函数的单调性(一)PPT课件

合集下载

1 第1课时 函数的单调性(共44张PPT)

1 第1课时 函数的单调性(共44张PPT)
提示:不一定,可能是定义域的一个子区间,单调性是局部概念,不是整体 概念.
1.判断正误(正确的打“√”,错误的打“×”)
(1)所有的函数在其定义域上都具有单调性.
(×)
(2)若函数 y=f(x)在区间[1,3]上是减函数,则函数 y=f(x)的单调递减区间是
[1,3].
(×)
(3)若函数 f(x)为 R 上的减函数,则 f(-3)>f(3).
解:由题意,确定函数 y=f(x)和 y=g(x)的单调递增区间,即寻找图象呈上 升趋势的一段图象. 由题图(1)可知,在[1,4)和[4,6)内,y=f(x)是单调递增的. 由题图(2)可知,在(-4.5,0)和(4.5,7.5)内,y=g(x)是单调递增的.
()
3.设(a,b),(c,d)都是 f(x)的单调递增区间,且 x1∈(a,b),x2∈(c,d),x1<x2,
则 f(x1)与 f(x2)的大小关系为
()
A.f(x1)<f(x2)
B.f(x1)>f(x2) C.f(x1)=f(x2)
D.不能确定
解析:选 D.根据函数单调性的定义知,所取两个自变量必须是同一单调区 间内的值时,才能由该区间上函数的单调性来比较函数值的大小,而本题中 的 x1,x2 不在同一单调区间内,故 f(x1)与 f(x2)的大小不能确定.
4.若函数 f(x)在 R 上是单调递减的,且 f(x-2)<f(3),则 x 的取值范围是 ______________. 解析:函数的定义域为 R.由条件可知,x-2>3,解得 x>5. 答案:(5,+∞)
5.如图分别为函数 y=f(x)和 y=g(x)的图象,试写出函数 y=f(x)和 y=g(x)的 单调递增区间.

函数的单调性课件(共17张PPT)

函数的单调性课件(共17张PPT)
如果我们以x表示时间间隔(单位:h),y表示记忆保持量,则 不难看出,图3-7中,y是的函数,记这个函数为y =f(x).
这个函数反映出记忆具有什么规律?你能从中得到什么启发?
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
问题情境:我们知道,“记忆”在我们的学习过程中 扮演着非常重要的角色,因此有关记忆的规律一直都 是人们研究的课題。德国心理学家艾宾浩斯曾经对记 忆保持量进行了系统的实验研究,并给出了类似图37所示的记忆规律.
创设情境,生成问题 在在活初初动中中1,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
△x表示自变量x的增量,△y表示因变量y的增量. 这时,对于属于这个区间上的任意两个不相等的值x1,x2: 这个数是增函数的充要条件是yx >0; 这个数是增函数的充要条件是y <0.
x
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
因此,函数f(x)=3x+2在(- ,+ )上是增函数.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
数学Biblioteka 基础模块(上册)第三章 函数
3.1.3 函数的单调性

高一数学函数的单调性 PPT课件 图文

高一数学函数的单调性 PPT课件 图文
(2)单调减区间为(-∞,0)和(0,+∞). (3)单调减区间为(-∞,0)和(0,+∞).
例题讲解
注意: (1)可以根据函数的图象写出函数的单调
区间; (2)写单调区间时,注意区间的端点; (3)将y=f(x)的图象上下平移时,单调区
间不发生改变; (4)单调区间不能随便求并集.
例题讲解
例2
求证:函数 f(x)=-
1 x
-1在区间(-∞,0)
上是单调增函数.
证明:任取x1<x2<0,则
f(x2)-f(x1)==(-1 -x12
-1)-(- 1 = x2-x1
1 -1)
x1

