北京市2020届高考数学预测卷(Word版含解析)

合集下载

北京市东城区2020届高三下学期4月第一次模拟新高考适应考试数学试题 Word版含答案

北京市东城区2020届高三下学期4月第一次模拟新高考适应考试数学试题 Word版含答案

2020年高考数学(4月份)第一次模拟试卷一、选择题(共10小题).1.已知集合A={x|x(x+1)≤0},集合B={x|﹣1<x<1},则A∪B=()A.{x|﹣1≤x≤1}B.{x|﹣1<x≤0}C.{x|﹣1≤x<1}D.{x|0<x<1}2.已知复数z=(其中i是虚数单位),则|z|=()A.B.C.1D.23.抛物线x2=4y的准线与y轴的交点的坐标为()A.B.(0,﹣1)C.(0,﹣2)D.(0,﹣4)4.设函数f(x)=x+﹣2(x<0),则f(x)()A.有最大值B.有最小值C.是增函数D.是减函数5.已知曲线C的方程为,则“a>b”是“曲线C为焦点在x轴上的椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.一排6个座位坐了2个三口之家.若每家人坐在一起,则不同的坐法种数为()A.12B.36C.72D.7207.已知圆C与直线y=﹣x及x+y﹣4=0的相切,圆心在直线y=x上,则圆C的方程为()A.(x﹣1)2 +(y﹣1)2 =2B.(x﹣1)2 +(y+1)2 =2C.(x+1)2 +(y﹣1)2 =4D.(x+1)2 +(y+1)2 =48.已知正项等比数列{a n}中,a1a5a9=27,a6与a7的等差中项为9,则a10=()A.729B.332C.181D.969.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,则当荷叶刚好覆盖水面面积一半时,荷叶已生长了()A.10天B.15天C.19天D.2天10.某学校高三教师周一、周二、周三坐地铁上班的人数分别是8,10,14,若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是()A.8B.7C.6D.5二、填空题共5题,每题5分,共25分.11.设向量,不平行,向量λ+与+2平行,则实数λ=.12.已知角α的顶点在坐标原点,始边与x轴的正半轴重合,将角α的终边按逆时针方向旋转后经过点(﹣1,),则sinα=.13.某四棱锥的三视图如图所示,那么该四棱锥的体积为.14.若顶点在原点的抛物线经过四个点(1,1),,(2,1),(4,2)中的2个点,则该抛物线的标准方程可以是.15.某部影片的盈利额(即影片的票房收入与固定成本之差)记为y,观影人数记为x,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y与x的函数图象.给出下列四种说法:①图(2)对应的方案是:提高票价,并提高成本;②图(2)对应的方案是:保持票价不变,并降低成本;③图(3)对应的方案是:提高票价,并保持成本不变;④图(3)对应的方案是:提高票价,并降低成本.其中,正确的说法是.(填写所有正确说法的编号)三、解答题16.如图1,在△ABC中,D,E分别为AB,AC的中点,O为DE的中点,AB=AC=2,BC=4.将△ADE沿DE折起到△A1DE的位置,使得平面A1DE⊥平面BCED,如图.(Ⅰ)求证:A1O⊥BD;(Ⅱ)求直线A1C和平面A1BD所成角的正弦值;17.在①b2+ac=a2+c2,②a cos B=b sin A,③sin B+cos B=,这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知△ABC的内角A,B,C的对边分别为a,b,c,_______,A=,b=,求△ABC的面积.18.为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如图:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(Ⅰ)根据表中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;(Ⅱ)为了解乙公司员工B的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X(单位:元),求X的分布列和数学期望;(Ⅲ)根据表中数据估算两公司的每位员工在该月所得的劳务费.19.已知函数f(x)=lnx﹣.(1)若曲线y=f(x)存在斜率为﹣1的切线,求实数a的取值范围;(2)求f(x)的单调区间;(3)设函数g(x)=,求证:当﹣1<a<0时,g(x)在(1,+∞)上存在极小值.20.已知椭圆C:x2+3y2=6的右焦点为F.(Ⅰ)求点F的坐标和椭圆C的离心率;(Ⅱ)直线l:y=kx+m(k≠0)过点F,且与椭圆C交于P,Q两点,如果点P关于x轴的对称点为P′,判断直线P'Q是否经过x轴上的定点,如果经过,求出该定点坐标;如果不经过,说明理由.21.各项均为非负整数的数列{a n}同时满足下列条件:①a1=m(m∈N*);②a n≤n﹣1(n≥2);③n是a1+a2+…+a n的因数(n≥1).(Ⅰ)当m=5时,写出数列{a n}的前五项;(Ⅱ)若数列{a n}的前三项互不相等,且n≥3时,a n为常数,求m的值;(Ⅲ)求证:对任意正整数m,存在正整数M,使得n≥M时,a n为常数.参考答案一、选择题共10题,每题4分,共40分.在每题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={x|x(x+1)≤0},集合B={x|﹣1<x<1},则A∪B=()A.{x|﹣1≤x≤1}B.{x|﹣1<x≤0}C.{x|﹣1≤x<1}D.{x|0<x<1}【分析】先求出集合A,集合B,由此能求出A∪B.解:∵集合A={x|x(x+1)≤0}={x|﹣1≤x≤0},集合B={x|﹣1<x<1},∴A∪B={x|﹣1≤x<1}.故选:C.2.已知复数z=(其中i是虚数单位),则|z|=()A.B.C.1D.2【分析】利用复数模长的性质即可求解.解:∵复数z=,∴==,故选:A.3.抛物线x2=4y的准线与y轴的交点的坐标为()A.B.(0,﹣1)C.(0,﹣2)D.(0,﹣4)【分析】利用抛物线x2=4y的准线方程为y=﹣1,即可求出抛物线x2=4y的准线与y轴的交点的坐标.解:抛物线x2=4y的准线方程为y=﹣1,∴抛物线x2=4y的准线与y轴的交点的坐标为(0,﹣1),故选:B.4.设函数f(x)=x+﹣2(x<0),则f(x)()A.有最大值B.有最小值C.是增函数D.是减函数【分析】根据x<0即可根据基本不等式得出,从而可得出f(x)≤﹣4,并且x=﹣1时取等号,从而得出f(x)有最大值,没有单调性,从而得出正确的选项.解:∵x<0,∴,当且仅当,即x=﹣1时取等号,∴f(x)有最大值,∴f(x)在(﹣∞,0)上没有单调性.故选:A.5.已知曲线C的方程为,则“a>b”是“曲线C为焦点在x轴上的椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据椭圆方程的特点,结合充分条件和必要条件的定义进行判断即可.解:若a>b>0,则对应的曲线为双曲线,不是椭圆,即充分性不成立,若曲线C为焦点在x轴上的椭圆,则满足a>﹣b>0,即a>0,b<0,满足a>b,即必要性成立,即“a>b”是“曲线C为焦点在x轴上的椭圆”的必要不充分条件,故选:B.6.一排6个座位坐了2个三口之家.若每家人坐在一起,则不同的坐法种数为()A.12B.36C.72D.720【分析】根据题意,由捆绑法分析:先将2个三口之家的成员进行全排列,再对2个三口之家整体进行全排列,由分步计数原理计算可得答案.解:根据题意,先将2个三口之家的成员进行全排列,有=36种情况,再对2个三口之家整体进行全排列,有=2种情况,则有36×2=72种不同的坐法;故选:C.7.已知圆C与直线y=﹣x及x+y﹣4=0的相切,圆心在直线y=x上,则圆C的方程为()A.(x﹣1)2 +(y﹣1)2 =2B.(x﹣1)2 +(y+1)2 =2C.(x+1)2 +(y﹣1)2 =4D.(x+1)2 +(y+1)2 =4【分析】根据圆心在直线y=x上,设出圆心坐标为(a,a),利用圆C与直线y=﹣x及x+y﹣4=0的相切,求得圆心坐标,再求圆的半径,可得圆的方程.解:圆心在y=x上,设圆心为(a,a),∵圆C与直线y=﹣x及x+y﹣4=0的相切,∴圆心到两直线y=﹣x及x+y﹣4=0的距离相等,即:⇒a=1,∴圆心坐标为(1,1),R==,圆C的标准方程为(x﹣1)2+(y﹣1)2=2.故选:A.8.已知正项等比数列{a n}中,a1a5a9=27,a6与a7的等差中项为9,则a10=()A.729B.332C.181D.96【分析】正项等比数列{a n}的公比设为q,q>0,运用等差数列的中项性质和等比数列的通项公式及性质,解方程可得公比q,再由等比数列的通项公式计算可得所求值.解:正项等比数列{a n}的公比设为q,q>0,由a1a5a9=27,可得a53=27,即a5=3,即a1q4=3,①a6与a7的等差中项为9,可得a6+a7=18,即a1q5+a1q6=18,②①②相除可得q2+q﹣6=0,解得q=2(﹣3舍去),则a10=a5q5=3×32=96.故选:D.9.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,则当荷叶刚好覆盖水面面积一半时,荷叶已生长了()A.10天B.15天C.19天D.2天【分析】由题意设荷叶覆盖水面的初始面积,再列出解析式,并注明x的范围,列出方程求解即可.解:设荷叶覆盖水面的初始面积为a,则x天后荷叶覆盖水面的面积y=a•2x(x∈N+),根据题意,令2(a•2x)=a•220,解得x=19,故选:C.10.某学校高三教师周一、周二、周三坐地铁上班的人数分别是8,10,14,若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是()A.8B.7C.6D.5【分析】设周三,周二,周一开车上班的职工组成的集合分别为A,B,C,集合A,B,C 中元素个数分别为n(A),n(B),n(C),根据n(A∪B∪C)=n(A)+n(B)+n (C)﹣n(A∩B)﹣n(A∩C)﹣n(B∩C)+n(A∩B∩C),且n(A∩B)≥n(A∩B ∩C),n(A∩C)≥n(A∩B∩C),n(B∩C)≥n(A∩B∩C)可得.解:设周三,周二,周一开车上班的职工组成的集合分别为A,B,C,集合A,B,C中元素个数分别为n(A),n(B),n(C),则n(A)=14,n(B)=10,n(C)=8,n(A∪B∪C)=20,因为n(A∪B∪C)=n(A)+n(B)+n(C)﹣n(A∩B)﹣n(A∩C)﹣n(B∩C)+n (A∩B∩C),且n(A∩B)≥n(A∩B∩C),n(A∩C)≥n(A∩B∩C),n(B∩C)≥n(A∩B∩C),所以14+10+8﹣20+n(A∩B∩C)≥3n(A∩B∩C),即n(A∩B∩C)≤=6.故选:C.二、填空题共5题,每题5分,共25分.11.设向量,不平行,向量λ+与+2平行,则实数λ=.【分析】利用向量平行的条件直接求解.解:∵向量,不平行,向量λ+与+2平行,∴λ+=t(+2)=,∴,解得实数λ=.故答案为:.12.已知角α的顶点在坐标原点,始边与x轴的正半轴重合,将角α的终边按逆时针方向旋转后经过点(﹣1,),则sinα=1.【分析】由题意利用任意角的三角函数的定义,先求得α的值,可得sinα的值.解:∵角α的顶点在坐标原点,始边与x轴的正半轴重合,将角α的终边按逆时针方向旋转后经过点(﹣1,),∴tan(α+)==﹣,故α+为第二象限角.∴可令α+=,此时,α=,sinα=1,故答案为:1.13.某四棱锥的三视图如图所示,那么该四棱锥的体积为.【分析】画出几何体的直观图,利用三视图的数据,求解几何体的体积.解:几何体的直观图如图:是长方体的一部分,长方体的棱长为:2,1,2,四棱锥的体积为:×1×2×2=.故答案为:.14.若顶点在原点的抛物线经过四个点(1,1),,(2,1),(4,2)中的2个点,则该抛物线的标准方程可以是x2=8y或y2=x.【分析】由题意可设抛物线方程为y2=2px(p>0)或x2=2py(p>0),然后分类求解得答案.解:由题意可得,抛物线方程为y2=2px(p>0)或x2=2py(p>0).若抛物线方程为y2=2px(p>0),代入(1,1),得p=,则抛物线方程为y2=x,此时(4,2)在抛物线上,符合题意;若抛物线方程为x2=2py(p>0),代入(2,1),得p=2,则抛物线方程为x2=8y,此时(2,)在抛物线上,符合题意.∴抛物线的标准方程可以是x2=8y或y2=x.故答案为:x2=8y或y2=x.15.某部影片的盈利额(即影片的票房收入与固定成本之差)记为y,观影人数记为x,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y与x的函数图象.给出下列四种说法:①图(2)对应的方案是:提高票价,并提高成本;②图(2)对应的方案是:保持票价不变,并降低成本;③图(3)对应的方案是:提高票价,并保持成本不变;④图(3)对应的方案是:提高票价,并降低成本.其中,正确的说法是②③.(填写所有正确说法的编号)【分析】解题的关键是理解图象表示的实际意义,进而得解.解:由图可知,点A纵坐标的相反数表示的是成本,直线的斜率表示的是票价,故图(2)降低了成本,但票价保持不变,即②对;图(3)成本保持不变,但提高了票价,即③对;故选:②③.三、解答题共6题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图1,在△ABC中,D,E分别为AB,AC的中点,O为DE的中点,AB=AC=2,BC=4.将△ADE沿DE折起到△A1DE的位置,使得平面A1DE⊥平面BCED,如图.(Ⅰ)求证:A1O⊥BD;(Ⅱ)求直线A1C和平面A1BD所成角的正弦值;【分析】(Ⅰ)推导出A1O⊥DE,从而A1O⊥平面BCDE,由此能证明A1O⊥BD.(Ⅱ)以O为原点,在平面BCED中过点O作DE的垂线为x轴,以OE为y轴,OA1为z轴,建立空间直角坐标系,由此能求出直线A1C和平面A1BD所成角的正弦值.解:(Ⅰ)证明:∵在△ABC中,D,E分别为AB,AC的中点,O为DE的中点,AB=AC=2,BC=4.∴A1O⊥DE,∵将△ADE沿DE折起到△A1DE的位置,使得平面A1DE⊥平面BCED,∴A1O⊥平面BCDE,∵BD⊂平面BCDE,∴A1O⊥BD.(Ⅱ)解:以O为原点,在平面BCED中过点O作DE的垂线为x轴,以OE为y轴,OA1为z轴,建立空间直角坐标系,A1(0,0,2),C(2,2,0),B(2,﹣2,0),D(0,﹣1,0),=(2,2,﹣2),=(2,﹣1,0),=(0,1,2),设平面A1BD的法向量为=(x,y,z),则,取x=1,得=(1,2,﹣1),设直线A1C和平面A1BD所成角为θ,则直线A1C和平面A1BD所成角的正弦值为:sinθ===.17.在①b2+ac=a2+c2,②a cos B=b sin A,③sin B+cos B=,这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知△ABC的内角A,B,C的对边分别为a,b,c,_______,A=,b=,求△ABC的面积.【分析】取①,由余弦定理可得cos B=进而解得B,C的大小也可得出,再由正弦定理可得a,最后利用三角形的面积公式计算即可得出;取②a cos B=b sin A,由正弦定理可得:tan B=1,B∈(0,π),解得B,可得sin C=sin(A+B),由正弦定理可得:a,利用三角形面积计算公式即可得出;取③,可得,由此可求出B的大小,C的大小也可得出,再由正弦定理可得a,最后利用三角形的面积公式计算即可得出;解:(1)若选择①,由余弦定理,……………因为B∈(0,π),所以;……………………由正弦定理,得,……………因为,,所以,……………所以………所以.……………(2)若选择②a cos B=b sin A,则sin A cos B=sin B sin A,……………因为sin A≠0,所以sin B=cos B,……………因为B∈(0,π),所以;……………由正弦定理,得,……………因为,,所以,……………所以,…所以.……………(3)若选择③,则,所以,……………因为B∈(0,π),所以,所以,所以;……………由正弦定理,得,……………因为,,所以,……………所以,………18.为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如图:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(Ⅰ)根据表中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;(Ⅱ)为了解乙公司员工B的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X(单位:元),求X的分布列和数学期望;(Ⅲ)根据表中数据估算两公司的每位员工在该月所得的劳务费.【分析】(Ⅰ)由茎叶图能求出甲公司员工A投递快递件数的平均数和众数.(Ⅱ)由题意能求出X的可能取值为136,147,154,189,203,分别求出相对应的概率,由此能求出X的分布列和数学期望.(Ⅲ)利用(Ⅱ)的结果能估算算两公司的每位员工在该月所得的劳务费.解:(Ⅰ)甲公司员工A投递快递件数的平均数为:=(32+33+33+38+35+36+39+33+41+40)=36,众数为33.(Ⅱ)设a为乙公司员工B投递件数,则当a=34时,X=136元,当a>35时,X=35×4+(a﹣35)×7元,∴X的可能取值为136,147,154,189,203,P(X=136)=,P(X=147)=,P(X=154)=,P(X=189)=,P(X=203)=,X的分布列为:X136147154189203P=.(Ⅲ)根据图中数据,由(Ⅱ)可估算:甲公司被抽取员工该月收入=36×4.5×30=4860元,乙公司被抽取员工该月收入=165.5×30=4965元.19.已知函数f(x)=lnx﹣.(1)若曲线y=f(x)存在斜率为﹣1的切线,求实数a的取值范围;(2)求f(x)的单调区间;(3)设函数g(x)=,求证:当﹣1<a<0时,g(x)在(1,+∞)上存在极小值.【分析】(1)求出函数的导数,问题转化为x2+x+a=0存在大于0的实数根,根据y=x2+x+a 在x>0时递增,求出a的范围即可;(2)求出函数f(x)的导数,通过讨论a的范围,判断导函数的符号,求出函数的单调区间即可;(3)求出函数g(x)的导数,根据f(e)=﹣>0,得到存在x0∈(1,e)满足g′(x0)=0,从而得到函数的单调区间,求出函数的极小值,证出结论即可.解:(1)由f(x)=lnx﹣﹣1得:f′(x)=,(x>0),由已知曲线y=f(x)存在斜率为﹣1的切线,∴f′(x)=﹣1存在大于0的实数根,即x2+x+a=0存在大于0的实数根,∵y=x2+x+a在x>0时递增,∴a的范围是(﹣∞,0);(2)由f′(x)=,(x>0),得:a≥0时,f′(x)>0,∴f(x)在(0,+∞)递增;a<0时,若x∈(﹣a,+∞)时,f′(x)>0,若x∈(0,﹣a),则f′(x)<0,故f(x)在(﹣a,+∞)递增,在(0,﹣a)递减;(3)由g(x)=及题设得:g′(x)==,由﹣1<a<0,得:0<﹣a<1,由(2)得:f(x)在(﹣a,+∞)递增,∴f(1)=﹣a﹣1<0,取x=e,显然e>1,f(e)=﹣>0,∴存在x0∈(1,e)满足f(x0)=0,即存在x0∈(1,e)满足g′(x0)=0,令g′(x)>0,解得:x>x0,令g′(x)<0,解得:1<x<x0,故g(x)在(1,x0)递减,在(x0,+∞)递增,∴﹣1<a<0时,g(x)在(1,+∞)存在极小值.20.已知椭圆C:x2+3y2=6的右焦点为F.(Ⅰ)求点F的坐标和椭圆C的离心率;(Ⅱ)直线l:y=kx+m(k≠0)过点F,且与椭圆C交于P,Q两点,如果点P关于x轴的对称点为P′,判断直线P'Q是否经过x轴上的定点,如果经过,求出该定点坐标;如果不经过,说明理由.【分析】(I)由椭圆的标准方程即可得出;(II)直线l:y=kx+m(k≠0)过点F,可得l:y=k(x﹣2).代入椭圆的标准方程可得:(3k2+1)x2﹣12k2x+12k2﹣6=0.(依题意△>0).设P(x1,y1),Q(x2,y2),可得根与系数的关系.点P关于x轴的对称点为P',则P'(x1,﹣y1).可得直线P'Q的方程可以为,令y=0,,把根与系数的关系代入化简即可得出.解:(Ⅰ)∵椭圆C:,∴c2=a2﹣b2=4,解得c=2,∴焦点F(2,0),离心率.(Ⅱ)直线l:y=kx+m(k≠0)过点F,∴m=﹣2k,∴l:y=k(x﹣2).由,得(3k2+1)x2﹣12k2x+12k2﹣6=0.(依题意△>0).设P(x1,y1),Q(x2,y2),则,.∵点P关于x轴的对称点为P',则P'(x1,﹣y1).∴直线P'Q的方程可以设为,令y=0,====3.∴直线P'Q过x轴上定点(3,0).21.各项均为非负整数的数列{a n}同时满足下列条件:①a1=m(m∈N*);②a n≤n﹣1(n≥2);③n是a1+a2+…+a n的因数(n≥1).(Ⅰ)当m=5时,写出数列{a n}的前五项;(Ⅱ)若数列{a n}的前三项互不相等,且n≥3时,a n为常数,求m的值;(Ⅲ)求证:对任意正整数m,存在正整数M,使得n≥M时,a n为常数.【分析】(Ⅰ)当m=5时,写出数列{a n}的前五项;(Ⅱ)对a2、a3分类取值,再结合各项均为非负整数列式求m的值;(Ⅲ)令S n=a1+a2+…+a n,则.进一步推得存在正整数M>m,当n>M时,必有成立.再由成立证明a n为常数.【解答】(Ⅰ)解:m=5时,数列{a n}的前五项分别为:5,1,0,2,2.(Ⅱ)解:∵0≤a n≤n﹣1,∴0≤a2≤1,0≤a3≤2,又数列{a n}的前3项互不相等,(1)当a2=0时,若a3=1,则a3=a4=a5= (1)且对n≥3,都为整数,∴m=2;若a3=2,则a3=a4=a5= (2)且对n≥3,都为整数,∴m=4;(2)当a2=1时,若a3=0,则a3=a4=a5= 0且对n≥3,都为整数,∴m=﹣1,不符合题意;若a3=2,则a3=a4=a5= (2)且对n≥3,都为整数,∴m=3;综上,m的值为2,3,4.(Ⅲ)证明:对于n≥1,令S n=a1+a2+…+a n,则.又对每一个n,都为正整数,∴,其中“<”至多出现m﹣1个.故存在正整数M>m,当n>M时,必有成立.当时,则.从而.由题设知,又及a n+1均为整数,∴=a n+1=,故=常数.从而=常数.故存在正整数M,使得n≥M时,a n为常数.。

