太平区第四中学校2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太平区第四中学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x+2)=f (x ).当0≤x ≤1时,f (x )=x 2.若直线y=x+a 与函数y=f (x )的图象在[0,2]内恰有两个不同的公共点,则实数a 的值是( )
A .0
B .0或
C .

D .0或
2. 下列说法正确的是( )
A.圆锥的侧面展开图是一个等腰三角形;
B.棱柱即是两个底面全等且其余各面都是矩形的多面体;
C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;
D.通过圆台侧面上的一点,有无数条母线.
3. 如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )
A .30
B .50
C .75
D .150
4. 已知双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=1相切,则双曲线的离心率为( )
A .
B .
C .
D .
5. 若函数y=x 2+bx+3在[0,+∞)上是单调函数,则有( )
A .b ≥0
B .b ≤0
C .b >0
D .b <0
6. 对“a ,b ,c 是不全相等的正数”,给出两个判断:
①(a ﹣b )2+(b ﹣c )2+(c ﹣a )2≠0;②a ≠b ,b ≠c ,c ≠a 不能同时成立,
下列说法正确的是( )
A.①对②错B.①错②对C.①对②对D.①错②错
7.在正方体ABCD﹣A1B1C1D1中,点E为底面ABCD上的动点.若三棱锥B﹣D1EC的表面积最大,则E 点位于()
A.点A处B.线段AD的中点处
C.线段AB的中点处D.点D处
8.二项式(x2
﹣)6的展开式中不含x3项的系数之和为()A.20 B.24 C.30 D.36
9.已知
|
|=||=1

与夹角是90°

=2
+3

=k﹣
4

与垂直,k的值为()
A.﹣6 B.6 C.3 D.﹣3
10.
“”是“一元二次方程x2+x+m=0有实数解”的()
A.充分非必要条件B.充分必要条件
C.必要非充分条件D.非充分非必要条件
11.如图,在正四棱锥S﹣ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:①EP∥BD;②EP⊥AC;③EP⊥面SAC;④EP∥面SBD中恒成立的为()
A.②④B.③④C.①②D.①③
12.已知,y满足不等式
430,
35250,
1,
x y
x y
x
-+≤


