 能 全 面 反 映 电 网 运 行 状 态 .而 基 于 统
式 中 : 0是 风 力 发 电 机 功 角 , 正 常 运 行 时 保 持 不 变 。 文 献 『 ] 入 一 种 离 散 式 风 电场 输 出 功 率 分 布 . 虑 7 引 考 到 大 多 数 风 电 场 风 速 范 围 一 般 都 满 足 风 电 机 组 运 行 要 求 , 风 速 均 分 布 在 与 V 之 间 , 以 将 其 简 化 即 可
0 kI v+k2
≤ 。 vc <v ̄ v i
算 本 文 采 用 协 方 差 矩 阵 转 换 法 , 先 确 定 节 点 注 入 首
量 协 方 差 矩 阵 的特 征 值 和 特 征 向量 ,进 而 采 用 正 交
( 2)
P
变 换 将 原 始 相 关 随 机 变 量 转 换 为 一 组 统 计 上 相 互 独 立 的 随机变 量 . 此进行 随机 潮流 分析 。 以 对 节 点 注 入 相 关 变 量 (=1 2, , ) 其 相 关 i , … m , 性 参 数 矩 阵 可 以 按 式 ( ) 化 成 协 方 差 矩 阵 6 转 , 求
含风电场的电力系统潮流计算
中图分类号:TM46
含风电场的电力系统潮流计算
吴义纯 1,2,丁 明 1,张立军 1
(1.合肥工业大学 电气与自动化工程学院,安徽省 合肥市 230009; 2.安徽电力培训中心,安徽省 合肥市 230022)
POWER FLOW ANALYSIS IN ELECTRICAL POWER NETWORKS INCLUDING WIND FARMS
j =1 n n
(14) (15) (16)
Qi = U i∑U j (Gij sin δ ij − Bij cos δ ij )
0.6 0.5 0.4 0.3 0.2 0.1 0 2 4 6 8 10 12 14 16 Cp m a x
由异步发电机原理知道, 风力异步发电机发出的 有功功率Pe与转子电流Ir、滑差s等有关,其表达式为 Pe = − I r2 Rr (1 − s) / s (3) 其中,Rr为风力异步发电机的转子电阻, Ω;s 为 滑差,计算公式为 s = (n s − nr kr ) / ns × 100% , nr 为 叶片的旋转速度; kr 为齿轮比; ns 为同步转速; ns = 60 f / p ( f 为电网频率, p 为异步电机极对 数) 。 由此可见,滑差s变化,异步发电机发出的有功 功率Pe随之变化,同时风轮机转速、尖速比Ttsr、风能 利用系数Cp与风力机机械功率也随之变化。 根据功率 守恒原理,这两个功率应相等。迭代过程中当这两个 功率不等时,滑差s需要修正,最终使风力机机械功 率与发电机电磁功率相平衡。 为此本文在采用牛顿- 拉夫逊法计算潮流时,引入了风电机组发电功率与机 械功率差∆Pem和滑差修正量∆s,修正方程式为 ∂P ∂P ∂P ∂θ ∂ ∂s ∆ θ U ∆P ∂Q ∂Q ∆Q = ∂Q ∆U (4) ∂θ ∂U ∂s ∆Pem ∂P ∆s ∂Pem ∂Pem em ∂U ∂s ∂θ 其中 {∆Pem } 为列向量,表示风电场风力机的机 械功率和电磁功率的差值,其维数表示网络中所含 风电机组的个数。 通过对雅可比矩阵的形式加以修改,使在每次 迭代过程中滑差s都得到及时的修正, 因此该方法仍 [11-12] 保留牛顿-拉夫逊法的收敛性 。 同时还应指出,在同一风电场中,可以把多台 型号和风况相同的风电机组合并成一台等值机。引 入 ∆Pem 后,其迭代过程中收敛判据为 ∆Pem / Pm ≤ ε (5) 式中 å是一预先给定的小正数。 ∆s 是滑差修正量, 用于计算下一轮迭代的滑差 值,计算公式为 si+1 = s i + ∆s (6) 根据式 (3) 及风力发电机组等值电路不难推导