2020年北京市高考数学试卷(精品解析版)

2020年北京市高考数学试卷(精品解析版)

绝密★本科目考试启用前2020年普通高等学校招生全国统一考试(北京卷)数学本试卷共5页,150分,考试时长120分钟.考试务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =( ).A. {1,0,1}-B. {0,1}C. {1,1,2}-D. {1,2}【答案】D 【解析】 【分析】根据交集定义直接得结果. 【详解】{1,0,1,2}(0,3){1,2}A B =-=,故选:D.【点睛】本题考查集合交集概念,考查基本分析求解能力,属基础题. 2. 在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ). A. 12i + B. 2i -+C. 12i -D. 2i --【答案】B 【解析】 【分析】先根据复数几何意义得z ,再根据复数乘法法则得结果. 【详解】由题意得12z i =+,2iz i ∴=-. 故选:B.【点睛】本题考查复数几何意义以及复数乘法法则,考查基本分析求解能力,属基础题.3. 在52)的展开式中,2x 的系数为( ).A. 5-B. 5C. 10-D. 10【答案】C 【解析】 【分析】首先写出展开式的通项公式,然后结合通项公式确定2x 的系数即可. 【详解】()52x -展开式的通项公式为:()()()55215522r rrrr r r T Cx C x--+=-=-,令522r -=可得:1r =,则2x 的系数为:()()11522510C -=-⨯=-. 故选:C.【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项. 4. 某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).A. 63B. 623+C. 123+D. 123+【答案】D 【解析】 【分析】首先确定几何体的结构特征,然后求解其表面积即可.【详解】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 6012232S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭. 故选:D.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.5. 已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ). A. 4 B. 5 C. 6 D. 7【答案】A 【解析】 【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案. 【详解】设圆心(),C x y ,则()()22341x y -+-=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥22345+=,所以||514OC ≥-=, 当且仅当C 在线段OM 上时取得等号, 故选:A.【点睛】本题考查了圆的标准方程,属于基础题.6. 已知函数()21x f x x =--,则不等式()0f x >的解集是( ).A. (1,1)-B. (,1)(1,)-∞-+∞C. (0,1)D. (,0)(1,)-∞⋃+∞【答案】D 【解析】 【分析】作出函数2xy =和1y x =+的图象,观察图象可得结果.【详解】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2xy =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2), 不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞. 故选:D.【点睛】本题考查了图象法解不等式,属于基础题.7. 设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ). A. 经过点O B. 经过点P C. 平行于直线OP D. 垂直于直线OP【答案】B 【解析】 【分析】依据题意不妨作出焦点在x 轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段FQ 的垂直平分线经过点P ,即求解.【详解】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P . 故选:B.【点睛】本题主要考查抛物线的定义的应用,属于基础题.8. 在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ). A. 有最大项,有最小项 B. 有最大项,无最小项 C. 无最大项,有最小项 D. 无最大项,无最小项【答案】B 【解析】 【分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.【详解】由题意可知,等差数列的公差511925151a a d --+===--, 则其通项公式为:()()11912211n a a n d n n =+-=-+-⨯=-, 注意到123456701a a a a a a a <<<<<<=<<,且由50T <可知()06,i T i i N <≥∈,由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项, 由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=, 故数列{}n T 中正项只有有限项:263T =,46315945T =⨯=.故数列{}n T 中存在最大项,且最大项为4T . 故选:B.【点睛】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.9. 已知,R αβ∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的( ). A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】C 【解析】 【分析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断. 【详解】(1)当存在k Z ∈使得(1)kk απβ=+-时,若k 为偶数,则()sin sin sin k απββ=+=;若k 为奇数,则()()()sin sin sin 1sin sin k k απβππβπββ=-=-+-=-=⎡⎤⎣⎦; (2)当sin sin αβ=时,2m αβπ=+或2m αβππ+=+,m Z ∈,即()()12kk k m απβ=+-=或()()121kk k m απβ=+-=+,亦即存在k Z ∈使得(1)kk απβ=+-.所以,“存在k Z ∈使得(1)kk απβ=+-”是“sin sin αβ=”的充要条件.故选:C.【点睛】本题主要考查充分条件,必要条件的定义的应用,诱导公式的应用,涉及分类讨论思想的应用,属于基础题.10. 2020年3月14日是全球首个国际圆周率日(π Day ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是( ).A. 30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ B. 30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭C. 60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭D. 60606sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭【答案】A 【解析】 【分析】计算出单位圆内接正6n 边形和外切正6n 边形的周长,利用它们的算术平均数作为2π的近似值可得出结果.【详解】单位圆内接正6n 边形的每条边所对应的圆周角为360606n n ︒︒=⨯,每条边长为302sin n︒, 所以,单位圆的内接正6n 边形的周长为3012sin n n︒, 单位圆的外切正6n 边形的每条边长为302tann ︒,其周长为3012tan n n︒, 303012sin12tan 303026sin tan 2n n n n n n n π︒︒+︒︒⎛⎫∴==+ ⎪⎝⎭,则30303sin tan n n n π︒︒⎛⎫=+ ⎪⎝⎭. 故选:A.【点睛】本题考查圆周率π的近似值的计算,根据题意计算出单位圆内接正6n 边形和外切正6n 边形的周长是解答的关键,考查计算能力,属于中等题.第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分.11. 函数1()ln 1f x x x =++的定义域是____________. 【答案】(0,)+∞ 【解析】 【分析】根据分母不为零、真数大于零列不等式组,解得结果.【详解】由题意得010x x >⎧⎨+≠⎩,0x ∴>故答案为:(0,)+∞【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题.12. 已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.【答案】 (1). ()3,0 (2).【解析】 【分析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【详解】在双曲线C 中,a =b =3c =,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x =±,即0x ±=,所以,双曲线C=.故答案为:()3,0.【点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.13. 已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD =_________;PB PD ⋅=_________.【答案】 (1). (2). 1-【解析】 【分析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立平面直角坐标系,求得点P 的坐标,利用平面向量数量积的坐标运算可求得PD 以及PB PD ⋅的值.【详解】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+=, 则点()2,1P ,()2,1PD ∴=-,()0,1PB =-, 因此,()22215PD =-+=()021(1)1PB PD ⋅=⨯-+⨯-=-.5;1-.【点睛】本题考查平面向量的模和数量积的计算,建立平面直角坐标系,求出点P 的坐标是解答的关键,考查计算能力,属于基础题.14. 若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________. 【答案】2π(2,2k k Z ππ+∈均可)【解析】 【分析】根据两角和的正弦公式以及辅助角公式即可求得()()()22cos sin 1f x x ϕϕθ=+++,可得()22cos sin 12ϕϕ++=,即可解出.【详解】因为()()()()22cos sin sin 1cos cos sin 1f x x x x ϕϕϕϕθ=++=+++,()22cos sin 12ϕϕ++=,解得sin 1ϕ=,故可取2ϕπ=. 故答案为:2π(2,2k k Z ππ+∈均可).【点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数学运算能力,属于基础题.15. 为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论: ①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强;②在2t 时刻,甲企业的污水治理能力比乙企业强; ③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强. 其中所有正确结论的序号是____________________. 【答案】①②③ 【解析】 【分析】根据定义逐一判断,即可得到结果 【详解】()()f b f a b a---表示区间端点连线斜率的负数,在[]12,t t 这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[][][]112230,,,,,t t t t t 这三段时间中,甲企业在[]12,t t 这段时间内,甲的斜率最小,其相反数最大,即在[]12,t t 的污水治理能力最强.④错误;在2t 时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在3t 时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确; 故答案为:①②③【点睛】本题考查斜率应用、切线斜率应用、函数图象应用,考查基本分析识别能力,属中档题.三、解答题共6小题,共85分,解答应写出文字说明,演算步骤或证明过程.16. 如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值. 【答案】(Ⅰ)证明见解析;(Ⅱ)23. 【解析】 【分析】(Ⅰ)证明出四边形11ABC D 为平行四边形,可得出11//BC AD ,然后利用线面平行的判定定理可证得结论;(Ⅱ)以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系A xyz -,利用空间向量法可计算出直线1AA 与平面1AD E 所成角的正弦值. 【详解】(Ⅰ)如下图所示:在正方体1111ABCD A B C D -中,11//AB A B 且11AB A B =,1111//A B C D 且1111A B C D =,11//AB C D ∴且11AB C D =,所以,四边形11ABC D 为平行四边形,则11//BC AD , 1BC ⊄平面1AD E ,1AD ⊂平面1AD E ,1//BC ∴平面1AD E ;(Ⅱ)以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系A xyz -,设正方体1111ABCD A B C D -的棱长为2,则()0,0,0A 、()10,0,2A 、()12,0,2D、()0,2,1E ,()12,0,2AD =,()0,2,1AE =,设平面1AD E 的法向量为(),,n x y z =,由100n AD n AE ⎧⋅=⎨⋅=⎩,得22020x z y z +=⎧⎨+=⎩,令2z =-,则2x =,1y =,则()2,1,2n =-.11142cos ,323n AA n AA n AA ⋅<>==-=-⨯⋅. 因此,直线1AA 与平面1AD E 所成角的正弦值为23. 【点睛】本题考查线面平行的证明,同时也考查了利用空间向量法计算直线与平面所成角的正弦值,考查计算能力,属于基础题.17. 在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值: (Ⅱ)sin C 和ABC 面积.条件①:17,cos 7c A ==-;条件②:19cos ,cos 816A B ==. 注:如果选择条件①和条件②分别解答,按第一个解答计分. 【答案】选择条件①(Ⅰ)8(Ⅱ)sin C =, S = 选择条件②(Ⅰ)6(Ⅱ)sin C =, S =. 【解析】 【分析】选择条件①(Ⅰ)根据余弦定理直接求解,(Ⅱ)先根据三角函数同角关系求得sin A ,再根据正弦定理求sin C ,最后根据三角形面积公式求结果;选择条件②(Ⅰ)先根据三角函数同角关系求得sin ,sin A B ,再根据正弦定理求结果,(Ⅱ)根据两角和正弦公式求sin C ,再根据三角形面积公式求结果. 【详解】选择条件①(Ⅰ)17,cos 7c A ==-,11a b +=22222212cos (11)72(11)7()7a b c bc A a a a =+-∴=-+--⋅⋅-8a ∴=(Ⅱ)1cos (0,)sin 77A A A π=-∈∴==,由正弦定理得:7sin sin sin sin a c C A C C ==∴=11sin (118)822S ba C ==-⨯=选择条件②(Ⅰ)19cos ,cos ,(0,)816A B A B π==∈,sin A B ∴====由正弦定理得:6sin sin a b a A B ===(Ⅱ)91sin sin()sin cos sin cos 168C A B A B B A =+=+=+=11sin (116)622S ba C ==-⨯=【点睛】本题考查正弦定理、余弦定理,三角形面积公式,考查基本分析求解能力,属中档题.18. 某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案的概率估计值记为0p ,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与1p 的大小.(结论不要求证明) 【答案】(Ⅰ)该校男生支持方案一的概率为13,该校女生支持方案一的概率为34; (Ⅱ)1336,(Ⅲ)01p p < 【解析】 【分析】(Ⅰ)根据频率估计概率,即得结果;(Ⅱ)先分类,再根据独立事件概率乘法公式以及分类计数加法公式求结果; (Ⅲ)先求0p ,再根据频率估计概率1p ,即得大小. 【详解】(Ⅰ)该校男生支持方案一的概率为2001200+4003=,该校女生支持方案一的概率为3003300+1004=;(Ⅱ)3人中恰有2人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一个男生支持方案一,一个女生支持方案一,所以3人中恰有2人支持方案一概率为:2121311313()(1)()(1)3433436C -+-=; (Ⅲ)01p p <【点睛】本题考查利用频率估计概率、独立事件概率乘法公式,考查基本分析求解能力,属基础题. 19. 已知函数2()12f x x =-.(Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值. 【答案】(Ⅰ)2130x y +-=,(Ⅱ)32. 【解析】 【分析】(Ⅰ)根据导数的几何意义可得切点的坐标,然后由点斜式可得结果;(Ⅱ)根据导数的几何意义求出切线方程,再得到切线在坐标轴上的截距,进一步得到三角形的面积,最后利用导数可求得最值.【详解】(Ⅰ)因为()212f x x =-,所以()2f x x '=-,设切点为()00,12x x -,则022x -=-,即01x =,所以切点为()1,11, 由点斜式可得切线方程为:()1121y x -=--,即2130x y +-=. (Ⅱ)显然0t ≠, 因为()y f x =在点()2,12t t-处的切线方程为:()()2122y t t x t --=--,令0x =,得212y t =+,令0y =,得2122t x t+=,所以()S t =()221121222||t t t +⨯+⋅,不妨设0t >(0t <时,结果一样),则()423241441144(24)44t t S t t t t t++==++,所以()S t '=4222211443(848)(324)44t t t t t +-+-=222223(4)(12)3(2)(2)(12)44t t t t t t t-+-++==, 由()0S t '>,得2t >,由()0S t '<,得02t <<, 所以()S t 在()0,2上递减,在()2,+∞上递增, 所以2t =时,()S t 取得极小值, 也是最小值为()16162328S ⨯==. 【点睛】本题考查了利用导数的几何意义求切线方程,考查了利用导数求函数的最值,属于中档题.20. 已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.【答案】(Ⅰ)22182x y +=;(Ⅱ)1. 【解析】 【分析】(Ⅰ)由题意得到关于a ,b 的方程组,求解方程组即可确定椭圆方程;(Ⅱ)首先联立直线与椭圆的方程,然后由直线MA ,NA 的方程确定点P ,Q 的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得0P Q y y +=,从而可得两线段长度的比值.【详解】(1)设椭圆方程为:()222210x y a b a b+=>>,由题意可得:224112a ba b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩, 故椭圆方程为:22182x y +=.(2)设()11,M x y ,()22,N x y ,直线MN方程为:()4y k x =+,与椭圆方程22182x y +=联立可得:()222448x k x ++=,即:()()222241326480k x k x k +++-=,则:2212122232648,4141k k x x x x k k --+==++. 直线MA 的方程为:()111122y y x x ++=++, 令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++, 同理可得:()()222142Q k x y x -++=+. 很明显0P Q y y <,且:PQPB y PQy =,注意到: ()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯⎪++++⎝⎭, 而:()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+,故0,P Q P Q y y y y +==-.从而1PQPB y BQy ==. 【点睛】解决直线与椭圆综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21. 已知{}n a 是无穷数列.给出两个性质:①对于{}n a 中任意两项,()i j a a i j >,在{}n a 中都存在一项m a ,使2i m ja a a =;②对于{}n a 中任意项(3)n a n ,在{}n a 中都存在两项,()k l a a k l >.使得2kn la a a =.(Ⅰ)若(1,2,)n a n n ==,判断数列{}n a 是否满足性质①,说明理由;(Ⅱ)若12(1,2,)n n a n -==,判断数列{}n a 是否同时满足性质①和性质②,说明理由;(Ⅲ)若{}n a 是递增数列,且同时满足性质①和性质②,证明:{}n a 为等比数列. 【答案】(Ⅰ)详见解析;(Ⅱ)详解解析;(Ⅲ)证明详见解析. 【解析】 【分析】(Ⅰ)根据定义验证,即可判断; (Ⅱ)根据定义逐一验证,即可判断;(Ⅲ)解法一:首先,证明数列中的项数同号,然后证明2231a a a =,最后,用数学归纳法证明数列为等比数列即可.解法二:首先假设数列中的项数均为正数,然后证得123,,a a a 成等比数列,之后证得1234,,,a a a a 成等比数列,同理即可证得数列为等比数列,从而命题得证. 【详解】(Ⅰ){}2323292,3,2n a a a a Z a ===∉∴不具有性质①;(Ⅱ){}22*(2)1*2,,,2,2i j i i i j n j ja a i j N i j i j N a a a a ---∀∈>=-∈∴=∴具有性质①;{}2*(2)11,3,1,2,22,k l n k n n la n N n k n l a n a a ---∀∈≥∃=-=-===∴具有性质②;(Ⅲ)解法一首先,证明数列中的项数同号,不妨设恒为正数:显然()0*n a n N ≠∉,假设数列中存在负项,设{}0max |0n N n a =<, 第一种情况:若01N =,即01230a a a a <<<<<,由①可知:存在1m ,满足12210m a a a =<,存在2m ,满足22310m a a a =<, 由01N =可知223211a a a a =,从而23a a =,与数列的单调性矛盾,假设不成立.第二种情况:若02N ≥,由①知存在实数m ,满足0210Nm a a a =<,由0N 的定义可知:0m N ≤,另一方面,000221NNm N N a a a a a a =>=,由数列的单调性可知:0m N >,这与0N 的定义矛盾,假设不成立. 同理可证得数列中的项数恒为负数. 综上可得,数列中的项数同号.其次,证明2231a a a =:利用性质②:取3n =,此时()23kla a k l a =>,由数列的单调性可知0k l a a >>, 而3kk k la a a a a =⋅>,故3k <, 此时必有2,1k l ==,即2231a a a =,最后,用数学归纳法证明数列为等比数列:假设数列{}n a 的前()3k k ≥项成等比数列,不妨设()111s s a a q s k -=≤≤,其中10,1a q >>,(10,01a q <<<的情况类似)由①可得:存在整数m ,满足211k km k k a a a q a a -==>,且11k m k a a q a +=≥ (*) 由②得:存在s t >,满足:21s s k s s t ta aa a a a a +==⋅>,由数列的单调性可知:1t s k <≤+, 由()111s s a a qs k -=≤≤可得:2211111s t k s k k ta a a q a a q a ---+==>= (**)由(**)和(*)式可得:211111ks t k a q a qa q ---≥>,结合数列的单调性有:211k s t k ≥-->-, 注意到,,s t k 均为整数,故21k s t =--, 代入(**)式,从而11kk a a q +=.总上可得,数列{}n a 的通项公式为:11n n a a q -=.即数列{}n a 为等比数列. 解法二:假设数列中的项数均为正数:首先利用性质②:取3n =,此时23()kla a k l a =>, 由数列的单调性可知0k l a a >>, 而3kk k la a a a a =⋅>,故3k <, 此时必有2,1k l ==,即2231a a a =,即123,,a a a 成等比数列,不妨设22131,(1)a a q a a q q ==>,然后利用性质①:取3,2i j ==,则224331121m a a q a a q a a q ===, 即数列中必然存在一项的值为31a q ,下面我们来证明341a a q =,否则,由数列的单调性可知341a a q <,在性质②中,取4n =,则24k k k k l l a aa a a a a ==>,从而4k <, 与前面类似的可知则存在{,}{1,2,3}()k l k l ⊆>,满足24kl a a a =,若3,2k l ==,则:2341kla a a q a ==,与假设矛盾; 若3,1k l ==,则:243411kla a a q a q a ==>,与假设矛盾; 若2,1k l ==,则:22413kla a a q a a ===,与数列的单调性矛盾; 即不存在满足题意的正整数,k l ,可见341a a q <不成立,从而341a a q =,然后利用性质①:取4,3i j ==,则数列中存在一项2264411231m a a q a a q a a q===,下面我们用反证法来证明451a a q ,否则,由数列的单调性可知34151a q a a q <<,在性质②中,取5n =,则25k k k k l la a a a a a a ==>,从而5k <, 与前面类似的可知则存在{}{}(),1,2,3,4k l k l ⊆>,满足25k la a a =, 即由②可知:22222115111k k l k l l a a q a a q a a q----===, 若214k l --=,则451a a q ,与假设矛盾;若214k l -->,则451a a q >,与假设矛盾;若214k l --<,由于,k l 为正整数,故213k l --≤,则351a a q ≤,与315a q a <矛盾;综上可知,假设不成立,则451a a q . 同理可得:566171,,a a q a a q ==,从而数列{}n a 为等比数列,同理,当数列中的项数均为负数时亦可证得数列为等比数列.由推理过程易知数列中的项要么恒正要么恒负,不会同时出现正数和负数.从而题中的结论得证,数列{}n a 为等比数列.【点睛】本题主要考查数列的综合运用,等比数列的证明,数列性质的应用,数学归纳法与推理方法、不等式的性质的综合运用等知识,意在考查学生的转化能力和推理能力.衡石量书整理。

