新人教版七年级数学第一章有理数1.2.1有理数教案学案
数学人教版(2024)7年级上册 1.2.1 有理数的概念 教案02
第一章有理数1.2.1 有理数的概念0.3…负分数:如-52,-23,-17, -0.5, -150.5,… 引导:0.1=110,-0.5=−12, 0.3 = 13 ,事实上,有限小数和无限循环小数都可以化为分数,因此它们也可以看成分数。
指出:正分数、负分数统称为分数。
想一想:整数能化成分数吗?预设:2=21, 3=31,…正整数可以写成正分数的形式-2=−21, -3=−31,…负整数可以写成负分数的形式0=01,0也可以写成分数的形式 整数可以写成分数的形式指出:可以写成分数形式的数称为有理数。
可以写成正分数形式的数为正有理数,可以写成负分数形式的数为负有理数。
思考:你能试着对有理数进行分类吗?预设:有理数的分类(整分性):有理数的分类(正负性):例1:指出下列各数中的正有理数、负有理数,并分别指出其中的正整数、负整数:13,4.3,−38,8.5%,-30,-12%, 19 ,-7.5,20,-60,1.2解:正有理数:13,4.3, 8.5%, 19 ,20,1.2;其中正整数有13,20。
负有理数: −38, -30,-12%, -7.5,-60 ; 其中负整数有-30,-60。
例2:下列说法中,正确的是( ). A .在有理数中,0的意义仅仅表示没有 B .一个有理数,它不是正数就是负数 C .正有理数和负有理数组成有理数 D .0是自然数 答案:D强调:在有理数概念中,“0”很特殊: (1)0既不是正数,也不是负数; (2)0是整数,不是分数; (3)0既是非正数,又是非负数. 活动意图说明:【解析】本题主要考查了有理数的分类,理解有理数的相关定义是解题的关键.先根据正数的定义判断A 的正误,再根据非负数是正数或0判断B 的正误;再根据有理数也可分成整数和分数判断C ,D 的正误即可解答.解:A .由50%,1,2.5是正数,故正确,符合题意; B .由−2,−4为负数,故错误,不符合题意; C .1为整数,故错误,不符合题意; D .因为112是分数,故错误,不符合题意. 故选:A .【综合拓展类作业】5.如图,把下列各数填入相应的各圈里. 100,−99%,0,−2000,5.2,6,−0.3,116,−53【答案】见解析【解析】本题考查了有理数的分类,根据有理数的分类,即可求解. 解:整数为:100,0,−2000,6; 负数为:−99%,−2000,−0.3,−53; 则负整数为:−2000;本节课的主要内容是让学生明确有理数的概念,并能对有理数进行正确。
人教版数学七年级上册1.2.1《有理数》教学设计
人教版数学七年级上册1.2.1《有理数》教学设计一. 教材分析人教版数学七年级上册1.2.1《有理数》是学生在小学阶段学习数的概念的基础上,进一步深入研究数的一种分类。
本节内容主要包括有理数的定义、分类及运算规则。
通过本节内容的学习,使学生了解有理数的概念,掌握有理数的分类,会进行有理数的运算。
二. 学情分析七年级的学生已经具备了初步的数学逻辑思维能力,对数的概念有一定的了解。
但学生在学习有理数时,容易与小学阶段的数的概念混淆,对有理数的分类和运算规则的理解和运用有一定的困难。
因此,在教学过程中,需要引导学生从实际问题出发,理解和掌握有理数的概念和运算规则。
三. 教学目标1.理解有理数的定义,掌握有理数的分类。
2.掌握有理数的运算规则,能够进行简单的有理数运算。
3.培养学生的数学逻辑思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的运算规则。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中理解和掌握有理数的概念和运算规则。
2.运用案例分析法,通过具体案例使学生理解和掌握有理数的分类和运算规则。
3.采用小组合作学习法,培养学生的团队合作意识和沟通能力。
六. 教学准备1.准备相关的教学案例和问题,用于引导学生学习和思考。
2.准备教学PPT,用于辅助教学。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入有理数的概念,如:“小明有3个苹果,小华有2个苹果,小明比小华多几个苹果?”引导学生思考和讨论,引出有理数的概念。
2.呈现(10分钟)呈现有理数的定义和分类,通过PPT展示有理数的图像和特点,让学生直观地理解和掌握有理数的分类。
3.操练(10分钟)让学生进行有理数的运算练习,如加、减、乘、除等,引导学生理解和掌握有理数的运算规则。
4.巩固(10分钟)通过一些实际问题,让学生运用所学的有理数知识和运算规则进行解答,巩固所学知识。
人教版七年级数学上册1.2.1《有理数》教学设计
人教版七年级数学上册1.2.1《有理数》教学设计一. 教材分析《有理数》是人教版七年级数学上册第一章第二节的第一课时,主要介绍了有理数的定义、分类和运算法则。
本节课的内容是学生学习数学的基础,对于培养学生的逻辑思维和抽象思维能力具有重要意义。
教材通过生动的实例和丰富的练习,帮助学生理解和掌握有理数的概念和运算法则,为后续的学习打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于实数的概念有一定的了解。
但是,对于有理数的定义和分类,以及有理数的运算法则,可能还存在一定的困惑。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出有理数的概念,并通过大量的练习,让学生熟练掌握有理数的运算法则。
三. 教学目标1.了解有理数的定义、分类和运算法则。
2.能够运用有理数的运算法则进行简单的计算。
3.培养学生的逻辑思维和抽象思维能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的运算法则。
五. 教学方法1.情境教学法:通过实际问题引入有理数的概念,让学生从实际问题中抽象出有理数的概念。
2.讲解法:对于有理数的定义、分类和运算法则,采用讲解法进行详细讲解。
3.练习法:通过大量的练习,让学生熟练掌握有理数的运算法则。
六. 教学准备1.PPT课件:制作与本节课内容相关的PPT课件,用于辅助教学。
2.练习题:准备与本节课内容相关的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些实际问题,如温度、海拔等,引导学生从实际问题中抽象出有理数的概念。
2.呈现(10分钟)通过PPT课件,详细讲解有理数的定义、分类和运算法则。
讲解过程中,注意结合实例进行说明,让学生更好地理解和掌握。
3.操练(10分钟)让学生进行一些有关有理数的运算练习,巩固所学知识。
教师可适时给予提示和指导,确保学生能够熟练掌握有理数的运算法则。
4.巩固(5分钟)通过PPT课件,总结本节课所学的主要内容和知识点,帮助学生巩固记忆。
人教新版(2024)七年级数学上册-1.2.1 有理数(教案)
