二次函数存在性问题总结

合集下载

二次函数的存在性问题(面积)及答案

二次函数的存在性问题(面积)及答案

图12-2xCOy ABD 11二次函数的存在性问题(面积问题)1、[08云南双柏]已知:抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2. (1)求A 、B 、C 三点的坐标;(2)求此抛物线的表达式;(3)求△ABC 的面积; (4)若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE , 设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(5)在(4)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标, 判断此时△BCE 的形状;若不存在,请说明理由.2、 [09湖南益阳]阅读材料:如图12-1,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算PABCAB 98SS =三角形面积的新方法:ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题:如图12-2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结PA ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ∆; (3)是否存在一点P ,使PABCAB98S S =若存在,求出P 点的坐标;若不存在,请说明理由.图13、[09吉林长春]如图,在直角坐标系中,矩形ABCD 的边AD 在y 轴正半轴上,点A 、C 的坐标分别 为(0,1)(2,4).点P 从点A 出发,沿A →B →C 以每秒1个单位的速度运动,到点C 停止;点Q 在x 轴上,横坐标为点P 的横、纵坐标之和.抛物线c bx x y ++-=241经过A 、C 两点.过点P 作x 轴的垂线, 垂足为M ,交抛物线于点R .设点P 的运动时间为t (秒),△PQR 的面积为S (平方单位).(1)求抛物线对应的函数关系式.(2分) (2)分别求t=1和t=4时,点Q 的坐标.(3分)(3)当0<t ≤5时,求S 与t 之间的函数关系式,并直接写出S 的最大值.(5分)4、(07云南昆明)如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB 。

二次函数存在性问题

二次函数存在性问题

二次函数存在性问题一、存在三角形:1、如图,已知抛物线y=-x 2+2x+3交x 轴于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C 。

(1)求点A 、B 、C 的坐标。

(2)若点M 为抛物线的顶点,连接BC 、CM 、BM ,求△BCM 的面积。

(3)连接AC ,在x 轴上是否存在点P 使△ACP 为等腰三角形,若存在,请求出点P 的坐标;若不存在,请说明理由。

2、如图,直线AC :1y x =--与抛物线24y ax bx =+-都经过点(1,0)A -、(3,4)B -.(1)求抛物线的解析式;(2) 动点P 在线段AC 上,过点P 作x 轴的垂线与抛物线相交于点E ,求线段PE 长度的最大值; (3) 当线段PE 的长度取得最大值时,在抛物线上是否存在点Q ,使△PCQ 是以PC 为直角边的直角三角形?若存在,请求出Q 点的坐标;若不存在.请说明理由.3、已知:Rt △ABC 的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB 与x 轴重合(其中OA<OB ),直角顶点C 落在y 轴正半轴上(如图11)。

(1)求线段OA 、OB 的长和经过点A 、B 、C 的抛物线的关系式。

(4分) (2)如图12,点D 的坐标为(2,0),点P (m ,n )是该抛物线上的一个动点(其中m >0,n >0),连接DP 交BC 于点E 。

①当△BDE 是等腰三角形时,直接写出....此时点E 的坐标。

(3分) ②又连接CD 、CP (如图13),△CDP 是否有最大面积?若有,求出△CDP 的最大面积和此时点P 的坐标;若没 有,请说明理由。

(3分)图11A B O C 图9 yx P E 图12 图13二、 存在四边形:1、如图,已知抛物线)0(2≠++=a c bx ax y 的顶点坐标为Q ()1,2-,且与y 轴交于点C ()3,0,与x 轴交于A 、B 两点(点A 在点B 的右侧),点P 是该抛物线上一动点,从点C 沿抛物线向点A 运动(点P 与A 不重合),过点P 作PD ∥y 轴,交AC 于点D . (1)求该抛物线的函数关系式;(2)当△ADP 是直角三角形时,求点P 的坐标;(3)在问题(2)的结论下,若点E 在x 轴上,点F 在抛物线上, 问是否存在以A 、P 、E 、F 为顶点的平行四边形?若存在, 求点F 的坐标;若不存在,请说明理由.2、在平面直角坐标系中,已知抛物线经过A )0,4(-,B )4,0(-,C )0,2(三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值. (3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.3、如图,在平面直角坐标系中CDA Rt AOB Rt ∆≅∆,且)2,0(),0,1(B A -抛物线22-+=ax ax y 经过点C 。

二次函数中的存在性问题

二次函数中的存在性问题

⼆次函数中的存在性问题⼆次函数中的存在性问题存在性问题是指判断满⾜某种条件的事物是否存在的问题,这类问题的知识覆盖⾯较⼴,综合性较强,题意构思⾮常精巧,解题⽅法灵活,对学⽣分析问题和解决问题的能⼒要求较⾼,是近⼏年来各地中考的“热点”。

这类题⽬解法的⼀般思路是:假设存在→推理论证→得出结论。

若能导出合理的结果,就做出“存在”的判断,导出⽭盾,就做出“不存在”的判断。

以下⼏篇内容为⼏种典型的⼆次函数中出现的存在性问题,希望⼤家在以后的学习中如果遇到此类型时能够轻松解决。

⼀、特殊三⾓形的存在性问题(⼀)⼆次函数中的等腰三⾓形存在性问题如果△ABC是等腰三⾓形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.因此,解等腰三⾓形的存在性问题时,通常要进⾏分类讨论。

这类问题有⼏何法和代数法两种⽅法,我们要根据具体情况灵活选择简便的⽅法。

⼏何法⼀般分三步:分类、画图、计算.代数法⼀般也分三步:罗列三边长,分类列⽅程,解⽅程并检验.(⼆)⼆次函数中的直⾓三⾓形存在性问题如果△ABC是直⾓三⾓形,那么存在①∠A为直⾓,②∠B为直⾓,③∠C为直⾓三种情况.因此,解直⾓三⾓形的存在性问题时,通常要进⾏分类讨论。

这类问题有⼏何法和代数法两种⽅法,我们要根据具体情况灵活选择简便的⽅法。

⼏何法⼀般分三步:分类、画图、计算.代数法⼀般也分三步:罗列三边长,分类列⽅程,解⽅程并检验.(三)⼆次函数中的等腰直⾓三⾓形存在性问题在解决等腰直⾓三⾓形存在性问题时,往往要⽤到⼏何和代数相结合的⽅法,设出点的坐标后,利⽤等腰直⾓三⾓形的⼏何性质及函数关系式列⽅程求解,最常⽤到的有:①两直⾓边相等,直⾓边与斜边的⽐为1:√2;②斜边中线垂直于斜边,且等于斜边的⼀半。

③直⾓顶点处构造三垂直,得到全等三⾓形,利⽤对应边的等量关系求解。

二次函数中和角有关的存在性问题

二次函数中和角有关的存在性问题

二次函数中与角有关的存在性问题与角有关的存在性问题包括相等角的存在性、二倍角或半角的存在性,其他倍数关系角的存在性等,解决这类问题我们通常利用以下知识点去构造相关角:①平行线的同位角、内错角相等;②等腰三角形的等边对等角;③相似三角形对应角相等;④全等三角形对应角相等;⑤三角形的外角定理等。

然后利用解直角三角形、相似三角形边的比例关系作为计算工具去计算求解,难度相对较大,需要同学们灵活运用,融会贯通。

【类型一 相等角的存在性问题】(一).利用平行线、等腰三角形构造相等角例1 如图,直线33+-=x y 与x 轴、y 轴分别交于A ,B 两点,抛物线c bx x y ++-=2与直线y =c 分别交y 轴的正半轴于点C 和第一象限的点P ,连接PB ,得BOA PCB ≌△△(O 为坐标原点)。

若抛物线与x 轴正半轴交点为点F ,设M 是点C ,F 间抛物线上的一点(包括端点),其横坐标为m . (1)直接写出点P 的坐标和抛物线的解析式. (2)求满足POA MPO ∠=∠的点M 的坐标.解:(1)易得点P 坐标为(3,4),抛物线解析式为432++-=x x y .(2) ①当点M 在线段OP 上方时,∵CP ∥x 轴,∴当点C 、M 重合时,∠MPO=∠POA ,∴点M 的坐标为(0,4);②当点M 在线段OP 下方时,在x 轴正半轴取点D ,连接DP ,使得DO=DP ,此时∠DPO=∠POA.设点D 坐标为(n ,0),则DO=n ,()16322+-=n DP ,∴()16322+-=n n ,解得:n=625,∴点D 坐标为⎪⎭⎫⎝⎛0625,. 设直线PD 解析式为b kx y +=,代入得:7100724+-=x y .联立抛物线解析式得⎪⎭⎫⎝⎛49124,724M 综上所述:点M 的坐标为(0,4)或⎪⎭⎫⎝⎛49124,724(二).利用相似三角形构造相等角例2 如图,抛物线c bx x y ++=221与x 轴交于A 、B 两点,与y 轴交于点C ,其对称轴交抛物线于点D ,交x 轴于点E ,已知OB=OC=6. (1)求抛物线的解析式及点D 的坐标;(2)连接BD ,F 为抛物线上一动点,当EDB FAB ∠=∠时,求点F 的坐标;解:(1)因为OB=OC=6,所以B (6,0),C ()6,0-, 将B、C点坐标代入解析式,得()8221622122--=--=x x x y , 所以点D 的坐标为(2,—8)(2)如图1,过F 作FG ⊥x 轴于点G ,设⎪⎭⎫ ⎝⎛--6221,F 2x x x ,则FG=62212--x x ,AG=x +2,当EDB FAB ∠=∠时,且B ED GA ∠=∠F ,所以BDE FAG ∽△△,所以FGAGEB DE =,即262212482=--+=x x x , 当点F 在x 轴上方时,则有12422--=+x x x ,解得x=—2(舍去)或x=7,此时F 点的坐标为⎪⎭⎫ ⎝⎛297,;当点F 在x 轴下方时,则有)(12422---=+x x x ,解得x=—2(舍去)或x=5,此时F 点的坐标为⎪⎭⎫⎝⎛-275,,,综上可知点F 的坐标为⎪⎭⎫ ⎝⎛297,或⎪⎭⎫ ⎝⎛-275,.【类型二二倍角或半角的存在性问题】(一).二倍角的构造方法如图,已知α∠,我们可以利用等腰三角形和外角定理去构造α2,在BC 边上找一点D,使得BD=AD,则α2ADC=∠.这样我们就构造出了二倍角,接下来利用三角函数(一般用正切)计算就可以了。

二次函数中角度的存在性问题

二次函数中角度的存在性问题

二次函数中角度的存在性问题类型一:等角构造法(作垂直,找相似)例1:如图,抛物线y=x2-4x+3与x轴交于点A,B两点,与y轴交C,连接AC.抛物线上是否存在点M,使∠OBM =∠OCA.若存求出点M的坐标;若不存在,请说明理由.分析:1.假设∠OBM=∠OCA,过M作ME垂直x轴,构造∆MEB~∆AOC,利用对应边成比例,可求出M点坐标。

2.利用对称性,求出点M的对称点H,可得∠HBO=∠OBM,延长BH交抛物线于点M’,则点M’就为所求的。

类型二:2倍角构造法(作垂直平分线,构造等腰三角形,则外角就为已知角的两倍)例2.如图,直线y=-3x+3与x轴交于点A,与y轴交于点B,抛物线y=-x2+bx+c经过点A,B.抛物线上是否存在点M,使直线AM与y轴所夹锐角是∠ABO的2倍?若存在,请求出点M的坐标;若不存在,请说明理由.分析:1.作AB的垂直平分线CD,交y轴于点D,则构造等腰三角形BDA,所以∠ODA=2∠OBA,延长AD交抛物线于点M,则联立解析式可求点M坐标。

2.利用对称性可求点M的对称点H(或者求D点的对称点),则延长AH交抛物线于M’。

类型三:半角构造法(作角平分线或向外延长作等腰三角形)例3:如图,抛物线交x 轴于A ,C 两交y 轴于点B ,连接AB .抛物线上是否存在点M ,使∠ACM =?若存在,请求出点M 的坐标;若不存在,请说明理由.分析:方法1:作∠OAB 的J 角平分线AE ,求出E 点坐标及AE 解析式。

过点C 作CM ∥AE ,则∠MCA=∠OAE=∠OAB ,则点M 就为所求作的。

然后利用对称性,可求点M ’.4x 31x 31y 2+--=BAO ∠2121方法2:延长OA 至D ,使AD 等于AB ,构造等腰三角形BAD,则∠ADB=∠OAB ,过C 点作CM ∥BD,则点M 就为所求作的。

然后一样利用对称性求出点M ’。

21。

二次函数存在性问题

二次函数存在性问题

类型3直角三角形存在性问题
3、如图,抛物线y=ax2+bx-4a经过A(-1,0),C(0,4)两点,与x轴交于另一点B. (1)求抛物线的表达式; (2)已知点D(m,m+1)在第一象限的抛物线上,连接CD,BD,把△BCD沿BC折叠, ①求点D的对应点D′的坐标; ②在抛物线上是否存在点P,使得△DD′P是以DD′为一直角边的直角三角形?若存在,求 出点P的坐标;若不存在,请说明理由.
体验中考
7、[2017·齐齐哈尔] 如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在的直线 折叠,点B落在点D处,DC与y轴相交于点E.矩形OABC的边OC,OA的长是关于x的一元二次 方程x2-12x+32=0的两个根,且OA>OC. (1)求线段OA,OC的长.(2)证明△ADE≌△COE,并求出线段OE的长. (3)直接写出点D的坐标. (4)若F是直线AC上的一个动点,在平面直角坐标系内是否存在点P,使以点E,C,P,F为 顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.
二次函数存在性问题
上次作业处理
类型1全等三角形存在性问题
1、已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,-4)为抛物 线的顶点,点B在x轴上. (1)求抛物线对应的函数表达式. (2)在(1)中二次函数的第二象限的图象上是否存在一点P,使△POB与△POC全等?若存在, 求出点P的坐标;若不存在,请说明理由. (3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.
(3)如图②,取一根橡皮筋两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在 直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是 否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果 不存在,请简要说明理由.