2020年北京市高考数学试卷-解析版

2020年北京市高考数学试卷-解析版

2020年北京市高考数学试卷-解析版2020年北京市高考数学试卷一、选择题(本大题共10小题,共40.0分)1.已知集合A={−1,1,2},A={A|0<A<3},则A∩A=()A.{−1,1}B.{0,1}C.{−1,1,2}D.{1,2}2.在复平面内,复数z对应的点的坐标是(1,2),则A⋅A=()A.1+2AB.−2+AC.1−2AD.−2−A3.在(√A−2)的5的展开式中,A²的系数为()A.−5B.5C.−10D.104.某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+√3B.6+2√3C.12+√3D.12+2√35.已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为()A.4B.5C.6D.76.已知函数A(A)=2A−A−1,则不等式A(A)>的解集是()A.(−1,1)B.(−∞,−1)∪(1,+∞)C.(0,1)D.(−∞,0)∪(1,+∞)7.设抛物线的顶点为O,焦点为F,准线为A。

A是抛物线上异于O的一点,过P作AA⊥A于Q,则线段FQ的垂直平分线()A.经过点OB.经过点PC.平行于直线OPD.垂直于直线OP8.在等差数列{AA}中,A1=−9,A5=−1.记AA=A1A2…AA(A=1,2,…),则数列{AA}()A.有最大项,有最小项B.有最大项,无最小项C.无最大项,有最小项D.无最大项,无最小项9.已知A,A∈A,则“存在A∈A使得A=AA+(−1)AA”是“AAAA=AAAA”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.2020年3月14日是全球首个国际圆周率日(AAAA)。

历史上,求圆周率A的方法有多种,与中国传统数学中的“割圆术”相似,数学家___的方法是:当正整数n充分大时,计算单位圆的内接正6n边形的周长和外切正6n边形(各边均与圆相切的正6n边形)的周长,将它们的算术平均数作为2A的近似值。

北京市2020年高考数学押题仿真卷(一)(解析版)

北京市2020年高考数学押题仿真卷(一)(解析版)

