抛物线测试
2023年新高考数学一轮复习9-5 抛物线(真题测试)含详解
专题9.5 抛物线(真题测试)一、单选题1.(2023·全国·高三专题练习)已知抛物线24y x =上一点M 到x 轴的距离是2,则点M 到焦点F 的距离为( )A B .2C .D .32.(2023·全国·高三专题练习)抛物线21:4E y x =的焦点到其准线的距离为( ) A .18B .14C .2D .43.(2022·全国·高考真题(文))设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =( )A .2B .C .3D .4.(2021·全国·高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( )A .1B .2C .D .45.(2020·北京·高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP6.(2019·全国·高考真题(文))若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( )A .2B .3C .4D .87.(山东·高考真题(文))已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线于 ,A B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A .1x = B .1x =- C .2x =D .2x =-8.(2017·全国·高考真题(理))已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16B .14C .12D .10二、多选题9.(2022·全国·高考真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则( ) A .C 的准线为1y =- B .直线AB 与C 相切 C .2|OP OQ OA ⋅>D .2||||||BP BQ BA ⋅>10.(2022·全国·高考真题)已知O 为坐标原点,过抛物线2:2(0)C y px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则( )A .直线AB 的斜率为B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒11.(2022·全国·高三专题练习)已知O 为坐标原点,抛物线E 的方程为214y x =,E 的焦点为F ,直线l 与E 交于A ,B 两点,且AB 的中点到x 轴的距离为2,则下列结论正确的是( )A .E 的准线方程为116y =- B .AB 的最大值为6C .若2AF FB =,则直线AB 的方程为1y x =+D .若OA OB ⊥,则AOB 面积的最小值为1612.(2023·全国·高三专题练习)已知抛物线Γ:()220x py p =>,过其准线上的点(),1T t -作的两条切线,切点分别为A ,B ,下列说法正确的是( ) A .2p =B .当1t =时,TA TB ⊥C .当1t =时,直线AB 的斜率为2D .TAB △面积的最小值为4三、填空题13.(2018·北京·高考真题(文))已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.14.(2023·全国·高三专题练习)已知抛物线C :26y x =的焦点为F ,A 为C 上一点且在第一象限,以F 为圆心,线段FA 的长度为半径的圆交C 的准线于M ,N 两点,且A ,F ,M 三点共线,则AF =______.15.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,焦点F 与双曲线22221(0,0)x y a b a b-=>>的左焦点重合,若两曲线相交于M ,N 两点,且线段MN 的中点是点F ,则该双曲线的离心率等于______.16.(2021·北京·高考真题)已知抛物线24y x =的焦点为F ,点M 在抛物线上,MN 垂直x 轴与于点N .若6MF =,则点M 的横坐标为_______; MNF 的面积为_______.四、解答题17.(2017·北京·高考真题(理))已知抛物线C :y 2=2px 过点P (1,1).过点10,2⎛⎫⎪⎝⎭作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点. (1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.18.(2019·全国·高考真题(理))已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |.19.(2019·北京·高考真题(理))已知抛物线C :x 2=−2py 经过点(2,−1). (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.20.(2022·全国·高考真题(理))设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =. (1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.21.(2020·全国·高考真题(理))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.22.(2021·全国·高考真题(文))已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.专题9.5 抛物线(真题测试)一、单选题1.(2023·全国·高三专题练习)已知抛物线24y x =上一点M 到x 轴的距离是2,则点M 到焦点F 的距离为( )A B .2C .D .3【答案】B【分析】有题意可知()1,2M ±,由焦点(1,0)F 则可求出点M 到焦点F 的距离. 【详解】M 到x 轴的距离是2,可得()1,2M ±,焦点(1,0)F 则点M 到焦点的距离为2. 故选:B.2.(2023·全国·高三专题练习)抛物线21:4E y x =的焦点到其准线的距离为( ) A .18B .14C .2D .43.(2022·全国·高考真题(文))设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =( )A .2B .C .3D .故选:B4.(2021·全国·高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( ) A .1 B .2 C.D .45.(2020·北京·高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP【详解】如图所示:.故选:B.6.(2019·全国·高考真题(文))若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( ) A .2B .3C .4D .87.(山东·高考真题(文))已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线于 ,A B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A .1x = B .1x =- C .2x = D .2x=-8.(2017·全国·高考真题(理))已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14C .12D .10二、多选题9.(2022·全国·高考真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则( ) A .C 的准线为1y =- B .直线AB 与C 相切 C .2|OP OQ OA ⋅> D .2||||||BP BQ BA ⋅>所以2212||||(1)||15BP BQ k x x k ⋅=+=+>,而2||5BA =,故D 正确.故选:BCD10.(2022·全国·高考真题)已知O 为坐标原点,过抛物线2:2(0)Cy px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则( ) A .直线AB 的斜率为B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒33选项;由0OA OB ⋅<,0MA MB ⋅<求得,易得(,0)2p F ,由AF AM =3(4p OA OB ⋅=又(4p MA MB ⋅=-又360AOB AMB OAM OBM ∠+∠+∠+∠=,则180OAM OBM ∠+∠<,D 正确. 故选:ACD.11.(2022·全国·高三专题练习)已知O 为坐标原点,抛物线E 的方程为214y x =,E 的焦点为F ,直线l 与E 交于A ,B 两点,且AB 的中点到x 轴的距离为2,则下列结论正确的是( )A .E 的准线方程为116y =- B .AB 的最大值为6C .若2AF FB =,则直线AB 的方程为1y x =+D .若OA OB ⊥,则AOB 面积的最小值为16 ,联立抛物线,由2AF FB =解出A 即可求出面积最小值,即可判断D 选项.【详解】由2AF FB =得直线设直线AB 的方程为4A B x x =-.由于2AF FB =,所以22x =±,所以2124A A y x ==,直线AB 的方程为),y OA ⊥所以AOB 面积的是小值为故选:BCD.12.(2023·全国·高三专题练习)已知抛物线Γ:()220x py p =>,过其准线上的点(),1T t -作的两条切线,切点分别为A ,B ,下列说法正确的是( ) A .2p =B .当1t =时,TA TB ⊥C .当1t =时,直线AB 的斜率为2D .TAB △面积的最小值为4220x y ,故AB k C ,切线方程TA :的方程为1xt y -=-三、填空题13.(2018·北京·高考真题(文))已知直线l过点(1,0)且垂直于x轴,若l被抛物线24y ax=截得的线段长为4,则抛物线的焦点坐标为_________.14.(2023·全国·高三专题练习)已知抛物线C:26=的焦点为F,y xA为C上一点且在第一象限,以F为圆心,线段FA的长度为半径的圆交C的准线于M,N两点,且A,F,M三点共线,则AF=______.【答案】6【分析】根据圆的几何性质以及抛物线的定义即可解出.故答案为:6.15.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,焦点F与双曲线22221(0,0)x ya ba b-=>>的左焦点重合,若两曲线相交于M,N两点,且线段MN的中点是点F,则该双曲线的离心率等于______.M在抛物线上,所以M在双曲线上,22cb=-故答案为:16.(2021·北京·高考真题)已知抛物线24y x=的焦点为F,点M在抛物线上,MN垂直x轴与于点N.若6MF=,则点M的横坐标为_______;MNF的面积为_______.FMNS.【FMNS=故答案为:四、解答题17.(2017·北京·高考真题(理))已知抛物线C:y2=2px过点P(1,1).过点10,2⎛⎫⎪⎝⎭作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.故A 为线段BM 的中点.18.(2019·全国·高考真题(理))已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |. 利用3AP PB =可得y ()22,B x y 1252x x ∴+= 3AP PB = ∴则419AB =+⋅19.(2019·北京·高考真题(理))已知抛物线C :x 2=−2py 经过点(2,−1).(Ⅰ)求抛物线C的方程及其准线方程;(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.D p,过F的直线交C于20.(2022·全国·高考真题(理))设抛物线2=>的焦点为F,点(),0:2(0)C y px pMF=.M,N两点.当直线MD垂直于x轴时,3(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.21.(2020·全国·高考真题(理))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.)(),0F c ,的方程为x =21c=+,解得抛物线2C 的方程为24y cx =,联立24x c y cx=⎧⎨=⎩,43CD =即223c ac +01e <<,解得(2)[方法一由椭圆的第二定义知所以12-a22.(2021·全国·高考真题(文))已知抛物线2=>的焦点F到准线的距离为2.C y px p:2(0)(1)求C的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值. ,则(99PQ QF ==-)09,10y ,由P 在抛物线上可得Q 的轨迹方程为的斜率0025OQ y k x ==(1,0),9=PQ QF ,所以29(1)9x y =-=-,所以的斜率为244=y x t 方法四利用参数法,由题可设()24,4(0),(,)>P t t t Q x y ,求得x,y 关于t 的参数表达式,得到直线OQ 的斜率关于t 的表达式,结合使用基本不等式,求得直线OQ 斜率的最大值.。
2020届高考数学理一轮(新课标通用)考点测试:54 抛物线
考点测试54 抛物线高考概览本考点是高考必考知识点,常考题型为选择题、填空题、解答题,分值为5分或12分,中、高等难度考纲研读1.掌握抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率)2.理解数形结合的思想3.了解抛物线的实际背景及抛物线的简单应用一、基础小题1.抛物线y =x 2的准线方程是( )14A .y =-1 B .y =-2 C .x =-1 D .x =-2答案 A解析 依题意,抛物线x 2=4y 的准线方程是y =-1,故选A .2.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线准线的距离为( )A .4B .6C .8D .12答案 B解析 依题意得,抛物线y 2=8x 的准线方程是x =-2,因此点P 到该抛物线准线的距离为4+2=6,故选B .3.到定点A (2,0)与定直线l :x =-2的距离相等的点的轨迹方程为( )A .y 2=8x B .y 2=-8xC .x 2=8yD .x 2=-8y 答案 A解析 由抛物线的定义可知该轨迹为抛物线且p =4,焦点在x 轴正半轴上,故选A .4.若抛物线y 2=2px (p >0)上的点A (x 0,)到其焦点的距离是A 到y 轴距离2的3倍,则p 等于( )A .B .1C .D .21232答案 D解析 由题意3x 0=x 0+,x 0=,则=2,∵p >0,∴p =2,故选D .p2p4p 225.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,若x 1+x 2=6,则|AB |等于( )A .4B .6C .8D .10答案 C解析 由抛物线y 2=4x 得p =2,由抛物线定义可得|AB |=x 1+1+x 2+1=x 1+x 2+2,又因为x 1+x 2=6,所以|AB |=8,故选C .6.若抛物线y =4x 2上一点到直线y =4x -5的距离最短,则该点为( )A .(1,2)B .(0,0)C .,1D .(1,4)12答案 C解析 解法一:根据题意,直线y =4x -5必然与抛物线y =4x 2相离,抛物线上到直线的最短距离的点就是与直线y =4x -5平行的抛物线的切线的切点.由y ′=8x =4得x =,故抛物线的斜率为4的切线的切点坐标是,1,该1212点到直线y =4x -5的距离最短.故选C .解法二:抛物线上的点(x ,y )到直线y =4x -5的距离是d ==|4x -y -5|17=,显然当x =时,d 取得最小值,此时y =1.故选C .|4x -4x 2-5|174x -122+417127.已知动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为________.答案 y 2=4x解析 设动圆的圆心坐标为(x ,y ),则圆心到点(1,0)的距离与其到直线x =-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y 2=4x .8.已知抛物线y 2=4x 的焦点为F ,准线与x 轴的交点为M ,N 为抛物线上的一点,且满足|NF |=|MN |,则∠NMF =________.32答案 π6解析 过N 作准线的垂线,垂足是P ,则有|PN |=|NF |,∴|PN |=|MN |,∠NMF =∠MNP .又cos ∠MNP =,∴∠MNP =,即3232π6∠NMF =.π6二、高考小题9.(2018·全国卷Ⅰ)设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为的直线与C 交于M ,N 两点,则·=( )23FM → FN → A .5 B .6 C .7 D .8答案 D解析 根据题意,过点(-2,0)且斜率为的直线方程为y =(x +2),与抛物2323线方程联立Error!消去x 并整理,得y 2-6y +8=0,解得M (1,2),N (4,4),又F (1,0),所以=(0,2),=(3,4),从而可以求FM → FN→ 得·=0×3+2×4=8,故选D .FM→ FN → 10.(2017·全国卷Ⅰ)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10答案 A解析 因为F 为y 2=4x 的焦点,所以F (1,0).由题意直线l 1,l 2的斜率均存在,且不为0,设l 1的斜率为k ,则l 2的斜率为-,故直线l 1,l 2的方程分别为y =k (x -1),1k y =-(x -1).1k 由Error!得k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=,x 1x 2=1,2k 2+4k 2所以|AB |=·|x 1-x 2|1+k 2=·1+k 2(x 1+x 2)2-4x 1x 2=·=.1+k 22k 2+4k 22-44(1+k 2)k 2同理可得|DE |=4(1+k 2).所以|AB |+|DE |=+4(1+k 2)4(1+k 2)k 2=4+1+1+k 2=8+4k 2+≥8+4×2=16,1k 21k 2当且仅当k 2=,即k =±1时,取得等号.故选A .1k 211.(2018·全国卷Ⅲ)已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.