二次函数中的存在性问题

二次函数中的存在性问题

二次函数中的存在性问题一、知识点睛解决“二次函数中存在性问题”的基本步骤:①画图分析.研究确定图形,先画图解决其中一种情形.②分类讨论.先验证①的结果是否合理,再找其他分类,类比第一种情形求解.③验证取舍.结合点的运动范围,画图或推理,对结果取舍.二、精讲精练1.如图,已知点P是二次函数y=-x2+3x图象在y轴右侧..部分上的一个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于A、B两点. 若以AB为直角边的△PAB与△OAB相似,请求出所有符合条件的点P的坐标.2.抛物线()2134y x=--+与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.点P 在抛物线上,直线PQ//BC交x轴于点Q,连接BQ.(1)若含45°角的直角三角板如图所示放置,其中一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上,求直线BQ的函数解析式;(2)若含30°角的直角三角板的一个顶点与点C重合,直角顶点D在直线BQ上(点D不与点Q重合),另一个顶点E在PQ上,求点P的坐标.3.如图,矩形OBCD的边OD、OB分别在x轴正半轴和y8.将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合.(1)若抛物线cbxxy++-=231经过A、B两点,求该抛物线的解析式:______________;(2)若点M是直线AB作MN⊥x轴于点N.是否存在点M,使△与△ACD相似?若存在,求出点M的坐标;若不存在,说明理由.yOyxyyxO O xyyxOO xyxCOyBAxxA ByO C OyBA4. 已知抛物线2=23y x x --经过A 、B 、C 三点,点P (1,k )在直线BC :y=x -3上,若点M 在x 轴上,点N 在抛物线上,是否存在以A 、M 、N 、P 为顶点的四边形为平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.5. 抛物线2212-+=x x y 与y 轴交于点C ,与直线y =x 交于A (-2,-2)、B (2,2)两点.如图,线段MN 在直线AB上移动,且M N =M 的横坐标为m ,过点M 作x 轴的垂线与x 轴交于点P ,过点N 作x 轴的垂线与抛物线交于点Q .以P 、M 、Q 、N 为顶点的四边形否为平行四边形?若能,请求出m 的值;若不能,请说明理由.A CyxO B精讲精练参考答案1.解:由题意,设OA =m ,则OB =2m ;当∠BAP =90°时, △BAP ∽△AOB 或△BAP ∽△BOA ; ① 若△BAP ∽△AOB ,如图1,可知△PMA ∽△AOB ,相似比为2:1;则P 1(5m ,2m ), 代入x x y 32+-=,可知2513=m ,)2526,513(1P② 若△BAP ∽△BOA ,如图2,可知△PMA ∽△AOB ,相似比为1:2;则P 2(2m ,2m ),代入x x y 32+-=,可知811=m ,)1611,411(2P当∠ABP =90°时,△ABP ∽△AOB 或△ABP ∽△BOA ; ③ 若△ABP ∽△AOB ,如图3,可知△PMB ∽△BOA ,相似比为2:1;则P 3(4m ,4m ), 代入x x y 32+-=,可知21=m ,)2,2(3P④ 若△ABP ∽△BOA ,如图4,可知△PMB ∽△BOA ,相似比为1:2;则P 4(m ,m 25), 代入x x y 32+-=,可知21=m ,415(,)24P2.解:(1)由抛物线解析式()21134y x =--+可得B 点坐标(1,3要求直线BQ 的函数解析式,只需求得点Q 坐标即可,即求CQ 长度过点D 作DG ⊥x 轴于点G ,过点D 作DF ⊥QP 于点F . 则可证△DCG ≌△DEF .则DG =DF , ∴矩形DGQF 为正方形.则∠DQG =45°,则△BCQ 为等腰直角三角形.∴CQ =BC =3,此时,Q 可得BQ 解析式为y =-x +4.(2)要求P 点坐标,只需求得点Q 坐标,然后根据横坐标相同来求点P 坐标即可. 而题目当中没有说明∠DCE =30°还是∠DCE =60°,所以分两种情况来讨论. ① 当∠DCE =30°时,a )过点D 作DH ⊥x 轴于点H ,过点D 作DK ⊥QP 于点K .则可证△DCH ∽△DEK .则D H D C D KD E==在矩形DHQK 中,DK =HQ,则D H H Q=在Rt △DHQ 中,∠DQC =60°.则在Rt △BCQ中,B C C Q=∴CQ,此时,Q 点坐标为(,0) 则P 点横坐标为代入()21134y x =--+可得纵坐标.∴P (94).b )又P 、Q 为动点,∴可能PQ 在对称轴左侧,与上一种情形关于对称轴对称.由对称性可得此时点P 坐标为(194)② 当∠DCE =60°时,a) 过点D 作DM ⊥x 轴于点M ,过点D 作DN ⊥QP 于点N .则可证△DCM ∽△DEN .则1D M D C D ND E==在矩形DMQN 中,DN =MQ,则1D M M Q=.在Rt △DMQ 中,∠DQM =30°. 则在Rt △BCQ中,B C C Q=∴CQBC=Q 点坐标为(1+0) 则P 点横坐标为1+代入()21134y x =--+可得纵坐标.∴P (1+154-).b )又P 、Q 为动点,∴可能PQ 在对称轴左侧,与上一种情形关于对称轴对称.由对称性可得此时点P 坐标为(1-154-)综上所述,P 点坐标为(94),(194),(1+154-)或(1-154-).4.解:满足条件坐标为:1(30)-M 2(30)+M 3(10)-+M 4(10)--M思路分析:A 、M 、N 、P 四点中点A 、点P 为顶点,则AP 可为平行四边形边、对角线; (1)如图,当AP 为平行四边形边时,平移AP ;∵点A 、P 纵坐标差为2 ∴点M 、N 纵坐标差为2; ∵点M 的纵坐标为0 ∴点N 的纵坐标为2或-2 ①当点N 的纵坐标为2时解:2232--=x x 得1=±x又∵点A 、P 横坐标差为2 ∴点M 的坐标为:1(30)-M 、2(30)+M②当点N 的纵坐标为-2时解:2232--=-x x 得1=±x又∵点A 、P 横坐标差为2 ∴点M 的坐标为: 3(10)-+M 、4(10)--M(2)当AP 为平行四边形边对角线时;设M 5(m ,0)MN 一定过AP 的中点(0,-1) 则N 5(-m ,-2),N 5在抛物线上 ∴2232+-=-m m1=-±m∴1=-+m∴5(10)-+M综上所述:符合条件点P 的坐标为:1(30)-M 2(30)+M 3(10)-+M 4(10)--M5.解:分析题意,可得:MP ∥NQ ,若以P 、M 、N 、Q 为顶点的四边形为平行四边形,只需MP =NQ 即可由题知:(,)M m m ,(,0)P m ,(1,1)N m m ++,21(1,(1)+(1)2)2Q m m m +++-故只需表达MP 、NQ 即可.表达分下列四种情况:①如图1,P M m =-,21(1)22Q N m =+-,令PM =QN ,解得:1=2+m -,2=2m --②如图2,P M m =-,21(1)+22Q N m =-+,令PM =QN ,解得:1=m (舍去),1=m -;③如图3,P M m =,21(1)+22Q N m =-+,令PM =QN ,解得:1=2+m -2=2m --;④如图4,P M m =,21(1)22Q N m =+-,令PM =QN ,解得:1=m ,1=m -(舍去);综上,m 的值为1=2m --、2=m -3=2+m -、4=m当我被上帝造出来时,上帝问我想在人间当一个怎样的人,我不假思索的说,我要做一个伟大的世人皆知的人。

二次函数解析几何--存在性问题

二次函数解析几何--存在性问题

二次函数解析几何专题——存在性问题存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。

这类题目解法的一般思路是:假设存在→推理论证→得出结论。

若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。

由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。

一、方法总结解存在性问题的一般步骤:(1)假设点存在;(2)将点的坐标设为参数;(3)根据已知条件建立关于参数的方程或函数。

二、常用公式(1)两点间距离公式:若A (x 1,y 1),B (x 2,y 2),则|AB|=221221)()(y y x x -+-(2)中点坐标公式:1212,22x x y y x y ++==(3)斜率公式:①;②(为直线与x 轴正方向的夹角)2121y y k x x -=-tan k θ=θ(4)①对于两条不重合的直线l 1、l 2,其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2②如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则l 1⊥l 2⇔k 1k 2=-1.题型一 面积问题例1.如图,抛物线y =-x 2+bx +c 与x 轴交于A (1,0),B (-3,0)两点.(1)求该抛物线的解析式;(2)在(1)中的抛物线上的第二象限内是否存在一点P ,使△PBC 的面积最大?,若存在,求出点P 的坐标及△PBC 的面积最大值;若不存在,请说明理由.变式练习:1.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.O B A CyxA xy BO能力提升:1.(2013菏泽)如图1,△运动到何处时,四边形PDCQ的面积最小?此时四边形2.如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.3.如图,二次函数的图象与x轴相交于点A(-3,0)、B(-1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx-4k(k≠0)的图象过点P交x轴于点Q.(1)求该二次函数的解析式;(2)当点P的坐标为(-4,m)时,求证:∠OPC=∠AQC;(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.连接AN,当△AMN的面积最大时,①求t的值;②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.yD BMA CO xE 图1的坐标,并求出△POB的面积;若不存在,请说明理由.)中抛物线的第二象限图象上是否存在一点与△POC的坐标;若不存在,请说明理由;c的图象的顶点C的坐标为(0,-2),交m(m>1)与x轴交于D。

二次函数含参问题总结归纳

二次函数含参问题总结归纳

二次函数含参问题总结归纳二次函数含参问题总结归纳一、二次函数的基本概念1. 二次函数的定义:形如y=ax²+bx+c(a≠0)的函数称为二次函数。

2. 二次函数的图像:二次函数的图像是一个开口朝上或开口朝下的抛物线。

3. 二次函数的性质:①对称轴垂直于x轴,过抛物线顶点;②当a>0时,抛物线开口朝上,当a<0时,抛物线开口朝下;③当Δ=b²-4ac>0时,有两个实根,抛物线与x轴交于两点;当Δ=0时,有一个实根,抛物线与x轴相切于一点;当Δ<0时,无实根,抛物线不与x轴交点。

二、含参二次函数1. 含参二次函数的定义:含有参数(常数)的二次函数。

2. 含参二次函数的解析式:y=ax²+bx+c(a≠0)中a、b、c均为常数,其中a为参数。

3. 含参二次函数图像特征:① 当参数a>0时,图像开口向上,并且顶点坐标为(-b/2a,-Δ/4a);② 当参数a<0时,图像开口向下,并且顶点坐标为(-b/2a,Δ/4a)。

三、含参二次函数的应用1. 含参二次函数的极值问题当a>0时,函数的最小值为f(-b/2a,-Δ/4a);当a<0时,函数的最大值为f(-b/2a,Δ/4a)。

2. 含参二次函数的零点问题当Δ>0时,函数有两个实根;当Δ=0时,函数有一个实根;当Δ<0时,函数无实根。

3. 含参二次函数在平面几何中的应用如:求解抛物线焦点坐标、求解抛物线与直线交点坐标等。

四、含参二次函数题型归纳1. 求参数范围:要求确定参数范围使得含参二次函数满足某种性质。

如:使得抛物线与x轴有且仅有一个交点,求参数范围。

2. 求最值:要求确定含参二次函数的最大值或最小值。

如:已知含参二次函数y=ax²+bx+c(a>0)在区间[1,3]上取到最大值为4,则参数a和b的取值范围是多少?3. 求零点:要求确定含参二次函数的零点。

二次函数教学中存在的问题及解决策略

二次函数教学中存在的问题及解决策略

二次函数教学中存在的问题及解决策略摘要:函数是初中数学课程的基本概念之一,是教学的重要内容,在九年级数学教学中,二次函数又是重中之重。

而在实际课堂教学中,学生的认知水平与二次函数的内容存在着一定的矛盾,使学生难以真正掌握这一模块的知识。

鉴于此,教师应找到学生在二次函数学习中产生困难的原因并对此深入分析,在找到原因后,教师还需要有针对性地解决这一问题,从而使教学呈现出高效性。

关键词:二次函数教学;存在问题;解决策略引言二次函数是学生在简单基础的一次函数之外所接触到的函数部分内容。

尽管相对于更加复杂的三次函数以及三角函数简单许多,但相对于一次函数而言难度大大增加,并且对学生接下来的函数部分学习有着准备性、基础性的作用,教师必须重视二次函数的教学设计,绝不能掉以轻心。