+-≤

⎪≥

则目标函数2
z x y
=+的最大值为()
A.3 B.13
2
C.12 D.15
二、填空题
13.
已知椭圆
+=1(a>b>0)上一点A关于原点的对称点为B,F为其左焦点,若AF⊥BF,设∠ABF=θ,
且θ∈
[
,],则该椭圆离心率e的取值范围为.
14.在(1+x )(x 2+)6的展开式中,x 3的系数是 .
15.已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则
= .
16.定积分sintcostdt= .
17.已知三棱柱ABC ﹣A 1B 1C 1的侧棱和底面垂直,且所有棱长都相等,若该三棱柱的各顶点都在球O 的表面上,且球O 的表面积为7π,则此三棱柱的体积为 .
18.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对弧长为 .
三、解答题
19.已知圆C :(x ﹣1)2
+y 2
=9内有一点P (2,2),过点P 作直线l 交圆C 于A ,B 两点.
(1)当l 经过圆心C 时,求直线l 的方程;
(2)当弦AB 被点P 平分时,求直线l 的方程.
20.(本小题满分12分)
已知向量,a b 满足:||1a =,||6b =,()2a b a ∙-=. (1)求向量与的夹角; (2)求|2|a b -.
21.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极
轴建立极坐标系.
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l
的交点为Q,求线段PQ的长.
22.等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,
(Ⅰ)求数列{a n}的通项公式;
(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.
23.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD 的中点,求证:
(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD.
24.已知圆C经过点A(﹣2,0),B(0,2),且圆心在直线y=x上,且,又直线l:y=kx+1与圆C相交于P、Q两点.
(Ⅰ)求圆C的方程;
(Ⅱ)若,求实数k的值;
(Ⅲ)过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值.
太平区第四中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】D
【解析】解:∵f(x)是定义在R上的偶函数,当0≤x≤1时,f(x)=x2,
∴当﹣1≤x≤0时,0≤﹣x≤1,f(﹣x)=(﹣x)2=x2=f(x),
又f(x+2)=f(x),∴f(x)是周期为2的函数,
又直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,其图象如下:
当a=0时,直线y=x+a变为直线l1,其方程为:y=x,显然,l1与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点;
当a≠0时,直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,由图可知,直线y=x+a与函数y=f(x)相切,切点的横坐标x0∈[0,1].
由得:x2﹣x﹣a=0,由△=1+4a=0得a=﹣,此时,x0=x=∈[0,1].
综上所述,a=﹣或0
故选D.
2.【答案】C
【解析】
考点:几何体的结构特征.
3.【答案】B
【解析】解:该几何体是四棱锥,
其底面面积S=5×6=30,
高h=5,
则其体积V=S×h=30×5=50.
故选B.
4.【答案】D
【解析】解:双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x,即x±y=0.
根据圆(x﹣2)2+y2=1的圆心(2,0)到切线的距离等于半径1,
可得,1=,∴=,
,可得e=.
故此双曲线的离心率为:.
故选D.
【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出的值,是解题的关键.
5.【答案】A
【解析】解:抛物线f(x)=x2+bx+3开口向上,
以直线x=﹣为对称轴,
若函数y=x2+bx+3在[0,+∞)上单调递增函数,
则﹣≤0,解得:b≥0,
故选:A.
【点评】本题考查二次函数的性质和应用,是基础题.解题时要认真审题,仔细解答.
6.【答案】A
【解析】解:由:“a,b,c是不全相等的正数”得:
①(a﹣b)2+(b﹣c)2+(c﹣a)2中至少有一个不为0,其它两个式子大于0,
故①正确;
但是:若a=1,b=2,c=3,则②中a≠b,b≠c,c≠a能同时成立,
故②错.
故选A.
【点评】本小题主要考查不等关系与不等式等基础知识,考查运算求解能力,考查逻辑思维能力.属于基础题.7.【答案】A
【解析】解:如图,
E为底面ABCD上的动点,连接BE,CE,D1E,
对三棱锥B﹣D1EC,无论E在底面ABCD上的何位置,
面BCD1的面积为定值,
要使三棱锥B﹣D1EC的表面积最大,则侧面BCE、CAD1、BAD1的面积和最大,
而当E与A重合时,三侧面的面积均最大,
∴E点位于点A处时,三棱锥B﹣D1EC的表面积最大.
故选:A.
【点评】本题考查了空间几何体的表面积,考查了数形结合的解题思想方法,是基础题.
8.【答案】A
【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r•x12﹣3r,令12﹣3r=3,求得r=3,
故展开式中含x3项的系数为•(﹣1)3=﹣20,而所有系数和为0,
不含x3项的系数之和为20,
故选:A.
【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
9.【答案】B
【解析】解:∵=(2+3)(k﹣4)
=2k+(3k﹣8)﹣12=0,