2020年北京市高考数学押题试卷(一)一、选择题(共10小题).1.已知集合A ={x |﹣1≤x <3},B ={x ∈Z|x 2<4},则A ∩B =( ) A .{0,1} B .{﹣1,0,1}C .{﹣1,0,1,2}D .{﹣2,﹣1,0,1,2}2.已知复数z =1+i1−i,则|z |=( ) A .2B .1C .0D .√23.(x −2x)6的展开式中的常数项为( ) A .﹣20B .20C .﹣160D .1604.设a ,b ∈R ,若a >b ,则( ) A .1a<1bB .a +1b>2C .2a >2bD .lga >lgb5.若角α的终边在第一象限,则下列三角函数值中不是sin α的是( ) A .cos(α−π2)B .cos(π2−α)C .−cos(α+π2)D .cos(α+π2)6.设a →,b →是非零向量,则“a →,b →共线”是“|a →−b →|=|a →|−|b →|”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.已知双曲线x 2a+y 2=1的一条渐近线倾斜角为2π3,则a 的值为( )A .﹣3B .−13C .3D .√338.某三棱锥的三视图如图所示(网格纸上小正方形的边长为1),则该三棱锥的体积为( )A .4B .2C .83D .439.在平行四边形ABCD 中,∠A =π3,AB =2,AD =1,若M ,N 分别是边BC ,CD 上的点,且满足|BM →||BC →|=|CN →||CD →|,则AM →⋅AN →的最小值为( )A .2B .3C .4D .510.已知函数f(x)={−x 2+2x +1,x <22x−2,x ≥2,且存在不同的实数x 1,x 2,x 3,使得f (x 1)=f (x 2)=f (x 3),则x 1•x 2•x 3的取值范围是( ) A .(0,3)B .(1,2)C .(0,2)D .(1,3)二、填空题共5小题,每小题5分,共25分.11.函数f (x )=sin2x +cos2x 的最小正周期是 .12.圆(x +3)2+y 2=1的圆心到直线x +√3y +1=0的距离为 .13.设等差数列{a n }的前n 项和为S n ,若S 9=27,a 6=1,则数列{a n }的公差为 . 14.一个几何体的三视图如图所示,其中正视图和侧视图的腰长为1的两个等腰直角三角形,则该几何体外接球的体积为15.已知集合P={(x,y)|(x﹣cosθ)2+(y﹣sinθ)2=4,0≤θ≤π}.由集合P中所有的点组成的图形如图中阴影部分所示,中间白色部分形如美丽的“水滴”.给出下列结论:①“水滴”图形与y轴相交,最高点记为A,则点A的坐标为(0,√3);②在集合P中任取一点M,则M到原点的距离的最大值为4;③阴影部分与y轴相交,最高点和最低点分别记为C,D,则|CD|=3+√3;④白色“水滴”图形的面积是116π−√3.其中正确的有.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.已知△ABC满足,且b=√6,A=2π3,求sin C的值及△ABC的面积.从①B=π4,②a=√3,③a=3√2sin B这三个条件中选一个,补充到上面问题中,并完成解答.注:如果选择多个条件分别解答,按第一个解答计分.17.如图,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,AB=BB1=2BC=2,BC1=√3,点E为A1C1的中点.(Ⅰ)求证:C1B⊥平面ABC;(Ⅱ)求二面角A﹣BC﹣E的大小.18.近年来,随着5G网络、人工智能等技术的发展,无人驾驶技术也日趋成熟.为了尽快在实际生活中应用无人驾驶技术,国内各大汽车研发企业都在积极进行无人驾驶汽车的道路安全行驶测试.某机构调查了部分企业参与测试的若干辆无人驾驶汽车,按照每辆车的行驶里程(单位:万公里)将这些汽车分为4组:[5,6),[6,7),[7,8),[8,9]并整理得到如图的频率分布直方图:(Ⅰ)求a的值;(Ⅱ)该机构用分层抽样的方法,从上述4组无人驾驶汽车中随机抽取了10辆作为样本.从样本中行驶里程不小于7万公里的无人驾驶汽车中随机抽取2辆,其中有X辆汽车行驶里程不小于8万公里,求X的分布列和数学期望;(Ⅲ)设该机构调查的所有无人驾驶汽车的行驶里程的平均数为μ0.若用分层抽样的方法从上述4组无人驾驶汽车中随机抽取10辆作为样本,其行驶里程的平均数为μ1;若用简单随机抽样的方法从上述无人驾驶汽车中随机抽取10辆作为样本,其行驶里程的平均数为μ2.有同学认为|μ0﹣μ1|<|μ0﹣μ2|,你认为正确吗?说明理由.19.已知函数f(x)=lnx−1x−ax.(Ⅰ)当a=2时,(i)求曲线y=f(x)在点(1,f(1))处的切线方程;(ii)求函数f(x)的单调区间;(Ⅱ)若1<a<2,求证:f(x)<﹣1.20.已知椭圆P的中心O在坐标原点,焦点在x轴上,且经过点A(0,2√3),离心率为12(1)求椭圆P的方程;(2)是否存在过点E(0,﹣4)的直线l交椭圆P于点R,T,且满足OR→•OT→=167.若存在,求直线l的方程;若不存在,请说明理由.21.已知项数为m(m∈N*,m≥2)的数列{a n}满足如下条件:①a n∈N*(n=1,2,…,m);②a1<a2<…<a m.若数列{b n}满足b n=(a1+a2+⋯+a m)−a nm−1∈N∗,其中n=1,2,…,m,则称{b n}为{a n}的“伴随数列”.(Ⅰ)数列1,3,5,7,9是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(Ⅱ)若{b n}为{a n}的“伴随数列”,证明:b1>b2>…>b m;(Ⅲ)已知数列{a n}存在“伴随数列”{b n},且a1=1,a m=2049,求m的最大值.参考答案一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={x|﹣1≤x<3},B={x∈Z|x2<4},则A∩B=()A.{0,1}B.{﹣1,0,1}C.{﹣1,0,1,2}D.{﹣2,﹣1,0,1,2}【分析】容易求出B={﹣1,0,1},然后进行交集的运算即可求出A∩B.解:解x2<4得,﹣2<x<2;又x∈Z;∴B={﹣1,0,1},且A={x|﹣1≤x<3};∴A∩B={﹣1,0,1}.故选:B.2.已知复数z=1+i1−i,则|z|=()A.2B.1C.0D.√2【分析】通过分母有理化即得结论.解:∵z=1+i1−i =(1+i)(1+i)(1−i)(1+i)=1+2i+i21−i2=i,∴|z|=|i|=1,故选:B.3.(x−2x)6的展开式中的常数项为()A.﹣20B.20C.﹣160D.160【分析】先求出二项式展开式的通项公式,再令x的幂指数等于零,求得r的值,即可求得展开式中的常数项.解:二项式(x−2x)6的展开式的通项公式为T r+1=∁6r•x6﹣r•(−2x)r=(﹣2)r•∁6r•x6﹣2r,令6﹣2r=0,解得r=3,故展开式中的常数项为:(﹣2)3•∁63=−160.故选:C.4.设a,b∈R,若a>b,则()A.1a<1bB.a+1b>2C.2a>2b D.lga>lgb【分析】直接利用赋值法的应用和不等式的性质,即可得到正确选项.解:当a=1,b=0时,选项A、B、D不成立.∵a>b,∴2a>2b,故选:C.5.若角α的终边在第一象限,则下列三角函数值中不是sinα的是()A.cos(α−π2)B.cos(π2−α)C.−cos(α+π2)D.cos(α+π2)【分析】利用诱导公式即可求解.解:对于A,由于cos(α−π2)=cos(π2−α)=sinα,是对于B,由于cos(π2−α)=sinα,是对于C,−cos(α+π2)=sinα,是对于D ,cos(α+π2)=−sin α,不是 故选:D .6.设a →,b →是非零向量,则“a →,b →共线”是“|a →−b →|=|a →|−|b →|”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【分析】若a →,b →共线反向,则|a →−b →|≠|a →|−|b →|;反之,若a →,b →是非零向量,且|a →−b →|=|a →|−|b →|,则a →,b →共线,再由充分必要条件的判定得答案.解:若a →,b →共线反向,则|a →−b →|≠|a →|−|b →|,则不充分;反之,若a →,b →是非零向量,且|a →−b →|=|a →|−|b →|,则a →,b →共线同向,且|a →|>|b →|.则“a →,b →共线”是“|a →−b →|=|a →|−|b →|”的必要不充分条件.故选:B .7.已知双曲线x 2a+y 2=1的一条渐近线倾斜角为2π3,则a 的值为( )A .﹣3B .−13C .3D .√33【分析】由双曲线方程求得渐近线方程,结合题意可得−a =tan 2π3,则a 的值可求. 解:由双曲线x 2a+y 2=1的一条渐近线y =1√−a x ,一条渐近线的倾斜角为2π3,可得:1√−a =tan 2π3=−√3,解得:a =−13. 故选:B .8.某三棱锥的三视图如图所示(网格纸上小正方形的边长为1),则该三棱锥的体积为( )A .4B .2C .83D .43【分析】画出几何体的直观图,利用三视图的数据,求解几何体的体积即可. 解:由题意几何体是直观图如图:是正方体的一部分,三棱锥P ﹣ABC ,正方体的棱长为:2,几何体的体积为:13×12×2×2×2=43.故选:D .9.在平行四边形ABCD 中,∠A =π3,AB =2,AD =1,若M ,N 分别是边BC ,CD 上的点,且满足|BM →||BC →|=|CN →||CD →|,则AM →⋅AN →的最小值为( )A .2B .3C .4D .5【分析】设|BM →||BC →|=|CN →||CD →|=k ,0≤k ≤1,建立平面直角坐标系,利用坐标表示向量,求出AM →•AN →的最小值即可.解:设|BM→||BC→|=|CN→||CD→|=k,0≤k≤1;建立如图所示的坐标系.A(0,0),B(2,0),D(12,√32),C(52,√32),由BM→=k BC→,CN→=k CD→,可得AM→=AB→+k BC→=(2+12k,√3k2),同理可得AN→=(52−2k,√32),∴AM→•AN→=(2+12k)(52−2k)+34k=﹣k2﹣2k+5=﹣(k+1)2+6,∵0≤k≤1,∴AM→•AN→的最小值是2,当且仅当M与点C重合,N与点D重合时取得最小值.故选:A.10.已知函数f(x)={−x2+2x+1,x<22x−2,x≥2,且存在不同的实数x1,x2,x3,使得f(x1)=f(x2)=f(x3),则x1•x2•x3的取值范围是()A.(0,3)B.(1,2)C.(0,2)D.(1,3)【分析】作出y=f(x)的函数图象,设x1<x2<x3,f(x1)=f(x2)=f(x3)=t,1<t<2,求得x1,x2,x3,构造函数g(t)=(t﹣1)(2+log2t),1<t<2,求得导数,判断单调性,即可得到所求范围.解:函数f(x)={−x2+2x+1,x<22x−2,x≥2的图象如图所示:设x1<x2<x3,又当x∈[2,+∞)时,f(x)=2x﹣2是增函数,当x=3时,f(x)=2,设f(x1)=f(x2)=f(x3)=t,1<t<2,即有﹣x12+2x1+1=﹣x22+2x2+1=2x3−2=t,故x1x2x3=(1−√2−t)(1+√2−t)(2+log2t)=(t﹣1)(2+log2t),由g(t)=(t﹣1)(2+log2t),1<t<2,可得g′(t)=2+log2t+t−1tln2>0,即g(t)在(1,2)递增,可得g(t)的范围是(0,3).故选:A.二、填空题共5小题,每小题5分,共25分. 11.函数f (x )=sin2x +cos2x 的最小正周期是 π .【分析】由题意利用两角和的正弦公式化简函数的解析式,再根据正弦函数的周期性,得出结论.解:函数f (x )=sin2x +cos2x =√2sin (2x +π4)的最小正周期是2π2=π,故答案为:π.12.圆(x +3)2+y 2=1的圆心到直线x +√3y +1=0的距离为 1 . 【分析】直接利用点到直线的距离公式即可直接求解.解:圆(x +3)2+y 2=1的圆心(﹣3,0)到直线x +√3y +1=0的距离d =|−3+√3×0+1|2=1.故答案为:1.13.设等差数列{a n }的前n 项和为S n ,若S 9=27,a 6=1,则数列{a n }的公差为 ﹣2 . 【分析】利用等差数列前n 项和公式和通项公式列出方程组,能求出该数列的首项和公差.解:∵等差数列{a n }的前n 项和为S n ,S 9=27,a 6=1,∴{S 9=9a 1+9×82d =27a 6=a 1+5d =1, 解得a 1=11,d =﹣2. ∴数列{a n }的公差为﹣2. 故答案为:﹣2.14.一个几何体的三视图如图所示,其中正视图和侧视图的腰长为1的两个等腰直角三角形,则该几何体外接球的体积为 √3π2【分析】该几何体是一个四棱锥,底面是正方形,高等于正方形的边长.其四棱锥补成一个正方体,即可得出外接球.解:该几何体是一个四棱锥,底面是正方形,高等于正方形的边长.其四棱锥补成一个正方体,即可得出外接球.设其四棱锥的外接球的半径为r ,则3×12=(2r )2,解得r =√32.∴该几何体外接球的体积=43×π×(√32)3=√3π2.故答案为:√3π215.已知集合P ={(x ,y )|(x ﹣cos θ)2+(y ﹣sin θ)2=4,0≤θ≤π}.由集合P 中所有的点组成的图形如图中阴影部分所示,中间白色部分形如美丽的“水滴”.给出下列结论: ①“水滴”图形与y 轴相交,最高点记为A ,则点A 的坐标为(0,√3); ②在集合P 中任取一点M ,则M 到原点的距离的最大值为4;③阴影部分与y 轴相交,最高点和最低点分别记为C ,D ,则|CD|=3+√3;④白色“水滴”图形的面积是116π−√3.其中正确的有 ①③④ .【分析】①方程(x ﹣cos θ)2+(y ﹣sin θ)2=4中,令x =0求得y 的取值范围,得出最高点的坐标;②利用参数法求出点M 到原点的距离d ,求出最大值; ③求出知最高点C 与最低点D 的距离|CD |;④计算“水滴”图形的面积是由一个等腰三角形,两个全等的弓形和一个半圆组成. 解:对于①,方程(x ﹣cos θ)2+(y ﹣sin θ)2=4中, 令x =0,得cos 2θ+y 2﹣2y sin θ+sin 2θ=4, 所以2sin θ=y −3y ,其中θ∈[0,π], 所以sin θ∈[0,1],所以y −3y ∈[0,2], 解得y ∈[−√3,﹣1]∪[√3,3];所以点A (0,√3),点B (0,﹣1),点C (0,3),点D (0,−√3),所以①正确; 对于②,由(x ﹣cos θ)2+(y ﹣sin θ)2=4,设{x =2cosα+cosθy =2sinα+sinθ,则点M 到原点的距离为d =√x 2+y 2=√(2cosα+cosθ)2+(2sinα+sinθ)2=√5+4cos(α−θ),当α=θ时,cos (α﹣θ)=1,d 取得最大值为3,所以②错误;对于③,由①知最高点为C(0,3),最低点为D(0,−√3),所以|CD|=3+√3,③正确;对于④,“水滴”图形是由一个等腰三角形,两个全等的弓形,和一个半圆组成;计算它的面积是S=S半圆+2S弓形+S△=12π×12+2×(2π3−√3)+12×2×√3=116−√3,所以④正确;综上知,正确的命题序号是①③④.故答案为:①③④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.已知△ABC满足①,且b=√6,A=2π3,求sin C的值及△ABC的面积.从①B=π4,②a=√3,③a=3√2sin B这三个条件中选一个,补充到上面问题中,并完成解答.注:如果选择多个条件分别解答,按第一个解答计分.【分析】选①,由sin C=sin(A+B),利用正弦的和角公式展开求解即可得到sin C,再由正弦定理求得a,由此即可求得三角形面积.选②,由正弦定理结合已知数据可得sin B>1,此时三角形无解;选③,先由正弦定理结合已知条件求得sinB=√22,再根据诱导公式及和差角公式可得sin C的值,再进一步求得面积.解:选①,由A+B+C=π可知,sinC=sin[π−(A+B)]=sin(A+B)=sin(2π3+π4)=sin2π3cosπ4+cos2π3sinπ4=√32×√22−12×√22=√6−√24;由正弦定理有asinA =bsinB,即asin2π3=√6sinπ4,解得a=3,∴S△ABC=12absinC=12×3×√6×√6−√24=9−3√34.选②,∵a=√3,b=√6,A=2π3,∴由正弦定理可得,asinA =bsinB,即√3sin2π3=√6sinB,解得sinB=√6sin2π33=√62>1,此时无解;选③,∵a=3√2sin B,b=√6,A=2π3,∴由正弦定理可得,asinA =bsinB,即a sin B=b sin A,∴3√2sin2B=√6sin2π3=√6×√32,∴sin2B=12,又B为△ABC内角,∴sinB=√22,又A=2π3,故B=π4,a=3√2×√22=3,∴sinC=sin(A+B)=sin2π3cosπ4+cos2π3sinπ4=√32×√22−12×√22=√6−√24,∴S△ABC=12absinC=12×3×√6×√6−√24=9−3√34.17.如图,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,AB=BB1=2BC=2,BC1=√3,点E为A1C1的中点.(Ⅰ)求证:C1B⊥平面ABC;(Ⅱ)求二面角A﹣BC﹣E的大小.【分析】(Ⅰ)证明AB ⊥C 1B .CB ⊥C 1B .利用直线与平面垂直的判断定理证明C 1B ⊥平面ABC .(Ⅱ)以B 为原点建立空间直角坐标系B ﹣xyz .求出平面BCE 的法向量,平面ABC 的法向量,利用空间向量的数量积求解二面角的大大小即可.【解答】(Ⅰ)证明:因为AB ⊥平面BB 1C 1C ,C 1B ⊂平面BB 1C 1C , 所以AB ⊥C 1B .在△BCC 1中,BC =1,BC 1=√3,CC 1=2,所以BC 2+BC 12=CC 12.所以CB ⊥C 1B .因为AB ∩BC =B ,AB ,BC ⊂平面ABC , 所以C 1B ⊥平面ABC .(Ⅱ)解:由(Ⅰ)知,AB ⊥C 1B ,BC ⊥C 1B ,AB ⊥BC , 如图,以B 为原点建立空间直角坐标系B ﹣xyz .则B (0,0,0),E(−12,√3,1),C (1,0,0).BC →=(1,0,0),BE →=(−12,√3,1). 设平面BCE 的法向量为n →=(x ,y ,z ),则{n →⋅BC →=0n →⋅BE →=0,即{x =0,−12x +√3y +z =0. 令y =√3则x =0,z =﹣3, 所以n →=(0,√3,−3).又因为平面ABC 的法向量为m →=(0,1,0),所以cos <m →,n →>=m →⋅n →|m →||n →|=12.由题知二面角A ﹣BC ﹣E 为锐角,所以其大小为π3.18.近年来,随着5G 网络、人工智能等技术的发展,无人驾驶技术也日趋成熟.为了尽快在实际生活中应用无人驾驶技术,国内各大汽车研发企业都在积极进行无人驾驶汽车的道路安全行驶测试.某机构调查了部分企业参与测试的若干辆无人驾驶汽车,按照每辆车的行驶里程(单位:万公里)将这些汽车分为4组:[5,6),[6,7),[7,8),[8,9]并整理得到如图的频率分布直方图: (Ⅰ)求a 的值;(Ⅱ)该机构用分层抽样的方法,从上述4组无人驾驶汽车中随机抽取了10辆作为样本.从样本中行驶里程不小于7万公里的无人驾驶汽车中随机抽取2辆,其中有X 辆汽车行驶里程不小于8万公里,求X 的分布列和数学期望;(Ⅲ)设该机构调查的所有无人驾驶汽车的行驶里程的平均数为μ0.若用分层抽样的方法从上述4组无人驾驶汽车中随机抽取10辆作为样本,其行驶里程的平均数为μ1;若用简单随机抽样的方法从上述无人驾驶汽车中随机抽取10辆作为样本,其行驶里程的平均数为μ2.有同学认为|μ0﹣μ1|<|μ0﹣μ2|,你认为正确吗?说明理由.【分析】(Ⅰ)利用频率分布直方图列出关系式,求解a;(Ⅱ)求出X的可能取值为:0,1,2;求出概率,得到X的分布列然后求解数学期望;(Ⅲ)判断有可能μ1更接近μ0,也有可能μ2更接近μ0,说明|μ0﹣μ1|<|μ0﹣μ2|不恒成立,说明结果即可.解:(Ⅰ)由题意可得1×(0.1+0.2+0.4+a)=1可得a=0.3;(Ⅱ)4组无人驾驶汽车的数量比为:1:2:4:3;若使用分层抽样抽取10辆汽车,则行驶里程在[7,8)这一组的无人驾驶汽车有10×410=4辆,行驶里程在[8,9)这一组的无人驾驶汽车有10×310=3辆,由题意可知X的可能取值为:0,1,2;P(X=0)=C42C72=27,P(X=1)=C41C31C72=47,P(X=2)=C32C72=17,X的分布列为:X012P274717所以X的数学期望:EX=0×27+1×47+2×17=67.(Ⅲ)这种说法不正确.理由如下:由于样本具有随机性,故μ1、μ2是随机变量,受抽样结果影响,因此有可能μ1更接近μ0,也有可能μ2更接近μ0,所以|μ0﹣μ1|<|μ0﹣μ2|不恒成立,所以这种说法不正确. 19.已知函数f(x)=lnx−1x−ax . (Ⅰ)当a =2时,(i )求曲线y =f (x )在点(1,f (1))处的切线方程; (ii )求函数f (x )的单调区间; (Ⅱ)若1<a <2,求证:f (x )<﹣1.【分析】(Ⅰ)(i )根据题意,求出函数的导数,据此计算f ′(1)与f (1),即可得切线的斜率以及切点的坐标,由直线的点斜式方程即可得答案;(ii )根据题意,令g (x )=2﹣lnx ﹣2x 2,分析g (x )的符号,即可得函数f (x )的导数的符号,即可得函数f (x )的单调区间,(Ⅱ)根据题意,f (x )<﹣1,即lnx−1x−ax <−1,设h(x)=lnx−1x−ax +1(x >0),对h (x )求导分析可得h (x )的单调性,分析h (x )的最值,即可得结论.解:(Ⅰ)当a =2时,f(x)=lnx−1x−2x ,定义域为(0,+∞), f′(x)=2−lnx x 2−2=2−lnx−2x 2x 2, f ′(1)=﹣1﹣2=﹣3, f '(1)=2﹣2=0;所以切点坐标为(1,﹣3),切线斜率为0 所以切线方程为y =﹣3;(ii )令g (x )=2﹣lnx ﹣2x 2,g′(x)=−1x −4x <0所以g (x )在(0,+∞)上单调递减,且g (1)=0所以当x ∈(0,1)时,g (x )>0即f '(x )>0 所以当x ∈(1,+∞)时,g (x )<0即f '(x )<0综上所述,f (x )的单调递增区间是(0,1),单调递减区间是(1,+∞). (Ⅱ)证明:f (x )<﹣1,即lnx−1x−ax <−1设h(x)=lnx−1x −ax +1(x >0),h′(x)=2−lnx x 2−a =−ax 2−lnx+2x 2, 设φ(x )=﹣ax 2﹣lnx +2φ′(x)=−2ax −1x =−2ax 2−1x<0所以φ'(x )在(0,+∞)小于零恒成立 即h '(x )在(0,+∞)上单调递减 因为1<a <2,所以h '(1)=2﹣a >0,h '(e 2)=﹣a <0,所以在(1,e 2)上必存在一个x 0使得h′(x 0)=−ax 02−lnx 0+2x 02=0, 即lnx 0=−ax 02+2,所以当x ∈(0,x 0)时,h '(x )>0,h (x )单调递增, 当x ∈(x 0,+∞)时,h '(x )<0,h (x )单调递减, 所以h(x)max =h(x 0)=lnx 0−1x 0−ax 0, 因为lnx 0=−ax 02+2,所以h(x 0)=−2ax 02+x 0+1x 0, 令h (x 0)=0得x 0=1±√1+8a 4a,因为1<a <2,所以1−√1+8a4a<0,1+√1+8a4a<1,因为x 0∈(1,e 2),所以h (x 0)<0恒成立, 即h (x )<0恒成立,综上所述,当1<a <2时,f (x )<﹣1.20.已知椭圆P 的中心O 在坐标原点,焦点在x 轴上,且经过点A (0,2√3),离心率为12(1)求椭圆P 的方程;(2)是否存在过点E (0,﹣4)的直线l 交椭圆P 于点R ,T ,且满足OR →•OT →=167.若存在,求直线l 的方程;若不存在,请说明理由. 【分析】(1)设椭圆P 的方程为 x 2a 2+y 2b 2═1 (a >b >0),由椭圆经过点A (0,2√3),离心率为12,求得a 和b 的值,从而求得椭圆P 的方程.(2)由{y =kx −4x 216+y 212=1可得 x 1+x 2 和x 1•x 2 的值,可得y 1•y 2的值,根据 OR →•OT →=167,求出k =±1,从而得到直线l 的方程.解:(1)设椭圆P 的方程为x 2a 2+y 2b 2=1 (a >b >0),由题意得b =2√3,c a=12,∴a =2c ,b 2=a 2﹣c 2=3c 2,∴c =2,a =4,∴椭圆P 的方程为:x 216+y 212=1.(2)假设存在满足题意的直线L .易知当直线的斜率不存在时,OR →•OT →<0,不满足题意.故设直线L 的斜率为k ,R (x 1,y 1),T (x 2,y 2 ).∵OR →•OT →=167,∴x 1•x 2+y 1•y 2=167,由{y =kx −4x 216+y 212=1可得 (3+4k 2 )x 2﹣32kx +16=0,由△=(﹣32k )2﹣4(3+4k 2)•16>0,解得 k 2>14①.∴x 1+x 2=32k 3+4k2,x 1•x 2=163+4k2,∴y 1•y 2=(kx 1﹣4 )(kx 2﹣4)=k 2 x 1•x 2﹣4k (x 1+x 2)+16, ∴x 1•x 2+y 1•y 2=163+4k2+16k23+4k2−128k23+4k2+16=167,∴k 2=1 ②, 由①、②解得 k =±1,∴直线l 的方程为 y =±x ﹣4, 故存在直线l :x +y +4=0,或 x ﹣y ﹣4=0,满足题意.21.已知项数为m (m ∈一、选择题*,m ≥2)的数列{a n }满足如下条件:①a n ∈N *(n =1,2,…,m );②a 1<a 2<…<a m .若数列{b n }满足b n =(a 1+a 2+⋯+a m )−a nm−1∈N ∗,其中n =1,2,…,m ,则称{b n }为{a n }的“伴随数列”.(Ⅰ)数列1,3,5,7,9是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(Ⅱ)若{b n }为{a n }的“伴随数列”,证明:b 1>b 2>…>b m ;(Ⅲ)已知数列{a n }存在“伴随数列”{b n },且a 1=1,a m =2049,求m 的最大值. 【分析】(Ⅰ)根据题目中“伴随数列”的定义得b 4=1+3+5+7+9−75−1=92∉N ∗,所以数列1,3,5,7,9不存在“伴随数列”. (Ⅱ)只要用作差法证明{b n }的单调性即可,(Ⅲ)∀1≤i <j ≤m ,都有b i −b j =a j −ai m−1,因为b i ∈N ∗,b 1>b 2>…>b m .因为b n−1−b n =a n −a n−1m−1∈N ∗,所以a n ﹣a n ﹣1≥m ﹣1,又a m ﹣a 1=(a m ﹣a m ﹣1)+(a m ﹣1﹣a m ﹣2)+…+(a 2﹣a 1)≥(m ﹣1)+(m ﹣1)+…+(m ﹣1)=(m ﹣1)2.所以2049﹣1≥(m ﹣1)2,即可解得m的最大值.解:(Ⅰ)数列1,3,5,7,9不存在“伴随数列”.因为b4=1+3+5+7+9−75−1=92∉N∗,所以数列1,3,5,7,9不存在“伴随数列”.(Ⅱ)证明:因为b n+1−b n=a n−a n+1m−1,1≤n≤m﹣1,n∈N*,又因为a1<a2<…<a m,所以有a n﹣a n+1<0,所以b n+1−b n=a n−a n+1m−1<0,所以b1>b2>…>b m成立.(Ⅲ)∀1≤i<j≤m,都有b i−b j=a j−a i m−1,因为b i∈N∗,b1>b2>…>b m.所以b i−b j∈N∗,所以b i−b j=a j−a im−1∈N∗,所以b1−b m=a m−a1m−1=2048m−1∈N∗,因为b n−1−b n=a n−a n−1m−1∈N∗,所以a n﹣a n﹣1≥m﹣1,又a m﹣a1=(a m﹣a m﹣1)+(a m﹣1﹣a m﹣2)+…+(a2﹣a1)≥(m﹣1)+(m﹣1)+…+(m ﹣1)=(m﹣1)2.所以2049﹣1≥(m﹣1)2所以(m﹣1)2≤2048,所以m≤46,又2048m−1∈N ∗,所以m ≤33,例如:a n =64n ﹣63(1≤n ≤33),满足题意, 所以,m 的最大值是33.。

2020年北京市高考数学试卷(pdf详细解析版)

2020年北京市高考数学试卷(pdf详细解析版)

的“割圆术”相似,数学家阿尔卡西的方法是:当正整数 n 充分大时,计算单位圆的内接正 6n 边形的周长和外 切正 6n 边形(各边均与圆相切的正 6n 边形)的周长,将它们的算术平均数作为 2π的近似值。按照阿尔卡西的 方法, π 的近似值的表达方式是
(A) 3n(sin 30 tan 30)
n
n
答案: (0, )
解析:要使
x
1
1
有意义,则有
x
1
0
,即
x
1
,要使
ln
x
有意义,则
x
0
,所以函数的定义域是
(0,
)
(12)已知双曲线 C : x2 y2 1,则 C 的右焦点的坐标为________; C 的焦点到其渐近线的距离是________. 63
答案:(3,0), 3
解析:设双曲线的焦距为 2c,则有 c2 6 3 9 ,故 c=3,则 C 的右焦点的坐标为(3,0).易知 C 的焦点到其渐
(7)设抛物线的顶点为 O ,焦点为 F ,准线为 l ,P 是抛物线上异于 O 的一点,过 P 做 PQ ⊥ l 于 Q ,则线段 FQ
的垂直平分线
(A)经过点 O
(B)经过点 P
第 3页 / 共 17页
(C)平行于直线 OP
答案:B
(D)垂直于直线 OP
解析:如图,连接 PF,由抛物线的定义可知, PF PQ ,所以线段 FQ 的垂直平分线经过点 P,故选 B
(5)已知半径为 1 的圆经过点 (3,4) ,则其圆心到原点的距离的最小值为
(A)4 (C)6 答案:A
(B)5 (D)7
解析:由已知,圆心在以点 A(3, 4) 为圆心,1 为半径为圆上,当圆心在下图点 B 位置时,圆心到原点的距离最 小,所以圆心到原点的距离的最小值为 OB OA 1 32 42 1 5 1 4 ,选 A

