中值定理与导数的应用

合集下载

中值定理与导数的应用

中值定理与导数的应用

第三章 中值定理与导数的应用§3. 1 中值定理 一、罗尔定理 费马引理设函数f (x )在点x 0的某邻域U (x 0)内有定义, 并且在x 0处可导, 如果对任意x ∈U (x 0), 有 f (x )≤f (x 0) (或f (x )≥f (x 0)), 那么f '(x 0)=0.罗尔定理 如果函数)(x f 满足:(1)在闭区间],[b a 上连续, (2)在开区间),(b a 内可导, (3)在区间端点处的函数值相等,即)()(b f a f =, 那么在),(b a 内至少在一点)(b a <<ξξ , 使得函数)(x f 在该点的导数等于零,即0)('=ξf .例:设函数)(x f 在[0,1]上连续,在(0,1)上可导,0)1(=f ,证明:在(0,1)内存在ξ,使得ξξξ)()(f f -='.【分析】本题的难点是构造辅助函数,可如下分析:()0)(0)()(0)()()()(='→='+→='+→-='x xf x f x x f f f f f ξξξξξξ【证明】令)()(x xf x G =,则)(x G 在[0,1]上连续,在(0,1)上可导,且0)1(1G (1)0,0)(0)0(====f f G ,)()()(x f x x f x G '+=' 由罗尔中值定理知,存在)1,0(∈ξ,使得)()()(ξξξξf f G '+='.即ξξξ)()(f f -='例:设函数f (x ), g (x )在[a , b ]上连续,在(a , b )内具有二阶导数且存在相等的最大值,f (a )=g (a ), f (b )=g (b ), 证明:存在(,)a b ξ∈,使得()().f g ξξ''''=【分析】需要证明的结论与导数有关,自然联想到用微分中值定理,事实上,若令()()()F x f x g x =-,则问题转化为证明()0F ξ''=, 只需对()F x '用罗尔定理,关键是找到()F x '的端点函数值相等的区间(特别是两个一阶导数同时为零的点),而利用F (a )=F (b )=0, 若能再找一点(,)c a b ∈,使得()0F c =,则在区间[,],[,]a c c b 上两次利用罗尔定理有一阶导函数相等的两点,再对()F x '用罗尔定理即可。

中值定理与导数的应用

中值定理与导数的应用

中值定理是反映函数与导数之间联系的重要定理,也是微积分学的理论基础。

在实际应用中,中值定理与导数的应用非常广泛。

以下是一些具体的应用:
1.判断函数的单调性:通过导数可以判断函数的单调性,如果函数在某个区间内的导数大于0,则
该函数在这个区间内单调递增;如果函数在某个区间内的导数小于0,则该函数在这个区间内单调递减。

2.求函数的极值:导数可以用来求函数的极值。

如果函数在某一点的导数为0,则该点可能是函数
的极值点。

在判断出极值点后,可以通过求导数在该点的左右两侧的符号变化来确定该点是极大值点还是极小值点。

3.判断函数的凹凸性:通过二阶导数可以判断函数的凹凸性。

如果函数在某一点的二阶导数大于0,
则该函数在该点附近是凹函数;如果二阶导数小于0,则该函数在该点附近是凸函数。

4.求函数的拐点:在判断出函数的极值点和凹凸性后,可以进一步求出函数的拐点。

拐点的定义是
函数图像在该点处的切线发生弯曲的地方。

通过求一阶导数在该点的左右两侧的符号变化,可以判断出拐点的位置。

5.判断函数的不等式:通过导数还可以判断函数的不等式。

如果两个函数在某个区间内的导数符号
相反,则这两个函数在该区间内的函数值一定不相等。

6.最优化问题:在工程和经济学中,经常需要解决最优化问题。

使用微积分中的中值定理和导数可
以找到最优解。

例如,在经济学中,可以使用微积分来找到最大化收益或最小化成本的最佳策略。

总的来说,中值定理与导数的应用非常广泛,它们是微积分学的重要基石,可以用于解决各种实际问题。

高等数学 第3章 第一节 中值定理

高等数学 第3章 第一节 中值定理
6 6
(函数

6
,
y
5
6
ln sin x
是 y
是初等函数, 且当
x
6
ln sin x 定义域内的一部分;
,
5
6
时,cossixn
y'
sin x
x
0,
cot x.)
且ln s in
lnsin 5
ln 1 .
6
62
令 y' cos x cot x 0, sin x
得 x , 5 .
F(b) F(a)
( x) 满足罗尔定理的全部条件,且:
'(x) f '(x) f (b) f (a) F '(x)
F(b) F(a)
Y F , f Fb, f b
C•
•B
由罗尔定理,至少存在一点 ∈(a,b) ,
即:
使
f
'( )
'( ) 0,
f (b) f (a) F '( ) 0
即 1、 2、 3都是方程 f 'x 0 的根。 注意到 f ' x 0 为三次方程, 它最多有三个根。
我们已经找到它的三个实根
1、 2、 3 ,
所以这三个根就是方程
f 'x 0 的全部根。
14
例3 证明当x 0时, x ln1 x x
1 x
证 设f x ln1 x, 显然,函数 f x 在 0, x 上满足
f (b) f (a)
O a
bx
结论等价于: f f b f a
ba
或: f f b f a 0
ba
AB的方程为:

中值定理与导数的应用

中值定理与导数的应用

中值定理与导数的应用导数是微积分中的重要概念,它描述了函数在某一点的变化率。

而中值定理则是导数的重要应用之一,它揭示了函数在某一区间内必然存在某一点,使得该点的斜率等于该区间的平均斜率。

在实际问题中,中值定理具有广泛的应用,可以帮助我们解决各种与变化率相关的问题。

让我们来了解一下中值定理的基本原理。

根据中值定理,如果一个函数在闭区间[a, b]上连续,并且在开区间(a, b)内可导,那么在(a, b)内至少存在一点c,使得函数在c处的导数等于函数在[a, b]上的平均斜率。

换句话说,函数在区间内的某一点的瞬时变化率与整个区间的平均变化率相等。

中值定理的一个重要推论是拉格朗日中值定理。

根据拉格朗日中值定理,如果一个函数在闭区间[a, b]上连续,并且在开区间(a, b)内可导,那么在(a, b)内至少存在一点c,使得函数在c处的导数等于函数在[a, b]上的斜率。

换句话说,拉格朗日中值定理给出了函数在某一区间内某一点的瞬时变化率与该区间的斜率之间的对应关系。

中值定理的应用非常广泛。

一个常见的应用是求函数在某一区间内的最大值和最小值。

根据极值存在定理,如果一个函数在闭区间[a, b]上连续,那么它在该区间内必然存在最大值和最小值。

根据中值定理,我们可以通过求函数在该区间内的导数为0的点,来确定函数的极值点。

另一个常见的应用是求函数的单调性。

根据中值定理,如果一个函数在某一区间内的导数恒大于0(或恒小于0),那么该函数在该区间内必然是递增的(或递减的)。

因此,我们可以通过求函数的导数来确定函数在某一区间内的单调性。

中值定理还可以用来解决一些与速度和加速度相关的问题。

例如,在物理学中,我们经常需要计算物体在某一时间段内的平均速度和瞬时速度。

根据中值定理,我们可以通过求物体在该时间段内的位移与时间的比值,来确定物体在某一时刻的瞬时速度。

中值定理是导数的重要应用之一,它可以帮助我们解决各种与变化率相关的问题。

中值定理及导数应用笔记

中值定理及导数应用笔记

中值定理及导数应用笔记中值定理是数学中的一个重要定理,它是求函数在某一区间内的最大值或最小值的一种方法。

中值定理:设f(x)在[a, b]内可导,且f’(x)在(a,b)内存在,则存在c∈(a, b),使得f’(c)=0。

中值定理的应用:1.求函数在某一区间内的极值:由中值定理可知,如果函数f(x)在[a, b]内可导,且f’(x)在(a, b)内存在,则存在c∈(a,b)使得f’(c)=0。

