高中数学 第一章 空间几何体章末检测试题 新人教A版必修2
高中数学必修二测试题及答案人教版
第一章 空间几何体一、选择题1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).主视图 左视图 俯视图 (第1题) A .棱台 B .棱锥 C .棱柱 D .正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).A .2+2B .221+C .22+2 D .2+13.棱长都是1的三棱锥的表面积为( ).A .3B .23C .33D .434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).A .25πB .50πC .125πD .都不对 5.正方体的棱长和外接球的半径之比为( ). A .3∶1 B .3∶2 C .2∶3 D .3∶36.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ).A .29πB .27πC .25πD .23π7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ).A .29 B .5 C .6 D .2159.下列关于用斜二测画法画直观图的说法中,错误..的是( ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C .水平放置的矩形的直观图是平行四边形D .水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是( ).(第8题)(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.(第14题)15.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm 和40 cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第19题)20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第一章 空间几何体参考答案A 组一、选择题 1.A解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台.2.A解析:原图形为一直角梯形,其面积S =21(1+2+1)×2=2+2.3.A解析:因为四个面是全等的正三角形,则S 表面=4×43=3. 4.B解析:长方体的对角线是球的直径, l =2225+4+3=52,2R =52,R =225,S =4πR 2=50π. 5.C解析:正方体的对角线是外接球的直径. 6.D解析:V =V 大-V 小=31πr 2(1+1.5-1)=23π.7.D解析:设底面边长是a ,底面的两条对角线分别为l 1,l 2,而21l =152-52,22l =92-52,而21l +22l =4a 2,即152-52+92-52=4a 2,a =8,S 侧面=4×8×5=160. 8.D解析:过点E ,F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,V =2×31×43×3×2+21×3×2×23=215.9.B解析:斜二测画法的规则中,已知图形中平行于 x 轴的线段,在直观图中保持原长度不变;平行于 y 轴的线段,长度为原来的一半.平行于 z 轴的线段的平行性和长度都不变.10.D解析:从三视图看底面为圆,且为组合体,所以选D. 二、填空题11.参考答案:5,4,3.解析:符合条件的几何体分别是:三棱柱,三棱锥,三棱台.12.参考答案:1∶22∶33.r 1∶r 2∶r 3=1∶2∶3,31r ∶32r ∶33r =13∶(2)3∶(3)3=1∶22∶33.13.参考答案:361a .解析:画出正方体,平面AB 1D 1与对角线A 1C 的交点是对角线的三等分点, 三棱锥O -AB 1D 1的高h =33a ,V =31Sh =31×43×2a 2×33a =61a 3. 另法:三棱锥O -AB 1D 1也可以看成三棱锥A -OB 1D 1,它的高为AO ,等腰三角形OB 1D 1为底面.14.参考答案:平行四边形或线段.15.参考答案:6,6.解析:设ab =2,bc =3,ac =6,则V = abc =6,c =3,a =2,b =1, l =1+2+3=6. 16.参考答案:12.解析:V =Sh =πr 2h =34πR 3,R =32764×=12. 三、解答题 17.参考答案:V =31(S +S S ′+S )h ,h =S S S S V ′+′+3=6001+4002+60030001903×=75.18.参考答案:如图是过正方体对角面作的截面.设半球的半径为R ,正方体的棱长为a ,则CC'=a ,OC =22a ,OC'=R .(第18题)在Rt △C'CO 中,由勾股定理,得CC' 2+OC 2=OC' 2,即 a 2+(22a )2=R 2. ∴R =26a ,∴V 半球=26πa 3,V 正方体=a 3. ∴V 半球 ∶V 正方体=6π∶2. 19.参考答案:S 表面=S 下底面+S 台侧面+S 锥侧面=π×52+π×(2+5)×5+π×2×22 =(60+42)π. V =V 台-V 锥 =31π(21r +r 1r 2+22r )h -31πr 2h 1 =3148π.20.解:(1) 参考答案:如果按方案一,仓库的底面直径变成16 m ,则仓库的体积V 1=31Sh =31×π×(216)2×4=3256π(m 3).如果按方案二,仓库的高变成8 m ,则仓库的体积COAV 2=31Sh =31×π×(212)2×8=3288π(m 3).(2) 参考答案:如果按方案一,仓库的底面直径变成16 m ,半径为8 m . 棱锥的母线长为l =224+8=45, 仓库的表面积S 1=π×8×45=325π(m 2). 如果按方案二,仓库的高变成8 m .棱锥的母线长为l =226+8=10,仓库的表面积S 2=π×6×10=60π(m 2).(3) 参考答案:∵V 2>V 1,S 2<S 1,∴方案二比方案一更加经济些.。
人教A版高中数学必修2第一章 空间几何体1.1 空间几何体的结构习题
1.1空间几何体的结构一.判断正误(1)在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;()(2)圆锥顶点与底面圆周上任意一点的线段是圆锥的母线;(对)(3)在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;()(4)圆柱的任意两条母线所在的直线是互相平行的.(对)(5)棱垂直于底面的棱柱是直棱柱(对)(6)底面是正多边形的棱柱是正棱柱(7)棱柱的侧面都是平行四边形.(对)(8)有两个面平行,其余各面都是平行四边形的几何体叫棱柱(9)有一个面是多边形,其余各面都是三角形的几何体叫棱锥(10)由五个面围成的多面体一定是四棱锥(11)棱台各侧棱的延长线交于一点(对)(12)棱柱的侧棱都相等,侧面都是全等的平行四边形;(13)存在每个面都是直角三角形的四面体;(对)(14)棱台的侧棱延长后交于一点.(对)(15)棱柱的侧面可以是三角形(16)正方体和长方体都是特殊的四棱柱(对)(17)棱柱的各条棱都相等(18)所有的几何体的表面都展成平面图形(19)有两个平面互相平行,其余各面都是四边形的多面体一定是棱柱;(20)有一个面是多边形,其余各面都是三角形的多面体一定是棱锥;(21)用一个面去截棱锥,底面与截面之间的部分叫棱台;(22)侧面都是长方形的棱柱叫长方体.(23)多面体至少有四个面(对)(24)有两个侧面是矩形的棱柱是直棱柱;(25)各侧面都是正方形的棱柱一定是正棱柱;(26)一个三棱锥四个面可以都为直角三角形.(对)(27)有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱(对)(28)直角三角形的一边为轴旋转一周所得的旋转体是圆锥;(29)以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;(30)一个平面截圆锥,得到一个圆锥和一个圆台.(31)两底面互相平行,其余各面都是梯形,侧棱延长线交于一点的几何体是棱台(对)(32)如图,在透明塑料制成的长方体ABCD﹣A1B1C1D1容器内装进一些水,将容器底面一边BC固定于底面上,再将容器倾斜,随着倾斜度的不同,有下列三个说法:①水的形状始终是棱柱形状;②水面形成的四边形EFGH的面积不改变;③当E∈AA1时,AE+BF是定值.其中正确说法是.(写出所以正确说法的序号)【答案】①③(33)若正棱锥底面边长与侧棱长相等,则该棱锥一定不是()A.三棱锥B.四棱锥C.五棱锥D.六棱锥【答案】D二.多面体和旋转体表面上的最短距离问题1.已知侧棱长为2的正三棱锥S﹣ABC如图所示,其侧面是顶角为20°的等腰三角形,一只蚂蚁从点A出发,围绕棱锥侧面爬行两周后又回到点A,则蚂蚁爬行的最短路程为.【答案】2.如图所示,在三棱柱ABC ﹣A 1B 1C 1中,AA 1⊥底面A 1B 1C 1,底面为直角三角形,∠ACB=90°,AC=2,BC=1,CC 1=,P 是BC 1上一动点,则A 1P+PC 的最小值是 .【答案】3.如图:已知正三棱锥P ﹣ABC ,侧棱PA ,PB ,PC 的长为2,且∠APB=30°,E ,F 分别是侧棱PC ,PA 上的动点,则△BEF 的周长的最小值为( )【答案】C .224.如图,直三棱柱111C B A ABC -中,1=AB ,2=BC ,5=AC ,31=AA ,M 为线段1BB 上的一动点,则当1MC AM +最小时,△1AMC 的面积为______。
人教A版高中数学必修第一册 章末质量检测(二)
(2)由题意可得x +2y =(x +2y)⎝ ⎛⎭⎪⎫1x +9y =19+2y x +9x y ≥19+22y x ·9x y =19+62,当且仅当2y x =9xy,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2.21.(12分)如图,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成. (1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大? (2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?解析:(1)设每间虎笼长为x m,宽为y m,则由条件,知4x +6y =36,即2x +3y =18. 设每间虎笼的面积为S,则S =xy.方法一 由于2x +3y≥22x×3y=26xy, ∴26xy ≤18,得xy≤272,即S≤272.当且仅当2x =3y 时等号成立.由⎩⎪⎨⎪⎧2x =3y ,2x +3y =18,解得⎩⎪⎨⎪⎧x =4.5y =3.故每间虎笼长为4.5 m,宽为3 m 时,可使面积最大. 方法二 由2x +3y =18,得x =9-32y.∵x>0,∴0<y<6.S =xy =⎝ ⎛⎭⎪⎫9-32y y =32(6-y)y.∵0<y<6,∴6-y>0.∴S≤32⎣⎢⎡⎦⎥⎤(6-y )+y 22=272.当且仅当6-y =y,即y =3时,等号成立,此时x =4.5. 故每间虎笼长4.5 m,宽3 m 时,可使面积最大. (2)由条件知S =xy =24. 设钢筋网总长为l,则l =4x +6y.方法一 ∵2x+3y≥22x·3y=26xy =24,∴l=4x +6y =2(2x +3y)≥48,当且仅当2x =3y 时,等号成立.由⎩⎪⎨⎪⎧2x =3y ,xy =24,解得⎩⎪⎨⎪⎧x =6,y =4.故每间虎笼长6 m,宽4 m 时,可使钢筋网总长最小.。
高中数学 人教A版 必修2 第一章 空间几何体 高考复习习题(选择题201-300)含答案解析
A. B. C.50πD.200π
14.在菱形 中, ,将 沿 折起到 的位置,若二面角 的大小为 ,则三棱锥 的外接球的体积为()
A. B. C. D.
15.已知球的直径 , 是该球球面上的两点, , ,则棱锥 的体积为()
高中数学人教A版必修2第一章空间几何体高考复习习题(选择题201-300)含答案解析
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()
A. +1B. +3
11.在三棱锥 中,底面 是边长为2的正三角形,顶点 在底面 上的射影为 的中心,若 为 的中点,且直线 与底面 所成角的正切值为 ,则三棱锥 外接球的表面积为()
A. B. C. D.
12.已知三棱锥 的每个顶点都在球 的表面上, 底面 ,且二面角 的正切值为4,则球 的表面积为
A. B. C. D.
A. B. C. D.
5.中国古代名词“刍童”原来是草堆的意思,古代用它作为长方体棱台(上、下底面均为矩形额棱台)的专用术语,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上表,下表从之,亦倍小表,上表从之,各以其广乘之,并,以高若深乘之,皆六面一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一,以此算法,现有上下底面为相似矩形的棱台,相似比为 ,高为3,且上底面的周长为6,则该棱台的体积的最大值是()
新教材 人教A版高中数学选择性必修第一册全册各章节课后练习题 含解析
选择性必修第一册全册课后练习题本文档还有大量公式,在网页中显示可能会出现位置错误的情况,下载后均可正常显示,请放心下载练习!第一章空间向量与立体几何................................................................................................ - 2 -1.1.1空间向量及其线性运算......................................................................................... - 2 -1.1.2空间向量的数量积运算......................................................................................... - 8 -1.2空间向量基本定理.................................................................................................. - 15 -1.3.1空间直角坐标系 .................................................................................................. - 22 -1.3.2空间运算的坐标表示........................................................................................... - 28 -1.4.1.1空间向量与平行关系 ....................................................................................... - 34 -1.4.1.2空间向量与垂直关系 ....................................................................................... - 42 -1.4.2用空量研究距离、夹角问题............................................................................... - 51 -章末测验 ....................................................................................................................... - 64 - 第二章直线和圆的方程...................................................................................................... - 78 -2.1.1倾斜角与斜率 ...................................................................................................... - 78 -2.1.2两条直线平行和垂直的判定............................................................................... - 83 -2.2.1直线的点斜式方程............................................................................................... - 87 -2.2.2直线的两点式方程............................................................................................... - 92 -2.2.3直线的一般式方程............................................................................................... - 97 -2.3.1两条直线的交点坐标......................................................................................... - 102 -2.3.2两点间的距离公式............................................................................................. - 102 -2.3.3点到直线的距离公式......................................................................................... - 107 -2.3.4两条平行直线间的距离..................................................................................... - 107 -2.4.1圆的标准方程 .................................................................................................... - 113 -2.4.2圆的一般方程 .................................................................................................... - 118 -2.5.1直线与圆的位置关系......................................................................................... - 122 -2.5.2圆与圆的位置关系............................................................................................. - 128 -章末测验 ..................................................................................................................... - 135 - 第三章圆锥曲线的方程.................................................................................................... - 144 -3.1.1椭圆及其标准方程............................................................................................. - 144 -3.1.2.1椭圆的简单几何性质 ..................................................................................... - 150 -3.1.2.2椭圆的标准方程及性质的应用...................................................................... - 156 -3.2.1双曲线及其标准方程......................................................................................... - 164 -3.2.2双曲线的简单几何性质..................................................................................... - 171 -3.3.1抛物线及其标准方程......................................................................................... - 178 -3.3.2抛物线的简单几何性质..................................................................................... - 184 -章末测验 ..................................................................................................................... - 191 - 模块综合测验 ..................................................................................................................... - 202 -第一章 空间向量与立体几何1.1.1空间向量及其线性运算一、选择题1.空间任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于( ) A .DB → B .AC → C .AB → D .BA → D [DA →+CD →-CB →=DA →+BD →=BA →.]2.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( )A .平行四边形B .空间四边形C .等腰梯形D .矩形A [∵AO →+OB →=DO →+OC →,∴AB →=DC →. ∴AB →∥DC →且|AB →|=|DC →|. ∴四边形ABCD 为平行四边形.]3.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A ,B ,C 一定共面的是( )A .OM →=OA →+OB →+OC → B .OM →=2OA →-OB →-OC → C .OM →=OA →+12OB →+13OC →D .OM →=13OA →+13OB →+13OC → D [由OM →=13OA →+13OB →+13OC →,可得3OM →=OA →+OB →+OC →⇒OM →-OA →+OM →-OB →+OM →-OC →=0, 即AM →=-BM →-CM →.所以AM →与BM →,CM →在一个平面上,即点M 与点A ,B ,C 一定共面.] 4.若空间中任意四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则( )A .P ∈AB B .P ∉ABC .点P 可能在直线AB 上D .以上都不对A [因为m +n =1,所以m =1-n , 所以OP →=(1-n )OA →+nOB →, 即OP →-OA →=n (OB →-OA →), 即AP →=nAB →,所以AP →与AB →共线. 又AP →,AB →有公共起点A ,所以P ,A ,B 三点在同一直线上, 即P ∈AB .]5.