电力系统潮流计算与分析
电力系统潮流计算与分析电力系统是现代社会不可或缺的基础设施之一,它为我们提供了稳定可靠的电力供应。
而电力系统的潮流计算与分析则是电气工程中的重要研究领域之一。
本文将介绍电力系统潮流计算与分析的基本概念、方法和应用。
一、潮流计算的基本概念潮流计算是指对电力系统中各个节点的电压、电流、功率等参数进行计算和分析的过程。
它是电力系统规划、设计和运行中必不可少的工具。
潮流计算的目的是确定电力系统中各个节点的电压和相位角,以及各个支路的电流和功率。
通过潮流计算,可以评估电力系统的稳定性、负载能力和输电能力,为电力系统的规划和运行提供科学依据。
二、潮流计算的方法潮流计算的方法主要包括直流潮流计算和交流潮流计算两种。
直流潮流计算是一种简化的方法,适用于电力系统中负载变化较小的情况。
它假设电力系统中的所有元件都是直流元件,忽略了电抗元件的影响。
交流潮流计算则考虑了电力系统中的电抗元件对电流和功率的影响,是一种更为精确的计算方法。
在交流潮流计算中,常用的方法包括高斯-赛德尔法、牛顿-拉夫逊法和快速潮流法等。
高斯-赛德尔法是一种迭代法,通过反复迭代计算节点的电压和相位角,直到满足收敛条件。
牛顿-拉夫逊法则是一种迭代法,通过对节点电压的雅可比矩阵进行线性化,求解节点电压的增量,从而逐步逼近潮流计算的结果。
快速潮流法是一种基于分解和迭代的方法,通过将电力系统分解为多个子系统进行计算,从而提高计算的速度和效率。
三、潮流计算的应用潮流计算在电力系统的规划、设计和运行中有着广泛的应用。
首先,潮流计算可以用于电力系统的负荷分配和负载能力评估。
通过计算各个节点的电压和功率,可以确定电力系统中各个节点的负载水平,从而合理分配负荷,提高电力系统的供电能力。
其次,潮流计算可以用于电力系统的故障分析和稳定性评估。
通过模拟电力系统中的故障情况,可以评估电力系统的稳定性,为电力系统的运行和维护提供依据。
此外,潮流计算还可以用于电力系统的输电能力评估和优化。
电力系统潮流计算与分析
电力系统潮流计算与分析概述:电力系统潮流计算与分析是电力系统运行中的重要步骤,它涉及到对电力系统的节点电压、线路潮流以及功率损耗等进行精确计算和分析的过程。
通过潮流计算和分析,电力系统运行人员可以获得关键的运行参数,从而保持电力系统的稳定运行。
本文将从潮流计算的基本原理、计算方法、影响因素以及潮流分析的实际应用等方面进行论述。
潮流计算的基本原理:潮流计算的基本原理是基于电力系统的节点电压和线路潮流之间的平衡关系进行计算。
在电力系统中,电源会向负载供电,而线路损耗会导致电压降低。
潮流计算就是要确定电力系统中各个节点的电压和线路潮流,以保持系统的稳定运行。
通过潮流计算,可以得到节点电压、线路潮流以及负荷功率等关键参数。
潮流计算的方法:潮流计算可以分为迭代法和直接法两种方法。
1. 迭代法:迭代法是潮流计算中最常用的方法,它基于电力系统的牛顿—拉夫逊法(Newton-Raphson method)来进行计算。
迭代法的基本步骤如下:a. 假设节点电压的初值;b. 根据节点电压初值和电力系统的潮流方程建立节点电流方程组;c. 利用牛顿—拉夫逊法迭代求解节点电压;d. 判断是否满足收敛条件,如果不满足,则返回第二步重新计算,直至满足收敛条件。
2. 直接法:直接法是潮流计算中的另一种方法,它基于电力系统的潮流松弛法(Gauss-Seidel method)来进行计算。
直接法的基本步骤如下:a. 假设节点电压的初值;b. 根据节点电压初值和电力系统的潮流方程,按照节点顺序逐步计算节点电压;c. 判断是否满足收敛条件,如果不满足,则返回第二步重新计算,直至满足收敛条件。
影响潮流计算的因素:1. 负荷:电力系统中的负荷是潮流计算中的重要因素之一,负荷的变化会导致节点电压和线路潮流的波动。