因此,我们可以通过求解f’(x)=0的方程来求出函数在[a, b]内的极值。

2.求函数的泰勒公式:利用中值定理可以得出泰勒公式,即对于函数f(x)在x0处的泰勒展开式:f(x)=f(x0)+f’(x0)(x-x0)+O((x-x0)^2)。

导数是数学中的一个概念,它表示函数在某一点处的斜率。

导数的应用:1.求函数的单调性:如果函数f(x)在点x处的导数大于0,则函数在点x处单调递增;如果函数f(x)在点x处的导数小于0,则函数在点x处单调递减。

2.求函数的极值:如果函数f(x)在点x处的导数等于0,则函数可能在点x处取得极值。

通过对函数的二阶导数进行分析,可以判断函数在点x处的极值是最大值还是最小值。

1.求函数在某一点的切线:切线是函数在某一点的切线的图像。

切线的斜率等于函数在这个点的导数。

因此,我们可以通过求解函数在某一点的导数来求出函数在这个点的切线。

2.求函数在某一区间内的最小值和最大值:当函数在某一区间内单调递增或单调递减时,可以通过求解函数在区间端点处的导数来求出函数在该区间内的最小值和最大值。

以上是中值定理和导数的应用笔记。

通过对中值定理和导数的学习,可以帮助我们更好地理解函数的性质,并运用到数学和其他领域中。

需要注意的是,中值定理和导数的应用是有一定条件的,在使用这些工具时要注意满足这些条件。

此外,中值定理和导数是高等数学中的基础概念,在深入学习数学和其他科学领域之前,要先扎实地掌握这些概念。

高等数学 微分中值定理与导数的应用

高等数学 微分中值定理与导数的应用
f (b) f (a) f ' ()(b a) 成立.
注意 : 与罗尔定理相比条件中去掉了 f (a) f (b). 结论亦可写成 f (b) f (a) f (). ba
f (b) f (a) f ( )
ba
y 几何解释:
在曲线弧 AB 上至少有
一点 C ,在该点处的切
A
C
y f (x)
有一点(a b),使等式
f (a) F (a)
f (b) F (b)
f F
' () 成立. ' ()
Cauchy定理又称为广义微分中值定理
结构图
特例
推广
Rolle定理
Lagrange定理
Cauchy定理
拉格朗日中值定理又称微分中值定理.
第二节 洛必达法则
一、0 型及 型未定式解法: 洛必达法则 0
且除去两个端点外处 o a 处有不垂直于横轴的
1
2 b x
切线,在曲线弧AB上至少有一点C ,在该点处的
切线是水平的.
注① Rolle定理有三个条件:闭区间连续;开区间可导
区间端点处的函数值相等; 这三个条件只是充分条件,而非必要条件
如:y=x2在[-1,2]上满足(1),(2),不满足(3) 却在(-1,2)内有一点 x=0 使
第三章 微分中值定理与导数的应用
§3. 1 微分中值定理
一、罗尔(Rolle)定理
定理(Rolle) 若函数f ( x ) 满足 (1)在闭区间[a,b]上连续 (2)在开区间(a,b)内可导 (3)在区间端点处的函数值相等f(a)=f(b)
则在(a,b)内至少存在一点 , (a,b)使得函数 f ( x)在该点的导数为零,即 f ( ) 0

2020考研数学高数必背定理:中值定理与导数的应用

2020考研数学高数必背定理:中值定理与导数的应用

2020考研数学高数必背定理:中值定理与导数的应用摘要:数学想要获取高分,必要的公式定理一定要熟记。

下面老师为大家整理了2020考研数学高数部分的公式定理,供大家参考。

►中值定理与导数的应用1、定理(罗尔定理)如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且在区间端点的函数值相等,即f(a)=f(b),那么在开区间(a,b)内至少有一点(a2、定理(拉格朗日中值定理)如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么在开区间(a,b)内至少有一点(a3、定理(柯西中值定理)如果函数f(x)及F(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且F(x)在(a,b)内的每一点处均不为零,那么在开区间(a,b)内至少有一点,使的等式[f(b)-f(a)]/[F(b)-F(a)]=f)/F)成立。

4、洛必达法则应用条件只能用与未定型诸如0/0、/、0、-、00、1、0等形式。

5、函数单调性的判定法设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么:(1)如果在(a,b)内f(x)0,那么函数f(x)在[a,b]上单调增加;(2)如果在(a,b)内f(x)如果函数在定义区间上连续,除去有限个导数不存在的点外导数存在且连续,那么只要用方程f(x)=0的根及f(x)不存在的点来划分函数f(x)的定义区间,就能保证f(x)在各个部分区间内保持固定符号,因而函数f(x)在每个部分区间上单调。

6、函数的极值如果函数f(x)在区间(a,b)内有定义,x0是(a,b)内的一个点,如果存在着点x0的一个去心邻域,对于这去心邻域内的任何点x,f(x)f(x0)均成立,就称f(x0)是函数f(x)的一个极小值。

在函数取得极值处,曲线上的切线是水平的,但曲线上有水平曲线的地方,函数不一定取得极值,即可导函数的极值点必定是它的驻点(导数为0的点),但函数的驻点却不一定是极值点。

中值定理与导数应用

中值定理与导数应用

嘉兴学院
10/5/2024
第四章 中值定理与导数应用
第17页
例7 证明当x [ 1 ,1]时,不等式 2
arctan x ln(1 x2 ) ln 2
4 成立.
例8 证明:若函数f (x)在(, )内 满足关系式 f (x) f (x),且f (0)=1,
则 f (x) ex.
嘉兴学院
f '() 0
嘉兴学院
10/5/2024
第四章 中值定理与导数应用
y 几何解释:
第4页
C y f (x)
o a 1
2 b x
在两端点高度相同的连续曲线弧AB上,
若除端点外处处均有不垂直于x轴的切
线存在,则此曲线弧上至少有一点C,
在该点处的切线平行于x轴.
嘉兴学院
10/5/2024
第四章 中值定理与导数应用
f (x1 x2 ) f (x2 ) f (x1)
f (x1 x2 ) f (x2 ) f (x1) f (0)
f (2 ) x1 f (1) x1 (x2 2 x1 x2 , 0 1 x1)
x1 f ( )(2 1) 0 (1 2 )
f (x1 x2 ) f (x1) f (x2 )
并求满足定理的值. 例4 证明 arcsin x arccos x
2 (1 x 1).
嘉兴学院
——证明恒等式旳一般措施
10/5/2024
第四章 中值定理与导数应用
第13页
例5 证明当x 0时, x ln(1 x) x. 1 x
例6 设 Lim f (x) K , 求 x+
Lim [ f (x a) f (x)].(a 0)
x+
嘉兴学院