已知在长方体ABCD -A 1B 1C 1D 1中,点E 是A 1C 1的中点, 点F 是AE 的三等分点,且AF =12EF ,则AF →=( )A .AA 1→+12AB →+12AD → B .12AA 1→+12AB →+12AD →C .12AA 1→+16AB →+16AD → D .13AA 1→+16AB →+16AD →D [如图所示,AF →=13AE →,AE →=AA 1→+A 1E →,A 1E →=12A 1C 1→,A 1C 1→=A 1B 1→+A 1D 1→,A 1B 1→=AB →,A 1D 1→=AD →,所以AF →=13⎝ ⎛⎭⎪⎫AA 1→+12A 1C 1→=13AA 1→+16AB →+16AD →,故选D.]二、填空题6.已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若由OM →=-2OA →+OB →+λOC →确定的点M 与A ,B ,C 共面,则λ=________.2 [由M 、A 、B 、C 四点共面知:-2+1+λ=1,即λ=2.]7.在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,用a ,b ,c 表示D 1M →,则D 1M →=________.12a -12b +c [D 1M →=D 1D →+DM → =A 1A →+12(DA →+DC →) =c +12(-A 1D 1→+A 1B 1→) =12a -12b +c .]8.在空间四边形ABCD 中,E ,F 分别是AB ,CD 的中点,则EF →和AD →+BC →的关系是________.(填“平行”,“相等”或“相反”)平行 [设G 是AC 的中点,则EF →=EG →+GF →=12BC →+12AD →=12(AD →+BC →) 所以2EF →=AD →+BC →, 从而EF →∥(AD →+BC →).] 三、解答题9.如图,在空间四边形ABCD 中,G 为△BCD 的重心,E ,F 分别为边CD 和AD 的中点,试化简AG →+13BE →-12AC →,并在图中标出化简结果的向量.[解] ∵G 是△BCD 的重心,BE 是CD 边上的中线,∴GE →=13BE →.又12AC →=12(DC →-DA →)=12DC →-12DA →=DE →-DF →=FE →, ∴AG →+13BE →-12AC →=AG →+GE →-FE →=AF →(如图所示).10.在长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,点N 在AC 上,且AN ∶NC =2∶1,求证:A 1N →与A 1B →,A 1M →共面.[证明] ∵A 1B →=AB →-AA 1→, A 1M →=A 1D 1→+D 1M →=AD →-12AA 1→, AN →=23AC →=23(AB →+AD →), ∴A 1N →=AN →-AA 1→ =23(AB →+AD →)-AA 1→=23(AB →-AA 1→)+23(AD →-12AA 1→) =23A 1B →+23A 1M →, ∴A 1N →与A 1B →,A 1M →共面.11.(多选题)若A ,B ,C ,D 为空间不同的四点,则下列各式为零向量的是( ) A .AB →+2BC →+2CD →+DC → B .2AB →+2BC →+3CD →+3DA →+AC →C.AB →+CA →+BD →D.AB →-CB →+CD →-AD →BD [A 中,AB →+2BC →+2CD →+DC →=AB →+2BD →+DC →=AB →+BD →+BD →+DC →=AD →+BC →;B 中,2AB →+2BC →+3CD →+3DA →+AC →=2AC →+3CA →+AC →=0;C 中,AB →+CA →+BD →=AD →+CA →;D 中,AB →-CB →+CD →-AD →=AB →+BC →+CD →+DA →表示A →B →C →D →A 恰好形成一个回路,结果必为0.]12.(多选题)有下列命题,其中真命题的有( ) A .若AB →∥CD →,则A ,B ,C ,D 四点共线 B .若AB →∥AC →,则A ,B ,C 三点共线C .若e 1,e 2为不共线的非零向量,a =4e 1-25e 2,b =-e 1+110e 2,则a ∥b D .若向量e 1,e 2,e 3是三个不共面的向量,且满足等式k 1e 1+k 2e 2+k 3e 3=0,则k 1=k 2=k 3=0BCD [根据共线向量的定义,若AB →∥CD →,则AB ∥CD 或A ,B ,C ,D 四点共线,故A 错;因为AB →∥AC →且AB →,AC →有公共点A ,所以B 正确;由于a =4e 1-25e 2=-4-e 1+110e 2=-4b ,所以a ∥b ,故C 正确;易知D 也正确.]13.(一题两空)已知A ,B ,C 三点共线,则对空间任一点O ,若OA →=2OB →+μOC →,则μ=________;存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.-1 0 [由A 、B 、C 三点共线,∴2+μ=1,∴μ=-1,又由λOA →+mOB →+nOC →=0得OA →=-m λOB →-n λOC →由A ,B ,C 三点共线知-m λ-nλ=1,则λ+m +n =0.]14.设e 1,e 2是平面上不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,则实数k 为________.-8 [因为BD →=CD →-CB →=e 1-4e 2,AB →=2e 1+k e 2,又A ,B ,D 三点共线,由共线向量定理得12=-4k ,所以k =-8.]15.如图所示,已知四边形ABCD 是平行四边形,点P 是ABCD 所在平面外的一点,连接P A ,PB ,PC ,PD .设点E ,F ,G ,H 分别为△P AB ,△PBC ,△PCD ,△PDA 的重心.(1)试用向量方法证明E ,F ,G ,H 四点共面;(2)试判断平面EFGH 与平面ABCD 的位置关系,并用向量方法证明你的判断. [证明] (1)分别连接PE ,PF ,PG ,PH 并延长,交对边于点M ,N ,Q ,R ,连接MN ,NQ ,QR ,RM ,∵E ,F ,G ,H 分别是所在三角形的重心,∴M ,N ,Q ,R 是所在边的中点,且PE →=23PM →,PF →=23PN →,PG →=23PQ →,PH →=23PR →.由题意知四边形MNQR 是平行四边形,∴MQ →=MN →+MR →=(PN →-PM →)+(PR →-PM →)=32(PF →-PE →)+32(PH →-PE →)=32(EF →+EH →).又MQ →=PQ →-PM →=32PG →-32PE →=32EG →.∴EG →=EF →+EH →,由共面向量定理知,E ,F ,G ,H 四点共面.(2)平行.证明如下:由(1)得MQ →=32EG →,∴MQ →∥EG →, ∴EG →∥平面ABCD .又MN →=PN →-PM →=32PF →-32PE → =32EF →,∴MN →∥EF →. 即EF ∥平面ABCD . 又∵EG ∩EF =E ,∴平面EFGH 与平面ABCD 平行1.1.2空间向量的数量积运算一、选择题1.已知a ⊥b ,|a |=2,|b |=3,且(3a +2b )⊥(λa -b ),则λ等于( ) A .32 B .-32 C .±32 D .1A [∵a ⊥b ,∴a ·b =0,∵3a +2b ⊥λa -b ,∴(3a +2b )·(λa -b )=0, 即3λa 2+(2λ-3)a ·b -2b 2=0,∴12λ-18=0,解得λ=32.]2.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A .a 2B .12a 2C .14a 2D .34a 2C [AE →·AF →=12(AB →+AC →)·12AD →=14(AB →·AD →+AC →·AD →)=14⎝ ⎛⎭⎪⎫a ×a ×12+a ×a ×12=14a 2.]3.已知长方体ABCD -A 1B 1C 1D 1,则下列向量的数量积一定不为0的是( ) A .AD 1→·B 1C →B .BD 1→·AC →C .AB →·AD 1→ D .BD 1→·BC →D [对于选项A ,当四边形ADD 1A 1为正方形时,可得AD 1⊥A 1D ,而A 1D ∥B 1C ,可得AD 1⊥B 1C ,此时有AD 1→·B 1C →=0;对于选项B ,当四边形ABCD 为正方形时,AC ⊥BD ,易得AC ⊥平面BB 1D 1D ,故有AC ⊥BD 1,此时有BD 1→·AC →=0;对于选项C ,由长方体的性质,可得AB ⊥平面ADD 1A 1,可得AB ⊥AD 1,此时必有AB →·AD 1→=0;对于选项D ,由长方体的性质,可得BC ⊥平面CDD 1C 1,可得BC ⊥CD 1,△BCD 1为直角三角形,∠BCD 1为直角,故BC 与BD 1不可能垂直,即BD 1→·BC →≠0.故选D.]4.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,向量BA 1→与向量AC →所成的角为( )A .60°B .150°C .90°D .120°D [BA 1→=BA →+AA 1→,|BA 1→|=2a ,AC →=A B →+AD →,|AC →|=2a .∴BA 1→·AC →=BA →·AB →+BA →·AD →+AA 1→·AB →+AA 1→·AD →=-a 2. ∴cos 〈BA 1→,AC →〉=-a 22a ·2a =-12.∴〈BA 1→,AC →〉=120°.]5.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,AB =1,AD =2,AA ′=3,∠BAD =90°,∠BAA ′=∠DAA ′=60°,则AC ′的长为( )A .13B .23C .33D .43B [∵AC ′→=AB →+BC →+CC ′→,∴AC ′→2=(AB →+BC →+CC ′→)2=AB →2+BC →2+CC ′→2+2(AB →·BC →+AB →·CC ′→+BC →·CC ′→) =12+22+32+2(0+1×3cos 60°+2×3cos 60°) =14+2×92=23,∴|AC ′→|=23,即AC ′的长为23.] 二、填空题6.已知a ,b 是空间两个向量,若|a |=2,|b |=2,|a -b |=7,则cos 〈a ,b 〉=________.18[将|a -b |=7两边平方,得(a -b )2=7. 因为|a |=2,|b |=2,所以a ·b =12.又a ·b =|a ||b |cos 〈a ,b 〉,故cos 〈a ,b 〉=18.]7.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a ,b 所成的角是________.60° [AB →=AC →+CD →+DB →,∴CD →·AB →=CD →·(AC →+CD →+DB →)=|CD →|2=1, ∴cos 〈CD →,AB →〉=CD →·AB →|CD →||AB →|=12,∴异面直线a ,b 所成角是60°.]8.已知|a |=2,|b |=1,〈a ,b 〉=60°,则使向量a +λb 与λa -2b 的夹角为钝角的实数λ的取值范围是________.(-1-3,-1+3) [由题意知 ⎩⎨⎧(a +λb )·(λa -2b )<0,cos 〈a +λb ,λa -2b 〉≠-1. 即⎩⎨⎧(a +λb )·(λa -2b )<0,(a +λb )·(λa -2b )≠-|a +λb ||λa -2b |,得λ2+2λ-2<0.∴-1-3<λ<-1+ 3.] 三、解答题9.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB →=a ,AD →=b ,AP →=c .(1)试用a ,b ,c 表示出向量BM →; (2)求BM 的长.[解] (1)∵M 是PC 的中点,∴BM →=12(BC →+BP →)=12[AD →+(AP →-AB →)] =12[b +(c -a )]=-12a +12b +12c .(2)由于AB =AD =1,P A =2,∴|a |=|b |=1,|c |=2,由于AB ⊥AD ,∠P AB =∠P AD =60°,∴a·b =0,a·c =b·c =2·1·cos 60°=1, 由于BM →=12(-a +b +c ),|BM →|2=14(-a +b +c )2=14[a 2+b 2+c 2+2(-a·b -a·c +b·c )]=14[12+12+22+2(0-1+1)]=32.∴|BM →|=62,∴BM 的长为62.10.如图,已知直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. [解] (1)证明:设CA →=a ,CB →=b ,CC ′→=c , 根据题意得|a |=|b |=|c |,且a·b =b·c =c·a =0. ∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=⎝ ⎛⎭⎪⎫b +12c ·⎝ ⎛⎭⎪⎫-c +12b -12a =-12c 2+12b 2=0, ∴CE →⊥A ′D →,即CE ⊥A ′D .(2)∵AC ′→=-a +c ,∴|AC ′→|=2|a |,|CE →|=52|a |, ∵AC ′→·CE →=(-a +c )·⎝ ⎛⎭⎪⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22×52|a |2=1010.∴异面直线CE 与AC ′所成角的余弦值为1010.11.(多选题)在正方体ABCD -A 1B 1C 1D 1中,下列命题正确的有( ) A .(AA 1→+AD →+AB →)2=3AB →2 B .A 1C →·(A 1B 1→-A 1A →)=0 C .AD 1→与A 1B →的夹角为60° D .正方体的体积为|AB →·AA 1→·AD →|AB [如图,(AA 1→+AD →+AB →)2=(AA 1→+A 1D 1→+D 1C 1→)2=AC 1→2=3AB →2;A 1C →·(A 1B 1→-A 1A →)=A 1C →·AB 1→=0;AD 1→与A 1B →的夹角是D 1C →与D 1A →夹角的补角,而D 1C →与D 1A →的夹角为60°,故AD 1→与A 1B →的夹角为120°;正方体的体积为|AB →||AA 1→||AD →|.故选AB.]12.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,若E 是底面正方形A 1B 1C 1D 1的中心, 则AC 1→与CE →( )A .重合B .平行但不重合C .垂直D .无法确定C [AC 1→=AB →+AD →+AA 1→,CE →=CC 1→+C 1E →=AA 1→-12(AB →+AD →),于是AC 1→·CE →=(AB →+AD →+AA 1→)·⎣⎢⎡⎦⎥⎤AA 1-12(AB →+AD →)=AB →·AA 1→-12AB →2-12AB →·AD →+AD →·AA 1→-12AD →·AB →-12AD →2+AA 1→2-12AA 1→·AB →-12AA 1→·AD →=0-12-0+0-0-12+1-0-0=0,故AC 1→⊥CE →.]13.(一题两空)如图,在长方体ABCD -A 1B 1C 1D 1中,设AD =AA 1=1,AB =2,P 是C 1D 1的中点,则B 1C →·A 1P →=________,B 1C →与A 1P →所成角的大小为________.1 60° [法一:连接A 1D ,则∠P A 1D 就是B 1C →与A 1P →所成角.连接PD ,在△P A 1D 中,易得P A 1=DA 1=PD =2,即△P A 1D 为等边三角形,从而∠P A 1D =60°,即B 1C →与A 1P →所成角的大小为60°.因此B 1C →·A 1P →=2×2×cos 60°=1.法二:根据向量的线性运算可得B 1C →·A 1P →=(A 1A →+AD →)·⎝⎛⎭⎪⎫AD →+12AB →=AD →2=1. 由题意可得P A 1=B 1C =2,则2×2×cos 〈B 1C →,A 1P →〉=1,从而〈B 1C →,A 1P →〉=60°.]14.已知在正四面体D -ABC 中,所有棱长都为1,△ABC 的重心为G ,则DG 的长为________.63 [如图,连接AG 并延长交BC 于点M ,连接DM ,∵G 是△ABC 的重心,∴AG =23AM ,∴AG →=23AM →,DG →=DA →+AG →=DA →+23AM →=DA →+23(DM →-DA →)=DA →+23⎣⎢⎡⎦⎥⎤12(DB →+DC →)-DA →=13(DA →+DB →+DC →),而(DA →+DB →+DC →)2=DA →2+DB →2+DC →2+2DA →·DB →+2DB →·DC →+2DC →·DA →=1+1+1+2(cos 60°+cos 60°+cos 60°)=6,∴|DG →|=63.]15.如图,正四面体V -ABC 的高VD 的中点为O ,VC 的中点为M .(1)求证:AO ,BO ,CO 两两垂直;(2)求〈DM →,AO →〉.[解] (1)证明:设VA →=a ,VB →=b ,VC →=c ,正四面体的棱长为1, 则VD →=13(a +b +c ),AO →=16(b +c -5a ), BO →=16(a +c -5b ),CO →=16(a +b -5c ),所以AO →·BO →=136(b +c -5a )·(a +c -5b )=136(18a ·b -9|a |2)=136(18×1×1×cos 60°-9)=0,所以AO →⊥BO →,即AO ⊥BO .同理,AO ⊥CO ,BO ⊥CO . 所以AO ,BO ,CO 两两垂直.(2)DM →=DV →+VM →=-13(a +b +c )+12c =16(-2a -2b +c ),所以|DM →|=⎣⎢⎡⎦⎥⎤16(-2a -2b +c )2=12. 又|AO →|=⎣⎢⎡⎦⎥⎤16(b +c -5a )2=22,DM →·AO →=16(-2a -2b +c )·16(b +c -5a )=14, 所以cos 〈DM →,AO →〉=1412×22=22. 又〈DM →,AO →〉∈[0,π], 所以〈DM →,AO →〉=π4.1.2空间向量基本定理一、选择题1.若向量{a ,b ,c }是空间的一个基底,则一定可以与向量p =2a +b ,q =2a-b 构成空间的另一个基底的向量是( )A .aB .bC .cD .a +bC [由p =2a +b ,q =2a -b 得a =14p +14q ,所以a 、p 、q 共面,故a 、p 、q 不能构成空间的一个基底,排除A ;因为b =12p -12q ,所以b 、p 、q 共面,故b 、p 、q 不能构成空间的一个基底,排除B ;因为a +b =34p -14q ,所以a +b 、p 、q 共面,故a +b 、p 、q 不能构成空间的一个基底,排除D.]2.在平行六面体ABCD -A 1B 1C 1D 1中,M 是上底面对角线AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →可表示为( )A .12a +12b +cB .12a -12b +cC .-12a -12b +cD .-12a +12b +cD [由于B 1M →=B 1B →+BM →=B 1B →+12(BA →+BC →) =-12a +12b +c ,故选D.]3.若向量MA →,MB →,MC →的起点M 与终点A ,B ,C 互不重合,且点M ,A ,B ,C 中无三点共线,满足下列关系(O 是空间任一点),则能使向量MA →,MB →,MC →成为空间一个基底的关系是( )A .OM →=13OA →+13OB →+13OC → B .MA →≠MB →+MC → C .OM →=OA →+OB →+OC →D .MA →=2MB →-MC →C [若MA →,MB →,MC →为空间一组基向量,则M ,A ,B ,C 四点不共面.选项A 中,因为13+13+13=1,所以点M ,A ,B ,C 共面;选项B 中,MA →≠MB →+MC →,但可能存在实数λ,μ使得MA →=λMB →+μMC →,所以点M ,A ,B ,C 可能共面;选项D 中,四点M ,A ,B ,C 显然共面.故选C.]4.空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM →=2MA →,N 为BC 中点,则MN →为( )A .12a -23b +12cB .-23a +12b +12cC .12a +12b -23cD .23a +23b -12cB [MN →=MA →+AB →+BN →=13OA →+OB →-OA →+12(OC →-OB →)=-23OA →+12OB →+12OC →=-23a +12b +12c .]5.平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( )A .5B .6C .4D .8A [在平行六面体ABCD -A 1B 1C 1D 1中有,AC 1→=AB →+AD →+CC 1→=AB →+AD →+AA 1→所以有|AC 1→|=|AB →+AD →+AA 1→|,于是有|AC 1→|2=|AB →+AD →+AA 1→|2=|AB →|2+|AD →|2+|AA 1→|2+2|AB →|·|AD →|·cos 60°+2|AB →|·|AA 1→|·cos 60°+2|AD →||AA 1→|·cos 60°=25,所以|AC 1→|=5.]二、填空题6.在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.(用a ,b ,c 表示)12a +14b +14c [因为在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,所以OE →=12(OA →+OD →)=12OA →+12OD →=12a +12×12(OB →+OC →)=12a +14(b +c )=12a +14b +14c .]7.已知{a ,b ,c }是空间的一个单位正交基底,{a +b ,a -b ,c }是空间的另一个基底,若向量m 在基底{a ,b ,c }下表示为m =3a +5b +9c ,则m 在基底{a +b ,a -b,3c }下可表示为________.4(a +b )-(a -b )+3(3c ) [由题意知,m =3a +5b +9c ,设m =x (a +b )+y (a -b )+z (3c )则有⎩⎨⎧ x +y =3x -y =53z =9,解得⎩⎨⎧x =4y =-1z =3.则m 在基底{a +b ,a -b,3c }可表示为m =4(a +b )-(a -b )+3(3c ).] 8.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,P A →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.23a -13b +23c [因为BG =2GD ,所以BG →=23BD →. 又BD →=BA →+BC →=P A →-PB →+PC →-PB →=a +c -2b , 所以PG →=PB →+BG →=b +23(a +c -2b ) =23a -13b +23c .] 三、解答题9.如图所示,正方体OABC -O ′A ′B ′C ′,且OA →=a ,OC →=b ,OO ′→=c .(1)用a ,b ,c 表示向量OB ′→,AC ′→;(2)设G ,H 分别是侧面BB ′C ′C 和O ′A ′B ′C ′的中心,用a ,b ,c 表示GH →.[解] (1)OB ′→=OB →+BB ′→=OA →+OC →+OO ′→=a +b +c . AC ′→=AC →+CC ′→=AB →+AO →+AA ′→=OC →+OO ′→-OA →=b +c -a . (2)法一:连接OG ,OH (图略), 则GH →=GO →+OH →=-OG →+OH → =-12(OB ′→+OC →)+12(OB ′→+OO ′→) =-12(a +b +c +b )+12(a +b +c +c ) =12(c -b ).法二:连接O ′C (图略),则GH →=12CO ′→=12(OO ′→-OC →) =12(c -b ).10.如图,在平行六面体ABCD -A 1B 1C 1D 1中,MA →=-13AC →,ND →=13A 1D →,设AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示MN →.[解] 连接AN ,则MN →=MA →+AN →.