第四章____图形认识初步导学案及章检测题

合集下载

(新版人教版)七年级上第四章《图形认识初步》导学案

(新版人教版)七年级上第四章《图形认识初步》导学案

第四章 图形认识初步课题 4.1.1认识几何图形(1)【学习目标】:1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程;2、能由实物形状想象出几何图形,由几何图形想象出实物形状;3、能识别一些简单几何体,正确区分平面图形与立体图形。

【重点难点】:识别简单的几何体是重点;从具体事物中抽象出几何图形是难点。

【导学指导】一、知识链接同学们,你仔细观察过我们生活的世界吗?从城市宏伟的建筑到乡村简朴的住宅,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代化的城市雕塑,从自然界形态各异的动物到北京的申奥标志……,包含着形态各异的图形。

图形的世界是丰富多彩的!那就让我们走进图象的世界去看看吧。

二、自主探究1.几何图形(1)仔细观察图4.1-1,让同学们感受是丰富多彩的图形世界;(2)出示一个长方体的纸盒,让同学们观察图4.1-2回答问题:从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。

我们把这些图形称为几何图形。

注意:当我们关注物体的形状、大小和位置时,得出了几何图形,它是数学研究的主要对象之一,而物体的颜色、重量、材料等则是其它学科所关注的。

2.立体图形思考第117页思考题并出示实物(如茶叶、地球仪、字典及魔方等)及多媒体演示(如谷堆、帐篷、金字塔等),它们与我们学过的哪些图形相类似?长方体、正方体、球、圆柱、圆锥等它们各部分不都在同一平面内,它们是立体图形。

想一想生活中还有哪些物体的形状类似于这些立体图形呢?思考:课本118页图4.1-4中实物的形状对应哪些立体图形?把相应的实物与图形用线连起(1)纸盒(1)长方体(2)长方形(3)正方形(4)线段 点来。

3.平面图形平面图形的概念线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。

七年级(人教版)第四章几何图形初步导学案

七年级(人教版)第四章几何图形初步导学案

第四章几何图形初步4.1.1 几何图形(1)学习目标:1.观察生活中的实物或图片,认识以生活中的事物为原型的几何图形;认识一些简单几何体的基本特性,能识别这些简单几何体.2 .能由实物形状想象出几何图形,由几何图形想象出实物形状;初步理解立体图形与平面图形.学习重点:识别简单几何体.学习难点:从具体事物中抽象出几何图形.一、自主学习:1.(1)知道这是什么地方吗?你对它了解多少?(可上网查找)(2)你能从中找到我们熟悉的图形吗?找找看.2.多姿多彩的图形美化了我们的生活,找一找我们生活中的你熟悉的图形.3.你能不能设计一个装墨水的墨水盒?你能不能画出一个五角星?如果能,你就试一试,如果不能,那就让我们一起走进多姿多彩的图形世界,共同学习.二、合作探究:1 .观察9 张多姿多彩的图片,你能从中看出哪些熟悉的几何图形,与同学交流你观察到的图形.【老师提示】:对于一个物体,如果我们考虑它的颜色、材料和重量等,而只考虑它的形状(如方的、圆的)、大小(如长度、面积、体积)和位置(如平行、垂直、相交),所得到的图形就称为几何图形.如:我们学习过的长(正)方体、圆柱(锥)体、长(正)方形、圆、三角形、四边形等都是几何图形.2 .立体图形:各部分不都在同一平面内的图形,叫做立体图形.①长方体、正方体、圆柱、圆锥、球等都是立体图形,棱柱、棱锥也是常见的立体图形.找一找生活中有哪些物体的形状类似于这些立体图形?(小组交流)②图4.1 -3,你能由实物想到几何图形及其形状吗?③思考的问题(上),并与你的同学交流.【老师提示】:常.见.的立体图形大致分为:柱体(圆柱、棱柱)、锥体(圆锥、棱锥)、球体三类.3.平面图形:各部分都在同一平面内的图形,叫做平面图形.①长方形、正方形、三角形、四边形、圆等都是平面图形.找一找生活中的平面图形,与同学交流.4 .立体图形与平面图形是两类不同的几何图形,但他们是互相联系的.任何一个立体图形图形是由一个或几个平面图形围成的.看看下面的几个立体图形是由怎样的平面图形围成的?5 •下面都是生活中的物体:粉笔盒、茶杯、文具盒、砖、铅垂仪、乒乓球、黑板面. 你能说出类似于这些物体的几何图形吗?三、知识应用:1 .练习题.2 .用两条线段、两个三角形、两个圆拼成图案.试着画几个,并取一个恰当的名字.°A° V机器人四、学习小结:4. 1. 1几何图形(2)学习目标:1.从不同方向观察一个物体,体会其观察结果的不一样性.2 .能画出从不冋方向看一些基本几何体或其简单组合得到的平面图形.3学习重点: .初步建立空间观念.识别并会画出从不同方向看简单几何体所得到的平面图形. 学习难点: 识别并会画出从不同方向看简单组合体所得到的平面图形.'、自主学习:1 .观察你身边的一个物体,试着从不同的角度去看它,你看到的形状是一样的吗?【老师提示】:我们从不同的方向观察同一个物体时 ,可能看到不同的图形•为了能完整确切两盏电灯2 .地表达物体的形状和大小,必须从多方面观察物体•在几何中,我们通常选择从正面、从左面、从上面三个方向来观察物体.通过这样的观 察,就能把一个立体图形用几个平面图形来描述.3 .分别正面、左面、上面再来观察上面的三个几何体,把观察的结果与同学交流..、合作探究:1 .分别从正面、左面、上面三个方向观察下面的几何体,把观察到的图形画出来.2.(1) 小组合作,可用正立体积木摆出书上的立体图形,再观察. (2) 改变正立体积木的摆放位置,你摆我答,合作学习.(3) 观察身边的几何体,如文具盒、同学的水杯等物品,与同学交流分别从正面、 左面、上面所看到的几何图形.【老师提示】对于一些立体图形的问题,常把它们转化为平面图形来研究和处理.3 .苏东坡有一首诗《题西林壁》“横看成岭侧成峰,远近高低各不同•不识庐山真面目,只缘身在此山中.从正面看 从左面看 从上面看从正面看 从左面看 从上面看从正面看 从左面看 从上面看为什么横看成岭侧成峰?这有怎样的数学道理?三、学习小结:四、作业:(准备长方体形状的包装盒至少一个)4. 2 直线、射线、线段(1)学习目标:1•了解直线、射线、线段的联系和区别,掌握它们的表示方法.2 •了解两点确定一条直线的性质,并能初步应用.3 •会用几何语句描述几何图形,能根据几何语句画出相应的几何图形. 学习重点:1•直线、射线、线段的表示方法.2 •建立几何语句与几何图形之间的联系.学习难点:建立几何语句与几何图形之间的联系.一、自主学习:1 .学校总务处为解决下雨天学生雨伞的存放问题,决定在每个班级教室外钉一根2米长的装有挂钩的木条.本校三个年级,每个年级10个班,问至少需要买几颗钉子?你能帮总务处的老师算一算吗?2 .探究.(1)在墙上固定一根木条,至少要几个钉子?动手试一试.(2)动手作图试试:①过一点0可以作______________ 直线.②过A、B两点 ____________ (能或不能)作直线,能作 ________________ 直线.再过下面的C D以及E F两点作直线试试看c . . FD E注意:直线没有端点,是向两方无限延伸的,画直线时要画出向两方无限延伸的部分.3.直线公理:直线公理在生活中有广泛的应用,你能举出几个例子吗?二、合作探究:1 .直线有几种表示方法?(1) ___________________________ 如图的直线可记作直线或记作直线__________________________________________ .(2) 用几何语言描述右面的图形,我们可以说:丄------------- =------ m A BP■点P在直线AB _______ ,点A B都在直线AB _______ .(3) 如图,点0既在直线m上,又在直线n上,我们称直线m、n相交,交点为0.m 想一想,如果两条直线相交,会有几个交点,作图试试.(4) 读下面的几何语句,画出图形.①点A在直线a外②直线AB CD相交于点B,点E在直线CD上.2•在直线上取点0把直线分成两个部分,去掉一边的一个部分,保留点0和另一部分就得到一条射线,如图就是一条射线,记作射线0M或记作射线a.注意:射线有一个端点,向一方无限延伸.在下面的图中画射线AB射线EF3.在直线上取两个点A、B,把直线分成三个部分,去掉两边的部分,保留点A、B和中间的一部分就得到一条线段. a如图就是一条线段,记作线段AB或记作线段a. ,-------------- 注意:线段有两个端点. A B 4 •能不能把一条线段变成一条射线?能不能把一条线段变成一条直线?作图试试.三、知识应用1.如图,分别有几条线段.2 .已知A B、C三点,过其中的每两个点画直线,可画几条?四、学习小结:四、作业:4. 2 直线、射线、线段(2)学习目标:1•会画一条线段等于已知线段,会比较两条线段的大小.2 •通过实例体会两点之间线段最短的性质,并能初步应用.3.了解两点间的距离、线段的中点以及线段的三等分点的意义.学习重点:线段比较大小以及线段的性质.学习难点:线段的中点、三等分点及其应用.、自主学习:1.画直线AB 画射线CD 画线段EF.2 •任意画线段a.你能不能再画一条线段AB正好等于你先前所画的线段a.你是怎样画的?你想到了几种方法?二、合作探究:1 .如何比较两位同学的身高?①如果已知身高,我们如何比较?②如果不知身高,我们又如何比较?2 .如何比较两根木条的长短?3.如何比较两条线段的大小?① 任意画两条线段AB, CD .我们如何比较AB CD的大小?动手试试.② 任意两条线段比较大小,其结果有几种可能性?【老师提示】比较线段的常用方法有两种:①度量法②圆规截取法4 .试试身手:【老师提示】先估计大小关系看看我们的观察能力,再动手检验.5 .①线段的中点:如图点M是线段AB上一点,并且AMk BM我们称点M是线段AB的中点.②怎样找出一条线段AB的中点M?③线段的三等分点、线段的四等分点.6 . (1)思考.(2)有些人要过马路到对面,为什么不愿走人行横道呢?(3)从A地架设输电线路到B地,怎样架设可以使输电线路最短?7 .( 1)线段的性质:(2)两点间的距离:8 •画线段的和与差:a如图,已知两条线段a、b (a>b)(1)画线段a+ b 画法:①画射线AM② 在射线AN上顺次截取线段AB= a, BC= b. 线段AC就是所要求作的线段a + b.记作AO a+b.(2)画线段a —b三、学习小结:4. 3. 1 角学习目标:1•认识角,掌握角的两种定义形式及四种表示方法.2 •认识角度的单位;会初步进行角度的度、分互化运算.学习重点:1.角的概念与角的表示方法..角度的计算.学习难点:对角的概念的理解. 一、自主学习:1. 下面的图形,你有怎样的认识?2 •角是一种基本的几何图形,画出一个角试试.3 •生活中有形如这种形状的图形吗?试举出一个例子.4 •角的概念.(1) 有公共端点的两条射线组成的图形叫做角.这个公共端点是角的顶点,这两条射线是角的两条边. 如图,角的顶点是0,两边分别是射线 OA 、OB .(2) 角有以下的表示方法: ① 用三个大写字母及符号表示.三个大写字母分别是顶点和两边上的任意点,顶点的字母必须写在中间. 如上图的角,可以记作/ A0B 或/ B0A②用一个大写字母表示•这个字母就是顶点•如上图的角可记作/注意:当有两个或两个以上的角是同一个顶点时,不能用一个大写字母表示. ③ 用一个数字或一个希腊字母表示.在角的内部靠近角的顶点处画一弧线,写上希腊字母或数字. 如图的两个角,分别记作/:•、/ 15 .想一想“小贴示”中的问题.图中有几个角? (3)思考.(这是角的另一种定义方式)用你的圆规为工具,体会角的这种定义方式.:■、合作探究:1 .角度的单位:度、分、秒及其表示方法.把圆周角等分成360等分,每一份就是什么是 把1度的角等分成60等分,每一份就是什么是 把1分的角等分成60等分,每一份就是什么是 由此我们可以得出:①1 °= 60', 1'= 60〃②1周角=360°, 1平角=180°若/ a 是51度26分37秒,则记作/ a = __________________________ (用符号表示) 【老师提示】:以度、分、秒为单位的角的度量制叫做角度制.另外还有以弧度为单位的弧度制,军事上常用密位制.180 131弧度= -------- =57° 17' 44〃,1 密位= ------------- 周角二(一)兀 6000 502 .用量角器画角与角的度量(1) 用量角器画50°、90°、140°的角.260.1度的角,记作1° 1分的角,记作1 ' 1秒的角,记作1"【老师提示】用量角器度量角分三步:对中、重合、读数.(2) 估计画一个70。