中值定理与导数的应用-§3.1 中值定理

中值定理与导数的应用-§3.1 中值定理
证明 不妨设 x U ( x0 ) 时,f ( x ) f ( x0 )
于是对于x0 x U ( x0 ) ,有 f ( x0 x) f ( x0 )
微积分 第3章 中值定理与导数的应用
3.1 中值定理
f ( x0 x ) f ( x0 ) 当 x 0 时, 0; x f ( x0 x ) f ( x0 ) 0. 当 x <0 时, x 根据函数 f ( x ) 在 x0 处可导及极限的保号性得
微积分 第3章 中值定理与导数的应用
3.1 中值定理
同理可知,方程还有两个根 2 , 3分别属于区间 2,3 及
3,4 . 因此,有且仅有三个实根,它们分别属于区间 1, 2 , 2, 3 及 3, 4 .
例3 若 f ( x )在区间 [a , b]上连续,在 ( a , b ) 内可导,且 满足 f ( x ) 0,及 f (a ) f (b) 0 , 证明方程 f ( x ) 0
三、柯西中值定理
柯西中值定理 设函数 f ( x ) 及 F ( x ) 满足条件: (1)在闭区间 [a , b] 上连续; (2)在开区间( a , b ) 内可导, 且 F ( x ) 在 ( a , b ) 内每一点处均不为零. 则在 ( a , b ) 内 至少有一点 (a b), 使得
微积分 第3章 中值定理与导数的应用
3.1 中值定理
(2)若 M m , 由于 f (a ) f (b), 所以 M 和 m 至少有一个不 等于 f ( x ) 在区间 [a , b] 端点处的函数值.不妨设 M f (a ) , 则必定在 (a, b) 有一点 使 f ( ) M . 因此任取 x [a, b] 均有 f ( x ) f ( ) , 从而由费马引理有 f ( ) 0 . 证毕

微分中值定理及导数的应用

微分中值定理及导数的应用
给定微分方程和某些变量的初始条件,求解该微分方 程的解。
积分因子法
通过引入一个积分因子,将微分方程转化为可解的一 阶线性方程组。
感谢您的观看
THANKS
微分中值定理及导数的应用
目录
• 微分中值定理 • 导数的定义与性质 • 导数在函数中的应用 • 导数在实际问题中的应用 • 导数的进一步研究
01
微分中值定理
微分中值定理的定义
微分中值定理
若函数$f(x)$在闭区间$[a, b]$上连续,在开区间$(a, b)$上可 导,则存在$c in (a, b)$,使得$f'(c) = frac{f(b) - f(a)}{b - a}$。
导数与积分的关系
牛顿-莱布尼兹公式
用导数和积分相互转化的方式,将定积分转化为求和的 形式,从而简化计算。
微积分基本定理
定积分可以表示为被积函数的一个原函数在积分上下限 的函数值的差,即牛顿-莱布尼兹公式的特殊形式。
导数与微分方程
微分方程
描述一个变量关于另一个变量的导数等于某个给定函 数的方程。
初值问题
导数在科学计算中的应用
数值分析
导数在数值分析中有着广泛的应用,例如在求解微分方程、 积分方程和线性代数方程时,导数可以帮助我们找到近似 解。
图像处理
在图像处理中,导数可以帮助我们进行边缘检测、图像滤 波和图像增强等操作,从而提高图像的清晰度和质量。
信号处理
在信号处理中,导数可以用来分析信号的变化趋势和频率 特征,例如在音频处理和图像处理中,导数可以帮助我们 提取信号中的重要信息。
详细描述
如果一个函数在某区间的导数大于0, 则该函数在此区间单调递增;如果导 数小于0,则函数单调递减。

第三章 中值定理与导数的应用

第三章 中值定理与导数的应用
第3章 中值定理与导数的应用
第一节第三节 函数单调性的判别法
第四节
函数的极值及其求法
2019/10/10
第五节 函数的最大值与最小值
第六节 曲线的凹凸性与拐点
第七节
函数图形的描绘
第一节 中值定理
微分学中有三个中值定理应用非常广泛,它们 分别是罗尔定理、拉格朗日中值定理和柯西中值定 理.
从上述拉格朗日中值定理与罗尔定理的关系,自 然想到利用罗尔定理来证明拉格朗日中值定理.但在拉 格朗日中值定理中,函数f(x)不一定具备f(a)=f(b)这个 条件,为此我们设想构造一个与f(x)有密切联系的函数 φ(x)(称为辅助函数),使φ(x)满足条件φ(a)=φ(b).然后对 φ(x)应用罗尔定理,再把对φ(x)所得的结论转化到f(x) 上,证得所要的结果.
一、0/0型未定式
第三节 函数单调性的判定法
如图3-4所示,如果函数y=f(x)在区间[a,b]上 单调增加,那么它的图像是一条沿x轴正向上升的曲线 ,这时,曲线上各点切线的倾斜角都是锐角,它们的 切线斜率f′(x)都是正的,即f′(x)>0.同样地,如图3-5所 示,如果函数y=f(x)在[a,b]上单调减少,那么它的 图像是一条沿x轴正向下降的曲线,这时曲线上各点切 线的倾斜角都是钝角, 它们的斜率f′(x)都是负的,即 f′(x)<0.由此可见,函数的单调性与导数的符号有着密 切的联系.下面,我们给出利用导数判定函数单调性的 定理.
根据上面三个定理,如果函数f(x)在所讨论的区间内各点处 都具有导数,我们就以下列步骤来求函数f(x)的极值点和 极值:
(1) 求出函数f(x)的定义域;
(2) 求出函数f(x)的导数f′(x);
(3) 求出f(x)的全部驻点(即求出方程f′(x)=0在所讨论的区 间内的全部实根)以及一阶导数不存在的点;

《高等数学B》 第四章 中值定理及导数的应用 第1节 中值定理

《高等数学B》 第四章 中值定理及导数的应用 第1节 中值定理

拉格朗日 (1736 – 1813) 法国数学家. 他在方程论, 解析函数论, 法国数学家. 他在方程论 解析函数论 及数论方面都作出了重要的贡献, 及数论方面都作出了重要的贡献 近百 余年来, 数学中的许多成就都直接或间 余年来 接地溯源于他的工作, 接地溯源于他的工作 他是对分析数学 产生全面影响的数学家之一 .
y
C M•
y = f ( x)

D

A•
•N
ξ1 x
o a
ξ2 b
x
分析: 证 分析: 条件中与罗尔定理相差 f (a ) = f (b) .
f (b) − f (a ) ( x − a) . 弦 AB方程为 y = f (a ) + 方程为 b−a 曲线 f ( x )减去弦 AB ,
所得曲线 a , b 两端点的函数值相等 .
(1)
f ′(ξ ) = 0 .
例如, 例如 f ( x ) = x 2 − 2 x − 3 = ( x − 3)( x + 1) .
在[−1 , 3]上连续 , 在( −1 , 3) 上可导 , 且 f ( −1) = f ( 3) = 0 , Q f ′( x ) = 2( x − 1) , 取 ξ = 1 (1 ∈ ( −1 , 3)) , f ′(ξ ) = 0 .
f (b) − f (a ) F ( x ) = f ( x ) − [ f (a ) + ( x − a )] . b−a F ( x ) 满足罗尔定理的条件 , 则在( a , b )内至少存在一点 ξ ,
作辅助函数
使得 F ′(ξ ) = 0 . 即
f (b) − f (a ) f ′(ξ ) − =0, b−a 拉格朗日中值公式 或 f (b) − f (a) = f ′(ξ )(b − a) .