【2020年高考数学预测题】北京市高考数学试卷(理科)2【附详细答案和解析_可编辑】

【2020年高考数学预测题】北京市高考数学试卷(理科)2【附详细答案和解析_可编辑】

【2020年高考数学预测题】北京市高考数学试卷(理科)2【附详细答案和解析 可编辑】真水无香陈 tougao33学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 , )1. 若i 为虚数单位,且(2−i)2=a +bi 3(a,b ∈R),则a +b =( ) A.7 B.−7 C.−1 D.12. 执行如图所示的程序框图,则输出的x 等于( )A.2B.4C.8D.163. 曲线C 的参数方程为{x =5sec θ,y =4tan θ(θ为参数)经过伸缩变换{x′=x5,y′=y 4后所得曲线的离心率为( ) A.12 B.√22C.√2D.24. 已知F 1,F 2分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左右焦点,P 为椭圆上的点,O 为坐标原点,且PF 1→⋅PF 2→=0,|PF 1→|=3|PF 2→|,则该椭圆的离心率为( ) A.√105B.√104C.√103D.√1025. 已知实数x ,y 满足条件{x −y ≥0,x +y ≥0,x ≤1,则 z =y −(12)x的最大值为( )A.−32B.0C.12D.16. 若lg x =a,lg y =b ,则lg √x −lg (y 10)2的值为( ) A.12a −2b −2B.12a −2b +1C.12a −2b −1D.12a −2b +27. 已知:|OA →|=1,|OB →|=√3,OA →∗OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30∘,设OC →=mOA →+nOB →(m, n ∈R),则mn的值为( )A.2B.52C.3D.48. 已知a ,b ,c 是正实数,且ab +bc +ac =1,则abc 的最大值为( ) A.√39B.√33C.1D.√3二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 , )9. 已知角θ的终边经过点P(2x , −6),且tan θ=−34,则x 的值为________.10. 在等差数列{a n }中,若a 5=8,a 9=24,则公差d =________.11. 若⊙O 1:x 2+y 2=5与⊙O 2:(x −m)2+y 2=20(m ∈R)相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是________.12. 已知函数f(x)=ln x x+x −a(a ∈R),若曲线y =2e x+1e 2x +1(e 为自然对数的底数)上存在点(x 0, y 0)使得f (f(y 0))=y 0,则实数a 的取值范围是__________.三、 解答题 (本题共计 6 小题 ,每题 13 分 ,共计78分 , )13. 已知函数f(x)=sin 2x2+12sin x −12,△ABC 的内角A 、B 、C 的对边分别为a 、b 、c . (1)求f(A)的取值范围;(2)若C>A,f(A)=0,且2sin A=sin B+√2sin C2,△ABC的面积为2,求b的值.14. 如图,在矩形ABCD中,AB=4,AD=2,E是CD的中点,以AE为折痕将△DAE 向上折起,D变为D′,且平面D′AE⊥平面ABCE.(Ⅰ)求证:AD′⊥EB;(Ⅱ)求二面角A−BD′−E的大小.15. 调查表明:甲种农作物的长势与海拔高度、土壤酸碱度、空气湿度的指标有极强的相关性,现将这三项的指标分别记为x,y,z,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标ω=x+y+z的值评定这种农作物的长势等级,若ω≥4,则长势为一级;若2≤ω≤3,则长势为二级;若0≤ω≤1,则长势为三级,为了了解目前这种农作物长势情况,研究人员随机抽取10块种植地,得到如表中结果:的概率;(Ⅱ)从长势等级是一级的种植地中任取一块地,其综合指标为A,从长势等级不是一级的种植地中任取一块地,其综合指标为B,记随机变量X=A−B,求X的分布列及其数学期望.16. 如图,点P为圆E:(x−1)2+y2=r2(r>1)与x轴的左交点,过点P作弦PQ,使PQ与y轴交于PQ的中点D.(Ⅰ)当r在(1, +∞)内变化时,求点Q的轨迹方程;(Ⅱ)已知点A(−1, 1),设直线AQ,EQ分别与(Ⅰ)中的轨迹交于另一点Q1,Q2,求证:当Q在(Ⅰ)中的轨迹上移动时,只要Q1,Q2都存在,且Q1,Q2不重合,则直线Q1Q2恒过定点,并求该定点坐标.17. 已知函数f(x)=2ax+e x,g(x)=ax2−2ax−xe x,a∈R.(1)讨论f(x)的单调区间;(2)若对任意实数x, f(x)+g(x)≤1,求a的取值范围.18. 自然状态下鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响,用x n表示某鱼群在第n年年初的总量,n∈N+,且x1>0.不考虑其他因素,设在第n年内鱼群的繁殖量及被捕捞量都与x n成正比,死亡量与x n2成正比,这些比例系数依次为正常数a,b,c.(1)求x n+1与x n的关系式;(2)猜测:当且仅当x1,a,b,c满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明)参考答案与试题解析【2020年高考数学预测题】北京市高考数学试卷(理科)2【附详细答案和解析可编辑】一、选择题(本题共计 8 小题,每题 5 分,共计40分)1.【答案】A【解答】解:等式化为3−4i=a−bi,所以a=3,b=4.故选A.2.【答案】C【解答】解:执行程序框图,∵y>0,∴y=−2,x=2,∵y<0,∴y=3,x=4,∵y>0,∴y=1,x=8,结束循环,输出x=8.故选C.3.【答案】C【解答】解:由题得曲线C的普通方程为x 225−y216=1,由{x′=x5,y′=y4,可得{x=5x′,y=4y′,代入曲线C中,可得x′2−y′2=1,即x2−y2=1,∴a=1,b=1,∴c=√2,∴e=ca=√2.故选C.4.【答案】B【解答】点P是椭圆x2a2+y2b2=1(a>b>0)上的一点,F1,F2分别为椭圆的左、右焦点,已知∠F1PF2=90∘,且|PF1|=3|PF2|,如图:设|PF2|=m,则|PF1|=3m,则:{4m=2a9m2+m2=4c2,可得4c2=52a2,解得e=ca=√104.5.【答案】C【解答】解:作出不等式组对应的平面区域,将y−(12)x=0平移到点A(1,1),此时目标函数z=y−(12)x取得最大值,其最大值为z=1−(12)1=12.故选C.6.【答案】D【解答】解:∵lg x=a,lg y=b,∴lg√x−lg(y10)2=12lg x−2lgy10=12lg x−2(lg y−1)=12lg x−2lg y+2=12a−2b+2,故选D . 7.【答案】 C 【解答】∵ |OA →|=1,|OB →|=√3,OA →⋅OB →=0, ∴ 建立平面直角坐标系如图: 则OA →=(1,0),OB →=(0,√3), ∴ OC →=mOA →+nOB →=(m, √3n), 又OC →与OA →的夹角为30∘, ∴√3n m =tan 30∘=√33,则m n的值为3. 8.【答案】A【解答】解:∵ a ,b ,c 是正实数, 且ab +bc +ac =1, ∴ 13=ab+bc+ca3≥√(abc)23,∴ (abc)2≤127,∴ abc ≤√39, 即 abc 的最大值为 √39,故选A .二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 ) 9.【答案】 3【解答】解:∵ 角α的终边经过点P(2x , −6),且tan θ=−34,∴ −62x =−34, ∴ x =3 故答案为:3. 10.【答案】4【解答】解:∵ 数列{a n }中为等差数列,∴ a 5=a 1+4d =8,①a 9=a 1+8d =24② ②-①得,4d =16.∴ d =4 故答案为411.【答案】 4【解答】解:由题 O 1(0, 0)与O 2:(m, 0)√5<|m|<3√5,O 1A ⊥AO 2,m 2=(√5)2+(2√5)2=25,∴ m =±5 AB =2⋅5˙=4 故答案为:4 12.【答案】(−∞,1e ]【解答】解:y =2e x+1e 2x +1(e 是自然对数的底数),求导,y′=2e x+1(1−e 2x )(e 2x +1)2,令y′=0,解得:x =0,当x >0时,y′<0,当x <0,y′>0,则x ∈(−∞, 0),函数单调递增,x ∈(0, +∞)时,函数y 单调递减, 则当x =0时,取最大值,最大值为e , ∴ y 0的取值范围为(0, e], 则函数f(x)=ln x x+x −a(a ∈R),x ∈(0, e),求导,f′(x)=x 2−ln x+1x 2,x ∈(0, e),f′(x)>0,则f(x)在(0, e)上单调递增, 下面证明f(y 0)=y 0.假设f(y 0)=c >y 0,则f(f(y 0))=f(c)>f(y 0)=c >y 0,不满足f(f(y 0))=y 0. 同理假设f(y 0)=c <y 0,则不满足f(f(y 0))=y 0. 综上可得:f(y 0)=y 0. 令函数f(x)=ln x x+x −a =x ,化为a =ln x x.设g(x)=ln x x,求导g′(x)=1−ln x x 2,当x ∈(0, e)时,g′(x)>0,g(x)在(0, e)上单调递增,当x=e时取最大值,最大值为1e,当x→0时,a→−∞,∴a的取值范围(−∞, 1e].故答案为:(−∞, 1e].三、解答题(本题共计 6 小题,每题 13 分,共计78分)13.【答案】f(x)=sin2x2+12sin x−12=1−cos x2+sin x2−12=√22sin(x−π4).由题意0<A<π,则A−π4∈(−π4, 3π4),可得:sin(A−π4)∈(−√22, 1].可得:f(A)的取值范围为(−12, √22].方法一:由题意知:√22sin(A−π4)=0,∴A−π4=kπ,k∈Z,∴A=π4+kπ,k∈Z.又∵A为锐角,∴A=π4.由余弦定理及三角形的面积得:{12bc sinπ4=2 2a=b+√22ccosπ4=b2+c2−a22bc,解得b=2.方法二:2sinπ4=sin(3π4−C)+√22sin C,且C>A,可得C=π2,则△ABC为等腰直角三角形,由于:12b2=2,所以:b=2.【解答】f(x)=sin2x2+12sin x−12=1−cos x2+sin x2−12=√22sin(x−π4).由题意0<A<π,则A−π4∈(−π4, 3π4),可得:sin(A−π4)∈(−√22, 1].可得:f(A)的取值范围为(−12, √22].方法一:由题意知:√22sin(A−π4)=0,∴A−π4=kπ,k∈Z,∴A=π4+kπ,k∈Z.又∵A为锐角,∴A=π4.由余弦定理及三角形的面积得:{12bc sinπ4=22a=b+√22ccosπ4=b2+c2−a22bc,解得b=2.方法二:2sinπ4=sin(3π4−C)+√22sin C,且C>A,可得C=π2,则△ABC为等腰直角三角形,由于:12b2=2,所以:b=2.14.【答案】证明:(Ⅰ)∵AE=BE=2√2,AB=4,∴AB2=AE2+BE2,∴AE⊥EB,取AE的中点M,连结MD′,则AD=D′E=2⇒MD′⊥AE,∵平面D′AE⊥平面ABCE,∴MD′⊥平面ABCE,∴MD′⊥BE,从而EB⊥平面AD′E,∴AD′⊥EB;(Ⅱ)以C为原点,CE为x轴,CB为y轴,过C作平面ABCE的垂线为z轴,如图建立空间直角坐标系,则A(4, 2, 0)、C(0, 0, 0)、B(0, 2, 0)、D′(3,1,√2),E(2, 0, 0),从而BA→=(4, 0, 0),BD′→=(3,−1,√2),BE→=(2,−2,0).设n1→=(x,y,z)为平面ABD′的法向量,。

2020年北京卷数学高考试题文档版(含答案)

2020年北京卷数学高考试题文档版(含答案)

2020年北京市高考数学试卷一、选择题共10小题,每小题4分,共40分。

在每小题列出的的四个选项中,选出符合题目要求的一项。

1.(4分)已知集合{1A =-,0,1,2},{|03}B x x =<<,则(A B = )A .{1-,0,1}B .{0,1}C .{1-,1,2}D .{1,2}2.(4分)在复平面内,复数z 对应的点的坐标是(1,2),则(i z = ) A .12i +B .2i -+C .12i -D .2i --3.(4分)在5(2)x -的展开式中,2x 的系数为( ) A .5-B .5C .10-D .104.(4分)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( )A .63+B .623+C .123D .1223+5.(4分)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ) A .4B .5C .6D .76.(4分)已知函数()21x f x x =--,则不等式()0f x >的解集是( ) A .(1,1)- B .(-∞,1)(1-⋃,)+∞C .(0,1)D .(-∞,0)(1⋃,)+∞7.(4分)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ) A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP8.(4分)在等差数列{}n a 中,19a =-,51a =-.记12(1n n T a a a n =⋯=,2,)⋯,则数列{}(n T)A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项9.(4分)已知α,R β∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.(4分)2020年3月14日是全球首个国际圆周率日(π)Day .历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似,数学家阿尔卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔卡西的方法,π的近似值的表达式是( ) A .30303(sin tan )n n n ︒︒+ B .30306(sin tan )n n n ︒︒+ C .60603(sintan )n n n︒︒+ D .60606(sintan )n n n︒︒+ 二、填空题共5小题,每小题5分,共25分。

2020年北京市高考数学试卷(pdf详细解析版)

2020年北京市高考数学试卷(pdf详细解析版)

必要性:若 sin α sin β ,则有 sin α sin β 0 ,所以 2 cos α β sin α β 0 ,所以 cos α β 0 或者
2
2
2
sin α β 0 , 若 cos α β 0 , 则 有 α β nπ π (n Z) , 所 以 α 2nπ π β , 令 k 2n 1 , 则 有
(4)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为
(A) 6 3
(B) 6 2 3
(C)12 3
(D)12 2 3
答案:D
解析:三棱柱的直观图如图所示, △ABC 是等边三角形,所以三棱柱的表
面积为 2
3 4
BC
2
3
BC
AA1
3 22 3 2 2 12 2 2
3 ,故选 D
2
2
2
2
kπ (1)k ;若 sin α β 0 ,则有 α β nπ ,所以 α 2nπ β ,取 k 2n ,则有 kπ (1)k .
2
2
所以 sin α sin β 故“存在 k Z ,使得 kπ (1)k ”是“ sin sin ”的必要条件.
第一部分(选择题共 40 分) 一、选择题共 10 小题,每小题 4 分,共 40 分,在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合 A {1, 0,1, 2}, B {x 0 x 3} ,则 A B
(A){1, 0,1}
(B) {0,1}
(C){1,1, 2}
(D){1, 2}
(3)在 ( x 2)5 的展开式中, x2 的系数为
(A) 5 (C) 10
(B) 5
(D)10

2020年北京市东城区高考数学一模试卷 (word版含解析)

2020年北京市东城区高考数学一模试卷 (word版含解析)