人教版七年级上数学:第四章《图形认识初步》(两课时)复习学案(附模拟试卷含答案)

人教版七年级上数学:第四章《图形认识初步》(两课时)复习学案(附模拟试卷含答案)

数学:第四章《图形认识初步》(两课时)复习学案(人教版七年级上)【复习目标】:1.直观认识立体图形,掌握平面图形(线段、射线、直线)的基本知识;2.掌握角的基本概念,能利用角的知识解决一些实际问题。

【复习重点】: 线段、射线、直线、角的性质和运用【复习难点】:角的运算与应用;空间观念建立和发展;几何语言的认识与运用。

【导学指导】 一、知识结构二、回顾与思考1、下面是我们学习过的一些数学名词,你能用自己的语言简短地描述它们吗?立体图形 平面图形 展开图 两点间的距离 余角 补角2、与以前相比,你对直线、射线、线段和角有什么新的认识?3、直线的性质:经过两点有一条直线,并且只有一条直线。

即: __________确定一条直线。

4、线段的性质和两点间的距离(1)线段的性质:两点之间,_______________。

(2)两点间的距离:连接两点的_______________,叫做两点间的距离。

5、线段的中点及等分点的意义(1)若点C 把线段AB 分为________的两条线段AC 和BC ,则点C 叫做线段的中点。

角的概念1、角的定义和表示 平面图形从不同方向看立体图形展开立体图形 平面图形几何图形立体图形直线、射线、线段角 两点之间,线段最短线段大小的比较角的度量角的比较与运算角的平分线等角的补角相等等角的余角相等两点确定一条直线(1)有_______________的两条射线组成图形叫做角。

这是从静止的角度来定义的。

由一条射线绕着_______________旋转而成的图形叫做角。

这是从运动的角度来定义的。

(2)角的表示:①用三个大写字母表示;②用一个大写字母表示;③用阿拉伯数字或希腊字母表示。

2、角的度量10=60′;1′=60′′.3、角的比较比较角的方法:度量法和叠合法。

4、角的平分线从一个角的顶点出发,把这个角分成________的两个角的射线,叫做这个角的平分线。

表示为∠AOC= ∠COB或∠ AOC=∠COB= 1/2∠AOB或2∠ AOC=2∠COB= ∠AOB5、余角和补角(1)定义:如果两个角的和等于______,就说这两个角互为余角。

第四章图形认识初步教师用导学案doc

第四章图形认识初步教师用导学案doc

第四章图形认识初步教师用导学案doc七年级上册数学导学案几何图形执笔人:周建荣审核人:王淑静【学习内容】教材116-118页【学习目标】1.在具体情境中认识圆柱、棱柱、棱锥、圆锥、球等几何体,能用语言描述他们的特征。

2.培养学生观察、抽象、语言表达能力。

3.通过欣赏图片,经历从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,激发对空间与图形的学习兴趣,培养积极参与数学活动、主动与他人合作交流的意识。

【学习重点】认识圆柱、棱柱、棱锥、圆锥、球等几何体,能用语言描述他们某些特征。

【学习难点】图形的区分与归类。

【学习关键】从现实世界中抽象出几何图形,空间感的形成。

【学习过程】[知识回顾]欣赏图片,各能得到什么几何图形?[一幅幅美丽的画面,上海东方明珠、南京鼓楼区、西方的一些建筑物、夕阳下的一棵小树等,运用多媒体显示丰富的图形世界,给他们到来直观感受,让他们观赏、思考、判断,体会图形世界的现实性和艺术性,激发学生的求知欲和学数学的兴趣。

] [自主探究][活动1] 观察实物,抽象出什么立体图形,并用语言描述他们的特征。

[从熟悉的生活中识别几何体,不仅帮助学生理解,而且让他们感受到生活中处处有数学。

] 圆柱:棱柱:圆锥:棱锥:球:立体图形:[分组讨论交流,引导学生观察、抽象,学会把现实情境中的物体抽象成几何图形,感悟知识的生成与积累。

] [活动2] 把图形与对应的图形名称用线连结:七年级上册数学导学案圆锥圆柱棱柱棱锥球你能对立体图形进行分类吗?[培养学生语言表述能力、分析概括能力、探究能力,在交流中形成对几何体较全面的认识。

][活动3]画出你所认识的平面图形[通过让学生画出平面图形,培养学生的动手能力,也使学生体会一些平面图形的特点][巩固练习] [进一步认识图形间的共同点与不同点] 1.下列判断正确的有正方体是棱柱,长方体不是棱柱;正方体是棱柱,长方体也是棱柱;正方体是柱体,圆柱也是柱体;正方体不是柱体,圆柱是柱体。

七年级数学第四章图形的初步认识(知识点归纳+达标检测)

七年级数学第四章图形的初步认识(知识点归纳+达标检测)

第四章图形的初步认识(知识点归纳+达标检测)4.1.1认识几何图形几何图形我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学过的三角形、四边形等,都是从形形色色的物体外形中得出的。

我们把这些图形称为几何图形。

1)立体图形长方体、正方体、球、圆柱、圆锥等。

2)平面图形平面图形的概念线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。

注:立体图形与平面图形是两类不同的几何图形,它们的区别和联系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。

【达标提升】下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.其中属于立体图形的是()A.①②③;B.③④⑤;C.①③⑤;D.③④⑤⑥总结:1、2、平面图形与立体图形的关系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。

4.1.2几何图形立体图形转化平面图形1:从正面、左面、上面观察得到的平面图形你能画出来吗?【达标提升】1.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。

现实物体几何图形平面图形立体图形看外形4.1.3几何图形(一)、立体图形的展开1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?圆柱圆锥三棱柱长方体思考:请你指出上面展开图各部分与几何体的哪一部分相对应?2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会?再将所有的展开图画出来,以上画出了部分了展开图,除此之外还有5种,共有11种,请你画出其余5种。

(二)、立体图形的折叠探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么?【达标提升】1.下列图形中,不是正方体的表面展开图的是()A.B.C.D.12122.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.沾D.益4.2.1点、线、面、体1.几何体的概念(1)长方体是一个几何体,我们还学过哪些几何体?_______________________________________________________________________;(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别?2.面的分类通过对上面问题的解决,得出面的分类:____面和___面。