x1 x2
x1x2
因为x1<x2<0,所以x1x2>0,x2-x1>0,所

x2-x1 x1x2
>0,即f(x2)-f(x1)>0,
3.下列函数在区间(0,2)上是递增函数的是( )
1
A.y=
B.y=2x-1
x
C.y=1-2x
D.y=(2x-1)2
4.函数f(x)=2x2-mx+3,当x∈[2,+∞)时是增函数, x∈(-∞,2]时是减函数,则f(1)的值( )
A.1
B.y=-1
C.y=3
D.-3
5.已知函数f(x)=ax2+2(a-1)x+2在区间(-∞,1]上是减 函数,则a 的范围是( )
2.1.3 函数的简单性质
; https:/// 好系统重装助手 重装助手
ysh04zvb
在你们眼里就是这样的人?”韩哲轩满头黑线但还是坚持很勉强的笑,他把匕首从自己那边推到了桌子的另一边,“这是你 的。”“诶?”张祁潭警惕的看看韩哲轩,又看看桌子上的匕首,小心翼翼的将它拿了起来。“确实……是我的。当时找玉玺 时丢在了郭扬家……”“你想怎样!”韩哲轩归还了匕首,慕容凌娢感觉心里有底,气势就又回来了。“要不是我冒着生命危 险把匕首给找回来,以郭扬的能力,天亮之前就能找出这柄匕首的出处。”韩哲轩看向张祁潭,眼神中竟闪着凄冷的寒光, “你觉得他会饶过谁?”“哎~苍天饶过谁!”张祁潭颤抖着收起匕首,沉寂片刻,说道,“我签。”“这就签?”慕容凌娢 一脸懵逼,不过既然张祁潭要签,她也不好意思再说什么。“看在你后续工作干的不错的份上,我也签吧……”“非常感谢。” 韩哲轩心满意足的收起本子。“哦对了,你刚才说的福利……我还真是不太懂。”慕容凌娢笑容变猥琐了。“别想多。晴穿会 鱼龙混杂,干什么的都有。大多数成员在晴穿会帮助下达到自己目的后,会反馈一些东西给晴穿会以表自己的忠诚,而晴穿会 则把这些东西收集起来,作为奖励让业绩好的成员自己挑选……这样一说倒有点像绩效工资了。”韩哲轩吐槽。“你有什么想 要的东西?”慕容凌娢很奇怪,韩哲轩穿越后背景这么好,什么东西弄不到?居然要死皮赖脸靠业绩来换……“你 猜。”“嗯……”慕容凌娢装模作样的沉思片刻,“一定是很稀有的东西。祁潭,你怎么看?”“废话。拿近点看啊。”张祁 渊熟练的翻了一个白眼,只是不知道,这个白眼是送给慕容凌娢还是送给韩哲轩的。也许,是同时给她们两个的。“话说签简 体字还是繁体字?草书还是楷书?”(古风一言)柔情绕指尖,谁的琴弦,在谁的袅娜中化作悲言,指尖弦断。第116章 超自 然协会“你有想要的东西?”慕容凌娢很奇怪,韩哲轩穿越后背景这么好,什么东西弄不到?居然要死皮赖脸靠业绩来 换……“你猜。”“嗯……”慕容凌娢装模作样的沉思片刻,“一定是很稀有的东西。祁潭,你怎么看?”“废话。拿近点看 啊。”张祁渊熟练的翻了一个白眼,只是不知道,这个白眼是送给慕容凌娢还是送给韩哲轩的。也许,是同时给她们两个的。 “话说签简体字还是繁体字?草书还是楷书?”“繁体字吧。”韩哲轩把毛笔递了上去,“毕竟穿越过来之前所在时空不同, 还是统一用这个时代的繁体字比较整齐。”“呵,原来夏桦有这样的强迫症……”慕容凌娢也在本子上签下了龙飞凤舞一笔写 成的四个字。“多谢,我先走了。”韩哲轩跳到了窗台上,“明天这屋子就又归我了,你有什么东西赶快拿走。” “知道知 道,慢走不送。”慕容凌娢敷衍的挥挥手。“我也走了,拜