因此,在进行潮流计算时,需要准确地估计各个节点的负荷。
2. 发电机:发电机是电力系统的电源,它的输出功率和电压会影响潮流计算中的节点电压和线路潮流。
电力行业的电力系统潮流计算与分析
电力行业的电力系统潮流计算与分析电力系统是一个复杂的能源交互网络,其潮流计算与分析对于电力行业的运营和规划至关重要。
本文将介绍电力系统潮流计算的基本原理、方法以及应用,并对一些常见的电力系统问题进行分析和解决。
一、电力系统潮流计算原理电力系统潮流计算是指通过建立和求解电力系统的节点电压和支路潮流等参数的方程组,来分析电力系统中各个节点和支路的电压、功率等参数。
其基本原理是基于电力系统中的潮流方程和节点电压平衡方程。
电力系统潮流方程是描述电力系统节点之间潮流传输关系的基本方程。
在潮流计算中,常用的潮流方程有M端潮流方程、PQ端潮流方程和PV端潮流方程。
这些方程反映了电力系统中不同类型节点的潮流传输特性,是潮流计算的基础。
节点电压平衡方程是电力系统潮流计算中的重要方程。
它根据电力系统的拓扑结构和能量守恒原理,描述了电力系统中各个节点的电压平衡关系。
通过求解节点电压平衡方程,可以得到电力系统中各个节点的电压值,从而确定电力系统的潮流分布情况。
二、电力系统潮流计算方法电力系统潮流计算方法包括迭代法、直接法和混合法等。
其中,迭代法是最常用和最经典的方法。
1. 迭代法迭代法是通过反复迭代计算来逼近电力系统的潮流计算结果。
常用的迭代法有高斯-赛德尔法、牛顿-拉夫逊法和快速潮流法等。
高斯-赛德尔法是一种基于节点顺序更新的迭代法,通过交替更新节点电压和支路潮流,逐渐逼近潮流计算结果。
牛顿-拉夫逊法是一种基于牛顿迭代法的改进方法,通过利用电压-节点功率雅可比矩阵的特性,加快了潮流计算的收敛速度。
快速潮流法是一种针对大规模电力系统的高效迭代法,通过合理的迭代策略和加速技术,提高了潮流计算的效率和准确性。
2. 直接法直接法是一种通过求解线性方程组来直接得到电力系统的潮流计算结果的方法。
常用的直接法有节点导纳矩阵法和母线导纳矩阵法等。
节点导纳矩阵法是一种基于电力系统拓扑结构的直接法,通过建立节点导纳矩阵和节点电流矩阵,求解节点电流和支路潮流。
含风电场电力系统随机有功优化潮流计算
3 ・ 0
第 2期
陈丽光 , : 等 含风 电场 电力系统随机有功优化潮流计算
2 2 基 于机 会约 束规 划的最 优潮 流 .
束 条件 的性质 、 形式 几乎 没有 要求 , 是 它 由于 许多 这
在 有 功潮 流 优 化 中需 要考 虑 的约束 条 件 有 : 线 路 的潮流 限制 、 机组 出力 限制和 系统旋 转备 用等 等 。 这些 约束都 是 电源发 电功率 的 函数 。对 于 加人风 电
陈 丽光 , 文
( 源供 电局 , 东 河 源 河 广
波
5 70 ) 10 0
摘
要 : 风机 出力、 将 负荷变动的随机性 引入 经典 最有潮流模型 中, 以发 电费用最小为 目标 函数 , 对约 束条件 ( 发 如
电机 出 力 限制 , 线路 潮流 等 ) 以机 会 约 束形 式进 行 描 述 。 蒙特 卡 洛 模 拟 嵌 入 遗 传 算 法 的 方 法 来解 决该 优 化 问题 , 以 IE 3 E E 0节点 系统 为例 说 明 该 方 法 的 有 效 性 和 可行 性 。 关 键 词 : 力 系统 ; 会 约 束 ; 电机 组 ; 电 机 风 蒙特 卡 洛模 拟 文 章 编 号 :0 8— 8X( 02 0 03 0 中 图分 类 号 :M7 文 献 标 识 码 : 10 0 3 2 1 )2— 0 0— 4 T 4 B