初级中学数学课堂学习检测-第4章-图形认识初步

初级中学数学课堂学习检测-第4章-图形认识初步

第四章图形认识初步测试1 立体图形与平面图形学习要求观察认识生活中的简单立体图形和平面图形.通过学习立体图形的三视图和它的展开图,了解如何把立体图形转化为平面图形来研究和处理,体会立体图形与平面图形的关系.课堂学习检测一、填空题1.把下面几何体的标号写在相对应的括号里.长方体: { } 棱柱体: { }圆柱体: { } 球体: { }圆锥体: { }2.讲台上放着一本书,书上放着一个粉笔盒,请说明下面的三幅图分别是从哪个方向看到的?①②③3.用如图所示的平面图形可以折成的多面体是______.二、选择题4.人民英雄纪念碑的中间部分是一个长方体,它的形状类似于()(A)棱柱(B)圆柱(C)圆锥(D)球5.奥运会的标志是五环,这五环中的每一个环的形状与下列哪个形状类似()(A)三角形(B)正方形(C)圆(D)长方形6.下图中,不是左图所示物体视图的是()7.下列四张图中,能经过折叠围成一个棱柱的是().三、解答题8.下图中哪些图形是立体的,哪些是平面的?综合、运用、诊断一、填空题9.分别写出表面能展开成如图所示的五种平面图的几何体的名称.(1)_______(2)_______(3)_______(4)_______(5)_______10.如果将标号为A,B,C,D的正方形沿图中的虚线剪开拼接后得到标号为P,Q,M,N的四组图形,试按照“哪个正方形剪开后得到哪组图形”的对应关系填空.A与________对应,B与______对应,C与______对应,D与______对应.二、选择题11.如下图所示,电视台的摄像机①、②、③、④在不同位置拍摄了四幅画面,则A图像是______号摄像机所拍,B图像是______号摄像机所拍,C图像是______号摄像机所拍,D 图像是______号摄像机所拍.12.几何体( )展开后如左图.(A)棱柱(B)球(C)圆柱(D)圆锥13.不能折成左图的长方体的是().三、做一做14.如图,哪些图形经过折叠可以围成一个棱柱?先想一想,再折一折.15.如下图,这是从上面看到的由四个小正方体搭成的立体图形得到的平面图形,画出从正面看这四个小正方体搭成的立体图形的平面图形.16.如下图,这是一个多面体的展开图,每个面上都标注了字母.请根据要求回答问题:(1)如果A面在多面体的底部,那么哪一面会在上面?(2)如果E面在前面,从左面看是F面,那么哪一面会在上面?(3)从下面看是C面,D面在后面,那么哪一面会在上面?拓展、探究、思考17.把正方体的6个面分别涂上不同的颜色,并画上朵数不等的花,各面上的颜色与花朵数的情况列表如下:现将上述大小相同,颜色、花朵分布完全一样的四个正方体拼成一个在同一平面上放置的长方体 , 如下图所示 , 那么长方体的下底面共有______朵花 .18 . 如果图(1)~(10)均是正方体A 的展开图 , 正方体的每一面分别有1 , 2 , 3 , 4 , 5 , 6六个数 , 请你在图(2)~(10)的空格上填上相应的数 .(1) (2) (3) (4)(5) (6) (7) (8) (9) (10)19 . 有一个长方形的硬纸正好可以分成15个小正方形 , 如图 , 试把它剪成3份 , 每份有5个小正方形相连 , 折起来都可以成为一个无盖的正方体纸盒 , 应该怎样剪 ?测试2 点 、 线 、 面 、 体学习要求知道点是几何学中最基本的概念 . 点动成线 , 线动成面 , 面动成体 .课堂学习检测一 、 填空题1 . 面与面相交得到______线与线相交得到______圆锥的侧面和底面相交成______条线 , 这条线是______的(填“直”或“曲”) .2 . 如图所示的几何体是四棱锥 , 它是由______个三角形和一个形组成的 .3 . 三棱柱有______个顶点 , ______个面 , ______条棱 , ______条侧棱 , ______个侧面 , 侧面形状是______形 , 底面形状是______形 .4 . 笔尖在纸上划过就能写出汉字 , 这说明了______ ; 汽车的雨刮器摆动就能刮去挡风玻璃上的雨滴 , 这说明了______ ; 长方形纸片绕它的一边旋转形成了一个圆柱体 , 这说明了______ . 二 、 选择题5 . 按组成面的侧面“平”与“曲”划分 , 与圆柱为同一类的几何体是( ) .(A)圆锥 (B)长方体 (C)正方体 (D)棱柱 6 . 圆锥的侧面展开图不可能是( ) .(A)小半个圆 (B)半个圆 (C)大半圆 (D)圆7.将下面的直角梯形绕直线l旋转一周,可以得到如下图所示的立体图形的是().8.下列说法错误的是().(A)长方体、正方体都是棱柱(B)棱柱的侧棱长都相等(C)棱柱的侧面都是三角形(D)如果棱柱的底面各边长相等,那么它的各个侧面的面积一定相等综合、运用、诊断三、解答题9.如图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连.10.如图,说出下列各几何体的名称,哪些可以由平面图形的旋转得到?11.观察图中的圆柱和棱柱:(1)棱柱、圆柱各由几个面组成?它们都是平的吗?(2)圆柱的侧面与底面相交成几条线,它们是直的吗?(3)棱柱有几个顶点?经过每个顶点有几条棱?12.图(1)、(2)是否是几何体的展开平面图,先想一想,再折一折,如果是,请说出折叠后的几何体名称、底面形状、侧面形状、棱数、侧棱数与顶点数.(1)(2)13.已知一个长方体,它的长比宽多2cm,高比宽多1cm,而且知道这个长方体所有棱长的和为48cm,则这个长方体的长、宽、高各是多少?拓展、探究、思考14.下面有编号Ⅰ~Ⅸ的九个多面体.(1)如果我们用V表示多面体的顶点数,E表示多面体的棱数,F表示多面体的面数.请分别数一下这些多面体的V,E,F各是多少?(2)想一想,V,E,F之间有什么关系?①面数F是否随顶点数V的增大而增大?答:____________________________________________________________;②棱的数目E是否随顶点的数目V的增大而增大?答:____________________________________________________________;③V+F与E之间有何关系?答:____________________________________________________________.测试3 直线、射线、线段学习要求理解两点确定一条直线的事实,并体会它们在解决实际问题中的作用;掌握直线、射线、线段的表示方法,建立初步的符号感;理解直线、射线、线段的联系和区别,进一步发展抽象概括的能力.课堂学习检测一、填空题1.要把木条固定在墙上至少要钉______个钉子,这是因为____________________.2.经过一点的直线有______条;经过两点的直线有______条;并且______一条;经过三点的直线______存在,如点C不在经过A、B两点的直线AB上,那么______经过A、B、C 三点的直线.3.把线段向一个方向延长,得到的是________;把线段向两个方向延长,得到的是______.4.线段有______个端点,射线有______个端点,直线有______个端点.5.如图,点O在线段AB______;点B在射线AB______;点A是线段AB的一个______.6.如图,图中有______条射线,______条线段,这些线段是__________.7.如图,AC,BD交于点O,图中共有______条线段,它们分别是______.8.如图,图中有______条线段,它们是______图中以A点为端点的射线有______条,它们是______图中有______条直线,它们是______.二、选择题9.根据“反向延长线段CD”这句话,下图表示正确的是().10.如图所示,有直线、射线和线段,根据图中的特征判断其中能相交的是()11.下列说法中正确的有()①钢笔可看作线段②探照灯光线可看作射线③笔直的高速公路可看作一条直线④电线杆可看作线段(A)1个(B)2个(C)3个(D)4个12.下列说法中正确的语句共有()①直线AB与直线BA是同一条直线②线段AB与线段BA表示同一条线段③射线AB与射线BA表示同一条射线④延长射线AB至C,使AC=BC⑤延长线段AB至C,使BC=AB⑥直线总比线段长(A)2个(B)3个(C)4个(D)5个三、读句画图13.(1)点P在直线AB上,点M在直线AB外.(2)直线AB、CD交于点O,点M在直线AB上,但不在CD上.(3)经过点O的三条直线a,b,c.14.按要求画图:(1)画直线BD.(2)画射线AC和AD.(3)延长线段AB.(4)反向延长线段AB.15.看图写话:(1)(2)综合、运用、诊断16.判断题.()(1)下图中,射线EO和射线ED是同一条射线.()(2)下图中,射线EO和射线OE是同一条射线.()(3)下图中,射线EO和射线OD是同一条射线.()(4)下图中,线段DE和线段ED是同一条线段.()(5)下图中,直线DO和直线ED是同一条直线.()(6)两条线段最多有一个公共点.()(7)反向延长射线AB.()(8)延长直线AB到C.()(9)射线是直线长度的一半.()(10)在一条直线上取n个点可以得到2n条射线.()(11)三点能确定三条直线.()(12)如果直线a和b有两个公共点,那么它们一定重合.()(13)延长线段AB就得到直线AB.()(14)若三条直线两两相交,则交点有3个.17.解答下列问题:(1)两条直线在同一平面内的位置关系有几种?(2)画图表示,两条直线可以把一个平面分成几个部分?三条直线呢?(3)平面上4条直线最多可以把平面分成多少个部分?拓展、探究、思考18.填表19.解答下列问题:(1)过三个已知点,一定可以画出直线吗?(2)经过平面上三个点中的每两点可以画多少条直线?(3)经过平面上四个点中的每两点可以画多少条直线?(4)若在平面上有n个点,过其中任意两点画直线,最多可以画几条?测试4 线段的比较学习要求理解线段的性质,线段的中点和两点间的距离,能对线段进行度量和比较.课堂学习检测一、填空题1 .(1)把一条线段二等分的______叫做这条线段的______ .(2)______叫做两点间的距离.(3)若A、B、C、D为直线l上顺次四点,则AB+BD=AC+______;AC+BD=AD+______.(4)若点C在线段AB的延长线上,则AC与AB的大小关系是______ ,并且AB+BC=______,AC-AB=______.(5)线段的基本性质是__________________________________________.(6)如图,A是直线BC外一点,请用不等号分别连接下列各式:AB+AC______BC;AB+BC______AC;AC+BC______AB:想一想:AB-AC________BC2.根据图形填空:(1)如图,若AB=BC=CD=DE,那么①AE=______AB,②AC=______AE;③AD=______AE,④CE=______AD.(2)如图,已知D、E分别是线段AB、BC的中点,①若AB=3cm,BC=5cm,则DE=______cm;②若AC=8cm,EC=3cm,则AD=______cm.二、选择题3.在所有连接两点的线中()(A)直线最短(B)线段最短(C)弧线最短(D)射线最短4 . 在下列说法中 , 正确的是( )(A)任何一条线段都有中点(B)射线AB 和射线BA 是同一射线 (C)延长线段AB 就得到直线AB (D)连接A , B 就得到AB 的距离5 . 如图 , 下列关系式中与右图不符合的是( )(A)AC +CD =AB -BD (B)AB -CB =AD -BC (C)AB -CD =AC +BD (D)AD -AC =CB -DB综合 、 运用 、 诊断一 、 选择题6 . 如下图 , 从A 地到B 地有多条道路 , 人们会走中间的直路 , 而不会走其他的曲折的路 , 这是因为( ) .(A)两点确定一条直线 (B)两点之间线段最短(C)两直线相交只有一个交点 (D)两点间的距离7 . 对于线段的中点 , 有以下几种说法 : ①因为AM =MB , 所以M 是AB 的中点 ; ②若AM=MB =21AB , 则M 是AB 的中点 ; ③若AM =21AB , 则M 是AB 的中点 ; ④若A , M , B 在一条直线上 , 且AM =MB , 则M 是AB 的中点 . 以上说法正确的是 ) .(A)①②③ (B)①③ (C)②④ (D)以上结论都不对8 . 已知A , B , C 为直线l 上的三点 , 线段AB =9cm , BC =1cm , 那A , C 两点间的距离是( ) . (A)8cm (B)9cm (C)10cm (D)8cm 或10cm 9 . 已知线段OA =5cm , OB =3cm , 则下列说法正确的是( )(A)AB =2cm (B)AB =8cm (C)AB =4cm (D)不能确定AB 的长度 . 10 . 已知线段AB =10cm , AP +BP =20cm . 下列说法正确的是( )(A)点P 不能在直线AB 上 (B)点P 只能在直线AB 上 (C)点P 只能在线段AB 的延长线上 (D)点P 不能在线段AB 上 11 . 能判定A , B , C 三点共线的是( )(A)AB =3 , BC =4 , AC =6 (B)AB =13 , BC =6 , AC =7 (C)AB =4 , BC =4 , AC =4 (D)AB =3 , BC =4 , AC =512 . 已知数轴上的三点A , B , C 所对应的数a , b , c 满足a <b <c , abc <0和a +b +c =0 , 那么线段AB 与BC 的大小关系是( ) . (A)AB >BC (B)AB =BC (C)AB <BC (D)不确定 二 、 解答题13 . 已知C 为线段AB 的中点 , AB =10cm , D 是AB 上一点 , 若CD =2cm , 求BD 的长 . 14 . 已知C , D 两点将线段AB 分为三部分 , 且AC ∶CD ∶DB =2∶3∶4 , 若AB 的中点为M ,BD 的中点为N , 且MN =5cm , 求AB 的长 . 15 . 如图 , 延长线段AB 到C , 使,21AB BCD 为AC 的中点 , DC =2 , 求AB 的长 .拓展 、 探究 、 思考16 . 已知 : 如图 , 点C 在线段AB 上 , 点M 、 N 分别是AC 、 BC 的中点 .(1)若线段AC =6 , BC =4 , 求线段MN 的长度 ; (2)若AB =a , 求线段MN 的长度 ; (3)若将(1)小题中“点C 在线段AB 上”改为“点C 在直线AB 上” , (1)小题的结果会有变化吗 ? 求出MN 的长度 .17 . 如图 , 这是一根铁丝围成的长方体 , 长 、 宽 、 高分别为6cm 、 5cm 、 4cm . 有一只蚂蚁从A 点出发沿棱爬行 , 每条棱不允许重复 , 则蚂蚁回到A 点时 , 最多爬行多少厘米 ? 把蚂蚁所走的路线用字母按顺序表示出来 .测试5 角的度量学习要求理解角的概念 , 掌握角的表示方法 , 能利用画图工具作一个角 , 会度量一个角的大小(在角度制下) , 能进行简单的计算 . 理解周角 、 平角的概念 .课堂学习检测一 、 填空题1 . (1)____________的图形叫做角 , ____________________叫做角的顶点 , _____________________叫做角的边 .(2)角也可以看作是由一条___________绕着它的___________而形成的图形 , 这条射线的起始位置叫做角的______ , 其终止位置叫做角的__________ .