同时,由于学生的数学基础水平不同,教师在联系一次函数展开教学的过程中也需要重视方式方法,在帮助学生理解的基础上带领学生对简单一次函数进行基本的复习,在融会贯通的前提下优化整体教学质量。

1初中生学习二次函数困难的原因学生在学习二次函数时,存在困难的因素有很多。

最主要体现在三个方面。

其一,二次函数知识本身的原因。

因为函数概念本身就具有一定的抽象性,并且二次函数的图像和性质具有一定的复杂性,相比较之前学生学习过的一次函数,图象所反应出的性质更加复杂。

此外,二次函数的应用问题也是学生学习困难的原因之一,由于实际问题产生的背景复杂,涉及到的变量多,使学生在建立数学模型时存在很大的困难;其二,学生自身的原因。

由于学生的认知发展水平不够,并且九年级学生的抽象思维还未真正形成,他们在学习二次函数时,思维只能停留在具体数字的认识上;其三,教师的教学方法较为陈旧。

受传统教育理念的影响,教师还选择照本宣科,忽视学生思维的发展,例如,在判断哪些为二次函数时,教师往往以题海战术训练学生,这样会使学生达不到理解的程度。

2二次函数教学的有效策略1.巧用信息技术,降低理解难度二次函数呈现出一定的抽象性,对学生而言,容易使他们产生思维的障碍,鉴于此,信息技术的出现能够为课堂教学注入新活力,同时,也能够在一定程度上降低学生的理解难度。

二次函数含参问题总结归纳

二次函数含参问题总结归纳

二次函数含参问题总结归纳1. 引言二次函数是数学中的一种重要函数形式,在各个领域都有广泛的应用。

它的一般形式可以表示为y=ax2+bx+c,其中a、b、c是常数。

在二次函数中引入参数之后,我们可以进一步研究函数的特性及其与其他变量之间的关系。

本文将对二次函数含参问题进行全面、详细、完整且深入地探讨。

2. 二次函数含参的一般形式二次函数含参可以表示为y=ax2+bx+c,其中a、b、c是常数,也可以是变量。

这样的表达方式使得函数可以根据不同的参数取值呈现出不同的性质和特性。

3. 二次函数的图像特征二次函数的图像是一条抛物线,其开口方向由二次项系数a的正负决定。

若a> 0,抛物线开口向上;若a<0,抛物线开口向下。

3.1 顶点坐标对于一般形式的二次函数y=ax2+bx+c,其顶点坐标为(−b2a ,4ac−b24a)。

通过求解一阶导数为零的方程,我们可以得到顶点的横坐标−b2a,然后将横坐标代入函数中求得对应的纵坐标。

3.2 对称轴二次函数的对称轴是以顶点为中心的直线。

对于一般形式的二次函数y=ax2+ bx+c,其对称轴的方程为x=−b2a。

对称轴将抛物线分为两个对称的部分。

3.3 焦点和准线对于一般形式的二次函数y=ax2+bx+c,如果a≠0,则该函数的图像是一个抛物线。

在抛物线上存在一个焦点和一条准线。

焦点的坐标可以通过以下公式求得:(−b 2a ,1−4ac 4a) 准线的方程为 y =14a 。

4. 二次函数含参的特性研究通过引入参数,我们可以进一步研究二次函数的特性及其与其他变量之间的关系。

4.1 参数 a 的影响参数 a 决定了二次函数的开口方向和抛物线的斜率。

当 a >0 时,图像开口向上,抛物线的斜率为正;当 a <0 时,图像开口向下,抛物线的斜率为负。

同时,a 的绝对值越大,抛物线的开口越宽。

4.2 参数 b 的影响参数 b 决定了抛物线与 y 轴的位置关系,也是对称轴的横坐标。

二次函数存在性问题(菱形、平行四边形、矩形)

二次函数存在性问题(菱形、平行四边形、矩形)