答案 2解析 设A (x 1,y 1),B (x 2,y 2),则Error!所以y -y =4x 1-4x 2,212所以k ==.y 1-y 2x 1-x 24y 1+y 2取AB 的中点M ′(x 0,y 0),分别过点A ,B 作准线x =-1 的垂线,垂足分别为A ′,B ′.因为∠AMB =90°,所以|MM ′|=|AB |=(|AF |+|BF |)=(|AA ′|+|BB ′|).121212因为M ′为AB 的中点,所以MM ′平行于x 轴.因为M (-1,1),所以y 0=1,则y 1+y 2=2,所以k =2.12.(2018·北京高考)已知直线l 过点(1,0)且垂直于x 轴.若l 被抛物线y 2=4ax 截得的线段长为4,则抛物线的焦点坐标为________.答案 (1,0)解析 由题意得a >0,设直线l 与抛物线的两交点分别为A ,B ,不妨令A 在B 的上方,则A (1,2),B (1,-2),故|AB |=4=4,得a =1,故抛物线方a a a 程为y 2=4x ,其焦点坐标为(1,0).13.(2017·天津高考)设抛物线y 2=4x 的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若∠FAC =120°,则圆的方程为________.答案 (x +1)2+(y -)2=13解析 由y 2=4x 可得点F 的坐标为(1,0),准线l 的方程为x =-1.由圆心C 在l 上,且圆C 与y 轴正半轴相切(如图),可得点C 的横坐标为-1,圆的半径为1,∠CAO =90°.又因为∠FAC =120°,所以∠OAF =30°,所以|OA |=,所以点C 的纵坐标为.33所以圆的方程为(x +1)2+(y -)2=1.3三、模拟小题14.(2018·沈阳监测)抛物线y =4ax 2(a ≠0)的焦点坐标是( )A .(0,a )B .(a ,0)C .D .(0,116a )(116a,0)答案 C解析 将y =4ax 2(a ≠0)化为标准方程得x 2=y (a ≠0),所以焦点坐标为14a ,故选C .(0,116a )15.(2018·太原三模)已知抛物线y 2=4x 的焦点为F ,准线为l ,P 是l 上一点,直线PF 与抛物线交于M ,N 两点,若=3,则|MN |=( )PF → MF→ A . B .8 C .16 D .163833答案 A解析 由题意F (1,0),设直线PF 的方程为y =k (x -1),M (x 1,y 1),N (x 2,y 2).因为准线方程为x =-1,所以得P (-1,-2k ).所以=(2,2k ),PF→ =(1-x 1,-y 1),因为=3,所以2=3(1-x 1),解得x 1=.把MF → PF → MF→ 13y =k (x -1)代入y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0,所以x 1x 2=1,所以x 2=3,从而得|MN |=|MF |+|NF |=(x 1+1)+(x 2+1)=x 1+x 2+2=.故选A .16316.(2018·豫南九校联考)已知点P 是抛物线x 2=4y 上的动点,点P 在x 轴上的射影是点Q ,点A 的坐标是(8,7),则|PA |+|PQ |的最小值为( )A .7B .8C .9D .10答案 C解析 延长PQ 与准线交于M 点,抛物线的焦点为F (0,1),准线方程为y =-1,根据抛物线的定义知,|PF |=|PM |=|PQ |+1.∴|PA |+|PQ |=|PA |+|PM |-1=|PA |+|PF |-1≥|AF |-1=-1=10-1=9.82+(7-1)2当且仅当A ,P ,F 三点共线时,等号成立,则|PA |+|PQ |的最小值为9.故选C .17.(2018·青岛质检)已知点A 是抛物线C :x 2=2py (p >0)的对称轴与准线的交点,过点A 作抛物线C 的两条切线,切点分别为P ,Q ,若△APQ 的面积为4,则实数p 的值为( )A .B .1C .D .21232答案 D解析 解法一:设过点A 且与抛物线C 相切的直线为y =kx -.由Error!得p2x 2-2pkx +p 2=0.由Δ=4p 2k 2-4p 2=0,得k =±1,所以得点P -p ,,p2Qp ,,所以△APQ 的面积为S =×2p ×p =4,解得p =2.故选D .p212解法二:如图,设点P (x 1,y 1),Q (x 2,y 2).由题意得点A 0,-.y =x 2,求导得y ′=x ,所以切线PA 的p212p 1p 方程为y -y 1=x 1(x -x 1),即y =x 1x -x ,切线PB 的方程为y -y 2=x 2(x -x 2),1p 1p 12p 211p 即y =x 2x -x ,代入A 0,-,得点P -p ,,Qp ,,所以△APQ 的面积为1p 12p 2p 2p2p2S =×2p ×p =4,解得p =2.故选D .1218.(2018·沈阳质检一)已知抛物线y 2=4x 的一条弦AB 恰好以P (1,1)为中点,则弦AB 所在直线的方程是________.答案 2x -y -1=0解析 设点A (x 1,y 1),B (x 2,y 2),由A ,B 都在抛物线上,可得Error!作差得(y 1+y 2)(y 1-y 2)=4(x 1-x 2).因为AB 中点为P (1,1),所以y 1+y 2=2,则有2·=4,所以k AB ==2,从而直线AB 的方程为y -1=2(x -1),即y 1-y 2x 1-x 2y 1-y 2x 1-x 22x -y -1=0.一、高考大题1.(2018·全国卷Ⅰ)设抛物线C :y 2=2x ,点A (2,0),B (-2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:∠ABM =∠ABN .解 (1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,-2).所以直线BM 的方程为y =x +1或y =-x -1.1212(2)证明:当l 与x 轴垂直时,AB 为线段MN 的垂直平分线,所以∠ABM =∠ABN .当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x -2)(k ≠0),M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由Error!得ky 2-2y -4k =0,可知y 1+y 2=,y 1y 2=-4.2k 直线BM ,BN 的斜率之和为k BM +k BN =+=.①y 1x 1+2y 2x 2+2x 2y 1+x 1y 2+2(y 1+y 2)(x 1+2)(x 2+2)将x 1=+2,x 2=+2及y 1+y 2,y 1y 2的表达式代入①式分子,可得y 1k y 2k x 2y 1+x 1y 2+2(y 1+y 2)=2y 1y 2+4k (y 1+y 2)k==0.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以-8+8k∠ABM =∠ABN .综上,∠ABM =∠ABN .2.(2018·浙江高考)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+=1(x <0)上的动点,求△PAB 面积的取值范围.y 24解 (1)证明:设P (x 0,y 0),A y ,y 1,B y ,y 2.1421142因为PA ,PB 的中点在抛物线上,所以y 1,y 2为方程2=4·即y 2-2y 0y +8x 0-y =0的两个不同的y +y 0214y 2+x 0220实根.所以y 1+y 2=2y 0,因此,PM 垂直于y 轴.(2)由(1)可知Error!所以|PM |=(y +y )-x 0=y -3x 0,182123420|y 1-y 2|=2.2(y 20-4x 0)因此,△PAB 的面积S △PAB =|PM |·|y 1-y 2|12=(y -4x 0).3242032因为x +=1(x 0<0),20y 204所以y -4x 0=-4x -4x 0+4∈[4,5].2020因此,△PAB 面积的取值范围是6,.2151043.(2018·北京高考)已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(1)求直线l 的斜率的取值范围;(2)设O 为原点,=λ,=μ,求证:+为定值.QM → QO → QN → QO→ 1λ1μ解 (1)因为抛物线y 2=2px 过点(1,2),所以2p =4,即p =2.故抛物线C 的方程为y 2=4x ,由题意知,直线l 的斜率存在且不为0.设直线l 的方程为y =kx +1(k ≠0).由Error!得k 2x 2+(2k -4)x +1=0.依题意Δ=(2k -4)2-4×k 2×1>0,解得k <0或0<k <1.又PA ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(2)证明:设A (x 1,y 1),B (x 2,y 2),由(1)知x 1+x 2=-,x 1x 2=.2k -4k 21k 2直线PA 的方程为y -2=(x -1).y 1-2x 1-1令x =0,得点M 的纵坐标为y M =+2=+2.-y 1+2x 1-1-kx 1+1x 1-1同理得点N 的纵坐标为y N =+2.-kx 2+1x 2-1由=λ,=μ得λ=1-y M ,μ=1-y N .QM → QO → QN → QO → 所以+=+=+=·=1λ1μ11-yM 11-yN x 1-1(k -1)x 1x 2-1(k -1)x 21k -12x 1x 2-(x 1+x 2)x 1x 2·=2.1k -12k 2+2k -4k 21k 2所以+为定值.1λ1μ二、模拟大题4.(2018·湖北八市联考)如图,已知抛物线x 2=2py (p >0),其焦点到准线的距离为2,圆S :x 2+y 2-py =0,直线l :y =kx +与圆和抛物线自左至右顺次交p 2于A ,B ,C ,D 四点.(1)若线段AB ,BC ,CD 的长按此顺序构成一个等差数列,求正数k 的值;(2)若直线l 1过抛物线焦点且垂直于直线l ,l 1与抛物线交于点M ,N ,设MN ,AD 的中点分别为P ,Q ,求证:直线PQ 过定点.解 (1)由题意可得p =2,所以抛物线x 2=4y ,圆S 的方程可化为x 2+(y -1)2=1,其圆心S (0,1),圆的半径为1,设点A (x 1,y 1),D (x 2,y 2).由Error!得x 2-4kx -4=0,所以x 1+x 2=4k ,所以y 1+y 2=k (x 1+x 2)+2=4k 2+2,所以|AB |+|CD |=|AS |+|DS |-|BC |=y 1+1+y 2+1-2=y 1+y 2=4k 2+2=2|BC |=4,所以k =(负值舍去).22(2)证明:因为x 1+x 2=4k ,y 1+y 2=k (x 1+x 2)+2=4k 2+2,所以Q (2k ,2k 2+1).当k ≠0时,用-替换k 可得P -,+1,1k 2k 2k 2所以k PQ =,k 2-1k 所以PQ 的直线方程为y -(2k 2+1)=(x -2k ),k 2-1k 化简得y =x +3,过定点(0,3).k 2-1k 当k =0时,直线l 1与抛物线只有一个交点,不符合题意,舍去.5.(2018·珠海摸底)已知椭圆C 1,抛物线C 2的焦点均在x 轴上,C 1的中心和C 2的顶点均为原点O ,从每条曲线上各取两个点,其坐标分别是(3,-2),3(-2,0),(4,-4),,.222(1)求C 1,C 2的标准方程;(2)是否存在直线l 满足条件:①过C 2的焦点F ;②与C 1交于不同的两点M ,N ,且满足⊥?若存在,求出直线的方程;若不存在,请说明理由.OM → ON → 解 (1)设抛物线C 2:y 2=2px (p ≠0),则有=2p (x ≠0),y 2x 据此验证四个点知(3,-2),(4,-4)在抛物线上,3易得,抛物线C 2的标准方程为y 2=4x .设椭圆C 1:+=1(a >b >0),x 2a 2y 2b 2把点(-2,0),,代入可得a 2=4,b 2=1,222所以椭圆C 1的标准方程为+y 2=1.x 24(2)由抛物线的标准方程可得C 2的焦点F (1,0),当直线l 的斜率不存在时,直线l 的方程为x =1.直线l 交椭圆C 1于点M 1,,N 1,-,3232·≠0,不满足题意.OM → ON → 当直线l 的斜率存在时,设直线l 的方程为y =k (x -1),并设点M (x 1,y 1),N (x 2,y 2).由Error!消去y ,得(1+4k 2)x 2-8k 2x +4(k 2-1)=0,于是x 1+x 2=,8k 21+4k 2x 1x 2=. ①4(k 2-1)1+4k 2则y 1y 2=k (x 1-1)·k (x 2-1)=k 2[x 1x 2-(x 1+x 2)+1]=k 2-+14(k 2-1)1+4k 28k 21+4k 2=. ②-3k 21+4k 2由⊥得x 1x 2+y 1y 2=0. ③OM → ON → 将①②代入③式,得+==0,4(k 2-1)1+4k 2-3k 21+4k 2k 2-41+4k 2解得k =±2,所以存在直线l 满足条件,且l 的方程为2x -y -2=0或2x +y -2=0.6.(2018·石家庄质检二)已知圆C :(x -a )2+(y -b )2=的圆心C 在抛物线94x 2=2py (p >0)上,圆C 过原点且与抛物线的准线相切.(1)求该抛物线的方程;(2)过抛物线焦点F 的直线l 交抛物线于A ,B 两点,分别在A ,B 处作抛物线的两条切线交于点P ,求△PAB 面积的最小值及此时直线l 的方程.解 (1)由已知可得圆心C (a ,b ),半径r =,焦点F 0,,准线y =-,因为圆C 与抛物线F 的准线相切,所32p 2p 2以b =-.又因为圆C 过原点,且圆C 过焦点F ,所以圆心C 必在线段OF 的32p 2垂直平分线上,即b =,所以-=,解得p =2,p 432p 2p 4所以抛物线的方程为x 2=4y .(2)易得焦点F (0,1),直线l 的斜率必存在,设为k ,即直线l 的方程为y =kx +1,设A (x 1,y 1),B (x 2,y 2).由Error!得x 2-4kx -4=0,Δ>0,所以x 1+x 2=4k ,x 1x 2=-4,对y =求导得y ′=,即k AP =.x 24x 2x 12直线AP 的方程为y -y 1=(x -x 1),x 12即y =x -x ,x 121421同理得直线BP 的方程为y =x -x .x 22142设点P (x 0,y 0),联立直线AP 与BP 的方程,解得Error!即P (2k ,-1),所以|AB |=|x 1-x 2|=4(1+k 2),点P 到直线1+k 2AB 的距离d ==2,所以△PAB 的面积|2k 2+2|1+k 21+k 2S =·4(1+k 2)·2=4(1+k 2)≥4,121+k 232当且仅当k=0时取等号.综上,△PAB面积的最小值为4,此时直线l的方程为y=1.。
高三复习抛物线知识点总结及基础测试
第八节抛物线基础测试题1、抛物线定义2、抛物线的标准方程与几何性质1、抛物线28y x =-的准线方程是() A. 116x =B. 116y =C. 132y =D. 132x = 2、已知抛物线的焦点坐标是(0,3)-,则抛物线的标准方程是() A. 212x y =- B. 212x y = C. 212y x =- D. 212y x =3、抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为()A. 2B. 3C. 4D. 5 4、在平面直角坐标系xOy 中,已知抛物线关于x 轴对称,顶点在原点O ,且过点(2,4)P ,则该抛物线的方程是_________.5、设抛物线28y x =,过焦点F 的直线交抛物线于,A B 两点,过AB 中点M 作x 轴平行线交y 轴于N ,若2MN =,则AB =_________. 1、已知抛物线22y x =的焦点是F ,点P 是抛物线上的动点,又有点(3,2)A .(1)求PA PF +最小值,并求出取最小值时P 点的坐标; (2)求点P 到点1(,1)2B -的距离与点P 到直线12x =-的距离之和的最小值.2、已知抛物线22=的焦点是F,点P是抛物线上的动点,又有点y x+的最小值及A,抛物线的准线是l,点P到l的距离为d,求PA d(3,3)此时P点的坐标.3、已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点(3,)-M m 到焦点的距离为5,求抛物线的方程和m的值.4设抛物线2(0)=≠的准线与直线1y mx mx=的距离为3,求抛物线的方程.5、已知抛物线2=>过点(1,2)C y px p:2(0)A-.(1)求抛物线C的方程,并求其准线方程;(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l l的方程;若不存在,说明理由.6、已知动圆过定点(1,0),且与直线1x=-相切.(1)求动圆的圆心轨迹C的方程;(2)是否存在直线l,使l过点(1,0)并与轨迹C交于,P Q两点,且满足OP OQ⋅=若存在,求出直线l的方程;若不存在,说明理由.1、抛物线28=的焦点到准线的距离是()y xA. 1B. 2C. 4D. 82、已知抛物线22(0)=>,过其焦点且斜率为1的直线交抛物线y px p于,A B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为()A .1x = B. 1x =- C. 2x = D. 2x =- 3、已知过抛物线24y x =的焦点F 的直线交该抛物线于,AB 两点,2AF =,则BF =_________.4、以椭圆221139x y +=的左焦点为焦点的抛物线的标准方程是()A.2y = B. 2y =- C. 28y x = D. 28y x =-5、已知抛物线22(0)y px p =>的焦点为F ,点11,12233(),(,),(,)P x y P x y P x y 在抛物线上,且2132x x x =+,则有()A. 123FP FP FP +=B. 222123FP FP FP += C. 2132FP FP FP =+ D. 2213FP FP FP =⋅ 6、已知点P 是抛物线2y x =的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为()92。
河南省郑州市第一中学2019-2020学年高二上学期数学周测试题(专题特训—抛物线)(11.24,pdf版)
两点.若 AMB 90 ,则 k __________. uuur uuur uuur r
14、设 F 为抛物线 y2 8x 的焦点, A, B,C 为该抛物线上三点,若 FA FB FC 0 ,
则 FA FB FC _______.