(3)一条射线绕其端点O 按逆时针方向旋转得到∠AOB , 当角的终边OB 旋转到与角的始边OA 成一条直线时 , 称∠AOB 为______ ; 若角的终边继续旋转 , 当角的终边OB 与角的始边OA 重合时 , 称∠AOB 为______ . (4)以度 、 分 、 秒为单位的角度制规定 , 把一个周角______ , 每一份叫做1度 , 记作______ ; 把1度的角______ , 每一份叫做1分 , 记作______ ; 把1分的角______ , 每一份叫做1秒 , 记作______ . 这样 , 1周角是______° , 1平角是______° , 1°=______' , 1′=______″ .2 . 用三个字母表示图中所注的∠1 、 ∠2 、 ∠3 :(1) (2) (3)∠1是______;∠1是______;∠1是______;∠2是______;∠2是______;∠2是______;∠3是______;∠3是______;∠3是______;∠4是______.3.图中以OC为边的角有______个,它们分别是______二、选择题4.下列说法中正确的是().(A)两条射线组成的图形叫做角(B)平角的两边构成一条直线(C)角的两边都可以延长(D)由射线OA、OB组成的角,可以记作∠OAB5.下列四个图形中,能用∠1,∠AOB,∠O三种方法表示同一个角的是)6.如图,图中共有()个角.(A)6(B)7(C)8(D)97.如图所示,点O在直线AB上,图中小于180°的角共有().(A)7个(B)8个(C)9个(D)10个8.下列说法正确的是()(A)一个周角就是一条射线(B)平角是一条直线(C)角的两边越长,角就越大(D)∠AOB也可以表示为∠BOA9.从早晨6点到上午8点,钟表的时针转过的角的度数为().(A)45°(B)60°(C)75°(D)90°10.若有一条公共边的两个三角形称为一对“共边三角形”,则下图中以BC为公共边的“共边三角形”有()(A)2对(B)3对(C)4对(D)6对练合、运用、诊断一、填空题11.如图,图中能用一个大写字母表示的角有几个?分别把它们表示出来._________________________ .12.图中共有______个小于平角的角,它们分别是__________________ ,其中以D为顶点的小于平角的角有______个.13.计算:(1)0.4°=______' ;(2)0.6′=______″;(3)24′=______°;(4)12″=______′;(5)57.32°=______°______′______″;(6)17°14′24″=______°;(7)17°40′÷3=______°______′______″;(8)25°36′18″×6=______°______′______″.(9)18.6°+42°34′(10)360°÷7(精确到1′)(11)32°16′25″×4-78°25′(12)180°-37°5′×4+93.1°÷5二、解答题14.时钟的时针1小时旋转多少度?时钟的分针1分钟旋转多少度?15.5点整时,时钟的时针与分针之间的夹角是多少度?16.时钟在8:30时,时针与分针的夹角为多少度?拓展、探究、思考17.已知:如图,AOB是直线,∠1∶∠2∶∠3=1∶3∶2,求∠DOB的度数.18.如图,PQ是一条线段,有一只蚂蚁从点C出发,按顺时针方向沿着图中实线爬行,最后又回到点C , 则蚂蚁共转了____________的角 .19 . 如图 , (1)中有______个角 , (2)中有______个角 ; (3)中有______个角 . 以此类推 , 若一个角内有n 条射线 , 则可有______个角 .测试6 角的比较与运算学习要求会比较两个角的大小 , 能进行角的运算(和 、 差 、 倍 、 分) . 理解角的平分线以及直角 、 锐角 、 钝角的概念 .课堂学习检测一 、 填空题1 . 要比较∠α 和∠β 的大小 , 可先让∠α 的顶点与∠β 的顶点______ , ∠α 的始边与∠β 的始边也______ , 并且∠α 的终边与∠β 的终边都在它们的始边的同一侧 . 若∠α 的终边落在∠β 的内部 , 则称∠α ______∠β ; 若∠α 的终边落在∠β 的外部 , 则称∠α ______∠β ;若∠α 的终边恰与∠β 的终边重合 , 则称∠α ______∠β .(如图所示 , ∠AOB =α ; ∠AOC =β )2 . 如图 , 若OC 是∠AOB 的平分线 , 则______=______ ; 或______=______21=______ ; 或______=2______=2______ .3 . 如图 , OM 是∠AOB 的平分线且∠AOM =30° , 则∠BOM =______ ; ∠AOB =______ .4 . 如图 , 在横线上填上适当的角 :(1)∠AOC =______+______ ; (2)∠AOD -∠BOD =______ ; (3)∠BOC =______-∠COD ;(4)∠BOC =∠AOC +______-______ . 5 . 按图填空 :(1)∠ABC 是∠ABD 与∠DBC 的______ ; (2)∠BDC 是∠ADC 与∠ADB 的_______ . 6 . 如图 , (1)若∠AOB =∠COD ,则∠AOC =∠______ . (2)若∠AOC =∠BOD , 则∠______=∠______ .二 、 选择题7 . 在小于平角的∠AOB 的内部取一点C , 并作射线OC , 则一定存在( ) .(A)∠AOC >∠BOC (B)∠AOC =∠BOC (C)∠AOB >∠AOC (D)∠BOC >∠AOC 8 . 如图 , ∠AOB =∠COD , 则( ) .(A)∠1>∠2 (B)∠1=∠2 (C)∠1<∠2(D)∠1与∠2的大小无法比较9 . 射线OC 在∠AOB 的内部 , 下列四个式子中不能判定OC 是∠AOB 的平分线的是( ) . (A)∠AOB =2∠AOC (B)∠BOC =∠AOC (C)∠AOC 21∠AOB (D)∠AOC +∠BOC =∠AOB10 . 不能用一副三角板拼出的角是( ) .(A)120° (B)105° (C)100° (D)75°11 . 如图 , OC 是∠AOB 的平分线 , OD 平分∠AOC , 且∠COD =25° , 则∠AOB =( ) .(A)100° (B)75° (C)50° (D)20°12 . 如果∠AOB =34° , ∠BOC =18° , 那么∠AOC 的度数是( ) .(A)52° (B)16° (C)52°或16° (D)52°或18° 13 . 如图 , 射线OD 是平角∠AOB 的平分线 , ∠COE =90° , 那么下列式子中错误的是( ) .(A)∠AOC =∠DOE(B)∠COD =∠BOE (C)∠AOD =∠BOD (D)∠BOE =∠AOC14 . 已知α 、 β 是两个钝角 , 计算)(61β+a 的值 , 四位同学算出了四种不同的答案 , 分别为24° , 48° , 76° , 86° , 其中只有一个答案是正确的 , 那么你认为正确的是( ) (A)24° (B)48° (C)76° (D)86° 三 、 解答题15 . 下面是小马虎解的一道题 .题目 : 在同一平面上 , 若∠BOA =70° , ∠BOC =15° , 求∠AOC 的度数 . 解 : 根据题意可画出下图 .∵∠AOC =∠BOA -∠BOC=70°-15° =55° ,∴∠AOC =55° . 若你是老师 , 会给小马虎满分吗 ? 若会 , 说明理由 . 若不会 , 请将小马虎的错误指出 , 并给出你认为正确的解法 .综合 、 运用 、 诊断16 . 如图 , OT 平分∠AOB , 也平分∠COD ,那么∠AOT =∠______ ,∠AOC =∠______ ,∠AOD =∠______17 . 如图 , OA ⊥OB , OC ⊥OD , ∠AOD =146° , 则∠BOC =______ .18 . 读语句画图并填空 :画平角∠AOC , 用量角器画∠AOC 的平分线OB , 因为OB 平分∠AOC , 所以∠AOB =∠=AOC 21_______ , 再用量角器画∠BOC 的平分线OD , 图中∠AOD =∠______+∠______=______° . 19 . 作图 .(1)用一副三角板可以画出多少个小于平角的角 ? 请用一副三角板画出15° , 75°角 .(2)作∠MPQ 的平分线PR , 则∠______=∠______21=∠______ .(3)利用圆规和直尺画一个角 .已知 : ∠AOB ,求作 : ∠A ′O ′B ′ , 使得∠A ′O ′B ′=∠AOB .20 . 如图 , OD 、 OE 分别是∠AOC 和∠BOC 的平分线 , ∠AOD =40° , ∠BOE =25° , 求∠AOB 的度数 .解 : ∵OD 平分∠AOC , OE 平分∠BOC ,∴∠AOC =2∠AOD , ∠BOC =2∠______ .∵∠AOD =40° , ∠BOE =25° , ∴∠BOC =______ , ∠AOC =______ . ∴∠AOB =____ .21 . 已知 : 如图 , ∠ABC =∠ADC , DE 是∠ADC 的平分线 , BF 是∠ABC 的平分线 .求证 : ∠2=∠3 .证明 : ∵DE 是∠ADC 的平分线 ,∴∠2=______ .∵BF 是∠ABC 的平分线 , ∴∠3=______ .又∵∠ABC =∠ADC , ∴∠2=∠3 .拓展 、 探究 、 思考22 . 已知 : ∠AOB =31.5° , ∠BOC =24.3° , 求∠AOC 的度数 .23 . 如图 , 从O 点引四条射线OA 、 OB 、 OC 、 OD , 若∠AOB , ∠BOC , ∠COD , ∠DOA 度数之比为1∶2∶3∶4 .(1)求∠BOC 的度数 .(2)若OE 平分∠BOC , OF 、 OG 三等分∠COD , 求∠EOG . 24 . 如图 , ∠AOB 的平分线为OM , ON 为∠MOA 内的一条射线 , OG 为∠AOB 外的一条射线 ,某同学经过认真的分析 , 得出一个关系式是∠MON =21(∠BON -∠AON ) , 你认为这个同学得出的关系式是正确的吗 ? 若正确 , 请把得出这个结论的过程写出来 .测试7 余角和补角学习要求理解一个角的余角和补角的概念 , 理解方向角的概念 , 并能解决有关角的计算问题 .课堂学习检测一 、 填空题1 . 如果两个角的______ , 那么称这两个角______余角 , 即其中一个角是____________ .2 . 如果两个角的______ , 那么称这两个角______补角 , 即其中一个角是____________ .3 . 若∠α =n ° , 则∠α 的余角是______ , ∠α 的补角是______ .4 . 若一个角的补角是150° , 则这个角的余角是____________ .5 . 若∠1与∠2分别是∠3的余角 , 则∠1______∠2 .6 . 若∠1是∠3的余角 , ∠2是∠4的余角 , 且∠3=∠4 , 则∠1____∠2 .7 . 如图 , ∠AOD 的余角是______ , 补角是______ .8.若∠β 与∠α 互补,∠γ 与∠α 互余,则∠β 与∠γ 的差为____________.9.如图,已知A,O,E三点在同一条直线上,OB平分∠AOC,OD平分∠COE,则∠BOC与∠COD的关系为____________.10.若轮船甲自A岛沿北偏东45°的方向行驶30海里到达B岛,轮船乙自A岛沿南偏西70°的方向行驶50海里到达C岛,则∠BAC=____________.二、选择题11.已知∠α =35°19′,则∠α 的余角等于().(A)144°41′(B)144°81′(C)54°41′(D)54°81′12.下列说法中正确的是().(A)大于直角的角叫钝角(B)小于平角的角叫钝角(C)不大于直角的角叫锐角(D)大于0°且小于直角的角叫锐角13.∠A的补角是∠C,∠C又是∠B的余角,则∠A一定是().(A)锐角(B)钝角(C)直角(D)无法确定14.已知:如图,∠AOB=∠COD=90°,则∠1与∠2的关系是).(A)互余(B)互补(C)相等(D)无法确定15.轮船航行到C处测得小岛A的方向为北偏西32°,那么从A观测此时的C处的方向为().(A)南偏东32°(B)东偏南32°(C)南偏东68°(D)东偏南68°16.下面说法中正确的是().(A)一个锐角的余角比这个角大(B)一个锐角的余角比这个角小(C)一个锐角的补角比这个角大(D)一个钝角的补角比这个角大17.下列说法中,正确的是().(A)一个角的余角一定是钝角(B)一个角的补角一定是钝角(C)锐角的余角一定是锐角(D)锐角的补角一定是锐角18.已知点C,O,B三点共线,∠COD=90°,∠COD绕点O由图(1)的位置旋转到图(2)的位置后,∠COB与∠AOD的关系是().(1) (2) (A)相等 (B)互补 (C)相等或互补 (D)不能确定三 、 解答题19 . 在图中画出表示下列方向的射线 :(1)南偏西30° (2)南偏东25°(3)北偏西20° (4)北偏东65° (5)东北方向 (6)西南方向20.(1)一个角的余角为54°求这个角的补角的度数 .(2)两个角的比是7∶3 , 它们的差是72° , 求这两个角的度数 . 21 . 如图 , 分别指出A , B , C , D 在O 的什么方向 ?综合 、 运用 、 诊断22 . 若一个角的余角比它的补角的92还多1° , 求这个角 . 23 . 用1∶10000的比例尺画图 , 并按要求填空(精确0.1cm) :(1)如下图 , 甲从O 点向北偏西60°走了200米 , 到达A 处 ; 乙从O 点向南偏西60°走了200米 , 到达B 处 , 用刻度尺量出AB =______cm , AB 的实际距离是______ . A 在B 的__________方向 .(2)如下图 , 某人从O 点向东北方向走了200米到达M 点 , 再从M 点向正西方向走了282米 , 到达N 点 , 用刻度尺量出ON =______cm , ON 实际距离是______ , 此时N 在O 的______方向 .(3)某人在O 点的北偏东60°方向上 , 距O 点300米 , 他向正南方向走了600米 , 到达A 处后 , 想去O 点 , 那么他要向______方向 , 走______米 .24 . 已知∠α 的余角是∠β 的补角的,31并且,23αβ∠=∠求∠α +∠β 的值 . 25 . 作图题 .(1)已知 : ∠α .求作 : ∠α 的补角 , 并画出∠α 的补角的平分线 .(2)已知 : ∠α .求作 : ∠α 的余角 , 并画出∠α 的余角的平分线 .26 . 填写下列空白和理由 :(1)如图所示 ,∵∠α 与∠β 互余 ,∴∠α +∠β =90° .(理由 : ______________)(2)如图所示 ,∵A , O , B 三点在同一直线上 ,∴∠________+∠________=180° .(理由 : __________________.)∴∠AOC 与∠BOC 互补 .(理由 : __________________.)(3)如图 ,∵∠AOB+∠BOC+∠COD+∠DOA=1周角,∴∠AOB+∠BOC+∠COD+∠DOA=360°.(理由_____________________.)∵∠AOB=∠COD=90°,∴∠AOD+∠BOC=180°.(理由:__________________)又∵∠BOC=42°,∴∠AOD=180°-∠BOC=180°-42°=__________.。