1.2.1有理数【教学目标】1.使学生理解整数、分数、有理数的概念,并会判断一个给定的数是整数、分数或有理数.2.经历对有理数进行分类的过程,明确有理数分为整数和分数,同时也可以分为正数、0和负数,培养学生观察、比较和概括的能力.体会分类讨论的思想,能理解不同的分类标准有不同的分类方法,但都要求做到不重不漏.【教学重点难点】重点:整数、分数、有理数的概念.难点:有理数的分类及其标准.【教学过程】一、创设情境复习引入:在巴黎奥运会网球女子单打金牌赛中,中国选手郑钦文大比分2:0战胜克罗地亚选手维基奇,夺得金牌,实现了中国女子网球单打金牌0的突破.在女子柔道52公斤的冠军争夺战中,中国选手冼东妹仅用1.1分钟,就为中国柔道队夺得首枚金牌.女力士唐功红在女子+75公斤级举重比赛中,不负众望,以抓举122.5公斤,挺举182.5公斤,总成绩305公斤夺得第18枚金牌,与获银牌的韩国选手相比,她的抓举重量-7.5公斤,挺举重量+10公斤.探究:1.在以上各数中,哪些是在小学里学过的数?它们可以分为哪几类?2.在小学里学过的数中,有没有哪类数没有出现?请举例说明.3.用计算器计算下列各分数的值,说明所有分数都可以化作什么数?4.由前面的结论,小学里学的数可以分为哪几类?5.引入负数后,整数除了小学学的整数外,还包含其他的整数吗?分数除了小学学的分数外,还包含其他的分数吗?二、探究归纳探究点1:有理数的概念1.正整数可以写成正分数的形式吗?负整数可以写成分数的形式吗?如何写?2.0如何写成分数的形式?3.由探究中的第3问,你能得到什么结论?所有的整数都可以写成分数的形式,如2=21,-3=-31,0=01. 有限小数及无限循环小数都可以化为分数,因此也可以看成是分数.特别提示:既不是正数,也不是负数!要点归纳:正整数、零和负整数统称数.正分数和负分数都是数.可以写成形式的数称为有理数.注意:目前我们所学的小数都可以化成数,所以把小数划分到数一类.【设计意图】在讨论交流中将学过的数进行归类和统一,同时让学生明确有理数的表示形式.探究点2:有理数的分类问题:统一了有理数表示形式及引入了负数之后,有理数可以分成正有理数和负有理数两类吗?为什么?要让学生明确:①0既不是正数也不是负数,0是有理数,是整数.②还存在一些正数和负数是我们没有学习的,但它们不是有理数.(如圆周率π)③我们把有理数中的正数部分叫作正有理数,负数部分叫作负有理数.有理数零{说明:1.①分类的标准不同,结果也不同;②分类的结果应无遗漏、无重复;③零是整数,但零既不是正数,也不是负数.2.把一些数放在一起,就组成一个数的集合,简称数集(set of number).所有正数组成的集合,叫作正数集合;所有负数组成的集合叫作负数集合;所有整数组成的集合叫整数集合;所有分数组成的集合叫分数集合;所有有理数组成的集合叫有理数集合;所有正整数和零组成的集合叫作自然数集合.【设计意图】分类要明确标准,使分类后,每一个参加分类的对象属于其中的一类,而且也只能属于这一类(即要不重不漏).【典例剖析】例1:教材P7【例1】.例2:把下列各数填入相应集合的括号内:29,-5.5,2 002,67,-1,90%,3.14,0,-213,-0.01,-2,1 (1)整数集合:{ }(2)分数集合: { }(3)正整数集合:{ }(4)负整数集合:{ }(5)正有理数集合: { }(6)负有理数集合: { }【方法技巧】要正确判断一个数属于哪一类,首先要弄清分类的标准.要特别注意“0”不是正数,但是整数.在数学里,“正”和“整”不能通用,是有区别的,“正”是相对于“负”来说的,“整”是相对于分数而言的.三、检测反馈1.下列说法中,正确的是 ( )A.正整数、负整数统称为整数B.正分数、负分数统称为分数C.零既可以是正整数,也可以是负整数D.一个有理数不是正数就是负数2.下列各数:-2,5,-13,0.63,0,7,-0.05,-6,9,115,54,其中正数有 个,负数有 个,自然数有 个,整数有 个.3.判断:(1)0是整数. ( )(2)自然数一定是整数. ( )(3)0一定是正整数. ( )(4)整数一定是自然数. ( )4.填空:(1)有理数中,是整数而不是正数的是 ;是负数而不是分数的是 .(2)零是 ,还是 ,但不是 ,也不是 .5.把下列各数填入相应的集合内:127,-3.141 6,0,2025,-85,-0.234,10%,10.1,0.67,-89四、本课小结同学们,请你回想一下,这节课你有什么收获?【学生对本节课进行知识梳理,巩固教学目标.培养学生的归纳能力,让学生的认知结构在反思中得到内化和升华.】五、布置作业课堂作业:P8练习课后作业:P16T1六、板书设计七、教学反思1.本节课的重要思想是转化思想、分类思想.统一有理数的表示形式,并根据数的正负进行分类.有理数表示为分数形式比较重要,在以后的学习中,学生将会逐渐体会到它在数学中的价值.集合的观点比较抽象,学生真正接受需要长期的过程.教学中还要关注小数、百分数等可以化为分数的交待与说明.2.《数学课程标准》提出:数学学习应使学生获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法.因此,本堂课的教学在使学生掌握知识、形成技能的同时注重渗透分类的方法和集合思想,为后继学习奠定了良好的基础.。
七年级数学上册第一章有理数单元备课教案(新版)新人教版
第一章有理数一、课标要求1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.(2)掌握数轴的画法,能将已知数在数轴上表示出来,•能说出数轴上已知点所表示的解.(3)理解相反数、绝对值的几何意义和代数意义,•会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比较有理数的大小.2.过程与方法经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感、态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言.二、本章教材分析1.主要内容:1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,•从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念.2.通过怎样用数简明地表示一条东西走向的马路旁的树、•电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系;(2)数轴能反映数的性质;(3)数轴能解释数的某些概念,如相反数、绝对值、近似数;(4)数轴可使有理数大小的比较形象化.3.对于相反数的概念,•从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.4.正确理解绝对值的概念是难点.理解绝对值的两种意义,•一种是几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离;另一种是代数意义:绝对值的几何意义是以线段长度来表示一个数的绝对值的;而绝对值的代数意义则是给出了求绝对值的法则,由绝对值的两种意义可知,有理数a•的绝对值可表示为:│a│=(0) 0(0)(0)a aaa a>⎧⎪=⎨⎪-<⎩根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)若│a│=│b│,则a=b,或a=-b或a=b=0.2.本单元在教材中的地位与作用:本章是数从自然数扩展到有理数,初步形成有理数的概念后,进一步学习有理数的运算,是小学算术的延续和发展。