15、过抛物线 C : x2 2 py( p 0) 的焦点的直线 l 与抛物线交于 M , N 两点,若 MN 10 且 MN 中点的纵坐标为 3. 1.求 OM ON 的值; 2.过点 (0,1) 的直线交抛物线于不同两点 A, B ,分别过点 A、点 B 分别作抛物线 C 的切线,所 得的两条切线相交于点 P.求 △ABP 的面积的最小值及此时的直线的方程.
2021 届数学专题特训(1)抛物线
1、过抛物线 y ax2 (a 0) 的焦点 F 作一直线交抛物线于 P、Q 两点,若 PF 与 FQ 的长
分别为 p、q ,则 1 1 等于(
)
pq
A. 2a B. 1 C. 4a D. 4
2a
a
2、已知 P 为抛物线 y2 4x 上任一动点,记点 P 到 y 轴的距离为 d ,对于给定点 A4,5 ,
8 答案及解析: 答案:A 解析:
9 答案及解析: 答案:C
解析:设
A(x1, y1), B(x2, y2 ) ,则 k1k2
y1 x1
y2 x2
2
,又
3
y12
2x1, y22
2x2 ,解得
y1 y2
6.
将直线 l : x my b 代入 y2 2x ,得 y2 2my 2b 0 ,
m
1
设 t2 2 1 m(m 2 1) ,则 | PF |
中职数学 椭圆、双曲线、抛物线测试卷(含答案)
数学拓展模块第二章椭圆、双曲线、抛物线(试卷A )一、选择题:(本大题有15个小题,每小题3分,共45分。
在每小题所给出的选项中只有一个符合题目要求)1.已知椭圆221169+=x y 上一点到椭圆的一个焦点的距离为3,则P 到另一个焦点的距离为( ). A .3 B .4 C .5 D .62.椭圆2211625+=x y 的焦距是( ). A .6 B .4 C .10 D .93.已知椭圆方程是224520+=x y ,则它的离心率是( ).A .2B .C .D . 124.长轴是短轴的2倍,且经过点P (-2.0)的椭圆方程是( ).A . 2214+=x yB . 221416+=x yC . 221164+=x y 或2214+=x y D . 221416+=x y 或2214+=x y 5.焦点在x 轴上,长轴长为8.离心率为12,那么椭圆的标准方程为( ). A .2211612+=x y B . 2211612-=x y C . 2211216+=x y D . 2211216-=x y6.与椭圆2211625+=x y 有共同的焦点且过点(-的双曲线的方程是( ). A .22154-=y x B . 22153-=y x C . 22154-=x y D . 22153-=x y 7.双曲线的两个焦点坐标是1F (0,-5), 2F (0,5),且2a =8.则双曲线的方程为( ).A .221169-=y x B . 2211625-=y x C . 2211625-=x y D . 2216425-=x y 8.若双曲线焦点在x 轴上,且它的一条渐进线方程为34=y x ,则离心率是( ).A .54B . 4C . 7D . 79.双曲线221169-=x y ,若过右焦点2F ,且在双曲线右半支上的弦AB 长为5,另一焦点为1F 则△AB 1F 的周长为( ).A .16B .11C . 26D .610.设()0,απ∈,方程221sin cos αα+=x y 表示中心在坐标原点,焦点在x 轴上的双曲线,则α的取值范围是( ).A . ()0,π В. [)0,π C . ,2ππ⎛⎫⎪⎝⎭D .,2ππ⎡⎫⎪⎢⎣⎭11.抛物线250-=x y 的准线方程是( ).A . 54=-x B . 52=x C . 54=y D . 54=-y 12.顶点在原点,准线方程为y =4的抛物线标准方程为( ). A . 216=y x B . 216=-y x C . 216=x y D . 216=-x y13.顶点在原点,对称轴是y 轴,顶点与焦点的距离等于2的抛物线方程是( ). A . 24=±x y B . 24=±y x C . 28=±x y D . 28=±y x 14.顶点在原点,以坐标轴为对称轴且过点(2,-3)的抛物线方程是( ). A . 292=y x 或243=-x y B . 292=-y x C . 292=-y x 或243=x y D . 243=-x y 15.顶点在坐标原点,焦点是(0,-1)的抛物线的标准方程是( ). A . 24=x y B . 24=-x y C . 24=-y x D . 24=y x 二、填空题(本在题有15个小空,每空2分,共30分) 16.已知椭圆221625400+=x y ,其离心率为___________.17.已知椭圆的右焦点F (3,0),F 到右顶点距离为3,则椭圆的方程为___________.18.已知曲线的方程22194+=--x y k k为椭圆的标准方程,则k 的取值范围为___________.19.椭圆各22214+=x y a 与双曲线器22212-=x y a 有相同的焦点,则2a =___________. 20如果方程222+=x ky 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是___________.21.已知1F ,2F 是椭圆221259+=x y 的两个焦点,过1F 的直线与椭圆交于M .N 两点,则△MN 2F 的周长是___________.22.双曲线222516400-=x y 的两条渐近线方程是___________.23.双曲线的实轴长为6,离心率2=e ,焦点在x 轴上,则双曲线的标准方程为___________. 24.双曲线2288-=kx ky 的一个焦点是(0,3),那么k =___________.25.与双曲线221916-=x y 有相同的渐近线,且过点(3,-C 的双曲线方程是___________. 26.方程22125-=--x y k k表示双曲线,则k 的取值范围是___________. 27.抛物线214=-y x 的焦点坐标是___________.28.抛物线上24=-y x 上一点M 到焦点的距离是6,则M 到准线的距离是___________. 29.若抛物线22=y px 上到焦点距离为3的点的横坐标为2.则p =___________.30.抛物线218=-y x 的准线方程是___________.三、解答题:(本大题共45分)31.已知椭圆的短轴长是2,中心与抛物线24=y x 的顶点重合,椭圆的一个焦点是此抛物线的焦点,求该椭圆的方程及离心率.32.椭圆的长轴是短轴的3倍,过点P (3,0),求椭圆的标准方程.33.一椭圆的中心在坐标原点,焦点在x 轴上,焦距为 的焦点,且双曲线的实半轴比椭圆的长半轴小4,且双曲线的离心率与椭圆的离心率之比为73,求此椭圆和双曲线的方程。
抛物线(原卷版)--新高二暑假讲义
第12讲抛物线新课标要求1.了解抛物线的定义、几何图形和标准方程,以及它们的简单几何性质。
2.了解抛物线的简单应用。
知识梳理1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.2.抛物线的标准方程3.抛物线的简单几何性质标准方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)图象性质范围x ≥0,x ≤0,y ≥0,y ≤0,名师导学知识点1求抛物线的标准方程【例1-1】根据下列条件写出抛物线的标准方程.(1)准线方程为x=-1;(2)焦点为直线3x-2y-6=0与坐标轴的交点;(3)经过点(-3,-1).【变式训练1-1】根据下列条件写出抛物线的标准方程.(1)准线方程为y=-2;(2)焦点在x轴上,焦点到准线的距离等于5;(3)过点(1,-2).知识点2根据抛物线方程求焦点坐标、准线方程【例2-1】求下列抛物线的焦点坐标及准线方程.(1)y2=-4x;(2)y=4x2;(3)3x2+2y=0;(4)y2=ax(a>0).【变式训练2-1】(1)已知抛物线x2=ay的准线方程是y=-14,则a=________.(2)(全国卷Ⅱ)若抛物线y2=2px(p>0)的焦点是椭圆x23p+y2p=1的一个焦点,则p=()A.2B.3C.4D.8知识点3抛物线定义的应用【例3-1】(1)若动点P到定点F(1,1)的距离与它到定直线l:3x+y-4=0的距离相等,则动点P的轨迹是()A.椭圆B.双曲线C.抛物线D.直线(2)已知F是抛物线y2=x的焦点,A、B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y 轴的距离为()A.3 4B.1 C.54D.74(3)(晋中市期末)已知直线l1:3x-4y-6=0,直线l2:y=-2,抛物线x2=4y上的动点P到直线l1与直线l2距离之和的最小值是()A.2B.3C.4D.338【变式训练3-1】(1)已知动圆过定点x=-p2相切,其中p>0,求动圆圆心的轨迹方程;(2)已知抛物线的方程为x2=8y,F是焦点,点A(-2,4),在此抛物线上求一点P,使|PF|+|PA|的值最小.知识点4抛物线的简单几何性质【例4-1】设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足,如果直线AF的斜率为-3,那么|PF|=()A.433B.8C.833D.163【变式训练4-1】设抛物线y2=4x的焦点为F,准线为l,P为该抛物线上一点,PA⊥l,A为垂足.若直线AF的斜率为-3,则△PAF的面积为()A.23B.43C.8D.83【变式训练4-2】已知双曲线x2a2-y2b2=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点,若双曲线的离心率为2,△AOB的面积为3,求抛物线的标准方程.知识点5抛物线的焦点弦的性质及应用【例5-1】已知AB是抛物线y2=2px(p>0)的过焦点F的一条弦,设A(x1,y1),B(x2,y2),求证:(1)|AB|=x1+x2+p;(2)若AB的倾斜角为θ,则|AB|=2psin2θ;(3)x1x2=p24,y1y2=-p2;(4)1|AF|+1|BF|为定值2p.【变式训练5-1】设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.知识点6直线与抛物线的位置关系的判断【例6-1】已知抛物线的方程为y 2=2x ,直线l 的方程为y =kx +1(k ∈R ).当k 分别为何值时,直线l 与抛物线只有一个公共点;有两个公共点;没有公共点?【变式训练6-1】如果直线l 过定点M (1,2)且与抛物线y =2x 2有且只有一个公共点,求直线l 的方程.知识点7弦长、中点弦问题【例7-1】过点Q (4,1)作抛物线y 2=8x 的弦AB ,且该弦恰被Q 平分,求AB 所在的直线方程及|AB |.【变式训练7-1】(台州市月考)过抛物线y 2=mx (m >0)的焦点作直线交抛物线于P ,Q 两点,若线段PQ 中点的横坐标为3,|PQ |=54m ,则m =()A .6B .8C .10D .12知识点8抛物线中的定点、最值问题【例8-1】如图,已知△AOB 的一个顶点为抛物线y 2=2x 的顶点O ,A ,B 两点都在抛物线上,且∠AOB =90°.(1)证明:直线AB 必过一定点;(2)求△AOB 面积的最小值.【变式训练8-1】已知抛物线C :y 2=2px (p >0)的焦点为F ,点P (2,n )(n >0)在抛物线C 上,|PF |=3,直线l 过点F ,且与抛物线C 交于A ,B 两点.(1)求抛物线C 的方程及点P 的坐标;(2)求PA →·PB →的最大值.名师导练3.3.1抛物线及其标准方程A 组-[应知应会]1.到定点F (1,-1)的距离与到直线3x -2y -5=0的距离相等的点P 的轨迹是()A .抛物线B .椭圆C .双曲线的一支D.直线2.已知抛物线y 2=2px 上一点M (1,m )到其焦点的距离为5,则该抛物线的准线方程为()A .x =8B .x =-8C .x =4D .x =-43.(杭州模拟)已知抛物线x 2=4y 上一点A 的纵坐标为4,则点A 到抛物线焦点的距离为()A.10B .4C.15D .54.若椭圆x 23+4y 2p 2=1(p >0)的左焦点在抛物线y 2=2px 的准线上,则p 为()A .3B .3C.6D .65.(牡丹江一中期末)下列抛物线中,焦点到准线的距离最小的是()A .y 2=-xB .y 2=2xC .2x 2=yD .x 2=-4y6.(运城期末)若在抛物线y 2=-4x 上存在一点P ,使其到焦点F 的距离与到点A (-2,1)的距离之和最小,则点P 的坐标为()-14,B C .(-2,-22)D .(-2,22)7.在抛物线y2=-2px(p>0)中,p的几何意义是____________________________________________ 8.若抛物线y2=2px(p>0)的准线经过双曲线x2-y2=1的焦点,则p=________.9.(南阳市一中开学考)抛物线y2=2px(p>0)的焦点为F,A,B为抛物线上的两点,以AB为直径的圆过点F,过AB的中点M作准线的垂线,垂足为N,则|MN||AB|的最大值为________.10.设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且与y轴交于点A,若△OAF(O为坐标原点)的面积为4,求抛物线的方程.11.已知抛物线y2=2px(p>0)的焦点为F,点P1(x1,y1),P2(x2,y2),P3(x3,y3)在抛物线上,且2x2=x1+x3,试判断|FP1|,|FP2|,|FP3|是否成等差数列.12.(南阳一中检测)已知定点A(1,0),定直线l:x=-2,动点P到点A的距离比点P到l的距离小1.(1)求动点P的轨迹C的方程;(2)过点B(0,2)的直线l与(1)中轨迹C相交于两个不同的点M,N,若AM→·AN→<0,求直线l的斜率的取值范围.B组-[素养提升](北京十二中期中)设抛物线y2=4x上一点P到y轴的距离是2,则P到该抛物线焦点的距离是() A.1B.2C.3D.43.3.2抛物线的简单几何性质A组-[应知应会]1.若动点M(x,y)到点F(4,0)的距离比它到直线x+5=0的距离小1,则点M的轨迹方程为()A.x+4=0B.x-4=0C.y2=8x D.y2=16x2.若抛物线y2=x上一点M到准线的距离等于它到顶点的距离,则点M的坐标为()BD3.(福州期末)设抛物线的顶点在原点,其焦点F在y轴上,又抛物线上的点A(k,-2)与点F的距离为4,则k的值为()A.4B.4或-4C.-2D.-2或24.(保定模拟)已知抛物线y2=2px(p>0)的焦点为F,F关于原点的对称点为P,过F作x轴的垂线交抛物线于M,N两点,有下列四个命题:①△PMN必为直角三角形;②△PMN不一定为直角三角形;③直线PM与抛物线相切;④直线PM不一定与抛物线相切.其中正确的命题为()A.①③B.①④C.②③D.②④5.(郑州模拟)过抛物线y2=4x的焦点作直线l交抛物线于A,B两点,若线段AB中点的横坐标为3,则|AB|=()A.10B.8C.6D.46.(马鞍山市阶段测试)过抛物线C:y2=2px(p>0)的焦点F的直线l与抛物线交于M,N两点,若MF→=4FN→,则直线l的斜率为()A.±32B.±23C.±34D.±437.(凯里市期末)设抛物线C:y2=2px(p>0)的焦点为F,准线为l,A为C上一点,以F为圆心,|FA|为半径的圆交l于B,D两点,若∠ABD=90°,且△ABF的面积为93,则此抛物线的方程为________.8.如图,已知抛物线y2=2px(p>0)的焦点F恰好是椭圆x2a2+y2b2=1(a>b>0)的右焦点,且两曲线的公共点连线AB过F,则椭圆的离心率是________.9.若抛物线的顶点在原点,开口向上,F为焦点,M为准线与y轴的交点,A为抛物线上一点,且|AM|=17,|AF|=3,则此抛物线的标准方程为________.10.抛物线的顶点在原点,对称轴重合于椭圆9x2+4y2=36短轴所在的直线,抛物线焦点到顶点的距离为3,求抛物线的方程及抛物线的准线方程.11.已知直线l经过抛物线y2=6x的焦点F,且与抛物线相交于A,B两点.