由已知可得四边形ABCD 是平行四边形,从而可得 AC →=AB →+AD →=a +b , MA →=-13AC →=-13(a +b ), 又A 1D →=AD →-AA 1→=b -c ,故AN →=AD →+DN →=AD →-ND →=AD →-13A 1D →=b -13(b -c ), 所以MN →=MA →+AN → =-13(a +b )+b -13(b -c ) =13(-a +b +c ).11.(多选题)已知a ,b ,c 是不共面的三个向量,则下列向量组中,不能构成一个基底的一组向量是( )A .2a ,a -b ,a +2bB .2b ,b -a ,b +2aC .a,2b ,b -cD .c ,a +c ,a -cABD [对于A ,因为2a =43(a -b )+23(a +2b ),得2a 、a -b 、a +2b 三个向量共面,故它们不能构成一个基底;对于B ,因为2b =43(b -a )+23(b +2a ),得2b 、b -a 、b +2a 三个向量共面,故它们不能构成一个基底;对于C ,因为找不到实数λ、μ,使a =λ·2b +μ(b -c )成立,故a 、2b 、b -c 三个向量不共面,它们能构成一个基底;对于D ,因为c =12(a +c )-12(a -c ),得c 、a +c 、a -c 三个向量共面,故它们不能构成一个基底,故选ABD.]12.(多选题)给出下列命题,正确命题的有( )A .若{a ,b ,c }可以作为空间的一个基底,d 与c 共线,d ≠0,则{a ,b ,d }也可以作为空间的一个基底B .已知向量a ∥b ,则a ,b 与任何向量都不能构成空间的一个基底C .A ,B ,M ,N 是空间四点,若BA →,BM →,BN →不能构成空间的一个基底,则A ,B ,M ,N 四点共面D .已知{a ,b ,c }是空间的一个基底,若m =a +c ,则{a ,b ,m }也是空间的一个基底ABCD [根据基底的概念,知空间中任何三个不共面的向量都可作为空间的一个基底.显然B 正确.C 中由BA →,BM →,BN →不能构成空间的一个基底,知BA →,BM →,BN →共面.又BA →,BM →,BN →过相同点B ,知A ,B ,M ,N 四点共面.所以C 正确.下面证明AD 正确:A 假设d 与a ,b 共面,则存在实数λ,μ,使得d =λa +μb ,∵d 与c 共线,c ≠0,∴存在实数k ,使得d =k c .∵d ≠0,∴k ≠0,从而c =λk a +μk b ,∴c 与a ,b 共面,与条件矛盾,∴d 与a ,b 不共面.同理可证D 也是正确的.于是ABCD 四个命题都正确,故选ABCD.]13.(一题两空)已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 共线,则x =________,y =________.1 -1 [因为m 与n 共线, 所以存在实数λ,使m =λn ,即a -b +c =λx a +λy b +λc ,于是有⎩⎨⎧1=λx ,-1=λy ,1=λ,解得⎩⎨⎧x =1,y =-1.]14.(一题多空)已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.1 2 22 [由题意可令b =x 0e 1+y 0e 2+e 3,其中|e 3|=1,e 3⊥e i ,i =1,2.由b ·e 1=2得x 0+y 02=2,由b ·e 2=52得x 02+y 0=52,解得x 0=1,y 0=2,∴|b |=(e 1+2e 2+e 3)2=2 2.]15.在平行六面体ABCD -A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,E ,F 分别是AD 1,BD 的中点.(1)用向量a ,b ,c 表示D 1B →,EF →;(2)若D 1F →=x a +y b +z c ,求实数x ,y ,z 的值. [解] (1)如图,D 1B →=D 1D →+DB →=-AA 1→+AB →-AD →=a -b -c ,EF →=EA →+AF →=12D 1A →+12AC →=-12(AA 1→+AD →)+12(AB →+AD →)=12(a -c ). (2)D 1F →=12(D 1D →+D 1B →)=12(-AA 1→+AB →-AD 1→) =12(-AA 1→+AB →-AD →-DD 1→) =12(a -c -b -c )=12a -12b -c , ∴x =12,y =-12,z =-1.1.3.1空间直角坐标系一、选择题1.空间两点A ,B 的坐标分别为(x ,-y ,z ),(-x ,-y ,-z ),则A ,B 两点的位置关系是( )A .关于x 轴对称B .关于y 轴对称C .关于z 轴对称D .关于原点对称B [纵坐标相同,横坐标和竖坐标互为相反数,故两点关于y 轴对称.] 2.已知A (1,2,-1),B (5,6,7),则直线AB 与平面xOz 交点的坐标是( ) A .(0,1,1) B .(0,1,-3)C .(-1,0,3)D .(-1,0,-5)D [设直线AB 与平面xoz 交点坐标是M (x ,y ,z ),则AM →=(x -1,-2,z +1),AB →=(4,4,8),又AM →与AB →共线,∴AM →=λAB →,即⎩⎨⎧x -1=4λ,-2=4λ,z +1=8λ,解得x =-1,z =-5,∴点M (-1,0,-5).故选D.]3.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |=( ) A .534 B .532 C .532D .132 C [M ⎝ ⎛⎭⎪⎫2,32,3 ,|CM |=4+⎝ ⎛⎭⎪⎫32-12+9=532.] 4.如图,在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的棱长为1,B 1E =14A 1B 1,则BE →等于( )A .⎝ ⎛⎭⎪⎫0,14,-1B .⎝ ⎛⎭⎪⎫-14,0,1C .⎝ ⎛⎭⎪⎫0,-14,1D .⎝ ⎛⎭⎪⎫14,0,-1C [{DA →,DC →,DD 1→}为单位正交向量,BE →=BB 1→+B 1E →=-14DC →+DD 1→,∴BE →=⎝ ⎛⎭⎪⎫0,-14,1.] 5.设{i ,j ,k }是单位正交基底,已知向量p 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则向量p 在基底{i ,j ,k }下的坐标是( )A .(12,14,10)B .(10,12,14)C .(14,12,10)D .(4,3,2)A [依题意,知p =8a +6b +4c =8(i +j )+6(j +k )+4(k +i )=12i +14j +10k ,故向量p 在基底{i ,j ,k }下的坐标是(12,14,10).]二、填空题6.在空间直角坐标系中,已知点P (1,2,3),过点P 作平面yOz 的垂线PQ ,则垂足Q 的坐标为________.(0,2,3) [过P 的垂线PQ ⊥面yOz ,则Q 点横坐标为0,其余不变,故Q (0,2,3).]7.设{e 1,e 2,e 3}是空间向量的一个单位正交基底,a =4e 1-8e 2+3e 3,b =-2e 1-3e 2+7e 3,则a ,b 的坐标分别为________.(4,-8,3),(-2,-3,7) [由题意可知a =(4,-8,3),b =(-2,-3,7).] 8.如图所示,以长方体ABCD -A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若DB 1→的坐标为(4,3,2),则AC 1→的坐标为________.(-4,3,2) [由DB 1→=DA →+DC →+DD 1→,且DB 1→=(4,3,2),∴|DA →|=4,|DC →|=3,|DD 1→|=2,又AC 1→=-DA →+DC →+DD 1→,∴AC 1→=(-4,3,2).]三、解答题9.已知三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,所有的棱长都是1,建立适当的坐标系,并写出各点的坐标.[解] 如图所示,取AC 的中点O 和A 1C 1的中点O 1,可得BO ⊥AC ,OO 1⊥AC ,分别以OB ,OC ,OO 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.∵三棱柱各棱长均为1,∴OA =OC =O 1C 1=O 1A 1=12,OB =32. ∵A ,B ,C 均在坐标轴上,∴A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0.∵点A 1与C 1在yOz 平面内, ∴A 1⎝ ⎛⎭⎪⎫0,-12,1,C 1⎝ ⎛⎭⎪⎫0,12,1.∵点B 1在xOy 平面内的射影为B ,且BB 1=1,∴B 1⎝ ⎛⎭⎪⎫32,0,1,即各点的坐标为A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0,A 1⎝ ⎛⎭⎪⎫0,-12,1,B 1⎝ ⎛⎭⎪⎫32,0,1,C 1⎝ ⎛⎭⎪⎫0,12,1. 10.棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别为棱DD 1,D 1C 1,BC 的中点,以{AB →,AD →,AA 1→}为正交基底,求下列向量的坐标:(1)AE →,AF →,AG →; (2)EF →,EG →,DG →.[解] 在正交基底{AB →,AD →,AA 1→}下,(1)AF →=12AB →+AD →+AA 1→, AE →=AD →+12AA 1→,AG →=AB →+12AD →,∴AE →=⎝ ⎛⎭⎪⎫0,1,12,AF →=⎝ ⎛⎭⎪⎫12,1,1,AG →=⎝ ⎛⎭⎪⎫1,12,0.(2)EF →=AF →-AE →=12AB →+12AA 1→,∴EF →=⎝ ⎛⎭⎪⎫12,0,12;EG →=AG →-AE →=AB →-12AD →-12AA 1→,∴EG →=⎝ ⎛⎭⎪⎫1,-12,-12;DG →=AG →-AD →=AB→-12AD →,∴DG →=⎝ ⎛⎭⎪⎫1,-12,0.11.(多选题)下列各命题正确的是( ) A .点(1,-2,3)关于平面xOz 的对称点为(1,2,3) B .点⎝ ⎛⎭⎪⎫12,1,-3关于y 轴的对称点为⎝ ⎛⎭⎪⎫-12,1,3C .点(2,-1,3)到平面yOz 的距离为1D .设{i ,j ,k }是空间向量的单位正交基底,若m =3i -2j +4k ,则m =(3,-2,4).ABD [“关于谁对称谁不变”,∴A 正确,B 正确,C 中(2,-1,3)到面yOz 的距离为2,∴C 错误.根据空间向量的坐标定义,D 正确.]12.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为正方体内一动点(包括表面),若AP →=xAB →+yAD →+zAA 1→,且0≤x ≤y ≤z ≤1.则点P 所有可能的位置所构成的几何体的体积是( )A .1B .12C .13D .16D [根据向量加法的几何意义和空间向量基本定理,满足0≤x ≤y ≤1的点P 在三棱柱ACD -A 1C 1D 1内;满足0≤y ≤z ≤1的点P 在三棱柱AA 1D 1-BB 1C 1内,故同时满足0≤x ≤y ≤1,0≤y ≤z ≤1的点P 在这两个三棱柱的公共部分(如图),即三棱锥A -A 1C 1D 1,其体积是13×12×1×1×1=16.]13.三棱锥P -ABC 中,∠ABC 为直角,PB ⊥平面ABC ,AB =BC =PB =1,M为PC 的中点,N 为AC 的中点,以{BA →,BC →,BP →}为基底,则MN →的坐标为________.⎝ ⎛⎭⎪⎫12,0,-12 [MN →=BN →-BM → =12(BA →+BC →)-12(BP →+BC →) =12BA →-12BP →, 故MN →=⎝ ⎛⎭⎪⎫12,0,-12.] 14.已知O 是坐标原点,点A (2,0,-2),B (3,1,2),C (2,-1,7). (1)若点P 满足OP →=OA →+OB →+OC →,则点P 的坐标为________; (2)若点P 满足AP →=2AB →-AC →,则点P 的坐标为________.(1)(7,0,7) (2)(4,3,-3) [(1)中OP →=OA →+OB →+OC →=(2i -2k )+(3i +j +2k )+(2i -j +7k )=7i +0j +7k ,∴P (7,0,7).(2)中,AP →=2AB →-AC →得OP →-OA →=2OB →-2OA →-OC →+OA →,∴OP →=2OB →-OC →=2(3i +j +2k )-(2i -j +7k ) =4i +3j -3k ,∴P (4,3,-3).]15.如图,在正四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,O 是AC 与BD 的交点,PO =1,M 是PC 的中点.设AB →=a ,AD →=b ,AP →=c .(1)用向量a ,b ,c 表示BM →.(2)在如图的空间直角坐标系中,求BM →的坐标.[解] (1)∵BM →=BC →+CM →,BC →=AD →,CM →=12CP →,CP →=AP →-AC →,AC →=AB →+AD →,∴BM →=AD →+12(AP →-AC →)=AD →+12AP →-12(AB →+AD →)=-12AB →+12AD →+12AP →=-12a +12b +12c .(2)a =AB →=(1,0,0),b =AD →=(0,1,0).∵A (0,0,0),O ⎝ ⎛⎭⎪⎫12,12,0,P ⎝ ⎛⎭⎪⎫12,12,1,∴c =AP →=OP →-OA →=⎝ ⎛⎭⎪⎫12,12,1,∴BM →=-12a +12b +12c =-12(1,0,0)+12(0,1,0)+12⎝ ⎛⎭⎪⎫12,12,1=⎝ ⎛⎭⎪⎫-14,34,12.1.3.2空间运算的坐标表示一、选择题1.已知三点A (1,5,-2),B (2,4,1),C (a,3,b +2)在同一条直线上,那么( ) A .a =3,b =-3 B .a =6,b =-1 C .a =3,b =2D .a =-2,b =1C [根据题意AB →=(1,-1,3),AC →=(a -1,-2,b +4), ∵AB →与AC →共线,∴AC →=λAB →, ∴(a -1,-2,b +4)=(λ,-λ,3λ),∴⎩⎨⎧a -1=λ,-2=-λ,b +4=3λ,解得⎩⎨⎧a =3,b =2,λ=2.故选C.]2.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( ) A .(0,3,-6) B .(0,6,-20) C .(0,6,-6)D .(6,6,-6)B [由题a =(2,3,-4),b =(-4,-3,-2),设x =(w ,y ,z )则由b =12x -2a ,可得(-4,-3,-2)=12(w ,y ,z )-2(2,3,-4)=⎝ ⎛⎭⎪⎫12w ,12y ,12z-(4,6,-8)=⎝ ⎛⎭⎪⎫12w -4,12y -6,12z +8,解得w =0,y =6,z =-20,即x =(0,6,-20).]3.已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1)D .(-1,0,1)B [不妨设向量为b =(x ,y ,z ),A .若b =(-1,1,0),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. B .若b =(1,-1,0),则cos θ=a ·b |a |·|b |=12×2=12,满足条件. C .若b =(0,-1,1),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. D .若b =(-1,0,1),则cos θ=a ·b |a |·|b |=-22×2=-1≠12,不满足条件.故选B.]4.已知向量a =(-2,x,2),b =(2,1,2),c =(4,-2,1),若a ⊥(b -c ),则x 的值为( )A .-2B .2C .3D .-3A [∵b -c =(-2,3,1),a ·(b -c )=4+3x +2=0,∴x =-2.]5.已知A 、B 、C 三点的坐标分别为A (4,1,3),B (2,-5,1),C (3,7,λ),若AB →⊥AC →,则λ等于( )A .28B .-28C .14D .-14D [AB →=(-2,-6,-2),AC →=(-1,6,λ-3),∵AB →⊥AC →,∴AB →·AC →=-2×(-1)-6×6-2(λ-3)=0,解得λ=-14.] 二、填空题6.已知a =(1,1,0),b =(0,1,1),c =(1,0,1),p =a -b ,q =a +2b -c ,则p ·q =________.-1 [∵p =a -b =(1,0,-1),q =a +2b -c =(0,3,1), ∴p ·q =1×0+0×3+(-1)×1=-1.]7.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB →与CA →的夹角θ的大小是________.120° [AB →=(-2,-1,3),CA →=(-1,3,-2),cos 〈AB →,CA →〉=(-2)×(-1)+(-1)×3+3×(-2)14·14=-12,∴θ=〈AB →,CA →〉=120°.]8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.1 [以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系(图略),设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴B 1E →=(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB →=(1,1,y ),由于AB ⊥B 1E ,若B 1E ⊥平面ABF ,只需FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.] 三、解答题9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求向量a 与向量b 的夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求实数k 的值.[解] (1)∵a =(1,1,0),b =(-1,0,2),∴a·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2,|b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010.(2)法一:∵k a +b =(k -1,k,2),k a -2b =(k +2,k ,-4),且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0,∴k =2或k =-52, ∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52. 法二:由(1)知|a |=2,|b |=5,a·b =-1,∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2=2k 2+k -10=0,得k =2或k =-52. 10.已知正三棱柱ABC -A 1B 1C 1,底面边长AB =2,AB 1⊥BC 1,点O ,O 1分别是边AC ,A 1C 1的中点,建立如图所示的空间直角坐标系.(1)求正三棱柱的侧棱长;(2)求异面直线AB 1与BC 所成角的余弦值. [解] (1)设正三棱柱的侧棱长为h ,由题意得A (0,-1,0),B (3,0,0),C (0,1,0),B 1(3,0,h ),C 1(0,1,h ), 则AB 1→=(3,1,h ),BC 1→=(-3,1,h ), 因为AB 1⊥BC 1,所以AB 1→·BC 1→=-3+1+h 2=0, 所以h = 2.(2)由(1)可知AB 1→=(3,1,2),BC →=(-3,1,0), 所以AB 1→·BC →=-3+1=-2.因为|AB 1→|=6,|BC →|=2,所以cos 〈AB 1→,BC →〉=-226=-66.所以异面直线AB 1与BC 所成角的余弦值为66.11.(多选题)若向量a =(1,2,0),b =(-2,0,1),则下列结论正确的是( )。
人教版A版第一章高二数学选择性必修第一册第一章空间向量与立体几何章末测试(解析版)
人教版A 版第一章高二数学选择性必修第一册第一章空间向量与立体几何章末测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每题只有一个正确的选项,5分/题,共40分)1.(2020·宜昌天问教育集团高二期末)在正四面体P ABC -中,棱长为2,且E 是棱AB 中点,则PE BC ⋅的值为()A .1-B .1C D .73【答案】A 【解析】如图所示由正四面体的性质可得:PA BC ⊥可得:0PA BC ⋅=E 是棱AB 中点()12PE PA PB \=+u u u r u u u r u u u r ()111122cos12012222PE BC PA PB BCPA BC PB BC \+-o u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 故选:A【点睛】本题考查空间向量的线性运算,考查立体几何中的垂直关系,考查转化与化归思想,属于中等题型.2.(2020·宜昌高二期末)已知PA =(2,1,﹣3),PB =(﹣1,2,3),PC =(7,6,λ),若P ,A ,B ,C 四点共面,则λ=()A .9B .﹣9C .﹣3D .3【答案】B【解析】由P ,A ,B ,C 四点共面,可得,,PA PB PC 共面,(2,2,33)(7,6,)xPA yPB x y x y C y P x λ∴=+=-+-+=,272633x y x y x y λ-=⎧⎪+=⎨⎪-+=⎩,解得419x y λ=⎧⎪=⎨⎪=-⎩.故选:B.3.(2020·全国高二课时练习)下列说法正确的是()A .任何三个不共线的向量可构成空间向量的一个基底B .空间的基底有且仅有一个C .两两垂直的三个非零向量可构成空间的一个基底D .基底{}a b c ,,中基向量与基底{}e f g ,,基向量对应相等【答案】C【解析】A 项中应是不共面的三个向量构成空间向量的基底,所以A 错.B 项,空间基底有无数个,所以B 错.D 项中因为基底不唯一,所以D 错.故选C .4.(2020·全国高二课时练习)若直线l 的方向向量为(1,2,3)a =-,平面α的法向量为(3,6,9)n =--,则()A .l α⊂B .//l αC .l α⊥D .l 与α相交【答案】C【解析】∵直线l 的方向向量为()1,2,3a =-,平面α的法向量为()3,6,9n =--,∴13a n =-,∴a n ,∴l α⊥.故选C .5.(2020·河北新华.石家庄二中高一期末)在正方体1111ABCD A B C D -中,M N ,分别为AD ,11C D 的中点,O 为侧面11BCC B 的中心,则异面直线MN 与1OD 所成角的余弦值为()A .16B .14C .16-D .14-【答案】A【解析】如图,以D 为坐标原点,分别以1,,DA DC DD 所在直线为,,x y z 轴建立空间直角坐标系.设正方体的棱长为2,则()()()()1100,012,121,002M N O D ,,,,,,,,,∴()()11,1,2,1,2,1MN OD =-=--.则1111cos ,6MN OD MN OD MN OD ⋅===.∴异面直线MN 与1OD 所成角的余弦值为16,故选A.6.(2020·吉化第一高级中学校)已知正四棱柱1111ABCD A B C D -中,12AA AB =,则CD 与平面1BDC 所成角的正弦值等于()A .23B.3C .23D .13【答案】A【解析】设1AB=11BD BC DC ∴===,1BDC ∆面积为3211C BDC C BCDV V --=131********d d ∴⨯⨯=⨯⨯∴=2sin 3d CD θ∴==7.(2020·延安市第一中学高二月考)在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为()A 3λB .22C .23λD .55【答案】D【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1),1ED =(﹣2,0,1),EF =(0,2,0),EM =(0,λ,1),设平面D 1EF 的法向量n =(x ,y ,z ),则12020n ED x z n EF y ⎧⋅=-+=⎪⎨⋅==⎪⎩,取x =1,得n =(1,0,2),∴点M 到平面D 1EF 的距离为:d =||5||55EM n n ⋅==,N 为EM 中点,所以N 到该面的距离为55故选:D.8.(2019·黑龙江大庆四中高二月考)已知空间直角坐标系O xyz -中,()1,2,3OA =u u u r ,()2,1,2OB =u u u r,()1,1,2OP =uu u r,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为()A .131,,243⎛⎫⎪⎝⎭B .133,,224⎛⎫⎪⎝⎭C .448,,333⎛⎫⎪⎝⎭D .447,,333⎛⎫⎪⎝⎭【答案】C【解析】设(,,)Q x y z ,由点Q 在直线OP 上,可得存在实数λ使得OQ OP λ=,即(,,)(1,1,2)x y z λ=,可得(,,2)Q λλλ,所以(1,2,32),(2,1,22)QA QB λλλλλλ=---=---,则2(1)(2)(2)(1)(32)(22)2(385)QA QB λλλλλλλλ⋅=--+--+--=-+,根据二次函数的性质,可得当43λ=时,取得最小值23-,此时448(,,)333Q .故选:C.二、多选题(每题不止一个正确的选项,5分/题,共20分)9.(2020·河北省盐山中学高一期末)若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则()A .11B E A B⊥B .平面1//B CE 平面1A BDC .三棱锥11C B CE -的体积为83D .三棱锥111C B CD -的外接球的表面积为24π【答案】CD【解析】以1{,,}AB AD AA 为正交基底建立如图所示的空间直角坐标系,则(0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--,1(2,0,4)A B =-,因为1140840B E A B ⋅=-++=≠,所以1B E 与1A B uuu r不垂直,故A 错误;1(0,2,4)CB =-,(2,0,2)CE =-设平面1B CE 的一个法向量为111(,,)n x y z =,则由100n CB n CE ⎧⋅=⎨⋅=⎩,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y =所以(1,2,1)n =,同理可得设平面1A BD 的一个法向量为(2,2,1)m =,故不存在实数λ使得n λm =,故平面1B CE 与平面1A BD 不平行,故B 错误;在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高,所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△,故C 正确;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径2242R ==所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确.故选:CD.10.(2020·福建厦门。