第三章中值定理与导数的应用

第三章中值定理与导数的应用

第三章中值定理与导数的应用教学目的:1、理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒中值定理。

2、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。

3、会用二阶导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

4、掌握用洛必达法则求未定式极限的方法。

5、知道曲率和曲率半径的概念,会计算曲率和曲率半径。

6、知道方程近似解的二分法及切线性。

教学重点:1、罗尔定理、拉格朗日中值定理;2、函数的极值,判断函数的单调性和求函数极值的方法;3、函数图形的凹凸性;4、洛必达法则。

教学难点:1、罗尔定理、拉格朗日中值定理的应用;2、极值的判断方法;3、图形的凹凸性及函数的图形描绘;4、洛必达法则的灵活运用。

§3 , 1 中值定理一、罗尔定理费马引理设函数f(x)在点X。

的某邻域U(x o)内有定义.并且在X。

处可导.如果对任意x U(x o).有f(x)兰f(x o)(或f(x)可(X o)).那么 f (x。

) =o ,罗尔定理如果函数y#(x)在闭区间[a, b]上连续.在开区间(a, b)内可导.且有f(a)=f(b).那么在(a, b)内至少在一点「使得f ( ) =0 .简要证明:(1)如果f(x)是常函数.则「(x)P .定理的结论显然成立,(2)如果f(x)不是常函数.则f(x)在(a . b)内至少有一个最大值点或最小值点.不妨设有一最大值点工(a .b),于是f()=口)= im f(x)—f()_0IJ x_.仁)“()訓空严_0 所以 f (x)=0.罗尔定理的几何意义:二、拉格朗日中值定理拉格朗日中值定理如果函数f(x)在闭区间[a b]上连续.在开区间(a b)内可导.那么在(a b)内至少有一点(a< <b).使得等式f(b)-f(a)f(々b-a)成立.拉格朗日中值定理的几何意义:f(b)—f(a)f ()二 b -a定理的证明:引进辅函数f(b)-f (a)令(x)孑(x) _f(a) — b —a (x^),容易验证函数f(x)适合罗尔定理的条件::(a)V (b)d O . :(x)在闭区间[a.b ]上连续在开区间(a b)内可导.且f(b)-f (a)申(x)=f "(x) — b~a ,根据罗尔定理.可知在开区间(a b)内至少有一点•.使「()=0 .即f (b) - f ⑻ f ()_ b-a =0f(b)-f(a) 由此得b —a 二f ()即 f(b)_f(a)=f ( )(bv). 定理证毕,f(b)-f(a)f ( )(b-a)叫做拉格朗日中值公式 .这个公式对于b<a 也成立 拉格朗日中值公式的其它形式 :设x 为区间[a . b ]内一点.x : =x 为这区间内的另一点 (.:x>0或.:x<0).则在[x. x7x ] C x>0)或[x i x x ] (. x<0)应用拉格朗日中值公式 .得f(x+心x) -f(x)甘 lx 说x) ‘ Z (0< 日<1), 如果记f(x)为y .则上式又可写为L y f (x n :x) L X (0< T <1),试与微分dyf (x)x 比较:dy=f(x) 是函数增量冷的近似表达式.而 f(x-,x) 是函数增量:y 的精确表达式.作为拉格朗日中值定理的应用 .我们证明如下定理:定理 如果函数f(x)在区间I 上的导数恒为零.那么f(x)在区间I 上是一个常数. 证 在区间I 上任取两点X 1.X 2(X 1<X 2).应用拉格朗日中值定理.就得f(X 2)斗(X 1)斗"(9(X 2 — x i ) (x i < -< X 2). 由假定 f ( ) =0 .所以 f(X 2) _f(X i )=0 .即f(X 2)=f(X l ),因为X i X 2是I 上任意两点.所以上面的等式表明:f(x)在I 上的函数值总是相等的.这就是说 f(x)在区间I 上是- -个常数,证 设f(x)=ln(1 x).显然f(x)在区间[0 . x ]上满足拉格朗日中值定理的条件 就有f(x)—f(0)=f (勺(x-0) . 0<®x 。

第3章中值定理与导数的应用(包括题)

第3章中值定理与导数的应用(包括题)