今天讲解二次函数背景下的四边形存在性问题.这里的四边形存在性问题,一般是以几种特殊的四边形为主,常考察的有平行四边形、菱形、 矩形、正方形.当然,三角形的存在性问题和四边形的存在性问题是一样, 如等腰三角形实际上和 菱形是一致的, 直角三角形和矩形是一样的, 等腰直角三角形和正方形是一致的.本文我们将重点讲解这类问题的求解逻辑以及注意事项,同时给大家理出一个比较通用的解题 模板.1如图,抛物线y = ax 2 + bx + 3 交x 轴于点A (−1, 0) 和点B (3, 0) ,与 y 轴交于点C ,连接BC , 交对称轴于点D .(1) 求抛物线的解析式;(2)点 P 是直线BC 上方的抛物线上点,连接PC ,PD .求 △PCD 的面积的最大值以及此时 点P 的坐标;(3)将抛物线y = ax 2 + bx + 3 向右平移 1 个单位得到新抛物线,新抛物线与原抛物线交于点E , 点F 是新抛物线的对称轴上的一点,点 G 是坐标平面内一点.当以D 、E 、F 、 G 四点为顶点的 四边形是菱形时,直接写出点F 的坐标,并写出求解其中一个点F 的坐标的过程.前两小问就不详说了,直接上结论, 抛物线解析式为y = −x 2 + 2x + 3 ;点 P | , | .( 3 15 )\2 4 )第 3 小问为菱形存在性问题, 以D 、E 、F 、 G 四点为顶点的四边形是菱形.四个点中, D , E 是定点,F 是平移后新抛物线对称轴上的动点,由于点F 的横坐标是确定的,只有纵坐标在变化, 我们可以称其为“G 如果只需要点F 的坐标,那么没有必要求解平移后抛物线的解析式.根据平移的性质,将原抛物线 向右平移 1 个单位长度, 那么原抛物线的对称轴也向右平移 1 个单位长度, 因此新抛物线的对称轴 为x = 2 ,几 F (2, m ) .但由于此时E 为量抛物线的交点,因此还是要把平移后的抛物线解析式求出 来,根据“左加右减”,平移后的抛物线解析式为y = − (x −1)2+ 2(x −1) + 3 = −x 2 + 4x ,联立两抛物(|y = −x 2 + 2x + 3 ( 3 15 ) 线〈|ly = −x 2 + 4x ,解得E |\2 , 4 )| .菱形的探究相对是比较简单的,对于这类探究性问题,一般都是先从确定的信息入手.菱形是 以D 、E 、F 、 G 为顶点, 其中DE 为定线段,那么存在的可能有DE 是一条边,也可能是一条对 对角线.前面提到,等腰三角形和菱形的分析是一致的,这里我们结合等腰三角形的存在性问题一 起分析.由于 G 是“自由点”,可以随机应变,因此讨论以D 、E 、F 为顶点的三角形是等腰三角 形.同样, 由于定线段DE 可能是等腰三角形的一条腰,也可能是底边.当DE 为一条腰时,第一种情形是点D 为顶点,即DE = DF ,也即半动点F 到D 的距离和E 到D 的距离相等,因此点F 在以点D 为圆心, DE 为半径的圆上,作出该圆,如图 1 所示,可知此时圆与新抛物线的对称轴有两个交点F 1 ,F 2 ,结合图象可以判断,此时两个点应该都是满足的.那么 再加上对应的“自由点” G ,就是以DE 为边菱形了.当DE 为一条腰时, 另一种情形是点E 为顶点, 即ED = EF ,也即半动点F 到E 的距离和D 到E 的距离相等,因此点F 在以点E 为圆心, ED 为半径的圆上,作出该圆,如图 2 所示,可知此时 圆与新抛物线的对称轴同样有两个交点F 1 ,F 2 ,结合图象, 此时的F 3 存在和DE 共线的风险,因此后续需要检验一下.根据坐标可以知道,x E =,通常像这类圆心可能为两个点中点的,一般都要留个心眼, 检验一下.此时再加上对应的“自由点” G ,也是以DE 为边菱形.当DE 为底边时,则F 为顶点, 即FD = FE ,即 F 到线段DE 的两端点的距离相等,可知此时F 在线段DE 的垂直平分线上,作出线段DE 的垂直平分线,如图 3 所示,可知此时有一个交点F 5 .加 上对应的“自由点” G ,此时便是以DE 为对角线的菱形.对于等腰三角形和菱形的存在性问题,如上图情形,我们称其为“两圆一线”法.由于这类题一般不需要书写完整过程,因此在解题过程中,把准备工作做好, 即对应的点坐标, 解析式等先求出来, 动点坐标假设好, 再把定线段DE ,半定线段DF 、EF 长度表示出来. 根据上 述分析,结合“两圆一线”分别使得三条线段两两相等建立方程,即DE = DF ,DE = EF ,DF = EF , 求解出动点坐标即可.(实际解题过程中, 一般使用线段平方的形式.此外, 只需关注下方解析中公 式计算部分即可,文字叙述部分可忽略)此题还是比较友善的,只需求出F 坐标.如果需要求解点G 的坐标,则还要加一个步骤.这里 以DEG 1F 1 为例,若要求 G 1 坐标,一般有两种比较常用的思路.一是利用菱形的对边平行且相等,即F 1G 1 可以看成是DE 平移得来的, 那么点D → F 1 的平移变化也即点E → G 1 的平移变化. 二是利用菱形的对角线相互平分,因此EF 1 的中点也即DG 1 的中点,利用中点坐标求解出 G 1 坐标.这两种处理 在平行四边形存在性问题中也是有力手段.(|y = −x 2 + 2x + 3 ( 3 15 ) 149 ( 149 )由题, y = −x 2 + 2x + 3 向右平移 1 个单位得到新抛物线y = − (x −1)2+ 2(x −1) + 3 = −x 2 + 4x ,联立〈|ly = −x 2 + 4x ,解得 E |\2 , 4 )| , 新抛物线的对称轴为x = 2 ,设 F (2, m ) ,由于 D (1, 2) ,则DE 2 =,EF 2 = + m −2= m 2 − m +,DF 2 = 1+ (m − 2)2= m 2 − 4m + 5 ,①当DE 、DF 为一组邻边时,则 DE 2 = DF 2 ,即 = m 2 − 4m + 5 ,37 ( ) ( )②当ED 、EF 为一组邻边时,则 ED 2 = EF 2 ,即 = m 2 − m + ,16 8 16 11 ( 11)③当EF 为对角线时,则FD = FE ,即 m 2 − m + = m 2 − 4m + 5 , 2 16解得m = ,此时 F 的坐标为|2, | ;( ) ( ) ( 149 )( 11) 当F |2, |时, y F + y D = 2y E ,x D + x F = 2x E ,即 E 为D 、F 中点, 不合题意, 舍去; 15 229 \ 2 )综上, F 点的坐标为||\2, 2 + 4 )|| 或||\2, 2 − 4 )|| 或(2, 2) 或|\2, 56 )| . 56 \ 56 )解得m = 2 或m = ,此时F 的坐标为(2, 2) 或|2, | ,2 \ 2 )解得m = 2 土 4 ,此时 F 的坐标为||\2, 2 + 4 )|| 或||\2, 2 − 4 )|| ;53 15 2291 .已知二次函数y = ax2 + bx − 2(a 丰 0)与x 轴交于A ( −, 0) ,B (4, 0) ,与 y 轴交于点C .(1) 求抛物线的解析式;(2) 连接AC ,BC ,点 P 是直线BC 下方抛物线上一点,过 P 作PD ∥AC 交直线BC 于点D ,PE ∥x 轴交直线BC 于点, E ,求△PDE 面积的最大值及此时点, P 的坐标;(3) 在(2)的条件下, 将原抛物线沿x 轴向左平移3个单位得到新抛物线,点 M 是新抛物线对称轴上一点, 点 N 是平面直角坐标系内一点, 当以点M 、 N 、P 、B 为顶点的四边形为菱形 时,请直接写出所有符合条件的N 点的坐标;并任选其中一个N 点,写出求解过程.立〈y= − 2 x 2 + 4x − 2 ,解得D 7 , 11 .1-1如图 1,抛物线y = ax 2 + bx + 4 交x 轴于A (−2, 0) ,B (4, 0) 两点,与y 轴交于点C ,连接 AC , BC .(1) 求抛物线的解析式;(2) P 是拋物线上位于直线BC 上方的一个动点,过点P 作PQ ∥y 轴交BC 于点Q , 过点P 作PE ⊥ BC 于点E ,过点 E 作EF ⊥ y 轴于点F ,求出2PQ + EF 的最大值及此时点P 的坐标;(3)如图 2,将抛物线y = ax 2 + bx + 4 沿着射线CB 的方向平移,使得新抛物线y ,过点(3,1) , 点D 为原抛物线y 与新抛物线y ,的交点,若点 G 为原抛物线的对称轴上一动点,点H 为新抛物线y , 上一动点,直接写出所有使得以 A ,D , G ,H 为顶点的四边形为平行四边形的点H 的坐标,并 把求其中一个点H 的坐标的过程写出来.抛物线解析式为y = − x 2 + x + 4 ;点 P | , | .相当于是沿着射线BC 方向平移,故舍去, 因此可得平移后抛物线的解析式为y = − x 2 + 4x − .联2 2 ( 1 13 y = − x 2 + x +4 \2 8 )这类平行四边的探究也并不难, 同样先从确定的信息入手.平行四边形是以A ,D ,G ,H 为 顶点,其中AD 是定线段, G 是半动点,H 在新的抛物线上.和菱形的讨论一样,我们要考虑AD 是 一条边的情形, 也要考虑AD 是对角线的情形.当 AD 是一条边时, 实际上此时也右两种情形,一是是平行四边形为ADHG ,也即AH ,DG 为 对角线;另一种则是平行四边形为ADGH ,也即 AG ,DH 为对角线.当然,不管是那种情形,由 于 AD 是一条边,根据平行四边形对边平行且相等的性质, GH 这条边可以看作是将AD 平移后得到1 (8 28 )2 \3 9 )第 3 小问中, 抛物线沿着射线CB 方向平移, 由于后续的点在新抛物线上, 因此还是要求出平移 后抛物线的解析式.这类沿着射线平移的,一般采用正交分解的形式平移,由点 C (0, 4) ,B (4, 0) 可 知,沿着射线 CB 平移,即向右平移t 个单位,则向下也平移t 个单位,因此假设平移后新抛物线的 解析式为y = − (x − t )2+ (x − t ) + 4 − t ,因为平移后经过点(3,1) ,代入可解得t = − 1 或t = 3 ,当 t = − 1 , 1 13的,由于半动点 G 在原抛物线对称轴x = 1 上,那么点 G 有可能是点 A 平移后得到的, 此时点H 就 是点D 平移后得到的,如图 1 所示;同理,当点 G 是点D 平移后得到的,那么此时点H 就是点A 平 移后得到的,如图 2 所示.设点 G (1, m ),根据平移的性质,结合点坐标的变化规律,当 A → G 时, 即(−2, 0) —(1, m ) ,则有D|2 , 8 )| —H | 2 , 8 + m )| ,由于点H 在新抛物线上, 且横坐标已知了,代入新抛物线即可 11 1 (13 213 13 13 (13 13 此外, 除了用平移性质得到H 点的坐标外,此时 AH 是一条对角线,也利用对角线相互平分, 则 A 、 H 的 中 点 和 D 、 G 的 中 点 是 同 一 个 , 利 用 中 点 坐 标 则 有 x A + x H = x D + x G ,故 13 13 13 (13 13 x H = x D + x G − x A = 2 ,将x = 2 代入新抛物线解析式,可求得H 点纵坐标y = − 8 ,故H | 2 , − 8 )|.当 AG 是一条对角线时, 则有x A + x G = x D + x H ,故 x H = x A + x G − x D = − ,代入新抛物线解析 277 ( 9 277式,可求得此时H 的纵坐标为 − ,故H |− , − | .8 2 8 ) 当 AD 是一条对角线时,则有x A + x D = x H + x G ,故 x H = x A + x D − x G = ,代入新抛物线解析式, 37 ( 1 37 可求得此时H 的纵坐标为 − ,故 H | , − | .8 2 8 )同样地,在解题过程中, 把准备工作做好,即对应的点坐标,解析式等先求出来,动点坐标假设好, 将点坐标表示列出来(通常都是横坐标),选定一个定点,如这里我们选定 x A ,将其与剩下 三点横坐标x D 、x G 、x H 两两组合,建立中点坐标关系式, 即x A + x D = x H + x G ,x A + x G = x D + x H 以 及x A + x H = x D + x G ,求解出点H 横坐标,再代入解析式中求出点H 纵坐标即可.求得纵坐标 8 + m = − 2 | 2 )| + 4 2 − 2 = − 8 ,此时H | 2 , − 8 )| . ( 7 11 (13 1113 (13 13)由题, 设平移后的抛物线解析式为y = − (x − t )2+ (x − t ) + 4− t ,因为平移后经过点(3,1),代入可解得t = − 1 (舍) 或t = 3 ,2 2联立〈y = − 2 x 2 + 4x − 2 ,解得 D 7 , 11 , y = − x 2 + x + 4 \2 8 )则x A =−2 ,x D = ,x G = 1,设 H 点横坐标为x H ,①当AH 为一条对角线时,x A + x H = x D + x G ,则 x H = ,代入可求得此时H | , − | ; 9 ( 9 277 )1 (1 37 )综上, H 的坐标为| , − |或|− , − |或| , − | .( 1 13 ③当AD 为一条对角线时,x A + x D = x H + x G ,则x H = ,代入可求得此时H | , − | ;(13 13) ( 9 277 ) (1 37 )2 \2 8 )\ 2 8 ) \ 2 8 ) \2 8 )②当AG 为一条对角线时,x A + x G = x D + x H ,则x H = − ,代入可求得此时H |− , − | ;2 \ 2 8 ) 2 \ 2 8 )故平移后抛物线的解析式为y = − x 2 + 4x − ,1 131.如图,在平面直角坐标系中,抛物线y= ax2 + bx+ 3(a 0) 与y轴交于点C,与x轴交于A,B两点(点A在点B的右侧),且点A的坐标为( 3, 0) ,连接BC,过点A作AD∥BC交y轴于点D,OB= 3OA.(1) 求抛物线的解析式;(2) 如图1,点E为射线AD上一点,点P为第二象限内抛物线上一点,求四边形PBEC面积的最大值及此时点P的坐标;(3) 如图2,将原抛物线沿x轴正方向平移得到新抛物线y,y经过点C,平移后点A的对应点为点A,点N为线段AD的中点,点Q为新抛物线y的对称轴上一点,在新抛物线y上存在一点M,使以点M,Q,A,N为顶点的四边形为平行四边形,请直接写出点M的坐标,并选择一个你喜欢的点写出求解过程.2.如图,抛物线y= x2 + bx+ c与x轴相交于点A(−1, 0) 和点B,交y轴于点C,tan 三ACO= .(1) 求抛物线的解析式;(2) 如图1 ,P点为一象限内抛物线上的一个动点,点D是BC中点,连接PD,BD,PB.求△BDP面积的最大值以及此时P点坐标;,M为新抛物线对称轴上(3) 如图2,将抛物线向左平移 1 个单位长度,得到新的抛物线y1一点,N为直线AC上一动点,在(2) 的条件下,是否存在点M,使得以点P、B、M、N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.| 4 21如图,已知抛物线y = ax 2 + bx − 4 与x 轴交于A ,B 两点, 与y 轴交于点C ,且点A 的坐标 为(−2, 0) ,直线BC 的解析式为y = x − 4 .(1) 求抛物线的解析式;(2)如图 1,过点 A 作 AD ∥BC 交抛物线于点D (异于点 A ), P 是直线BC 下方抛物线上一 点,过点P 作PQ ∥y 轴, 交AD 于点Q ,过点 Q 作QR ⊥ BC 于点R ,连接PR .求△PQR 面积的最 大值及此时点P 的坐标;(3) 如图 2,点 C 关于x 轴的对称点为点C ,将抛物线沿射线 C A 的方向平移2个单位长度得到新的抛物线y ,新抛物线y 与原抛物线交于点M ,原抛物线的对称轴上有一动点 N ,平面直 角坐标系内是否存在一点K ,使得以 D ,M ,N ,K 为顶点的四边形是矩形?若存在,请直接写 出点K 的坐标;若不存在, 请说明理由.抛物线解析式为y = x 2 − x − 4 ;S △PQR 的最大值为 9,点P (4, −6) .第 3 小问中,抛物线沿着射线C A 方向平移, 由于点M 为两抛物线交点, 因此需求出平移后抛 物线的解析式.根据A (−2, 0) ,C (0, 4) ,可知Rt △AOC 中AO : OC : AC = 1: 2 : ,因此将抛物线沿着射线C A 方向平移2个单位长度,则相当于向下平移 4 个单位长度,向左平移 2 个单位长度,因此平移后的抛物线为y = 1 (x + 2)2− 3 (x + 2) − 4 − 4 = 1 x 2 − 1 x −10 ,联立〈y = x 2 − x −10,解4 2 4 2y = x 2 − x − 4( 1得M (6, −4) .又 BC : y = 1 x − 4 ,可知 AD : y = 1 x + 1,联立〈 y = 2 x + 1,解得D (10, 6) .2 2 |y = 1 x 2 − 3x − 4因为以D ,M ,N ,K 为顶点的四边形是矩形,此时定线段是DM ,半动点为N ,自由点为K .和 前面讨论菱形、平行四边形时的流程基本大同小异,定线段DM 可能是矩形的边,也可能是矩形的 对角线,因此要分两种情形讨论.矩形的存在性问题和直角三角形的存在性问题是一致的,如本题 中,探究以D ,M ,N 为顶点的三角形是直角三角形. 同样地,先以直角三角形为例,那么D ,M ,1 3 4 2在实际解题中设 K (x , y ) 即可), 利用中点关系〈 M K D N ,则〈 K,整理得N 均有可能为直角顶点.当M 为直角顶点时,过M 作DM 垂线与对称轴交点即为点N 所在位置,如图 1 所示.对于N 点 坐标的求解,一方面,由于MN ⊥ DM ,则 k MN . k DM = − 1,结合点M 坐标,由此可求得直线MN 解 析式,将其与对称轴方程联立即可求得点N 坐标.另一方面,可以构造如图所示的K 型相似,即构DH MH1 腰直角三角形, 或者四边形中的正方形, 那么可以构造此类的K 型全等求解.在此直角三角形的基础上,加上自由点K ,就变成矩形问题了.对于矩形问题,同样可以求出点N 坐标后,利用平移关系或者对角线的中点关系,求相应的点K 的坐标.当然,如果是探究矩形 的存在性问题,也可以直接利用中点关系求得点K 的坐标.由点N (3, n ),设K (x K , y K ) (熟练后,(x + x = x + x (6 + x = 10 + 3 l y M + y K = y D + y N l−4 + y K = 6 + n 〈,再由对角线相等,即MK = DN ,代入即有1+ (y + 4)2= 49 + (16 − y )2,解得 y =,( 36 )同样适用.当D 为直角顶点时,三角形如图2 所示.同样, 加上自由点K ,就变成矩形问题了. 这里我们5 2 2 ( 44 )l y M + y N = y D + y K |y K = − \ 5 )对于直角三角形或矩形问题, 如上图情形,我们可以称其为“两线一圆”.若只求点N 坐标,一 般利用斜率关系,求出解析式后进一步求解.如果是矩形问题要求自由点的坐标,可以用对角线平 分且相等, 建立方程求解.当然, 先求点N ,利用点N 作为台阶进一步求解也是没问题的, 大家选 用自己顺手的方法即可.造 △MN 1G ∽△DMH ,利用 = ,可求出长度,进而得到点 N 坐标.更特殊地,如果是等以垂线方式求解.由于k DM = 2 ,则 k DN = − 5 ,故此时DN : y = − 5 x + 10 ,令x = 3 ,可解得N |\3, 5 )| , 由中点可知,〈(x M + x N = x D + x K ,可解得〈(|x K = − 16 ,此时 K −1,− 6 .l 5当N 为直角顶点时,则有NM ⊥ ND ,因此点N 在以DM 为直径的圆上.此种情形若只是求点N 坐标,策略比较多, 一方面,可以利用斜率, 由k ND . k NM= − 1求出点N 坐标;另一方面,可以利用线段长度求解,设DM 中点为为R ,则此时圆心为R ,因此NR = RD = DM ,由此也可求得点N 坐 标, 此外, 还可以利用勾股定理ND 2 + NM 2 = DM 2 .当加入自由点K ,变成矩形问题后,除了先求 出点N 坐标, 利用平移或中点求解点K 坐标外,也可以利用前面的对角线平分且相等来求解. 故此时K |7, | .此法借助的是矩形的对角线平分且相等的性质,该处理对于DM 是对角线的情形 \ 5 ) GM N G式和长度关系式子,即〈 M K D N 且MK 2 = DN 2 ,〈 M N D K 且MN 2 = DK 2 以及(x M + x D = x N + x K 4 2 4 2|l 4 2(x M + x K = x D + x N (6 + x = 10 + 3 (x = 7由MK 2 = DN 2 ,代入即有1+ (y + 4)2= 49 + (16 − y )2,解得 y = 36,故此时K 7,36;由MN 2 = DK 2 ,代入即有9 + (y +14)2 = 121+ (y − 6)2,解得 y = − 6 ,故此时K −1,− 6 ;(x M + x D = x N + x K (6 + 10 = 3 + x (x = 13 同样地,在解题过程中, 把准备工作做好,即对应的点坐标安排到位,动点坐标假设好,选定 一个定点, 如这里我们选定M ,将其与剩下三点横坐标D 、 N 、K 两两组合, 建立中点坐标关系 (x + x = x + x (x + x = x + xl y M + y K = y D + y N l y M + y N = y D + y K〈 且MD 2 = NK 2,利用方程组求解出对应的点K 的坐标. l y M + y D = y N + y K附:坐标平面内点A (x 1 , y 1 ) ,B (x 2 , y 2 ) ,其中x 1 丰 x 2 ,则过A 、B 两点的直线的斜率k =由题, 将抛物线沿着射线 C ,A 方向平移2个单位长度, 即将其向下平移 4 个单位长度, 向左平移 2 个单位长度, 因此平移后的抛物线为y =1(x + 2)2 − 3 (x + 2) − 4 − 4 = 1 x 2 − 1 x −10 , 联立〈y = x 2− x −10,解得M (6, −4) ,y = x 2 − x − 4( 1又 BC : y = 1 x − 4 ,可知 AD : y = 1 x + 1,联立〈 y = 2 x + 1,解得D (10, 6) ,2 2 |y = 1 x 2 − 3x − 4由M (6, −4) ,D (10, 6) ,设 N (3, n ) ,K (x , y ) ,①当MK 为一条对角线时,〈,即〈 ,整理得〈 , l y M + y K = y D + y N l −4 + y = 6 + n l n = y −105 \ 5 )②当MN 为一条对角线时,〈(x M + x N = x D + x K,即〈(6 + 3 = 10 + x,整理得〈(x = − 1l y M + y N = y D + y K l −4 + n = 6 + y l n = 10 + y5 \ 5 )③当MD 为一条对角线时,〈 ,即〈 ,整理得〈l y M + y D = y N + y K l−4 + 6 = n + y l n = 2 − y由MD 2 = NK 2 ,代入即有116 = 100 + (2 − 2y )2,解得y =− 1 或y = 3 ,故此时K (13, −1) 或(13,3) ; ( 36 ) ( 6 )综上, 点K 的坐标为|7, |或|−1,− |或(13, −1) 或(13,3) .\ 5 ) \ 5 ) y 1 − y 2. x 1 − x 21.如图1,二次函数y= ax2 + bx+ c(a丰0)与x轴交于点A(−2, 0) 、点B(点A在点B左侧),与y轴交于点C(0,3) ,tan 三CBO= .(1) 求二次函数解析式;(2)如图2,点P是直线BC上方抛物线上一点,PD∥y轴交BC于D,PE∥BC交x轴于点E,求PD+ BE的最大值及此时点P的坐标;(3) 在(2) 的条件下,当PD+ BE取最大值时,连接PC,将△PCD绕原点O顺时针旋转90。