高中数学必修一函数的单调性 (共17张PPT)

高中数学必修一函数的单调性 (共17张PPT)
3),[3,4]。其中 y= f(x)在区间[-4,-2), [1,3)上是减 函数,在[-2,1), [3,4]是增函数。
注意:函数y= f(x)在[-4,-2)∪[1,3)上不是减函数。 可以说:函数y= f(x)在[-4,-2)和[1,3)上是减函数
y kx b 当k 0时,y在定义域R上单调递增 当k 0时,y在定义域R上单调递减
b , 2a
b , 2a
a<0
b , 2a
返回
例2
判断函数f ( x) x 2x 的单调性.
2
y
f (x) x 2x
2
单调递减区间:
(, 1]
单调递增区间:
1
o
2
x
1 , )
例3.证明:函数 f ( x) 3x 2 在 , 上是增函数.
思考:如何证明一个函数是单调递增的呢?
证明:在区间
, 上任取两个值 x1 , x2 且 x1 x2
3( x2 x1 )
取值 作差 变形
则f ( x2 ) f ( x1 ) (3x2 2) (3x1 2)
x1, x2 , ,且 x1 x2 x2 区间D是单调增函数或单调减函数,那么 就说函数 y =f(x)在区间D上具有单调性。
在单调区间上,增函数的图象是上升的,减函数的图象是下降的。
判断1:函数 f (x)= x2 在 , 是单调增函数;
y
(2)函数单调性是针对某个区间而言的,是一个局部性质;
当x的值增大时,函数值y反而减小——图像在该区间内逐渐下降。
类比单调增函数的研究方法定义单调减函数. y y

第1课时 函数的单调性 课件(42张)

第1课时 函数的单调性 课件(42张)

点拨:二次函数的单调性与对称轴有关.
与二次函数单调性相关的参数问题 (1)若已知函数的单调区间,则对称轴即区间的端点; (2)若已知函数在某区间上的单调性,则该区间是函数相关区间的子区间,利用端 点关系求范围.
பைடு நூலகம் 【加固训练】
函数 f(x)=x2+(2a+1)x+1 在区间[1,2]上单调,则实数 a 的取值范围是( )
创新思维 抽象函数的单调性(逻辑推理) 【典例】已知函数 f(x)对任意的 a,b∈R,都有 f(a+b)=f(a)+f(b)-1,且当 x>0 时,f(x)>1. 求证:f(x)是 R 上的增函数; 【证明】设 x1,x2∈R,且 x1<x2, 则 x2-x1>0,即 f(x2-x1)>1, 所以 f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)= f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1>0. 所以 f(x1)<f(x2),所以 f(x)是 R 上的增函数.
范围为-32,+∞ ∪-∞,-25 .
解不等式
【典例】(2020·昆明高一检测)已知 f(x)是定义在 R 上的减函数,则关于 x 的不等
式 f(x2-x)-f(x)>0 的解集为( )
A.(-∞,0)∪(2,+∞)
B.(0,2)
C.(-∞,2)
D.(2,+∞)
【解析】选 B.因为 f(x)是定义在 R 上的减函数,则 f(x2-x)-f(x)>0.所以 f(x2- x)>f(x),所以 x2-x<x.即 x2-2x<0,解可得 0<x<2.即不等式的解集为(0,2).
基础类型二 利用定义证明函数的单调性(逻辑推理) 【典例】证明:函数 f(x)=x2-x 1 在区间(-1,1)上单调递减.