第四章单元检测

第四章单元检测

1第四章《图形认识初步》单元检测题(时间70分钟满分100)一、填空题(每空2分,共32分)1、要在墙上固定一根木条,至少要个钉子,根据的原理是 .2、在一直线上有A、B、C、D四个点,则图中有______条线段,有_______条射线.3、经过任意三点中的两点共可画出条直线.4、如图,在从O引出5条射线,那么图中共有______个角;如果引出n条射线,有_______个角.5、5:30时钟面上时针与分针的夹角为______________.6、已知点A、B、C三个点在同一条直线上,若线段AB=8,BC=5,则线段AC=_________.7、已知点M是线段AB的三等分点,且AB=12cm,则线段AM= .8、22.5°=________度________分;12°24′=________°.9、如果一个角的补角是150 ,那么这个角的余角是________.10、乘火车从A站出发,沿途经过3个车站可到达B站,那么在A,B两站之间最多共有________种不同的票价.11、∠1+∠2=90°,∠2+∠3=90°,根据___ __ ___,得∠1=∠3.12、如图所示,将一副三角板叠放在一起,•使直角的顶点重合于点O,则∠AOC+∠DOB=___ __度.二、选择题(每题2分,共20分)1、如图的几何体,左视图是()2、若要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,则x和y的值分别是()A.4和3 B.4和5C.5和3 D.5和13、将如图所示的正方体沿某些棱展开后,能得到的图形是()A4、下列说法中,正确的有()①过两点有且只有一条直线②连结两点的线段叫做两点的距离③两点之间,线段最短④若AB=BC,则点B是线段AC的中点A.①② B.③④ C.②④ D.①③5、甲从O点出发,沿北偏西30°走了50米到达A点,乙也从O点出发,沿南偏东35°方向走了80米到达B点,则∠AOB为()A.65° B.115° C.175° D.185°6、下面的语句中,正确的是()A.线段AB和线段BA是不同的线段;B.∠AOB和∠BOA是不同的角;C.“延长线段AB到C”与“延长线段BA到C”意义不同;D.两个角不能既相等又互补.7、如图,从A地到B地有多条道路,一般地,人们会走中间的直路,而不会走其他的曲折的路,这是因为()A.两点之间线段最短B.两直线相交只有一个交点C.两点确定一条直线D.垂线段最短8、如果1∠与2∠互补,2∠与3∠互余,则1∠与3∠的关系是()A.1∠=3∠B.31801∠-︒=∠C.3901∠+︒=∠D.以上都不对9、如果两个角互为补角,而其中一个角比另一个角的4倍少30°,•那么这两个角是().A.42°,138°或40°,130°; B.42°,138°;C.30°,150°; D.以上答案都不对10、在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的()A.南偏西50度方向B.南偏西40度方向C.北偏东50度方向D.北偏东40度方向三、作图题(每题4分,共16分)1、已知a、b、c(a>b), 用尺规画出线段AB使AB=2a-b.(不要求写画法)2、根据下列要求画图:(1)连接线段AB;(2)画射线OA,射线OB;(3)在线段AB上取一点C,在射线OA上取一点D(点C、D不与点A重合),画直线CD,使直线CD与射线OB交于点E。

人教版七年级上册第四章《图形初步认识》复习导学案

人教版七年级上册第四章《图形初步认识》复习导学案

⎧⎨⎩⎧⎨⎩七级上数学NO :4 主备人:银 波 审核人: 授课人:第 周 星期 第 组 学生 预习评价: 整理评价第四章《图形初步认识》期末复习一、知识回顾(一)几何图形立体图形:棱柱、棱锥、圆柱、圆锥、球等。

1、几何图形 平面图形:三角形、四边形、圆等。

主(正)视图---------从正面看2、几何体的三视图 侧(左、右)视图-----从左(右)边看俯视图---------------从上面看(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。

(2)能根据三视图描述基本几何体或实物原型。

3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的。

(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。

4、点、线、面、体 (1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

(二)直线、射线、线段 1、基本概念经过两点有一条直线,并且只有一条直线。

简单地:两点确定一条直线。

3、画一条线段等于已知线段: (1)度量法(2)用尺规作图法 4、线段的大小比较方法: (1)度量法(2)叠合法 5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点。

图形:符号:若点M 是线段AB 的中点,则AM=BM=AB ,AB=2AM=2BM 。

6、线段的性质: 两点的所有连线中,线段最短。

简单地:两点之间,线段最短。

7、两点的距离: 连接两点的线段长度叫做两点的距离。

8、点与直线的位置关系:(1)点在直线上 (2)点在直线外。

(三)角1、角:由公共端点的两条射线所组成的图形叫做角。

2、角的表示法(四种):3、角的度量单位及换算4、角的分类:5、角的比较方法:(1)度量法(2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角。

第四章《图形认识初步》综合复习检测卷(四)及答案

第四章《图形认识初步》综合复习检测卷(四)及答案

第四章《图形认识初步》综合复习检测卷(四)一、选择题(每小题3分,共30分)1.下列关于棱柱的说法:①棱柱的所有面都是平面;②棱柱的所有棱长都相等;③棱柱的所以侧面都是长方形或正方形;④棱柱的侧面个数与底面边数相等;⑤棱柱的上、下底面形状、大小相等其中正确的有 ( ).(A )2个 (B )3个 (C )4个 (D )5个2.下列图形中是正方体的表面展开图的是 ( ).(A) (B) (C) (D)3.如图1,点C 是线段AB 的中点,点D 线段BC 的中点,下列等式不正确的是( ).(A )CD=AC-DB (B )CD=AD-BC (C )CD=21AB-BD (D )CD=31AB图14.一个物体的从正面、左面、上面三个方向看是下面三个图形,则该物体形状的名称为 ( )(A) 圆柱 (B) 棱柱(C) 圆锥 (D) 球 正面 左面 上面5.下列判断正确的是 ( ). 图2(A )平角是一条直线 (B )凡是直角都相等(C )两个锐角的和一定是锐角 (D )角的大小与两条边的长短有关6.如图3,∠AOB =∠COD =90°,那么∠AOC=∠BOD ,这是根据 ( ).(A)直角都相等 (B) 同角的余角相等(C)同角的补角相等 (D)互为余角的两个角相等图37. 点M 、O 、N 顺次在同一直线上,射线0C 、0D 在直线MN 同侧,且∠MOC=64°,∠DON=46°,北则∠MOC 的平分线与∠DON 的平分线夹角的度数是 ( ).(A )85° (B )105° (C )125° (D )145°8. 某测绘装置上一枚指针原来指向南偏西50°(如图4), 把这枚指针按逆时针方向旋转41周,则结果指针的指向 ( ). (A )南偏东50º (B )西偏北50º(C )南偏东40º (D )南偏东45° 图49.如图5,每个长方体的六个面上分别写着1~6这六个数,并且任意两个相对的面上所写的两个数之和所写的两个数之和都等于7,靠在一起的长方体中,相连接两个面的数字之和等于8,图中打“?”的面上所写的数字是 ( ).(A )3 (B )5 (C )2 (D )110.计算180°-48°39′40″-67°41′35″的值是 ( ). 图5(A )63°38′45″ (B )58°39′40″ (C )64°39′40″ (D )63°78′65″二、填空题(每小题2分,共20分)11.如图6所示的图形绕虚线旋转一周,所围成的几何体是_____.图6 图7 12.如图7是一个正方体纸盒的展开图,在其中的四个正方形内有数字1、2、3和-3,要在其余正方形内分别填上-1、-2,使得按虚线折成正方体后,相对面上的两个数互为相反数,则A 处应填_____.13.植树时,只要定出_______个树坑的位置,就能确定同一行树坑所在直线,根据是_______.14.如图8是三个几何体的展开图,请写出这三个立体图形_________ __________ ________图815.某工程队在修筑高速公路时,有时需要将弯曲的道路改直,以缩短路程,这样作的理论依据是________.16.如图9,点C是∠AOB的边OA上一点,D、E是OB上两点,则图中共有_____条线段,_____条射线,_____个小于平角的角.图9 图1017.如果一个角的补角是150°,那么这个角的余角是________.18.乘火车从A站出发,沿途经过3个车站可到达B站,那么在A、B两站之间共有____种不同的票价.19.如图10,将一副三角板叠放在一起,使直角的定顶点重合于点0,则∠AOC+∠DOB=_____.20.在直线l上取A、B、C三点,使得AB=4cm,BC=3cm,如果0是线段AC的中点,则线段OB的长度为_________.三、解答题(1-6每小题6分,7-8分每小题7分)21.观察图11中的几何体,画出从正面、左面、上面三个方向看,得到的平面图形。

第四章几何图形初步复习导学案

第四章几何图形初步复习导学案

第四章几何图形初步复习导学案(1)学习目标:1.进一步熟悉常见几何体的基本特征,能正确识别常见的几何体.2.进一步熟悉和了解常见几何体的平面展开图以及简单几何体的三视图.3.进一步认识点、线、面、体及其相互关系.学习重点:能正确识别常见的几何体及其平面展开图.学习难点:正确作出简单几何体的三视图.使用要求:1.阅读课本P151小结;2.尝试完成教材P152复习题4第1、2、3题;3.限时25分钟完成本导学案(合作或独立完成均可);4.课前在小组内交流展示.一、知识回顾:1.什么是几何图形?几何图形可分为_______和________两大类.2.常见的立体图形:常见..的立体图形大致可分为:柱体、锥体和球体三类. (1)下面的几何体都我们生活中常见的,你能不能找到生活中的实例以及想象其图形. 长方体、正方体、球、圆柱、圆锥、棱柱、棱锥、棱台、圆台等.(2)完成教材P152复习题4第1题.3.常见的平面图形:试写几个常见的平面图形,找一找生活中的实例,想一想其图形的形状.4.点、线、面、体及其相互间的关系.5.简单几何体的三视图.从正面看从左面看从上面看按要求画出这个几何体从正面、左面、上面观察所得到的三视图.6.常见几何体的平面展开图(1)圆柱的展开图与圆锥的展开图.圆柱及其展开图圆锥及其展开图(2)你能画出下面这个几何体的展开图吗?试一试.二、合作探究:1.如图,左边这个几何体的展开图可以是()A B C D【老师提示】当我们不能正确判断时,最好动手折一折.2.如图,把左边的图形折叠起来,它会变为( )A B C D 3.下面是水平放置的四个几何体,从正面观察不是长方形的是()A B C D4.如图,5个边长都为1㎝的正方体摆在桌子上,则露在表面的部分的面积是_______.5.P152复习题4第2、4题.二、学习小结:三、作业:P152复习题3第3、10、11题.第四章几何图形初步复习导学案(2)学习目标:1.进一步理解直线、射线、线段的特征及有关性质.2.进一步理解角的有关概念和性质.3.能正确应用几何符号、几何语言描述几何图形.学习重点:线段、角的概念及其相关性质.学习难点:运用线段与角的相关知识解决问题.一、知识回顾:1、与以前相比,你对直线、射线、线段和角有什么新的认识?2、直线的性质:经过两点有一条直线,并且只有一条直线。