二次函数中的十二大存在性问题(学生版)

二次函数中的十二大存在性问题(学生版)

二次函数中的十二大存在性问题【题型1二次函数中等腰三角形的存在性问题】【题型2二次函数中直角三角形的存在性问题】【题型3二次函数中等腰直角三角形的存在性问题】【题型4二次函数中全等三角形的存在性问题】【题型5二次函数中平行四边形的存在性问题】【题型6二次函数中菱形的存在性问题】【题型7二次函数中矩形的存在性问题】【题型8二次函数中正方形的存在性问题】【题型9二次函数中面积问题的存在性问题】【题型10二次函数中线段问题的存在性问题】【题型11二次函数中角度问题的存在性问题】【题型12二次函数中最值问题的存在性问题】【题型1二次函数中等腰三角形的存在性问题】1(2023春·甘肃张掖·九年级校考期中)如图甲,直线y=-x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究),并求出最大面积及E点的坐标.(3)在该抛物线的对称轴上是否存在点M,使以C、P、M为顶点的三角形为等腰三角形?若存在,请求出所符合条件的点M的坐标;若不存在,请说明理由;1(2023春·广西贵港·九年级统考期末)如图,抛物线y=ax2+3x+c a≠0和与x轴交于点A-2,0点B,与y轴交于点C0,8,点P为直线BC上方抛物线上的动点,连接CP,PB,直线BC与抛物线的对称轴l交于点E.(1)求抛物线的解析式;(2)求△BCP的面积最大值;(3)点M是抛物线的对称轴l上一动点.是否存在点M,使得△BEM为等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.2(2023春·山西晋城·九年级校考期末)如图1,抛物线y=ax2+bx+3与x轴交于A-1,0两,B4,0点,与y轴交于点C,顶点为D.点P是直线BC上方抛物线上的一个动点,过点P作PE⊥x轴于点E,交直线BC于点Q.(1)求抛物线的表达式;(2)求线段PQ的最大值;(3)如图2,过点P作x轴的平行线交y轴于点M,连接QM.是否存在点P,使得△PQM为等腰三角形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.3(2023•沙坪坝区校级模拟)如图1,抛物线y=ax2+bx+2(a≠0)交x轴于点A(-1,0),点B(4,0),交y轴于点C.连接BC,过点A作AD∥BC交抛物线于点D(异于点A).(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上一动点,过点P作PE∥y轴,交AD于点E,过点E作EG⊥BC于点G,连接PG.求△PEG面积的最大值及此时点P的坐标;(3)如图2,将抛物线y=ax2+bx+2(a≠0)水平向右平移32个单位,得到新抛物线y1,在y1的对称轴上确定一点M,使得△BDM是以BD为腰的等腰三角形,请写出所有符合条件的点M的坐标,并任选其中一个点的坐标,写出求解过程.【题型2二次函数中直角三角形的存在性问题】1(2023春·四川广安·九年级校考期中)如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(-3,2),B(0,-2),其对称轴为直线x=52,C0,1 2为y轴上一点,直线AC与抛物线交于另一点D.(1)求抛物线的函数表达式;(2)试在线段AD下方的抛物线上求一点E,使得△ADE的面积最大,并求出最大面积;(3)在抛物线的对称轴上是否存在一点F,使得△ADF是直角三角形?如果存在,求点F的坐标;如果不存在,请说明理由.1(2023春·辽宁盘锦·九年级校考期中)如图,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=-x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D.(1)求抛物线的解析式;(2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的横坐标;(3)点P是对称轴上的一动点,是否存在某一点P使P、B、C为顶点的三角形是以BC为直角边的直角三角形?若存在,请直接写出所有符合条件的P点坐标;不存在,说明理由.2(2023春·广东梅州·九年级校考期中)已知二次函数y=x2+bx+c的图象经过A(-2,5),B(-1,0),与x轴交于点C.(1)求这个二次函数的解析式;(2)点P直线AC下方抛物线上的一动点,求△PAC面积的最大值;(3)在抛物线对称轴上是否存在点Q,使△ACQ是直角三角形?若存在,直接写出点Q的坐标,若不存在,请说明理由.3(2023春·甘肃金昌·九年级统考期中)平面直角坐标系中,抛物线y=a(x-1)2+92与x轴交于A,B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式,并直接写出点A,C的坐标;(2)在抛物线的对称轴上是否存在点P,使△BCP是直角三角形?若存在,请直接写出点P的坐标,若不存在,请说明理由;(3)如图,点M是直线BC上的一个动点,连接AM,OM,是否存在点M使AM+OM最小,若存在,请求出点M的坐标,若不存在,请说明理由;【题型3二次函数中等腰直角三角形的存在性问题】1(2023春·山西阳泉·九年级统考期末)综合与探究:在平面直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A-1,0作平行于x轴的直线l,直线l与抛物线y,与y轴交于点C,过动点D0,m和点B4,0=ax2+bx-2相交于点E,F.(1)求抛物线的表达式;(2)求m的取值范围;(3)直线l上是否存在一点P,使得△BCP是以BC为直角边的等腰直角三角形?若存在,求m的值;若不存在,请说明理由.1(2023春·福建漳州·九年级校考期中)如图①,已知抛物线y=ax2+bx+3的图象经过点B1,0,与y 轴交于点A,其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的角平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连接PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.2(2023春·湖南湘西·九年级统考期末)如图,在平面直角坐标系中,直线y =-x +3交x轴于点B ,交y 轴于点C ,直线AD 交x 轴于点A ,交y 轴于点D ,交直线BC 于点E -12,72,且CD =1.(1)求直线AD 解析式;(2)点P 从B 点出发沿线段BA 方向以1个单位/秒的速度向终点A 运动(点P 不与A ,B 两点重合),设点P 的运动时间为t ,则是否存在t ,使得△AEP 为等腰直角三角形?若存在,请求出t 的值,若不存在,请说明理由;(3)在(2)的条件下,点P 出发的同时,点Q 从C 点出发沿射线CO 方向运动,当点P 到达终点时,点Q 也停止运动,连接AQ ,PQ ,设△APQ 的面积为S ,S 与t 的函数关系式为S =32t 2-12t +2120≤t <1a t -1 t -7 1<t <7,其图象如图2所示,结合图1、图2的信息,请求出a 的值及当△APQ 的面积取得最大值时AQ 的长.3(2023春·北京通州·九年级统考期末)如图,抛物线y1=ax2-2x+c的图象与x轴交点为A和B,与y 轴交点为D0,3,与直线y2=-x-3交点为A和C.(1)求抛物线的解析式;(2)在直线y2=-x-3上是否存在一点M,使得△ABM是等腰直角三角形,如果存在,求出点M的坐标,如果不存在请说明理由.(3)若点E是x轴上一个动点,把点E向下平移4个单位长度得到点F,点F向右平移4个单位长度得到点G,点G向上平移4个单位长度得到点H,若四边形EFGH与抛物线有公共点,请直接写出点E的横坐标x E的取值范围.【题型4二次函数中全等三角形的存在性问题】1(2023·陕西咸阳·统考三模)如图,抛物线y=14x2-2x+3与x轴交于A、B两点,抛物线的顶点为C,对称轴为直线l,l交x轴于点D.(1)求点A、B、C的坐标;(2)点P是抛物线上的动点,过点P作PM⊥y轴于点M,点N在y轴上,且点N在点M上方,是否存在这样的点P、N,使得以点P、M、N为顶点的三角形与△BCD全等,若存在,请求出点P、N的坐标;若不存在,请说明理由.1(2023·甘肃陇南·统考一模)如图,抛物线y=x2+bx+c与x轴交于A-1,0,B两点,与y轴交于点C0,-3.(1)求抛物线的函数解析式;(2)已知点P m,n在抛物线上,当-1≤m<3时,直接写出n的取值范围;(3)抛物线的对称轴与x轴交于点M,点D坐标为2,3,试问在该抛物线上是否存在点P,使△ABP与△ABD全等?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.2(2023·陕西咸阳·统考三模)如图,抛物线y=14x2-2x+3与x轴交于A,B两点,抛物线的顶点为C,对称轴为直线l,l交x轴于点D.(1)求点A、B、C的坐标;(2)点P是抛物线上的动点,过点P作PM⊥y轴于点M,点N在y轴上,且点N在点M上方,是否存在这样的点P、N,使得以点P、M、N为顶点的三角形与△BCD全等,若存在,请求出点P、N的坐标;若不存在,请说明理由.3(2023·内蒙古通辽·统考中考真题)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+22=(2+1)2].【题型5二次函数中平行四边形的存在性问题】1(2023春·云南临沧·九年级统考期末)如图,抛物线y=ax2+bx-3与x轴交于A-1,0两点,、B3,0与y轴交于点C.(1)求抛物线的解析式;(2)若点D是抛物线上的一点,当△ABD的面积为10时,求点D的坐标;(3)点P是抛物线对称轴上的一点,在抛物线上是否存在一点Q,使得以B、C、P、Q为顶点的四边形是平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.1(2023春·山东东营·九年级校考期末)如图,已知抛物线y=ax2+bx+3与x轴交于A-1,0、B3,0两点,与y轴交于点C,连接BC.(1)求抛物线的解析式;(2)若点P为线段BC上的一动点(不与B、C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当△BCM的面积最大时,求点P的坐标;(3)在(2)的条件下,当△BCM的面积最大时,点D是抛物线的对称轴上的动点,在抛物线上是否存在点E,使得以A、P、D、E为顶点的四边形为平行四边形?若存在,请直接写出点E的坐标;若不存在,请说明理由.2(2023春·重庆梁平·九年级统考期末)如图1,在平面直角坐标系中,抛物线y=-2x2+4x+6与y轴交于点A,与x轴交于点E,B(E在B的左侧).(1)如图2,抛物线的顶点为点Q,求△BEQ的面积;(2)如图3,过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD 平行于y轴交AB于点D、交AC于点F,当点P在何位置时,PD+CF最大?求出最大值;(3)在(2)条件下,当PD+CF最大时,将抛物线y=-2x2+4x+6沿着射线AB平移,使得抛物线经过点C,此时得到新抛物y ,点N是原抛物线对称轴上一点,在新抛物线y 上是否存在一点M,使以点A,D,M,N为顶点的四边形为平行四边形,若存在,请直接写出点M的所有坐标,若不存在,请说明理由.3(2023春·重庆江北·九年级重庆十八中校考期末)如图1,抛物线y=ax2+bx+3a≠0与x轴正半轴交于点A,B,与y轴正半轴交于点C,且OC=OB=3OA,点D为抛物线的顶点.(1)求该抛物线的函数表达式;(2)点P为直线BC下方该抛物线上任意一点,点E为直线BC与该抛物线对称轴的交点,求△PBE面积的最大值;(3)如图2,将该抛物线沿射线CB的方向平移22个单位后得到新抛物线y ,新抛物线y 的顶点为D ,过(2)问中使得△PBE面积为最大时的点P作平行于y轴的直线交新抛物线y 于点M.在新抛物线y 的对称轴上是否存在点N,使得以点P,D ,M,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【题型6二次函数中菱形的存在性问题】1(2023春·重庆云阳·九年级校联考期中)如图1,抛物线y=ax2+bx+c(a≠0)与x轴相交于点A、B(点B在点A左侧),与y轴相交于点C(0,3).已知点A坐标为(1,0),△ABC面积为6.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上一动点,过点P作直线BC的垂线,垂足为点E,过点P作PF∥y轴交BC于点F,求△PEF周长的最大值及此时点P的坐标:(3)如图2,将该抛物线向左平移2个单位长度得到新的抛物线y ,平移后的抛物线与原抛物线相交于点D,点M为直线BC上的一点,点N是平面坐标系内一点,是否存在点M,N,使以点B,D,M,N为顶点的四边形为菱形,若存在,请直接写出点M的坐标;若不存在,请说明理由.1(2023春·甘肃庆阳·九年级统考期末)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C0,-3,点P是直线BC下,点A在原点的左侧,点B的坐标为3,0方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO所在直线翻折,得到四边形POP C,那么是否存在点P,使四边形POP C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的面积.点,抛物线y=-x2+bx+c经过点B,且与x轴交于点C(2,0).