新人教版七年级数学上册 1.2.1《有理数》教学设计
新人教版七年级数学上册 1.2.1《有理数》教学设计一. 教材分析新人教版七年级数学上册1.2.1《有理数》是学生在学习了整数和分数的基础上,进一步学习有理数的知识。
本节课主要让学生了解有理数的定义,掌握有理数的分类,以及了解有理数的大小比较。
教材通过引入生活中的实例,使学生感受有理数在实际生活中的应用,提高学生的学习兴趣。
二. 学情分析七年级的学生已经掌握了整数和分数的知识,具备了一定的数学基础。
但部分学生对于抽象的概念理解起来可能存在困难,因此需要教师在教学过程中耐心引导,帮助学生建立直观的认识。
此外,学生对于数学在实际生活中的应用有一定的兴趣,教师可以抓住这一点,激发学生的学习积极性。
三. 教学目标1.理解有理数的定义,掌握有理数的分类。
2.学会有理数的大小比较方法。
3.能够运用有理数解决实际生活中的问题。
4.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的大小比较方法。
五. 教学方法1.情境教学法:通过生活实例引入有理数的概念,让学生感受数学与生活的紧密联系。
2.小组讨论法:引导学生分组讨论,共同探讨有理数的分类和大小比较方法。
3.实践操作法:让学生通过实际操作,加深对有理数知识的理解。
4.激励评价法:及时给予学生鼓励和评价,提高学生的学习积极性。
六. 教学准备1.教学课件:制作课件,展示有理数的定义、分类和大小比较方法。
2.教学素材:准备一些实际生活中的例子,用于引导学生学习有理数。
3.学具:准备一些卡片,上面写有不同类型的有理数,用于学生分组讨论。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的实例,如温度、海拔等,引导学生思考这些现象可以用哪种数学知识来表示。
通过讨论,让学生感受有理数在实际生活中的应用,激发学生的学习兴趣。
2.呈现(10分钟)介绍有理数的定义,让学生了解有理数的概念。
接着,展示有理数的分类,包括整数、分数和零。
通过课件和实物展示,让学生对有理数有更直观的认识。
数学:1.2.1《有理数》学案(人教版七年级上)
数学:1.2.1《有理数》学案(人教版七年级上)【学习目标】:1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;【学习重点】:正确理解有理数的概念【学习难点】:正确理解分类的标准和按照一定标准分类 【导学指导】一、温故知新1、通过两节课的学习,,那么你能写出3个不同类的数吗?.(4名学生板书)__________________________________________ 二、自主探究问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类; 该分为几类,又该怎样分呢?先分组讨论交流,再写出来分为 类,分别是:引导归纳:统称为整数, 统称为有理数。
问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类? 师生共同交流、归纳 2、正数集合与负数集合所有的正数组成 集合,所有的负数组成 集合【课堂练习】1、P8练习(做在课本上)2.把下列各数填入它所属于的集合的圈内: 15, -91, -5, 152, 813, 0.1, -5.32, -80, 123, 2.333;正整数集合负整数集合正分数集合 负分数集合【要点归纳】: 有理数分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 或者 ⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数【拓展训练】1、下列说法中不正确的是……………………………………………( ) A .-3.14既是负数,分数,也是有理数 B .0既不是正数,也不是负数,但是整数c .-2000既是负数,也是整数,但不是有理数 D .O 是正数和负数的分界2、在下表适当的空格里画上“√”号【总结反思】:。
【人教版】七上数学第一章《有理数》教案:1.2有理数教案(4课时)
第一章有理数1.2有理数1.2.1有理数1.理解有理数的意义.2.能把给出的有理数按要求分类.3.了解0在有理数分类中的作用.重点会把所给的各数填入它所属于的集合里.难点掌握有理数的两种分类.一、创设情境,导入新课师:同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.学生讨论.二、合作交流,解读探究师:你能列举出一些你已经学过的各类型的数吗?学生列举:3,5.7,-7,-9,-10,0,13,25,-356,-7.4,5.2,…师:你能说说这些数的特点吗?学生回答,并相互补充.教师指出,我们把所有的这些数统称为有理数.你能对以上各种类型的数作出分类吗?有理数⎩⎪⎨⎪⎧整数⎩⎨⎧正整数0负整数分数⎩⎨⎧正分数负分数说明:以上分类,若学生有因难,可加以引导:整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含哪些数?分数呢?以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢?试一试.有理数⎩⎪⎨⎪⎧正有理数⎩⎨⎧正整数正分数零负有理数⎩⎨⎧负整数负分数说明:让学生感受分类的方法和原则,统一标准,不重不漏. 三、应用迁移,巩固提高例1:把下列各数填入相应的集合内:3.1415926,0,2008,-12,-7.88,10%,10.1,0.67,-89.正数集合负数集合整数集合分数集合例2:以下是两位同学的分类方法,你认为他们的分类结果正确吗?为什么?有理数⎩⎨⎧正有理数⎩⎨⎧正整数正分数负有理数⎩⎨⎧负整数负分数有理数⎩⎪⎨⎪⎧正数整数分数负数零四、练习与小结 练习:教材练习题. 小结:谈一谈今天你的收获. 五、作业 习题1.2第1题本课在引入了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性。
人教版七年级数学上册:1.2.1《有理数》教学设计2
人教版七年级数学上册:1.2.1《有理数》教学设计2一. 教材分析《有理数》是人教版七年级数学上册第一章第二节的一部分,主要介绍了有理数的概念、分类和运算。
本节课的内容是学生学习数学的基础,对于培养学生的逻辑思维和抽象思维能力具有重要意义。
二. 学情分析七年级的学生已经具备了一定的数学基础,但是对于有理数的概念和运算可能还比较陌生。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出有理数的概念,并通过具体的例题和练习来让学生理解和掌握有理数的运算方法。