(1)若直线l的倾斜角为60°,求|AB|的值;(2)若|AB|=9,求线段AB的中点M到准线的距离.12.在平面直角坐标系xOy中,点M到点F(0,-2)的距离比它到x轴的距离大2,记点M的轨迹为C.(1)求轨迹C的方程;(2)若直线y=2x+b与轨迹C恰有2个公共点,求实数b的取值范围.B组-[素养提升](全国卷Ⅰ)已知抛物线C:y2=3x的焦点为F,斜率为32的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若AP→=3PB→,求|AB|.3.3.3直线与抛物线的位置关系A组-[应知应会]1.抛物线的对称轴为x轴,过焦点且垂直于对称轴的弦长为8,若抛物线顶点在坐标原点,则其方程为()A.y2=8x B.y2=-8xC.y2=8x或y2=-8x D.x2=8y或x2=-8y2.在抛物线y2=8x中,以(1,-1)为中点的弦所在直线的方程是()A.x-4y-3=0B.x+4y+3=0C.4x+y-3=0D.4x+y+3=03.已知直线y=kx-k及抛物线y2=2px(p>0),则()A.直线与抛物线有一个公共点B.直线与抛物线有两个公共点C.直线与抛物线有一个或两个公共点D.直线与抛物线可能没有公共点4.(郑州市期中)已知F是抛物线C1:y2=2px(p>0)的焦点,曲线C2是以F为圆心,以p2为半径的圆,直线4x-3y-2p=0与曲线C1,C2从上到下依次相交于点A,B,C,D,则|AB||CD|=()A.16B.4C.8 3D.535.已知抛物线y2=2px(p>0),过其焦点且斜率为-1的直线交抛物线于A,B两点,若线段AB中点的横坐标为3,则抛物线的准线方程为()A.x=1B.x=2C.x=-1D.x=-26.(绵阳模拟)设抛物线y2=2px(p>0)的焦点为F,点A在y轴上,若线段FA的中点B在抛物线上,且点B到抛物线准线的距离为324,则点A的坐标为()A.(0,±2)B.(0,2) C.(0,±4)D.(0,4)7.直角△ABC的三个顶点都在给定的抛物线y2=2x上,且斜边AB和y轴平行,则直角△ABC斜边上的高的长度为________.8.直线y=x-1被抛物线y2=4x截得的弦的中点坐标为________.9.抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线x22=1的左顶点为A,若a-y双曲线的一条渐近线与直线AM平行,则双曲线的离心率为________.10.(平顶山调研)已知点M(-1,1)和抛物线C:y2=4x,过抛物线C的焦点且斜率为k的直线与抛物线C交于A,B两点,若∠AMB=90°,求k的值.11.求过定点P(-1,1),且与抛物线y2=2x只有一个公共点的直线l的方程.12.设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与抛物线C交于M,N两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.B组-[素养提升](北京卷)已知抛物线C:x2=-2py经过点(2,-1).(1)求抛物线C的方程及其准线方程;(2)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=-1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.11/11。
抛物线-考点测试
目录 狂刷小题 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
解析
对于 C,设 MN 的中点为 A,M,N,A 到直线 l 的距离分别为 d1,d2,d,
因为 d=12(d1+d2)=12(|MF|+|NF|)=12|MN|,即 A 到直线 l 的距离等于|MN|
答案
解析 由题意知点 A 为抛物线 C 的准线与 x 轴的交
点,如图,过点 M 作 MN 垂直于准线于点 N,令|FM|=
2a,则|AM|= 5a,由抛物线的定义可得|MN|=|FM|=2a,
所以 cos∠AMN=||MAMN||=255,所以 sin∠AMN= 55.又
MN∥AF,所以∠MAF=∠AMN,所以
解析
7.已知抛物线 C:y2=2px(p>0)的焦点为 F,点 M 在 C 上,点
A-p2,0,若|AM|= 25|FM|,则 cos∠MFA=(
)
A.±
2 2
B.±
3 2
C.±
3 3
D.±12
目录 狂刷小题 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
=x1+p2=x1+1,|BF|=x2+p2=x2+1,所以|AP|+4|BQ|
=x1+4x2,设直线 l:x=my+1,由yx2==m4yx+,1,得 x2-(2+4m2)x+1=0,
所以 x1x2=1,所以|AP|+4|BQ|=x1+4x2≥2 4x1x2=4,当且仅当 x1=4x2,
即 x1=2,x2=12时取等号,所以|AP|+4|BQ|的最小值为 4.
抛物线
(完整版)高二抛物线基础测试题
高二抛物线基础测试题一、 选择题:1.顶点在原点,焦点是F (0,5)的抛物线方程是( )A .y 2=20xB .x 2=20yC .y 2=120xD .x 2=120y2.抛物线y =-x 2的焦点坐标为( )A.⎝ ⎛⎭⎪⎫0,14B.⎝⎛⎭⎪⎫0,-14 C.⎝ ⎛⎭⎪⎫14,0 D.⎝ ⎛⎭⎪⎫-14,03.抛物线y =ax 2的准线方程是y =2,则实数a 的值为( )A.18 B .-18 C .8 D .-84.(2010年高考陕西卷)已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,则p 的值为( )A.12 B .1 C .2 D .45.(2010年高考湖南卷)设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )A .4B .6C .8D .126.若点P 到定点F (4,0)的距离比它到直线x +5=0的距离小1,则点P 的轨迹方程是( )A .y 2=-16xB .y 2=-32xC .y 2=16xD .y 2=16x 或y =0(x <0)7.以x 轴为对称轴的抛物线的通径(过焦点且与x 轴垂直的弦)长为8,若抛物线的顶点在坐标原点,则其方程为( )A .y 2=8xB .y 2=-8xC .y 2=8x 或y 2=-8xD .x 2=8y 或x 2=-8y8.已知抛物线y 2=2px (p >0)的焦点F ,点P 1(x 1,y 1)、P 2(x 2,y 2)、P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,则有( )A .|FP 1|+|FP 2|=|FP 3|B .|FP 1|2+|FP 2|2=|FP 3|2C .|FP 1|+|FP 3|=2|FP 2|D .|FP 1|·|FP 3|=|FP 2|29.抛物线y 2=12x 截直线y =2x +1所得弦长等于( )A.15 B .215C.152D .15.10.以抛物线y 2=2px (p >0)的焦半径|PF |为直径的圆与y 轴的位置关系为( )A .相交B .相离C .相切D .不确定11.过抛物线的焦点且垂直于其对称轴的弦是AB ,抛物线的准线交x 轴于点M ,则∠AMB 是( )A .锐角B .直角C.钝角D.锐角或钝角12.(2010年高考山东卷)已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A、B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为( )A.x=1 B.x=-1C.x=2 D.x=-2二.填空题13.已知直线x-y-1=0与抛物线y=ax2相切,则a=________.14.抛物线y2=4x上的点P到焦点F的距离是5,则P点的坐标是________.15.抛物线y2=4x与直线2x+y-4=0交于两点A与B,F是抛物线的焦点,则|FA|+|FB|=________. 16.边长为1的等边三角形AOB,O为原点,AB⊥x轴,则以O为顶点,且过A、B的抛物线方程是________.三、解答题(解答应写出文字说明,证明过程或演算步骤.)17.若抛物线y2=-2px(p>0)上有一点M,其横坐标为-9.它到焦点的距离为10,求抛物线方程和M点的坐标.18.抛物线的焦点F在x轴上,直线y=-3与抛物线相交于点A,|AF|=5,求抛物线的标准方程.19.已知抛物线y2=-x与直线l:y=k(x+1)相交于A,B两点.(1)求证:OA⊥OB;(2)当△OAB的面积等于10时,求k的值.高二抛物线基础测试题参考答案一.选择题:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 BBBCBCCCACBB1.解析:选B.由p2=5得p =10,且焦点在y 轴正半轴上,故x 2=20y .2.解析:选B.x 2=-y ,∴2p =1,p =12,∴焦点坐标为⎝ ⎛⎭⎪⎫0,-14.3.解析:选B.由y =ax 2,得x 2=1a y ,14a =-2,a =-18.4.解析:选C.由抛物线的标准方程得准线方程为x =-p2.由x 2+y 2-6x -7=0得(x -3)2+y 2=16.∵准线与圆相切,∴3+p2=4,∴p =2.5解析:选B.如图所示,抛物线的焦点为F (2,0),准线方程为x =-2,由抛物线的定义知:|PF |=|PE |=4+2=6.6.解析:选C.∵点F (4,0)在直线x +5=0的右侧,且P 点到点F (4,0)的距离比它到直线x +5=0的距离小1,∴点P 到F (4,0)的距离与它到直线x +4=0的距离相等.故点P 的轨迹为抛物线,且顶点在原点,开口向右,p =8,故P 点的轨迹方程为y 2=16x . 7.解析:选C.通径2p =8且焦点在x 轴上,故选C. 8.解析:选C.由抛物线定义知|FP 1|=x 1+p2,|FP 2|=x 2+p 2,|FP 3|=x 3+p2,∴|FP 1|+|FP 3|=2|FP 2|,故选C.9.解析:选A.令直线与抛物线交于点A (x 1,y 1),B (x 2,y 2)由⎩⎪⎨⎪⎧y =2x +1y 2=12x 得4x 2-8x +1=0,∴x 1+x 2=2,x 1x 2=14,∴|AB |=1+22x 1-x 22=5[x 1+x 22-4x 1x 2]=15.10. 解析:选C.|PF |=x P +p 2,∴|PF |2=x P 2+p4,即为PF 的中点到y 轴的距离.故该圆与y 轴相切.11. 解析:选B.由题意可得|AB |=2p .又焦点到准线距离|FM |=p ,F 为AB 中点,∴|FM |=12|AB |,∴△AMB 为直角三角形且∠AMB =90°.12.解析:选B.∵y 2=2px (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫p2,0,∴过焦点且斜率为1的直线方程为y =x -p 2,即x =y +p2,将其代入y 2=2px 得y 2=2py +p 2,即y 2-2py-p 2=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2p ,∴y 1+y 22=p =2,∴抛物线的方程为y 2=4x ,其准线方程为x =-1. 二. 填空题13解析:由⎩⎪⎨⎪⎧x -y -1=0y =ax2,得ax 2-x +1=0, 由Δ=1-4a =0,得a =14. 答案:1414.解析:设P (x 0,y 0),则|PF |=x 0+1=5,∴x 0=4, ∴y 20=16,∴y 0=±4. 答案:(4,±4) 15.解析:设A (x 1,y 1),B (x 2,y 2), 则|FA |+|FB |=x 1+x 2+2.又⎩⎪⎨⎪⎧y 2=4x 2x +y -4=0⇒x 2-5x +4=0, ∴x 1+x 2=5,x 1+x 2+2=7. 答案:7 16.解析:焦点在x 轴正半轴上时,设方程为y 2=2px (p >0)代入点(32,12)得p =312,焦点在x 轴负半轴上时,设方程为y 2=-2px (p >0),∴p =-312.综上,所求方程为y 2=±36x . 答案:y 2=±36x 三、解答题17.若抛物线y 2=-2px (p >0)上有一点M ,其横坐标为-9.它到焦点的距离为10,求抛物线方程和M 点的坐标.解:由抛物线定义知焦点为F (-p 2,0),准线为x =p2,由题意设M 到准线的距离为|MN |, 则|MN |=|MF |=10,即p2-(-9)=10, ∴p =2.故抛物线方程为y 2=-4x ,将M (-9,y )代入y 2=-4x ,解得y =±6, ∴M (-9,6)或M (-9,-6).18.抛物线的焦点F 在x 轴上,直线y =-3与抛物线相交于点A ,|AF |=5,求抛物线的标准方程.解:设所求抛物线的标准方程为: y 2=ax (a ≠0),A (m ,-3).则由抛物线的定义得5=|AF |=|m +a4|,又(-3)2=am .所以,a =±2或a =±18.故所求抛物线的方程为y 2=±2x 或y 2=±18x .19.已知抛物线y 2=-x 与直线l :y =k (x +1)相交于A ,B 两点.(1)求证:OA ⊥OB ;(2)当△OAB 的面积等于10时,求k 的值.解:(1)证明:联立⎩⎪⎨⎪⎧y 2=-xy =k x +1,消去x ,得ky 2+y -k =0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-1k,y 1·y 2=-1.因为y 21=-x 1,y 22=-x 2,所以(y 1·y 2)2=x 1·x 2,所以x 1·x 2=1,所以x 1x 2+y 1y 2=0,即OA →·OB →=0,所以OA ⊥OB .(2)设直线l 与x 轴的交点为N ,则N 的坐标为(-1,0),所以S △AOB =12|ON |·|y 1-y 2|=12×|ON |×y 1+y 22-4y 1·y 2 =12×1× 1k 2+4=10, 解得k 2=136,所以k =±16.。
2022届高考一轮复习第9章解析几何第7节抛物线课时跟踪检测理含解