2021-2022学年高中数学 1 空间向量与立体几何章末综合测评新人教A版选择性必修第一册
2021-2022学年高中数学1 空间向量与立体几何章末综合测评新人教A版选择性必修第一册年级:姓名:章末综合测评(一) 空间向量与立体几何(满分:150分 时间:120分钟)一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a =(-3,2,5),b =(1,5,-1),则a ·(a +3b )=( ) A .(0,34,10) B .(-3,19,7) C .44D .23C [a +3b =(-3,2,5)+3(1,5,-1)=(0,17,2),则a ·(a +3b )=(-3,2,5)·(0,17,2)=0+34+10=44.]2.设l 1的方向向量为a =(1,2,-2),l 2的方向向量为b =(-2,3,m ),若l 1⊥l 2,则m 等于( )A .1B .2C .12D .3B [若l 1⊥l 2,则a ⊥b ,∴a ·b =0, ∴1×(-2)+2×3+(-2m )=0,解得m =2.]3.在空间四边形ABCD 中,若向量AB →=(-3,5,2),CD →=(-7,-1,-4),点E ,F 分别为线段BC ,AD 的中点,则EF →的坐标为( )A .(2,3,3)B .(-2,-3,-3)C .(5,-2,1)D .(-5,2,-1)B [取AC 中点M ,连接ME ,MF (图略),则ME →=12AB →=⎝ ⎛⎭⎪⎫-32,52,1,MF →=12CD →=⎝ ⎛⎭⎪⎫-72,-12,-2,所以EF →=MF →-ME →=(-2,-3,-3),故选B .]4.如图所示,在平行六面体ABCD A 1B 1C 1D 1中,点E 为上底面对角线A 1C 1的中点,若BE →=AA 1→+xAB →+yAD →,则( )A .x =-12,y =12B .x =12,y =-12C .x =-12,y =-12D .x =12,y =12A [BE →=BA →+AA 1→+A 1E →=-AB →+AA 1→+12(A 1B 1→+A 1D 1→)=-AB →+AA 1→+12AB →+12AD →=-12AB →+AA 1→+12AD →,∴x =-12,y =12.]5.已知A (2,-5,1),B (2,-4,2),C (1,-4,1),则AB →与AC →的夹角为( ) A .30° B .60° C .45°D .90°B [由题意得AB →=(0,1,1),AC →=(-1,1,0),cos 〈AB →,AC →〉=AB →·AC →|AB →||AC →|=12×2=12,所以AB →与AC →的夹角为60°.] 6.已知二面角αl β的大小为π3,m ,n 为异面直线,且m ⊥α,n ⊥β,则m ,n 所成的角为( )A .π6B .π3C .π2D .2π3B [设m ,n 的方向向量分别为m ,n .由m ⊥α,n ⊥β知m ,n 分别是平面α,β的法向量.∵|cos〈m ,n 〉|=cos π3=12,∴〈m ,n 〉=π3或2π3.但由于两异面直线所成的角的范围为⎝⎛⎦⎥⎤0,π2,故异面直线m ,n 所成的角为π3.]7.如图,在棱长为a 的正方体ABCD A 1B 1C 1D 1中,P 为A 1D 1的中点,Q 为A 1B 1上任意一点,E ,F 为CD 上两个动点,且EF 的长为定值,则点Q 到平面PEF 的距离( )A .等于55a B .和EF 的长度有关 C .等于23a D .和点Q 的位置有关A [取B 1C 1的中点G ,连接PG ,CG ,DP ,则PG ∥CD ,所以点Q 到平面PEF 的距离即点Q 到平面PGCD 的距离,与EF 的长度无关,B 错.又A 1B 1∥平面PGCD ,所以点A 1到平面PGCD 的距离即点Q 到平面PGCD 的距离,即点Q 到平面PEF 的距离,与点Q 的位置无关,D 错.如图,以点D 为原点,建立空间直角坐标系,则C (0,a ,0),D (0,0,0),A 1(a ,0,a ),P ⎝ ⎛⎭⎪⎫a 2,0,a ,∴DC →=(0,a ,0),DA 1→=(a ,0,a ),DP →=⎝ ⎛⎭⎪⎫a 2,0,a , 设n =(x ,y ,z )是平面PGCD 的法向量, 则由⎩⎪⎨⎪⎧n ·DP →=0,n ·DC →=0,得⎩⎪⎨⎪⎧a2x +az =0,ay =0,令z =1,则x =-2,y =0,所以n =(-2,0,1)是平面PGCD 的一个法向量. 设点Q 到平面PEF 的距离为d ,则d =⎪⎪⎪⎪⎪⎪DA 1→·n |n |=⎪⎪⎪⎪⎪⎪-2a +a 5=5a 5,A 对,C 错.故选A .]8.如图所示,ABCD A 1B 1C 1D 1是棱长为6的正方体,E ,F 分别是棱AB ,BC 上的动点,且AE =BF .当A 1,E ,F ,C 1四点共面时,平面A 1DE 与平面C 1DF 所成夹角的余弦值为( )A .22 B .12C .15D .265B [以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,易知当E (6,3,0),F (3,6,0)时,A 1,E ,F ,C 1共面,设平面A 1DE 的法向量为n 1=(a ,b ,c ),依题意得⎩⎪⎨⎪⎧DE →·n 1=6a +3b =0,DA 1→·n 1=6a +6c =0,可取n 1=(-1,2,1),同理可得平面C 1DF 的一个法向量为n 2=(2,-1,1), 故平面A 1DE 与平面C 1DF 的夹角的余弦值为|n 1·n 2||n 1||n 2|=12.故选B .]二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分)9.已知正方体ABCD A 1B 1C 1D 1的中心为O ,则下列结论中正确的有( ) A .OA →+OD →与OB 1→+OC 1→是一对相反向量 B .OB →-OC →与OA 1→-OD 1→是一对相反向量C .OA →+OB →+OC →+OD →与OA 1→+OB 1→+OC 1→+OD 1→是一对相反向量 D .OA 1→-OA →与OC →-OC 1→是一对相反向量ACD [∵O 为正方体的中心,∴OA →=-OC 1→,OD →=-OB 1→,故OA →+OD →=-(OB 1→+OC 1→),同理可得OB →+OC →=-(OA 1→+OD 1→),故OA →+OB →+OC →+OD →=-(OA 1→+OB 1→+OC 1→+OD 1→),∴AC 正确;∵OB →-OC →=CB →,OA 1→-OD 1→=D 1A 1→,∴OB →-OC →与OA 1→-OD 1→是两个相等的向量,∴B 不正确;∵OA 1→-OA →=AA 1→,OC →-OC 1→=C 1C →=-AA 1→,∴OA 1→-OA →=-(OC →-OC 1→),∴D 正确.]10.在以下选项中,不正确的命题有( ) A .|a |-|b |=|a +b |是a ,b 共线的充要条件 B .若a ∥b ,则存在唯一的实数λ,使a =λbC .对空间任意一点O 和不共线的三点A ,B ,C ,若OP →=2OA →-2OB →-OC →,则P ,A ,B ,C 四点共面D .若{a ,b ,c }为空间的一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底ABC [A .|a |-|b |=|a +b |⇒a 与b 共线,但a 与b 共线时|a |-|b |=|a +b |不一定成立,故不正确;B .b 需为非零向量,故不正确;C .因为2-2-1≠1,由共面向量定理知,不正确;D .由基底的定义知正确.]11.下列说法正确的是( )A .直线l 的方向向量a =(1,-1,2),直线m 的方向向量b =⎝ ⎛⎭⎪⎫2,1,-12,则l与m 垂直B .直线l 的方向向量a =(0,1,-1),平面α的法向量n =(1,-1,-1),则l ⊥αC .平面α,β的法向量分别为n 1=(0,1,3),n 2=(1,0,2),则α∥βD .平面α经过三点A (1,0,-1),B (0,1,0),C (-1,2,0),向量n =(1,u ,t )是平面α的法向量,则u +t =1AD [对于A ,∵a =(1,-1,2),b =⎝⎛⎭⎪⎫2,1,-12,∴a ·b =1×2+(-1)×1+2×⎝ ⎛⎭⎪⎫-12=0,∴a ⊥b ,∴直线l 与m 垂直,A 正确.对于B ,∵a =(0,1,-1),n =(1,-1,-1),∴a ·n =0×1+1×(-1)+(-1)×(-1)=0,∴a ⊥n ,∴l ∥α或l ⊂α,B 错误.对于C ,∵n 1=(0,1,3),n 2=(1,0,2),∴n 1与n 2不共线,∴α∥β不成立,C 错误.对于D ,由于A (1,0,-1),B (0,1,0),C (-1,2,0),则AB →=(-1,1,1),BC →=(-1,1,0),又向量n =(1,u ,t )是平面α的法向量,∴⎩⎪⎨⎪⎧n ·AB →=0,n ·BC →=0,即⎩⎨⎧-1+u +t =0,-1+u =0,则u +t =1,D 正确.]12.如图(1)是一副直角三角板的示意图.现将两三角板拼成直二面角,得到四面体ABCD ,如图(2)所示,则下列结论中正确的是( )A .BD →·AC →=0B .平面BCD 的法向量与平面ACD 的法向量垂直C .异面直线BC 与AD 所成的角为60° D .直线DC 与平面ABC 所成的角为30°AD [以B 为坐标原点,分别以BD →,BC →的方向为x 轴,y 轴的正方向建立空间直角坐标系,如图所示.设BD =2,则B (0,0,0),D (2,0,0),C (0,23,0),A (0,3,3),∴BD →=(2,0,0),AC →=(0,3,-3),BC →=(0,23,0),AD →=(2,-3,-3),DC →=(-2,23,0).∴BD →·AC →=(2,0,0)·(0,3,-3)=0,A 正确;易得平面BCD 的一个法向量为n 1=(0,0,3),平面ACD 的一个法向量为n 2=(3,1,1),n 1·n 2≠0,B 错误;|cos 〈BC →,AD →〉|=⎪⎪⎪⎪⎪⎪⎪⎪BC →·AD →|BC →||AD →|=|0,23,0·2,-3,-3|23×10=310≠12,C 错误;易得平面ABC 的一个法向量为BD →=(2,0,0),设直线DC 与平面ABC 所成的角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪DC →·BD →|DC →|·|BD →|=44×2=12,故D 正确.]三、填空题(本题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC ,BP →=(x -1,y ,-3),且BP →⊥平面ABC ,则BP →=________.⎝⎛⎭⎪⎫337,-157,-3 [∵AB →⊥BC →,∴AB →·BC →=0,∴3+5-2z =0,∴z =4. ∵BP →=(x -1,y ,-3),且BP →⊥平面ABC , ∴⎩⎪⎨⎪⎧BP →·AB →=0,BP →·BC →=0,即⎩⎨⎧x -1+5y +6=0,3x -3+y -12=0,解得⎩⎪⎨⎪⎧x =407,y =-157.故BP →=⎝⎛⎭⎪⎫337,-157,-3.] 14.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 共面,则λ=________.657[易知a 与b 不共线,由共面向量定理可知,要使a ,b ,c 共面,则必存在实数x ,y ,使得c =x a +y b ,即⎩⎨⎧2x -y =7,-x +4y =5,3x -2y =λ,解得⎩⎪⎨⎪⎧x =337,y =177,λ=657.]15.已知A (0,0,-x ),B (1,2,2),C (x ,2,2)三点,点M 在平面ABC 内,O 是平面ABC 外一点,且OM →=xOA →+2xOB →+4OC →,则x =________,AB →与AC →的夹角为________.(本题第一空2分,第二空3分)-1π3[由A ,B ,C ,M 四点共面可知x +2x +4=1,∴x =-1. ∴A (0,0,1),C (-1,2,2),∴AB →=(1,2,1),AC →=(-1,2,1), ∴cos〈AB →,AC →〉=AB →·AC →|AB →||AC →|=12,即AB →与AC →的夹角为π3.]16.如图,等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D 的余弦值为33,M ,N 分别是AC ,BC 的中点,则EM ,AN 所成角的余弦值为________.16[如图所示,过点C 作CO ⊥平面ABDE ,垂足为O ,取AB 的中点F ,连接CF ,OF ,OA ,OB ,则∠CFO 为二面角C AB D 的平面角,所以cos∠CFO =33. 设AB =1,则CF =32,OF =12,OC =22,所以O 为正方形ABDE 的中心.如图建立空间直角坐标系,则E ⎝ ⎛⎭⎪⎫0,-22,0,A ⎝ ⎛⎭⎪⎫22,0,0,M ⎝ ⎛⎭⎪⎫24,0,24,N ⎝⎛⎭⎪⎫0,24,24,所以EM →=⎝ ⎛⎭⎪⎫24,22,24,AN →=⎝ ⎛⎭⎪⎫-22,24,24,所以cos 〈EM →,AN →〉=EM →·AN →|EM →||AN →|=16.]四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)若|c |=3,且c ∥BC →,求向量c ; (2)求向量a 与向量b 的夹角的余弦值;(3)若k a +b 与k a -2b 互相垂直,求实数k 的值. [解] (1)∵c ∥BC →,∴存在实数m ,使得c =mBC →=m (-2,-1,2)=(-2m ,-m ,2m ). ∵|c |=3, ∴-2m2+-m2+2m2=3|m |=3,∴m =±1.∴c =(-2,-1,2)或c=(2,1,-2).(2)∵a =(1,1,0),b =(-1,0,2),∴a·b =(1,1,0)·(-1,0,2)=-1.又∵|a |=12+12+02=2,|b |=-12+02+22=5,∴cos 〈a ,b 〉=a·b |a ||b |=-110=-1010, 即向量a 与向量b 的夹角的余弦值为-1010. (3)∵k a +b =(k -1,k ,2),k a -2b =(k +2,k ,-4),∴(k -1,k ,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0,∴k =2或k =-52.∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52.18.(本小题满分12分)如图,在直三棱柱ABC A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.(1)求证:B 1D ⊥平面ABD ; (2)求证:平面EGF ∥平面ABD .[解] 如图,以B 为坐标原点,BA ,BC ,BB 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系Bxyz ,则B (0,0,0),D (0,2,2),B 1(0,0,4).(1)设BA =a ,则A (a ,0,0).所以BA →=(a ,0,0),BD →=(0,2,2),B 1D →=(0,2,-2). 所以B 1D →·BA →=0,B 1D →·BD →=0+4-4=0.所以B 1D ⊥BA ,B 1D ⊥BD . 又BA ∩BD =B , 所以B 1D ⊥平面ABD .(2)由题意及(1),知E (0,0,3),G ⎝ ⎛⎭⎪⎫a 2,1,4,F (0,1,4),所以EG →=⎝ ⎛⎭⎪⎫a2,1,1,EF→=(0,1,1).所以B 1D →·EG →=0+2-2=0,B 1D →·EF →=0+2-2=0. 所以B 1D ⊥EG ,B 1D ⊥EF . 又EG ∩EF =E , 所以B 1D ⊥平面EGF . 由(1),知B 1D ⊥平面ABD , 故平面EGF ∥平面ABD .19.(本小题满分12分)如图,已知四边形ABCD 为矩形,四边形ABEF 为直角梯形,FA ⊥AB ,AD =AF =FE =1,AB =2,AD ⊥BE .(1)求证:BE ⊥DE ;(2)求点F 到平面CBE 的距离.[解] ∵四边形ABCD 为矩形,∴AD ⊥AB , 又AD ⊥BE ,AB ∩BE =B , ∴AD ⊥平面ABEF , 又AD ⊂平面ABCD , ∴平面ABCD ⊥平面ABEF .∵FA ⊥AB ,平面ABCD ∩平面ABEF =AB , ∴FA ⊥平面ABCD .∴FA ⊥AD . (1)证明:如图,建立空间直角坐标系,则B (0,2,0),C (1,2,0),D (1,0,0),E (0,1,1),F (0,0,1), ∴BE →=(0,-1,1),DE →=(-1,1,1), ∴BE →·DE →=0×(-1)+(-1)×1+1×1=0, ∴BE →⊥DE →,∴BE ⊥DE .(2)由(1)得BC →=(1,0,0),BE →=(0,-1,1),FE →=(0,1,0), 设n =(x ,y ,z )是平面CBE 的法向量,则由 ⎩⎪⎨⎪⎧n ·BC →=0,n ·BE →=0,得⎩⎨⎧x =0,-y +z =0,令y =1,得z =1,∴n =(0,1,1)是平面CBE 的一个法向量. 设点F 到平面CBE 的距离为d , 则d =⎪⎪⎪⎪⎪⎪FE →·n |n |=12=22.∴点F 到平面CBE 的距离为22. 20.(本小题满分12分)如图,在直三棱柱A 1B 1C 1ABC 中,AC ⊥AB ,AC =AB =4,AA 1=6,点E ,F 分别为CA 1,AB 的中点.(1)证明:EF ∥平面BCC 1B 1;(2)求B 1F 与平面AEF 所成角的正弦值.[解] (1)证明:如图,连接EC 1,BC 1,因为三棱柱A 1B 1C 1ABC 为直三棱柱,所以E 为AC 1的中点.又因为F 为AB 的中点,所以EF ∥BC 1.又EF ⊄平面BCC 1B 1,BC 1⊂平面BCC 1B 1,所以EF ∥平面BCC 1B 1.(2)以A 1为原点,A 1C 1,A 1B 1,A 1A 所在直线分别为x 、y 、z 轴,建立如图所示的空间直角坐标系A 1xyz ,则A (0,0,6),B 1(0,4,0),E (2,0,3),F (0,2,6), 所以B 1F →=(0,-2,6),AE →=(2,0,-3),AF →=(0,2,0), 设平面AEF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AE →=2x -3z =0,n ·AF →=2y =0,令x =3,得n =(3,0,2),记B 1F 与平面AEF 所成角为θ,则sin θ=|cos 〈B 1F →,n 〉|=|B 1F →·n ||B 1F →|·|n |=313065.21.(本小题满分12分)如图所示的几何体中,BE ⊥BC ,EA ⊥AC ,BC =2,AC =22,∠ACB =45°,AD ∥BC ,BC =2AD .(1)求证:AE ⊥平面ABCD ;(2)若∠ABE =60°,点F 在EC 上,且满足EF =2FC ,求平面FAD 与平面ADC 的夹角的余弦值.[解] (1)证明:在△ABC 中,BC =2,AC =22,∠ACB =45°,由余弦定理可得AB 2=BC 2+AC 2-2×BC ×AC ×cos 45°=4,所以AB =2(负值舍去),因为AC 2=AB 2+BC 2,所以△ABC 是直角三角形,AB ⊥BC . 又BE ⊥BC ,AB ∩BE =B , 所以BC ⊥平面ABE .因为AE ⊂平面ABE ,所以BC ⊥AE , 因为EA ⊥AC ,AC ∩BC =C , 所以AE ⊥平面ABCD .(2)由题易得EB =2AB =4,由(1)知,BC ⊥平面ABE ,所以平面BEC ⊥平面ABE ,如图,以B 为原点,过点B 且垂直于平面BEC 的直线为z 轴,BE ,BC 所在直线分别为x ,y 轴,建立空间直角坐标系Bxyz ,则C (0,2,0),E (4,0,0),A (1,0,3),D (1,1,3),因为EF =2FC ,所以F ⎝ ⎛⎭⎪⎫43,43,0,易知AD →=(0,1,0),AF →=⎝ ⎛⎭⎪⎫13,43,-3,设平面FAD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧AD →·n =0,AF →·n =0,即⎩⎪⎨⎪⎧y =0,13x +43y -3z =0,令z =3,则x =9,所以n =(9,0,3).由(1)知EA ⊥平面ABCD ,所以EA →=(-3,0,3)为平面ABCD 的一个法向量. 设平面FAD 与平面ADC 的夹角为α, 则cos α=|EA →·n ||EA →|·|n |=2423×221=277,所以平面FAD 与平面ADC 的夹角的余弦值为277.22.(本小题满分12分)如图,在四棱锥P ABCD 中,底面ABCD 是边长为2的菱形,∠DAB =60°,∠ADP =90°,平面ADP ⊥平面ABCD ,F 为棱PD 的中点.(1)在棱AB 上是否存在一点E ,使得AF ∥平面PCE ?并说明理由;(2)当二面角D FC B 的余弦值为14时,求直线PB 与平面ABCD 所成的角.[解] (1)在棱AB 上存在点E ,使得AF ∥平面PCE ,且E 为棱AB 的中点. 理由如下:如图,取PC 的中点Q ,连接EQ ,FQ , 由题意得,FQ ∥DC 且FQ =12CD ,因为AE ∥CD 且AE =12CD ,所以AE ∥FQ 且AE =FQ .所以四边形AEQF 为平行四边形. 所以AF ∥EQ .又EQ ⊂平面PCE ,AF ⊄平面PCE ,所以AF ∥平面PCE .(2)连接BD ,DE .由题意知△ABD 为正三角形,所以ED ⊥AB ,即ED ⊥CD , 又∠ADP =90°,所以PD ⊥AD ,且平面ADP ⊥平面ABCD ,平面ADP ∩平面ABCD =AD ,所以PD ⊥平面ABCD ,故以D 为坐标原点建立如图所示的空间直角坐标系,设FD =a ,则由题意知F (0,0,a ),C (0,2,0),B (3,1,0),则FC →=(0,2,-a ),CB →=(3,-1,0), 设平面FBC 的法向量为m =(x ,y ,z ). 则⎩⎪⎨⎪⎧m ·FC →=2y -az =0,m ·CB →=3x -y =0,令x =1,则y =3,z =23a,所以m =⎝⎛⎭⎪⎫1,3,23a ,易知平面DFC 的一个法向量n =(1,0,0), 因为二面角D FC B 的余弦值为14,所以|cos 〈m ,n 〉|=|m·n ||m ||n |=14,即14+12a2=14,解得a =1(负值舍去). 因为PD ⊥平面ABCD ,所以PB 在平面ABCD 内的射影为BD , 所以∠PBD 为直线PB 与平面ABCD 所成的角, 由题意知在Rt△PBD 中,tan∠PBD =PD BD =2FDBD=1,所以∠PBD =45°,所以直线PB 与平面ABCD 所成的角为45°.。