函数单调性课件(公开课)ppt

函数单调性课件(公开课)ppt
函数单调性课件(公开课)
目录
• 函数单调性的定义与性质 • 判断函数单调性的方法 • 单调性在解决实际问题中的应用 • 函数单调性的深入理解 • 函数单调性的实际案例分析
01 函数单调性的定义与性质
函数单调性的定义
函数单调性是指函数在某个区间内的增减性。如果函数在某个区间内单调递增, 则表示函数值随着自变量的增加而增加;如果函数在某个区间内单调递减,则表 示函数值随着自变量的增加而减小。
的计算过程。
单调性与微分方程的关系
要点一
单调性决定了微分方程解的稳定 性
对于一阶线性微分方程,如果其系数函数在某区间内单调 递增(或递减),则该微分方程的解在此区间内是稳定的 。
要点二
单调性是研究微分方程的重要工 具
通过单调性可以判断微分方程解的存在性和唯一性,以及 研究解的动态行为。
05 函数单调性的实际案例分 析
总结词
利用单调性证明或解决不等式问题
详细描述
单调性在解决不等式问题中起到关键作用。通过分析函数的单调性,我们可以证明不等式或解决与不等式相关的 问题。例如,利用单调性可以证明数学归纳法中的不等式,或者在比较大小的问题中利用单调性进行判断。
单调性在函数极值问题中的应用
总结词
利用单调性求解函数的极值
详细描述
函数单调性的定义可以通过函数的导数来判断。如果函数的导数大于0,则函数在该 区间内单调递增;如果函数的导数小于0,则函数在该区间内单调递减。
函数单调性的性质
函数单调性具有传递性,即如果函数在区间I上单调递增,且 在区间J上单调递增,则函数在区间I和J的交集上也是单调递 增的。
函数单调性具有相对性,即如果函数在区间I上单调递增,且 另一个函数在区间J上单调递增,则这两个函数在区间I和J的 交集上也是单调递增的。

函数的单调性与最大(小)值PPT课件

函数的单调性与最大(小)值PPT课件

∴f(x)在[-1,0]上是增函数,在(-∞,-1]上是减函数. 又x∈[0,1],u∈[-1,0]时,恒有f(x)≥f(u),等号只在x=u=0时取到,故
f(x)在[-1,1]上是增函数. (3)由(2)知函数f(x)在(0,1)上递增,在[1,+∞)上递减,则f(x)在x=1处
可取得最大值. ∴f(1)=, ∴函数的最大值为 ,无最小值.
x≤1,
.是
,
上的减函数, 那么a的取值范围是(
)
A.(0,1)
C.
1 7
,
1 3
B.
0,
1 3
D.
1 7
,1
[错解]依题意应有
3a 1 0, 0 a 1,
解得0
a
1 3
,
选B.
[剖析] 本题的错误在于没有注意分段函数的特点,只保证了函数
在每一段上是单调递减的,没有使函数f(x)在(-∞,1]上的最小值
【典例2】利用定义判断函数f x x x2 1在区间
R上的单调性.
[错解]设x1, x2 R,且x1 x2 ,则f x2 f x1
(x2 x22 1) (x1 x12 1)
x2 x1 ( x22 1 x12 1),
因为x1 x2 ,则x2 x1 0,且 x22 1 x12 1 0,
(2)在解答过程中易出现不能正确构造f(x2-x1)的形式或不能将不 等式右边3转化为f(2)从而不能应用函数的单调性求解,导致此 种错误的原因是没有熟练掌握单调性的含义及没弄清如何利 用题目中的已知条件或者不能正确地将抽象不等式进行转化.
错源一不注意分段函数的特点
【典例1】已知f
x
(3a 1)x 4a, logax, x 1

函数的单调性与最值 课件(共20张PPT)