在 我 国 , 期 由 于 发 电结 构 的 不 合 理 , 电 长 火 所 占 比重 偏 大 。 由 此 加 剧 了 环 境 的 恶 化 和 资 源 的 匮乏 。 “ 二 五 ” 划 对 我 国能 源 结 构 的调 整 , 十 规 国 家对 新 能 源 的投 资 比重 加 大 , 来 越 多 的绿 色 越 能 源并 人 电 网 发 电 , 风 电 则 是 绿 色 能 源 的 主 要 而 来 源 。据 相 关 研 究 资 料 统 计 , 国可 开 发 利 用 的 我
电力系统的潮流计算与分析
电力系统的潮流计算与分析引言电力是现代社会不可或缺的能源,电力系统的稳定运行和高效管理对整个社会经济发展起着重要作用。
而电力系统的潮流计算与分析是电力系统运行和管理的重要工具。
本文将探讨电力系统潮流计算与分析的原理、方法以及应用领域,旨在增进读者对该领域的了解。
一、电力系统潮流计算的原理电力系统潮流计算是指在给定电网拓扑结构、负荷需求和发电机输出等条件下,通过数学模型计算各节点的电压幅值和相位角,以获取电网各元件的电流分布和功率流向。
潮流计算的核心是建立电力系统的节点电压和传输功率的联立方程组,并通过求解方程组得到节点电压和功率流向的数值解。
潮流计算的基本原理是基于电力系统的各节点之间存在有功功率平衡和无功功率平衡,即电力系统各节点的有功功率和无功功率之和等于节点的负荷功率和发电机输出功率之和。
通过对电力系统进行潮流计算,可以得出各节点的电压、功率因数、功率损耗等参数,为电力系统的运行和管理提供依据。
二、电力系统潮流计算的方法1. 直流潮流计算方法直流潮流计算方法是一种较为简化的计算方法,适用于较小规模的电力系统以及初步的潮流计算。
该算法假设电力系统中各节点电压的相角都为零,即所有节点电压相位角均取0°,从而简化了潮流计算的计算量。
然而,直流潮流计算方法无法考虑电网的无功功率平衡,无法准确得到节点的功率因数和无功功率分布。
2. 迭代法潮流计算方法迭代法是一种常用的潮流计算方法,其基本思路是通过反复迭代计算节点电压和功率分布,直到达到收敛条件为止。
迭代法潮流计算方法常用的算法包括高斯-赛德尔迭代法和牛顿-拉夫逊迭代法。
迭代法潮流计算方法能较好地考虑电网的无功功率平衡,可以获得较为准确的节点电压和功率分布。
3. 双切迭代法潮流计算方法双切迭代法是一种相对较新的潮流计算方法,其基本思路是通过分析电力系统的分割区域,将电力系统划分为多个小区域进行潮流计算,并通过切割和迭代的方式逐步求解整个电力系统。
风电场环境下的电力系统潮流算法
风电场环境下的电力系统潮流算法摘要:随着社会经济的发展,我国对电能的需求不断增加,电力系统发展迅速。
文章首先针对电力系统潮流算法的发展展开必要说明,而后进一步讨论了风电场环境下电力潮流计算的模型,对于加深该领域的理解有着积极价值。
关键词:电力:潮流计算:风电场引言风电场并网运行,当风电装机容量占总电网容量的比例较大时,风力发电的随机性将改变输电系统原有的潮流及网络损耗的分布,输电网运行的安全性会受到较大的冲击,运行的经济也会受到影响。
因此,为了研究风力发电接入电网以后对整个电力系统带来的影响,就必须计算大型风电场接入电网后的潮流。
1含风电场的电力系统最优潮流研究意义最优潮流是指当电力系统网络结构及负荷都给定时,在满足节点功率平衡及各种安全约束的条件下,通过调节系统中的控制参数使其目标函数或某一性能指标达到最优时的潮流分布。
最优潮流在电力系统的经济调度、系统规划设计及可靠性分析等方面得到了广泛应用,在节能减排、提高能源利用率和环境效益的大背景下,以风电为代表的分布式电源得到了迅速的发展,然而传统的最优潮流问题并没有考虑风电等不确定性因素,在风力发电飞速发展和追求低碳电力的影响下,大规模风电并网不可避免。
由于风能具有随机性、间歇性和不可控性的特点,使风电场输出功率具有强烈的随机性和波动性,加剧了电力系统运行中不确定因素的复杂程度,使电力系统潮流优化的难度增大,因此迫切需要研究大型风电场并网后对电力系统的影响。