2019_2020学年高中数学第一章空间几何体章末质量检测(含解析)新人教A版必修2
章末质量检测(一) 空间几何体一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( )A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.答案:D2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱共有对角线( )A.20条 B.15条C.12条 D.10条解析:由题意五棱柱对角线一定为上底面的一个顶点和下底面的一个顶点的连线,因为不同在任何侧面内,故从一个顶点出发的对角线有2条,五棱柱共有对角线2×5=10条.答案:D3.关于直观图画法的说法中,不正确的是( )A.原图形中平行于x轴的线段,其对应线段仍平行于x′轴,其长度不变B.原图形中平行于y轴的线段,其对应线段仍平行于y′轴,其长度不变C.画与坐标系xOy对应的坐标系x′O′y′时,∠x′O′y′可画成135°D.作直观图时,由于选轴不同,所画直观图可能不同解析:根据斜二测画法的规则可知B不正确.答案:B4.若圆柱的轴截面是一个正方形,其面积为4S,则它的一个底面面积是( ) A.4S B.4πSC.πS D.2πS解析:由题意知圆柱的母线长为底面圆的直径2R,则2R·2R=4S,得R2=S.所以底面面积为πR2=πS.答案:C5.如果一个正四面体(各个面都是正三角形)的体积为9 cm3,则其表面积为( ) A.18 3 cm2 B.18 cm2C.12 3 cm2 D.12 cm2解析:设正四面体的棱长为a cm,则底面积为34a2 cm2,易求得高为63a cm,则体积为13×34a2×63a=212a3=9,解得a=32,所以其表面积为4×34a2=183(cm2).答案:A6.一个四面体共一个顶点的三条棱两两互相垂直,其长分别为1,6,3,其四面体的四个顶点在一个球面上,则这个球的表面积为( )A.16πB.32π C.36πD.64π解析:将四面体可补形为长方体,此长方体的对角线即为球的直径,而长方体的对角线长为12+62+32=4,即球的半径为2,故这个球的表面积为4πr2=16π.答案:A7.用斜二测画法得到的一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )解析:直观图中的多边形为正方形,对角线的长为2,所以原图形为平行四边形,位于y轴上的对角线的长为2 2.答案:A8.球O 的截面把垂直于截面的直径分成1:3两部分,若截面圆半径为3,则球O 的体积为( )A .16π B.16π3C.32π3D .43π 解析:设直径被分成的两部分分别为r 、3r ,易知(3)2=r ·3r ,得r =1,则球O 的半径R =2,故V =43π·R 3=323π.答案:C9.[2019·湖北省黄冈中学检测]已知某几何体的直观图如图所示,则该几何体的体积是( )A.233+π B.233+2π C .23+π D.23+2π解析:由直观图可知该几何体由一个半圆柱和一个三棱柱组成,故其体积V =12π×12×2+12×2×3×2=π+2 3. 答案:C 10.如图,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=14A 1B 1,则多面体P -BCC 1B 1的体积为( )A.83B.163 C .4 D .5解析:V多面体P-BCC1B1=13S正方形BCC1B1·PB1=13×42×1=163.答案:B11.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥的侧面分成的三部分的面积之比为( )A.1:2:3 B.1:3:5C.1:2:4 D.1:3:9解析:如图,由题意知O1A1O2A2OA=1:2:3,以O1A1,O2A2,OA为半径的圆锥的侧面积之比为1:4:9.故圆锥被截面分成的三部分侧面的面积之比为1:(4-1):(9-4)=1:3:5.答案:B12.已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A.122π B.12πC.82π D.10π解析:过直线O1O2的截面为圆柱的轴截面,设底面半径为r,母线长为l,因为轴截面是面积为8的正方形,所以2r=l=22,所以r=2,所以圆柱的表面积为2πrl+2πr2=8π+4π=12π.答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.正方形ABCD绕对角线AC所在直线旋转一周所得组合体的结构特征是________.解析:由圆锥的定义知是两个同底的圆锥形成的组合体.答案:两个同底的圆锥组合体14.[2019·甘肃省兰州市校级检测]若某空间几何体的直观图如图所示,则该几何体的表面积是________.解析:根据直观图可知该几何体是横着放的直三棱柱,所以S 侧=(1+2+3)×2=2+2+6, S 底=12×1×2=22, 故S 表=2+2+6+2×22=2+22+ 6. 答案:2+22+ 6 15.如图所示,已知正三棱柱ABC -A 1B 1C 1的底面边长为2,高为5,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达A 1点的最短路线的长为________.解析:如图所示,将三棱柱沿AA 1剪开,可得一矩形,其长为6,宽为5,其最短路线为两相等线段之和,其长度等于2⎝ ⎛⎭⎪⎫522+62=13.答案:1316.若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为________.解析:过圆锥的旋转轴作轴截面,得△ABC 及其内切圆⊙O 1和外切圆⊙O 2,且两圆同圆心,即△ABC 的内心与外心重合,易得△ABC 为正三角形,由题意知⊙O 1的半径为r =1,△ABC 的边长为23,于是知圆锥的底面半径为3,高为3.故所求体积为V =13×π×3×3=3π.答案:3π三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图所示是一个长方体截去一个角得到的几何体的直观图(单位:cm).按照给出的数据,求该几何体的体积.解:该几何体的体积V =V 长方体-V 三棱锥=4×4×6-13×⎝ ⎛⎭⎪⎫12×2×2×2=2843(cm 3).18.(12分)如图是由正方形ABCE 和正三角形CDE 所组成的平面图形,试画出其水平放置的直观图.解:(1)以AB 所在的直线为x 轴,AB 的中垂线为y 轴建立直角坐标系,如图(1),再建立坐标系x ′O ′y ′,使两轴的夹角为45°,如图(2).(2)以O ′为中点,在x ′轴上截取A ′B ′=AB ,分别过A ′,B ′作y ′轴的平行线,截取A ′E ′=12AE ,B ′C ′=12BC .在y ′轴上截取O ′D ′=12OD .(3)连接E ′D ′,E ′C ′,C ′D ′,并擦去作为辅助线的坐标轴,就得到所求的直观图,如图(3).19.(12分)如图所示,在多面体FE ABCD 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,求该多面体的体积V .解析:如图所示,分别过A ,B 作EF 的垂线AG ,BH ,垂足分别为G ,H .连接DG ,CH ,容易求得EG =HF =12.所以AG =GD =BH =HC =32, S △AGD =S △BHC =12×22×1=24, V =V E ADG +V F BHC +V AGD BHC=⎝ ⎛⎭⎪⎫13×12×24×2+24×1=23. 20.(12分)用一张相邻边长分别为4 cm,8 cm 的矩形硬纸片卷成圆柱的侧面(接缝处忽略不计),求该圆柱的表面积.解析:有两种不同的卷法,分别如下:(1)如图①所示,以矩形8 cm 长的边为母线,把矩形硬纸片卷成圆柱侧面,此时底面圆的周长为2π·OA =4,则OA =r 1=2π cm ,∴两底面面积之和为8π cm 2,∴S 表=⎝ ⎛⎭⎪⎫32+8π cm 2,即该圆柱的表面积为⎝⎛⎭⎪⎫32+8πcm 2.(2)如图②所示,以矩形4 cm 长的边为母线,把矩形硬纸片卷成圆柱侧面,此时底面圆的周长为2π·OB =8,则OB =r 2=4π cm ,∴两底面面积之和为32π cm 2,∴S 表=⎝ ⎛⎭⎪⎫32+32πcm 2,即该圆柱的表面积为⎝⎛⎭⎪⎫32+32πcm 2.21.(12分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连接A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.求:(1)三棱锥A ′-BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′-BC ′D 的体积.解析:(1)∵ABCD -A ′B ′C ′D ′是正方体, ∴A ′B =A ′C ′=A ′D =BC ′=BD =C ′D =2a ,∴三棱锥A ′-BC ′D 的表面积为4×12×2a ×32×2a =23a 2.而正方体的表面积为6a 2,故三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为23a26a2=33. (2)三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的. 故V 三棱锥A ′-BC ′D =V 正方体-4V 三棱锥A ′-ABD =a 3-4×13×12a 2×a =a33.22.(12分)若圆锥与球的体积相等,且圆锥底面半径与球的直径相等,求圆锥侧面积与球的表面积之比.解析:设圆锥的底面半径为r ,高为h ,母线长为l ,球的半径为R , 则由题意得⎩⎪⎨⎪⎧13πr 2·h =43πR 3r =2R∴13π(2R )2·h =43πR 3,∴R =h ,r =2h , ∴l =r 2+h 2=5h ,∴S 圆锥侧=πrl =π×2h ×5h =25πh 2,S 球=4πR 2=4πh 2,∴S 圆锥侧S 球=25πh 24πh 2=52.。
高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案
描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。
人教A版高中数学选修1章末检测1第一章空间向量与立体几何
第一章章末检测(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在空间直角坐标系中,点P (-2,1,4)关于x 轴的对称点的坐标是( ) A .(-2,-1,-4) B .(-2,1,-4) C .(2,-1,4) D .(2,1,-4)【答案】A【解析】关于x 轴对称的点横坐标相等,纵坐标和竖坐标相反.故选A . 2.已知a =(1,2,-y ),b =(x ,1,2),且(a +2b )∥(2a -b ),则( ) A .x =13,y =1B .x =12,y =-4C .x =2,y =-14D .x =1,y =-1 【答案】B【解析】由题意可得,a +2b =(1+2x ,4,4-y ),2a -b =(2-x ,3,-2y -2).∵(a +2b )∥(2a -b ),∴∃λ∈R ,使a +2b =λ(2a -b ),得⎩⎪⎨⎪⎧1+2x =λ(2-x ),4=3λ,4-y =λ(-2y -2),解得⎩⎪⎨⎪⎧λ=43,x =12,y =-4.故选B . 3.已知空间三点O (0,0,0),A (-1,1,0),B (0,1,1),在直线OA 上有一点H 满足BH ⊥OA ,则点H 的坐标为( )A .(-2,2,0)B .(2,-2,0)C .⎝ ⎛⎭⎪⎫-12,12,0 D .⎝ ⎛⎭⎪⎫12,-12,0【答案】C【解析】由OA →=(-1,1,0),且点H 在直线OA 上,可设H (-λ,λ,0),则BH →=(-λ,λ-1,-1).又因为BH ⊥OA ,所以BH →·OA →=0,即(-λ,λ-1,-1)·(-1,1,0)=0,即λ+λ-1=0,解得λ=12,所以H ⎝ ⎛⎭⎪⎫-12,12,0. 4.在平行六面体ABCD -A 1B 1C 1D 1中,向量AB 1→,AD 1→,BD →是( )A .有相同起点的向量B .等长的向量C .不共面向量D .共面向量【答案】D【解析】因为AD 1→-AB 1→=B 1D 1→=BD →,所以AB 1→,AD 1→,BD →共面.5.已知E ,F 分别是棱长为1的正方体ABCD -A 1B 1C 1D 1的棱BC ,CC 1的中点,则截面AEFD 1与底面ABCD 所成二面角的正弦值是( )A .23B .23C .53D .233【答案】C【解析】以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图,则A (1,0,0),E ⎝ ⎛⎭⎪⎫12,1,0,F ⎝ ⎛⎭⎪⎫0,1,12,D 1(0,0,1),所以AD 1→=(-1,0,1),AE →=⎝ ⎛⎭⎪⎫-12,1,0.设平面AEFD 1的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AD 1→=0,n ·AE →=0,即⎩⎪⎨⎪⎧-x +z =0,-x 2+y =0,所以x =2y =z .取y =1,则n =(2,1,2).而平面ABCD 的一个法向量u =(0,0,1),因为cos 〈n ,u 〉=23,所以sin 〈n ,u 〉=53.6.如图,在平行六面体ABCD -A 1B 1C 1D 1中,点E ,F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1.若EF →=xAB →+yAD →+zAA 1→,则x +y +z =( )A .-1B .0C .13D .1【答案】C【解析】因为EF →=AF →-AE →=AD →+DF →-(AB →+BE →)=AD →+23DD 1→-AB →-13BB 1→=-AB →+AD →+13AA 1→,所以x =-1,y =1,z =13,所以x +y +z =13.7.在以下命题中,不正确的个数为( ) ①|a|-|b|=|a +b|是a ,b 共线的充要条件; ②若a ∥b ,则存在唯一的实数λ,使a =λb ;③对空间任意一点O 和不共线的三点A ,B ,C ,若OP →=2OA →-2OB →-OC →,则P ,A ,B ,C 四点共面;④若{a ,b ,c }为空间的一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底; ⑤|(a ·b )·c|=|a|·|b|·|c|. A .5 B .4 C .3 D .2【答案】B【解析】①|a |-|b |=|a +b |⇒a 与b 的夹角为π,故是充分不必要条件,故不正确;②b 需为非零向量,故不正确;③因为2-2-1≠1,由共面向量定理知,不正确;④由基底的定义知,正确;⑤由向量的数量积的性质知,不正确.8.如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2,则直线PA 与平面DEF 所成角的正弦值为( )A .15B .25C .55D .255【答案】C【解析】如图,建立空间直角坐标系,则A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫12,0,0,E ⎝ ⎛⎭⎪⎫12,12,0,F ⎝ ⎛⎭⎪⎫0,12,1,所以PA →=(0,0,-2),DE →=⎝ ⎛⎭⎪⎫0,12,0,DF→=⎝ ⎛⎭⎪⎫-12,12,1.设n =(x ,y ,z )是平面DEF 的法向量,由⎩⎪⎨⎪⎧n ·DE →=0,n ·DF →=0,得⎩⎪⎨⎪⎧12y =0,-12x +12y +8=0,取x =2,则z =1,y =0,所以n =(2,0,1)是平面DEF 的一个法向量.设直线PA 与平面DEF 所成的角为θ,所以sin θ=|cos 〈PA →,n 〉|=22×5=55.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列各选项中,不正确的是( )A .若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0B .对于非零向量a ,b ,〈a ,b 〉与〈a ,-b 〉相等C .若AB →,CD →共线,则AB ∥CDD .对空间任意一点O 与不共线的三点A ,B ,C ,若OP →=xOA →+yOB →+zOC →(其中x ,y ,z ∈R ),则P ,A ,B ,C 四点共面【答案】BCD【解析】显然A 正确;若a ,b 为非零向量,则〈a ,b 〉与〈a ,-b 〉互补,故B 错误;若AB →,CD →共线,则直线AB ,CD 可能重合,故C 错误;只有当x +y +z =1时,P ,A ,B ,C 四点才共面,故D 错误.10.若A ,B ,C ,D 为空间不同的四点,则下列各式的结果为零向量的是( ) A .AB →+2BC →+2CD →+DC → B .2AB →+2BC →+3CD →+3DA →+AC → C .AB →+CA →+BD → D .AB →-CB →+CD →-AD →【答案】BD【解析】A 中,原式=AB →+2BD →+DC →=AB →+BD →+BD →+DC →=AD →+BC →,不符合题意;B 中,原式=2(AB →+BC →+CD →+DA →)+(AC →+CD →+DA →)=0;C 中,原式=CD →,不符合题意;D 中,原式=(AB →-AD →)+(CD →-CB →)=0.11.已知正方体ABCD -A ′B ′C ′D ′的中心为O ,则在下列各结论中正确的有( )A .OA →+OD →与OB ′→+OC ′→是一对相反向量 B .OB →-OC →与OA ′→-OD ′→是一对相反向量C .OA →+OB →+OC →+OD →与OA ′→+OB ′→+OC ′→+OD ′→是一对相反向量 D .OA ′→-OA →与OC →-OC ′→是一对相反向量 【答案】ACD【解析】如图,A 中,OA →=-OC ′→,OD →=-OB ′→,所以OA →+OD →=-(OB ′→+OC ′→),是一对相反向量;B 中,OB →-OC →=CB →,OA ′→-OD ′→=D ′A ′→,而CB →=D ′A ′→,故不是相反向量;C 中,同A 也是正确的;D 中,OA ′→-OA →=AA ′→,OC →-OC ′→=C ′C →=-AA ′→,是一对相反向量.12.如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,侧面PAD 是边长为26的正三角形,底面ABCD 为矩形,CD =23,点Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC 所成角的余弦值为223C .三棱锥B -ACQ 的体积为6 2D .四棱锥Q -ABCD 外接球的内接正四面体的表面积为24 3 【答案】BD【解析】取AD 的中点O ,BC 的中点E ,连接OE ,OP ,因为三角形PAD 为等边三角形,所以OP ⊥AD .因为平面PAD ⊥平面ABCD ,所以OP ⊥平面ABCD .因为AD ⊥OE ,所以OD ,OE ,OP 两两垂直,如图,以O 为坐标原点,OD ,OE ,OP 所在的直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则O (0,0,0),D (6,0,0),A (-6,0,0),P (0,0,32),C (6,23,0),B (-6,23,0).因为点Q 是PD 的中点,所以Q ⎝⎛⎭⎪⎫62,0,322,平面PAD 的一个法向量m =(0,1,0),QC →=⎝ ⎛⎭⎪⎫62,23,-322,显然m 与QC →不共线,所以CQ 与平面PAD 不垂直,所以A 不正确;PC →=(6,23,-32),AQ →=⎝ ⎛⎭⎪⎫362,0,322,AC →=(26,23,0),设平面AQC 的法向量n=(x ,y ,z ),则⎩⎨⎧n ·AQ →=362x +322z =0,n ·AC →=26x +23y =0,令x =1,则y =-2,z =-3,所以n =(1,-2,-3),设PC 与平面AQC 所成角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪n ·PC→|n ||PC →|=2666=13,所以cos θ=223,所以B 正确;三棱锥B -ACQ 的体积为V B -ACQ =V Q -ABC =13S △ABC ·12OP =13×12×23×26×12×32=6,所以C 不正确;设四棱锥Q -ABCD 外接球的球心为M (0,3,a ),则MQ=MD ,故⎝ ⎛⎭⎪⎫622+(3)2+⎝ ⎛⎭⎪⎫a -3222=()62+()32+a 2,解得a =0,即M (0,3,0)为矩形ABCD 对角线的交点,所以四棱锥Q -ABCD 外接球的半径为3,设四棱锥Q -ABCD 外接球的内接正四面体的棱长为x ,将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为22x ,所以3⎝ ⎛⎭⎪⎫22x 2=62,得x 2=24,所以正四面体的表面积为4×34x 2=243,所以D 正确. 三、填空题:本题共4小题,每小题5分,共20分.13.(2021年潮州模拟)由空间向量a =(1,2,3),b =(1,-1,1)构成向量集合A ={x |x =a +k b ,k ∈Z },则向量x 的模|x |的最小值为________.【答案】13【解析】因为a =(1,2,3),b =(1,-1,1),所以x =a +k b =(1+k ,2-k ,3+k ), 所以|x |=(1+k )2+(2-k )2+(3+k )2=14+4k +3k 2=3⎝ ⎛⎭⎪⎫k +232+383.因为k ∈Z ,所以k =-1时,|x |的值最小,最小值为13.14.下列命题:①已知λ∈R ,则|λa |=λ|a |;②在正方体ABCD -A 1B 1C 1D 1中,BC →=B 1C 1→;③若两个平面的法向量不垂直,则这两个平面一定不垂直. 其中正确的命题的序号是________. 【答案】②③【解析】①|λa |=|λ||a |,故①错误;②正确;③若两个平面垂直,则它们的法向量一定垂直,若两个平面的法向量不垂直,则这两个平面一定不垂直,故③正确.15.如图,设O 为▱ABCD 所在平面外任意一点,E 为OC 的中点,若AE →=12OD →+xOB →+yOA →,则x +y =________.【答案】-1【解析】AE →=OE →-OA →=12OC →-OA →=12(OB →+BC →)-OA →=12(OB →+AD →)-OA →=12(OB →+OD →-OA →)-OA→=-32OA →+12OB →+12OD →,所以x =12,y =-32.所以x +y =-1.16.如图,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 在棱AB 上移动,则直线D 1E 与A 1D 所成角的大小是________;若D 1E ⊥EC ,则AE =________.【答案】90° 1【解析】在长方体ABCD -A 1B 1C 1D 1中,如图,以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1所在直线为z 轴建立空间直角坐标系,又因为AD =AA 1=1,AB =2,则D (0,0,0),D 1(0,0,1), A (1,0,0),A 1(1,0,1),C (0,2,0),设E (1,m ,0),0≤m ≤2,则D 1E →=(1,m ,-1),A 1D →=(-1,0,-1),所以D 1E →·A 1D →=-1+0+1=0,所以直线D 1E 与A 1D 所成角的大小是90°.