2020年北京市东城区高考数学(4月份)第一次模拟试卷一、选择题(共10小题).1.已知集合A={x|x(x+1)≤0},集合B={x|﹣1<x<1},则A∪B=()A.{x|﹣1≤x≤1}B.{x|﹣1<x≤0}C.{x|﹣1≤x<1} D.{x|0<x<1}2.已知复数z=(其中i是虚数单位),则|z|=()A.B.C.1 D.23.抛物线x2=4y的准线与y轴的交点的坐标为()A.B.(0,﹣1)C.(0,﹣2)D.(0,﹣4)4.设函数f(x)=x+﹣2(x<0),则f(x)()A.有最大值B.有最小值C.是增函数D.是减函数5.已知曲线C的方程为,则“a>b”是“曲线C为焦点在x轴上的椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.一排6个座位坐了2个三口之家.若每家人坐在一起,则不同的坐法种数为()A.12 B.36 C.72 D.7207.已知圆C与直线y=﹣x及x+y﹣4=0的相切,圆心在直线y=x上,则圆C的方程为()A.(x﹣1)2 +(y﹣1)2 =2 B.(x﹣1)2 +(y+1)2 =2C.(x+1)2 +(y﹣1)2 =4 D.(x+1)2 +(y+1)2 =48.已知正项等比数列{a n}中,a1a5a9=27,a6与a7的等差中项为9,则a10=()A.729 B.332 C.181 D.969.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,则当荷叶刚好覆盖水面面积一半时,荷叶已生长了()A.10天B.15天C.19天D.2天10.某学校高三教师周一、周二、周三坐地铁上班的人数分别是8,10,14,若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是()A.8 B.7 C.6 D.5二、填空题共5题,每题5分,共25分.11.设向量,不平行,向量λ+与+2平行,则实数λ=.12.已知角α的顶点在坐标原点,始边与x轴的正半轴重合,将角α的终边按逆时针方向旋转后经过点(﹣1,),则sinα=.13.某四棱锥的三视图如图所示,那么该四棱锥的体积为.14.若顶点在原点的抛物线经过四个点(1,1),,(2,1),(4,2)中的2个点,则该抛物线的标准方程可以是.15.某部影片的盈利额(即影片的票房收入与固定成本之差)记为y,观影人数记为x,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y与x的函数图象.给出下列四种说法:①图(2)对应的方案是:提高票价,并提高成本;②图(2)对应的方案是:保持票价不变,并降低成本;③图(3)对应的方案是:提高票价,并保持成本不变;④图(3)对应的方案是:提高票价,并降低成本.其中,正确的说法是.(填写所有正确说法的编号)三、解答题16.如图1,在△ABC中,D,E分别为AB,AC的中点,O为DE的中点,AB=AC=2,BC=4.将△ADE沿DE折起到△A1DE的位置,使得平面A1DE⊥平面BCED,如图.(Ⅰ)求证:A1O⊥BD;(Ⅱ)求直线A1C和平面A1BD所成角的正弦值;17.在①b2+ac=a2+c2,②a cos B=b sin A,③sin B+cos B=,这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知△ABC的内角A,B,C的对边分别为a,b,c,_______,A=,b =,求△ABC的面积.18.为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如图:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(Ⅰ)根据表中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;(Ⅱ)为了解乙公司员工B的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X(单位:元),求X的分布列和数学期望;(Ⅲ)根据表中数据估算两公司的每位员工在该月所得的劳务费.19.已知函数f(x)=lnx﹣.(1)若曲线y=f(x)存在斜率为﹣1的切线,求实数a的取值范围;(2)求f(x)的单调区间;(3)设函数g(x)=,求证:当﹣1<a<0时,g(x)在(1,+∞)上存在极小值.20.已知椭圆C:x2+3y2=6的右焦点为F.(Ⅰ)求点F的坐标和椭圆C的离心率;(Ⅱ)直线l:y =kx+m(k≠0)过点F,且与椭圆C交于P,Q两点,如果点P关于x轴的对称点为P′,判断直线P'Q 是否经过x轴上的定点,如果经过,求出该定点坐标;如果不经过,说明理由.21.各项均为非负整数的数列{a n}同时满足下列条件:①a1=m(m∈N*);②a n≤n﹣1(n≥2);③n是a1+a2+…+a n的因数(n≥1).(Ⅰ)当m=5时,写出数列{a n}的前五项;(Ⅱ)若数列{a n}的前三项互不相等,且n≥3时,a n为常数,求m的值;(Ⅲ)求证:对任意正整数m,存在正整数M,使得n≥M 时,a n为常数.参考答案一、选择题共10题,每题4分,共40分.在每题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={x|x(x+1)≤0},集合B={x|﹣1<x<1},则A∪B=()A.{x|﹣1≤x≤1}B.{x|﹣1<x≤0}C.{x|﹣1≤x<1} D.{x|0<x<1}【分析】先求出集合A,集合B,由此能求出A∪B.解:∵集合A={x|x(x+1)≤0}={x|﹣1≤x≤0},集合B={x|﹣1<x<1},∴A∪B={x|﹣1≤x<1}.故选:C.2.已知复数z=(其中i是虚数单位),则|z|=()A.B.C.1 D.2【分析】利用复数模长的性质即可求解.解:∵复数z=,∴==,故选:A.3.抛物线x2=4y的准线与y轴的交点的坐标为()A.B.(0,﹣1)C.(0,﹣2)D.(0,﹣4)【分析】利用抛物线x2=4y的准线方程为y=﹣1,即可求出抛物线x2=4y的准线与y轴的交点的坐标.解:抛物线x2=4y的准线方程为y=﹣1,∴抛物线x2=4y的准线与y轴的交点的坐标为(0,﹣1),故选:B.4.设函数f(x)=x+﹣2(x<0),则f(x)()A.有最大值B.有最小值C.是增函数D.是减函数【分析】根据x<0即可根据基本不等式得出,从而可得出f(x)≤﹣4,并且x=﹣1时取等号,从而得出f(x)有最大值,没有单调性,从而得出正确的选项.解:∵x<0,∴,当且仅当,即x=﹣1时取等号,∴f(x)有最大值,∴f(x)在(﹣∞,0)上没有单调性.故选:A.5.已知曲线C的方程为,则“a>b”是“曲线C为焦点在x轴上的椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据椭圆方程的特点,结合充分条件和必要条件的定义进行判断即可.解:若a>b>0,则对应的曲线为双曲线,不是椭圆,即充分性不成立,若曲线C为焦点在x轴上的椭圆,则满足a>﹣b>0,即a>0,b<0,满足a>b,即必要性成立,即“a>b”是“曲线C为焦点在x轴上的椭圆”的必要不充分条件,故选:B.6.一排6个座位坐了2个三口之家.若每家人坐在一起,则不同的坐法种数为()A.12 B.36 C.72 D.720【分析】根据题意,由捆绑法分析:先将2个三口之家的成员进行全排列,再对2个三口之家整体进行全排列,由分步计数原理计算可得答案.解:根据题意,先将2个三口之家的成员进行全排列,有=36种情况,再对2个三口之家整体进行全排列,有=2种情况,则有36×2=72种不同的坐法;故选:C.7.已知圆C与直线y=﹣x及x+y﹣4=0的相切,圆心在直线y=x上,则圆C的方程为()A.(x﹣1)2 +(y﹣1)2 =2 B.(x﹣1)2 +(y+1)2 =2C.(x+1)2 +(y﹣1)2 =4 D.(x+1)2 +(y+1)2 =4【分析】根据圆心在直线y=x上,设出圆心坐标为(a,a),利用圆C与直线y=﹣x及x+y﹣4=0的相切,求得圆心坐标,再求圆的半径,可得圆的方程.解:圆心在y=x上,设圆心为(a,a),∵圆C与直线y=﹣x及x+y﹣4=0的相切,∴圆心到两直线y=﹣x及x+y﹣4=0的距离相等,即:⇒a=1,∴圆心坐标为(1,1),R==,圆C的标准方程为(x﹣1)2+(y﹣1)2=2.故选:A.8.已知正项等比数列{a n}中,a1a5a9=27,a6与a7的等差中项为9,则a10=()A.729 B.332 C.181 D.96【分析】正项等比数列{a n}的公比设为q,q>0,运用等差数列的中项性质和等比数列的通项公式及性质,解方程可得公比q,再由等比数列的通项公式计算可得所求值.解:正项等比数列{a n}的公比设为q,q>0,由a1a5a9=27,可得a53=27,即a5=3,即a1q4=3,①a6与a7的等差中项为9,可得a6+a7=18,即a1q5+a1q6=18,②①②相除可得q2+q﹣6=0,解得q=2(﹣3舍去),则a10=a5q5=3×32=96.故选:D.9.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,则当荷叶刚好覆盖水面面积一半时,荷叶已生长了()A.10天B.15天C.19天D.2天【分析】由题意设荷叶覆盖水面的初始面积,再列出解析式,并注明x的范围,列出方程求解即可.解:设荷叶覆盖水面的初始面积为a,则x天后荷叶覆盖水面的面积y=a•2x(x∈N+),根据题意,令2(a•2x)=a•220,解得x=19,故选:C.10.某学校高三教师周一、周二、周三坐地铁上班的人数分别是8,10,14,若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是()A.8 B.7 C.6 D.5【分析】设周三,周二,周一开车上班的职工组成的集合分别为A,B,C,集合A,B,C中元素个数分别为n(A),n(B),n(C),根据n(A∪B∪C)=n(A)+n(B)+n(C)﹣n(A∩B)﹣n(A∩C)﹣n(B∩C)+n(A∩B∩C),且n(A∩B)≥n(A∩B∩C),n(A∩C)≥n(A∩B∩C),n (B∩C)≥n(A∩B∩C)可得.解:设周三,周二,周一开车上班的职工组成的集合分别为A,B,C,集合A,B,C中元素个数分别为n(A),n(B),n(C),则n(A)=14,n(B)=10,n(C)=8,n(A∪B∪C)=20,因为n(A∪B∪C)=n(A)+n(B)+n(C)﹣n(A∩B)﹣n(A∩C)﹣n(B∩C)+n(A∩B∩C),且n(A∩B)≥n(A∩B∩C),n(A∩C)≥n(A∩B∩C),n(B∩C)≥n(A∩B∩C),所以14+10+8﹣20+n(A∩B∩C)≥3n(A∩B∩C),即n(A∩B∩C)≤=6.故选:C.二、填空题共5题,每题5分,共25分.11.设向量,不平行,向量λ+与+2平行,则实数λ=.【分析】利用向量平行的条件直接求解.解:∵向量,不平行,向量λ+与+2平行,∴λ+=t(+2)=,∴,解得实数λ=.故答案为:.12.已知角α的顶点在坐标原点,始边与x轴的正半轴重合,将角α的终边按逆时针方向旋转后经过点(﹣1,),则sinα=1.【分析】由题意利用任意角的三角函数的定义,先求得α的值,可得sinα的值.解:∵角α的顶点在坐标原点,始边与x轴的正半轴重合,将角α的终边按逆时针方向旋转后经过点(﹣1,),∴tan(α+)==﹣,故α+为第二象限角.∴可令α+=,此时,α=,sinα=1,故答案为:1.13.某四棱锥的三视图如图所示,那么该四棱锥的体积为.【分析】画出几何体的直观图,利用三视图的数据,求解几何体的体积.解:几何体的直观图如图:是长方体的一部分,长方体的棱长为:2,1,2,四棱锥的体积为:×1×2×2=.故答案为:.14.若顶点在原点的抛物线经过四个点(1,1),,(2,1),(4,2)中的2个点,则该抛物线的标准方程可以是x2=8y或y2=x.【分析】由题意可设抛物线方程为y2=2px(p>0)或x2=2py(p>0),然后分类求解得答案.解:由题意可得,抛物线方程为y2=2px(p>0)或x2=2py(p>0).若抛物线方程为y2=2px(p>0),代入(1,1),得p=,则抛物线方程为y2=x,此时(4,2)在抛物线上,符合题意;若抛物线方程为x2=2py(p>0),代入(2,1),得p=2,则抛物线方程为x2=8y,此时(2,)在抛物线上,符合题意.∴抛物线的标准方程可以是x2=8y或y2=x.故答案为:x2=8y或y2=x.15.某部影片的盈利额(即影片的票房收入与固定成本之差)记为y,观影人数记为x,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y与x的函数图象.给出下列四种说法:①图(2)对应的方案是:提高票价,并提高成本;②图(2)对应的方案是:保持票价不变,并降低成本;③图(3)对应的方案是:提高票价,并保持成本不变;④图(3)对应的方案是:提高票价,并降低成本.其中,正确的说法是②③.(填写所有正确说法的编号)【分析】解题的关键是理解图象表示的实际意义,进而得解.解:由图可知,点A纵坐标的相反数表示的是成本,直线的斜率表示的是票价,故图(2)降低了成本,但票价保持不变,即②对;图(3)成本保持不变,但提高了票价,即③对;故选:②③.三、解答题共6题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图1,在△ABC中,D,E分别为AB,AC的中点,O为DE的中点,AB=AC=2,BC=4.将△ADE沿DE折起到△A1DE的位置,使得平面A1DE⊥平面BCED,如图.(Ⅰ)求证:A1O⊥BD;(Ⅱ)求直线A1C和平面A1BD所成角的正弦值;【分析】(Ⅰ)推导出A1O⊥DE,从而A1O⊥平面BCDE,由此能证明A1O⊥BD.(Ⅱ)以O为原点,在平面BCED中过点O作DE的垂线为x轴,以OE为y轴,OA1为z轴,建立空间直角坐标系,由此能求出直线A1C和平面A1BD所成角的正弦值.解:(Ⅰ)证明:∵在△ABC中,D,E分别为AB,AC的中点,O为DE的中点,AB=AC=2,BC=4.∴A1O⊥DE,∵将△ADE沿DE折起到△A1DE的位置,使得平面A1DE⊥平面BCED,∴A1O⊥平面BCDE,∵BD⊂平面BCDE,∴A1O⊥BD.(Ⅱ)解:以O为原点,在平面BCED中过点O作DE的垂线为x轴,以OE为y轴,OA1为z轴,建立空间直角坐标系,A1(0,0,2),C(2,2,0),B(2,﹣2,0),D(0,﹣1,0),=(2,2,﹣2),=(2,﹣1,0),=(0,1,2),设平面A1BD的法向量为=(x,y,z),则,取x=1,得=(1,2,﹣1),设直线A1C和平面A1BD所成角为θ,则直线A1C和平面A1BD所成角的正弦值为:sinθ===.17.在①b2+ac=a2+c2,②a cos B=b sin A,③sin B+cos B=,这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知△ABC的内角A,B,C的对边分别为a,b,c,_______,A=,b=,求△ABC的面积.【分析】取①,由余弦定理可得cos B=进而解得B,C的大小也可得出,再由正弦定理可得a,最后利用三角形的面积公式计算即可得出;取②a cos B=b sin A,由正弦定理可得:tan B=1,B∈(0,π),解得B,可得sin C=sin(A+B),由正弦定理可得:a,利用三角形面积计算公式即可得出;取③,可得,由此可求出B的大小,C的大小也可得出,再由正弦定理可得a,最后利用三角形的面积公式计算即可得出;解:(1)若选择①,由余弦定理,……………因为B∈(0,π),所以;……………………由正弦定理,得,……………因为,,所以,……………所以………所以.……………(2)若选择②a cos B=b sin A,则sin A cos B=sin B sin A,……………因为sin A≠0,所以sin B=cos B,……………因为B∈(0,π),所以;……………由正弦定理,得,……………因为,,所以,……………所以,…所以.……………(3)若选择③,则,所以,……………因为B∈(0,π),所以,所以,所以;……………由正弦定理,得,……………因为,,所以,……………所以,………18.为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如图:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(Ⅰ)根据表中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;(Ⅱ)为了解乙公司员工B的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X(单位:元),求X的分布列和数学期望;(Ⅲ)根据表中数据估算两公司的每位员工在该月所得的劳务费.【分析】(Ⅰ)由茎叶图能求出甲公司员工A投递快递件数的平均数和众数.(Ⅱ)由题意能求出X的可能取值为136,147,154,189,203,分别求出相对应的概率,由此能求出X的分布列和数学期望.(Ⅲ)利用(Ⅱ)的结果能估算算两公司的每位员工在该月所得的劳务费.解:(Ⅰ)甲公司员工A投递快递件数的平均数为:=(32+33+33+38+35+36+39+33+41+40)=36,众数为33.(Ⅱ)设a为乙公司员工B投递件数,则当a=34时,X=136元,当a>35时,X=35×4+(a﹣35)×7元,∴X的可能取值为136,147,154,189,203,P(X=136)=,P(X=147)=,P(X=154)=,P(X=189)=,P(X=203)=,X的分布列为:X136 147 154 189 203P=.(Ⅲ)根据图中数据,由(Ⅱ)可估算:甲公司被抽取员工该月收入=36×4.5×30=4860元,乙公司被抽取员工该月收入=165.5×30=4965元.19.已知函数f(x)=lnx﹣.(1)若曲线y=f(x)存在斜率为﹣1的切线,求实数a的取值范围;(2)求f(x)的单调区间;(3)设函数g(x)=,求证:当﹣1<a<0时,g(x)在(1,+∞)上存在极小值.【分析】(1)求出函数的导数,问题转化为x2+x+a=0存在大于0的实数根,根据y=x2+x+a在x >0时递增,求出a的范围即可;(2)求出函数f(x)的导数,通过讨论a的范围,判断导函数的符号,求出函数的单调区间即可;(3)求出函数g(x)的导数,根据f(e)=﹣>0,得到存在x0∈(1,e)满足g′(x0)=0,从而得到函数的单调区间,求出函数的极小值,证出结论即可.解:(1)由f(x)=lnx﹣﹣1得:f′(x)=,(x>0),由已知曲线y=f(x)存在斜率为﹣1的切线,∴f′(x)=﹣1存在大于0的实数根,即x2+x+a=0存在大于0的实数根,∵y=x2+x+a在x>0时递增,∴a的范围是(﹣∞,0);(2)由f′(x)=,(x>0),得:a≥0时,f′(x)>0,∴f(x)在(0,+∞)递增;a<0时,若x∈(﹣a,+∞)时,f′(x)>0,若x∈(0,﹣a),则f′(x)<0,故f(x)在(﹣a,+∞)递增,在(0,﹣a)递减;(3)由g(x)=及题设得:g′(x)==,由﹣1<a<0,得:0<﹣a<1,由(2)得:f(x)在(﹣a,+∞)递增,∴f(1)=﹣a﹣1<0,取x=e,显然e>1,f(e)=﹣>0,∴存在x0∈(1,e)满足f(x0)=0,即存在x0∈(1,e)满足g′(x0)=0,令g′(x)>0,解得:x>x0,令g′(x)<0,解得:1<x<x0,故g(x)在(1,x0)递减,在(x0,+∞)递增,∴﹣1<a<0时,g(x)在(1,+∞)存在极小值.20.已知椭圆C:x2+3y2=6的右焦点为F.(Ⅰ)求点F的坐标和椭圆C的离心率;(Ⅱ)直线l:y=kx+m(k≠0)过点F,且与椭圆C交于P,Q两点,如果点P关于x轴的对称点为P′,判断直线P'Q是否经过x轴上的定点,如果经过,求出该定点坐标;如果不经过,说明理由.【分析】(I)由椭圆的标准方程即可得出;(II)直线l:y=kx+m(k≠0)过点F,可得l:y=k(x﹣2).代入椭圆的标准方程可得:(3k2+1)x2﹣12k2x+12k2﹣6=0.(依题意△>0).设P(x1,y1),Q(x2,y2),可得根与系数的关系.点P关于x轴的对称点为P',则P'(x1,﹣y1).可得直线P'Q的方程可以为,令y=0,,把根与系数的关系代入化简即可得出.解:(Ⅰ)∵椭圆C:,∴c2=a2﹣b2=4,解得c=2,∴焦点F(2,0),离心率.(Ⅱ)直线l:y=kx+m(k≠0)过点F,∴m=﹣2k,∴l:y=k(x﹣2).由,得(3k2+1)x2﹣12k2x+12k2﹣6=0.(依题意△>0).设P(x1,y1),Q(x2,y2),则,.∵点P关于x轴的对称点为P',则P'(x1,﹣y1).∴直线P'Q的方程可以设为,令y=0,====3.∴直线P'Q过x轴上定点(3,0).21.各项均为非负整数的数列{a n}同时满足下列条件:①a1=m(m∈N*);②a n≤n﹣1(n≥2);③n是a1+a2+…+a n的因数(n≥1).(Ⅰ)当m=5时,写出数列{a n}的前五项;(Ⅱ)若数列{a n}的前三项互不相等,且n≥3时,a n为常数,求m的值;(Ⅲ)求证:对任意正整数m,存在正整数M,使得n≥M时,a n为常数.【分析】(Ⅰ)当m=5时,写出数列{a n}的前五项;(Ⅱ)对a2、a3分类取值,再结合各项均为非负整数列式求m的值;(Ⅲ)令S n=a1+a2+…+a n,则.进一步推得存在正整数M>m,当n>M时,必有成立.再由成立证明a n为常数.【解答】(Ⅰ)解:m=5时,数列{a n}的前五项分别为:5,1,0,2,2.(Ⅱ)解:∵0≤a n≤n﹣1,∴0≤a2≤1,0≤a3≤2,又数列{a n}的前3项互不相等,(1)当a2=0时,若a3=1,则a3=a4=a5= (1)且对n≥3,都为整数,∴m=2;若a3=2,则a3=a4=a5= (2)且对n≥3,都为整数,∴m=4;(2)当a2=1时,若a3=0,则a3=a4=a5= 0且对n≥3,都为整数,∴m=﹣1,不符合题意;若a3=2,则a3=a4=a5= (2)且对n≥3,都为整数,∴m=3;综上,m的值为2,3,4.(Ⅲ)证明:对于n≥1,令S n=a1+a2+…+a n,则.又对每一个n,都为正整数,∴,其中“<”至多出现m﹣1个.故存在正整数M>m,当n>M时,必有成立.当时,则.从而.由题设知,又及a n+1均为整数,∴=a n+1=,故=常数.从而=常数.故存在正整数M,使得n≥M时,a n为常数.。