(1)求该抛物线的解析式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,四边形OAMB的面积为S,求S与m的函数表达式,并求出S的最大值;(3)若点P在平面内,点Q在直线AB上,平面内是否存在点P使得以O,B,P,Q为顶点的四边形是菱形.若存在,求出点P的坐标;若不存在,请说明理由.点,抛物线y=-x2+bx+c经过点B,且与x轴交于点C(2,0).(1)求该抛物线的解析式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,四边形OAMB的面积为S,求S与m的函数表达式,并求出S的最大值;(3)若点P在平面内,点Q在直线AB上,平面内是否存在点P使得以O,B,P,Q为顶点的四边形是菱形.若存在,求出点P的坐标;若不存在,请说明理由.【题型7二次函数中矩形的存在性问题】1(2023春·浙江湖州·九年级统考期末)如图,在平面直角坐标系xOy中,O为坐标原点,抛物线y=a(x+3)(x-1)(a>0)与x轴交于A,B两点(点A在点B的左侧).(1)求点A与点B的坐标;(2)若a=13,点M是抛物线上一动点,若满足∠MAO不大于45°,求点M的横坐标m的取值范围.(3)经过点B的直线l:y=kx+b与y轴正半轴交于点C.与抛物线的另一个交点为点D,且CD=4BC.若点P在抛物线对称轴上,点Q在抛物线上,以点B,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.1(2023·山东东营·东营市胜利第一初级中学校考三模)已知抛物线y=ax2+bx-4a≠0交x轴于点A4,0和点B-2,0,交y轴于点C.(1)求抛物线的解析式;(2)如图,点P是抛物线上位于直线AC下方的动点,过点P分别作x轴、y轴的平行线,交直线AC于点D,交x轴于点E,当PD+PE取最大值时,求点P的坐标及PD+PE最大值.(3)在抛物线上是否存在点M,对于平面内任意点N,使得以A、C、M、N为顶点且AC为一条边的四边形为矩形,若存在,请直接写出M、N的坐标,不存在,请说明理由.2(2023春·内蒙古通辽·九年级校考期中)如图,抛物线y=ax2+bx+3交x轴于A(3,0),B(-1,0)两点,交y轴于点C.(1)求抛物线的解析式和对称轴.SΔABC,求R的坐标.(2)若R为第一象限内抛物线上点,满足SΔRAC=12(3)若点P在抛物线的对称轴上,点Q是平面直角坐标系内的任意一点,是否存在点P使得A、C、P、Q为顶点的四边形是矩形,若存在,请直接写出所有符合条件的点P的坐标.3(2023春·广东江门·九年级校考期末)如图,在平面直角坐标系中,已知抛物线y=ax2+bx-2a≠0、B两点,交y轴于点C,其对称轴为x=1.5,交x轴于A-1,0(1)求该抛物线的函数解析式;(2)P为第四象限内抛物线上一点,连接PB,过点C作CQ∥BP交x轴于点Q,连接PQ,求△PBQ面积的最大值及此时点P的坐标.(3)在(2)的条件下,将抛物线y=ax2+bx-2a≠0向右平移经过点Q,得到新抛物线,点E在新抛物线的对称轴上,是否在平面内存在一点F,使得以A、P、E、F为顶点的四边形是矩形?若存在,直接写出点F的坐标;若不存在,请说明理由.【题型8二次函数中正方形的存在性问题】1(2023·辽宁阜新·阜新实验中学校考一模)如图,在平面直角坐标系中,抛物线y=ax2+bx-3与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,点P为抛物线上的动点.(1)求该抛物线的函数表达式;(2)点D为直线y=x上的动点,当点P在第四象限时,求四边形PBDC面积的最大值及此时点P的坐标;(3)已知点E为x轴上一动点,点Q为平面内任意一点,是否存在以点P,C,E,Q为顶点的四边形是以PC为对角线的正方形,若存在,请直接写出点Q的坐标,若不存在,请说明理由.1(2023·陕西西安·校考模拟预测)如图,已知拋物线y=-x2+2x+c与x轴交于点A3,0,B与y轴交于点C.(1)求c的值及该抛物线的对称轴;(2)若点D在直线AC上,点E是平面内一点.是否存在点E,使得以点A,B,D,E为顶点的四边形为正方形?若存在,请求出点E的坐标;若不存在,请说明理由.2(2023·山西晋中·山西省平遥中学校校考模拟预测)如图,二次函数y=-x2+2x+3的图象与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.连接BC.点P是抛物线第一象限内的一个动点,设点P的横坐标为m,过点P作直线PD⊥x轴于点D.交BC于点E.过点P作BC的平行线,交y轴于点M.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)在点P的运动过程中,求使四边形CEPM为菱形时,m的值;(3)点N为平面内任意一点,在(2)的条件下,直线PM上是否存在点Q使得以P,E,Q,N为顶点的四边形是正方形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.3(2023·江西赣州·统考一模)已知二次函数C1:y=mx2-2mx+3(m≠0).(1)有关二次函数C1的图象与性质,下列结论中正确的有.(填序号)①二次函数C1的图象开口向上;②二次函数C1的图象的对称轴是直线x=1;③二次函数C1的图象经过定点(0,3)和(2,3);④函数值y随着x的增大而减小.(2)当m=1时,①抛物线C1的顶点坐标为;②将抛物线C1沿x轴翻折得到抛物线C2,则抛物线C2的表达式为;(3)设抛物线C1与y轴相交于点E,过点E作直线l∥x轴,与抛物线C1的另一交点为F,将抛物线C1沿直线l翻折,得到抛物线C3,抛物线C1,C3的顶点分别记为P,Q.是否存在实数m,使得以点E,F,P,Q为顶点的四边形为正方形?若存在,请求出m的值;若不存在,请说明理由.【题型9二次函数中面积问题的存在性问题】1(2023春·四川广安·九年级统考期末)如图1,抛物线y=ax2+bx+3经过A1,0两点,交y轴于,B3,0点C.(1)求抛物线的函数解析式.(2)在抛物线的对称轴上是否存在一点M,使得△ACM的周长最小?若存在,求出点M的坐标;若不存在,请说明理由.S△BCA,请直接写出点P的横坐(3)如图2,连接BC,若在BC下方的抛物线上存在一点P,使得S△BCP=12标.1(2023春·江西九江·九年级校考期中)如图,已知二次函数L1:y=x2+bx+c与x轴交于A、B两点,A点坐标(-1,0),B点坐标(3,0),与y轴交于点C,直线L2:y=x+n经过点A.(1)求二次函数L1的表达式及顶点P的坐标;(2)二次函数L3与二次函数L1关于X轴对称,直线L2与二次函数L3相交于A、D两点.①直接写出二次函数L3的表达式;②求出D点的坐标;③在直线L2上半部分的二次函数L3上,是否存在一点M,使得△AMD的面积最大?若存在,请求出M坐标,并求出最大面积.2(2023春·山东东营·九年级东营市实验中学校考期中)如图,抛物线y=ax2+bx+c a≠0与y轴交于点C0,4.,点B4,0,与x轴交于A-2,0(1)求抛物线的解析式;(2)若点M是抛物线上的一动点,且在直线BC的上方,当S△MBC取得最大值时,求点M的坐标;(3)在抛物线上是否存在点P,使三角形ABP的面积为12?若存在,直接写出点P的坐标;若不存在,请说明理由.3(2023春·福建泉州·九年级统考期末)如图,在平面直角坐标系xOy中,顶点为E1,4的抛物线y= ax2+bx+c与x轴从左到右依次交于A,B两点,与y轴的交点为C0,3,P是抛物线对称轴右侧图象上的一点,且在x轴的上方.(1)求此抛物线的解析式;(2)若直线BP与抛物线对称轴交于点D,当BD-CD取得最大值时,求点P的坐标;(3)若直线BC与抛物线对称轴交于点F,连接PC,PE,PF,记△PCF,△PEF的面积分别为S1,S2,判断2S1+S2是否存在最大值.若存在,求出最大值;若不存在,请说明理由.【题型10二次函数中线段问题的存在性问题】1(2023春·内蒙古巴彦淖尔·九年级校考期中)如图1,抛物线y=ax2+bx+c a≠0与x轴交于A-8,0.点E是第二象限内抛物线上的一个动点,设点E的横坐标 两点,与y轴交于点D0,4,C2,0为n,过点E作直线EB⊥x轴于点B,作直线AD交EB于点F.(1)求该抛物线的解析式;(2)如图1,当△EFD是以FD为底边的等腰三角形时,求点E的坐标;(3)如图2,连接CD,过点E作直线l∥CD,交y轴于点H,连接BH.试探究:在点E运动的过程中,是否存在点E,使得FD=BH,若存在,请求出点E的坐标;若不存在,请说明理由.1(2023春·四川南充·九年级统考期中)如图,平面直角坐标系中的Rt△AOB和Rt△COD全等,直角边OB、OD在x轴上.已知点C的坐标为4,2,过A、C两点的直线分别交x轴、y轴于点E、F,抛物线y=ax2+bx+c经过O、A、C三点.(1)写出点A的坐标并求该抛物线的函数解析式;(2)点G为抛物线上位于线段OC所在可直线上方部分的一动点,求G到直线OC的最大距离和此时点G 的坐标;(3)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM的边AM与边BP相等?若存在,求出此时点P的坐标;若不存在,请说明理由.2(2023春·云南曲靖·九年级统考期末)已知抛物线y=x2+bx+c与x轴交于点A-1,0两,B3,0点,与y轴交于点C,连接BC.(1)求抛物线的解析式;(2)在抛物线上是否存在点M,使得B、C两点到直线AM的距离相等,如果存在,求出点M的坐标,如果不存在,请说明理由;(3)点P为x轴上一动点,以P为旋转中心,把线段BC逆时针旋转90°,得到线段GH,其中点B的对应点为点G,当抛物线的对称轴刚好经过GH中点时,求此时点P的坐标.3(2023春·安徽阜阳·九年级校考期末)如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=-2与x轴交于点C,直线y=-2x+1经过抛物线上一点B2,m,且与y轴.直线x=-2分别交于点D、E.(1)求m的值及该抛物线对应的函数关系式;(2)①判断△CBE的形状,并说明理由;②判断CD与BE的位置关系;(3)若P x,y是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.【题型11二次函数中角度问题的存在性问题】1(2023春·辽宁葫芦岛·九年级统考期末)如图,在平面直角坐标系中,已知抛物线y=-x2+bx+c与x轴交于A,B4,0在抛物线上,点P是抛物线上一动点.两点,与y轴交于点C,点D3,4(1)求该抛物线的解析式;(2)如图1,连接OD,若OP平分∠COD,求点P的坐标;(3)如图2,连接AC,BC,抛物线上是否存在点P,使∠CBP+∠ACO=45°?若存在,请直接写出点P的坐标;若不存在,请说明理由.1(2023春·内蒙古鄂尔多斯·九年级统考期末)如图,直线y=-x+3与x轴、y轴分别交于B、C两点,抛物线y=-x2+bx+c经过点B、C,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在第四象限的抛物线上是否存在一点M,使△MBC的面积为27?若存在,求出M点坐标;若不存在,请说明理由.(3)在抛物线的对称轴上是否存在一点P,使得∠APB=∠OCB?若存在,求出P点坐标;若不存在,请说明理由.2(2023春·江苏盐城·九年级统考期末)如图,抛物线y=12x2+mx+n与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A-4,0,C0,-2.(1)求抛物线的函数表达式;(2)点E是线段AC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDAF的面积最大?求出四边形CDAF的最大面积及此时E点的坐标;(3)在y轴上是否存在点P,使得∠OAP+∠OAC=60°?若存在,请直接写出P点的坐标,若不存在,请说明理由.3(2023春·浙江湖州·九年级统考期末)如图,在平面直角坐标系中,直线y=12x-2与x轴交于点A,与y轴交于点C,抛物线y=12x2+bx+c经过A,C两点,与x轴的另一交点为点B,点P为抛物线上的一个动点.(1)求抛物线的函数表达式;(2)当△ACP的面积与△ABC的面积相等时,求点P的坐标;(3)是否存在点P,使得∠ACP=∠ABC-∠BAC,若存在,请直接写出点P的横坐标;若不存在,请说明理由.【题型12二次函数中最值问题的存在性问题】1(2023春·甘肃庆阳·九年级统考期中)如图,已知抛物线y=38x2-34x-3与x轴的交点为点A、D(点A在点D的右侧),与y轴的交点为点C.(1)直接写出A、D、C三点的坐标;(2)在抛物线的对称轴上找一点M,使得MD+MC的值最小,并求出点M的坐标;(3)设点C关于抛物线对称轴的对称点为点B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由.1(2023春·浙江宁波·九年级校考期中)对于给定的两个函数,任取自变量x 的一个值,当x <0时,它们对应的函数值互为相反数;当x ≥0时,它们对应的函数值相等,我们称这样的两个函数互为“伴随”函数.例如:一次函数y =x -3,它的“伴随”函数为y =-x +3x <0 x -3x ≥0 .(1)已知点M -2,1 在一次函数y =-mx +1的“伴随”函数的图象上,求m 的值.(2)已知二次函数y =-x 2+4x -12.①当点A a ,32 在这个函数的“伴随”函数的图象上时,求a 的值.②当-3≤x ≤3时,函数y =-x 2+4x -12的“伴随”函数是否存在最大值或最小值,若存在,请求出最大值或最小值;若不存在,请说明理由.。