三. 教学目标1.了解有理数的概念和分类。
2.掌握有理数的加、减、乘、除运算方法。
3.能够运用有理数解决实际问题。
四. 教学重难点1.有理数的概念和分类。
2.有理数的运算方法。
五. 教学方法1.情境教学法:通过实际问题引导学生抽象出有理数的概念。
2.例题教学法:通过具体的例题讲解和练习让学生掌握有理数的运算方法。
3.小组合作学习:学生分组讨论和解决问题,培养学生的合作意识和团队精神。
六. 教学准备1.教学PPT:制作详细的PPT,内容包括有理数的概念、分类和运算方法。
2.例题和练习题:准备一些有代表性的例题和练习题,用于讲解和巩固知识点。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过一个实际问题引入有理数的概念,例如:“小明的零花钱有3元,小红给了小明2元,请问小明现在有多少元?”引导学生思考和讨论,从而引出有理数的概念。
2.呈现(15分钟)通过PPT展示有理数的定义、分类和运算方法。
用简洁明了的语言解释有理数的概念,并用图示和实例展示有理数的分类。
接着讲解有理数的加、减、乘、除运算方法,并通过具体的例题进行演示。
3.操练(10分钟)让学生分组进行练习,每组选择一道例题进行讲解和讨论。
学生在讲解过程中,教师进行指导和点评。
然后,让学生独立完成一些练习题,教师巡回辅导。
4.巩固(5分钟)选取一些典型的练习题,让学生上台板书并进行讲解。
数学人教版(2024)版七年级初一上册 1.2.1 有理数的概念 教案03
第一章有理数1.2.1 有理数的概念备课时间:上课时间:回想一下,目前为止我们学过哪些数?你所知道的数可以分成哪些种类,你是按照什么划分的?学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数。
这就是全部的分数分类吗?小数呢?事实上,有限小数和无限循环小数都可以化为分数,因此它们也可以看成分数。
进一步地,我们还发现整数又可以写成分数的形式。
二、思考探究,获取新知【教学说明】我们把可以写成分数形式的数称为有理数。
知识点1 有理数的分类根据整数和分数来分类。
【教学说明】可加以引导,有理数可分为整数和分数两大类,那么整数又包含哪些数?分数呢?以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢?我们把所有正数组成的集合,叫做正数集合;所有负整数组成的集合,叫做负数集合。
三、典例精析,掌握新知例1 指出下列各数中的正有理数、负有理数,并分别指出其中的正整数、负整数:跟踪训练:所有正有理数组成正有理数集合,所有负有理数组成负有理数集合,把下面的有理数填入它们属于的集合内。
15,-1/9,-5,7,0。
5,-80,12,-4。
2,2。
3。
正有理数集合:{ ⋯}。
负有理数集合:{ ⋯}。
知识点2 小数与有理数的联系按照定义,能够写成分数形式的数是有理数,那不能写成分数的数就不是有理数。
思考“不能写成分数的数”是哪些数呢?如2/3,−1/2,⋯这些分数是可以化成有限小数或无限循环小数。
同样地,有限小数和无限循环小数都能化为分数,也是有理数。
无限不循环小数(如π)不能化成分数,因此就不是有理数。
例2 :在-1.2,10%,0,+0.33 ̇,7.01001001…(每两个1之间0的个数逐次增加1)中,有理数共有()A.2个B.3个C.4个D.5个四、运用新知,深化理解1.在数0,2,-3,-1.2 中,属于负整数的是()A.0 B.2 C.-3 D.-1.22.-0.5不属于()A.负数B.分数C.负分数D.整数3.下列说法不正确的是()A.-0.5不是分数B.0是整数C. −1/5不是整数D.-2既是负数又是整数4.下列说法错误的是()A.负整数和负分数统称为负有理数B.正整数、负整数和0统称为整数C.正有理数和负有理数统称为有理数D.0是整数,但不是分数5.把下列各数分别填入相应的集合里.-2,0,0.314,25% ,11,0.3 ̇,+12/3.整数集合:{⋯}.分数集合:{⋯}.自然数集合:{⋯}.非正数集合:{⋯}.四、课堂小结填数集的两种方法(1)由数到集合:逐一分析每一个数,看这个数属于哪个集合,然后填入它所属的集合内.(2)由集合到数:逐一分析每个集合,然后从给出的数中找出属于这个集合的数填入.注意:同一个数可能分属于不同的集合.1.2.1 有理数1.整数和分数统称为有理数;2.有理数的分类:(1)按符号分(2)按照整数和分数来分。
七年级数学上册 第1章 有理数 1.2 有理数 1.2.1 数轴教案(新版)新人教版-(新版)新人教
课型:新授课课时:一课时年级:七年级一、教材分析本节内容选自某某教育数学七年级上册第1章第2节第一课时《数轴》,衔接正负数及有理数分类的相关概念。
数轴是理解有理数的概念与运算的重要工具,通过它不但可以让学生理解有理数的概念,还可以利用它来解决一些实际问题。
此外,数轴非常直观地把数与点结合起来,渗透着初步的数形结合思想,对以后的知识概念及实际问题的解决起着举足轻重的作用。
二、学情分析(1)知识掌握上,七年级的学生刚刚学习有理数,对有理数的概念理解不一定很深刻,所以在介绍数轴时应全面系统地回顾有理数的相关概念(尤其是有理数的分类)。
(2)学生学习本节课的知识障碍:数轴概念和数轴的三要素。
学生不理解数轴的概念与要素,就容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析。
(3)由于七年级学生具有好动性,注意力容易分散,对一些概念、问题缺乏深入思考,所以在教学中应抓住学生的心理特点,一方面要运用直观生动的形象激发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要抓住核心概念,突出强调,并设置相关问题启发学生思考。
三、教学目标【知识技能】1.掌握数轴的概念,并理解其三要素;2.了解数轴上点的位置关系,了解点与数之间的关系;3.了解初步的数形结合思想。
【数学思考】1.经历有理数的“数”与数轴“形”特点的探究过程,体会数形结合的数学思想。
2.通过观察数轴上点的位置关系,加深对有理数的相关概念的思考;【问题解决】通过探究、绘制数轴,解决与有理数相关的问题,提高分析问题、解决问题的能力。
【情感态度】1.在画图操作、观察、归纳总结的过程中,体验数形结合的数学思想方法,感悟数学图像的对称美;2.在合情推理的过程中,体会数学的严谨性。
四、教学重难点【重点】,正确掌握数轴画法和用数轴上的点表示有理数;【难点】正确理解有理数与数轴上点的对应关系。
五、教法与学法【教法】启发式教学法、问题解决法、画图法等;【学法】自主学习法、合作学习法、探究式学习法等。
人教版七年级数学上册第一章《有理数》全章教学设计