北京市2020届高考数学预测卷

北京市2020届高考数学预测卷

Ann
=
a21
a22
an1 an2
a1n
a2n
,其中对任
ann
意的 1≤i≤n,1≤j≤n,当 i 能整除 j 时,aij=1;当 i 不能整除 j 时,aij=0.设
n
( ) t j = aij = a1 j + a2 j + + anj . i =1
6
(Ⅰ)当 n=6 时,试写出数阵 A66 并计算 t ( j ) ; j =1
在 ABC 中,设 BC = x ,由余弦定理可得 4 = 12 + x2 − 4 3xcos30 ,
11.【KS5U 答案】2 【KS5U 解析】
由于 f ( x) = 1 x2 + x ,则 f ( x) = x +1,
2
由导数的几何意义可知,曲线的切线斜率即对应的函数在切点处的导数值,
曲线 f (x) = 1 x2 + x 的一条切线斜率是 3, 2
令导数 f ( x) = x + 1 = 3 ,可得 x = 2 ,
故选:A
6.【KS5U 答案】C
【KS5U 解析】
令 − + 2k 2x + + 2k
2
62
因此 k − x k +
3
6
故函数
f
(x)
=
sin(2x
+
6
)
的单调递增区间是
k

3
,
k
+
6
,(k
Z
)
故选:C
7.【KS5U 答案】B 【KS5U 解析】
由三视图可得几何体直观图如下图所示:

2020年北京市石景山高考数学模拟试卷及答案解析

2020年北京市石景山高考数学模拟试卷及答案解析

2020年北京市石景山高考数学模拟试卷及答案解析2020年北京市石景山区高三数学统一测试本试卷共6页,满分为150分,考试时间为120分钟。

请务必将答案写在答题卡上,试卷上的答案无效。

考试结束后,上交答题卡。

第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.设集合P={1,2,3,4},Q={x||x|≤3,x∈R},则P∩Q等于A.{1}B.{1,2,3}C.{3,4}D.{-3,-2,-1,0,1,2,3}2.在复平面内,复数5+6i,3-2i对应的点分别为A,B。

若C为线段AB的中点,则点C对应的复数是A.8+4iB.2+8iC.4+2iD.1+4i3.下列函数中,既是奇函数又在区间(0,+∞)上单调递减的是A.y=-x+2B.y=x^2C.y=lnxD.y=2-x4.圆x+y-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=A.-4/3B.-3/4C.3D.25.将4位志愿者分配到博物馆的3个不同场馆服务,每个场馆至少1人,不同的分配方案有()种A.36B.64C.72D.816.如图,网格纸的小正方形的边长是1,粗线表示一正方体被某平面截得的几何体的三视图,则该几何体的体积为A.2.4B.5C.87.函数fx=cosωx+(6/π)的最小正周期为π,则f(x)满足A.在(0,π/3)上单调递增B.图像关于直线x=π/6对称C.f(3π/2-x)=f(x)D.当x=5π/6时有最小值-1/28.设{a_n}是等差数列,其前n项和为S_n。

则“S_1+S_3>2S_2”是“{a_n}为递增数列”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.设f(x)是定义在R上的函数,若存在两个不等实数x_1,x_2∈R,使得x_1+x_2<f(x_1)+f(x_2),则称函数f(x)具有性质P。

2020学年北京市密云县高考数学预测试题

2020学年北京市密云县高考数学预测试题

2019-2020学年高考数学模拟试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.定义:{}()()N f x g x ⊗表示不等式()()f x g x <的解集中的整数解之和.若2()|log |f x x =,2()(1)2g x a x =-+,{}()()6N f x g x ⊗=,则实数a 的取值范围是 A .(,1]-∞-B .2(log 32,0)-C .2(2log 6,0]-D .2log 32(,0]4- 2.运行如图所示的程序框图,若输出的值为300,则判断框中可以填( )A .30i >?B .40i >?C .50i >?D .60i >?3.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足l ⊥m ,l ⊥n ,,l α⊄,l β⊄则 ( )A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l4.若424log 3,log 7,0.7a b c ===,则实数,,a b c 的大小关系为( ) A .a b c >>B .c a b >>C .b a c >>D .c b a >>5.已知直线1l :x my =(0m ≠)与抛物线C :24y x =交于O (坐标原点),A 两点,直线2l :x my m=+与抛物线C 交于B ,D 两点.若||3||BD OA =,则实数m 的值为( ) A .14B .15C .13D .186.复数z 的共轭复数记作z ,已知复数1z 对应复平面上的点()1,1--,复数2z :满足122z z ⋅=-.则2z 等于( ) A 2B .2C 10D .107.已知复数z 1=3+4i,z 2=a+i,且z 12z 是实数,则实数a 等于( ) A .34B .43C .-43D .-348.某三棱锥的三视图如图所示,则该三棱锥的体积为A .23B .43C .2D .839.已知0.212a ⎛⎫= ⎪⎝⎭,120.2b -=,13log 2c =,则( ) A .a b c >> B .b a c >> C .b c a >> D .a c b >>10.已知复数552iz i i=+-,则||z =( ) A .5B .52C .32D .2511.若向量(0,2)m =-,(3,1)n =,则与2m n +共线的向量可以是( ) A .(3,1)-B .(1,3)-C .(3,1)--D .(1,3)--12.若非零实数a 、b 满足23a b =,则下列式子一定正确的是( ) A .b a > B .b a < C .b a <D .b a >二、填空题:本题共4小题,每小题5分,共20分。