中考数学 二次函数存在性问题 及参考答案

中考数学 二次函数存在性问题 及参考答案

中考数学二次函数存在性问题及参考答案中考数学二次函数存在性问题及参考答案一、二次函数中相似三角形的存在性问题1.如图,把抛物线 $y=x^2$ 向左平移1个单位,再向下平移4个单位,得到抛物线 $y=(x-h)^2+k$。

所得抛物线与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D。

1)写出h、k的值;2)判断△ACD的形状,并说明理由;3)在线段AC上是否存在点M,使△AOM∽△ABC?若存在,求出点M的坐标;若不存在,说明理由。

2.如图,已知抛物线经过A($-2,0$),B($-3,3$)及原点O,顶点为C。

1)求抛物线的解析式;2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;3)P是抛物线上的第一象限内的动点,过点P作PM⊥x 轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由。

二、二次函数中面积的存在性问题3.如图,抛物线 $y=ax^2+bx$ ($a>0$)与双曲线$y=\frac{k}{x}$ 相交于点A,B。

已知点B的坐标为($-2,-2$),点A在第一象限内,且 $\tan\angle AOX=4$。

过点A作直线AC∥x轴,交抛物线于另一点C。

1)求双曲线和抛物线的解析式;2)计算△ABC的面积;3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积。

若存在,请写出点D的坐标;若不存在,请说明理由。

4.如图,抛物线 $y=ax^2+c$ ($a>0$)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A($-2,0$),B($-1,-3$)。

1)求抛物线的解析式;2)点M为y轴上任意一点,当点M到A、B两点的距离之和为最小时,求此时点M的坐标;3)在第(2)问的结论下,抛物线上的点P使$\triangle PAD=4\triangle ABM$ 成立,求点P的坐标。

二次函数中的存在性问题

二次函数中的存在性问题

(3)若点P在抛物线上,点Q在x轴上,当以点A,M,P,Q为顶 点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.
【思路点拨】(1)二次函数解析式为:y=a(x-1)2+9,即
可求解.
(2)S△DAC=2S△DCM,则S△DAC=
1 2
DH(xC-xA)=
1 (-x2+2x+8-
2
2x+1)(1+3)= 1 (9-1)(1-x)×2,即可求解.
专题三 二次函数中的存在性问题
【核心突破】 类型一 二次函数与等腰三角形的综合问题 【例1】(2019·武威中考)如图,抛物线y= ax2+bx+4交x轴于A(-3,0),B(4,0)两点,与y 轴交于点C,连接AC,BC.点P是第一象限内抛 物线上的一个动点,点P的横坐标为m.
(1)求此抛物线的解析式. (2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究 点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为 顶点的三角形是等腰三角形.若存在,请求出此时点Q的 坐标,若不存在,请说明理由.
பைடு நூலகம்
2
(3)分AM是平行四边形的一条边、AM是平行四边形的对
角线两种情况,分别求解即可.
【自主解答】 略
【明·技法】 二次函数与平行四边形的综合问题解决思路 1.以已知边为平行四边形的某条边,画出所有符合条件 的图形后,利用平行四边形的对边相等进行计算.
2.以已知边为平行四边形的对角线,画出所有符合条件 的图形后,利用平行四边形对角线互相平分的性质进行 计算. 3.若平行四边形的各顶点位置不确定,需分情况讨论, 常以已知的一边作为一边或对角线分情况讨论.
23 3

二次函数图象上点的存在性问题

二次函数图象上点的存在性问题

联合函数y=x2 可得
ቤተ መጻሕፍቲ ባይዱ
P(3,9)
M
练习:(2009—2010 昌平二模)如图,抛物线y=ax2+bx-4a经 过A(-1,0)、C(0,4)两点,与x轴交于另一点B. (1)求抛物线的解析式; (2)已知点D(m,m+1)在第一象限的抛物线上,求点D关 于直线BC对称的点的坐标; (3)在(2)的条件下,连接BD,点P为抛物线上一点, 且∠DBP=45°,求点P的坐标.
例1已知抛物线 y=x2-2x-3 的的顶点为 D,点 P、 Q 是抛 物线上的动点,若△DPQ 是等边三角形,求△DPQ的面积。
解:根据 y=x2-2x-3可得D(1,-4),因为△QPD是等边三
角形,所以直线DQ的斜率为 ,因为D(1,-4),
所以l DQ: y= x-4-
,与二次函数y=x2-2x-3联立起来解方 程,可得xQ=1+
∵P点在抛物线上,
∴P (
)
全等、相似与角度
板块二:二次函数与多个角
技巧和方法: 在抛物线上找点,满足两角和(差)关系。
例1二次函数 y=x2-2x-3 的图象与 x 轴交于 A、 B 两点 (点 A 在点 B 的左侧),与 y 轴交于 C 点,在二次函数的图 象上是否存在点 P,使锐角∠PCO>∠ACO?若存在,请你 求出 P 点的横坐标的取值范围;若不存在,请你说明理由。
例3 (2010 苏州)如图,以 A 为顶点的抛物线与 y 轴交于点 B。 已知 A、 B 两点的坐标分别为(3, 0)、 (0, 4)。 ⑶在⑵的条件下,试问:对于抛物线对称轴上的任意一点 P, PA2+PB2+PM2>28 是否总成立? 请说明理由
解:(1) (1)设y=a(x-3)2,把B(0,4)代入,得a= (2)∵m,n为正整数∴ (m-3)2 应该是9的整数,∴m是3的倍数, 又∵m>3,∴m=6,9,12..., 当m=6时,n=4,此时MA=5,MB=6, ∴四边形OAMB的四边长为3,4,5,6, 当m≥9时,MB>6,∴四边形OAMB的四边长不能是四个连续的 正整数,∴点M坐标只有一种可能(6,4); (3)设P(3,t),MB与对称轴交点为D,

【 21】第22章 二次函数中的存在性问题-重难点题型总结(学生版)

【 21】第22章  二次函数中的存在性问题-重难点题型总结(学生版)