又∵=0.∴2k﹣12=0,k=6.
故选B
【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的
10.【答案】A
【解析】解:由x2+x+m=0知,⇔.
(或由△≥0得1﹣4m≥0,∴.),
反之“一元二次方程x2+x+m=0有实数解”必有,未必有,
因此“”是“一元二次方程x2+x+m=0有实数解”的充分非必要条件.
故选A.
【点评】本题考查充分必要条件的判断性,考查二次方程有根的条件,注意这些不等式之间的蕴含关系.
11.【答案】A
【解析】解:如图所示,连接AC、BD相交于点O,连接EM,EN.
在①中:由异面直线的定义可知:EP与BD是异面直线,
不可能EP∥BD,因此不正确;
在②中:由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,
∴SO⊥AC.
∵SO∩BD=O,∴AC⊥平面SBD,
∵E,M,N分别是BC,CD,SC的中点,
∴EM∥BD,MN∥SD,而EM∩MN=M,
∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确.
在③中:由①同理可得:EM⊥平面SAC,
若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,
因此当P与M不重合时,EP与平面SAC不垂直.即不正确.
在④中:由②可知平面EMN∥平面SBD,
∴EP∥平面SBD,因此正确.
故选:A.
【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.
12.【答案】C
考点:线性规划问题.
【易错点睛】线性规划求解中注意的事项:(1)线性规划问题中,正确画出不等式组表示的平面区域是解题的基础.(2)目标函数的意义,有的可以用直线在y轴上的截距来表示,还有的可以用两点连线的斜率、两点间的距离或点到直线的距离来表示.(3)线性目标函数的最值一般在可行域的顶点或边界上取得,特别地对最优整数解可视情况而定.
二、填空题
13.【答案】[,﹣1].
【解析】解:设点A(acosα,bsinα),则B(﹣acosα,﹣bsinα)(0≤α≤);F(﹣c,0);
∵AF⊥BF,
∴=0,
即(﹣c﹣acosα,﹣bsinα)(﹣c+acosα,bsinα)=0,
故c2﹣a2cos2α﹣b2sin2α=0,
cos2α==2﹣,
故cosα=,
而|AF|=,
|AB|==2c,
而sinθ=
==,
∵θ∈[,],
∴sinθ∈[,],
∴≤≤,
∴≤+≤,
∴,
即,
解得,≤e≤﹣1;
故答案为:[,﹣1].
【点评】本题考查了圆锥曲线与直线的位置关系的应用及平面向量的应用,同时考查了三角函数的应用.14.【答案】20.
【解析】解:(1+x)(x2+)6的展开式中,
x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;
又(x2+)6的展开式中,
通项公式为T r+1=•x12﹣3r,
令12﹣3r=3,解得r=3,满足题意;
令12﹣3r=2,解得r=,不合题意,舍去;
所以展开式中x3的系数是=20.
故答案为:20.
15.【答案】﹣5.
【解析】解:求导得:f′(x)=3ax2+2bx+c,结合图象可得
x=﹣1,2为导函数的零点,即f′(﹣1)=f′(2)=0,
故,解得
故==﹣5
故答案为:﹣5
16.【答案】.
【解析】解:0sintcostdt=0sin2td(2t)=(﹣cos2t)|=×(1+1)=.
故答案为:
17.【答案】.
【解析】解:如图,
∵三棱柱ABC﹣A1B1C1的所有棱长都相等,6个顶点都在球O的球面上,
∴三棱柱为正三棱柱,且其中心为球的球心,设为O,
再设球的半径为r,由球O的表面积为7π,得4πr2=7π,∴r=.
设三棱柱的底面边长为a,则上底面所在圆的半径为a,且球心O到上底面中心H的距离OH=,
∴r2=()2+(a)2,即r=a,
∴a=.
则三棱柱的底面积为S==.
∴==.
故答案为:.
【点评】本题考查球的内接体与球的关系,球的半径的求解,考查计算能力,是中档题.
18.【答案】.
【解析】解:如图:设∠AOB=2,AB=2,过点0作OC⊥AB,C为垂足,
并延长OC交于D,则∠AOD=∠BOD=1,AC=AB=1.
Rt△AOC中,r=AO==,
从而弧长为αr=2×=,
故答案为.
【点评】本题考查弧长公式的应用,解直角三角形求出扇形的半径AO 的值,是解决问题的关键,属于基础题.
三、解答题
19.【答案】
【解析】
【分析】(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l 的方程; (2)当弦AB 被点P 平分时,求出直线的斜率,即可写出直线l 的方程;
【解答】解:(1)已知圆C :(x ﹣1)2+y 2
=9的圆心为C (1,0),因为直线l 过点P ,C ,所以直线l 的斜率为2,所以直线l 的方程为y=2(x ﹣1),即2x ﹣y ﹣2=0. (2)当弦AB 被点P 平分时,l ⊥PC ,直线l 的方程为,即x+2y ﹣6=0.
20.【答案】(1)3
π
;(2)27 【解析】
试题分析:(1)要求向量,a b 的夹角,只要求得这两向量的数量积a b ⋅,而由已知()2a b a ∙-=,结合数量积的运算法则可得a b ⋅,最后数量积的定义可求得其夹角;(2)求向量的模,可利用公式2
2
a a =,把
考点:向量的数量积,向量的夹角与模.
【名师点睛】本题考查向量的数量积运算及特殊角的三角函数值,求解两个向量的夹角的步骤:第一步,先计
算出两个向量的数量积;第二步,分别计算两个向量的模;第三步,根据公式cos ,a b a b a b
⋅<>=求得这两个
向量夹角的余弦值;第四步,根据向量夹角的范围在[0,]π内及余弦值求出两向量的夹角. 21.【答案】
【解析】解:(I )圆C 的参数方程
(φ为参数).消去参数可得:(x ﹣1)2+y 2
=1.
把x=ρcos θ,y=ρsin θ代入化简得:ρ=2cos θ,即为此圆的极坐标方程.
(II )如图所示,由直线l 的极坐标方程是ρ(sin θ+)=3
,射线OM :θ=