包含风电场的电力系统最优潮流,在评估风电并网对电力系统运行的经济性和环境效益上起着非常重要的作用。
2电力系统潮流算法的发展对于电力系统潮流算法的研究,在很大程度上与计算机的发展保持了一种同步状态。
20世纪50年代,以节点导纳矩阵为基础的高斯赛德尔算法广泛应用,就是因为当时的计算机运算能力有限,但是算法本身较差的收敛性,又推动了算法本身的进步。
时至今日,计算机运算能力得到大幅度提升,对应的算法也呈现出新的特点。
电力系统潮流分析与计算设计
电力系统潮流分析与计算设计潮流分析是电力系统运行与规划中不可或缺的一项工作。
通过潮流分析,可以确定电力系统各个节点的电压、电流、功率等参数,对电力系统的安全、稳定运行起着重要作用。
本文将从潮流分析的基本原理、计算方法和潮流计算的设计等方面进行介绍。
一、潮流分析基本原理电力系统的潮流分析主要是通过电力网络的基尔霍夫电流定律和基尔霍夫节点电压定律来进行计算。
潮流分析可以分为直流潮流和交流潮流两种情况。
直流潮流分析是指假设电力系统输电线路和变压器的阻抗为常数,忽略电容和电感的影响,采用直流计算方法进行潮流计算。
直流潮流计算速度快,收敛性好,适用于稳态运行条件下的电力系统。
交流潮流分析则是在交流电平和频率下,将电压、电流和功率等参数表示为复数形式,采用复数的电路理论进行计算。
交流潮流计算较为复杂,但更贴近实际情况,适用于电力系统的各种工作条件。
二、潮流分析计算方法潮流分析计算方法主要包括迭代法和直接法两种。
1.迭代法迭代法是最常用的潮流计算方法之一,主要包括高斯-赛德尔迭代法和牛顿-拉夫逊迭代法。
高斯-赛德尔迭代法是一种逐节点的计算方法,从一些节点开始,按照节点之间的连接关系,逐步迭代计算各节点的电压值,直至计算收敛。
牛顿-拉夫逊迭代法则是一种逐步修正法,通过雅可比矩阵的计算,对电压的修正量进行计算,直至收敛。
2.直接法直接法是一种直接求解潮流方程组的方法,其中最常用的是改进的高斯-赛德尔法。
改进的高斯-赛德尔法通过将网络拓扑结构进行合理调整,减少节点之间的连接数,从而降低了计算复杂度,提高了计算速度。
三、潮流计算设计潮流计算涉及到许多参数和算法的选择,不同的设计选择会直接影响潮流计算的准确性和计算效率。
1.电网模型的建立电网模型是潮流计算的基础,需要从现实的电力系统中获取各个节点、支路和发电机等信息,进行电网模型的建立。
电网模型的建立过程中,需要注意考虑电力系统的运行条件,包括各节点的电压等级、负载状况、发电机的出力等。
电力系统潮流计算与分析
电力系统潮流计算与分析在当今社会,电力如同血液一般在现代工业和生活的脉络中流淌,支撑着一切的运转。
而电力系统潮流计算,则是理解和掌控这一庞大能源网络运行状态的关键工具。
电力系统潮流计算,简单来说,就是在给定电力网络结构、参数和运行条件的情况下,确定电力系统中各处的电压、电流、功率等电气量的分布。
这就好比我们要知道一条复杂管道中各个节点的水流压力、流量等信息一样。
想象一下,一个电力系统包含了众多的发电厂、变电站、输电线路和各类用电设备,它们相互连接,构成了一个极其复杂的网络。
在这个网络中,电能从发电厂出发,经过输电线路,到达变电站,再分配到各个用户。
而潮流计算的任务,就是要弄清楚在这个过程中,电能是如何流动的,各个节点的电压和功率是多少,线路上的电流有多大,以及整个系统是否能够稳定、安全地运行。
为什么要进行潮流计算呢?这主要是因为它对于电力系统的规划、设计、运行和控制都具有极其重要的意义。
在电力系统的规划和设计阶段,通过潮流计算,可以评估不同的网络结构和参数对系统性能的影响,从而选择最优的方案。
比如说,在规划新的输电线路时,我们需要知道在不同的线路布局和容量下,系统的潮流分布情况,以确保新线路能够有效地传输电能,同时不会导致某些节点电压过低或线路过载。