(完整word)七年级数学第四章《图形认识初步》导学案【人教版】

(完整word)七年级数学第四章《图形认识初步》导学案【人教版】

第四章图形认识初步第1学时4.1.1 几何图形(1)学习目标:1.观察生活中的实物或图片,认识以生活中的事物为原型的几何图形;认识一些简单几何体的基本特性,能识别这些简单几何体.2.能由实物形状想象出几何图形,由几何图形想象出实物形状;初步理解立体图形与平面图形.学习重点:识别简单几何体.学习难点:从具体事物中抽象出几何图形.使用要求:1.阅读课本P115-P118;2.尝试完成教材P118的两组思考的问题;3.限时25分钟完成本导学案(合作或独立完成均可);4.课前在小组内交流展示.一、自主学习:1.观察P115本章的章前图:(1)知道这是什么地方吗?你对它了解多少?(可上网查找)(2)你能从中找到我们熟悉的图形吗?找找看.2.多姿多彩的图形美化了我们的生活,找一找我们生活中的你熟悉的图形.3.你能不能设计一个装墨水的墨水盒?你能不能画出一个五角星?如果能,你就试一试,如果不能,那就让我们一起走进多姿多彩的图形世界,共同学习.二、合作探究:1.观察P116的9张多姿多彩的图片,你能从中看出哪些熟悉的几何图形,与同学交流你观察到的图形.【老师提示】:对于一个物体,如果我们考虑它的颜色、材料和重量等,而只考虑它的形状(如方的、圆的)、大小(如长度、面积、体积)和位置(如平行、垂直、相交),所得到的图形就称为几何图形.如:我们学习过的长(正)方体、圆柱(锥)体、长(正)方形、圆、三角形、四边形等都是几何图形.2.立体图形:各部分不都在同一平面内的图形,叫做立体图形.①长方体、正方体、圆柱、圆锥、球等都是立体图形,棱柱、棱锥也是常见的立体图形.找一找生活中有哪些物体的形状类似于这些立体图形?(小组交流)②观察P117图4.1-3,你能由实物想到几何图形及其形状吗?③完成P118思考的问题(上),并与你的同学交流.【老师提示】:常见..的立体图形大致分为:柱体(圆柱、棱柱)、锥体(圆锥、棱锥)、球体三类.3.平面图形:各部分都在同一平面内的图形,叫做平面图形.①长方形、正方形、三角形、四边形、圆等都是平面图形.找一找生活中的平面图形,与同学交流.②完成P118思考的问题(下)4.立体图形与平面图形是两类不同的几何图形,但他们是互相联系的.任何一个立体图形图形是由一个或几个平面图形围成的.看看下面的几个立体图形是由怎样的平面图形围成的?5.下面都是生活中的物体:粉笔盒、茶杯、文具盒、砖、铅垂仪、乒乓球、黑板面.你能说出类似于这些物体的几何图形吗?三、知识应用:1.P119练习题.2.用两条线段、两个三角形、两个圆拼成图案.试着画几个,并取一个恰当的名字.机器人两盏电灯稻草人四、学习小结:五、作业:P123习题4.1第1、2、3、7、8题.(有条件的同学可准备10个正方体形状的积木,下课时备用)附:①2008年北京奥运会即第二十九届夏季奥林匹克运动会,于2008年8月8日20时开幕,于2008年8月24日闭幕.②本届奥运会口号为“同一个世界,同一个梦想”,主办城市是中国北京.③参赛国家及地区204个,参赛运动员11438人,设302项(28种运动)比赛项目④中国51金,21银,28铜.金牌数第一,奖牌总数第二.七年级数学第四章《图形认识初步》导学案2012—05—18第2学时4.1.1 几何图形(2)学习目标:1.从不同方向观察一个物体,体会其观察结果的不一样性.2.能画出从不同方向看一些基本几何体或其简单组合得到的平面图形.3.初步建立空间观念.学习重点:识别并会画出从不同方向看简单几何体所得到的平面图形.学习难点:识别并会画出从不同方向看简单组合体所得到的平面图形.使用要求:1.阅读课本P1192.尝试完成教材P120练习第1题;3.限时15分钟完成本导学案(合作或独立完成均可);4.课前在小组内交流展示.一、自主学习:1.观察你身边的一个物体,试着从不同的角度去看它,你看到的形状是一样的吗?2.下面这几个几何体,试着从不同角度去看看,你得到了怎样的几何图形?【老师提示】:我们从不同的方向观察同一个物体时,可能看到不同的图形.为了能完整确切地表达物体的形状和大小,必须从多方面观察物体.在几何中,我们通常选择从正面、从左面、从上面三个方向来观察物体.通过这样的观察,就能把一个立体图形用几个平面图形来描述.3.分别正面、左面、上面再来观察上面的三个几何体,把观察的结果与同学交流.二、合作探究:1.分别从正面、左面、上面三个方向观察下面的几何体,把观察到的图形画出来.(1)从正面看从左面看从上面看(2)从正面看从左面看从上面看(3)从正面看从左面看从上面看2.先阅读P119的教材再完成P119的探究.(1)小组合作,可用正立体积木摆出书上的立体图形,再观察.(2)改变正立体积木的摆放位置,你摆我答,合作学习.(3)观察身边的几何体,如文具盒、同学的水杯等物品,与同学交流分别从正面、左面、上面所看到的几何图形.【老师提示】对于一些立体图形的问题,常把它们转化为平面图形来研究和处理. 3.P120练习第1题.3.苏东坡有一首诗《题西林壁》“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”为什么横看成岭侧成峰?这有怎样的数学道理?三、学习小结:四、作业:P123习题4.1第4、9、10、13题.(准备长方体形状的包装盒至少一个)七年级数学第四章《图形认识初步》导学案2012—05—18第3学时4.1.2 点、线、面、体学习目标:1.认识立体图形和它的展开图,体验平面图形和立体图形相互转换的过程.2.通过实例,认识点、线、面、体的几何特征,感受它们之间的关系.学习重点:1.了解基本几何体与其展开图之间的关系.2.认识点、线、面、体的几何特征.学习难点:正确判断一个平面图形能否可以折叠为立体图形.使用要求:1.阅读课本P120—P1222.尝试完成教材P121练习第2题,P122练习第1、2题;3.限时30分钟完成本导学案(合作或独立完成均可);4.课前在小组内交流展示.一、自主学习:1.立体图形是由平面图形围成的.观察你身边的长方体形状的包装盒,看一看它有几个面,每个面分别是怎样的平面图形,给每个面作上记号(如前、后等).右边是一个圆柱体,想一想它有几个面?2.把你刚才观察用的长方体形状的包装盒沿它的某几棱剪开铺平,观察展开后的平面图形形状,再观察你作上记号,看看它们之间有怎样的位置关系.【老师提示】①剪开之前最好先把它的包装口用胶水粘好.②不用把棱全部都剪开,只要能铺平就行了.3.再找几个长方体形状的包装盒,沿与上次不一样的方向剪开铺平,看一看你展开后的平面图形与上次展开后的平面图形是否有所不同?你能得出几种不同形状的平面展开图.4.观察一个长方体,面与面相交的地方形成了____,线与线相交的地方形成了___.5.长方体、圆柱体、球、圆锥等都是几何体.几何体也简称体.(1)包围着体的是面.面分为平面和曲面两种.如图的圆锥体有两个面,一个是平面,另一个是曲面.如图的六棱柱有_____个面,分别都是什么面?如图的圆柱有_______个面,分别都是什么面?(2)面与面相交的地方形成线.线分为直线和曲线两种.圆锥体的两个面相交形成_______线.(3)线与线相交形成点.6.(1)如果把笔尖可能看作一个点,笔尖在纸上运动会形成什么_______.如果把星星看作一个点,夜空中流星形成什么________.(2)我们可以把汽车的雨刷看成一条线,汽车的雨刷在挡风玻璃上运动形成____. 生活中还有这样的例子吗?由此我们可以得出:点动成_____,线动成______.想一想,面动会成什么?生活中有没有这样的例子?【老师提示】:几何图形都是由点、线、面、体组成的,点是构成图形的最基本元素.二、合作探究1.P120的探究.(小组合作.先判断是什么样的立体图形,后动手实验验证) 2.P121练习第2题. 3.P122练习第1、2题.4.一个立方体的六个面上分别标有1、2、3、4、5、6中的一个数字,下面是这个立方体的三种不同放法,则三种放法中各个立方体下面的数字分别是____、___、____.左左左下下上上上下242625516三、学习小结:四、作业:P123习题4.1第5、6、11、12、14题.附:正方体展开图,共11种图形。

图形认识初步全章学案

图形认识初步全章学案

七年级数学“先学后教”导学案第四章 图形认识初步4·1·1 几何图形(第一课时)一、学习目标初步了解几何图形、立体图形和平面图形的概念;能识别一些基本的几何体。

二、阅读思考仔细阅读课本P116—1118页,了解什么叫几何图形;什么是立体图形;什么是平面图形?1、 统称为几何图形; 是立体图形; 是平面图形;请你分别写出几何图形、立体图形、平面图形各两个实例。

2、完成课本P118页思考;三、尝试练习1、课本P119页练习;P123-125页习题4.1第1、2、3题2、下列图形中,属于立体图形的有( )①正方形;②圆;③棱柱;④球;⑤长方体;⑥圆柱;⑦六边形;⑧棱锥A .①②⑦B .③④⑤⑦ C3、一个正方体的每个面分别标有数字1,2, 3,4,5,6.根据图中该正方体A,B,C三种 状态所显示的数字,可推出“?”处的数字是四、交流展示 1、在组内讲解阅读思考,并交流。

2、在组内指定同学报答案,答案不同的先记下,最后交流展示。

3、教师巡视各组学习情况,并适时点拨或启发五、当堂反馈1、下列说法中错误的是( )A .棱柱有两个互相平行,形状相同,大小相等的面B .棱锥除一个面外,其余各面都是三角形C .圆柱的侧面可能是长方形D .正方体是四棱柱,也是六面体2、课本P125页习题4.1第7、8题。

3、如图,左面的几何体叫三棱柱,它有五个面,9条棱,6个顶点,中间和右边的几何体分别是四棱柱和五棱柱。

(1)四棱柱有 个顶点, 条棱, 个面;(2)五棱柱有 个顶点, 条棱, 个面;(3)你能由此猜出,六棱柱、七棱柱各有几个顶点,几条棱,几个面吗?(4)n 棱柱有几个顶点,几条棱,几个面吗?六、反思小结1、立体图形、平面图形与几何图形的关系是什么?2、请举出生活中一些类似于棱柱、圆柱、圆锥及球的物体的名称(各举三例)4·1·1 几何图形(第二课时)一、学习目标1、能画出从不同方向看一些基本几何体以及它们的简单组合得到的平面图形;了解直棱柱、圆柱、圆锥的展开图,能根据展开图想象相应的几何体。

SX-7-076、第四章图形认识初步单元复习(2)导学案

SX-7-076、第四章图形认识初步单元复习(2)导学案
第四章图形认识初步单元复习(2)导学案设计
题目
第四章图形认识初步单元复习(2)
课时
1
学校
星火
一中
教者
刘占国
年级
七年学科Βιβλιοθήκη 数学设计来源
自我设计
教学
时间
2012年12月24日
学习
目标
1.进一步理解直线、射线、线段的特征及有关性质.
2.进一步理解角的有关概念和性质.
3.能正确应用几何符号、几何语言描述几何图形.
6.画出能表示∠1+∠2的图形;画出能表示∠3-∠4的图形.
7.怎样的两个角互为余角?怎样的两个互为补角?
余角与补角有怎样的性质?