第22章二次函数中的存在性问题-重难点题型总结【】【题型1 二次函数中直角三角形存在性问题】【例1】(2021•罗湖区校级模拟)如图,已知抛物线y=﹣x2+2x+3与x轴交于点A、B,与y轴交于点C,点P是抛物线上一动点,连接PB,PC.(1)点A的坐标为,点B的坐标为;(2)如图1,当点P在直线BC上方时,过点P作PD上x轴于点D,交直线BC于点E.若PE=2ED,求△PBC的面积;(3)抛物线上存在一点P,使△PBC是以BC为直角边的直角三角形,求点P的坐标.【变式1-1】(2021春•望城区校级月考)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x 轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C(0,3),连接AC,点P为第二象限抛物线上的动点.(1)求a、b、c的值;(2)连接P A、PC、AC,求△P AC面积的最大值;(3)在抛物线的对称轴上是否存在一点Q,使得△QAC为直角三角形,若存在,请求出所有符合条件的点Q的坐标;若不存在,请说明理由.【变式1-2】(2021•长沙模拟)如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.点P为线段MB上一个动点,过点P作PD⊥x轴于点D,若OD=m.(1)求二次函数解析式;(2)设△PCD的面积为S,试判断S有最大值或最小值?若有,求出其最值,若没有,请说明理由;(3)在MB上是否存在点P,使△PCD为直角三角形?若存在,请写出点P的坐标;若不存在,请说明理由.【变式1-3】(2021•长沙模拟)如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,是否存在以点C、M、N为顶点的三角形为等腰直角三角形?若存在,请直接写出此时点M的坐标,若不存在,请说明理由.【题型2 二次函数中等腰三角形存在性问题】【例2】(2020秋•曾都区期末)如图,抛物线y=ax2+4x+c经过A(﹣3,﹣4),B(0,﹣1)两点,点P是y轴左侧且位于x轴下方抛物线上一动点,设其横坐标为m.(1)直接写出抛物线的解析式;(2)将线段AB绕点B顺时针旋转90°得线段BD(点D是点A的对应点),求点D的坐标,并判断点D是否在抛物线上;(3)过点P作PM⊥x轴交直线BD于点M,试探究是否存在点P,使△PBM是等腰三角形?若存在,求出点m的值;若不存在,说明理由.【变式2-1】(2020秋•云南期末)如图,直线y=−12x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B,C和点A(﹣1,0).(1)求B,C两点的坐标.(2)求该二次函数的解析式.(3)若抛物线的对称轴与x轴的交点为点D,则在抛物线的对称轴上是否存在点P,使△PCD是以CD 为腰的等腰三角形?如果存在,直接写出点P的坐标;如果不存在,请说明理由.【变式2-2】(2021•南充)如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=5 2.(1)求抛物线的解析式;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.【变式2-3】(2021•建华区二模)综合与探究如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A、C两点,且与x轴交于另一点B(点B在点A右侧).(1)求抛物线的解析式及点B坐标;(2)设该抛物线的顶点为点H,则S△BCH=;(3)若点M是线段BC上一动点,过点M的直线ED平行y轴交x轴于点D,交抛物线于点E,求ME 长的最大值及点M的坐标;(4)在(3)的条件下:当ME取得最大值时,在x轴上是否存在这样的点P,使得以点M、点B、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.【题型3 二次函数中平行四边形存在性问题】【例3】(2020秋•元阳县期末)如图,直线y=−12x+c与x轴交于点A(﹣3,0),与y轴交于点C,抛物线y=12x2+bx+c经过点A,C,与x轴的另一个交点为B(1,0),连接BC.(1)求抛物线的函数解析式.(2)M为x轴的下方的抛物线上一动点,求△ABM的面积的最大值.(3)P为抛物线上一动点,Q为x轴上一动点,当以B,C,Q,P为顶点的四边形为平行四边形时,求点P的坐标.【变式3-1】(2020秋•泰山区期末)如图,抛物线y=12x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6),如图.(1)求直线AB和抛物线的表达式;(2)在y轴上找一点Q,使得△AMQ的周长最小,在备用图中画出图形并求出点Q的坐标;(3)在坐标平面内是否存在点N,使以点A、O、C、N为顶点且AC为一边的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【变式3-2】(2021春•雨花区期末)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)求抛物线的解析式;(2)若点P从点B出发,沿着射线BC运动,速度每秒√2个单位长度,过点P作直线PM∥y轴,交抛物线于点M.设运动时间为t秒.①在运动过程中,当t为何值时,使(MA+MC)(MA﹣MC)的值最大?并求出此时点P的坐标.②若点N同时从点B出发,向x轴正方向运动,速度每秒v个单位长度,问:是否存在t使点B,C,M,N构成平行四边形?若存在,求出t,v的值;若不存在,说明理由.【变式3-3】(2021•北碚区校级模拟)如图1,在平面直角坐标系中,抛物线y=ax2+bx﹣6与x轴交于A,C(﹣6,0)两点(点A在点C右侧),交y轴于点B,连接BC,且AC=4.(1)求抛物线的解析式.(2)若P是BC上方抛物线上不同于点A的一动点,连接P A,PB,PC,求当S△PBC−12S△P AC有最大值时点P的坐标,并求出此时的最大值.(3)如图2,将原抛物线向右平移,使得点A刚好落在原点O,M是平移后的抛物线上一动点,Q是直线BC上一动点.当A,M,B,Q组成的四边形是平行四边形时,请直接写出此时点Q的坐标.【题型4 二次函数中菱形存在性问题】【例4】(2020秋•巴南区期末)如图,抛物线y=﹣x2+bx+c与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求b,c的值;(2)如图1,点P为直线BC上方抛物线上的一个动点,设点P的横坐标m.当m为何值时,△PBC的面积最大?并求出这个面积的最大值.(3)如图2,将该抛物线向左平移2个单位长度得到新的抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点D,点M为直线BC上的一点,点N是平面坐标系内一点,是否存在点M,N,使以点B,D,M,N为顶点的四边形为菱形,若存在,请直接写出点M的坐标;若不存在,请说明理由.【变式4-1】(2021•湘潭)如图,一次函数y=√33x−√3图象与坐标轴交于点A、B,二次函数y=√33x2+bx+c图象过A、B两点.(1)求二次函数解析式;(2)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由.【变式4-2】(2021春•无棣县月考)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO,PC,并将△POC沿y轴对折,得到四边形POP'C.是否存在点P,使四边形POP'C为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.【变式4-3】(2020秋•南岸区期末)如图,在平面直角坐标系xOy中,二次函数y=x2+bx+c的图象与x轴交于点A(4,0)和B(﹣1,0),交y轴于点C.(1)求二次函数y=x2+bx+c的表达式;(2)将点C向右平移n个单位得到点D,点D在该二次函数图象上.点P是直线BD下方该二次函数图象上一点,求△PBD面积的最大值以及此时点P的坐标;(3)在(2)中,当△PBD面积取得最大值时,点E是过点P且垂直于x轴直线上的一点.在该直角坐标平面内,是否存在点Q,使得以点P,D,E,Q四点为顶点的四边形是菱形?若存在,直接写出满足条件的点Q的坐标;若不存在,请说明理由.【题型5 二次函数中矩形存在性问题】【例5】(2021春•九龙坡区校级期末)如图1,若二次函数y=﹣x2+3x+4的图象与x轴交于点A、B,与y轴交于点C,连接AC、BC.(1)求三角形ABC的面积;(2)若点P是抛物线在一象限内BC上方一动点,连接PB、PC,是否存在点P,使四边形ABPC的面积为18,若存在,求出点P的坐标;若不存在,说明理由;(3)如图2,若点Q是抛物线上一动点,在平面内是否存在点K,使以点B、C、Q、K为顶点,BC为边的四边形是矩形?若存在,请直接写出点K的坐标;若不存在,请说明理由.【变式5-1】(2021•齐齐哈尔)综合与探究如图,在平面直角坐标系中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.(1)求抛物线的解析式;(2)抛物线上C、D两点之间的距离是2√2;(3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.【变式5-2】(2021春•杏花岭区校级月考)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(2)若点P为直线BC下方抛物线上一动点,当点P运动到某一位置时,△BCP的面积最大,求△BCP 的最大面积及此时点P的坐标;(3)点M为抛物线对称轴上一动点,点N为坐标平面内一点,若以点B,C,M,N为顶点的四边形是矩形,直接写出点M的坐标.【变式5-3】(2021•北碚区校级模拟)如图,已知抛物线y=ax2+bx﹣4与x轴交于A,B两点,与y轴交于点C,且点A的坐标为(﹣2,0),直线BC的解析式为y=12x﹣4.(2)如图1,过点A作AD∥BC交抛物线于点D(异于点A),P是直线BC下方抛物线上一点,过点P作PQ∥y轴,交AD于点Q,过点Q作QR⊥BC于点R,连接PR.求△PQR面积的最大值及此时点P 的坐标.(3)如图2,点C关于x轴的对称点为点C′,将抛物线沿射线C′A的方向平移2√5个单位长度得到新的抛物线y′,新抛物线y′与原抛物线交于点M,原抛物线的对称轴上有一动点N,平面直角坐标系内是否存在一点K,使得以D,M,N,K为顶点的四边形是矩形?若存在,请直接写出点K的坐标;若不存在,请说明理由.【题型6 二次函数中正方形存在性问题】【例6】(2021•渝中区校级二模)在平面直角坐标系xOy中,抛物线y=ax2+bx+3与y轴交于点C,与x 轴交于A,B两点(点A在点B的左侧),其中A(﹣2,0),并且抛物线过点D(4,3).(1)求抛物线的解析式;(2)如图1,点P为直线CD上方抛物线上一点,过P作PE∥y轴交BC于点E,连接CP,PD,DE,求四边形CPDE面积的最值及点P的坐标;(3)如图2,将抛物线沿射线CB方向平移得新抛物线y=a1x2+b1x+c1(a1≠0),是否在新抛物线上存在点M,在平面内存在点N,使得以A,C,M,N为顶点的四边形为正方形?若在,直接写出此时新抛物线的顶点坐标,若不存在,请说明理由.【变式6-1】(2020秋•高明区期末)如图,抛物线y=x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y 轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求该抛物线的函数表达式;(2)点Q在该抛物线的对称轴上,若△ACQ是以AC为腰的等腰三角形,求点Q的坐标;(3)若P为BD的中点,过点P作PF⊥x轴于点F,G为抛物线上一动点,GM⊥x轴于点M,N为直线PF上一动点,当以F、M、G、N为顶点的四边形是正方形时,直接写出点M的坐标.【变式6-2】(2021•合川区校级模拟)如图,在平面直角坐标系.xOy中,直线y=x﹣4与x轴交于点A,与y轴交于点B,过A,B两点的抛物线交x轴于另一点C(﹣2,0).(1)求抛物线解析式;(2)如图1,点F是直线AB下方抛物线上一动点,连接F A,FB,求出四边形F AOB面积最大值及此时点F的坐标.(3)如图2,在(2)问的条件下,点Q为平面内y轴右侧的一点,是否存在点Q及平面内任意一点M 使得以A,F,Q,M为顶点的四边形是正方形?若存在,直接写出点Q的坐标;若不存在,说明理由.【变式6-3】(2021•海南模拟)如图,平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A(﹣3,0),B (4,0),交y轴于点C(0,4).(1)求抛物线的函数表达式;(2)直线y=34x+94与抛物线交于A、D两点,与直线BC交于点E.若点M(m,0)是线段AB上的动点,过点M作x轴的垂线,交抛物线于点F,交直线AD于点G,交直线BC于点H.①当S EOG=12S△AOE时,求m的值;②在平面内是否存在点P,使四边形EFHP为正方形?若存在,请求出点P的坐标,若不存在,请说明理由.。

二次函数存在性问题总结

二次函数存在性问题总结

已知,抛物线322--=x x y 交x 轴于点A 、B ,交y 轴于点C 。

1、线段最值 ①线段和最小点P 是抛物线对称轴上一动点,当点P 坐标为多少时,PA+PC 值最小。

A BCO xy②线段差最大点Q 是抛物线对称轴上一动点,当点Q 坐标为多少时,|QA-QC|值最大。

A BCO xy③线段最值连接BC ,点M 是线段BC 上一动点,过点M 作MN//y 轴,交抛物线于点N,求线段MN 的最大值及点N 的坐标。

A BCO xyNM变式①点N 是第四象限内抛物线上一动点,连接BN 、CN ,求BCN S ∆的最大值及点N 的坐标A BCO xyN变式②点N 是第四象限内抛物线上一动点,求点N 到线段BC 的最大距离及点N 的坐标A BCO xyNM2、等腰三角形的存在性问题点D 为抛物线322--=x x y 的顶点,连接BC,点P 是直线BC 上一动点,是否存在点P,使△PAD 为等腰三角形,若存在,求出点P 的坐标,若不存在,说明理由。

A BCOxyD3、菱形的存在性问题点D 为抛物线322--=x x y 的顶点,连接BC 点P 是直线BC 上一动点,点Q 为坐标平面内一点,是否存在以A 、D 、P 、Q 为顶点的四边形是菱形,若存在,求出点P 坐标,若不存在,说明理由.A BCO xyD4、平行四边形的存在性问题点D 为抛物线322--=x x y 的顶点,点M 是抛物线上一动点,点N 为直线BC 上一动点,是否存在以O 、D 、M 、N 为顶点的四边形是平行四边形,若存在,求出点M 坐标,若不存在,说明理由。

ABCO xyD5、直角三角形的存在性问题点P 为抛物线322--=x x y 的对称轴上的一动点,是否存在点P ,使△PBC 为直角三角形,若存在,求出点P 的坐标,若不存在,说明理由.A BCO xy6、等腰直角三角形的存在性问题点M 在线段BC 上,过点M 作MN 平行于x 轴交抛物线322--=x x y 第三象限内于点N ,点R 在x 轴上,是否存在点R ,使△MNR 为等腰直角三角形,若存在,求出点R 坐标,若不存在,说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

已知,抛物线322
--=x x y 交x 轴于点A 、B ,交y 轴于点C. 1、线段最值 ①线段和最小
点P 是抛物线对称轴上一动点,当点P 坐标为多少时,PA+PC 值最小.
A B
C
O x
y
②线段差最大
点Q 是抛物线对称轴上一动点,当点Q 坐标为多少时,|QA-QC|值最大.
A B
C
O x
y
③线段最值
连接BC ,点M 是线段BC 上一动点,过点M 作MN//y 轴,交抛物线于点N ,求线段MN 的最大值及点N 的坐标.
A B
C
O x
y
N
M
变式①
点N 是第四象限内抛物线上一动点,连接BN 、CN ,求BCN S ∆的最大值及点N 的坐标
A B
C
O x
y
N
变式②
点N 是第四象限内抛物线上一动点,求点N 到线段BC 的最大距离及点N 的坐标
A B
C
O x
y
N
M
2、等腰三角形的存在性问题
点D 为抛物线322
--=x x y 的顶点,连接BC ,点P 是直线BC 上一动点,是否存在点P ,使△PAD 为等腰三角形,若存在,求出点P 的坐标,若不存在,说明理由.
A B
C
O x
y
D
3、菱形的存在性问题
点D 为抛物线322
--=x x y 的顶点,连接BC 点P 是直线BC 上一动点,点Q 为坐标平面内一点,是否存在以A 、D 、P 、Q 为顶点的四边形是菱形,若存在,求出点P 坐标,若不存在,说明理由.
A
B
C
O x
y
D
4、平行四边形的存在性问题
点D 为抛物线322
--=x x y 的顶点,点M 是抛物线上一动点,点N 为直线BC 上一动点,是否存在以O 、D 、M 、N 为顶点的四边形是平行四边形,若存在,求出点M 坐标,若不存在,说明理由.
A
B
C
O x
y
D
5、直角三角形的存在性问题
点P 为抛物线322
--=x x y 的对称轴上的一动点,是否存在点P ,使△PBC 为直角三角形,若存在,求出点P 的坐标,若不存在,说明理由.
A B
C
O x
y
6、等腰直角三角形的存在性问题
点M 在线段BC 上,过点M 作MN 平行于x 轴交抛物线322
--=x x y 第三象限内于点N ,点R 在x 轴上,是否存在点R ,使△MNR 为等腰直角三角形,若存在,求出点R 坐标,若不存在,说明理由.
A
B
C
O
x
y
M
N
7、相似的存在性问题
点D 为抛物线322
--=x x y 的顶点,点E 是OD 与BC 的交点,点F 为x 轴上的一动点,是否存在点F ,使△BEF 和△OCE 相似,若存在,求出点F 坐标,若不存在,说明理由.
A
B
C O x
y
D
E。

相关文档
最新文档