第一章有理数镇中教课设计1.1.1 正数和负数( 1)[学习目标 ]1、理解正数和负数的观点,会判断一个数是正数仍是负数2、会用正数和负数来表示拥有相反意义的量3、理解数 0 的意义[学习过程 ]一、板书课题:(一)叙述:同学们,今日我们来学习第一章有理数.1.1.1 正数和负数(教师板书)二、出示目标(一)过渡语:要达到什么教课目的呢?请看投影(二)屏幕显示学习目标1、理解正数和负数的观点,会判断一个数是正数仍是负数2、会用正数和负数来表示拥有相反意义的量3、理解数 0 的意义三、自学指导(一)过渡语:如何才能当堂达到学习目标呢?请同学们依据指导认真自学。
(二)出示自学指导认真看课本( P1-3练习前方)① 理解正数的观点,会模仿正数的观点,解说负数的含义;②理解正数、负数和0 表示的实质含义,注意黄色书签的内容;③回答 P3“思虑”中的问题。
若有疑部问,能够小声讨教同桌或举手问老师。
6分钟后,比谁能正确做出检测题。
四、先学(一)学生看书,教师巡视,师敦促每一位学生认真、紧张的自学,鼓舞学生怀疑问难。
(二)检测1、过渡语:同学们,看完的请举手。
懂了的请举手。
好下边就比一比,看谁能正确做出检测题。
2、检测题 P3:1、2、3、43、学生练习,教师巡视。
(改集错误会进行二次备课)五、后教(一)改正:请同学们认真看一看这四名同学的板演,发现错解的请举手(指名改正)(二)议论:评第 1 题:(教师要重申停题格式)①正数找的对吗?为何对?师指引生回答:比0 大的数是正数(师板书)(如对,教师打√)②你还举一些正数的例子吗?③负数找的对吗?为何?师指引生回答:在正数前加“一”的数是负数④你能模仿正数的定义来谈谈负数的吗?师指引生回答:比0 小的数是负数。
(师板书)(如对,教师打√)评 2、3、4 题答案正确吗?为何?师指引生回答:数0 既不是正数也不是负数,是正、负数的分界限。
(师板书)重申“0”的意义不单是表示“没有”,还能够表示温度读报00C(表示标准),山脚的高度 0 米等(表示起点)。
人教版七年级上数学:1.2.1《有理数》学案(附模拟试卷含答案)
数学:1.2.1《有理数》学案(人教版七年级上)【学习目标】:1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;【学习重点】:正确理解有理数的概念【学习难点】:正确理解分类的标准和按照一定标准分类【导学指导】一、温故知新1、通过两节课的学习,,那么你能写出3个不同类的数吗?.(4名学生板书)__________________________________________二、自主探究问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类;该分为几类,又该怎样分呢?先分组讨论交流,再写出来分为类,分别是:引导归纳:统称为整数,统称为有理数。
问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类?师生共同交流、归纳2、正数集合与负数集合所有的正数组成集合,所有的负数组成集合【课堂练习】1、P8练习(做在课本上)2.把下列各数填入它所属于的集合的圈内:15, -1, -5,2,813, 0.1, -5.32, -80, 123, 2.333;正整数集合 负整数集合正分数集合 负分数集合【要点归纳】: 有理数分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 或者 ⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数【拓展训练】1、下列说法中不正确的是……………………………………………( ) A .-3.14既是负数,分数,也是有理数 B .0既不是正数,也不是负数,但是整数c .-2000既是负数,也是整数,但不是有理数 D .O 是正数和负数的分界2、在下表适当的空格里画上“√”号【总结反思】:2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,C,D 是线段 AB 上两点,若 CB=4cm,DB=7cm,且 D 是 AC 的中点,则 AB 的长等于()A.6cmB.7cmC.10cmD.11cm2.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于()A.2cmB.3cmC.6cmD.7cm3.在同一平面上,若∠BOA=60.3°,∠BOC=20°30′,则∠AOC的度数是( )A.80.6°B.40°C.80.8°或39.8°D.80.6°或40°4.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为283,则满足条件的x不同值最多有( )A.6个B.5个C.4个D.3个5.在如图的2017年11月份的月历表中,任意框出表中竖列上三个相邻的数,下面列出的这三个数的和①24,②35,③51,④72,其中不可能的是( )A.①②B.②④C.②③D.②③④6.在一次革命传统教育活动中,有n位师生乘坐m辆客车.若每辆客车乘60人,则还有10人不能上车,若每辆客车乘62人,则最后一辆车空了8个座位.在下列四个方程6010628m m+=-①;6010628m m+=+②;1086062n n-+=③;1086062n n+-=④中,其中正确的有()A.①③B.②④C.①④D.②③7.下列运算中正确的是()A.x+x=2x2B.(x4)2= x8C.x3.x2=x6D.(-2x) 2=-4x28.下列图形都是由同样大小的黑、白圆按照一定规律组成的,其中第①个图形中一共有2个白色圆,第②个图形中一共有8个白色圆,第③个图形中一共有16个白色圆,按此规律排列下去,第⑦个图形中白色圆的个数是()A .96B .86C .68D .529.把正方形按如图所示的规律拼图案,其中第①个图案中有1个正方形,第②个图案中有5个正方形,第③个图案中有9个正方形…按此规律排列下去,则第⑧个图案中正方形的个数为( )A .25B .29C .33D .3710.等边△ABC 在数轴上的位置如图所示,点A 、C 对应的数分别为0和-1,若△ABC 绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转2009次后,点B ( )A .不对应任何数B .对应的数是2007C .对应的数是2008D .对应的数是2009 11.小明做了以下4道计算题:①(-1)2010=2010;②0-(-1)=-l ;③-+=-;④÷(-)=-1. 其中做对的共有A .1道B .2道C .3道D .4道 12.计算:534--⨯的结果是( ) A.17- B.7-C.8-D.32-二、填空题13.一个人从A 点出发向北偏东30°方向走到B 点,再从B 点出发向南偏东15°方向走到C 点,此时C 点正好在A 点的北偏东70°的方向上,那么∠ACB 的度数是___________. 14.计算:12°20'×4=______________.15.如图,小红将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,且剪下的两个长条的面积相等.问这个正方形的边长应为多少厘米?设正方形边长为xcm ,则可列方程为_____.16.