第九章 解析几何第七节 抛物线A 级·基础过关 |固根基|1.(2019届沈阳质检)抛物线x 2=4y 的焦点到准线的距离为( ) A .1 B .2 C .4D .8解析:选B 由x 2=2px 的焦点到准线的距离为p ,得x 2=4y 中的焦点到准线的距离为2,故选B . 2.(2019届广东七校第二次联考)已知抛物线y 2=24ax(a>0)上的点M(3,y 0)到其焦点的距离是5,则该抛物线的方程为( )A .y 2=8x B .y 2=12x C .y 2=16xD .y 2=20x解析:选A 抛物线y 2=24ax(a>0)的准线方程为x =-6a ,点M(3,y 0)到其焦点的距离是5,根据抛物线的定义可知,点M(3,y 0)到准线的距离也为5,即3+6a =5,∴a=13,∴y 2=8x ,故选A .3.(2019届石家庄市质检)已知抛物线y 2=4x 的焦点为F ,过点F 和抛物线上一点M(2,22)的直线l 交抛物线于另一点N ,则|NF|∶|FM|等于( )A .1∶2B .1∶3C .1∶ 2D .1∶ 3解析:选A 解法一:由题意知抛物线y 2=4x 的焦点F 的坐标为(1,0),M(2,22),∴直线l 的方程为y =22(x -1).由⎩⎨⎧y 2=4x ,y =22(x -1),得2x 2-5x +2=0,解得x =2或x =12,∴点N 的横坐标为12.∵抛物线y 2=4x 的准线方程为x =-1,∴|NF|=32,|MF|=3,∴|NF|∶|MF|=1∶2,故选A .解法二:由题意知抛物线y 2=4x 的焦点F 的坐标为(1,0),M(2,22),∴直线l 的方程为y =22(x-1).由⎩⎨⎧y 2=4x ,y =22(x -1),得y 2-2y -4=0,解得y =22或y =-2,∴点N 的纵坐标为- 2.过点M 作MM′⊥x 轴,垂足为M′,过点N 作NN′⊥x 轴,垂足为N′,则△MM′F∽△NN′F,∴|NF|∶|MF|=|NN′|∶|MM′|=|-2|∶22=1∶2,故选A .解法三:∵M(2,22)是抛物线上的点,且抛物线y 2=4x 的准线方程为x =-1,∴|MF|=3.又1|MF|+1|NF|=2p =1,∴|NF|=32,∴|NF|∶|MF|=1∶2,故选A .解法四:设直线l 的倾斜角为α,则|MF|=p 1-cos α,|NF|=p1+cos α,∴|NF|∶|MF|=(1-cosα)∶(1+cos α),又M(2,22),F(1,0),∴tan α=22,∴cos α=13,∴|NF|∶|MF|=1∶2,故选A .4.(2019届江西五校联考)过抛物线C :y 2=2px(p>0)的焦点F 且倾斜角为锐角的直线l 与抛物线C 交于A ,B 两点,过线段AB 的中点N 且垂直于l 的直线与抛物线C 的准线相交于点M ,若|MN|=|AB|,则直线l 的倾斜角为( )A .15°B .30°C .45°D .60°解析:选B 分别过A ,B ,N 作抛物线准线的垂线,垂足分别为A′,B′,N′,由抛物线的定义知|AF|=|AA′|,|BF|=|BB′|,所以|NN′|=12(|AA′|+|BB′|)=12|AB|.因为|MN|=|AB|,所以|NN′|=12|MN|,即在△MNN′中,cos ∠MNN ′=12,所以∠MNN′=60°,即直线MN 的倾斜角为120°.又直线MN 与直线l 垂直且直线l 的倾斜角为锐角,所以直线l 的倾斜角为30°,故选B .5.(2019届郑州市第二次质量预测)已知抛物线C :y 2=2x ,过原点O 作两条互相垂直的直线分别交抛物线C 于A ,B 两点(A ,B 均不与坐标原点重合),则抛物线的焦点F 到直线AB 距离的最大值为( )A .2B .3C .32D .4解析:选C 设直线AB 的方程为x =my +t ,A(x 1,y 1),B(x 2,y 2),把直线AB 的方程代入抛物线的方程得y 2-2my -2t =0,Δ=4m 2+8t>0,所以y 1+y 2=2m ,y 1y 2=-2t.由题意得OA⊥OB,所以x 1x 2+y 1y 2=0,即y 212×y 222+y 1y 2=0,得y 1y 2=-4,所以-2t =-4,即t =2,故直线AB 恒过定点(2,0),则抛物线的焦点F ⎝ ⎛⎭⎪⎫12,0到直线AB 的距离的最大值为2-12=32,故选C . 6.(2019届湖南岳阳二模)过抛物线x 2=4y 的焦点F 作直线,交抛物线于P 1(x 1,y 1),P 2(x 2,y 2)两点,若y 1+y 2=6,则|P 1P 2|=( )A .5B .6C .8D .10解析:选C 过P 1作P 1M ⊥准线l ,垂足为M ,过P 2作P 2N ⊥准线l ,垂足为N ,由抛物线定义知|P 1F|=|P 1M|=y 1+1,|P 2F|=|P 2N|=y 2+1,∴|P 1P 2|=|P 1F|+|P 2F|=y 1+y 2+2=8,故选C .7.(2019届江西五校协作体2月联考)已知点A(0,2),抛物线C :y 2=2px(p>0)的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,若|FM||MN|=55,则p 的值等于( )A .18B .14C .2D .4解析:选C 过点M 向准线作垂线,垂足为P ,由抛物线的定义可知,|MF|=|MP|,因为|FM||MN|=55,所以|MP||MN|=55,所以sin ∠MNP =55,则tan ∠MNP =12.又∠OFA+∠MNP=90°(O 为坐标原点),所以tan∠OFA =2= 2 12p ,则p =2,故选C .8.(2019届沈阳市第一次质量监测)抛物线y 2=6x 上一点M(x 1,y 1)到其焦点的距离为92,则点M 到坐标原点的距离为________.解析:由y 2=6x ,知p =3,由抛物线定义得,x 1+p 2=92,即x 1=3,代入y 2=6x 中,得y 21=18,则|MO|=x 21+y 21=33(O 为坐标原点).答案:3 39.(2020届成都摸底)已知抛物线C :y 2=2px(p >0)的焦点为F ,准线为l ,若位于x 轴上方的动点A 在准线l 上,线段AF 与抛物线C 相交于点B ,|AF||BF|-|AF|=1,则抛物线C 的标准方程为________.解析:如图,设直线l 与x 轴交于点D ,过点B 作BE⊥l 于点E ,则|DF|=p.由抛物线的定义知|BE|=|BF|.设|BE|=|BF|=m ,因为△AEB∽△ADF,所以|AF||AB|=|DF||BE|,即|AF||AF|-|BF|=|DF||BF|,所以|AF||AF|-m =p m ,所以|AF|=pm p -m .由|AF||BF|-|AF|=1,得pmp -m m -pmp -m=1,解得p =1,所以抛物线C 的标准方程为y 2=2x. 答案:y 2=2x10.(2019届河北省“五个一名校”高三考试)如果点P 1,P 2,P 3,…,P 10是抛物线y 2=2x 上的点,它们的横坐标依次为x 1,x 2,x 3,…,x 10,F 是抛物线的焦点,若x 1+x 2+x 3+…+x 10=5,则|P 1F|+|P 2F|+|P 3F|+…+|P 10F|=________.解析:由抛物线的定义可知,抛物线y 2=2px(p>0)上的点P(x 0,y 0)到焦点F 的距离|PF|=x 0+p 2,在y 2=2x 中,p =1,所以|P 1F|+|P 2F|+…+|P 10F|=x 1+x 2+…+x 10+5p =10.答案:1011.(2019届昆明市高三诊断测试)过点E(-1,0)的直线l 与抛物线C :y 2=4x 交于A ,B 两点,F 是抛物线C 的焦点.(1)若线段AB 中点的横坐标为3,求|AF|+|BF|的值; (2)求|AF|·|BF|的取值范围.解:(1)设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=6. 由抛物线的定义知|AF|=x 1+1,|BF|=x 2+1, 则|AF|+|BF|=x 1+x 2+2=8. (2)设直线l 的方程为x =my -1,由⎩⎪⎨⎪⎧x =my -1,y 2=4x 得y 2-4my +4=0. 由Δ=16m 2-16>0,得m 2>1,则y 1+y 2=4m ,y 1y 2=4. 由抛物线的定义知|AF|=x 1+1,|BF|=x 2+1, 则|AF|·|BF|=(x 1+1)(x 2+1)=m 2y 1y 2=4m 2. 因为m 2>1,所以|AF|·|BF|>4. 故|AF|·|BF|的取值范围是(4,+∞).12.(2019届郑州市第一次质量预测)已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点,过A ,B 分别向抛物线的准线作垂线,垂足分别为M ,N.R 为准线上一点.(1)若AR∥FN,求|MR||MN|的值;(2)若点R 为线段MN 的中点,设以线段AB 为直径的圆为圆E ,判断点R 与圆E 的位置关系.解:由已知,得F(1,0),设直线l 的方程为x =my +1,与抛物线y 2=4x 联立,得⎩⎪⎨⎪⎧y 2=4x ,x =my +1,消去x ,得y 2-4my -4=0.设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4. 由题知M(-1,y 1),N(-1,y 2),设R(-1,y R ).(1)∵AR∥FN,即AR →∥FN →,AR →=(-1-x 1,y R -y 1),FN →=(-2,y 2),∴0=(-1-x 1)y 2+2(y R -y 1)=(-2-my 1)y 2+2(y R -y 1)=-2(y 1+y 2)-my 1y 2+2y R =-4m +2y R ,∴y R =2m =y 1+y 22,∴R 是MN 的中点,∴|MR||MN|=12.(2)若R 是MN 的中点,则R(-1,2m),RA →·RB →=(x 1+1,y 1-2m)·(x 2+1,y 2-2m)=(my 1+2,y 1-2m)·(my 2+2,y 2-2m)=(my 1+2)(my 2+2)+(y 1-2m)(y 2-2m)=(m 2+1)y 1y 2+4m 2+4=-4(m 2+1)+4m 2+4=0.∴RA →⊥RB →,即RA⊥RB, ∴点R 在以AB 为直径的圆E 上.B 级·素养提升 |练能力|13.(2019届湖南五市十校联考)在平面直角坐标系xOy 中,抛物线C :y 2=4x 的焦点为F ,准线为l ,P 为抛物线C 上一点,PQ 垂直l 于点Q ,M ,N 分别为PQ ,PF 的中点,直线MN 与x 轴交于点R ,若∠NFR =60°,则|FR|=( )A .2B . 3C .2 3D .3解析:选A 如图,连接MF ,QF ,设准线l 与x 轴交于H ,∵y 2=4x 的焦点为F ,准线为l ,P 为C 上一点,∴|FH|=2,|PF|=|PQ|.∵M,N 分别为PQ ,PF 的中点,∴MN∥QF.∵PQ 垂直l 于点Q ,∴PQ ∥OR.∵|PQ|=|PF|,∠NFR=60°,∴△PQF 为等边三角形,∴MF⊥PQ.又M 为PQ 的中点,∴F 为HR 的中点,∴|FR|=|FH|=2.故选A .14.(2019届郑州市第二次质量预测)已知抛物线C :y 2=4x 的焦点为F ,直线l 过焦点F 与抛物线C 交于A ,B 两点,且直线l 不与x 轴垂直,线段AB 的垂直平分线与x 轴交于点T(5,0),O 为坐标原点,则S △AOB =( )A .2 2B . 3C . 6D .3 6解析:选A 由题意知,抛物线的焦点为F(1,0),设直线l :y =k(x -1)(k≠0),A(x 1,y 1),B(x 2,y 2),将直线y =k(x -1)代入y 2=4x ,化简整理得k 2x 2-(2k 2+4)x +k 2=0,所以x 1+x 2=2+4k 2,x 1x 2=1,y 1+y 2=k(x 1+x 2)-2k =2k +4k -2k =4k ,所以AB 的中点为⎝ ⎛⎭⎪⎫1+2k 2,2k ,AB 的垂直平分线方程为y -2k =-1k ⎝ ⎛⎭⎪⎫x -1-2k 2.由于AB 的垂直平分线与x 轴交于点T(5,0),所以0-2k =-1k ⎝ ⎛⎭⎪⎫5-1-2k 2,化简得k =±1,即直线AB 的方程为y =±(x-1).点O 到直线AB 的距离d =|1|1+1=22,又|AB|=1+1|x 1-x 2|=1+1(x 1+x 2)2-4x 1x 2=2×36-4=8,所以S △AOB =12×22×8=22,故选A .15.(2019届洛阳市第二次联考)如图,已知在平面直角坐标系xOy 中,点S(0,3),SA ,SB 与圆C :x 2+y 2-my =0(m>0)和抛物线x 2=-2py(p>0)都相切,切点分别为M ,N 和A ,B ,SA∥ON,则点A 到抛物线准线的距离为( )A .4B .2 3C .3D .3 3解析:选A 连接OM ,∵SM,SN 是圆C 的切线,∴|SM|=|SN|,|OM|=|ON|.又SA∥ON,∴SM∥ON,∴四边形SMON 是菱形,∴∠MSN=∠MON.连接MN ,由切线的性质得∠SMN=∠MON,则△SMN 为正三角形,又MN 平行于x 轴,所以直线SA 的斜率k =tan 60°= 3.设A(x 0,y 0),则y 0-3x 0= 3 ①.又点A 在抛物线上,∴x 2=-2py 0 ②.由x 2=-2py ,得y =-x 22p ,y′=-1p x ,则-1px 0= 3 ③,由①②③得y 0=-3,p =2,所以点A 到抛物线准线的距离为-y 0+p2=4,故选A .16.(2020届湖北部分重点中学联考)已知点A(0,1),抛物线C :y 2=ax(a >0)的焦点为F ,连接FA ,与抛物线C 相交于点M ,延长FA ,与抛物线C 的准线相交于点N ,若|FM|∶|MN|=1∶2,则实数a 的值为________.解析:依题意得抛物线的焦点F 的坐标为⎝ ⎛⎭⎪⎫a 4,0,过M 作抛物线的准线的垂线,垂足为K ,由抛物线定义知|MF|=|MK|.因为|FM|∶|MN|=1∶2,所以|KN|∶|KM|=3∶1.又k FN =0-1a 4-0=-4a ,k FN =-|KN||KM|=-3,所以-4a =-3,解得a =433.答案:43317.(2019届昆明市教学质量检测)已知抛物线y 2=4x 上一点P 到准线的距离为d 1,到直线l :4x -3y +11=0的距离为d 2,则d 1+d 2的最小值为________.解析:如图,设抛物线的准线为m ,焦点为F ,分别过点P ,F 作PA⊥m,PM⊥l,FN⊥l,垂足分别为A ,M ,N.连接PF ,因为点P 在抛物线上,所以|PA|=|PF|,所以(d 1+d 2)min =(|PF|+|PM|)min =|FN|.点F(1,0)到直线l 的距离|FN|=|4+11|42+(-3)2=3,所以(d 1+d 2)min =3.答案:3。
高考数学总复习 椭圆、双曲线、抛物线单元测试题
高考数学总复习 椭圆、双曲线、抛物线单元测试题一.选择题(1) 抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为 ( )A 2B 3C 4D 5 (2) 若焦点在x轴上的椭圆2212x y m +=的离心率为12,则m=( )A B32 C83D23(3) 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆, 那么实数k 的取值范围是 ( )A (0, +∞)B (0, 2)C (1, +∞)D (0, 1)(4) 设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为023=-y x ,F 1、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF( )A 1或 5B 6C 7D 9(5) 对于抛物线y 2=2x 上任意一点Q, 点P(a, 0)都满足|PQ|≥|a |, 则a 的取值范围是( )A [0, 1]B (0, 1)C (]1,∞- D (-∞, 0)(6) 若椭圆)0(12222〉〉=+b a by a x 的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成5:3两段,则此椭圆的离心率为( )A1716B 17174C 54D 552(7) 已知双曲线)0(1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为 ( )A23 B23C 26D 332(8) 设A(x 1,y 1),B(x 2,y 2)是抛物线y 2=2px(p>0)上的两点,并且满足OA ⊥OB. 则y 1y 2等于( )A – 4p 2B 4p 2C – 2p 2D 2p 2(9) 已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到x 轴的距离为( )A43B53C 3 (10) 设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P , 若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )A2B C 2 1 二.填空题(11) 若双曲线的渐近线方程为x y 3±=,它的一个焦点是()0,10,则双曲线的方程是__________.(12)设中心在原点的椭圆与双曲线2 x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(13) 过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.(14) 以下同个关于圆锥曲线的命题中 ①设A 、B 为两个定点,k 为非零常数,k PB PA =-||||,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动弦AB ,O 为坐标原点,若),(21OB OA OP +=则动点P 的轨迹为椭圆; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点.其中真命题的序号为 (写出所有真命题的序号) 三.