第三章 中值定理与导数的应用一、 基本内容(一) 中值定理1.罗尔定理如果函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导,且)()(b f a f =,那么在),(b a 内存在一点ξ,使得0)(='ξf .2.拉格朗日中值定理如果函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导,那么在),(b a 内至少有一点ξ,使得ab a f b f f --=')()()(ξ 其微分形式为x f x f x x f ∆⋅'=-∆+)()()(ξ这里10,<<∆⋅+=θθξx x .推论 如果函数)(x f 在开区间),(b a 内的导数恒为零,那么)(x f 在),(b a 内是一个常数.3.柯西中值定理如果函数)(x f 及)(x g 在闭区间],[b a 上连续,在开区间),(b a 内可导,且)(x g '在),(b a 内的每一点均不为零,那么在),(b a 内至少有一点ξ,使得)()()()()()(ξξg f a g b g a f b f ''=-- 中值定理是导数应用的理论基础,在应用中值定理证明题时,关键是构造适当的辅助函数.(二) 洛必达法则1.法则1如果函数)(x f 及)(x g 满足条件:(1)0)(lim =→x f a x , 0)(lim =→x g ax ; (2)在点a 的某去心邻域内,)(x f '及)(x g '都存在且0)(≠'x g ;(3))()(l i m x g x f a x ''→存在(或为无穷大),那么 )()(lim )()(lim x g x f x g x f a x ax ''=→→ 2.法则2如果函数)(x f 及)(x g 满足条件:(1)0)(lim =∞→x f x , 0)(lim =∞→x g x ; (2)当N x >时,)(x f '及)(x g '都存在且0)(≠'x g ; (3) )()(limx g x f x ''∞→存在(或为无穷大); 那么)()(lim )()(lim x g x f x g x f x x ''=∞→∞→ 以上两个法则是针对00型未定式. 对∞∞型未定式,也有相应的两个法则. 对∞⋅0、∞-∞、00、∞1、0∞型未定式,可以通过变形将其转化成00或∞∞型来求. (三) 泰勒公式1.带拉格朗日余项的泰勒公式设函数)(x f y =在0x 的某邻域),(0δx U 内有1+n 阶导数,那么在此邻域内有+-''+-'+=200000)(2)())(()()(x x x f x x x f x f x f ! )()(!)(00)(x R x x n x f n n n +-+ 10)1()()!1()()(++-+=n n n x x n f x R ξ 其中ξ在0x 和x 之间,)(x R n 是拉格朗日余项.(四) 函数的单调性函数单调性的判别法 设函数)(x f y =在],[b a 上连续,在),(b a 内可导.(1)如果在),(b a 内0)(>'x f ,那么函数)(x f y =在],[b a 上单调增加;(2) 如果在),(b a 内0)(<'x f ,那么函数)(x f y =在],[b a 上单调减少.(五) 函数的极值与最值1.函数在一点取得极值的必要条件设函数)(x f y =在0x 点取得极值,如果)(x f 在0x 点可导,那么0)(0='x f .使0)(='x f 的点x 称为函数)(x f 的驻点.驻点不一定是极值点.驻点和不可导点是函数的所有可能的极值点.2.极值点的两个判别定理判别之一 设函数)(x f y =在0x 点连续,在0x 的某去心领域),(0δx U内可导,有(1) 如果在),(00x x δ-内0)(<'x f ,在),(00δ+x x 内0)(>'x f ,那么)(x f 在0x 取得极小值;(2) 如果在),(00x x δ-内0)(>'x f ,在),(00δ+x x 内0)(<'x f ,那么)(x f 在0x 取得极大值;(3) 如果)(x f '在),(0δx U 内符号保持不变,那么)(x f 在0x 没有极值.判别之二 设函数)(x f y =在0x 点处有二阶导数,且0)(0='x f ,则有(1) 如果0)(0>''x f ,那么在0x 取得极小值;(2) 如果0)(0<''x f ,那么在0x 取得极大值.3.函数的最大值与最小值的求法(1) 求出)(x f '在),(b a 内的零点和不存在的点n x x x ,,,21 ,计算出)(x f 在这些点处的函数值)(,),(),(21n x f x f x f ;(2) 计算出)(x f 在],[b a 的两个端点上的值)(),(b f a f(3) )}(),()(,),(),(m ax {21b f a f x f x f x f n 是)(x f 在],[b a 上的最大值)}(),()(,),(),(m in{21b f a f x f x f x f n 是)(x f 在],[b a 上的最小值. (六)曲线的凹凸与函数的作图1.凹凸的定义设函数)(x f y =在闭区间],[b a 上连续,如果对于],[b a 上任意两点21,x x ,恒有2)()()2(2121x f x f x x f +<+那么称曲线)(x f y =在],[b a 上是凹的;如果恒有2)()()2(2121x f x f x x f +>+ 那么称曲线)(x f y =在],[b a 上是凸的.2.凹凸的判定设函数)(x f y =在],[b a 上连续,在),(b a 内具有二阶导数,那么(1) 如果在),(b a 内0)(>''x f ,那么函数)(x f y =在],[b a 上的图形是凹的;(2) 如果在),(b a 内0)(<''x f ,那么函数)(x f y =在],[b a 上的图形是凸的.3.拐点及其求法连续曲线)(x f y =上凹弧与凸弧的分界点称为这曲线的拐点.求出所有0)(=''x f 或)(x f ''不存在的点n x x x ,,,21 ,拐点从),,2,1())(,(n i x f x i i =中找.4.函数作图(1) 确定函数的定义域;(2) 求出函数的单调区间和极值点,曲线的凹凸区间和拐点;(3) 求函数图形的水平渐近线和铅直渐近线;(4) 求出函数在特殊点(包括间断点及一阶导数、二阶导数为零或不存在的点)处的函数值,定出图形上相应的点,结合前面的结果,连结这些点画出函数图形的大概形状.(七)曲率1. 定义 称dSd S K S αα=∆∆=→∆0lim 为曲线)(x f y =在M 点处的曲率.其中S ∆是 M M '的长度,α∆是曲线在M 与M '处切线的夹角,M 与M '是曲线上两点.2. 计算公式若)(x f y =,则232)1()(y y x K '+''=.3. 曲率与曲率半径ρ的关系K1=ρ二、练习题3.1 设)(x f 可导,求证:)(x f 的两个零点之间一定有)()(x f x f '+的零点. 证明 设0)()(==b f a f ,a<b ,令)()(x f e x F x =,则0)()(==b F a F , 根据罗尔定理,存在),(b a ∈ξ使得0)(='ξF ,即0)]()([='+ξξξf f e .于是0)()(='+ξξf f .3.2 设函数)(x f 在]1,0[上三次可导,且0)1()0(==f f ,设)()(3x f x x F =.证明;存在)1,0(∈ξ,使0)(='''ξF .证明 由条件可知 0)1()0(==F F ,F(x)在]1,0[上可导,根据罗尔定理,存在)1,0(1∈ξ使得0)(1='ξF又由)()(3)(32x f x x f x x F '+='知道0)0(='F这样0)()0(1='='ξF F ,0)(='x F 在],0[1ξ可导. 根据罗尔定理,存在)1,0(),0(12⊂∈ξξ使得0)(2=''ξF又由)()(6)(6)(32x f x x f x x xf x F ''+'+=''知道0)0(=''F根据罗尔定理,存在)1,0(),0(2⊂∈ξξ使得0)(='''ξF3.3 设)(x f 在闭区间[a ,b ]上连续,在开区间(a ,b )内可导,0>a .证明:在 (a ,b )内存在321,,x x x ,使233222213)()(2)()()(x x f b ab a x x f b a x f '++='+='证明 由拉格朗日中值定理 .存在),(1b a x ∈,使得)()()(1x f ab a f b f '=-- 根据柯西中值定理,存在),(),,(32b a x b a x ∈∈使得))((3)()()())((2)()()(32333322222x x F x x f a b a f b f x x F x x f a b a f b f ='=--='=-- 由上面三个等式可知原结论成立 .3.4 设)(x f 在[0,1]上连续,在(0,1)内可导,且)1()0(f f =.求证:在(0,1)内存在的两个不同的21,c c ,使0)()(21='+'c f c f .证明 将[0,1]分成两部分]1,21[],21,0[分别在其上应用拉格朗日中值定理,得 )1,21()(211)21()1()21,0()(021)0()21(2211∈'=--∈'=--c c f f f c c f f f 又由条件)1()0(f f =,可知0)()(21='+'c f c f3.5 已知 0)3sin (lim 230=++→b xa x x x ,求b a ,的值 . 解 因 0)3sin (lim 230=++→b x a x x x ,由洛必达法则 )00(333cos 3lim )00(3sin lim 220330x bx a x x bx ax x x x ++=++→→由033cos 3lim 20=++→bx a x x 可知3-=a 再继续用洛必达法则0663cos 27lim )00(663sin 9lim )00(3333cos 3lim 00220=+-=+-=+-→→→b x x bx x xbx x x x x 于是 063cos 27lim 0=+-→b x x ,知 29=b3.6用洛必达法则求下列极限:(1)21)1ln(lim x e x x +++∞→;(2)x x x ln 1)arctan 2(lim -∞→π; (3)210)ln ln (lim x x x x bx b a x a --→; (4))0,,()3(lim 10>++→c b a c b a x xx x x解 (1)21)1ln(lim x e x x +++∞→ =21)1(lim x x e e x xx +++∞→ =1111lim2+⋅+-+∞→xe x x =1 (2)x x x ln 1)arctan 2(lim -∞→π =x x x e ln )arctan 2ln(lim -∞→π=xx x x e arctan 21lim2-+-∞→π =x x x x x e arctan 211lim 22-⋅+-∞→π =x xx e arctan 21lim --∞→π=22111lim x x x e +---∞→ =1-e(3) 令y b x b a x a x x x x =--→210)ln ln (lim )00()ln ln()ln ln(lim ln 20x b x b a x a y x x x ---=→ = xb x b b b b a x a a a a x x x x x 2ln ln ln ln ln ln lim 0-----→ xa x a aa a x x x 2ln ln ln lim 0--→ )1ln (2ln )1(lim 0→--=→a x a xa a x x x =2ln 2ln lim 220a a a x x =→ 同理 2ln 2ln ln ln lim 20b x b x b bb b x x x =--→ 故 2ln ln ln 22b a y -= 原式=2ln ln 22b a e-(4) 令y c b a x xx x x =++→10)3(lim3ln 3ln ln ln 3ln ln ln 3lim )00(3ln lim ln 00abc c b a c c b b a a c b a x c b a y x x x x x x x xx x x =++=++⋅++=++=→→ 故 原式33ln abc e abc ==3.7 设)(x f 与)(x g 在),0[+∞存在二阶导数,且满足条件:)0()0(g f =,)0()0(g f '=',)0)(()(>''>''x x f x g .