当x=__________时,代数式6x+l 与-2x-13的值互为相反数.17.去括号合并:(3)3(3)a b a b --+=_________.18.观察下列等式①223415-⨯=,②225429-⨯=,③2274313-⨯=,…根据上述规律,第n 个等式是________________.(用含有n 的式子表示)19.小明在做解方程的作业时,不小心将方程中的一个常数污染得看不清楚,方程是:122y y +=--¤ .小明翻看了书后的答案,此方程的解是y= 12- ,则这个常数是_______. 20.比较大小,4-______3(用“>”,“<”或“=”填空). 三、解答题21.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t 秒后OM 恰好平分∠BOC ,则t= (直接写结果)(2)在(1)问的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多少秒后OC 平分∠MON ?请说明理由; (3)在(2)问的基础上,那么经过多少秒∠MOC=36°?请说明理由.22.一个角的补角比它的余角的3倍少20︒,求这个角的度数.23.如图在长方形ABCD 中,AB=12cm ,BC=8cm ,点P 从A 点出发,沿A→B→C→D 路线运动,到D 点停止;点Q 从D 点出发,沿D→C→B→A 运动,到A 点停止.若点P 、点Q 同时出发,点P 的速度为每秒1cm ,点Q 的速度为每秒2cm ,用x (秒)表示运动时间. (1)求点P 和点Q 相遇时的x 值.(2)连接PQ ,当PQ 平分矩形ABCD 的面积时,求运动时间x 值.(3)若点P 、点Q 运动到6秒时同时改变速度,点P 的速度变为每秒3cm ,点Q 的速度为每秒1cm ,求在整个运动过程中,点P 、点Q 在运动路线上相距路程为20cm 时运动时间x 值.24.小李读一本名著,星期六读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页?25.已知代数式A=2x 2+5xy ﹣7y ﹣3,B=x 2﹣xy+2.(1)求3A ﹣(2A+3B )的值;(2)若A ﹣2B 的值与x 的取值无关,求y 的值. 26.已知A=22x +3xy-2x-l ,B= -2x +xy-l . (1)求3A+6B ;(2)若3A+6B 的值与x 无关,求y 的值. 27.计算:(1)(3)74--+-- (2) 211()(6)5()32-⨯-+÷-28.计算:(1) 16÷(﹣2)3﹣(18-)×(﹣4) (2) 221211()[2(3)]233---÷⨯-+-【参考答案】*** 一、选择题 1.C 2.D 3.C 4.B 5.B 6.A 7.B 8.C 9.B 10.C 11.B 12.A 二、填空题 13.95˚ 14.49°20' 15.4x=5(x-4) 16.17.-10 SKIPIF 1 < 0 解析:-10b18.(2n+1) SKIPIF 1 < 0 −4×n SKIPIF 1 < 0 =4n+1. 解析:(2n+1) 2−4×n 2=4n+1.19.120.<;三、解答题21.(1)5;(2)5秒时OC平分∠MON,理由详见解析;(3)详见解析. 22.35°23.(1)x=323;(2)4 或20;(3)4或14.524.这本名著共有216页.25.(1)﹣x2+8xy﹣7y﹣9;(2)y=026.(1) 15xy-6x-9 ;(2)25.27.(1)6;(2)22.28.(1)﹣212;(2)52.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.在一些商场、饭店或写字楼中,常常能看到一种三翼式旋转门在圆柱体的空间內旋转.旋转门的三片旋转翼把空间等分成三个部分,如图是从上面俯视旋转门的平面图,两片旋转翼之间的角度是( )A.100°B.120°C.135°D.150°2.如图所示,两个直角∠AOB ,∠COD 有公共顶点O ,下列结论:(1)∠AOC =∠BOD ;(2)∠AOC +∠BOD =90°;(3)若OC 平分∠AOB ,则OB 平分∠COD ;(4)∠AOD 的平分线与∠COB 的平分线是同一条射线.其中正确的个数是( )A.1B.2C.3D.43.如图是某年的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如3,4,5,10,11,12,17,18,19).若用这样的矩形圈圈这张日历表的9个数,则圈出的9个数的和不可能为下列数中的( )A .81B .90C .108D .2164.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ). A.3229x x -=+ B.3(2)29x x -=+ C.2932x x+=- D.3(2)2(9)x x -=+5.如图,点O (0,0),A (0,1)是正方形OAA 1B 的两个顶点,以OA 1对角线为边作正方形OA 1A 2B 1,再以正方形的对角线OA 2作正方形OA 1A 2B 1,…,依此规律,则点A 2017的坐标是( )A .(0,21008)B .(21008,21008)C .(21009,0)D .(21009,-21009)6.当x 分别取-2019、-2018、-2017、…、-2、-1、0、1、12、13、…、12017、12018、12019时,分别计算分式2211x x -+的值,再将所得结果相加,其和等于( )A .-1B .1C .0D .20197.下列根据等式的性质变形正确的是( ) A.若3x+2=2x ﹣2,则x =0 B.若12x =2,则x =1 C.若x =3,则x 2=3x D.若213x +﹣1=x ,则2x+1﹣1=3x 8.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,“?”的值为( )A .55B .56C .63D .649.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有( )个. A .2 B .3 C .4 D .510.阿里巴巴数据显示,2017年天猫商城“双11”全球狂欢交易额超957亿元,数据957亿用科学记数法表示为( ) A.895710⨯B.995.710⨯C.109.5710⨯D.100.95710⨯11.国庆长假期间,以生态休闲为特色的德阳市近郊游备受青睐.假期各主要景点人气爆棚,据市旅游局统计,本次长假共实现旅游收入5610万元.将这一数据用科学记数法表示为( ) A.75.6110⨯B.80.56110⨯C.656.110⨯D.85.6110⨯12.甲从点A 出发沿北偏东35°方向走到点B ,乙从点A 出发沿南偏西20°方向走到点C ,则∠BAC 等于 ( ) A.15°B.55°C.125°D.165°二、填空题13.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则∠AOC+∠DOB =_____.14.