解答题(15)点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥.求点P 的坐标; .(16) 已知抛物线C: y=-21x 2+6, 点P (2, 4)、A 、B 在抛物线上, 且直线PA 、PB 的倾斜角互补. (Ⅰ)证明:直线AB 的斜率为定值;(Ⅱ)当直线AB 在y 轴上的截距为正数时, 求△PAB 面积的最大值及此时直线AB 的方程.(17) 双曲线12222=-by a x (a>1,b>0)的焦距为2c,直线l 过点(a,0)和(0,b),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥54c.求双曲线的离心率e 的取值范围(18) 已知抛物线)0(22>=p px y 的焦点为F ,A 是抛物线上横坐标为4、且位于x 轴上方的点,A 到抛物线准线的距离等于5.过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M.(1)求抛物线方程;(2)过M 作FA MN ⊥,垂足为N ,求点N 的坐标;(3)以M 为圆心,MB 为半径作圆M ,当)0,(m K 是x 轴上一动点时,讨论直线AK 与圆M 的位置关系.参考答案一选择题:1.D[解析]:点A 与抛物线焦点的距离就是点A 与抛物线准线的距离,即5)1(4=-- 2.B[解析]:∵焦点在x 轴上的椭圆2212x y m +=的离心率为12,∴2122=-m 则m=233.D[解析]: ∵方程x 2+ky 2=2,即12222=+ky x 表示焦点在y 轴上的椭圆 ∴22>k故10<<k 4.C[解析]:双曲线19222=-y ax 的一条渐近线方程为023=-y x ,故2=a 又P 是双曲线上一点,故4||||||21=-PF PF ,而3||1=PF ,则=||2PF 75.C[解析]:对于抛物线y 2=2x 上任意一点Q, 点P(a, 0)都满足|PQ|≥|a |,若,0≤a 显然适合若0>a ,点P(a, 0)都满足|PQ|≥|a |就是2222)2(y y a a +-≤ 即1142≤+≤y a ,此时10≤<a 则a 的取值范围是(]1,∞- 6.D[解析]:3522=-+b c bc ,5245222==∴=∴=a c e a c b c 7.D[解析]:双曲线)0(1222>=-a y a x 的准线为122+±=a a x抛物线x y 62-=的准线为23=x 因为两准线重合,故122+a a =23,2a =3,则该双曲线的离心率为328.A[解析]:∵A(x 1,y 1),B(x 2,y 2)是抛物线y 2=2px(p>0)上的两点,并且满足OA ⊥OB.∴04)(0,12122212121=+∴=+∴-=⋅y y py y y y x x k k OBOA 则y 1y 2 = – 4p 29.C[解析]:∵120,MF MF ⋅=∴点M 在以F 1F 2为直径的圆322=+y x 上故由32||1232222=⎪⎩⎪⎨⎧=-=+y y x y x 得 则点M 到x 轴的距离为332 10.D[解析]:不妨设点P 在 x 轴上方,坐标为),(2ab c ,∵△F 1PF 2为等腰直角三角形∴|PF 2|=|F 1F 2|,即c a b 22=,即e e a c ac a 2122222=-∴=- 故椭圆的离心率e1二填空题:11. 1922=-y x [解析]: 因为双曲线的渐近线方程为x y 3±=,则设双曲线的方程是λ=-922y x ,又它的一个焦点是()0,10 故1109=∴=+λλλ12. 1222=+y x [解析]:双曲线2 x 2-2y 2=1的焦点为()0,1±,离心率为2故椭圆的焦点为()0,1±,离心率为22, 则1,2,1===b a c ,因此该椭圆的方程是1222=+y x 13. 2[解析]:设双曲线22221x y a b-=(a >0,b >0)的左焦点F 1,右顶点为A ,因为以MN 为直径的圆恰好过双曲线的右顶点, 故|F 1M|=|F 1A|,∴c a ab +=2∴2112=∴+=-e e e 14. ③④[解析]:根据双曲线的定义必须有||||AB k ≤,动点P 的轨迹才为双曲线,故①错 ∵),(21OB OA OP +=∴P 为弦AB 的中点,故090=∠APC 则动点P 的轨迹为以线段AC 为直径的圆。
中职拓展模块椭圆、双曲线-抛物线试题
中职拓展模块椭圆、双曲线、抛物线测试题(时间:60分钟 总分:100分)得分:_________一、单选题(本大题共10小题,每小题4分,共40分)1、 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆, 那么实数k 的取值范围是 ( ) A (0, +∞) B (0, 2) C (1, +∞) D (0,1)2、抛物线28y x =的准线方程是 ( )A :x=2B :x=-4C :y=-2D : y=-43、焦点为1(5,0)F -、2(5,0)F ,实轴长是6的双曲线的方程是( )A 、221169x y -= B 、221916x y -= C 、221169y x -= D 、22196x y -= 4、若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .45、双曲线的渐近线方程是 ( ) A : 2y x =± B : 0.5y x =± C : 2y x =- D : 0.5y x = 6、一动圆圆心在抛物线y x 82-=上,且动圆恒与直线y =2相切,则动圆必过定点( ) A 、(4,0) B 、(0,–4) C 、(2,0) D 、(0,–2)7、过抛物线焦点任作一弦,以这弦为直径作圆,这圆与抛物线的准线的位置关系是( ) A 、相交 B 、相切 C 、相离 D 、不确定8、等轴双曲线的离心率是 ( )A 、1BC 、1/2D 、不确定9、椭圆192522=+y x 上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( ) A.5 B.6 C.4 D.1010、曲线221(6)106x y m m m +=<--与曲线221(59)59x y m m m+=<<--的( ) A.焦距相等 B.离心率相等 C.焦点相同 D.不能确定二、填空题(本大题共4小题,每小题4分,共16分)11. 双曲线221259x y -=的实虚轴长分别是 ,顶点坐标是 ,焦点坐标是 ,渐近线方程是 ,离心率是 。
高中数学《抛物线》单元测试
一、选择题1.(2017·广东汕头质检)已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =( )A.45B.35 C .-35 D .-45[解析 ∵抛物线C :y 2=4x 的焦点为F ,∴点F 的坐标为(1,0).又∵直线y =2x -4与C 交于A ,B两点,∴A ,B 两点坐标分别为(1,-2),(4,4),则FA →=(0,-2),FB →=(3,4),∴cos ∠AFB =FA →·FB→|FA →||FB →|=-810=-45.故选D. [答案 D2.(2017·北京东城期末)过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,它们的横坐标之和等于3,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在[解析 过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,若直线AB 的斜率不存在,则横坐标之和等于2,不符合题意.设直线AB 的斜率为 ,则直线AB 的方程为y = (x -1),代入抛物线方程y 2=4x ,得 2x 2-2( 2+2)x + 2=0.∵A ,B 两点的横坐标之和等于3,∴2k 2+2k 2=3.解得 =±2,∴符合题意的直线有且仅有两条.故选B.[答案 B3.(2017·湖南长沙调研)设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4x B .y 2=4x C .y 2=±8x D .y 2=8x[解析 ∵抛物线y 2=ax (a ≠0)的焦点F 的坐标为⎝ ⎛⎭⎪⎫a 4,0,∴直线l 的方程为y =2⎝ ⎛⎭⎪⎫x -a4.∵直线l与y 轴的交点为A ⎝⎛⎭⎪⎫0,-a 2,∴△OAF 的面积为12⎪⎪⎪⎪⎪⎪a 4·⎪⎪⎪⎪⎪⎪a 2=4,解得a =±8.∴抛物线的方程为y 2=±8x ,故选C.[答案 C4.(2017·河南三门峡灵宝期末)已知抛物线方程为y 2=2px (p >0),过该抛物线焦点F 且不与x 轴垂直的直线交抛物线于A ,B 两点,过点A ,点B 分别作AM ,BN 垂直于抛物线的准线,分别交准线于M ,N 两点,那么∠MFN 必是( )A .锐角B .直角C .钝角D .以上皆有可能[解析 由题意画出图象,如图.由抛物线的定义,可知|NB |=|BF |.所以△BNF 是等腰三角形.因为BN ∥OF ,所以NF 平分∠OFB .同理MF 平分∠OFA ,所以∠NFM =90°.故选B.[答案 B5.(2017·黑龙江七台河期末)已知抛物线C :y 2=-8x 的焦点为F ,直线l :x =1,点A 是l 上的一动点,直线AF 与抛物线C 的一个交点为B .若FA →=-3FB →,则|AB |=( )A .20B .16C .10D .5[解析 由抛物线C :y 2=-8x ,得F (-2,0).设A (1,a ),B (m ,n ),且n 2=-8m .∵FA →=-3FB →,∴1+2=-3(m +2),解得m =-3,∴n =±2 6.∵a =-3n ,∴a =±66, ∴|AB |=1+32+26+662=20.故选A.[答案 A6.(2017·湖北襄阳月考)已知抛物线y =12x 2的焦点为F ,准线为l ,M 在l 上,线段MF 与抛物线交于N 点,若|MN |=2|NF |,则|MF |=( )A .2B .3 C. 2 D. 3 [解析如图,过N 作准线的垂线NH ,垂足为H .根据抛物线的定义可知|NH |=|NF |, 在△NHM 中,|NM |=2|NH |,则∠NMH =45°.在△MF 中,∠FM =45°,所以|MF |=2|F |.而|F |=1. 所以|MF |= 2.故选C. [答案 C7.已知抛物线y 2=2px (p >0)的准线与曲线x 2+y 2-4x -5=0相切,则p 的值为__________. [解析 曲线的标准方程为(x -2)2+y 2=9,其表示圆心为(2,0),半径为3的圆,又抛物线的准线方程为x =-p 2,∴由抛物线的准线与圆相切得2+p2=3,解得p =2.[答案 2 二、填空题8.(2018·武汉模拟)抛物线y 2=4x 的焦点为F ,倾斜角等于45°的直线过F 交该抛物线于A ,B 两点,则|AB |=__________.[解析 由抛物线焦点弦的性质,得|AB |=2p sin 2α=2×2sin 245°=8. [答案 89.(2017·黑龙江绥化期末)设抛物线y 2=16x 的焦点为F ,经过点P ( 1,0)的直线l 与抛物线交于A ,B 两点,且2BP →=PA →,则|AF |+2|BF |=________.[解析 设A (x 1,y 1),B (x 2,y 2).∵P (1,0),∴BP →=(1-x 2,-y 2),PA →=(x 1-1,y 1).∵2BP →=PA →,∴2(1-x 2,-y 2)=(x 1-1,y 1),∴x 1+2x 2=3,-2y 2=y 1. 将A (x 1,y 1),B (x 2,y 2)代入抛物线方程y 2=16x ,得y 21=16x 1,y 22=16x 2.又∵-2y 2=y 1,∴4x 2=x 1.又∵x 1+2x 2=3,解得x 2=12,x 1=2.∴|AF |+2|BF |=x 1+4+2(x 2+4)=2+4+2×⎝ ⎛⎭⎪⎫12+4=15. [答案 15 三、解答题10.(2017·河北沧州百校联盟)已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线上一点P 的横坐标为2,|PF |=3.(1)求抛物线C 的方程;(2)过点F 且倾斜角为30°的直线交抛物线C 于A ,B 两点,O 为坐标原点,求△OAB 的面积. [解 (1)由抛物线定义可知,|PF |=2+p2=3,∴p =2,∴抛物线C 的方程为y 2=4x .(2)由y 2=4x ,得F (1,0),∴过点F 且倾斜角为30°的直线方程为y =33(x -1).联立y 2=4x ,消去x 得y 2-43y -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=43,y 1y 2=-4. ∴S △OAB =S △OAF +S △OFB =12|y 1-y 2|=12×48+16=4.[能力提升11.(2017·辽宁沈阳二中期中)抛物线C :y 2=4x 的焦点为F ,斜率为 的直线l 与抛物线C 交于M ,N 两点.若线段MN 的垂直平分线与x 轴交点的横坐标为a (a >0),n =|MF |+|NF |,则2a -n =( )A .2B .3C .4D .5[解析 由题意得F (1,0),准线方程为x =-1.线段MN 的中点坐标为(x 0,y 0).由抛物线的定义,得n =|MF |+|NF |=x M +1+x N +1=x M +x N +2=2x 0+2.因为线段MN 的垂直平分线方程为y -y 0=-1k(x -x 0),令y =0,得x = y 0+x 0,即a = y 0+x 0.由点差法可得 y 0=2,所以x 0=a -2,所以2a -n =2x 0+4-(2x 0+2)=2.故选A.[答案 A12.(2017·北京昌平期末)已知△ABC 的三个顶点均在抛物线y 2=x 上,边AC 的中线BM ∥x 轴,|BM |=2,则△ABC 的面积为________.[解析 根据题意设A (a 2,a ),B (b 2,b ),C (c 2,c ),不妨设a >c .∵M 为边AC 的中点,∴M ⎝ ⎛⎭⎪⎫a 2+c 22,a +c 2.又∵BM ∥x 轴,∴b =a +c2. ∴|BM |=⎪⎪⎪⎪⎪⎪a 2+c 22-b 2=⎪⎪⎪⎪⎪⎪a 2+c 22-a +c 24=2,∴(a -c )2=8,∴a -c =2 2.作AH ⊥BM 交BM 的延长线于H ,故S △ABC =2S △ABM =2×12|BM |·|AN |=2|a -b |=2⎪⎪⎪⎪⎪⎪a -a +c 2=a -c =2 2.[答案 2 213.(2017·福建厦门期中)设抛物线C :y 2=4x ,F 为C 的焦点,过点F 的直线l 与C 相交于A ,B 两点.(1)若l 的斜率为1,求|AB |的大小; (2)求证:OA →·OB →是一个定值. [解 (1)∵直线l 的斜率为1且过点F (1,0),∴直线l 的方程为y =x -1.设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =x -1,y 2=4x ,消去y 得x 2-6x +1=0.Δ>0,∴x 1+x 2=6,x 1x 2=1,∴|AB |=x 1+x 2+p =8.(2)证明:设直线l的方程为x = y +1,联立⎩⎪⎨⎪⎧x =ky +1,y 2=4x ,消去x 得y 2-4 y -4=0,Δ>0.设A =(x 1,y 1),B =(x 2,y 2),则y 1+y 2=4 ,y 1y 2=-4,OA →=(x 1,y 1),OB →=(x 2,y 2).∴OA →·OB →=x 1x 2+y 1y 2=( y 1+1)( y 2+1)+y 1y 2= 2y 1y 2+ (y 1+y 2)+1+y 1y 2=-4 2+4 2+1-4=-3. ∴OA →·OB →=-3是一个定值.14.已知抛物线y 2=2px (p >0),过点C (-2,0)的直线l 交抛物线于A 、B 两点,坐标原点为O ,OA →·OB →=12.(1)求抛物线的方程;(2)当以AB 为直径的圆与y 轴相切时,求直线l 的方程.[解 (1)设l :x =my -2,代入y 2=2px ,得y 2-2pmy +4p =0.( )设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2pm ,y 1y 2=4p ,则x 1x 2=y 21y 224p2=4.因为OA →·OB →=12,所以x 1x 2+y 1y 2=12,即4+4p =12, 得p =2,抛物线的方程为y 2=4x .(2)(1)中( )式可化为y 2-4my +8=0,y 1+y 2=4m ,y 1y 2=8. 设AB 的中点为M ,则|AB |=2x M =x 1+x 2=m (y 1+y 2)-4=4m 2-4,① 又|AB |=1+m 2|y 1-y 2|=1+m216m 2-32,②由①②得(1+m 2)(16m 2-32)=(4m 2-4)2,解得m 2=3,m =± 3. 所以直线l 的方程为x +3y +2=0或x -3y +2=0.15.已知过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B 、C 两点.当直线l 的斜率是12时,AC →=4AB →.(1)求抛物线G 的方程;(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值范围. [解 (1)设B (x 1,y 1),C (x 2,y 2),当直线l 的斜率是12时,l 的方程为y =12(x +4),即x =2y -4.由⎩⎪⎨⎪⎧x 2=2py ,x =2y -4得2y 2-(8+p )y +8=0,∴⎩⎪⎨⎪⎧y 1y 2=4, ①y 1+y 2=8+p 2. ②又∵AC →=4AB →,∴y 2=4y 1,③由①②③及p >0得:y 1=1,y 2=4,p =2,则抛物线G 的方程为x 2=4y . (2)设l :y = (x +4),BC 的中点坐标为(x 0,y 0),由⎩⎪⎨⎪⎧x 2=4y ,y =k x +4得x 2-4 x -16 =0,④∴x 0=x C +x B2=2 ,y 0= (x 0+4)=2 2+4 .∴线段BC 的中垂线方程为y -2 2-4 =-1k(x -2 ),∴线段BC 的中垂线在y 轴上的截距为:b =2 2+4 +2=2( +1)2, 对于方程④,由Δ=16 2+64 >0得: >0或 <-4. ∴b ∈(2,+∞).。