因为D 1E →=(1,m ,-1),EC →=(-1,2-m ,0),D 1E ⊥EC, 所以D 1E →·EC→=-1+m (2-m )+0=0,解得m =1,所以AE =1.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2).(1)求|2a +b|;(2)在直线AB 上是否存在一点E ,使得OE →⊥b (O 为原点)? 解:(1)因为a =(1,-3,2),b =(-2,1,1), 所以2a +b =(0,-5,5).所以|2a +b |=02+(-5)2+52=52. (2)假设存在点E ,其坐标为E (x ,y ,z ),则AE →=λAB →,即(x +3,y +1,z -4)=λ(1,-1,-2),所以⎩⎪⎨⎪⎧x =λ-3,y =-λ-1,z =-2λ+4,所以E (λ-3,-λ-1,-2λ+4),所以OE →=(λ-3,-λ-1,-2λ+4). 又因为b =(-2,1,1),OE →⊥b ,所以OE →·b =-2(λ-3)+(-λ-1)+(-2λ+4)=-5λ+9=0, 所以λ=95,所以E ⎝ ⎛⎭⎪⎫-65,-145,25.所以在直线AB 上存在点E ⎝ ⎛⎭⎪⎫-65,-145,25,使OE →⊥b .18.(12分)已知空间三点A (1,2,3),B (2,-1,5),C (3,2,-5),试求: (1)△ABC 的面积; (2)△ABC 的AB 边上的高.解:(1)AB →=(2,-1,5)-(1,2,3)=(1,-3,2), AC →=(3,2,-5)-(1,2,3)=(2,0,-8), AB →·AC →=1×2+(-3)×0+2×(-8)=-14,|AB →|=14,|AC →|=217,cos 〈AB →,AC →〉=-1414×217=-734,sin 〈AB →,AC →〉=2734, S △ABC =12|AB →|·|AC →|sin 〈AB →,AC →〉=1214×217×2734=321. (2)|AB →|=14,设AB 边上的高为h , 则12|AB |·h =S △ABC =321,所以h =36. 19.(12分)如图,在三棱锥S -ABC 中,侧面SAC 与底面ABC 垂直,E ,O 分别是SC ,AC 的中点,且SA =SC =2,BC =12AC ,∠ASC =∠ACB =90°.(1)求证:OE ∥平面SAB ;(2)若点F 在线段BC 上,问:无论点F 在BC 的何处,是否都有OE ⊥SF ?请证明你的结论.(1)证明:因为E ,O 分别是SC ,AC 的中点,所以OE ∥SA . 又因为OE ⊄平面SAB ,SA ⊂平面SAB , 所以OE ∥平面SAB .(2)解:方法一,在△SAC 中,因为OE ∥AS ,∠ASC =90°,所以OE ⊥SC . 又因为平面SAC ⊥平面ABC ,∠BCA =90°,BC ⊂平面SAC ,所以BC ⊥平面SAC . 又因为OE ⊂平面SAC ,所以BC ⊥OE . 因为SC ∩BC =C ,所以OE ⊥平面BSC . 又因为SF ⊂平面BSC ,所以OE ⊥SF . 所以无论点F 在BC 的何处,都有OE ⊥SF . 方法二,连接SO .因为O 是AC 的中点,SA =SC , 所以SO ⊥AC .又因为平面SAC ⊥平面ABC , 所以SO ⊥平面ABC .同理可得BC ⊥平面SAC .如图,在平面ABC 内,过点O 作OM ⊥AC ,以O 为原点,OM ,OC ,OS 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则点O (0,0,0),A (0,-1,0),B (1,1,0),C (0,1,0),S (0,0,1),E ⎝⎛⎭⎪⎫0,12,12,OE →=⎝ ⎛⎭⎪⎫0,12,12.由于点F ∈BC ,故可设点F (x ,1,0), 则SF →=(x ,1,-1),SF →·OE →=0恒成立, 所以无论点F 在BC 的何处,都有OE ⊥SF .20.(12分)在直角梯形ABCD 中,AD ∥BC ,BC =2AD =2AB =22,∠ABC =90°,如图1把△ABD 沿BD 翻折,使得平面ABD ⊥平面BCD (如图2).(1)求证:CD ⊥AB .(2)若点M 为线段BC 的中点,求点M 到平面ACD 的距离.(3)在线段BC 上是否存在点N ,使得AN 与平面ACD 所成角为60°?若存在,求出BN BC的值;若不存在,说明理由.(1)证明:由已知条件可得BD =2,CD =2,CD ⊥BD .因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,所以CD ⊥平面ABD . 又因为AB ⊂平面ABD ,所以CD ⊥AB .(2)解:如图,以点D 为原点,DB 所在的直线为x 轴,DC 所在的直线为y 轴,建立空间直角坐标系,由已知可得A (1,0,1),B (2,0,0),C (0,2,0),D (0,0,0),M (1,1,0),所以CD →=(0,-2,0),AD →=(-1,0,-1),MC →=(-1,1,0).设平面ACD 的法向量n =(x ,y ,z ),则CD →⊥n ,AD →⊥n ,所以⎩⎪⎨⎪⎧-2y =0,-x -z =0,令x =1,得平面ACD 的一个法向量n =(1,0,-1), 所以点M 到平面ACD 的距离d =|n ·MC →||n |=22.(3)解:假设在线段BC 上存在点N ,使得AN 与平面ACD 所成角为60°,设BN →=λBC →,0≤λ≤1,则N (2-2λ,2λ,0),所以AN →=(1-2λ,2λ,-1).又因为平面ACD 的一个法向量n =(1,0,-1),且直线AN 与平面ACD 所成角为60°,所以sin60°=|AN →·n ||AN →||n |=32, 可得8λ2+2λ-1=0,所以λ=14或λ=-12(舍去). 综上,在线段BC 上存在点N ,使AN 与平面ACD 所成角为60°,此时BN BC =14. 21.(12分)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =2.(1)求线段BC 1的长度;(2)求异面直线BC 1与DC 所成角的余弦值.解:(1)以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则A (2,0,0),B (2,4,0),C (0,2,0),C 1(0,2,2),所以DC →=(0,2,0),BC 1→=(-2,-2,2),|DC →|=2,|BC 1→|=4+4+4=23.(2)由(1)可知,DC →=(0,2,0),BC 1→=(-2,-2,2),所以cos 〈DC →,BC 1→〉=DC →·BC 1→|DC →||BC 1→|=-42×23=-13=-33. 所以异面直线BC 1与DC 所成的角的余弦值为33.22.(12分)如图,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,C 是AB ︵的中点,D为AC 的中点.(1)求证:平面POD ⊥平面PAC ;(2)求二面角B -PA -C 的余弦值.解:如图,以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则O (0,0,0),A (-1,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫-12,12,0. (1)证明:设n 1=(x 1,y 1,z 1)是平面POD 的一个法向量,则由n 1·OD →=0,n 1·OP →=0,得⎩⎪⎨⎪⎧-12x 1+12y 1=0,2z 1=0.所以z 1=0,x 1=y 1,取y 1=1,得n 1=(1,1,0).设n 2=(x 2,y 2,z 2)是平面PAC 的一个法向量,则由n 2·PA →=0,n 2·PC →=0,得⎩⎨⎧-x 2-2z 2=0,y 2-2z 2=0.所以x 2=-2z 2,y 2=2z 2,取z 2=1,得n 2=(-2,2,1).因为n 1·n 2=(1,1,0)·(-2,2,1)=0,所以n 1⊥n 2,从而平面POD ⊥平面PAC .(2)因为y 轴⊥平面PAB ,所以平面PAB 的一个法向量n 3=(0,1,0).由(1)知,平面PAC 的一个法向量n 2=(-2,2,1).设向量n 2和n 3的夹角为θ,则cos θ=n 2·n 3|n 2||n 3|=25=105. 由图可知,二面角B -PA -C 的平面角为锐角,所以二面角B -PA -C 的余弦值为105.。
高中数学人教A版必修二 第一章 空间几何体 学业分层测评2 Word版含答案
学业分层测评一、选择题1.用一个平面去截一个几何体得到的截面是圆面这个几何体不可能是()A.圆锥B.圆柱C.球D.棱柱【解析】用一个平面去截圆锥、圆柱、球均可以得到圆面但截棱柱一定不会产生圆面.【答案】 D2.在日常生活中常用到的螺母可以看成一个组合体其结构特征是()A.一个棱柱中挖去一个棱柱B.一个棱柱中挖去一个圆柱C.一个圆柱中挖去一个棱锥D.一个棱台中挖去一个圆柱【解析】一个六棱柱挖去一个等高的圆柱选B【答案】 B3.一个正方体内接于一个球过球心作一截面如图1-1-21所示则截面可能的图形是()图1-1-21A.①③B.②④C.①②③D.②③④【解析】当截面平行于正方体的一个侧面时得③当截面过正方体的体对角线时得②当截面不平行于任何侧面也不过对角线时得①但无论如何都不能截出④【答案】 C二、填空题6.如图1-1-22是一个几何体的表面展开图形则这个几何体是________【09960010】图1-1-22【解析】一个长方形和两个圆折叠后能围成的几何体是圆柱.【答案】圆柱7.一圆锥的母线长为6底面半径为3用该圆锥截一圆台截得圆台的母线长为4则圆台的另一底面半径为________.【解析】作轴截面如图则r 3=6-46=13∴r=1【答案】 1三、解答题8.指出如图1-1-23(1)(2)所示的图形是由哪些简单几何体构成的.图1-1-23【解】 图(1)是由一个三棱柱和一个四棱柱拼接而成的简单组合体.图(2)是由一个圆锥和一个四棱柱拼接而成的简单组合体. 9.一个圆台的母线长为12 cm 两底面面积分别为4π cm 2和25π cm 2求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.【解】 (1)圆台的轴截面是等腰梯形ABCD (如图所示).由已知可得上底半径O 1A =2(cm) 下底半径OB =5(cm)又因为腰长为12 cm 所以高AM =122-(5-2)2=315(cm).(2)如图所示延长BAOO 1CD 交于点S 设截得此圆台的圆锥的母线长为l 则由△SAO 1∽△SBO 可得l -12l =25解得l =20(cm)即截得此圆台的圆锥的母线长为20 cm[自我挑战]10.已知球的两个平行截面的面积分别为5π和8π它们位于球心的同一侧且距离为1那么这个球的半径是( )A .4B .3C .2D .05【解析】 如图所示∵两个平行截面的面积分别为5π、8π∴两个截面圆的半径分别为r 1=5r 2=2 2∵球心到两个截面的距离d 1=R 2-r 21d 2=R 2-r 22∴d 1-d 2=R 2-5-R 2-8=1∴R 2=9∴R =3 【答案】 B11.一个圆锥的底面半径为2 cm 高为6 cm 在圆锥内部有一个高为x cm 的内接圆柱.(1)用x 表示圆柱的轴截面面积S; 【09960011】 (2)当x 为何值时S 最大?【解】 (1)如图设圆柱的底面半径为r cm 则由r 2=6-x6得r =6-x 3∴S =-23x 2+4x (0<x <6).(2)由S =-23x 2+4x =-23(x -3)2+6 ∴当x =3时S max =6 cm 2。
新教材高中数学章末综合检测一数列新人教A版选择性必修第二册
章末综合检测(一)A 卷——基本知能盘查卷 (时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知数列1,3,5,7,3,11,…,2n -1,…,则21是这个数列的( ) A .第10项 B .第11项 C .第12项D .第21项解析:选B 观察可知该数列的通项公式为a n =2n -1(事实上,根号内的数成等差数列,首项为1,公差为2),令21=2n -1,解得n =11.2.在等比数列{a n }中,a 4=6,a 8=18,则a 12=( ) A .24 B .30 C .54 D .108解析:选C 由等比数列的性质知a 4,a 8,a 12成等比数列,则a 28=a 4·a 12,所以a 12=a 28a 4=1826=54. 3.在等差数列{a n }中,a 3=2,a 5=7,则a 7=( ) A .10 B .20 C .16 D .12 解析:选D ∵{a n }是等差数列, ∴d =a 5-a 35-3=52, ∴a 7=2+4×52=12.4.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0 C.14D .12解析:选B 设等差数列{a n }的公差为d .在等差数列{a n }中,a 3=1,a 2a 4=34.则由等差数列的通项公式得,a 3=a 1+2d =1,(a 1+d )(a 1+3d )=34,∴d =12,a 1=0.故选B.5.在等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4 D .3解析:选C ∵数列{a n }是等比数列,a 4=2,a 5=5, ∴a 1a 8=a 2a 7=a 3a 6=a 4a 5=10,∴lg a 1+lg a 2+…+lg a 8=lg(a 1×a 2×…×a 8)=lg(a 4a 5)4=4lg 10=4.故选C. 6.1+⎝ ⎛⎭⎪⎫1+12+⎝ ⎛⎭⎪⎫1+12+14+…+⎝ ⎛⎭⎪⎫1+12+14+…+1210的值为( )A .18+129B .20+1210C .22+1211D .18+1210解析:选B 设a n =1+12+14+…+12n -1=1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n ,∴原式=a 1+a 2+…+a 11=2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫121+2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫122+…+2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1211 =2⎣⎢⎡⎦⎥⎤11-⎝ ⎛⎭⎪⎫12+122+…+1211=2⎣⎢⎡⎦⎥⎤11-12⎝ ⎛⎭⎪⎫1-12111-12=2⎣⎢⎡⎦⎥⎤11-⎝ ⎛⎭⎪⎫1-1211=2⎝ ⎛⎭⎪⎫11-1+1211=20+1210. 7.若方程x 2-5x +m =0与x 2-10x +n =0的四个根适当排列后,恰好组成一个首项为1的等比数列,则m n的值是( )A .4B .2 C.12 D .14解析:选D 由题意可知1是方程的一个根,若1是方程x 2-5x +m =0的根,则m =4,另一根为4.设x 3,x 4是方程x 2-10x +n =0的两个根,且x 3<x 4,则x 3+x 4=10,这四个数的排列顺序只能为1,x 3,4,x 4,则公比为2,x 3=2,x 4=8,n =16,m n =14;若1是方程x2-10x +n =0的根,则n =9,另一根为9.设x 1,x 2是方程x 2-5x +m =0的两个根,则x 1+x 2=5,无论怎么排列均不合题意.综上可知,m n =14.8.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( )A .1升B .6766 升 C.4744 升 D .3733 升解析:选B 设该等差数列为{a n },公差为d ,由题意得⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎪⎨⎪⎧a 1=1322,d =766.∴a 5=1322+4×766=6766.故选B.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知等差数列{a n }的前n 项和为S n ,若S 7=a 4,则( ) A .a 1+a 3=0 B .a 3+a 5=0 C .S 3=S 4D .S 4=S 5解析:选BC 由S 7=7a 1+a 72=7a 4=a 4,得a 4=0,所以a 3+a 5=2a 4=0,S 3=S 4,故选B 、C.10.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,若b n =1a n ·a n +1,设数列{b n }的前n 项和S n ,则( )A .a n =n2B .a n =nC .S n =4n n +1D .S n =5n n +1解析:选AC 由题意得a n =1n +1+2n +1+…+n n +1=1+2+3+…+n n +1=n2, ∴b n =1n 2·n +12=4n n +1=4⎝ ⎛⎭⎪⎫1n -1n +1, ∴数列{b n }的前n 项和S n =b 1+b 2+b 3+…+b n =4⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1n +1=4⎝⎛⎭⎪⎫1-1n +1=4nn +1. 故选A 、C.11.已知数列{a n }的通项为a n =⎝ ⎛⎭⎪⎫23n -1·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫23n -1-1,则下列表述正确的是( )A .最大项为0B .最大项不存在C .最小项为-14D .最小项为-2081解析:选AD 由题意得a 1=⎝ ⎛⎭⎪⎫231-1×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫231-1-1=1×(1-1)=0,当n >1时,0<⎝ ⎛⎭⎪⎫23n -1<1,⎝ ⎛⎭⎪⎫23n -1-1<0,∴a n =⎝ ⎛⎭⎪⎫23n -1·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫23n -1-1<0, ∴{a n }的最大项为a 1=0.又a n +1-a n =⎝ ⎛⎭⎪⎫23n -1⎣⎢⎡⎦⎥⎤13-56⎝ ⎛⎭⎪⎫23n ,∴当n ≥3时,a n +1-a n >0;当1<n <3时,a n +1-a n <0. ∴{a n }的最小项为a 3=-2081.故选A 、D.12.已知等差数列{a n }的公差d 不等于0,S n 是其前n 项和,则下列命题正确的是( ) A .给定n (n ≥2,且n ∈N *),对于一切k ∈N *(k <n ),都有a n -k +a n +k =2a n 成立 B .存在k ∈N *,使得a k -a k +1与a 2k +1-a 2k -3同号C .若d >0,且S 3=S 8,则S 5与S 6都是数列{S n }中的最小项D .点⎝ ⎛⎭⎪⎫1,S 11,⎝ ⎛⎭⎪⎫2,S 22,⎝ ⎛⎭⎪⎫3,S 33,…,⎝ ⎛⎭⎪⎫n ,S n n (n ∈N *)在同一条直线上解析:选ACD A .由等差中项的性质,可得命题正确;B .a k -a k +1=-d ,a 2k +1-a 2k -3=4d .又d ≠0,故二者不可能同号;C .因为S 3=S 8,所以a 4+a 5+a 6+a 7+a 8=5a 6=0,即a 6=0.又d >0,即数列{a n }为递增数列,因此S 5=S 6,所以S 5和S 6都是数列{S n }中的最小项;D .由于等差数列的前n 项和S n =na 1+n n -12d ,故S n n =a 1+n -12d =d 2n +a 1-d2,因此点⎝ ⎛⎭⎪⎫1,S 11,⎝ ⎛⎭⎪⎫2,S 22,⎝ ⎛⎭⎪⎫3,S 33,…,⎝ ⎛⎭⎪⎫n ,S n n (n ∈N *)在同一条直线上.综上可得A 、C 、D 是正确的.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.已知数列{a n }满足a 2n +1=a 2n +4,且a 1=1,a n >0,则a n =________. 解析:由a 2n +1=a 2n +4,得a 2n +1-a 2n =4, ∴数列{a 2n }是首项为1,公差为4的等差数列, ∴a 2n =1+(n -1)×4=4n -3. ∵a n >0,∴a n =4n -3.答案:4n -314.已知等比数列{a n }的各项均为正数,其前n 项和为S n ,若S 2=34,S 4=154,则a 6=________,a n =________.解析:由题知数列{a n }为等比数列,公比q >0且q ≠1,由⎩⎪⎨⎪⎧S 2=34,S 4=154得⎩⎪⎨⎪⎧a 11-q 21-q =34,a 11-q 41-q=154,解得⎩⎪⎨⎪⎧a 1=14,q =2,故a 6=a 1q 5=14×25=8,a n =a 1q n -1=14×2n -1=2n -3.答案:8 2n -315.在等差数列{a n }中,前m (m 为奇数)项和为135,其中偶数项之和为63,且a m -a 1=14,则a 100的值为________.解析:∵在前m 项中偶数项之和为S 偶=63, ∴奇数项之和为S 奇=135-63=72, 设等差数列{a n }的公差为d , 则S 奇-S 偶=2a 1+m -1d2=72-63=9. 又a m =a 1+d (m -1),∴a 1+a m2=9,∵a m -a 1=14,∴a 1=2,a m =16. ∵m a 1+a m2=135,∴m =15,∴d =14m -1=1,∴a 100=a 1+99d =101. 答案:10116.已知数列{a n }满足a n =(n -λ)2n (n ∈N *),若{a n }是递增数列,则实数λ的取值范围是________.解析:∵{a n }是递增数列,∴a n +1>a n , ∴(n +1-λ)2n +1>(n -λ)2n,即λ<n +2.又∵n ∈N *,∴λ<3. 答案:(-∞,3)四、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)在数列{a n },{b n }中,已知a 1=12,且2a n +1=a n +⎝ ⎛⎭⎪⎫12n ,b n =2na n ,求证:数列{b n }为等差数列.证明:法一:由2a n +1=a n +⎝ ⎛⎭⎪⎫12n 得a n +1=12a n +⎝ ⎛⎭⎪⎫12n +1,所以b n +1-b n =2n +1a n +1-2n a n =2n+1·⎣⎢⎡⎦⎥⎤12a n +⎝ ⎛⎭⎪⎫12n +1-2na n =1,即b n +1-b n =1,所以数列{b n }是以b 1=2a 1=1为首项,1为公差的等差数列.法二:在2a n +1=a n +⎝ ⎛⎭⎪⎫12n 的两边同时乘以2n 得2n +1a n +1=2na n +1,即b n +1-b n =1,所以数列{b n }是以b 1=2a 1=1为首项,1为公差的等差数列.18.(12分)已知等比数列{a n }的前n 项和为S n ,a 1=-1,S 10S 5=3132. (1)求等比数列{a n }的公比q ; (2)求a 21+a 22+…+a 2n . 解:(1)由S 10S 5=3132,a 1=-1,知公比q ≠1,S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,即q =-12.(2)由(1),得a n =(-1)×⎝ ⎛⎭⎪⎫-12n -1,所以a 2n =⎝ ⎛⎭⎪⎫14n -1,所以数列{a 2n }是首项为1,公比为14的等比数列,故a 21+a 22+…+a 2n =1×⎝ ⎛⎭⎪⎫1-14n 1-14=43⎝ ⎛⎭⎪⎫1-14n . 19.(12分)设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列. (1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值. 解:(1)设{a n }的公差为d . 因为a 1=-10,所以a 2=-10+d ,a 3=-10+2d ,a 4=-10+3d . 因为a 2+10,a 3+8,a 4+6成等比数列, 所以(a 3+8)2=(a 2+10)(a 4+6). 所以(-2+2d )2=d (-4+3d ).解得d =2.所以a n =a 1+(n -1)d =2n -12. (2)由(1)知,a n =2n -12.则当n ≥7时,a n >0;当n ≤6时,a n ≤0. 