2020年高考数学北京卷-答案

2020年高考数学北京卷-答案

2020年普通高等学校招生全国统一考试(北京卷)数学答案解析一、选择题1.【答案】D【解析】{1,0,1,2}(0,3){1,2}A B =-=,故选:D .【考点】集合交集概念【考查能力】分析求解2.【答案】B【解析】由题意得12i z =+,i i 2z =-∴.故选:B .【考点】复数几何意义,复数乘法法则【考查能力】基本分析求解3.【答案】C【解析】)52展开式的通项公式为:()()55215522r r r r r r r T C C x --+=-=-, 令522r -=可得:1r =,则2x 的系数为:()()11522510C -=-⨯=-. 故选:C .【考点】二项式定理的核心是通项公式4.【答案】D【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭故选:D .5.【答案】A【解析】设圆心(),C x y 1, 化简得()()22341x y -+-=,所以圆心C 的轨迹是以()3,4M 为圆心,1为半径的圆,所以||1||5OC OM =+=≥,所以||514OC -=≥,当且仅当C 在线段OM 上时取得等号,故选:A .【考点】圆的标准方程6.【答案】D【解析】因为()21x f x x =--,所以()0f x >等价于21x x +>,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为()0,1,()1,2,不等式21x x +>的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞.故选:D .【考点】图象法解不等式7.【答案】B【解析】如图所示:.因为线段FQ 的垂直平分线上的点到F ,Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选:B .【考点】抛物线的定义的应用8.【答案】B 【解析】由题意可知,等差数列的公差511925151a a d --+===--, 则其通项公式为:()()11912211n a a n d n n =+-=-+-⨯=-,注意到123456701a a a a a a a =<<<<<<<<,且由50T <可知()06,i T i i ∈N <≥, 由()117,i i i T a i i T -=∈N >≥可知数列{}n T 不存在最小项, 由于19a =-,27a =-,35a =-,43a =-,51a =-,61a =故数列{}n T 中的正项只有有限项:263T =,46315945T =⨯=.故数列{}n T 中存在最大项,且最大项为4T .故选:B .【考点】等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想9.【答案】C【解析】(1)当存在k ∈Z 使得π(1)k k αβ=+-时,若k 为偶数,则()sin sin πsin k αββ=+=;若k 为奇数,则()()()sin sin πsin 1ππsin πsin k k αββββ=-=⎡-+-⎤=-=⎣⎦;(2)当sin sin αβ=时,2πm αβ=+或π2πm αβ+=+,m ∈Z ,即()()π12kk k m αβ=+-=或()()π121kk k m αβ=+-=+,亦即存在k ∈Ζ使得π(1)k k αβ=+-.所以,“存在k ∈Ζ使得π(1)k k αβ=+-”是“sin sin αβ=”的充要条件.故选:C .【考点】充分条件,必要条件的定义的应用,诱导公式的应用,涉及分类讨论思想的应用10.【答案】A【解析】单位圆内接正6n 边形的每条边所对应的圆周角为360606n n ︒︒=⨯,每条边长为302sin n ︒, 所以,单位圆的内接正6n 边形的周长为3012sinn n ︒, 单位圆的外切正6n 边形的每条边长为302tan n ︒,其周长为3012tan n n︒, 303012sin12tan 303026sin tan 2n n n n n n n π︒︒+︒︒⎛⎫==+ ⎪⎝⎭∴, 则3030π3sin tan n n n ︒︒⎛⎫=+ ⎪⎝⎭. 故选:A .【考点】圆周率π的近似值的计算,根据题意计算出单位圆内接正6n 边形和外切正6n 边形的周长【考查能力】计算二、填空题11.【答案】(0,)+∞【解析】由题意得010x x ⎧⎨+≠⎩>,0x ∴> 故答案为:(0,)+∞【考点】函数定义域【考查能力】基本分析求解12.【答案】()3,0【解析】在双曲线C中,a =,b =3c ==,则双曲线C 的右焦点坐标为()3,0, 双曲线C的渐近线方程为y =,即0x ±=, 所以,双曲线C=.故答案为:()3,0【考点】根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离【考查能力】计算13.1-【解析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+=, 则点()2,1P ,()2,1PD =-∴,()0,1PB =-,因此,(PD =-=()021(1)1PB PD ⋅=⨯-+⨯-=-.1-.【考点】平面向量的模,数量积的计算,平面直角坐标系【考查能力】计算14.【答案】π2(π2π,2k k +∈Z 均可)【解析】因为()()()cos sin sin 1cos f x x x x ϕϕθ=+++,2,解得sin 1ϕ=,故可取2ϕπ=. 故答案为:π2(π2π,2k k +∈Z 均可). 【考点】两角和的正弦公式,辅助角公式的应用,平方关系的应用【考查能力】数学运算15.【答案】①②③【解析】()()f b f a b a---表示区间端点连线斜率的负数, 在[]12,t t 这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[][][]112230,,,,,t t t t t 这三段时间中,甲企业在[]12,t t 这段时间内,甲的斜率最小,其相反数最大,即在[]12,t t 的污水治理能力最强.④错误;在2t 时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在3t 时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;故答案为:①②③【考点】斜率应用,切线斜率应用,函数图象应用【考查能力】基本分析识别能力三、解答题16.【答案】(Ⅰ)证明见解析 (Ⅱ)23. 【解析】(Ⅰ)如下图所示:在正方体1111ABCD A B C D -中,11AB A B ∥且11AB A B =,1111A B C D ∥且1111A B C D =,11AB C D ∴∥且11AB C D =,所以,四边形11ABC D 为平行四边形,则11BC AD ∥,1BC ⊄∵平面1AD E ,1AD ⊂平面1AD E ,1BC ∴∥平面1AD E ;(Ⅱ)以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系A xyz -,设正方体1111ABCD A B C D -的棱长为2,则()0,0,0A 、()10,0,2A 、()12,0,2D 、()0,2,1E ,()12,0,2AD =,()0,2,1AE =,设平面1AD E 的法向量为(),,n x y z =,由100n AD n AE ⎧⋅=⎪⎨⋅=⎪⎩,得22020x z y z +=⎧⎨+=⎩, 令2z =-,则2x =,1y =,则()2,1,2n =-. 11142cos ,323n AA n AA n AA ⋅>==-=-⨯⋅<.因此,直线1AA 与平面1AD E 所成角的正弦值为23.【考点】线面平行的证明,利用空间向量法计算直线与平面所成角的正弦值【考查能力】计算17.【答案】选择条件①(Ⅰ)8(Ⅱ)sin C =,S = 选择条件②(Ⅰ)6(Ⅱ)sin C =S =. 【解析】选择条件①(Ⅰ)7c =∵,1cos 7A =-,11a b += 2222cos a b c bc A =+-∵,()()222111721177a a a ⎛⎫=-+--⋅⋅- ⎪⎝⎭∴ 8a =∴(Ⅱ)1cos 7A =-∵,(0,π)A ∈,sinA =∴ 由正弦定理得:sin sin a c AC =,7sinC =,sin C =∴()11sin 118822S ba C ==-⨯=选择条件②(Ⅰ)1cos 8A =∵,9cos 16B =,A ,()0,πB ∈sin A=∴,sin B==由正弦定理得:sin sina bA B=,,6a=∴(Ⅱ)()91sin sin sin cos sin cos168C A B A B B A=+=+=+=()11sin116622S ba C==-⨯=【考点】正弦定理,余弦定理,三角形面积公式【考查能力】基本分析求解18.【答案】(Ⅰ)该校男生支持方案一的概率为13,该校女生支持方案一的概率为34(Ⅱ)1336(Ⅲ)1p p<【解析】(Ⅰ)该校男生支持方案一的概率为2001200+4003=,该校女生支持方案一的概率为3003300+1004=;(Ⅱ)3人中恰有2人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一个男生支持方案一,一个女生支持方案一,所以3人中恰有2人支持方案一概率为:2121311313113433436C⎛⎫⎛⎫⎛⎫⎛⎫⋅-+⋅-⋅=⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭;(Ⅲ)1p p<【考点】利用频率估计概率,独立事件概率乘法公式【考查能力】基本分析求解19.【答案】(Ⅰ)2130x y+-=(Ⅱ)32【解析】(Ⅰ)因为()212f x x=-,所以()2f x x'=-,设切点为()00,12x x-,则22x-=-,即1x=,所以切点为()1,11,由点斜式可得切线方程为:()1121y x-=--,即2130x y+-=.(Ⅱ)显然0t≠,因为()y f x=在点()2,12t t-处的切线方程为:()()2122y t t x t--=--,令0x =,得212y t =+,令0y =,得2122t x t +=, 所以()()221121222||t S t t t +=⨯+⋅, 不妨设0t >(0t <时,结果一样)时,则()4232414411442444t t S t t t t t ++⎛⎫==++ ⎪⎝⎭, 所以()()422223848114432444t t S t t t t+-⎛⎫'=+-= ⎪⎝⎭ ()()()()()2222234123221244t t t t t t t -+-++==,由()0S t '>,得2t >,由()0S t '<,得02t <<,所以()S t 在()0,2上递减,在()2,+∞上递增,所以2t =时,()S t 取得极小值,也是最小值为()16162328S ⨯==. 【考点】利用导数的几何意义求切线方程,利用导数求函数的最值20.【答案】(Ⅰ)22182x y += (Ⅱ)1【解析】(1)设椭圆方程为:()222210x y a b a b+=>>,由题意可得: 224112a b a b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩, 故椭圆方程为:22182x y +=. (2)设()11,M x y ,()22,N x y ,直线MN 的方程为:()4y k x =+, 与椭圆方程22182x y +=联立可得:()222448x k x ++=, 即:()()222241326480k x k x k +++-=, 则:21223241k x x k -+=+,212264841k x x k -=+.直线MA 的方程为:()111122y y x x ++=++, 令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++, 同理可得:()()222142Q k x y x -++=+. 很明显0P Q y y <,且:P QPBy PQ y =,注意到: ()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯ ⎪++++⎝⎭, 而:()()()()()122112124242238x x x x x x x x +++++=⎡+++⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦ ()()()22226483328412041k k k k -+⨯-++=⨯=+,故0P Q y y +=,P Q y y =-. 从而1P QPBy PQ y ==. 【考点】解决直线与椭圆的综合问题21.【答案】(Ⅰ)22a =∵,33a =,23292a a =∉Z ,{}n a ∴不具有性质①; (Ⅱ)i ∀∵,j ∈*N ,i j >,()2212i j i j a a --=,2i j -∈*N ,22i i j j a a a -=∴,{}n a ∴具有性质①; n ∀∈*N ∵,3n ≥,1k n ∃=-,2l n =-,2(2)1122k l n k n l a a a ---===,{}n a ∴具有性质②,; (Ⅲ)【解法一】首先,证明数列中的项数同号,不妨设恒为正数: 显然()0*n a n N ≠∉,假设数列中存在负项,设{}0max |0n N n a =<, 第一种情况:若01N =,即01230a a a a <<<<<,由①可知:存在1m ,满足12210m a a a =<,存在2m ,满足22310m a a a =<, 由01N =可知223211a a a a =,从而23a a =,与数列的单调性矛盾,假设不成立. 第二种情况:若02N ≥,由①知存在实数m ,满足0210N m a a a =<,由0N 的定义可知:0m N ≥, 另一方面,0000221N N m N N a a a a a a ==>,由数列的单调性可知:0m N >,这与0N 的定义矛盾,假设不成立.同理可证得数列中的项数恒为负数.综上可得,数列中的项数同号. 其次,证明2231a a a =: 利用性质②:取3n =,此时()23k la a k l a =>, 由数列的单调性可知0k l a a >>, 而3k k k la a a a a =⋅>,故3k <, 此时必有2k =,1l =,即2231a a a =, 最后,用数学归纳法证明数列为等比数列:假设数列{}n a 的前()3k k ≥项成等比数列,不妨设()111s s a a q s k -=≤≤,其中10a >,1q >,(10a <,01q <<的情况类似)由①可得:存在整数m ,满足211k k m k k a a a q a a -==>,且11k m k a a q a +=≥(*) 由②得:存在s t >,满足:21s s k s s t ta a a a a a a +==⋅>,由数列的单调性可知:1t s k +<≤, 由()111s s a a q s k -=≤≤可得:2211111s t k s k k ta a a q a a q a ---+===>(**)由(**)和(*)式可得:211111k s t k a q a q a q ---≥>,结合数列的单调性有:211k s t k ---≥>,注意到s ,t ,k 均为整数,故21k s t =--,代入(**)式,从而11k k a a q +=.总上可得,数列{}n a 的通项公式为:11n n a a q -=.即数列{}n a 为等比数列.【解法二】假设数列中的项数均为正数:首先利用性质②:取3n =,此时()23k la a k l a =>, 由数列的单调性可知0k l a a >>, 而3k k k la a a a a =⋅>,故3k <, 此时必有2k =,1l =,即2231a a a =, 即1a ,2a ,3a 成等比数列,不妨设21a a q =,()2311a a q q =>,然后利用性质①:取3i =,2j =,则224331121m a a q a a q a a q===, 即数列中必然存在一项的值为31a q ,下面我们来证明341a a q =,否则,由数列的单调性可知341a a q <,在性质②中,取4n =,则24k k k k l la a a a a a a ==>,从而4k <, 与前面类似的可知则存在{}{}(),1,2,3k l k l ⊆>,满足24k la a a =, 若3k =,2l =,则:2341k la a a q a ==,与假设矛盾; 若3k =,1l =,则:243411k la a a q a q a ==>,与假设矛盾;若2k =,1l =,则:22413k la a a q a a ===,与数列的单调性矛盾; 即不存在满足题意的正整数k ,l ,可见341a a q <不成立,从而341a a q =,同理可得:451a a q =,561,a a q =,从而数列{}n a 为等比数列,同理,当数列中的项数均为负数时亦可证得数列为等比数列.由推理过程易知数列中的项要么恒正要么恒负,不会同时出现正数和负数.从而题中的结论得证,数列{}n a 为等比数列.【考点】数列的综合运用,等比数列的证明,数列性质的应用,数学归纳法与推理方法、不等式的性质的综合运用【考查能力】转化能力和推理能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京高考压轴卷数学一、 选择题(本大题共10小题. 每小题45分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设复数z 满足13iz z +=,则||z =( )A .1010B .5 C .5 D .102.设集合{}1,0,1,2,3A =-,2{|20},B x x x =->则()R A B =I ð( ) A .{}1,3-B .{}0,1,2C .{}1,2,3D .{}0,1,2,33.已知定义域为R 的奇函数()f x 满足(2)()f x f x +=,且当01x ≤≤时,3()f x x =,则52f ⎛⎫-= ⎪⎝⎭( ) A .278-B .18-C .18D .2784.函数()21cos 1xf x x e ⎛⎫=-⎪+⎝⎭图象的大致形状是( ) A . B .C .D .5.已知坐标原点到直线l 的距离为2,且直线l 与圆()()223449x y -+-=相切,则满足条件的直线l 有( )条 A .1B .2C .3D .46.函数()sin(2)6f x x π=+的单调递增区间是( )A .()2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ B .(),,2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦ C .(),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .(),,2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦7.某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .20B .10C .30D .608.已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF 的斜率为( ) A .43-B .1-C .34-D .12-9.已知1a =r ,则“()a a b ⊥+rr r ”是“1a b ⋅=-r r ”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件10.已知随机变量ξ的分布列,则下列说法正确的是( )A .存在x ,y ∈(0,1),E (ξ)>12B .对任意x ,y ∈(0,1),E (ξ)≤14C .对任意x ,y ∈(0,1),D (ξ)≤E (ξ) D .存在x ,y ∈(0,1),D (ξ)>14二.填空题(本大题共5小题.每小题5分,共25分) 11.已知曲线()212f x x x =+的一条切线的斜率是3,则该切点的横坐标为____________.12.函数2cos 2sin y x x =-的最小正周期等于_____.13.在△ABC 中,若30B =o ,23AB =2AC =,求△ABC 的面积 14.已知{a n }是各项均为正数的等比数列,a 1=1,a 3=100,则{a n }的通项公式a n =_____;设数列{lga n }的前n 项和为T n ,则T n =_____.15.已知函数,下列命题正确的有_______.(写出所有正确命题的编号)①是奇函数;②在上是单调递增函数;③方程有且仅有1个实数根;④如果对任意,都有,那么的最大值为2.注:本题给的结论中,有多个符合题目要求,全部选对得5分,不选或有选错得0分,其他得3分.三、解答题(本大题共6小题,共85分.解答题应写出文字说明、证明过程或演算步骤)16.已知函数()log k f x x =(k 为常数,0k >且1k ≠).(1)在下列条件中选择一个________使数列{}n a 是等比数列,说明理由; ①数列(){}n f a 是首项为2,公比为2的等比数列; ②数列(){}n f a 是首项为4,公差为2的等差数列;③数列(){}n f a 是首项为2,公差为2的等差数列的前n 项和构成的数列.(2)在(1)的条件下,当2k =时,设12241+=-n n n a b n ,求数列{}n b 的前n 项和n T .17.在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面四边形ABCD 为直角梯形,//AD BC ,AD AB ⊥,2PA AD ==,1AB BC ==,Q 为PD 中点.(1)求证:PD BQ ⊥;(2)求异面直线PC 与BQ 所成角的余弦值. 18.已知函数()()22ln R f x a x x ax a =-+∈.(Ⅰ)求函数()f x 的单调区间; (Ⅱ)当0a >时,若()f x 在()1,e 上有零点,求实数a 的取值范围.19.自由购是通过自助结算方式购物的一种形式. 某大型超市为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下:(Ⅰ)现随机抽取 1 名顾客,试估计该顾客年龄在[)30,50且未使用自由购的概率; (Ⅱ)从被抽取的年龄在[]50,70使用自由购的顾客中,随机抽取3人进一步了解情况,用X 表示这3人中年龄在[)50,60的人数,求随机变量X 的分布列及数学期望; (Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋. 20.已知椭圆22:24C x y += (1)求椭圆C 的标准方程和离心率;(2)是否存在过点()0,3P 的直线l 与椭圆C 相交于A ,B 两点,且满足2PB PA =u u u r u u u r.若存在,求出直线l 的方程;若不存在,请说明理由.21.对于n ∈N *(n ≥2),定义一个如下数阵:111212122212n n nnn n nn a a a a a a A a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭L L L L L L L,其中对任意的1≤i ≤n ,1≤j ≤n ,当i 能整除j 时,a ij =1;当i 不能整除j 时,a ij =0.设()121nij j j nj i t j a a a a ===+++∑L .(Ⅰ)当n =6时,试写出数阵A 66并计算()61j t j =∑; (Ⅱ)若[x ]表示不超过x 的最大整数,求证:()11 nnj i n t j i ==⎡⎤=⎢⎥⎣⎦∑∑;(Ⅲ)若()()11 n j f n t j n ==∑,()11ng n dx x =⎰,求证:g (n )﹣1<f (n )<g (n )+1.KS5U2020北京高考压轴卷数学Word 版含解析参考答案1.【KS5U 答案】A【KS5U 解析】13iz z +=,1131313101010i z i i +===+-,||z =. 故选:A.2.【KS5U 答案】B【KS5U 解析】由220x x ->,得0x <或2x >,即{|0B x x =<或2}x >,={|02}R B x x ∴≤≤ð,又{}1,0,1,2,3A =-Q()={0,1,2}R A B ∴I ð.故选:B.3.【KS5U 答案】B【KS5U 解析】由()f x 满足(2)()f x f x +=, 所以函数的周期2T=,又因为函数()f x 为奇函数,且当01x ≤≤时,3()f x x =,所以51112228f f f ⎛⎫⎛⎫⎛⎫-=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:B4.【KS5U 答案】B【KS5U 解析】()21e 1cos cos 1e 1e x x x f x x x -⎛⎫=-= ⎪++⎝⎭,()1e cos()1e x xf x x ----=-=+e 1cos e 1x x x -+ ()f x =-,故()f x 为奇函数,排除选项A 、C ;又1e(1)cos101ef -=<+,排除D ,选B.故选:B.5.【KS5U答案】A【KS5U解析】显然直线l有斜率,设l:y kx b=+,则22 1b k=+,即()2241b k=+,①又直线l与圆相切,23471k bk-+∴=+,②联立①②,34k=-,52b=-,所以直线l的方程为3542y x=--.故选:A6.【KS5U答案】C【KS5U解析】令222262k x kπππππ-+≤+≤+因此36k x kππππ-≤≤+故函数()sin(2)6f x xπ=+的单调递增区间是(),,36k k k Zππππ⎡⎤-+∈⎢⎥⎣⎦故选:C7.【KS5U答案】B【KS5U解析】由三视图可得几何体直观图如下图所示:可知三棱锥高:4h=;底面面积:1155322S=⨯⨯=∴三棱锥体积:1115410332V Sh==⨯⨯=本题正确选项:B 8.【KS5U 答案】C【KS5U 解析】试题分析:由已知得,抛物线22y px =的准线方程为2px =-,且过点(2,3)A -,故22p -=-,则4p =,(2,0)F ,则直线AF 的斜率303224k -==---,选C . 9.【KS5U 答案】C【KS5U 解析】由()a a b ⊥+r r r ,则2()00⋅+=⇒+⋅=r rr r r r a a b a a b又1a =r,所以1a b ⋅=-r r若1a b ⋅=-r r ,且1a =r ,所以20+⋅=r r r a a b ,则()a a b ⊥+r r r所以“()a a b ⊥+r r r”是“1a b ⋅=-r r”的充要条件 故选:C10.【KS5U 答案】C【KS5U 解析】 依题意可得()2E xy ξ=,()()()()()()()222222222212121212D x xy y y xy x y x y x y x y x x y yxξ⎡⎤=-+-=-+-=-+-⎣⎦因为1x y +=所以()21222x y xy +≤=即()12E ξ≤故A ,B 错误;()()()()()()222221121212D x x x y yx x x y yx x yx ξ⎡⎤∴=-+-=-+=-⎣⎦01x <<Q1211x ∴-<-<()20211x ∴<-< ()D yx ξ∴<即()()12D E ξξ<,故C 成立; ()()()2211244x y D x yx xy ξ+=-<≤=Q 故D 错误故选:C11.【KS5U 答案】2【KS5U 解析】 由于()212f x x x =+,则()1f x x '=+, 由导数的几何意义可知,曲线的切线斜率即对应的函数在切点处的导数值, 曲线21()2f x x x =+的一条切线斜率是3, 令导数()13f x x '=+=,可得2x =, 所以切点的横坐标为2. 故答案为:2. 12.【KS5U 答案】π【KS5U 解析】因为函数21cos 231cos 2sin cos 2cos 2222x y x x x x -=-=-=- 故最小正周期等于π. 故答案为:π13.【KS5U答案】【KS5U 解析】在ABC V 中,设BC x =,由余弦定理可得241230x =+-o ,2680x x -+=,2x ∴=,或4x =.当2x =时,ABC V的面积为111222AB BC sinB x ⋅⋅=⨯⋅= 当4x =时,ABC V的面积为111222AB BC sinB x ⋅⋅=⨯⋅=,14.【KS5U 答案】10n ﹣1()12n n -【KS5U 解析】设等比数列{a n }的公比为q ,由题知q >0. ∵a 1=1,a 3=100, ∴q ==10, ∴a n =10n ﹣1;∵lga n =lg 10n ﹣1=n ﹣1,∴T n ()12n n -=.故答案为:(1). 10n ﹣1 (2).()12n n -15.【KS5U 答案】①②④【KS5U 解析】根据题意,依次分析四个命题: 对于①中,,定义域是,且是奇函数,所以是正确的; 对于②中,若,则,所以的递增,所以是正确的;对于③中,,令, 令可得,,即方程有一根,,则方程有一根之间,所以是错误的; 对于④中,如果对于任意,都有,即恒成立,令,且,若恒成立,则必有恒成立, 若,即恒成立,而,若有,所以是正确的,综上可得①②④正确.16.【KS5U 答案】(1)②,理由见解析;(2)21n nT n =+ 【KS5U 解析】(1)①③不能使{}n a 成等比数列.②可以:由题意()4(1)222n f a n n =+-⨯=+, 即log 22k n a n =+,得22n n a k+=,且410a k =≠,2(1)22122n n n n a k k a k++++∴==. Q 常数0k >且1k ≠,2k ∴为非零常数,∴数列{}n a 是以4k 为首项,2k 为公比的等比数列.(2)由(1)知()14222n k n a k kk -+=⋅=,所以当k =12n n a +=.因为12241+=-n n n a b n , 所以2141n b n =-,所以1111(21)(21)22121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,12111111L 1L 23352121n n T b b b n n ⎛⎫=+++=-+-++- ⎪-+⎝⎭11122121n n n ⎛⎫=-= ⎪++⎝⎭. 17.【KS5U 答案】(1)详见解析;(2)3. 【KS5U 解析】(1)由题意在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面四边形ABCD 为直角梯形,AD AB ⊥,以A 为原点,分别以AB ,AD ,AP 为x 轴,y 轴,z 轴,建立空间直角坐标系, 则()0,0,0A ,()1,0,0B ,()1,1,0C ,()0,2,0D,()002P ,,.因为Q 为PD 中点,所以()0,1,1Q ,所以()0,2,2PD =-u u u r ,()1,1,1BQ =-u u u r ,所以()()0,2,21,1,10PD BQ ⋅=-⋅-=u u u r u u u r,所以PD BQ ⊥.(2)由(1)得()1,1,2PC =-u u u r ,()()1,1,21,1,12PC BQ ⋅=-⋅-=-u u u r u u u r,PC =u u u r,BQ =u u u r,3PC BQ COS PC BQ PC BQ⋅==u u u r u u u ru u u r u u u r ,所以PC 与BQ.18.【KS5U 答案】(Ⅰ)见解析(Ⅱ))1e 1,2⎛⎫⎪ ⎪⎝⎭【KS5U 解析】(Ⅰ)函数()f x 的定义域为()0,+∞,()()()2222a x a x a ax x f x x x-++='-=.由()0f x '=得x a =或2a x =-. 当0a =时,()0f x '<在()0,+∞上恒成立,所以()f x 的单调递减区间是()0,+∞,没有单调递增区间. 当0a >时,()(),,x f x f x '的变化情况如下表:所以()f x 的单调递增区间是()0,a ,单调递减区间是(),a +∞. 当0a <时,()(),,x f x f x '的变化情况如下表:所以()f x 的单调递增区间是0,2a ⎛⎫-⎪⎝⎭,单调递减区间是,2a ⎛⎫-+∞ ⎪⎝⎭.(Ⅱ)当0a >时,()f x 的单调递增区间是()0,a ,单调递减区间是(),a +∞. 所以()f x 在()1,e 上有零点的必要条件是()0f a ≥, 即2ln 0a a ≥,所以1a ≥. 而()11f a =-,所以()10f ≥.若1a =,()f x 在()1,e 上是减函数,()10f =,()f x 在()1,e 上没有零点. 若1a >,()10f >,()f x 在()1,a 上是增函数,在(),a +∞上是减函数,所以()f x 在()1,e 上有零点等价于()e 01e f a ⎧<⎨<<⎩,即22e e 01e a a a ⎧-+<⎨<<⎩,解得)1e 12a <<.综上所述,实数a的取值范围是)1e 1,2⎛⎫⎪ ⎪⎝⎭. 19.【KS5U 答案】17100;(Ⅱ)详见解析;(Ⅲ)2200 【KS5U 解析】(Ⅰ)在随机抽取的100名顾客中,年龄在[30,50)且未使用自由购的共有3+14=17人, 所以,随机抽取1名顾客,估计该顾客年龄在[30,50)且未使用自由购的概率为17100P =. (Ⅱ)X 所有的可能取值为1,2,3,()124236C C 115C P X ===, ()214236C C 325C P X ===, ()304236C C 135C P X ===. 所以X 的分布列为所以X 的数学期望为1311232555EX =⨯+⨯+⨯=. (Ⅲ)在随机抽取的100名顾客中,使用自由购的共有3121764244+++++=人, 所以该超市当天至少应准备环保购物袋的个数估计为4450002200100⨯=. 20.【KS5U 答案】(1)22142x y +=,2e =;(2)存在,7x =0或7x﹣【KS5U 解析】(1)由22142x y +=,得2,a b ==,进而c ==,2c e a ==; (2)假设存在过点P (0,3)的直线l 与椭圆C 相交于A ,B 两点,且满足2PB PA =u u u r u u u r, 可设直线l 的方程为x =m (y ﹣3),联立椭圆方程x 2+2y 2=4,可得(2+m 2)y 2﹣6m 2y +9m 2﹣4=0,△=36m 4﹣4(2+m 2)(9m 2﹣4)>0,即m 2<47, 设A (x 1,y 1),B (x 2,y 2),可得y 1+y 2=2262m m +,y 1y 2=22942m m-+,① 由2PB PA =u u u r u u u r,可得(x 2,y 2﹣3)=2(x 1,y 1﹣3),即y 2﹣3=2(y 1﹣3),即y 2=2y 1﹣3,②将②代入①可得3y 1﹣3=2262m m +,y 1(2y 1﹣3)=22942m m-+, 消去y 1,可得22232m m ++•22322m m -+=22942m m -+,解得m 2=2747<,所以7m =±, 故存在这样的直线l ,且方程为7xy=0或7x﹣0.21.【KS5U 答案】(Ⅰ)66111111010101001001000100000010000001A ⎛⎫⎪⎪ ⎪=⎪ ⎪ ⎪⎪⎪⎝⎭,()6114j t j ==∑.(Ⅱ)见解析(Ⅲ)见解析【KS5U 解析】(Ⅰ)依题意可得,66111111010101001001000100000010000001A ⎛⎫⎪⎪⎪= ⎪ ⎪ ⎪⎪⎪⎝⎭,()61 12232414j t j ==+++++=∑.(Ⅱ)由题意可知,t (j )是数阵A nn 的第j 列的和,可得()1nj t j =∑是数阵A nn 所有数的和.而数阵A nn 所有数的和也可以考虑按行相加.对任意的1≤i ≤n ,不超过n 的倍数有1i ,2i ,…,n i i ⎡⎤⎢⎥⎣⎦.得数阵A nn 的第i 行中有n i ⎡⎤⎢⎥⎣⎦个1,其余是0,即第i 行的和为n i⎡⎤⎢⎥⎣⎦.从而得到结果.(Ⅲ)由[x ]的定义可知,1n n n i i i ⎡⎤-≤⎢⎥⎣⎦<,得111 n nn i i i n n nn i i i===⎡⎤-≤⎢⎥⎣⎦∑∑∑<.进而()1111 1?nni i f n i i ==-≤∑∑<.再考查定积分11 n dx x ⎰,根据曲边梯形的面积的计算即可证得结论. 【详解】(Ⅰ)依题意可得,66111111010101001001000100000010000001A ⎛⎫⎪⎪ ⎪=⎪ ⎪ ⎪⎪⎪⎝⎭.()6112232414j t j ==+++++=∑. (Ⅱ)由题意可知,t (j )是数阵A nn 的第j 列的和,因此()1nj t j =∑是数阵A nn 所有数的和.而数阵A nn 所有数的和也可以考虑按行相加.对任意的1≤i ≤n ,不超过n 的倍数有1i ,2i ,…,n i i⎡⎤⎢⎥⎣⎦.因此数阵A nn 的第i 行中有n i ⎡⎤⎢⎥⎣⎦个1,其余是0,即第i 行的和为n i⎡⎤⎢⎥⎣⎦.所以()11 n nj i n t j i ==⎡⎤=⎢⎥⎣⎦∑∑. (Ⅲ)证明:由[x ]的定义可知,1n n ni i i⎡⎤-≤⎢⎥⎣⎦<, 所以111 nn n i i i n n nn i i i ===⎡⎤-≤⎢⎥⎣⎦∑∑∑<.所以()1111 1?n ni i f n i i ==-≤∑∑<.考查定积分11 ndx x ⎰,将区间[1,n ]分成n ﹣1等分,则11n dx x ⎰的不足近似值为21 ni i =∑,11 n dxx ⎰的过剩近似值为111 n i i -=∑. 所以1211111n n n i i dx i x i -==∑∑⎰<<. 所以11 1ni i =-∑<g (n )11ni i=∑<.所以g (n )﹣1()11111?nni i f n i i==-≤∑∑<<<g (n )+1.所以g (n )﹣1<f (n )<g (n )+1.。

相关文档
最新文档