新高考一轮复习人教版 抛物线及其性质 作业
9.4抛物线及其性质基础篇固本夯基考点一抛物线的定义及标准方程1.(2022届广州花都8月调研,3)已知抛物线x2=ay的焦点为F,且M(2,1)为抛物线上的点,则|MF|=()A.1B.2C.3D.4答案B2.(2022届江苏百校大联考,3)已知抛物线C:y2=4x的焦点为F,A为抛物线C上第一象限的点,若|FA|=73,则直线OA的倾斜角为()A.π6B.π4C.π3D.2π3答案C3.(2019课标Ⅱ,文9,理8,5分)若抛物线y2=2px(p>0)的焦点是椭圆x 23p +y2p=1的一个焦点,则p=()A.2B.3C.4D.8答案D4.(2021石家庄3月质检,7)已知F是抛物线C:y2=8x的焦点,M是C上一点,MF的延长线交y轴于点N.若MF⃗⃗⃗⃗⃗ =2FN⃗⃗⃗⃗ ,则|MF|为()A.8B.6C.4D.2答案A5.(2020课标Ⅰ理,4,5分)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2B.3C.6D.9答案C6.(2021广东湛江一模,6)已知抛物线C:x2=-2py(p>0)的焦点为F,点M是C上的一点,M到直线y=2p的距离是M到C的准线距离的2倍,且|MF|=6,则p=()A.4B.6C.8D.10答案A7.(2021北京,12,5分)已知抛物线y2=4x的焦点为F,点M在抛物线上,MN垂直x轴于点N.若|MF|=6,则点M的横坐标为;△MNF的面积为.答案5;4√5考点二抛物线的几何性质1.(2022届广东茂名11月测试,2)抛物线x=43y2的焦点坐标为()A.(13,0)B.(0,13)C.(316,0)D.(0,23)答案C2.(2021山东枣庄二模,4)已知点(1,1)在抛物线C:y2=2px(p>0)上,则C的焦点到其准线的距离为()A.1 4B.12C.1D.2答案B3.(2020课标Ⅲ,文7,理5,5分)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(14,0)B.(12,0)C.(1,0)D.(2,0)答案B4.(2021辽宁朝阳一模,8)抛物线C:y2=2px(p>0)的焦点为F,过F与x轴垂直的直线交C于点M,N,有下列四个命题:甲:点F的坐标为(1,0);乙:抛物线C的准线方程为x=-2;丙:线段MN的长为4;丁:直线y=x+1与抛物线C相切.如果只有一个命题是假命题,则该命题是()A.甲B.乙C.丙D.丁答案B5.(2018北京文,10,5分)已知直线l过点(1,0)且垂直于x轴.若l被抛物线y2=4ax截得的线段长为4,则抛物线的焦点坐标为.答案(1,0)考点三直线与抛物线的位置关系1.(2022届广东深圳三中检测,7)已知抛物线y2=4x的焦点为F,过点F的直线l交抛物线于A,B两点,延长FB交准线于点C,若|BC|=2|BF|,则|BF||AF|=()A.1 4B.13C.12D.23答案B2.(多选)(2022届山东师大附中开学考试,11)过抛物线y2=4x的焦点F作直线交抛物线于A,B两点,M为线段AB的中点,则下列结论正确的是()A.以线段AB为直径的圆与直线x=-12相交B.以线段BM为直径的圆与y轴相切C.当AF⃗⃗⃗⃗ =2FB⃗⃗⃗⃗ 时,|AB|=92D.|AB|的最小值为4答案ACD3.(2021百校大联考(六),12)已知F是抛物线y2=2px(p>0)的焦点,斜率为-2且经过焦点F的直线l交该抛物线于M,N两点,若|MN|=52,则该抛物线的方程是()A.y2=xB.y2=2xC.y2=4xD.y2=6x 答案B4.(2021济南二模,7)已知抛物线x 2=2py(p>0),过焦点F 的直线与抛物线交于A,B 两点(点A 在第一象限).若直线AB 的斜率为√33,点A 的纵坐标为32,则p 的值为( )A.14B.12C.1D.2 答案 C5.(2018课标Ⅰ理,8,5分)设抛物线C:y 2=4x 的焦点为F,过点(-2,0)且斜率为23的直线与C 交于M,N 两点,则FM ⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗ =( )A.5B.6C.7D.8 答案 D6.(2019课标Ⅰ理,19,12分)已知抛物线C:y 2=3x 的焦点为F,斜率为32的直线l 与C 的交点为A,B,与x 轴的交点为P.(1)若|AF|+|BF|=4,求l 的方程;(2)若AP ⃗⃗⃗⃗ =3PB⃗⃗⃗⃗ ,求|AB|. 解析 设直线l:y=32x+t,A(x 1,y 1),B(x 2,y 2). (1)由题设得F (34,0),故|AF|+|BF|=x 1+x 2+32, 由题设可得x 1+x 2=52.由{y =32x +t,y 2=3x可得9x 2+12(t-1)x+4t 2=0,则x 1+x 2=-12(t−1)9.从而-12(t−1)9=52,得t=-78.所以l 的方程为y=32x-78.(2)由AP⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗ 可得y 1=-3y 2.由{y =32x +t,y 2=3x可得y 2-2y+2t=0.所以y 1+y 2=2.从而-3y 2+y 2=2,故y 2=-1,y 1=3.代入C 的方程得x 1=3,x 2=13.故|AB|=4√133. 综合篇 知能转换A 组考法一 利用抛物线的定义解题1.(2021福建龙岩三模,6)已知抛物线x 2=4y 的焦点为F,准线为l,过抛物线上一点P 作PQ ⊥l,垂足为Q,若|PF|=4,则∠FQP=( )A.30°B.45°C.60°D.75° 答案 C2.(2022届广东深圳实验学校、长沙市一中联考,13)抛物线y=ax 2(a>0)上的点M (m,12)到其准线l 的距离为1,则a 的值为 . 答案123.(2022届华大新高考联盟11月测评,13)已知抛物线y 2=2px(p>0)的焦点坐标为(1,0),则该抛物线上任一点到焦点的距离的取值范围是 . 答案 [1,+∞)4.(2021广东肇庆二模,15)已知点P 是抛物线x 2=8y 上的一个动点,则点P 到点A(2,0)的距离与到抛物线的准线的距离之和的最小值为 . 答案 2√25.(2021新高考Ⅰ,14,5分)已知O 为坐标原点,抛物线C:y 2=2px(p>0)的焦点为F,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ ⊥OP.若|FQ|=6,则C 的准线方程为 . 答案 x=-32考法二 直线与抛物线的位置关系问题1.(2022届湖北部分学校11月质检,6)已知抛物线y 2=4x,直线l 与抛物线交于A,B 两点,若线段AB 中点的纵坐标为2,则直线AB 的斜率为( ) A.2 B.√3 C.√33D.1答案 D2.(多选)(2021湖南衡阳联考(一),11)已知抛物线C:x 2=2py(p>0),过其准线上的点T(1,-1)作C 的两条切线,切点分别为A 、B,下列说法正确的是( ) A.p=1 B.TA ⊥TBC.直线AB 的斜率为12D.线段AB 中点的横坐标为1 答案 BCD3.(2022届四省八校期中,14)过点M(-1,2)作抛物线y 2=4x 的两条切线,切点分别为A 、B,则线段AB 的中点到抛物线准线的距离为 . 答案 44.(2020新高考Ⅰ,13,5分)斜率为√3的直线过抛物线C:y 2=4x 的焦点,且与C 交于A,B 两点,则|AB|= . 答案1635.(2019北京理,18,14分)已知抛物线C:x 2=-2py 经过点(2,-1). (1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M,N,直线y=-1分别交直线OM,ON 于点A 和点B.求证:以AB 为直径的圆经过y 轴上的两个定点.解析 (1)由抛物线C:x 2=-2py 经过点(2,-1),得p=2.所以抛物线C 的方程为x 2=-4y,其准线方程为y=1. (2)证明:抛物线C 的焦点为F(0,-1).设直线l 的方程为y=kx-1(k ≠0). 由{y =kx −1,x 2=−4y 得x 2+4kx-4=0.设M(x 1,y 1),N(x 2,y 2), 则x 1x 2=-4,直线OM 的方程为y=y 1x 1x. 令y=-1,得点A 的横坐标x A =-x 1y 1.同理得点B 的横坐标x B =-x 2y 2.设点D(0,n),则DA ⃗⃗⃗⃗ =(−x 1y 1,−1−n ),DB⃗⃗⃗⃗ =(−x2y 2,−1−n ), DA⃗⃗⃗⃗ ·DB ⃗⃗⃗⃗ =x 1x 2y 1y 2+(n+1)2=x 1x 2(−x 124)(−x 224)+(n+1)2=16x 1x 2+(n+1)2=-4+(n+1)2.令DA ⃗⃗⃗⃗ ·DB ⃗⃗⃗⃗ =0,即-4+(n+1)2=0,得n=1或n=-3. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,-3).6.(2021全国乙文,20,12分)已知抛物线C:y 2=2px(p>0)的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足PQ⃗⃗⃗⃗ =9QF ⃗⃗⃗⃗ ,求直线OQ 斜率的最大值. 解析 (1)∵抛物线y 2=2px(p>0)的焦点F 到准线的距离为2,∴p=2.∴抛物线C 的方程为y 2=4x. (2)由已知不妨设点P(4x 02,4x 0),Q(x 1,y 1),则PQ ⃗⃗⃗⃗ =(x 1-4x 02,y 1-4x 0),∵F(1,0),∴QF ⃗⃗⃗⃗ =(1-x 1,-y 1), ∵PQ ⃗⃗⃗⃗ =9QF ⃗⃗⃗⃗ ,∴{x 1−4x 02=9(1−x 1),y 1−4x 0=9(−y 1),整理得{x 1=110(9+4x 02),y 1=410x 0,∴k OQ =y 1x 1=4x 09+4x 02, 当k OQ 最大时,x 0>0,∴k OQ =49x 0+4x 0≤2√36=13,当且仅当4x 0=9x 0时取“=”,此时x 0=32,点P 的坐标为(9,6),因此k OQ 的最大值为13.B 组1.(2020北京,7,4分)设抛物线的顶点为O,焦点为F,准线为l,P 是抛物线上异于O 的一点,过P 作PQ ⊥l 于Q,则线段FQ 的垂直平分线( )A.经过点OB.经过点PC.平行于直线OPD.垂直于直线OP 答案 B2.(2017课标Ⅱ文,12,5分)过抛物线C:y 2=4x 的焦点F,且斜率为√3的直线交C 于点M(M 在x 轴的上方),l 为C 的准线,点N 在l 上且MN ⊥l,则M 到直线NF 的距离为( ) A.√5 B.2√2 C.2√3 D.3√3 答案 C3.(2022届广东深圳七中月考,8)过抛物线C:y 2=4x 的焦点作倾斜角为34π的直线l 交C 于A 、B 两点,以C 的准线上一点M 为圆心作圆M 经过A 、B 两点,则圆M 的面积为( ) A.96π B.48π C.32π D.16π 答案 B4.(多选)(2022届广东11月大联考,10)已知P(x 0,y 0)是抛物线C:y 2=4x 上一动点,则( ) A.C 的焦点坐标为(2,0)B.C 的准线方程为x+1=0 C.x 0+1=√(x 0−1)2+y 02D.x 0+1y 02+1的最小值为34答案 BCD5.(2021湖北九师联盟2月质检,8)已知抛物线C:y 2=2px(p>0)的焦点为F,点M(x 0,2√2)(x 0>p2)是抛物线C 上一点,以点M 为圆心的圆与直线x=p2交于E,G 两点,若sin ∠MFG=13,则抛物线C 的方程是( ) A.y 2=x B.y 2=2x C.y 2=4x D.y 2=8x 答案 C。
抛物线测试卷
抛物线测试卷(本测试共17题,满分100分,时间80分钟) 日期 姓名 得分一、填空题:(共十小题,每题5分,共50分)1、设已知抛物线C 的顶点在坐标原点,焦点为F (1,0),直线l 与抛物线C 相交于A 、B 两点。
若AB 的中点为(2,2), 则直线l 的方程为 。
2、若直线2+=kx y 与抛物线x y 42=只有一个公共点,则k = 。
3、若直线b x y +=与抛物线y x 22=交于异于原点的A 、B 两点,且0=⋅OB OA ,则实数b 的值为 。
4、过抛物线焦点F 的直线与抛物线交于A 、B 两点,若A 、B 在抛物线准线上的射影分别为11,B A ,则11FB A ∠= 。
5、已知直线)0()2(>+=k x k y 与抛物线C :x y 82=相交于A 、B 两点,F 为C 的焦点。
若FB FA 2=,则k= 。
6、。
的最小值是,则上一动点及抛物线已知点____||),(4)0,22(2PQ y y x P x y Q += 7、若一动圆的圆心在抛物线x y 82=上,且动圆恒与直线x+2=0相切,则此动圆必过定点________。
8、已知点P 为抛物线24y x =上一点,记点P 到y 轴距离为1d ,点P 到直线34120l x y -+=:的距离为2d ,则12d d +的最小值为_______。
9、过抛物线24y x =的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则11p q +=_____。
10、设斜率为2的直线l 过抛物线)0(2≠=a ax y 的焦点F ,且和y 轴交于点A ,若OAF ∆(O 为坐标原点)的面积为4,则抛物线方程为二、选择题:(共四小题,每题5分,共20分)11、若动点M (x ,y )满足1243)2()1(522+-=-+-y x y x ,则点M 的轨迹是( )A 、圆;B 、椭圆;C 、双曲线;D 、抛物线。
抛物线综合测试(含有详细答案)