函数的单调性与最值 课件(共20张PPT)
最值. 三.对于较复杂函数,可用换元法化归为简单函数、或者运用导数,
求出在给定区间上的极值,最后结合端点值,求出最值.
课堂小结
单调性
定义
图象特征 判断方法
应用
定义法 图象变换 求导法 求最值 求参数范围 解不等式
祝同学们前程似锦!
专题一:判断、证明函数的单调性
例 1:(3)已知 f x 2x , x 2,6. (1)判断 f x 的单调性,并加以证明;(2)求 f x 的最值.
x 1
专题一:判断、证明函数的单调性
变式 3:讨论 f x ax a 0, 的单调性.
x 1
小结: 确定函数单调性的四种方法 (1)定义法;(2)导数法;(3)图象法;(4)性质法.
【学习目标】
01
理解函数的单调性、最大值、最小值及其 几何意义;
02
会运用函数图象理解和研究函数的单调性, 并利用单调性求最值或者求参数范围;
03
培养抽象概括、逻辑推理、运算求解等能 力.
复习回顾 1.函数的单调性 (1)单调函数的定义
增函数
减函数
一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D 定义 当x1<x2时,都有__f_(x_1_)_<_f(_x_2)_, 当x1<x2时,都有_f_(_x_1)_>_f_(x_2_),
自左向右看图象是下降的
复习回顾
(2)单调区间的定义 如果函数y=f(x)在区间D上_单__调__递__增__或_单__调__递__减__,那么就说函数y=f(x) 在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.
复习回顾 2.函数的最值
前提
设函数y=f(x)的定义域为I,如果存在实数M满足

函数的单调性(公开课课件)

函数的单调性(公开课课件)

VS
单调性与极值大小的关系
单调性可以用来比较不同区间上的极值大 小。
单调性与最值的关系
单调性与最值点的关系
单调性可以用来判断函数在某点是否为最值 点。
单调性与最值大小的关系
单调性可以用来比较不同区间上的最值大小 。
THANKS FOR WATCHING感Biblioteka 您的观看CHAPTER 03
函数单调性的应用
利用单调性求参数范围
通过函数的单调性,我们可以确定参数的取值范围,进而解决一些数学问题。
在函数中,如果函数在某区间内单调递增或递减,那么我们可以根据函数值的变化趋势,确定参数的取值范围。例如,如果 函数$f(x)$在区间$(a, b)$内单调递增,且$f(x_0) = 0$,那么对于任意$x in (a, b)$,都有$f(x) > 0$,从而可以得出参数的 取值范围。
单调性可以通过函数的导数来判断,如果函数的导数大于等于0,则函数在该区 间内单调递增;如果函数的导数小于等于0,则函数在该区间内单调递减。
单调增函数和单调减函数
01
单调增函数是指函数在某个区间 内随着自变量的增加而增加。
02
单调减函数是指函数在某个区间 内随着自变量的增加而减少。
函数单调性的几何意义
导数与函数单调性
总结词
导数可以判断函数的单调性,当导数大于0时,函数单调递增;当导数小于0时 ,函数单调递减。
详细描述
导数表示函数在某一点的切线斜率。如果导数大于0,说明切线斜率为正,函数 在该区间内单调递增;如果导数小于0,说明切线斜率为负,函数在该区间内单 调递减。
复合函数的单调性
总结词
复合函数的单调性取决于内外层 函数的单调性以及复合方式。

函数单调性说课稿PPT(共25张PPT)

函数单调性说课稿PPT(共25张PPT)
19
教材分 析
3.例题讲解,巩固新知
学情分 析
例2
教法学法 分析
河教南学跨过程境 E设贸计易
设计意图:使学生掌握利用定义证明函数的单调性,并进一步加深学生对函 数单调性的理解。
板书设 计
20
教材分 析
4.课堂练习,升华新知
学情分 析
教法学法 分析
课堂练习
教河学南过跨境程 E设贸计易
板书设 计
设计意图
13
2.探索新知,讲授新课
教材分 析
学情分 析
问题2
教法学法 分析
河教南学跨过境程 E设贸计易
板书设 计