在电力系统的运行阶段,潮流计算可以帮助调度人员实时掌握系统的运行状态。
如果发现某些节点电压偏离了正常范围,或者某些线路的功率超过了允许值,调度人员就可以及时采取措施进行调整,比如调整发电机的出力、改变变压器的分接头、投切无功补偿设备等,以保证系统的安全稳定运行。
此外,潮流计算还可以用于电力系统的故障分析。
当系统发生故障时,比如线路短路或变压器故障,通过潮流计算可以预测故障对系统潮流分布的影响,从而为制定相应的故障处理措施提供依据。
那么,潮流计算是如何实现的呢?这涉及到一系列的数学模型和计算方法。
最常见的潮流计算方法包括牛顿拉夫逊法、PQ 分解法等。
牛顿拉夫逊法是一种基于非线性方程组求解的方法,具有较高的计算精度,但计算量较大。
含风电场的电力系统概率潮流计算
含风电场的电力系统概率潮流计算摘要:由于对环保的关注,主要收获可再生能源(RES)的分布式能源(分布式能源)得到空前上升的关注。
这种类型的能源的天生不确定性增加电力系统中的不确定性,因此,就必须对系统性能进行概率分析。
此外,除了他们的不确定性,不确定参数具有相当水平的相关性。
两点估计法(2PEM)被公认为是适当的解决小规模甚至中等规模问题概率方法。
本文通过两点估计法计算概率潮流问题。
为了证明该方法的效果,用Mathpower14节点系统验证该方法。
然后,将得到的结果与蒙特卡罗模拟(MCS)的结果相比较。
关键字:概率潮流;两点法;风力发电引言最优概率潮流是电力市场中的重要工具,通过最优潮流模拟市场竞价过程,可获得交易量和节点电价等重要指标。
传统最优潮流研究大都基于确定性模型,即市场报价、负荷分布和元件参数等条件固定不变。
从宏观上看,一定时期内发电商报价和用户消费电能具有一定的确定性,但从微观角度来看,每个时段内发电商报价和用户消费的电能又会在各种因素影响下产生变化,这将引起交易量和节点电价的不断波动。
因此采用确定性模型进行最优潮流计算得到的结果,不能全面反映不确定因素对市场交易的影响。
计及发电报价、负荷分布中存在的不确定因素,采用概率最优潮流对市场交易进行模拟,能揭示出随机性和概率性后面隐藏的规律,为市场运营提供更多信息,降低交易风险,更好地引导市场交易的开展。
2.不确定模型负荷作为最显眼的不确定变量对电力系统运行起着至关重要的作用。
它的波动与时间,天气条件和电价等有关。
对于负载一种常见的做法到通过正态分布特定平均值和STD值,从历史数据获得的模型。
在这项研究中,负荷通过正态分布函数来模拟,平均值等于基本负载并且STD等于其平均值5%。
为了模拟风力发电的不确定性,一些节点被认为具有风电场和不确定的输出功率。
风速随着时间和地点的变化而变化和它的PDF遵循weibull分布。
因此,风速用weibull分布函数建模。
含风电场电力系统电压波动的随机潮流计算与分析
由控制器补偿 , 其数值可以保持常数 ( 通常接近于
0) . 同步发电机通过功率变换器接入系统 ,而后者通
常配有无功补偿器 , 其消耗的无功功率也可以视为
常数并接近于 0.
11 3 风力发电机出力的概率分布
风力发电机的出力可由风速的概率分布和发电
机的功率特性求出.
(1) 当 v0 ≤v < vci ∪ vco ≤v , PW = 0 时
风力发电机有功出力
图
1
Wei
bull
分布的
图
2
风力发电机功率
比较
风速曲线
0 v ≤ vci
k1 v + k2 vci < v ≤ vr
PW = Pr
vr < v ≤ vco
(2)
0
v > vco
式中 : vci 是切入风速 ; vr 是额定风速 ; vco 是切出风
速 ; k1 = Pr / ( vr - vci ) ; k2 = - k1 vci .
有功出力对应的无功功率. 因此 ,风电场出力的概率
分布最终可以表示为一组有功出力和无功功率及相
应概率的离散数据.