第四章图形认识初步单元复习(2)
直线、射线、线段的特征及有关性质
角的有关概念和性质
几何符号、几何语言描述几何图形.




1.已知点C是线段AB上一点,AC=6㎝,BC=4㎝,若M、N分别是线段AC、BC的
中点,求线段MN的长.
2.已知线段AB=10㎝,点C是线段AB上任意一点,若M、N分别是线段AC、BC的
中点,是否还能够求出线段MN的长?试试看.
3.如图,点O是直线AB上一点,∠AOC=50°,OM、ON分别是∠AOC、∠BOC的平分线,求∠MON的度数.
4.在上面第3题中去掉“∠AOC=50°”这个条件,是否还能够求出∠MON的度数?
用式子表示中点、三等分点的性质.
4.什么叫做角?角度的单位有哪些?.
计算:25°28′×4=_________ 125°28′÷4=________.
23.23°=_____°_____′_____″25°19′48″=_________度.

最新精编七年级上第4章《几何图形初步》导学案(全套13学时,59页)

最新精编七年级上第4章《几何图形初步》导学案(全套13学时,59页)

第四章图形认识初步第1学时 4.1.1 几何图形(1)学习目标:1.观察生活中的实物或图片,认识以生活中的事物为原型的几何图形;认识一些简单几何体的基本特性,能识别这些简单几何体.2.能由实物形状想象出几何图形,由几何图形想象出实物形状;初步理解立体图形与平面图形.学习重点:识别简单几何体.学习难点:从具体事物中抽象出几何图形.使用要求:1.阅读课本P115-P118;2.尝试完成教材P118的两组思考的问题;3.限时25分钟完成本导学案(合作或独立完成均可);4.课前在小组内交流展示.一、自主学习:1.观察P115本章的章前图:(1)知道这是什么地方吗?你对它了解多少?(可上网查找)(2)你能从中找到我们熟悉的图形吗?找找看.2.多姿多彩的图形美化了我们的生活,找一找我们生活中的你熟悉的图形.3.你能不能设计一个装墨水的墨水盒?你能不能画出一个五角星?如果能,你就试一试,如果不能,那就让我们一起走进多姿多彩的图形世界,共同学习.二、合作探究:1.观察P116的9张多姿多彩的图片,你能从中看出哪些熟悉的几何图形,与同学交流你观察到的图形.【老师提示】:对于一个物体,如果我们考虑它的颜色、材料和重量等,而只考虑它的形状(如方的、圆的)、大小(如长度、面积、体积)和位置(如平行、垂直、相交),所得到的图形就称为几何图形.如:我们学习过的长(正)方体、圆柱(锥)体、长(正)方形、圆、三角形、四边形等都是几何图形.2.立体图形:各部分不都在同一平面内的图形,叫做立体图形.①长方体、正方体、圆柱、圆锥、球等都是立体图形,棱柱、棱锥也是常见的立体图形.找一找生活中有哪些物体的形状类似于这些立体图形?(小组交流)②观察P117图4.1-3,你能由实物想到几何图形及其形状吗?③完成P118思考的问题(上),并与你的同学交流.【老师提示】:常见..的立体图形大致分为:柱体(圆柱、棱柱)、锥体(圆锥、棱锥)、球体三类.3.平面图形:各部分都在同一平面内的图形,叫做平面图形.①长方形、正方形、三角形、四边形、圆等都是平面图形.找一找生活中的平面图形,与同学交流.②完成P118思考的问题(下)4.立体图形与平面图形是两类不同的几何图形,但他们是互相联系的.任何一个立体图形图形是由一个或几个平面图形围成的.看看下面的几个立体图形是由怎样的平面图形围成的?5.下面都是生活中的物体:粉笔盒、茶杯、文具盒、砖、铅垂仪、乒乓球、黑板面.你能说出类似于这些物体的几何图形吗?三、知识应用:1.P119练习题.2.用两条线段、两个三角形、两个圆拼成图案.试着画几个,并取一个恰当的名字.机器人两盏电灯稻草人四、学习小结:五、作业:P123习题4.1第1、2、3、7、8题.(有条件的同学可准备10个正方体形状的积木,下课时备用)附:① 2008年北京奥运会即第二十九届夏季奥林匹克运动会,于2008年8月8日20时开幕,于2008年8月24日闭幕.②本届奥运会口号为“同一个世界,同一个梦想”,主办城市是中国北京.③参赛国家及地区204个,参赛运动员11438人,设302项(28种运动)比赛项目④中国51金,21银,28铜.金牌数第一,奖牌总数第二.第2学时 4.1.1 几何图形(2)学习目标:1.从不同方向观察一个物体,体会其观察结果的不一样性.2.能画出从不同方向看一些基本几何体或其简单组合得到的平面图形.3.初步建立空间观念.学习重点:识别并会画出从不同方向看简单几何体所得到的平面图形.学习难点:识别并会画出从不同方向看简单组合体所得到的平面图形.使用要求:1.阅读课本P1192.尝试完成教材P120练习第1题;3.限时15分钟完成本导学案(合作或独立完成均可);4.课前在小组内交流展示.一、自主学习:1.观察你身边的一个物体,试着从不同的角度去看它,你看到的形状是一样的吗?2.下面这几个几何体,试着从不同角度去看看,你得到了怎样的几何图形?【老师提示】:我们从不同的方向观察同一个物体时,可能看到不同的图形.为了能完整确切地表达物体的形状和大小,必须从多方面观察物体.在几何中,我们通常选择从正面、从左面、从上面三个方向来观察物体.通过这样的观察,就能把一个立体图形用几个平面图形来描述.3.分别正面、左面、上面再来观察上面的三个几何体,把观察的结果与同学交流.二、合作探究:1.分别从正面、左面、上面三个方向观察下面的几何体,把观察到的图形画出来.(1)从正面看从左面看从上面看(2)从正面看从左面看从上面看(3)从正面看从左面看从上面看2.先阅读P119的教材再完成P119的探究.(1)小组合作,可用正立体积木摆出书上的立体图形,再观察.(2)改变正立体积木的摆放位置,你摆我答,合作学习.(3)观察身边的几何体,如文具盒、同学的水杯等物品,与同学交流分别从正面、左面、上面所看到的几何图形.【老师提示】对于一些立体图形的问题,常把它们转化为平面图形来研究和处理. 3.P120练习第1题.3.苏东坡有一首诗《题西林壁》“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”为什么横看成岭侧成峰?这有怎样的数学道理?三、学习小结:四、作业:P123习题4.1第4、9、10、13题.(准备长方体形状的包装盒至少一个)第3学时 4.1.2 点、线、面、体学习目标:1.认识立体图形和它的展开图,体验平面图形和立体图形相互转换的过程.2.通过实例,认识点、线、面、体的几何特征,感受它们之间的关系.学习重点:1.了解基本几何体与其展开图之间的关系.2.认识点、线、面、体的几何特征.学习难点:正确判断一个平面图形能否可以折叠为立体图形.使用要求:1.阅读课本P120—P1222.尝试完成教材P121练习第2题,P122练习第1、2题;3.限时30分钟完成本导学案(合作或独立完成均可);4.课前在小组内交流展示.一、自主学习:1.立体图形是由平面图形围成的.观察你身边的长方体形状的包装盒,看一看它有几个面,每个面分别是怎样的平面图形,给每个面作上记号(如前、后等).右边是一个圆柱体,想一想它有几个面?2.把你刚才观察用的长方体形状的包装盒沿它的某几棱剪开铺平,观察展开后的平面图形形状,再观察你作上记号,看看它们之间有怎样的位置关系.【老师提示】①剪开之前最好先把它的包装口用胶水粘好.②不用把棱全部都剪开,只要能铺平就行了.3.再找几个长方体形状的包装盒,沿与上次不一样的方向剪开铺平,看一看你展开后的平面图形与上次展开后的平面图形是否有所不同?你能得出几种不同形状的平面展开图.4.观察一个长方体,面与面相交的地方形成了____,线与线相交的地方形成了___.5.长方体、圆柱体、球、圆锥等都是几何体.几何体也简称体.(1)包围着体的是面.面分为平面和曲面两种.如图的圆锥体有两个面,一个是平面,另一个是曲面.如图的六棱柱有_____个面,分别都是什么面?如图的圆柱有_______个面,分别都是什么面?(2)面与面相交的地方形成线.线分为直线和曲线两种.圆锥体的两个面相交形成_______线.(3)线与线相交形成点.6.(1)如果把笔尖可能看作一个点,笔尖在纸上运动会形成什么_______.如果把星星看作一个点,夜空中流星形成什么________.(2)我们可以把汽车的雨刷看成一条线,汽车的雨刷在挡风玻璃上运动形成____.生活中还有这样的例子吗?由此我们可以得出:点动成_____,线动成______.想一想,面动会成什么?生活中有没有这样的例子?【老师提示】:几何图形都是由点、线、面、体组成的,点是构成图形的最基本元素.二、合作探究1.P120的探究.(小组合作.先判断是什么样的立体图形,后动手实验验证)2.P121练习第2题.3.P122练习第1、2题.4.一个立方体的六个面上分别标有1、2、3、4、5、6中的一个数字,下面是这个立方体的三种不同放法,则三种放法中各个立方体下面的数字分别是____、___、____.左左左下下上上上下242625516三、学习小结:四、作业:P123习题4.1第5、6、11、12、14题.附:正方体展开图,共11种图形。

人教版七年级数学上册导学案:第四章《图形认识初步》检测试题(两套)

人教版七年级数学上册导学案:第四章《图形认识初步》检测试题(两套)

一、填空题(每空 4 分,共 40 分)1.圆柱的侧面睁开图是;2.已知与互余,且,则为;3.假如一个角的补角是,那么这个角的余角是________;4.乘火车从 A 站出发,沿路过过 3 个车站可抵达 B 站,那么在 AB两站之间最多共有________种不一样的票价;5.如图,若是中点,是中点,若,,_________。

6.要在墙上固定一根木条,起码要个钉子,依据的原理是。

7.________度 ________分;8.________;9.小明每日下午5:30 回家,这时分针与时针所成的角的度数为____度。

二、选择题(每题 4 分,共 20 分)10.以下判断正确的选项是()A.平角是一条直线B.凡是直角都相等C.两个锐角的和必定是锐角D.角的大小与两条边的长短相关11.以下哪个角不可以由一副三角板作出()A.B.C.D.12.若,则∠ α与∠ β的关系是()A.互补 B .互余 C .和为钝角 D .和为周角13.平面上A、 B 两点间的距离是指()A .经过 A、B 两点的直线 B.射线ABC. A 、 B 两点间的线段D. A、B两点间线段的长度14.一个立体图形的三视图以下图,那么它是()A.圆锥B.圆柱C.三棱锥D.四棱锥三、解答题:(共40 分)15.依据以下要求绘图:(10 分)(1)连结线段 AB;(2)画射线 OA,射线 OB;(3)在线段 AB上取一点 C,在射线 OA上取一点 D(点 C、 D 不与点 A 重合),画直线 CD,使直线 CD与射线 OB交于点 E。

16、以下图的几何体是由 5 个同样的正方体搭成的,请画出它的主视图、左视图和俯视图(9 分)17.以下图,点 O是直线 AB上一点, OE,OF分别均分∠ AOC和∠ BOC,若∠ AOC=68°,则∠ BOF和∠ EOF是多少度? (9 分 )18.( 1)以以下图,已知点 C 在线段 AB 上,且 AC=6cm,BC=4cm,点 M、 N 分别是 AC、 BC的中点,求线段MN的的长度.( 2)在( 1)中,假如AC=acm,,其余条件不变,你能猜出MN的长度吗?请你用一句简短的话表述你发现的规律.( 3)对于( 1)题,假如我们这样表达它:“已知线段AC=6cm,BC=4cm,点 C 在直线 AB 上,点M、N 分别是AC、BC的中点,求MN的长度。