所以S n 的最小值为S 5=S 6=6a 1+6×52d=6×(-10)+15×2=-30.20.(12分)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.解:(1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ), 即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8, 即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)由(1)知,a n +b n =12n -1,a n -b n =2n -1,所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12,b n =12[(a n +b n )-(a n -b n )]=12n -n +12.21.(12分)在等差数列{a n }中,a 3=4,a 7=8. (1)求数列{a n }的通项公式a n ;(2)令b n =a n2n -1,求数列{b n }的前n 项和T n . 解:(1)因为d =a 7-a 37-3=1,所以a n =a 3+(n -3)d =n +1.(2)b n =a n 2n -1=n +12n -1,T n =b 1+b 2+…+b n =2+32+422+…+n +12n -1,①12T n =22+322+…+n 2n -1+n +12n ,② 由①-②得12T n =2+12+122+…+12n -1-n +12n =⎝ ⎛⎭⎪⎫1+12+122+…+12n -1+1-n +12n=1-12n1-12+1-n +12n =2⎝ ⎛⎭⎪⎫1-12n +1-n +12n=3-n +32n,所以T n =6-n +32n -1.22.(12分)已知数列{a n }的前n 项和为S n ,满足S n =n (n -6),数列{b n }满足b 2=3,b n+1=3b n (n ∈N *).(1)求数列{a n },{b n }的通项公式;(2)记数列{c n }满足c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,求数列{c n }的前n 项和T n .解:(1)当 n =1时,a 1=S 1=-5,当n ≥2时,a n =S n -S n -1=n 2-6n -(n -1)2+6(n -1)=2n -7.∵n =1适合上式,∴a n =2n -7(n ∈N *). ∵b n +1=3b n (n ∈N *)且b 2≠0,∴b n +1b n=3(n ∈N *). ∴{b n }为等比数列,∴b n =3n -1(n ∈N *).(2)由(1)得,c n =⎩⎪⎨⎪⎧2n -7,n 为奇数,3n -1,n 为偶数,当n 为偶数时,T n =c 1+c 2+…+c n =n2-5+2n -92+=n n -72+33n-18. 当n 为奇数时,T n =c 1+c 2+…+c n =n +12-5+2n -72+=n +1n -62+33n -1-18.综上所述:T n=⎩⎪⎨⎪⎧n n -72+33n-18,n 为偶数,n +1n -62+33n -1-18,n 为奇数.B 卷——高考能力达标卷 (时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列3,5,9,17,33,…的通项公式a n 等于( ) A .2nB .2n+1 C .2n -1D .2n +1解析:选B 由于3=2+1,5=22+1,9=23+1,…,所以通项公式是a n =2n+1,故选B.2.一个各项均为正数的等比数列中,每一项都等于它后面的相邻两项之和,则公比q =( )A.32 B . 5 C.5-12D .1+52解析:选C 由题意知a n =a n +1+a n +2=a n q +a n q 2,即q 2+q -1=0,解得q =5-12(负值舍去).3.等比数列{a n }中,a 2,a 6是方程x 2-34x +64=0的两根,则a 4等于( ) A .8 B .-8C .±8D .以上选项都不对解析:选A ∵a 2+a 6=34,a 2·a 6=64,∴a 24=64,且a 2>0,a 6>0,∴a 4=a 2q 2>0(q 为公比),∴a 4=8.4.等差数列{a n }中,a 3+a 9=10,则该数列的前11项和S 11=( ) A .58 B .55 C .44 D .33 解析:选B 由题意得S 11=11a 1+a 112=11a 3+a 92=11×102=55.5.若等比数列{a n }的前5项的乘积为1,a 6=8,则数列{a n }的公比为( ) A .-2 B .2 C .±2D .12解析:选B 设数列{a n }的公比为q ,由题意得a 1a 2a 3a 4a 5=a 53=1,所以a 3=1,所以q 3=a 6a 3=8,解得q =2.6.已知a ,b ,c 为等比数列,b ,m ,a 和b ,n ,c 是两个等差数列,则a m +c n等于( ) A .4 B .3 C .2 D .1解析:选C 因为b ,m ,a 和b ,n ,c 是两个等差数列,所以m =a +b2,n =b +c2,又a ,b ,c 为等比数列,所以b 2=ac ,所以a m +c n =2a a +b +2c b +c =2ab +2ac +2ac +2bca +b b +c=2ab +4ac +2bc ab +ac +b 2+bc =2ab +2ac +bcab +2ac +bc=2.7.已知等差数列{a n }的前n 项和为S n ,a 8=1,S 16=0,当S n 取最大值时n 的值为( ) A .7 B .8 C .9D .10解析:选B 法一:由⎩⎪⎨⎪⎧a 8=a 1+7d =1,S 16=16a 1+16×152d =0,解得⎩⎪⎨⎪⎧a 1=15,d =-2,则S n =-n 2+16n=-(n -8)2+64,则当n =8时,S n 取得最大值.法二:因为{a n }是等差数列,所以S 16=8(a 1+a 16)=8(a 8+a 9)=0,则a 9=-a 8=-1,即数列{a n }的前8项是正数,从第9项开始是负数,所以(S n )max =S 8,选项B 正确.8.《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今三十织迄,问织几何.”其大意为:有个女子不善于织布,每天比前一天少织同样多的布,第一天织五尺,最后一天织一尺,三十天织完,问三十天共织布( )A .30尺B .90尺C .150尺D .180尺解析:选B 由题意知,该女子每天织布的数量构成等差数列{a n },其中a 1=5,a 30=1,∴S 30=30×5+12=90,即共织布90尺.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知等差数列{a n }和等差数列{b n }的前n 项和分别为S n ,T n ,且(n +1)S n =(7n +23)T n ,则使a n b n为整数的正整数n 的值可以是( )A .2B .3C .4D .8解析:选ACD 由题意,可得S n T n =7n +23n +1,则a n b n =2a n2b n =2n -1a 1+a 2n -122n -1b 1+b 2n -12=S 2n -1T 2n -1=14n +162n =7n +8n =7+8n ,经验证,知当n =1,2,4,8时,a nb n为整数.故选A 、C 、D.10.设等比数列{a n }的公比为q ,则下列结论正确的是( ) A .数列{a n a n +1}是公比为q 2的等比数列 B .数列{a n +a n +1}是公比为q 的等比数列 C .数列{a n -a n +1}是公比为q 的等比数列D .数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q的等比数列解析:选AD 对于A ,由a n a n +1a n -1a n=q 2(n ≥2)知数列{a n a n +1}是公比为q 2的等比数列;对于B ,当q =-1时,数列{a n +a n +1}的项中有0,不是等比数列;对于C ,当q =1时,数列{a n-a n +1}的项中有0,不是等比数列;对于D ,1a n +11a n=a n a n +1=1q ,所以数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q 的等比数列,故选A 、D.11.一个弹性小球从100 m 高处自由落下,每次着地后又跳回原来高度的23再落下.设它第n 次着地时,经过的总路程记为S n ,则当n ≥2时,下面说法正确的是( )A .S n <500B .S n ≤400C .S n 的最小值为7003D .S n 的最大值为400解析:选AC 第一次着地时,共经过了100 m ,第二次着地时,共经过了⎝ ⎛⎭⎪⎫100+100×23×2m ,第三次着地时,共经过了⎣⎢⎡⎦⎥⎤100+100×23×2+100×⎝ ⎛⎭⎪⎫232×2m ,…,以此类推,第n 次着地时,共经过了⎣⎢⎡⎦⎥⎤100+100×23×2+100×⎝ ⎛⎭⎪⎫232×2+…+100×⎝ ⎛⎭⎪⎫23n -1×2 m .所以S n =100+4003⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n -11-23=100+400⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n -1.则S n 是关于n 的增函数,所以当n ≥2时,S n 的最小值为S 2,且S 2=7003.又S n =100+400⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n -1<100+400=500,故选A 、C. 12.若数列{a n }满足:对任意的n ∈N *且n ≥3,总存在i ,j ∈N *,使得a n =a i +a j (i ≠j ,i <n ,j <n ),则称数列{a n }是“T 数列”.则下列数列是“T 数列”的为( )A .{2n }B .{n 2} C .{3n}D .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎝⎛⎭⎪⎫1-52n -1 解析:选AD 令a n =2n ,则a n =a 1+a n -1(n ≥3),所以数列{2n }是“T 数列”;令a n =n 2,则a 1=1,a 2=4,a 3=9,所以a 3≠a 1+a 2,所以数列{n 2}不是“T 数列”;令a n =3n,则a 1=3,a 2=9,a 3=27,所以a 3≠a 1+a 2,所以数列{3n}不是“T 数列”;令a n =⎝⎛⎭⎪⎫1-52n -1,则a n =⎝ ⎛⎭⎪⎫1-52n -2+⎝ ⎛⎭⎪⎫1-52n -3=a n -1+a n -2(n ≥3),所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎝ ⎛⎭⎪⎫1-52n -1是“T 数列”.故选A 、D.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.已知数列{a n }的前n 项和为S n =2n-3,则数列{a n }的通项公式为________. 解析:当n =1时,a 1=S 1=2-3=-1; 当n ≥2时,a n =S n -S n -1=(2n-3)-(2n -1-3)=2n -1,而21-1=1≠-1.故数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥214.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =________. 解析:因为等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,所以a m =S m -S m -1=2,a m +1=S m +1-S m =3,数列的公差d =1,a m +a m +1=S m +1-S m -1=5, 即2a 1+2m -1=5,所以a 1=3-m . 由S m =(3-m )m +m m -12×1=0,解得m =5.答案:515.记S n 为数列{a n }的前n 项和,S n =1-a n .记T n =a 1a 3+a 3a 5+…+a 2n -1·a 2n +1,则a n=________,T n =________.解析:由题意有a 1=1-a 1,得a 1=12.当n ≥2时,有S n -1=1-a n -1,①结合S n =1-a n ,②则①-②得a n =12a n -1,故数列{a n }是以12为首项,12为公比的等比数列,可得数列{a n }的通项公式a n =12n ,所以T n =a 22+a 24+…+a 22n =116⎝ ⎛⎭⎪⎫1-116n 1-116=115⎝ ⎛⎭⎪⎫1-116n .答案:12n 115⎝ ⎛⎭⎪⎫1-116n16.若数列{a n }是等差数列,首项a 1<0,a 203+a 204>0,a 203·a 204<0,则使前n 项和S n<0的最大自然数n 的值是________.解析:由a 203+a 204>0⇒a 1+a 406>0⇒S 406>0, 又由a 1<0且a 203·a 204<0,知a 203<0,a 204>0, 所以公差d >0,则数列{a n }的前203项都是负数, 那么2a 203=a 1+a 405<0,所以S 405<0, 所以使前n 项和S n <0的最大自然数n =405. 答案:405四、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知四个正数成等比数列,积为16,且第2个数与第3个数的和为5,求这四个数.解:由已知设这四个数分别为aq 3,a q,aq ,aq 3. ∵这四个数的积为16,∴a 4=16,∴a =±2. ∵第2个数与第3个数的和为5,∴a q+aq =5. 当a =2时,2q +2q =5,解得q =2或12,∴这四个数分别为14,1,4,16或16,4,1,14;当a =-2时,-2q -2q =5,解得q =-2或-12,∴这四个数分别为14,1,4,16或16,4,1,14.综上知,这四个数分别为14,1,4,16或16,4,1,14.18.(12分)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 解:(1)设{a n }的公比为q ,由题设得a n =qn -1.由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1--2n3.由S m =63得(-2)m=-188,此方程没有正整数解. 若a n =2n -1,则S n =2n-1.由S m =63得2m=64,解得m =6.综上,m =6.19.(12分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和.解:(1)设{a n }的公差为d ,则S n =na 1+n n -12d .由已知可得⎩⎪⎨⎪⎧3a 1+3d =0,5a 1+10d =-5,解得⎩⎪⎨⎪⎧a 1=1,d =-1.故{a n }的通项公式为a n =2-n . (2)由(1)知1a 2n -1a 2n +1=13-2n1-2n=1212n -3-12n -1,从而数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和为12⎝ ⎛⎭⎪⎫1-1-11+11-13+…+12n -3-12n -1=n1-2n . 20.(12分)在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29. (1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为q 的等比数列,求{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差是d . ∵a 3+a 8-(a 2+a 7)=2d =-6,∴d =-3, ∴a 2+a 7=2a 1+7d =-23,解得a 1=-1, ∴数列{a n }的通项公式为a n =-3n +2.(2)∵数列{a n +b n }是首项为1,公比为q 的等比数列, ∴a n +b n =qn -1,即-3n +2+b n =qn -1,∴b n =3n -2+q n -1.∴S n =[1+4+7+…+(3n -2)]+(1+q +q 2+…+q n -1)=n 3n -12+(1+q +q 2+…+qn -1),故当q =1时,S n =n 3n -12+n =3n 2+n 2;当q ≠1时,S n =n 3n -12+1-q n1-q. 21.(12分)已知数列{a n }的首项a 1=23,a n +1=2a na n +1,n =1,2,3,….(1)证明:数列⎩⎨⎧⎭⎬⎫1a n-1是等比数列;(2)求数列⎩⎨⎧⎭⎬⎫n a n 的前n 项和S n .解:(1)证明:由a n +1=2a n a n +1,得1a n +1=a n +12a n =12+12×1a n ,所以1a n +1-1=12⎝ ⎛⎭⎪⎫1a n -1, 又a 1=23,所以1a 1-1=12,所以数列⎩⎨⎧⎭⎬⎫1a n -1是以12为首项,12为公比的等比数列.(2)由(1)得1a n -1=12×12n -1=12n ,即1a n =12n +1,所以n a n =n2n +n . 设T n =12+222+323+…+n2n ,①则12T n =122+223+…+n -12n +n2n +1.② 由①-②得12T n =12+122+…+12n -n 2n +1=12⎝ ⎛⎭⎪⎫1-12n 1-12-n 2n +1=1-12n -n 2n +1,所以T n =2-12n -1-n2n .又1+2+3+…+n =n n +12, 所以数列⎩⎨⎧⎭⎬⎫n a n 的前n 项和S n =2-2+n 2n +nn +12=n 2+n +42-n +22n.22.请从下面三个条件中任选一个,补充在下面的横线上,并作答. ①a 1,14,a 2成等差数列;②a 1,a 2+1,a 3成等比数列;③S 3=34.已知S n 为数列{a n }的前n 项和,3S n =a n +2a 1(n ∈N *),a 1≠0,且________. (1)求数列{a n }的通项公式. (2)记b n =⎩⎪⎨⎪⎧a n n 为偶数,log 3a nn 为奇数,求数列{b n }的前2n +1项和T 2n +1.解:(1)由已知3S n =a n +2a 1,n ≥2时,3S n -1=a n -1+2a 1. 两式相减得到3a n =a n -a n -1,即a n a n -1=-12. 因为a 1≠0,所以数列{a n }是公比为-12的等比数列,从而a n =a 1⎝ ⎛⎭⎪⎫-12n -1.若选①,由a 1,14,a 2成等差数列可得a 1+a 2=2×14,即a 1-12a 1=12,解得a 1=1,所以a n =⎝ ⎛⎭⎪⎫-12n -1.若选②,由a 1,a 2+1,a 3成等比数列可得a 1a 3=(a 2+1)2, 即a 1×14a 1=⎝ ⎛⎭⎪⎫1-12a 12,解得a 1=1,所以a n =⎝ ⎛⎭⎪⎫-12n -1.若选③,由S 3=34可得a 1+a 2+a 3=34,即a 1-12a 1+14a 1=34,解得a 1=1,所以a n =⎝ ⎛⎭⎪⎫-12n -1.(2)当n 为奇数时,b n =log 3⎝ ⎛⎭⎪⎫-12n -1=log 3⎝ ⎛⎭⎪⎫12n -1=-(n -1)log 32.记前2n +1项和T 2n +1中奇数项和为T 奇, 则T 奇=b 1+b 3+b 5+…+b 2n +1 =-(0+2+4+…+2n )log 32 =-n (n +1)log 32.当n 为偶数时,b n =⎝ ⎛⎭⎪⎫-12n -1=-⎝ ⎛⎭⎪⎫12n -1,记前2n +1项和T 2n +1中偶数项和为T 偶, 则T 偶=b 2+b 4+b 6+…+b 2n=-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫121+⎝ ⎛⎭⎪⎫123+⎝ ⎛⎭⎪⎫125+…+⎝ ⎛⎭⎪⎫122n -1=-12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n 1-14=-23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n .故T 2n +1=-n (n +1)log 32-23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n .。
人教A版高一数学必修2第一章单元测试题含详细答案
1高一数学必修2第一章单元测试题1.如下图所示,观察四个几何体,其中判断正确的是( )A.①是棱台 B.②是圆台 C.③是棱锥 D.④不是棱柱2.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的( )A.12倍 B.2倍 C.24倍 D.22倍 3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是()4.已知某几何体的三视图如右图所示,那么这个几何体是( )A.长方体 B.圆柱 C.四棱锥 D.四棱台5.正方体的体积是64,则其表面积是( ) A.64 B.16 C.96 D.无法确定6.圆锥的高扩大到原来的2倍,底面半径缩短到原来的12,则圆锥的体积( )A.缩小到原来的一半 B.扩大到原来的2倍C.不变 D.缩小到原来的167.三个球的半径之比为1:2:3,那么最大球的表面积是其余两个球的表面积之和的( )2A.1倍 B.2倍 C.95倍 D.74倍 8.有一个几何体的三视图及其尺寸如下图(单位:cm),则该几何体的表面积为( )A.12πcm 2B.15πcm 2C.24πcm 2 D.36πcm 29.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A.7 B.6 C.5 D.310.如图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现.我们来重温这个伟大发现.圆柱的体积与球的体积之比和圆柱的表面积与球的表面积之比分别为( )A.32,1B.23,1C.32,32D.23,3211.某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为5的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为5的等腰三角形.则该几何体的体积为( )3A.24 B.80C.64D.24012.如果用表示1个立方体,用表示两个立方体叠加,用表示3个立方体叠加,那么图中由7个立方体摆成的几何体,从正前方观察,可画出平面图形是()4姓名:座位号:一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.圆台的底半径为1和2,母线长为3,则此圆台的体积为________.14.一个几何体的三视图如图所示,则这个几何体的体积为___________________。
新教材人教A版选择性必修第一册 第一章 空间向量与立体几何 章末测试(含答案)
如图建立坐标系,不妨设棱长 ,则 , ,
①在 中, ,因此 。同理 , ,与 成角都为 。
故当P位于棱 , , 上时,与 所成角都为 ,故不满足条件。
②当点P位于棱AD上时,设 , ,则 , ,若,满足 于 所成角为 ,则 ,即 ,无正数解(舍),同理当P位于 上时,也不符合题意。
③当P位于棱 上时,设 ,则 , ,若满足 于 所成角为 ,则 ,即 ,因为 ,所以 ,满足条件,此时 。
15、已知直线 的一个方向向量为 ,直线 的一个方向向量为 ,且 ,则 ______, _____.
16、已知空间向量 , ,设 , , 与 垂直, , ,则 ________.
三、解答题
17、如图所示,在空间四边形OABC中,OA=8,AB=6,AC=4,BC=5,∠OAC=45°,∠OAB=60°,类比平面向量有关运算,如何求向量 与 的数量积?并总结求两个向量数量积的方法.
A. B. C. D.
8、设 是棱长为a的正方体,以下结论为正确的有()
A. B.
C. D.
9、若向量 与 不共线, ,且 ,则向量 与 的夹角为( )
A. B.
C. D.
10、向量 ,若 ,且 ,则 的值为( )
A. B.1C.3或1D. 或1
11、已知平面 , 的法向量分别为 和 (其中 ),若 ,则 的值为( )
新教材人教A版选择性必修第一册
第一章 空间向量与立体几何 章末测试
一、选择题
1、已知向量 , , ,则向量 的坐标为().