试分别用函数的单调性、拉格朗日中值定理和泰勒公式证明:0>x 时,)()(x f x g >.证明 (法一)令)()()(x g x f x F -=由条件 )0(0)(,0)0(,0)0(><''='=x x F F F于是)(x F '在),0(+∞单调递减又由)0(F ''存在,故)(x F '在0=x 连续,即有)(x F '在[]+∞,0 单调递减 .所以,当0>x 时,0)0()(='<'F x F ,于是)(x F 在[]+∞,0单调递减,所以,当0>x 时,0)0()(=<F x F 即0)()(<-x g x f ,)()(x f x g >. (法二)令)()()(x g x f x F -=由条件 )0(0)(,0)0(,0)0(><''='=x x F F F由拉格朗日中值定理,得()0)),0(()()]0()([),0()()0()(<∈⋅⋅''=⋅'-'=∈'=-ξηξηξξξx F x F F x xF F x F 故 0)(<x F ,)()(x f x g >.(法三)令)()()(x g x f x F -=由条件 )0(0)(,0)0(,0)0(><''='=x x F F F根据泰勒公式 2)(21)0()0()(x F x F F x F ξ''+'+= 其中),0(,0x x ∈>ξ 故 0)(<x F ,)()(x f x g >.3.8 利用泰勒公式计算极限:)cot 1(1lim0x x x x -→. 解 原式=xx x x x tan tan lim 20-→ =)~(tan tan lim 30x x x x x x -→ =)1~(cos cos sin lim 30x xx x x x -→ =322330)](21[)(6lim xx o x x x o x x x +--+-→ =3330)(31lim xx o x x +→ =313.9 设函数)(x f 在[0,1]上具有连续的三阶导数,且2)1(,1)0(==f f ,0)21(='f . 证明 在(0,1)内至少存在一点ξ,使24|)(|≥'''ξf . 证明 将)(x f 在210=x 点展开,并分别令0=x 和1=x ,得)2()21(6)()21(2)21()21)(21()21()1()1()21(6)()21(2)21()21)(21()21()0(322312ξξf f f f f f f f f f '''+''+'+=-'''+-''+-'+= (2)—(1)得: )]()([481112ξξf f '''-'''= 48|)()(||)(||)(|1221='''-'''≥'''+'''ξξξξf f f f取ξ为1ξ和2ξ中三阶导数的绝对值较大的点,因)1,21(),21,0(21∈∈ξξ故)1,0(∈ξ,且有 24|)(|≥'''ξf3.10 数列 ,,,3,2,13n n 中哪一项最大解 令 xx x f 1)(=,则)ln 1()ln 1()(211x x x x x x f x x -='='- 当),0(e x ∈时,0)(>'x f ,f(x)在],0(e 单增;当),(+∞∈e x 时,0)(<'x f ,f(x)在),[+∞e 单减因为 32<<e ,故值最大的项只能为2或33,而由2332<可知,2<33,所以33最大.3.11 证明:当0>x 时,有)1l n()1(1x x e x ++>-.证明 令),1ln()1(1)(x x e x f x ++--=则0)0(=f0)0(,)1ln(1)(='+--='f x e x f xxe xf x +-=''11)( 当0>x 时,0)(=''x f ,)(x f '在),0[+∞单增,而0)0(='f ,故0)(>'x f ,)(x f 在),0[+∞单增,而0)0(=f 故0)(>x f ,即当0>x 时,有)1ln()1(1x x e x ++>-3.12 在椭圆12222=+by a x 位于第一象限的部分上求一点P ,使该点处的切线、椭圆及两坐标所围图形的面积为最小)0,0(>>b a .解 要使所述的面积最小,因椭圆在第一象限部分面积为定值,只要使切线与两坐标所围三角形面积最小即可 .设),(00y x P .则由02222=⋅+dxdy b y a x yx a b b y a x dx dy ⋅-=-=222222 可知P 点处椭圆切线方程为 )(000220x x y x a b y y -⋅-=- 分别令y=0和x=0,可得两截距为 022020022020y a b y x Y x b a x y X +⋅=+⋅=故此三角形面积为))((2102202002200y ab y x x b a x y +⋅+⋅ 因),(00y x 在椭圆上,可令0000sin ,cos θθb y a x ==.代入上式,可得此面积为02sin θab ,因此当12sin 0=θ即40πθ=时,此面积最小,此时b y a x 22,2200== . 综上,当P 点坐标为)22,22(b a 师,题中所述面积最小.测验题(三)1. 设)(x f 和)(x g 在[a ,b ]上连续,在(a ,b )内可导,且0)()(==b f a f ,证明:0)()()()(='+'x g x f x g x f 在(a ,b )内有解证明 令)()()(x g x f x F =,则F(x)在[a ,b ]满足罗尔定理的条件,存在),(b a ∈ξ使得0)(='ξF ,即0)()()()()(='+'='x g x f x g x f x F 在(a ,b )内有解.2. 设)(x f 在],0[π上连续,在()π,0内可导,且0)0(=f ,证明:存在),0(πξ∈使)(2tan )(2ξξξf f ='.证明 欲证)(2tan )(2ξξξf f =',只要 02sin )(212cos )(=-'ξξξξf f 令2cos )()(x x f x F =,有0)0(=f 得0)()0(==πF F . )(x F 在[0,π]满足罗尔定理的条件,故存在),0(πξ∈使得0)(='ξF ,即02si n )(212cos )(=-'ξξξξf f .3. 用洛必达法则求下列极限(1)()1sin lim 20--→x x e x x x ; (2)])11[(lim e xx x x -+∞→. 解()()()61642cos lim 412sin lim 12cos 1lim 1sin lim )1(20202020=+++=++-=+--=--→→→→x x x x x xx x x xx x x x e x xe e e x e x xe e x e x e x x e x xx221)1ln(1lim )1ln()1(lim )11,)1(()1()]1ln()1([)1(lim 1]111)1ln(1[)1(lim )1(lim )1(])11[(lim )2(02012101010e tt e t t t t e t e t t t t t t t t t t t t te t x t e xx t t t t t t t t t x x -=-+-=+⋅+-=→+→+++⋅+-+=+⋅++⋅-+=-+==-+→→→→→∞→注意令4. 已知bx ax x x f ++=23)(在1=x 处有极值2-,试确定系数a 和b ,并求出)(x f 的所有极值和曲线)(x f y =的拐点.解 b ax x x f ++='23)(2因)(x f 在1=x 处有极值2-,故⎩⎨⎧-=++==++='21)1(023)1(b a f b a f 解得⎩⎨⎧-==30b a ,因此有x x x f 3)(3-=. 解33)(2-='x x f ,得1±=x .当)1,(--∞∈x 时,0)(>'x f ;当)1,1(-∈x 时,0)(<'x f ;当),1(+∞∈x 时,0)(>'x f ,所以)(x f 在1-=x 点处取得极大值2)1(=-f ,在1=x 处取得极小值2)1(=f .解06)(==''x x f ,得0=x .当0<x 时,0)(<''x f ,当0>x 时,0)(>''x f ,故(0,0)点是曲线)(x f y =的拐点.5. 证明:当e x x >>12时,有122121ln ln x x x x x x << 证明 考虑函数x x y ln = ),(,0ln 12+∞∈<-='e x xx y 所以函数在),(+∞e 单调递减,即当e x x >>12时有2211ln ln x x x x >即2121ln ln x x x x < 再考虑函数x x y ln =,),(,0ln 1+∞∈>+='e x x y所以函数在),(+∞e 单调递增,即当e x x >>12时有2211ln ln x x x x <即1221ln ln x x x x <6. 若)(x f '在),0[+∞严格单调递增,且0)0(=f ,证明:x x f )(在),0(+∞严格单调递增.证明 对任意的0>x ,)(x f 在],0[x 连续,在(0,x )可导,故存在),0(x ∈ξ使得 )()()0()(ξf xx f x f x f '==- xf x f x x x f x f x x f x f x x x f )()()()()()()(2ξ'-'=-'=-'='⎥⎦⎤⎢⎣⎡ 因)(x f '在),0[+∞严格单调递增,故)()(ξf x f '>',所以0)(>'⎥⎦⎤⎢⎣⎡x x f 则x x f )(在),0(+∞严格单调递增.7. 设在],1[+∞上处处有0)(<''x f ,且3)1(,2)1(-='=f f ,证明:在),1(+∞内方程0)(=x f 仅有一个实根.证明 由0)(<''x f 知)(x f '在),1[+∞严格递减.由零阶泰勒公式,有)2,1(),12)(()1()2(∈-'+=ξξf f f 由于3)1()(-='<'f f ξ,2)1(=f ,故01)2(<-<f由连续函数的介值定理,存在)2,1(0∈x 使得0)(0=x f又由于)(x f '在),1[+∞严格递减.,0)1(<'f 可知对任意的),1[+∞∈x 有0)1()(<'≤'f x f ,故)(x f 在),1[+∞严格递减.所以0)(=x f 在),1(+∞内有唯一实根.。