第四章图形认识初步导学案及章检测题

第四章图形认识初步导学案及章检测题

第四章 图形认识初步 课题 4.1.1认识几何图形(1)【学习目标】:1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程;2、能由实物形状想象出几何图形,由几何图形想象出实物形状;3、能识别一些简单几何体,正确区分平面图形与立体图形。

【重点难点】:识别简单的几何体是重点;从具体事物中抽象出几何图形是难点。

【导学指导】 一、知识链接同学们,你仔细观察过我们生活的世界吗?从城市宏伟的建筑到乡村简朴的住宅,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代化的城市雕塑,从自然界形态各异的动物到北京的申奥标志……,包含着形态各异的图形。

图形的世界是丰富多彩的!那就让我们走进图象的世界去看看吧。

二、自主探究 1.几何图形(1)仔细观察图4.1-1,让同学们感受是丰富多彩的图形世界;(2)出示一个长方体的纸盒,让同学们观察图4.1-2回答问题:从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?形等,都是从形形色色的物体外形中得出的。

我们把这些图形称为几何图形。

注意:当我们关注物体的形状、大小和位置时,得出了几何图形,它是数学研究的主要对象之一,而物体的颜色、重量、材料等则是其它学科所关注的。

2.立体图形思考第117页思考题并出示实物(如茶叶、地球仪、字典及魔方等)及多媒体演示(如谷堆、帐篷、金字塔等),它们与我们学过的哪些图形相类似?长方体、正方体、球、圆柱、圆锥等它们各部分不都在同一平面内,它们是立体图形。

想一想生活中还有哪些物体的形状类似于这些立体图形呢?思考:课本118页图4.1-4中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来。

3.平面图形平面图形的概念线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。

思考:课本118页图4.1-5的图中包含哪些简单的平面图形?(1)纸盒 (1)长方体(2)长方形(3)正方形(4)线段 点请再举出一些平面图形的例子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 图形认识初步 课题 4.1.1认识几何图形(1)【学习目标】:1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程;2、能由实物形状想象出几何图形,由几何图形想象出实物形状;3、能识别一些简单几何体,正确区分平面图形与立体图形。

【重点难点】:识别简单的几何体是重点;从具体事物中抽象出几何图形是难点。

【导学指导】 一、知识链接同学们,你仔细观察过我们生活的世界吗?从城市宏伟的建筑到乡村简朴的住宅,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代化的城市雕塑,从自然界形态各异的动物到北京的申奥标志……,包含着形态各异的图形。

图形的世界是丰富多彩的!那就让我们走进图象的世界去看看吧。

二、自主探究 1.几何图形(1)仔细观察图4.1-1,让同学们感受是丰富多彩的图形世界;(2)出示一个长方体的纸盒,让同学们观察图4.1-2回答问题:从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。

我们把这些图形称为几何图形。

注意:当我们关注物体的形状、大小和位置时,得出了几何图形,它是数学研究的主要对象之一,而物体的颜色、重量、材料等则是其它学科所关注的。

2.立体图形思考第117页思考题并出示实物(如茶叶、地球仪、字典及魔方等)及多媒体演示(如谷堆、帐篷、金字塔等),它们与我们学过的哪些图形相类似?长方体、正方体、球、圆柱、圆锥等它们各部分不都在同一平面内,它们是立体图形。

想一想生活中还有哪些物体的形状类似于这些立体图形呢?(1)纸盒(1)长方体(2)长方形(3)正方形(4)线段 点思考:课本118页图4.1-4中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来。

3.平面图形平面图形的概念线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。

思考:课本118页图4.1-5的图中包含哪些简单的平面图形? 请再举出一些平面图形的例子。

长方形、圆、正方形、三角形、……。

思考:立体图形与平面图形是两类不同的几何图形,它们的区别在哪里?它们有什么联系?立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。

【课堂练习】: 课本119页练习【要点归纳】:1、2、平面图形与立体图形的关系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内; 立体图形中某些部分是平面图形。

【拓展训练】1.下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球. 其中属于立体图形的是( )A. ①②③;B. ③④⑤;C. ① ③⑤;D. ③④⑤⑥【总结反思】:现实物体几何图形平面图形 立体图形看外形课题4.1.1几何图形(2)【学习目标】:1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,了解为什么要从不同方向看;2.能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形;【学习重点】:识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形【学习难点】:画出从正面、左面、上面看正方体及简单组合体的平面图形【导学指导】一、知识链接多媒体演示庐山景观,请学生背诵苏东坡《题西林壁》并说说诗中意境。

横看成岭侧成峰,远近高低各不同。

不识庐山真面目,只缘身在此山中。

从数学的角度来理解是什么意思呢?二、自主探究1.说一说:分别从正面、左面、上面观察乒乓球、粉笔盒、茶叶盒,各能得到什么平面图形?(出示实物)2.画一画:长方体、圆锥分别从正面、左面、上面观察,各能得到什么图形?试着画一画.(出示实物)这样,我们将立体图形转化成了平面图形3.探究活动1:从正面、左面、上面观察得到的平面图形你能画出来吗?小组合作学习,动手画一画,并进行展示探究:分别从正面、左面、上面观察课本119页图4.1-8这个图形,分别画出得到的平面图形。

【课堂练习】: 课本120页练习1【要点归纳】:1.本节课我们主要学习了什么?2. 本节课我们有哪些收获?【拓展训练】1. 如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是( )2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。

A .B .C .D .【总结反思】:课题4.1.1几何图形(3)【学习目标】:1.能直观认识立体图形和展开图,了解研究立体图形方法。

2.通过观察和动手操作,经历和体验平面图形和立体图形相互转换的过程,培养动手操作能力,初步建立空间观念,发展几何直觉。

【学习重点】:了解基本几何体与其展开图之间的关系,体会一个立体按照不同方式展开可得到不同的平面展开图。

【学习难点】:正确判断哪些平面图形可以折叠为立体图形;某个立体图形的展开图可以是哪些平面图形【导学指导】一、知识链接我们把一些像墨水瓶盒、粉笔盒这样的纸盒沿它的表面适当剪开,可以展平成平面图形。

这样的平面图形叫做相应立体图形的展开图。

你知道长方体、圆柱、圆锥和三棱柱的展开图是什么样子的吗?想象一下。

二、自主探究(一)、立体图形的展开1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?圆柱圆锥三棱柱长方体思考:请你指出上面展开图各部分与几何体的哪一部分相对应?2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会? 再将所有的展开图画出来,以上画出了部分了展开图,除此之外还有5种,共有11种, 请你画出其余5种。

(二)、立体图形的折叠探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?凭想象回答,回答不出来的,就把它画在纸片上,剪下来折叠。

做一做:【课堂练习】:课本121页练习2【要点归纳】:1.我知道了什么?2.我学会了什么?3.我发现了什么?【拓展训练】1.下列图形中,不是正方体的表面展开图的是()A.B.C.D.2. 一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()建设A.和B.谐C.北D.京【总结反思】:课题 4.1.2点、线、面、体【学习目标】:(1)了解几何体、平面和曲面的意义,•能正确判定围成几何体的面是平面还是曲面;(2)了解几何图形构成的基本元素是点、线、面、体及其关系,•能正确判定由点、面、体经过运动变化形成的简单的几何图形;【学习重点】:正确判定围成立体图形的面是平面还是曲面,探索点、线、面、•体之间的关系。

【学习难点】:探索点、线、面、体运动变化后形成的图形。

【导学指导】一、温故知新1.出示一个长方体模型,请同学们认真观察。

2.回答问题:这个长方体有几个面?面与面相交成了几条线?•线与线相交成几个点?二、自主探究1.经过学生的独立思考,然后在小组中进行交流,在小组讨论中,•评价并修正自己的结论。

(教师进行巡视,及时给予指导,教师对学生分布的答案作鼓励性评价)。

2.几何体的概念(1)长方体是一个几何体,我们还学过哪些几何体?_______________________________________________________________________;(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?•这些面有什么区别?3.面的分类通过对上面问题的解决,得出面的分类:____面和___面。

面与面相交成线,线有___线和____线;线与线相交成_____;4. 点、线、面、体教师指导学生看课本第121~122页内容,•观察图片能发现什么结论?点、线、面、体的关系:点动成_____,线动成___________,面动成________。

请你再举出生活中的一些实例:5.点、线、面、体与几何图形关系.指导学生阅读课本第123页内容,总结出点、线、面、体与几何图形的关系几何图形都是由_______________________组成的,________是构成图形的基本元素。

【课堂练习】课本第122页练习1、2;【要点归纳】:1.本节课我们主要学习了什么?2. 本节课我们有哪些收获?【拓展训练】:1.人在雪地上走,他的脚印形成一条_______,这说明了______的数学原理;2.体是由_______围成的,面和面相交形成_______,线和线相交形成______;3.点动成________,线动成______,面动成_______;4.将三角形绕直线L旋转一周,可以得到如下图所示立体图形的是()A B C D【总结反思】:课题 4.2直线、射线、线段(1)【学习目标】:1.能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,•能用几何语言描述直线性质;2.会用字母表示直线、射线、线段,会根据语言描述画出图形;【重点难点】:理解并掌握直线性质,会用字母表示图形和根据语言描述画出图形;【导学指导】一、知识链接1.在小学已经学过了直线、射线、线段.请你画出一条直线、一条射线、一条线段?直线射线线段21、直线的性质(1)如果你想将一根细木条固定在墙上,至少需要几个钉子?操作一下,试试看。

答:(2)经过一个已知点的直线,可以画多少条直线?请画图说明。

答:O 〃(3)经过两个已知点画直线,可以画多少条直线?请画图试试。

〃〃答: A B猜想:如果将细木条抽象成直线,将钉子抽象为点,你可以得到什么结论?直线的基本性质:经过两点有 条直线,并且 条直线;简述为: 举例说明直线的性质在日常生活中的应用:(1) 在挂窗帘时,只要在两边钉两颗钉子扯上线即可,这是因为(2)建筑工人在砌墙时拉参照线,木工师傅锯木板时,用墨盒弹墨线,都是根据(3)你还能从生活中举出应用直线的基本性质的例子吗?试试看:2、直线有两种表示方法:①用一个小写字母表示;②用两个大写字母表示。

平面上一个点与一条直线的位置有什么关系? ①点在直线上;②点在直线外。

当两条直线有一个共公点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

3、射线和线段的表示方法:如图。

显然,射线和线段都是直线的一部分。

图①中的线段记作线段AB 或线段a ;图②中的射线记作射线OA 或射线m 。

注意:用两个大写字母表示射线时,表示端点的字母一定要写在前面。

思考:直线、射线和线段有什么联系和区别? 【课堂练习】1.下列给线段取名正确的是 ( )A .线段M B.线段m C.线段Mm D.线段mn 2.如图,若射线AB 上有一点C,下列与射线AB 是同一条射线的是 ( ) A.射线BA B.射线ACC.射线BCD.射线CB 3.下列语句中正确的个数有 ( )①直线MN 与直线NM 是同一条直线 ②射线AB 与射线BA 是同一条射线 ③线段PQ 与线段QP 是同一条线段④直线上一点把这条直线分成的两部分都是射线. A.1个 B.2个 C.3个 D.4个 4.课本129页练习 【要点归纳】:通过本节课的学习你有什么收获?B A 直线AB· · a直线a 点B 在直线外· B · 点A 在直线A Oba· a · B A O Am · ② ① A B C【拓展训练】:1.如图,线段AB 上有两点C 、D ,则共有 条线段。

相关文档
最新文档