可得普通方程:直线l ,射线OM .
联立
,解得
,即Q

联立,解得或.
∴P .
∴|PQ|=
=2.
【点评】本题考查了极坐标化为普通方程、曲线交点与方程联立得到的方程组的解的关系、两点间的距离公式等基础知识与基本方法,属于中档题.
22.【答案】
【解析】解:(Ⅰ)设数列{a n}的公比为q,由a32=9a2a6得a32=9a42,所以q2=.
由条件可知各项均为正数,故q=.
由2a1+3a2=1得2a1+3a1q=1,所以a1=.
故数列{a n}的通项式为a n=.
(Ⅱ)b n=++…+=﹣(1+2+…+n)=﹣,
故=﹣=﹣2(﹣)
则++…+=﹣2=﹣,
所以数列{}的前n项和为﹣.
【点评】此题考查学生灵活运用等比数列的通项公式化简求值,掌握对数的运算性质及等差数列的前n项和的公式,会进行数列的求和运算,是一道中档题.
23.【答案】
【解析】证明:(1)在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD.
又因为EF不在平面PCD中,PD⊂平面PCD
所以直线EF∥平面PCD.
(2)连接BD.因为AB=AD,∠BAD=60°.
所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.
因为平面PAD⊥平面ABCD,BF⊂平面ABCD,
平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.
又因为BF⊂平面EBF,所以平面BEF⊥平面PAD.
【点评】本题是中档题,考查直线与平面平行,平面与平面的垂直的证明方法,考查空间想象能力,逻辑推理能力,常考题型.
24.【答案】
【解析】
【分析】(I)设圆心C(a,a),半径为r,利用|AC|=|BC|=r,建立方程,从而可求圆C的方程;
(II)方法一:利用向量的数量积公式,求得∠POQ=120°,计算圆心到直线l:kx﹣y+1=0的距离,即可求得实数k的值;
方法二:设P(x1,y1),Q(x2,y2),直线方程代入圆的方程,利用韦达定理及=x1•x2+y1•y2=,即可求得k的值;
(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,求得,根据垂径定理和勾股定理得到,
,再利用基本不等式,可求四边形PMQN面积的最大值;
方法二:当直线l的斜率k=0时,则l1的斜率不存在,可求面积S;当直线l的斜率k≠0时,设,
则,代入消元得(1+k2)x2+2kx﹣3=0,求得|PQ|,|MN|,再利用基本不等式,可求四边形PMQN
面积的最大值.
【解答】解:(I)设圆心C(a,a),半径为r.
因为圆经过点A(﹣2,0),B(0,2),所以|AC|=|BC|=r,
所以
解得a=0,r=2,…(2分)
所以圆C的方程是x2+y2=4.…(4分)
(II)方法一:因为,…(6分)
所以,∠POQ=120°,…(7分)
所以圆心到直线l:kx﹣y+1=0的距离d=1,…(8分)
又,所以k=0.…(9分)
方法二:设P(x1,y1),Q(x2,y2),
因为,代入消元得(1+k2)x2+2kx﹣3=0.…(6分)
由题意得:…(7分)
因为=x1•x2+y1•y2=﹣2,
又,
所以x1•x2+y1•y2=,…(8分)
化简得:﹣5k2﹣3+3(k2+1)=0,
所以k2=0,即k=0.…(9分)
(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,四边形PMQN的面积为S.因为直线l,l1都经过点(0,1),且l⊥l1,根据勾股定理,有,…(10分)
又根据垂径定理和勾股定理得到,,…(11分)
而,即
…(13分)
当且仅当d1=d时,等号成立,所以S的最大值为7.…(14分)
方法二:设四边形PMQN的面积为S.
当直线l的斜率k=0时,则l1的斜率不存在,此时.…(10分)
当直线l的斜率k≠0时,设
则,代入消元得(1+k2)x2+2kx﹣3=0
所以
同理得到.…(11分)
=…(12分)
因为,
所以,…(13分)
当且仅当k=±1时,等号成立,所以S的最大值为7.…(14分)。

相关文档
最新文档