中值定理导数的应用知识点

中值定理导数的应用知识点
第三章中值定理与导数的应用
一、四个中值定理பைடு நூலகம்关系
推 广 推 广
罗 拉格朗日定理 柯
尔 特例 推 特例 特例 西
定 广 定
理 理
泰勒定理
二、微分中值定理
名称
条件
结论
罗尔定理
在 内存在
使得
拉格朗日定理
在 内存在
使得
推论1
在定理条件下,若
则 ( 为常数)
推论2
若 都满足定理条件,


( 为常数)
柯西定理

、 在 内存在
使得
三、洛比达法则
类型
条件
结论


1若 时, (或 );
2在 内, 和 都存在,且
③ (有限或 )( 可以是 )
四、其他不定型转化为 或
不定型
转 化 过 程.
;或
五、泰勒公式
分 类
定 理
泰勒公式
设 在含有 的某开区间 内具有直到 阶的导数,则 其中 。
麦克劳林公式
六、可导函数单调性的判定
若 ,又 存在,则
是 的一条斜渐近线
九、弧微分
1. 时,
2. 时,
3. 时,
定理(判别法)
设 ,在 内可导,则
① 上单调递增
② 上单调递减
七、曲线凹凸性的判定定理
定理
补充说明
设 , 在 上存在, 为凹弧
设 , 上可导, 为凹弧 在 内上升。
曲线为凹弧 切线斜率
单调递增
八、曲线的渐近线
铅直渐近线
若 或 ,则 是
的铅直渐近线( 可以是 )
水平渐近线
若 或 ,则 是
的水平渐近线
斜渐近线

中值定理与导数的应用(全

中值定理与导数的应用(全

导数在不等式证明中的常见方法
构造法
根据题意,通过构造适当的函数, 利用导数研究该函数的性质,从 而证明不等式。
放缩法
通过放缩技巧,将需要证明的不 等式转化为更容易处理的形式, 再利用导数进行证明。
参数法
引入参数,通过调整参数的值, 利用导数研究函数的变化规律, 从而证明不等式。
导数在不等式证明中的实例分析
详细描述
柯西中值定理进一步揭示了函数之间的内在关系,为研究函数的性质提供了更多的理论支持。同时,柯西中值定 理也在解决一些复杂问题时发挥了重要的作用。
02
导数的几何意义及应用
导数的几何意义
导数表示函数在某一点的切线斜率
对于可导函数,其在某一点的导数即为该点处的切线斜率,反映了函数在该点的变化率。
03
导数在不等式证明中的应用
导数在不等式证明中的基本思想
利用导数研究函数的单调性
01
通过求导判断函数的单调性,从而在不等式证明中利用函数的
增减性进行推导。
利用导数研究函数的极值
02
通过求导找到函数的极值点,利用极值点处的函数值进行不等
式的比较和证明。
导数与不等式的转化
03
将不等式问题转化为求导数问题,通过求解导数来证明不等式。
速度与加速度
在物理学中,速度和加速度是描述物体运动的重要参数。导数可以用于计算速度和加速 度,帮助我们理解物体的运动规律。
弹性与应变
在弹性力学中,导数可以用于描述物体的弹性性质和应变状态,帮助我们分析物体的受 力情况和变形规律。
导数在经济问题中的应用
供需关系
在经济学中,供需关系是决定市场价格的重 要因素。导数可以用于分析供需函数的变化 趋势,帮助我们理解市场价格的变动。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 中值定理与导数的应用从第二章第一节的前言中已经知道,导致微分学产生的第三类问题是“求最大值和最小值”. 此类问题在当时的生产实践中具有深刻的应用背景,例如,求炮弹从炮管里射出后运行的水平距离(即射程),其依赖于炮筒对地面的倾斜角(即发射角). 又如,在天文学中,求行星离开太阳的最远和最近距离等. 一直以来,导数作为函数的变化率,在研究函数变化的性态中有着十分重要的意义,因而在自然科学、工程技术以及社会科学等领域中得到广泛的应用.在第二章中,我们介绍了微分学的两个基本概念—导数与微分及其计算方法. 本章以微分学基本定理—微分中值定理为基础,进一步介绍利用导数研究函数的性态,例如判断函数的单调性和凹凸性,求函数的极限、极值、最大(小)值以及函数作图的方法,最后还讨论了导数在经济学中的应用.第一节 中值定理中值定理揭示了函数在某区间的整体性质与该区间内部某一点的导数之间的关系,因而称为中值定理. 中值定理既是用微分学知识解决应用问题的理论基础,又是解决微分学自身发展的一种理论性模型, 因而称为微分中值定理.本节主要内容1罗尔定理2拉格朗日中值定理3柯西中值定理讲解提纲:一、罗尔定理:在闭区间[a , b ]上连续;在开区间(a , b )内可导;在区间端点的函数值相等, 即).()(b f a f = 结论:在(a , b )内至少存在一点),(b a <<ξξ使得 .0)(='ξf注:罗尔定理的三个条件是十分重要的,如果有一个不满足,定理的结论就可能不成立. 分别举例说明之.罗尔定理中)()(b f a f =这个条件是相当特殊的,它使罗尔定理的应用受到限制. 拉格朗日在罗尔定理的基础上作了进一步的研究,取消了罗尔定理中这个条件的限制,但仍保留了其余两个条件,得到了在微分学中具有重要地位的拉格朗日中值定理.二、拉格朗日中值定理:在闭区间[a , b ]上连续;在开区间(a , b )内可导. 结论:在(a , b )内至少存在一点),(b a <<ξξ 使得))(()()(a b f a f b f -'=-ξ拉格朗日中值公式反映了可导函数在],[b a 上整体平均变化率与在),(b a 内某点ξ处函数的局部变化率的关系. 若从力学角度看,公式表示整体上的平均速度等于某一内点处的瞬时速度. 因此,拉格朗日中值定理是联结局部与整体的纽带.拉格朗日终值定理可改写为).10()(0<<∆⋅∆+'=∆θθx x x f y 称为有限增量公式.拉格朗日中值定理在微分学中占有重要地位,有时也称这个定理为微分中值定理. 在某些问题中,当自变量x 取得有限增量x ∆而需要函数增量的准确表达式时,拉格朗日中值定理就突显出其重要价值.推论1 如果函数)(x f 在区间I 上的导数恒为零, 那末)(x f 在区间I 上是一个常数.三、柯西中值定理:在闭区间[a , b ]上连续;在开区间(a , b )内可导;在(a , b )内每一点处,0)(≠'x g . 结论:在(a , b )内至少存在一点),(b a <<ξξ 使得)()()()()()(ξξg f b g a g b f a f ''=-- 显然, 若取,)(x x g =则,1)(,)()(='-=-x g a b a g b g 因而柯西中值定理就变成拉格朗日中值定理(微分中值定理)了. 所以柯西中值定理又称为广义中值定理.例题选讲:罗尔定理的应用例1 对函数()x x f sin ln =在区间[]5,ππ上验证罗尔定理的正确性. 解:21sin ln )65()6(==ππf f ,0)2('=πf . 例2 设()x f 在[]b a ,上连续, ()x f '在[]b a ,连续. 且()()()0,0,0<><b f c f a f ,c 介于a,b 之间. 证明: 存在()b a ,∈ξ, 使()0='ξf 成立.证明:函数在[]b a ,内连续.在[]c a ,内由条件根据介值定理可推得存在一点1ξ,使得 ()01=ξf .同理, []b c ,内存在一点2ξ,使得()02=ξf .在[]21,ξξ内满足罗尔定理存在()b a ,∈ξ, 使()0='ξf 成立.拉格朗日中值定理的应用例3证明 ).11(2arccos arcsin ≤≤-=+x x x π证明:令x x x f arccos arcsin )(+=;则11,0)('<<=x x f .所以f(x)为一常数设为f(x)=c,又因为2)1(,2)1(,2)0(πππ=-==f f f , 故).11(2arccos arcsin ≤≤-=+x x x π例4 证明当0>x 时,.)1ln(1x x xx <+<+ 证明:设)1ln()(x x f +=,则函数在区间[0,x]上满足拉格朗日中值定理得条件,有 x x f f x f <<-=-ξξ0),0)(()0()(' 因为x x f f 1)(,0)0('==,所以ξ+=+1)1ln(x x ,又因为x <<ξ0 所以 .)1ln(1x x xx <+<+ 柯西中值定理的应用例5 设函数)(x f 在[0, 1]上连续, 在(0, 1)内可导. 试证明至少存在一点)1,0(∈ξ, 使)].0()1([2)(f f f -='ξξ证明:只需令2)(x x g =即可课堂练习1. 试举例说明罗尔定理的条件缺一不可.2. 若)(x f 是[a , b ]上的正值可微函数, 则有点)1,0(∈ξ使()()()()().lna b f f a f b f -'=ξξ罗尔(Rolle ,1652~1719)简介:罗尔是法国数学家。