-4
-3
-2
-1
0
1
2
3
4


16
9
4
1
0
1
4
9
16

设计意图
实现学生用“数字语言”表述函数的单调性,实现“形”到“数” 的转换。使学生体会到用数量大小关系表述函数单调性。
14
2.探索新知,讲授新课
启发学生利用图象和单调性概念解决相 关实际的问题。目的是加深学生对定义的理 解,巩固定义法证明函数单调性的步骤。同 时为导数的教学作准备。
21
5.归纳总结,布置作业
教材分 析
学情分 析
教法学法 分析
河教南学跨过境程 E设贸计易
板书设 计
1学会了……的知识
2掌握了……的方

回顾探 究过程 形成自 主反思
掌握判别函数单调性的方法。
(1)函数单调性概念的形成;
设(计3)意探图究教:过引学程起中过学用生程到的的认思知想冲方突法,和把思学维生方的法注,意如力数从形图结表合上,转等到价解转析换式,上类,比让等学。生体会从解析式上研(究2)函判数断单函数调单性调的性必的要方性法。(图象、

【课件】函数的单调性(1)课件-高二下学期数学人教A版(2019)选择性必修第二册

【课件】函数的单调性(1)课件-高二下学期数学人教A版(2019)选择性必修第二册

在(-∞, 0)上, f ′ (x)<0
在(0, +∞)上, f (x)单调递增
在(0, +∞)上,f ′ (x)>0
y
f (x) =x3
O
y
f ′ (x) =3x2
x
O
x
(3)
在(-∞, +∞)上, f (x)单调递增
在(-∞, +∞)上, f ′ (x)≥0
y
y
1
f ( x)
x
1
f ( x) 2
函数y=x3在R上单调递增.
思考7 在区间(a,b)内,f ′(x)>0(f ′(x)<0)是函数
y=f(x)在区间(a,b)内单调递增(递减)的什么条件?
充分不必要条件
y
y x3
O
x
例1 利用导数判断下列函数的单调性:
x 1
(1) f ( x ) x 3 x ;(2) f ( x ) sin x x ,x (0, );(3) f ( x )
49
h( x ) 4.9t
运动员从起跳到最高点,以及从最高点到入
水这两段时间的运动状态有什么区别? 如何从数
学上刻画这种区别?
h
2
4.8 t 11 h v ( t ) 4.9t 4.8
O a
b
观察图象可以发现:
(1) 从起跳到最高点,运动员的重心处于上升
t
b
O a
(1)
(2)
由 f ( x ) 0,可得x 0,由f ( x ) 0,可得x 0.
∴ f ( x )在区间( ,0)上单调递减,在(0 , )上单调递增.