已知∠AOB=3∠BOC,射线0D 平分∠AOC,若∠BOD=30°,则∠BOC 的度数为________.15.某通信公司的移动电话计费标准每分钟降低a 元后,再下调了20%,现在收费标准是每分钟b 元,则原来收费标准每分钟是_____元.16.一件夹克衫先按成本提高20%标价,再以9折出售,售价为270元,这件夹克衫的成本是_____.17.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数1 2 3 4 … n 正三角形个数 4 7 10 13 … a n18.已知1mn m n =--,则()()11m n ++的值为________.19.计算2﹣(﹣3)的结果为_____.20.如果,那么____.三、解答题21.如图,C ,D 为线段AB 上的两点,M ,N 分别是线段AC ,BD 的中点.(1)如果CD=5cm ,MN=8cm ,求AB 的长;(2)如果AB=a ,MN=b ,求CD 的长.22.已知:点C ,D 是直线AB 上的两动点,且点C 在点D 左侧,点M ,N 分别是线段AC 、BD 的中点.(1)如图,点C 、D 在线段AB 上.①若AC=10,CD=4,DB=6,求线段MN 的长;②若AB=20,CD=4,求线段MN 的长;(2)点C 、D 在直线AB 上,AB=m ,CD=n ,且m >n ,请直接写出线段MN 的长(用含有m ,n 的代数式表示).23.中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:一、以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额;二、个人所得税纳税税率如下表所示:(1)若甲、乙两人的每月工资收入额分别为4500元和6000元,请分别求出甲、乙两人的每月应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为85元,则丙每月的工资收入额应为多少?24.昆曲高速公路全长128千米,甲、乙两车同时从昆明、曲靖两地高速路收费站相向匀速开出,经过40分钟相遇,甲车比乙车每小时多行驶20千米.求甲、乙两车的速度.25.先化简,再求值:4a 2b+ab 2-4(ab 2+a 2b ),其中|a+1|+(b-2)2=026.计算:(1)()()()332122-⨯-+-÷(2)201813121234⎛⎫-+-+-⨯ ⎪⎝⎭(3)先化简,再求值:221131a 2a b a b 4323⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中3a 2=,1b 2=-. 27.已知|x+1|+(y+2)2=0,求x+y 的值.28.712311263-+【参考答案】***一、选择题1.B2.C3.D4.B5.B6.A7.C8.C9.B10.C11.A12.D二、填空题13.180°14.15°或30°.15.(a+ SKIPIF 1 < 0 b ).解析:(a+54b ). 16.17.3n+1.18.2;19.520.-13或-3三、解答题21.(1)线段AB 的长为11cm ;(2)2b ﹣a .22.(1)①12;②12;(2)2m n +. 23.(1)甲每月应缴纳的个人所得税为30元;乙每月应缴纳的个人所得税145元;(2)丙每月的工资收入额应为5400元.24.甲车速度为106千米/时,乙车速度为86千米/时.25.26.() 12-;()24-;(3)54-. 27.﹣3.28.1312。
1.2.1有理数-人教版七年级数学上册教案
1.2.1 有理数-人教版七年级数学上册教案教学目标•理解有理数的含义,能说出正整数、负整数、零、正分数、负分数及其概念和符号表示。
•掌握有理数的加减法,能运用加减法解决有理数的问题。
•培养学生的实际问题解决能力、逻辑思维能力和数学应用能力。
教学重点•有理数的概念和符号表示。
•有理数的加减法。
教学难点•带有符号数的加减法。
教学内容1.有理数的概念在实数范围内,可以表示为两个数之比的数称为有理数。
其中,分母不为零的整数称为分数,包括正整数、负整数、零、正分数和负分数。
2.有理数的符号表示正数在数轴上的位置在零点右边,表示为+;负数在数轴上的位置在零点左边,表示为-。
3.有理数的加减法有理数的加减法与正数的加减法基本相同。
当同号数相加减时,保留符号并把绝对值相加减;异号数相加减时,两数绝对值相减并决定符号。
4.案例分析【例1】分别求下列有理数上的两点之间的距离:•−3和+4的距离;•+2和+3的距离;•−5和−2的距离;•+1.5和−2.5的距离。
【解】分别用数轴上两点间的线段求出各个数的距离,如下图所示。
例1例1解题时,需要在数轴上用两点间的线段表示相应的有理数,并求出它们的距离。
•|−3−4|=|−7|=7•|2−3|=|−1|=1•|−5−(−2)|=|−5+2|=|−3|=3•|1.5−(−2.5)|=|1.5+2.5|=|4|=4教学反思本节课主要讲解了有理数的概念、符号表示和加减法。
在教学过程中,本着生动有趣的原则,通过讲解案例的形式使学生更直观地感受到了有理数的应用场景。
同时,在讲解中加入一些生活中的例子和实际问题,增加了学生的兴趣,提高了他们的学习效率。
但需要注意的是,教学过程中需要适当地调动学生的积极性,激发他们的学习热情。
可以在教学过程中利用课堂互动方式增加学生的参与度,例如提出问题让学生一起讨论解决方法,或者请学生上台讲解个人的理解和思考。
最后,需要做好教学反思和总结,以进一步提高教育教学质量。
1.2.1有理数-人教版七年级数学上册教学设计
1.2.1 有理数-人教版七年级数学上册教学设计一、教学目标1.理解有理数的概念,能区分有理数和无理数。
2.掌握有理数的比较、加法、减法运算。
3.能够将有理数表示在数轴上。
4.运用有理数解决实际问题。
二、教学重点1.有理数的概念和特点。
2.有理数的比较、加法和减法运算。
3.将有理数表示在数轴上。
三、教学内容及方法1. 有理数的概念和特点教学内容:有理数的概念、有理数的正数和负数、有理数的真分数和假分数。
教学方法:利用实例引导学生思考,通过讨论和归纳,引出有理数的概念和特点。
2. 有理数的比较教学内容:有理数的比较方法。
教学方法:1.对比大小法(同号相比、异号相比)。
2.转化成相同分母后比较。
3. 有理数的加法和减法运算教学内容:有理数的加法和减法运算法则。
教学方法:1.同号相加、异号相减的法则。
2.加减法的运算规则。
4. 有理数的数轴表示教学内容:将有理数表示在数轴上。
教学方法:1.利用数轴帮助学生直观理解有理数。
2.指导学生画出有理数在数轴上的位置。
5. 运用有理数解决实际问题教学内容:结合实际问题运用有理数进行计算。
教学方法:引导学生分析实际问题,提取关键信息,运用有理数进行计算,并给出合理的解释。
四、教学过程1. 导入新知识通过举例引入有理数的概念和特点,让学生思考正数、负数、分数等的特征和应用。
2. 概念解释和讨论概念解释:有理数是能够表示为两个整数的比值的数,包括正数、负数和分数。