1652年4月21日生于昂贝尔特,1719年11月8日卒于巴黎。

罗尔出生于小店家庭,只受过初等教育,且结婚过早,年轻时贫困潦倒,靠充当公证人与律师抄录员的微薄收入养家糊口,他利用业余时间刻苦自学代数与丢番图的著作,并很有心得。

1682年,他解决了数学家奥扎南提出一个数论难题,受到了学术界的好评,从而名身雀起,也使他的生活有了转机,此后担任初等数学教师和陆军部行征官员。

1685年进入法国科学院,担任低级职务,到1690年才获得科学院发给的固定薪水。

此后他一直在科学院供职,1719年因中风去世。

罗尔在数学上的成就主要是在代数方面,专长于丢番图方程的研究。

罗尔所处的时代正当牛顿、莱布尼兹的微积分诞生不久,由于这一新生事物不存在逻辑上的缺陷,从而遭受多方面的非议,其中也包括罗尔,并且他是反对派中最直言不讳的一员。

1700年,在法国科学院发生了一场有关无穷小方法是否真实的论战。

在这场论战中,罗尔认为无穷小方法由于缺乏理论基础将导致谬误,并说:“微积分是巧妙的谬论的汇集”。

瓦里格农、索弗尔等人之间,展开了异常激烈的争论。

约翰.贝努利还讽刺罗尔不懂微积分。

由于罗尔对此问题表现得异常激动,致使科学院不得不屡次出面干预。

直到1706年秋天,罗尔才向瓦里格农、索弗尔等人承认他已经放弃了自己的观点,并且充分认识到无穷小分析新方法价值。

罗尔于1691年在题为《任意次方程的一个解法的证明》的论文中指出了:在多项式方程0)(=x f 的两个相邻的实根之间,方程0)(=x f 至少有一个根。

一百多年后,即1846年,尤斯托.伯拉维提斯将这一定理推广到可微函数,并把此定理命名为罗尔定理。

拉格朗日(Joseph-Louis Lagrange ,1736~1813)简介:据拉格朗日本人回忆,幼年家境富裕,可能不会作数学研究,但到青年时代,在数学家F.A.雷维里(R-evelli )指导下学几何学后,萌发了他的数学天才。

17岁开始专攻当时迅速发展的数学分析。

他的学术生涯可分为三个时期:都灵时期(1766年以前)、柏林时期(1766—1786)、巴黎时期(1787—1813)。

拉格朗日在数学、力学和天文学三个学科中都有重大历史性的贡献,但他主要是数学家,研究力学和天文学的目的是表明数学分析的威力。

全部著作、论文、学术报告记录、学术通讯超过500篇。

拉格朗日的学术生涯主要在18世纪后半期。

当时数学、物理学和天文学是自然科学主体。

数学的主流是由微积分发展起来的数学分析,以欧洲大陆为中心;物理学了主流是力学;天文学的主流是天体力学。

数学分析的发展使力学和天体力学深化,而力学和天体力学的课题又成为数学分析发展的动力。

当时的自然科学代表人物都在此三个学科做出了历史性重大贡献。

下面就拉格朗日的主要贡献介绍如下:数学分析的开拓者1.变分法 这是拉格朗日最早研究的领域,以欧拉的思路和结果为依据,但从纯分析方法出发,得到更完善的结果。

他的第一篇论文“极大和极小的方法研究”是他研究变分法的序幕;1760年发表的“关于确定不定积分式的极大极小的一种新方法”是用分析方法建立变分法制代表作。

发表前写信给欧拉,称此文中的方法为“变分方法”。

欧拉肯定了,并在他自己的论文中正式将此方法命名为“变分法”。

变分法这个分支才真正建立起来。

2.微分方程早在都灵时期,拉格朗日就对变系数微分方程研究做工出了重大成果。

他在降阶过程中提出了以后所称的伴随方程,并证明了非齐次线性变系数方程的伴随方程,就是原方程的齐次方程。

在柏林期,他对常微分方程的奇解和特解做出历史性贡献,在1774年完成的“关于微分方程特解的研究”中系统地研究了奇解和通解的关系,明确提出由通解及其对积分常数的偏导数消去常数求出奇解的方法;还指出奇解为原方程积分曲线族的包络线。

当然,他的奇解理论还不完善,现代奇解理论的形式是由G.达布等人完成的。

除此之外,他还是一阶偏微分方程理论的建立者。

3.方程论拉格朗日在柏林的前十年,大量时间花在代数方程和超越方程的解法上。

他把前人解三、四次代数方程的各种解法,总结为一套标准方法,而且还分析出一般三、四次方程能用代数方法解出的原因。

拉格朗日的想法已蕴含了置换群的概念,他的思想为后来的N.H.阿贝尔和 E.伽罗瓦采用并发展,终于解决了高于四次的一般方程为何不能用代数方法求解的问题.此外,他还提出了一种格朗日极数.4.数论著拉格朗日在1772年把欧拉40多年没有解决的费马另一猜想“一个正整数能表示为最多四个平方数的和”证明出来。

后来还证明了著名的定理:n是质数的充要条件为(n-1)!+1能被n整除。

5.函数和无穷级数同18世纪的其他数学家一样,拉格朗日也认为函数可以展开为无穷级数,而无穷级数同是多项式的推广。

相关文档
最新文档