高二数学抛物线综合测试满分:150分 时间:100分钟一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合题目的要求,请将答案填写在题后的表格中.1.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是( )A.|a |4B.|a |2 C .|a | D .-a 22.[2010·陕西卷] 已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,则p 的值为( ) A.12B .1C .2D .4 3.在y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是( )A .(-2,1)B .(1,2)C .(2,1)D .(-1,2) 4.已知动圆圆心在抛物线y 2=4x 上,且动圆恒与直线x =-1相切,则此动圆必过定点( )A .(2,0)B .(1,0)C .(0,1)D .(0,-1)5.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x6.(2011·北京)已知点A (0,2),B (2,0).若点C 在函数y =x 2的图像上,则使得△ABC 的面积为2的点C 的个数为( )A .4B .3C .2D .17.(2011·大纲全国理)已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则 cos ∠AFB =( )A.45B.35 C .-35 D .-458.(2010·辽宁)设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |=( )A .4 3B .8C .83D .169.[2010·山东卷] 已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-210.抛物线y 2=2px (p >0)的焦点为F ,准线为l ,经过F 的直线与抛物线交于A 、B 两点,交准线于C 点,点A 在x 轴上方,AK ⊥l ,垂足为K ,若|BC |=2|BF |,且|AF |=4,则△AKF 的面积是( )A .4B .3 3C .4 3D .8高二数学抛物线综合测试选择题答题卡题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题:本大题共5个小题,每小题5分,共25分.请将答案填写在横线上.11.过抛物线y 2=4x 的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则|AB |等 于 .12.如果直线l 过定点M (1,2),且与抛物线y =2x 2有且仅有一个公共点,那么l 的方程为 . 13.抛物线y 2=x 上的点到直线x -2y +4=0的距离最小的点的坐标是________.14.[2010·浙江卷] 设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段F A 的中点B 在抛物线上,则B 到该抛物线准线的距离为________. 15.[2010·全国卷Ⅱ] 已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)且斜率为3的直线与l 相交于点A ,与C 的一个交点为B .若AM →=MB →,则p =________.三、解答题:本大题共5小题,每题14分,共70分.解答应写出文字说明,证明过程或演算步骤. 16.斜率为1的直线l 经过抛物线24y x 焦点F ,且与抛物线相交于A 、B 两点,求线段AB 的长。
高二数学同步测试—抛物线(含答案)
高二数学单元测试—抛物线一、选择题(本大题共10小题,每小题5分,共50分)1.抛物线22x y =的焦点坐标是( )A .)0,1(B .)0,41(C .)81,0( D . )41,0(2.已知抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,则抛物线方程为 ( ) A .y x 82= B .y x 42= C .y x 42-= D .y x 82-=3.抛物线x y 122=截直线12+=x y 所得弦长等于 ( )A .15B .152C .215D .154.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 ( )A .y x 292-=或x y 342= B .x y 292-=或y x 342=C .y x 342= D .x y 292-=5.点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为 ( )A .0B .1C .2D .26.抛物线)0(22>=p px y 上有),,(),,(2211y x B y x A ),(33y x C 三点,F 是它的焦点,若CF BF AF ,,成等差数列,则 ( ) A .321,,x x x 成等差数列 B .231,,x x x 成等差数列 C .321,,y y y 成等差数列 D .231,,y y y 成等差数列 7.若点A 的坐标为(3,2),F 为抛物线x y 22=的焦点,点P 是抛物线上的一动点,则PF PA +取得最小值时点P 的坐标是 ( )A .(0,0)B .(1,1)C .(2,2)D .)1,21(8.已知抛物线)0(22>=p px y 的焦点弦AB 的两端点为),(11y x A ,),(22y x B ,则关系式2121x x y y 的值一定等于 ( )A .4pB .-4pC .p 2D .-p9.过抛物线)0(2>=a ax y 的焦点F 作一直线交抛物线于P ,Q 两点,若线段PF 与FQ 的长分别是q p ,,则qp11+( )A .a 2B .a21C .a 4D .a410.若AB 为抛物线y 2=2p x (p>0)的动弦,且|AB|=a (a >2p),则AB 的中点M 到y 轴的最近距离是 ( ) A .21a B .21p C .21a +21p D .21a -21p二、填空题(本大题共4小题,每小题6分,共24分)11.抛物线x y =2上到其准线和顶点距离相等的点的坐标为 ______________. 12.已知圆07622=--+x y x ,与抛物线)0(22>=p px y 的准线相切,则=p ___________.13.如果过两点)0,(a A 和),0(a B 的直线与抛物线322--=x x y 没有交点,那么实数a的取值范围是 .14.A 是抛物线)0(22>=p px y 上任一点,F 是抛物线焦点,则以AF 为直径的圆与y 轴 (相交、相切、相离)15.对于顶点在原点的抛物线,给出下列条件;(1)焦点在y 轴上; (2)焦点在x 轴上; (3)抛物线上横坐标为1的点到焦点的距离等于6; (4)抛物线中垂直于轴的焦点弦长为5;(5)由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).其中适合抛物线y 2=10x 的条件是(要求填写合适条件的序号) ______. 三、解答题(本大题共6小题,共76分)16.已知以抛物线的焦点弦AB 为直径的圆与直线x=-2相切,求抛物线的标准方程,若直线AB 的倾斜角为45°,求弦AB 的长17.已知过抛物线y 2=2px 的顶点O 作互相垂直的两直线OA 、OB ,分别与抛物线相交于A 、B 两点,求证直线AB 过x 轴上的定点。
椭圆双曲线抛物线基础测试题(100分钟)
椭圆、双曲线、抛物线基础测试题1椭圆、双曲线、抛物线基础测试题时间:100分钟 满分:100分 班级 姓名 成绩一.选择题(下列各题中只有一个正确答案,每小题4分共24分)1. 到两点F 1 (0, 3 )、F 2 (0, -3 ) 的距离之和等于10的动点M 的轨迹方程是 ( ) ( A )14522=+y x ( B ) 15422=+y x ( C ) 1162522=+y x ( D ) 1251622=+y x 2. 双曲线4x 2 - 3y 2 = 12的共轭双曲线是 ( ) ( A ) 4y 2 - 3x 2 = 12 ( B ) 3x 2 - 4y 2 = 12 ( C ) 3y 2 - 4x 2 = 12 ( D ) 4x 2 - 3y 2 = 123. 顶点在原点、坐标轴为对称轴,经过点P( 1, -2 )的抛物线方程是 ( ) ( A ) y 2 = 4x ( B ) x 2 =21-y ( C ) y 2 = 4x, x 2 = 4y ( D ) y 2 = 4x, x 2 =21-y 4. 若椭圆15922=+xy ,则9等于 ( ) ( A ) 两焦点间的距离 ( B ) 一焦点到长轴一端点的距离 ( C ) 两准线间的距离 ( D ) 椭圆上一点到准线的距离5. 当曲线1422=-+ky k x 表示焦点在x 轴上的双曲线时,则 ( ) ( A ) k > 0 ( B ) k > 4 ( C ) 0 < k < 4 ( D ) k > 4或k < 06. 双曲线的两条准线把连接两焦点的线段三等分,则双曲线的离心率是 ( ) ( A )3 ( B ) 3 ( C )33 ( D ) 33± 二.填空题(每空4分,共24分)1. 抛物线x 2 = 4y + 8的焦点坐标是 .2. 离心率为2的双曲线的渐近线的夹角等于 .3. 经过两点M(3, 0 )、N( 0, -2 )的椭圆的标准方程是 .4. 若椭圆的一焦点到短轴两端点的连线垂直,则椭圆的离心率是 .5. AB 是过椭圆x 2 + 2y 2 = 4焦点F 1的弦,它与另一焦点F 2所连成三角形的周长等于 .6. 当抛物线y 2 = 4x 上一点P 到焦点F 和点A( 2, 2 )的距离之和最小时,点P 的坐标是三.解答题(5道题,共52分)1、已知双曲线的一渐近线方程是x +2y = 0, 且过点M(-6, 4 ),求双曲线的标准方程. (10分)2、求直线y = 2x + 1与抛物线x 2 - y = 1相交所得的弦长. (共10分)3、一抛物线以双曲线 191622=y x + 的右顶点为顶点,左焦点为焦点,求此抛物线的方程。
初四数学抛物线中考核心难题
问题1.抛物线y=kx 2-7x-7的图像和x 轴有交点,则k 的取值范围——使b 2-4ac ≥0 12月17日数学预习学案2.如图2,抛物线y=ax 2-5ax+4经过△ABC 的三个顶点,已知BC∥x 轴,点A 在x 轴上,点C 在y 轴上,且AC=BC.(1)求抛物线的对称轴;用-b/2a 计算出来即可(2)写出A ,B ,C 三点的坐标并求抛物线的解析式;求出B 点后计算出CB 的长,AC=BC ,所以用AC 2-CO 2=AO 2,即可求出A 点坐标,代入A B C 求出解析式(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在△PAB 是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.用勾股定理求出AB 与BD 的长度1、BA=BP ,然后再用勾股定理求出PD ,看看是否符合在x 轴下方 2、PA=PB 3、PA=AB第3问———初四七中周4测试3.已知:在⊙O 的内接△ABC 中,AB+AC=12,AD ⊥BC 于D,且AD=3,设⊙O 的半径为y, AB 的长为x. (1)求y 与x 之间的函数关系式;(2)当AB 的长为多少时,⊙O 的面积最大?并求出⊙O 的最大面积.——第1问(出自12月13日数学考试试卷) (1)ΔABE ≌ΔADC(∠ABE=∠ADC=90;∠E=∠C 因为同是弧AB所以AB:AD=AE:AC 即x:3=2y:(12-x)可求出关系式(2)用第一问的关系式求出使y 最大的时候x 的值,再求出y 此时圆的半径最大,也就是圆的面积最大,进而求出圆的面积。
4.蔬菜基地种植某种蔬菜,有市场行情分析知,1月份至6月份之这种蔬菜的上市时间(x)月份与市场售价p(元/千克)的关系如下表:这种蔬菜每千克的种植成本x(元/千克)与上市时间x(月份)满足一个函数关系,这个函数关图象是抛物线的一段.(1).写出上表中表示的市场售价p(元/千克)关于上市时间x(月份)的函数关系式.用y=kx+b(2).若图中抛物线经过A 、B 、C 三点,写出抛物线对应的函数关系式.(3).由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?(收益=市场售价-种植成本)————周5课堂学案没有图啊 B PD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线测试
一、选择题
1.已知抛物线的焦点坐标为(-3,0),准线方程为x=3,则抛物线方程是()
A.B.
C.D.
2.若抛物线上三点的横坐标成等差数列,那么这三点与焦点F的距离的关系是() A.成等差数列
B.成等比数列
C.既成等差数列,又成等比数列
D.既不成等差数列,也不成等比数列
3.设过抛物线的焦点F的弦为PQ,则以PQ为直径的圆与抛物线的准线的位置关系是()
A.相交B.相切
C.相离D.以上答案均有可能
4.抛物线上一点到直线y=4x-5的距离最短,则该点的坐标是()
A.(1,2)B.(0,0)
C.(,1)D.(1,4)
5.抛物线的准线方程是y=2,则a的值是()
A.B.-
C.8D.-8
6.关于x、y的方程不能表示的曲线是()
A.直线B.圆或椭圆
C.双曲线D.抛物线
7.抛物线型拱桥,当水面距拱顶8 m时,水面宽24 m,若雨后水面上涨2 m,则此时的水面宽约为(以下数
据供参考:≈1.7,≈1.4)()
A.20.4 m B.10.2 m
C.12.8 m D.6.4 m
8.设坐标原点O,抛物线与过其焦点的直线交于A、B两点,·等于()
A.B.-
C.3D.-3
9.焦点在(-1,0),顶点在(1,0)的抛物线方程为()
A.=8(x+1)B.=-8(x+1)
C.=8(x-1)D.=-8(x-1)
10.圆心在抛物线上,且与x轴和该抛物线的准线都相切的一个圆的方程是()
A.B.
C.D.
B卷
二、填空题
11.已知点(-2,3)与抛物线的焦点的距离是5,则p=__________.
12.已知抛物线的顶点在坐标原点,焦点在y轴上,抛物线上一点的纵坐标是-4,且该点到焦点的距离是6,则抛物线的标准方程是___________.
13.与直线x=-2相切,且经过点(2,0)的动圆圆心C的轨迹方程是__________.
14.若抛物线的焦点在x轴上,则实数m的值是__________.
三、解答题
15.求与椭圆有相同的焦点,且顶点在原点的抛物线方程.
16.求抛物线上的点到直线x-y-2=0的最短距离.
17.已知抛物线,过焦点F的直线l交抛物线于A,B两点,直线l的倾斜角为α,求证:|AB|=.
18.如图,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线于、两点.
(1)写出直线l的方程;
(2)求的值;
(3)求证:OM⊥ON.
BABCB DABDB
答案:
11.412.
13.14.
提示:11. 设抛物线焦点F(a,0)(a>0),则=5.
∴a=2,p=2a=4.
12. 依题意可设抛物线方程为
设其上一点为M,由数形结合法知
13. 设动圆圆心为(x,y),则此点到定点(2,0)的距离与到定直线x=-2的距离都等于圆的半径,故相等.所以轨迹为以(2,0)为焦点,以x=-2为准线的抛物线,=2.∴2p=8.故方程为
14. 本题考查抛物线的方程以及平移公式.
抛物线方程可化为,
令得,
对而言,焦点坐标为(0,).
由条件可知抛物线的焦点在x轴上,
得=0-m+2,∴m=.
15. 解:由+=1,∴=5-4=1.∴c=1.
∴=c=1.∴p=2.
∴抛物线方程为.
16. 解:设为抛物线上任一点,则
d==≥=.
当x0=时,即抛物线上点(,)到直线x-y-2=0的距离最短,最短距离为.
17. 设直线l:,代入,则
18. 分析:本题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力.
(1)解:直线l的方程为y=k(x-2)(k≠0). ①
(2)解:由①及消去y得
. ②
点M、N的横坐标与是②的两个根,
由韦达定理得==4.
由
得.
注意到,所以.
(3)证明:设直线OM、ON的斜率分别为,
则,,
相乘得===-1,所以OM⊥ON.。