2 考虑风电场的随机潮流计算
21 1 随机潮流算法 本文采用的随机潮流算法[9] 不但考虑了负荷随
机波动和发电机随机停运 ,还计及了线路随机故障. 该算法将负荷波动 、发电机停运以及线路故障
(3) 当 vr ≤v < vco , PW = Pr 时
∫vco
P( PW = Pr ) = f ( v) d v = vr
exp -
vr - v0 α
β
- exp
-
vco - v0 α
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关键 词 :风 电并 网 ; 电压 波动 ; 随机 潮 流
中图分 类号 :TM7 4 文献 标志 码 :A 文 章编 号 :0 5 —8 X( 0 8 1 -5 00 3 2 39 7 2 0 ) 21 0 —6
Vo t g u t a i n o we y tm t i d Fa m sI e r td la e Fl c u to fa Po rS se wih W n r ntg a e
b o a iitc Lo d Fl w y Pr b b ls i a o
第 4 卷 第 1 期 2 2 20 ቤተ መጻሕፍቲ ባይዱ 8年 1 2月
西
安 交
通 大 学 学
报
Vo1 2 N 1 .4 o 2 De . 2 08 c 0
J) (URNAL OF XIAN JAOTONG I UNI VERSTY I
含风 电场 电力 系统 电压 波动 的随机 潮流计 算 与分析
c mp n a i n a d t e i t g a i g e u p e te f c n t ev l g l c u to a e a a y e h r o e s to n h e r tn q i m n f e t h o t efu t a i n c n b n l z d t o — n o a
并 网后 系统各 节点 电压 的概 率 分布 , 中特 别 包括 风 电场接 入 点 的 电压 波动 情 况. 此 基 础 上 , 其 在 该 方 法可 以对 风 电场 的无功 补偿 进行 进 一 步 分析. 外 还 证 明 了用 三参 数 的 W e u1 此 i l分布 描 述 风速 b 变化 可 以更好地 反 映 高风速 对风 电机组 输 出功 率 的影 响 , 于常年 风 速 较 高 的风 电场 更适 合 采 用 对 此分 布描述 . 对接 有 风 电场 的 I E TS2 E ER 4节点 系统进 行 的 算例 分 析证 明 了该 方 法 的有 效性 , 并
别朝 红 ,刘辉 ,李 甘 ,王锡凡
( 西安交通大学 电气丁程学院 ,7 04 . 10 9 西安 )
摘 要 :提 出了用 随机 潮 流计 算分析 风 电场 并 网所 引起 的 系统 电压 波 动 的 方 法. 方 法全 面考 虑 了 该
风 电场 出力 变化 、 负荷 波动 、 电机 停运 以及 线路 故 障 等 随机 因素 , 过 随机 潮流 计 算 求 出风 电场 发 通
B E Zh o o g, LI Hu , LIGa , W ANG f n I ah n U i n Xi a
( c o l fE e ti l n ie r g S h o o l r a E gn ei ,Xi nJa t n ie s y Xi n 7 0 4 , ia c c n i o g Unv ri , 1 0 9 Chn ) a o t a
ogl u h y,whc r vd s f l o l o lcrc l n i e r or v a h o tg u l y o h id ih p o ieau e u o ree t ia gn e st e e l ev l eq ai ft eg r t f e t a t a d c o s h tg a in n d o n a m .Th h e — a a ee eb l ds rb to d l n h o et ei e r to o ef rawid fr n et r ep r m t rW iu 1 iti u in mo e tk n o a in p rm ee n o a c u ti r p s d t e c ie wid s e d r n o fu t a in a i g lc to a a tr it co n s p o o e o d s rb n p e a d m l c u t . o Co a e t h o ma wo p r me e eb l dsrb to d l t e i a t o h i h mp r d wi t e n r lt - a a t rW iu l iti u in mo e , h mp c f t e hg h
Ab ta t A e p o a i si o d fo mo e o i v siae v l g l cu to a s d b n sr c : n w r b bl tcla lw d lt n e t t o t efu t a in c u e y wid i g a f r it g a in i p e e td Co sd r g wid s e d r n o n s n t e t c a tc dsu b a m n e r t s r s n e . n ie i n p e a d m e sa d o h r so h si it r — o n a c s u h a a yn o d ,g n r t n u i a d b a c u a e ,t ep o a i si dsrb t n n e ,s c sv r ig la s e e ai n t n r n h o tg s h r b b l tc itiu i s o i o o o sr i tvoa in o o ev la e n r n h ta se o r a eo ti e f n tan ilt fn d ot g sa d b a c r n frp we sc n b b an d,t e h n c o h nt ee — d r g a it f h tg ain n d o h t c a t n o rg n r t n,t era t ep we u i b l yo ei e r t o ef rt eso h s i widp we e e a i n i t n o c o h e c i o r v