函数的单调性1)-PPT课件

函数的单调性1)-PPT课件
y f ( x)
2 1
2
5
O
1
3
5
说明:要了解函数在某一区间上是否具有单调性, 从图上进行观察是一种常用而又粗略的方法,严 格地说,它需要根据单调函数的定义进行证明。
例 2 证明函数 f ( x) 3x 2 在 R 上是增函数.
1 例 3.证明函数 f ( x) x 在 (0, ) 上是减函数。
函数y=f(x)在区间D上是增函数或减函数,
就称函数y=f(x)在区间D上具有单调性, D称为函数的单调区间。
思考:
函数y=x2在定义域上具有单调性吗?
y
o
x
思考:
函数
1 y x
在定义域上具有单调性吗?
y
o
x
y f ( x) 的图 y 例 1: 下图是定义在 [5,5] 上的函数 像, 根据图像说出单调区间, 以及在每一个 区间上函数 y f ( x) 的单调性。
1.一次函数y=kx+b,当k>0与k<0时, 函数的图象有什么区别?
y
x1
Y=kx+b (k>0) …… ……
y
y1 x1
Y=kx+b (k<0)
பைடு நூலகம்
y2
y1
o
x2
x
o
x2
……
y2
x
一次函数 当 x 1< x y=kx+b 时y 随 当xx的增大而增大, 2时,y ,当 1< y k>0 2 1< x 2时,y 1> y 2 y 随 x 的增大而增大 当k<0时y 随 x 的增大而减小 y 随 x 的增大而减小 。
……
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
o
K>0时,函数在R上单调递增
x
y
K<0时,函数在R上单调递减
o
x
2020年10月2日
10
练习 试一试 判断函数 f(x) = x2 (x ∈R)的单调性,并加以证明
y
0x
想一想 画出 y = 1/x 图象,回答下列两个问题
1)能不能说 f(x) = 1/x 在(- ∞,+∞)是单调递减 不能(x≠0)
3
y y随x的增大而增大
f(x2) f(x1)
你能用数学语言去 描述函数的这个特 点吗?
o
x1 x2
x
2020年10月2日
4
y
y
f(x1) O 6 x1
14 x
f(x1) O x1
f(x2) x2 x
如果一个函数在定义域 某个区间上,存在 x1 、x2,
当x1 < x2 时, f(x1) < f (x2)
2020年10月2日
7
说出该图像的单调区间
T
单调增区间为
25
[4,14)
20
15
单调减区间为
10
[0,4),[14,24]
5
o 4 8 12 16 20 24 t
2020年10月2日
8
例1. 证明函数 f(x) =3x+2 在R上是增函数
证明: 设x1 ,x2是R上的任意两个实数, 且x1 < x2 . 则f(x1)- f (x2) = (3x1 +2)-(3 x2 +2) (条件) = 3(x1 - x2) 由x1 < x2得x1 - x2 <0 于是f(x1)- f (x2) <0 即f(x1) < f(x2) (论证结果) 所以f(x)=3x+2在R上是增函数。(结论)
3、 多个单调增(减)区间用逗号分隔,而不用 “∪”
2020年10月2日
12
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
2020年10月2日
9
一. 定义法判定函数单调性的步骤:
1. 设x1、x2 ∈给定区间,且 x1 < x2 2. 计算f(x1)-f(x2)至最简(因式分解、配方) 3. 判断上述差的符号 4. 下结论(若差<0,则为增函数;若差>0,则为减函数)
二 .一般地,一次函数 y=kx+b (k≠0) 的单调性?
T
25 20 15 10
5 o 4 8 12 16 20 24 t
2020年10月2日
1
某地区24小时内的温度变化曲线如图:
T
25 20 15 10
5 o 4 8 12 16 20 24 t
2020年10月2日
2
y 图象特点?
(y随x的变化趋势) f(x2)
f(x1)
o
6 x1
x2 14 x
2020年10月2日
能不能说这个函数在这个区间 上满足:y随x的增大而增大。
2020年10月2日
答:不能 x1 、x2的选取 不具有任意性
5
如何用x 与f(x)来描述上升的图象?
y 如果对于属于定义域内的某个区
间上的任意两个自变量值x1 , x2
x1 < x2
f (x1) < f (x2)
f(x1) f(x2)
那么就说f (x) 在这个区间上是 增 函 数, 给定的区间称为函数
o
x1 x2
x 的单调增区间
荣辱与共 增函数x,y的关系:
2020年10月2日

6
y
如果在给定区间上任取x1 , x2 ,
x1 < x2
f(x1) > f (x2)
f(x1) o x1
f(x2)
那么就说f (x) 在这个区间上是 减 函 数, 给定的区间称为函数
x2 x 的 单 调 减 区 间
此消彼长 减函数x,y的关系:
2)能否说f(x)=1/x在(-∞,0)∪(0,+∞)是单调递减的
y
x1= -1, x2 =1
0x
x1 〈 x2 f(x1)〈 f (x2)
2020年10月2日
11
注:
1、函数的单调性也叫函数的增减性。 2、 函数的单调性是区间性概念
1) 所研究的单调区间应为函数的定义域或其子区间 2) 函数可能在整个定义域内没有单调性, 而只在其 子区间内有单调性 3)不能在一点处说函数的单调性
汇报人:XXX 汇报日期:20XX年10月10日
13
相关文档
最新文档