A. B. C. D.
2、在正方体 中,点 (异于点 )是棱长一点,则满足 与 ,所成的角为45°的点 的个数为( )
A.0B.3C.4D.6
人教版高中数学必修2A版_第1章空间几何体单元同步测试题(二)【精品2套】
必修2A版_第1章空间几何体_本章小结_试题资源:单元测试题(三)(时间:120分钟,满分:150分)第Ⅰ卷(选择题共50分)一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下面几何体的轴截面一定是圆面的是A.圆柱 B.圆锥 C.球 D.圆台2.下列说法正确的是A.有两个面平行,其余各面都是四边形的几何体叫棱柱.B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥.D.棱台各侧棱的延长线交于一点.3.一个几何体的某一方向的视图是圆,则它不可能是A.球体 B.圆锥 C.长方体 D.圆柱4.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③A.3个 B.2个 C.1个 D.0个5.下列四个命题中,正确的命题是A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.如果一个三角形的平行投影仍是三角形,那么它的中位线的平行投影一定是这个三角形的平行投影的对应的中位线6.下面的四个图中不能围成正方体的是A. B. C. D.7.长方体的三个面的面积分别是2,3,6,则长方体的体积是A.6 B.12 C.24 D.368.如果圆锥的轴截面是正三角形(此圆锥也称等边圆锥),则这圆锥的侧面积与全面积的比是A.1:2 B.2:3 C..9.一个三角形用斜二测画法画出来是一个正三角形,边长为2,则原三角形的面积为A...10.若球的半径为1,则这个球的内接正方体的全面积为A.8 B.9 C.10 D.12第Ⅱ卷(非选择题共100分)二.填空题:本大题共7小题,每小题4分,共28分。
11.以等腰直角梯形的直角腰所在的直线为轴,其余三边旋转形成的面所围成的旋转体是_____.12.三视图都为圆的几何体是__________13.两个半径为1的铁球,熔化后铸成一个球,这个大球的半径为 .14.矩形长6,宽4,以其为圆柱侧面卷成圆柱,则圆柱体积为 ________15.圆台上,下底半径分别为r,R,侧面面积等于两底面积之和,圆台的母线长为________.16.圆柱的底面直径与高都等于球的直径,则球的表面积______圆柱的侧面积.(填>,<,=)17.平行于锥体底面的截面截得锥体的体积与原锥体的体积之比为8:27,则它们的侧面积之比为_______.三.解答题:本大题共5小题,共72分。
解析版-2018-2019学年人教版高二数学必修2第1章空间几何体章末测试
绝密★启用前2018-2019学年人教版高二数学必修2第1章空间几何体章末测试考试时间:100分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________分卷I一、选择题(共12小题,每小题5.0分,共60分)1.如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是()A.B.C.D.【答案】B【解析】A.正方体的正视图为正方形,侧视图为正方形,俯视图也为正方形,不满足条件.B.圆柱的正视图和侧视图为相同的矩形,俯视图为圆,满足条件.C.圆锥的正视图为三角形,侧视图为三角形,俯视图为圆,不满足条件.D.球的正视图,侧视图和俯视图为相同的圆,不满足条件.故选B.2.设正四面体A-BCD中,E、F分别为AC、AD的中点,则△BEF在该四面体的面ADC上的射影可能是()A.B.C.D.【答案】A【解析】由于几何体是正四面体,所以B在面ADC上的射影是它的中心,可得到三角形BEF在面ADC上的射影,因为F在AD上,E在AC上,所以观察选项,只有A正确.故选A.3.如图,△ABC的斜二测直观图为等腰Rt△A′B′C′,其中A′B′=2,则△ABC的面积为()A. 2B. 4C. 2D. 4【答案】D【解析】∵Rt△A′B′C′是一平面图形的直观图,直角边长为A′B′=2,∴直角三角形的面积是×2×2=2,∵平面图形与直观图的面积的比为2,∴原平面图形的面积是2×2=4.故选D.4.如图所示的几何体的平面展开图是四选项中的()A.B.C.D.【答案】D【解析】选项A、C中折叠后带图案的三个面不能相交于同一个点,与原立方体不符;选项B中折叠后三角形和圆的位置不符,所以正确的是D.故选D.5.已知正△ABC的边长为2,那么用斜二测画法得到的△ABC的直观图△A′B′C′的面积为()A.B.C.D.【答案】D【解析】∵正△ABC的边长为2,故正△ABC的面积S=·22=,设△ABC的直观图△A′B′C′的面积为S′,则S′=S=·=.故选D.6.如图,一只蚂蚁从点A沿圆柱表面爬到点B,圆柱的高为8 cm,圆柱的底面半径为cm,那么最短的路线长是()A. 6 cmB. 8 cmC. 10 cmD.10π cm【答案】C【解析】连接AB,∵圆柱的底面半径为cm,∴AC=×2×π×=6(cm),在Rt△ACB中,AB2=AC2+CB2=36+64=100,即AB=10 cm,故选C.7.如图所示的几何体是由六个小正方体组合而成的,它的侧视图是()A.B.C.D.【答案】C【解析】从左边看得到的图形有两列,第一列有两个正方形,第二列有一个正方形,故选C.8.如图所示的一个几何体,哪一个是该几何体的俯视图()A.B.C.D.【答案】C【解析】几何体是一个组合体,组合体上面的几何体有一个侧面是三角形,从正上方能看到这个三角形的三条边,所以俯视图中应该有一个三角形,只有选项C符合.9.下列几何体不能展开成平面图形的是()A.圆锥B.球C.圆台D.正方体【答案】B【解析】圆锥可以展开成一个扇形和一个圆,球不能展开成平面图形,圆台可以展开成两个圆和一个梯形,正方体可以展开成一个长方形和两个小正方形,故选B.10.如图所示,△A′B′C′是水平放置的△ABC的斜二测直观图,其中O′C′=O′A′=2O′B′,则以下说法正确的是()A.△ABC是钝角三角形B.△ABC是等腰三角形,但不是直角三角形C.△ABC是等腰直角三角形D.△ABC是等边三角形【答案】C11.三棱柱的平面展开图是()A.B.C.D.【答案】B【解析】两个全等的三角形在侧面三个长方形的两侧,这样的图形围成的是三棱柱.故选B.12.某几何体的直观图如图所示,下列给出的四个俯视图中正确的是()【答案】B【解析】几何体的俯视图,轮廓是矩形,几何体的上部的棱都是可以看见的线段,所以C,D不正确;几何体的上部中间的棱与正视图方向垂直,所以A不正确.故选B.分卷II二、填空题(共4小题,每小题5.0分,共20分)13.已知某多面体的平面展开图如图所示,其中是三棱柱的有________个.【答案】1【解析】第一个是三棱锥,第二个是三棱柱,第三个是四棱锥,第四个不是棱柱.14.已知三棱锥O-ABC,侧棱OA,OB,OC两两互相垂直,且OA=OB=OC=2,则以O为球心,1为半径的球与三棱锥O-ABC重叠部分的体积是__________.【答案】【解析】由已知条件可用等体积转换求得点O到平面ABC的距离为>1,所以重叠部分是以O为球心且1为半径的球的,即V=×=××13=.15.将半径为5的圆分割成面积之比为1∶2∶3的三个扇形作为三个圆锥的侧面,设这三个圆锥的底面半径依次为r1,r2,r3,则r1+r2+r3=________.【答案】5【解析】由题意得,扇形的弧长为对应圆锥的底面周长,因此2π(r1+r2+r3)=2π×5⇒r1+r2+r3=5.16.如图所示,已知三棱柱ABC-A1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1-ABC1的体积为________.【答案】【解析】三棱锥B1-ABC1的体积等于三棱锥A-B1BC1的体积,三棱锥A-B1BC1的高为,底面积为,故其体积为××=.三、解答题(共7小题,每小题10.0分,共70分)17.已知正三棱台(上、下底是正三角形,上底面的中心在下底面的投影是下底面的中心)的上、下底面边长分别是2 cm与4 cm,侧棱长是cm,试求该三棱台的表面积与体积.【答案】如图,O′,O是上、下底面的中心,连接OO′,O′B′,OB,在平面BCC′B′内过B′作B′D⊥BC于D,在平面BOO′B′内作B′E⊥OB于E.∵△A′B′C′是边长为2的等边三角形,O′是中心,∴O′B′=×2×=,同理OB=,则BE=OB-O′B′=.在Rt△B′EB中,BB′=,BE=,∴B′E=,即棱台高为cm.∴三棱台的体积为V棱台=×(×16+×4+=cm3.由于棱台的侧面是等腰梯形,∴BD=×(4-2)=1 cm.在Rt△B′DB中,BB′=,BD=1,∴B′D=,即梯形的高为cm,∴棱台的表面积S=S上底+S下底+S侧=×4+×16+3××(2+4)×=(5+9)cm2.∴棱台的表面积是(5+9)cm2,体积是cm3.18.求球与它的外切等边圆锥(轴截面是正三角形的圆锥叫等边圆锥)的体积之比.【答案】如图等边△ABC为圆锥的轴截面,截球面得圆O.设球的半径OE=R,OA==2OE=2R,∴AD=OA+OD=2R+R=3R,BD=AD·tan 30°=R,∴V=πR3,V圆锥=π·BD2×AD=π(R)2×3R=3πR3,球则V球∶V圆锥=4∶9.19.三个图中,左面的是一个长方体截去一个角所得多面体的直观图,右面是它的正视图和侧视图.(单位:cm)(1)画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积.【答案】(1)作出俯视图如下.(2)所求多面体的体积V=V长方体-V正三棱锥=4×4×6-×(×2×2)×2=(cm3).20.一个球内有相距9 cm的两个平行截面,它们的面积分别为49π cm2和400πcm2.求球的表面积.【答案】(1)当截面在球心的同侧时.如图所示为球的轴截面.由球的截面性质知,AO1∥BO2,且O1,O2分别为两截面圆的圆心,则OO1⊥AO1,OO2⊥BO2.设球的半径为R,因为圆O2的面积为49π,即π·O2B2=49π,所以O2B=7(cm).同理,因为π·O1A2=400π,所以O1A=20(cm).设OO1=x,则OO2=(x+9).在Rt△OO1A中,R2=x2+202,在Rt△OO2B中,R2=(x+9)2+72,所以x2+202=(x+9)2+72,解得x=15(cm).即R2=x2+202=252.故S球=4πR2=2 500π(cm2).所以球的表面积为2 500π cm2.(2)当截面位于球心O的两侧时,如图所示为球的轴截面.由球的截面性质知,O1A∥O2B,且O1,O2分别为两截面圆的圆心,则OO1⊥AO1,OO2⊥O2B.设球的半径为R,因为圆O2的面积为49π,即π·O2B2=49π,所以O2B=7(cm).同理,因为π·O1A2=400π,所以O1A=20(cm).设O1O=x,则OO2=(9-x).在Rt△OO1A中,R2=x2+202,在Rt△OO2B中,R2=(9-x)2+72.所以x2+400=(9-x)2+49,解得x=-15(cm),不合题意,舍去.综上所述,球的表面积为2 500π cm2.21.如图(单位:cm),求图中阴影部分绕AB旋转一周所形成的几何体的表面积和体积.【答案】由题意知,所求旋转体的表面积由三部分组成:圆台下底面、侧面和一半球面,S半球=8π,S圆台侧=35π,S圆台底=25π.故所求几何体的表面积为68π,由V圆台=××4=52π,V半球=×23×=,所以旋转体的体积为V圆台-V半球=52π-=(cm3).22.如图所示的图形绕虚线旋转一周后形成的立体图形分别是由哪些简单几何体组成的?【答案】解旋转后的图形草图分别如图①、②所示.其中图①是由一个圆柱O1O2和两个圆台O2O3,O3O4组成的;图②是由一个圆锥O5O4、一个圆柱O3O4及一个圆台O1O3中挖去一个圆锥O2O1组成的.23.如图所示,图(2)是图(1)中实物的正视图和俯视图,你认为正确吗?如果不正确,请找出错误并改正,然后画出它的侧视图.【答案】解图(1)是由两个长方体组合而成的,正视图正确,俯视图错误.俯视图应该画出不可见轮廓(用虚线表示),侧视图轮廓是一个矩形,有一条可视的交线(用实线表示),正确画法如下图所示.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章检测试题(时间:120分钟满分:150分)【选题明细表】一、选择题(本大题共12小题,每小题5分,共60分)1.下列说法正确的是( D )(A)有两个面平行,其余各面都是四边形的几何体叫棱柱(B)有两个面平行,其余各面都是平行四边形的几何体叫棱柱(C)各侧面都是正方形的四棱柱一定是正方体(D)九棱柱有9条侧棱,9个侧面,侧面均为平行四边形解析:选项A,B都不正确,反例如图所示.选项C也不正确,上、下底面是全等的菱形,各侧面是全等的正方形的四棱柱不是正方体.根据棱柱的定义知选项D正确.2.如图所示是由等腰梯形、矩形、半圆、圆、倒三角形对接形成的轴对称平面图形,若将它绕轴l旋转180°后形成一个组合体,下面说法不正确的是( A )(A)该组合体可以分割成圆台、圆柱、圆锥和两个球体(B)该组合体仍然关于轴l对称(C)该组合体中的圆锥和球只有一个公共点(D)该组合体中的球和半球只有一个公共点解析:组合体中只有一个球体和一个半球.故选A.3.长方体的高为1,底面积为2,垂直于底的对角面的面积是,则长方体的侧面积等于( C )(A)2(B)4(C)6 (D)3解析:设长方体的长、宽、高分别为a,b,c,则c=1,ab=2,·c=,所以a=2,b=1,故S侧=2(ac+bc)=6.4.如果一个水平放置的平面图形的斜二测直观图是如图所示的直角梯形,其中O′A′=2,∠B′A′O′=45°,B′C′∥O′A′.则原平面图形的面积为( A )(A)3 (B)6(C) (D)解析:因为O′A′=2,∠B′O′A′=∠B′A′O′=45°,所以O′B′=,又B′C′∥O′A′,所以∠C′B′O′=45°,∠O′C′B′=90°,所以B′C′=1,所以原图形为梯形,其上底为1,下底为2,高为2,所以S==3.5.底面是边长为1的正方形,侧面是等边三角形的四棱锥的外接球的体积为( A )(A) (B) (C)(D)解析:底面ABCD外接圆的半径是,即AO=,则PO==,所以四棱锥的外接球的半径为,所以四棱锥的外接球的体积为π·3=.故选A.6.如图,正方体ABCD A′B′C′D′的棱长为4,动点E,F在棱AB上,且EF=2,动点Q在棱D′C′上,则三棱锥A′EFQ的体积( D )(A)与点E,F的位置有关(B)与点Q的位置有关(C)与点E,F,Q的位置都有关(D)与点E,F,Q的位置均无关,是定值解析:==×·EF·AA′·A′D′=,所以三棱锥A′EFQ的体积为定值,与点E,F,Q的位置均无关.故选D.7.已知圆台的上下底面半径分别为1和2,高为1,则该圆台的表面积为( B )(A)3π (B)(5+3)π(C)π(D)π解析:设圆台上底面的半径为r′,下底面的半径为r,高为h,母线长为l.则r′=1,r=2,h=1.则l==.由圆台表面积公式得S圆台=π(r′2+r2+r′l+rl)=π(1+4++2)=(5+3)π.故选B.8.已知圆锥的底面半径为R,高为3R,在它的所有内接圆柱中,表面积的最大值是( B )(A)22πR2 (B)πR2(C)πR2 (D)πR2解析:如图所示为组合体的轴截面,记BO1的长度为x,由相似三角形的比例关系,得=,则PO1=3x,圆柱的高为3R-3x,所以圆柱的表面积为S=2πx2+2πx·(3R-3x)=-4πx2+6πRx,则当x=R时,S取最大值,S max=πR2.故选B.9.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( B )(A)14斛(B)22斛(C)36斛(D)66斛解析:设圆锥底面半径为r,因为米堆底部弧长为8尺,所以r=8,r=≈(尺),所以米堆的体积为V=××π×()2×5≈(立方尺),又1斛米的体积约为1.62立方尺,所以该米堆有÷1.62≈22(斛),选B.10.若两球的体积之和是12π,经过两球球心的截面圆周长之和为6π,则两球的半径之差为( A )(A)1 (B)2 (C)3 (D)4解析:设两球的半径分别为R、r(R>r),则由题意得解得故R-r=1.11.如图所示,在三棱柱A B C A1B1C1中,侧棱垂直于底面,A B=A C=, BB1=BC=6,E,F为侧棱AA1上的两点,且EF=3,则多面体BB1C1CEF的体积为( A )(A)30 (B)18(C)15 (D)12解析:=--=S△ABC×6-S△ABC·A1F-S△ABC·AE=S△ABC·[6-(A1F+AE)]=5S△ABC.因为AC=AB=,BC=6,所以S△ABC=×6×=6.所以=5×6=30.故选A.12.如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE和△BEC分别沿ED,EC向上折起,使A,B重合于点P,则三棱锥P DCE的外接球的体积为( C )(A) (B)(C) (D)解析:因为ABCD为等腰梯形,AB=2DC,E为AB的中点,所以AD=DE=CE=BC,又∠DAB=60°,所以△ADE,△DCE,△CEB均为边长为1的正三角形,故翻折后的三棱锥P DCE为正四面体,其高P O1==,设球的半径为R,所以R2=(-R)2+()2,得R=,所以V=π.故选C.二、填空题(本大题共4小题,每小题5分,共20分)13.若圆锥的表面积是15π,侧面展开图的圆心角是60°,则圆锥的体积为.解析:设圆锥的底面半径是r,母线长是l,高为h,则有所以l=6r,r2=,l2=.h2=l2-r2=75,所以h=5.所以V=πr2·h=π××5=π.答案:π14.如图所示,扇形的中心角为90°,弦AB将扇形分成两个部分,这两部分各以AO为轴旋转一周,所得的旋转体体积V1和V2之比为.解析:Rt△AOB绕OA旋转一周形成圆锥,其体积V1=R3,扇形绕OA旋转一周形成半球面,其围成的半球的体积V=R3,所以V2=V-V1=R3-R3=R3,所以V1∶V2=1∶1.答案:1∶115.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.解析:原两个几何体的总体积V=×π×52×4+π×22×8=π.由题意知新圆锥的高为4,新圆柱的高为8,且它们的底面半径相同,可设两几何体的底面半径均为r(r>0),则×π×r2×4+π×r2×8=π,解得r2=7,从而r=.答案:16.在棱长为a的正方体ABCD A 1B1C1D1中,EF是棱AB上的一条线段,且EF=b(b<a).若Q是CD 上的动点,则三棱锥Q D 1EF的体积为.解析:==S△QEF·DD1=×b×a×a=a2b.答案:a2b三、解答题(本大题共5小题,共70分)17.(本小题满分14分)如图,正方体ABCD A′B′C′D′的棱长为a,连接A′C′,A′D,A′B,BD,BC′,C′D,得到一个三棱锥.求:(1)三棱锥A′BC′D的表面积与正方体表面积的比值;(2)三棱锥A′BC′D的体积.解:(1)因为ABCD A′B′C′D′是正方体,所以A′B=A′C′=A′D=BC′=BD=C′D=a,所以三棱锥A′BC′D的表面积为4××a××a=2a2.而正方体的表面积为6a2,故三棱锥A′BC′D的表面积与正方体表面积的比值为=.(2)三棱锥A′ABD,C′BCD,D A′D′C′,B A′B′C′是完全一样的.故=V正方体-4=a3-4××a2×a=.18.(本小题满分14分)已知一个三棱台上、下底面分别是边长为20 cm和30 cm的正三角形,侧面是全等的等腰梯形,且侧面面积等于上、下底面面积之和,求棱台的高和体积.解:如图所示,在三棱台ABC A′B′C′中,O′,O分别为上、下底面的中心,D,D′分别是B C,B′C′的中点,则D D′是等腰梯形BC C′B′的高,所以S侧=3××(20+30)·DD′=75DD′.又A′B′=20 cm,AB=30 cm,则上、下底面面积之和为S上+S下=×(202+302)=325(cm2).由S侧=S上+S下,得75DD′=325,所以,DD′=(cm).又因为O′D′=×20=(cm),OD=×30=5(cm),所以棱台的高h=O′O===4(cm),由棱台的体积公式,可得棱台的体积为V=(S上+S下+)=×(325+×20×30)=1 900(cm3).19.(本小题满分14分)养路处建造圆锥形无底仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?解:(1)如果按方案一,仓库的底面直径变为16 m,则仓库的体积V1=Sh=×π×()2×4=(m3).如果按方案二,仓库的高变为8 m,则仓库的体积V2=Sh=×π×()2×8==96(m3).(2)如果按方案一,仓库的底面直径变为16 m,半径为8 m,棱锥的母线长为l==4(m),则仓库的表面积S1=π×8×4=32π(m2),如果按方案二,仓库的高变为8 m.棱锥的母线长为l==10(m),则仓库的表面积S2=π×6×10=60π(m2).(3)因为V2>V1,S2<S1,所以方案二比方案一更加经济.20.(本小题满分14分)如图,某种水箱用的“浮球”,是由两个半球和一个圆柱筒组成.已知半球的直径是 6 cm,圆柱筒高为2 cm.(1)这种“浮球”的体积是多少 cm3(结果精确到0.1)?(2)要在2 500个这样的“浮球”表面涂一层胶,如果每平方米需要涂胶100克,那么共需胶多少克?解:(1)因为半球的直径是6 cm,可得半径R=3 cm,所以两个半球的体积之和为V球=πR3=π·27=36π(cm3).又圆柱筒的体积为V圆柱=πR2·h=π×9×2=18π(cm3).所以这种“浮球”的体积是V=V球+V圆柱=36π+18π=54π≈169.6(cm3).(2)根据题意,上下两个半球的表面积是S球表=4πR2=4×π×9=36π(cm2),又“浮球”的圆柱筒的侧面积为S圆柱侧=2πRh=2×π×3×2=12π(cm2),所以1个“浮球”的表面积为S==π(m2).因此,2 500个这样的“浮球”表面积的和为2 500S=2 500×π=12π(m2).因为每平方米需要涂胶100克,所以共需要胶的质量为100×12π=1 200π(克).21.(本小题满分14分)已知圆柱OO1的底面半径为2,高为4.(1)求从下底面圆周上一点出发环绕圆柱侧面一周到达上底面的最短路径长;(2)若平行于轴OO1的截面ABCD将底面圆周截去四分之一,求截面面积;(3)在(2)的条件下,设截面将圆柱分成的两部分中较小部分为Ⅰ,较大部分为Ⅱ,求VⅠ∶VⅡ(体积之比).解:(1)将侧面沿过该点的母线剪开铺平得到一个矩形,邻边长分别是4π和4,则从下底面圆周上一点出发环绕侧面一周到达上底面的最短路径长即为此矩形的对角线长4.(2)连接OA,OB,因为截面ABCD将底面圆周截去,所以∠AOB=90°,因为OA=OB=2,所以AB=2,而截面ABCD是矩形且AD=4,所以S矩形ABCD=8.(3)依题知V圆柱=Sh=16π,三棱柱AOB DO 1C的体积是8,则VⅠ+8=V圆柱=4π,所以VⅠ=4π-8,而VⅡ=V圆柱-VⅠ=12π+8,于是VⅠ∶VⅡ=.。