讨论内容:1.正数和负数的特点以及在实际生活中的应用。
2.分数的特点和表示方法。
3. 比较有理数的大小通过例题引导学生掌握有理数的比较方法,包括同号相比、异号相比和转化成相同分母后比较。
4. 有理数的加法和减法运算通过例题演示有理数的加法和减法运算,引导学生熟练掌握同号相加、异号相减的法则以及加减法的运算规则。
5. 有理数的数轴表示通过示意图和实例,引导学生理解有理数在数轴上的位置和表示方法,让学生练习画出有理数在数轴上的位置。
人教版七年级上册数学教案:1.2.1有理数
(1)通过直观的教具、实例等方式,加强学生对有理数符号的认识和理解;
(2)运用具体例子,引导学生掌握乘除运算中符号的处理方法,加强乘除法则的讲解和练习;
(3)结合实际问题,让学生学会将有理数知识应用于生活场景,提高数学应用能力;
(4)强调运算顺序,培养学生良好的运算习惯,减少计算错误。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过温度变化、物品的增减等情况?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数的奥秘。
(二)新课讲授(用时10分钟)
4.在小组讨论中,适时提醒学生关注主题,避免偏离方向。
5.课后对有疑问的学生进行个别辅导,确保他们真正理解和掌握所学知识。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数相关的实际问题,如购物时如何计算找零。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过数轴上的移动来演示有理数的加减运算。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
最后,总结回顾环节,学生对有理数的知识有了更深入的理解,但仍有个别学生表示对某些知识点仍存在疑问。我计划在课后对这些学生进行个别辅导,帮助他们真正理解和掌握有理数的知识。
1.加强课堂互动,关注每个学生的参与情况,鼓励他们大胆发言。
2.增加有针对性的练习,帮助学生巩固有理数的运算技巧。
3.引导学生独立思考,提高问题解决能力。
人教版七年级数学上册:1.2.1《有理数》教学设计3
人教版七年级数学上册:1.2.1《有理数》教学设计3一. 教材分析《有理数》是人教版七年级数学上册的重要内容,主要介绍了有理数的定义、分类、运算和性质。
本节课的内容是对小学阶段数学知识的拓展和深化,为学生以后学习更高级的数学知识打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对数学概念和运算规则有一定的了解。
但他们对有理数的概念和性质可能还比较陌生,需要通过实例和练习来逐步理解和掌握。
三. 教学目标1.让学生理解有理数的定义和性质,能够正确运用有理数进行运算。
2.培养学生的逻辑思维能力和数学表达能力。
3.培养学生自主学习的能力和合作精神。
四. 教学重难点1.有理数的定义和性质。
2.有理数的运算规则。
五. 教学方法1.采用问题驱动法,引导学生通过思考和讨论来理解有理数的概念和性质。
2.使用实例和练习,让学生通过实际操作来掌握有理数的运算规则。
3.采用小组合作学习,培养学生的合作精神和团队意识。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备练习题和测试题。
七. 教学过程1.导入(5分钟)利用生活实例引入有理数的概念,如温度、海拔等,引导学生思考和讨论,激发学生的兴趣。
2.呈现(10分钟)通过PPT展示有理数的定义和性质,让学生初步了解有理数的概念。
3.操练(15分钟)让学生进行有理数的运算练习,引导学生通过实际操作来掌握有理数的运算规则。
4.巩固(10分钟)让学生进行小组讨论,总结有理数的运算规则,并用自己的语言进行表达。
5.拓展(10分钟)引导学生思考有理数在实际生活中的应用,如财务管理、工程计算等,拓展学生的思维。
6.小结(5分钟)让学生总结本节课所学的内容,对自己的学习情况进行反思。
7.家庭作业(5分钟)布置相关的练习题,让学生巩固所学知识。
8.板书(5分钟)板书本节课的重点内容和运算规则,方便学生复习和记忆。
教学设计中每个环节的时间安排仅供参考,具体时间根据实际情况可以进行调整。
人教版数学七年级上册精品教学设计《1.2.1 有理数》
人教版数学七年级上册精品教学设计《1.2.1 有理数》一. 教材分析《1.2.1 有理数》是人教版数学七年级上册的第一节内容,主要介绍了有理数的定义、分类及运算规则。
这一节内容是整个初中数学的基础,对于学生来说,理解掌握有理数的概念和运算是学好后续内容的前提。
因此,在教学设计中,我们需要通过多种方式让学生深刻理解有理数的概念,并熟练掌握有理数的运算方法。
二. 学情分析七年级的学生刚接触初中数学,对于有理数的概念和运算可能感到陌生。
因此,在教学过程中,我们需要关注学生的学习情况,根据学生的反应适时调整教学节奏和方法,以保证教学效果。
同时,由于学生刚从小学升入初中,学习习惯和思维方式可能还停留在小学阶段,因此在教学设计中,我们需要注重培养学生的学习习惯和思维方式,帮助他们顺利过渡到初中阶段的学习。
三. 教学目标1.理解有理数的定义,掌握有理数的分类。
2.掌握有理数的运算规则,能够熟练进行有理数的加、减、乘、除运算。
3.培养学生的学习习惯和思维方式,提高学生的数学素养。
四. 教学重难点1.有理数的定义和分类。
2.有理数的运算规则。
五. 教学方法1.情境教学法:通过生活实例引入有理数的概念,让学生感受数学与生活的紧密联系。
2.游戏教学法:设计有趣的数学游戏,让学生在游戏中理解和掌握有理数的运算规则。
3.小组合作学习:学生进行小组讨论和合作,培养学生的团队协作能力和沟通能力。
4.引导发现法:引导学生发现数学规律,培养学生的自主学习能力。
六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示。
2.教学素材:准备相关的生活实例和数学游戏,用于教学和实践。
3.练习题:设计有针对性的练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例引入有理数的概念,如温度、海拔等,让学生感受数学与生活的紧密联系。
2.呈现(10分钟)讲解有理数的定义和分类,通过课件展示,让学生直观地理解有理数的概念。
3.操练(10分钟)设计数学游戏,让学生在游戏中理解和掌握有理数的运算规则。
人教版七年级数学上册 第一章:有理数_1.2.1:有理数 学案设计(含答案)
初中七年级数学上册第一章:有理数——1.2.1:有理数一:知识点讲解知识点一:有理数的概念有理数:整数和分数统称为有理数。
✧ 整数:正整数、0、负整数统称为整数。
例如:2、3、0、﹣5、﹣7;✧ 分数:正分数、负分数统称为分数。
例如:32、0.1、﹣0.5、25-、﹣150.25; 0和正整数都是自然数。
任何一个有理数都可以写成m n 的形式,而且只有当m 、n 同时满足: ✧ m 、n 是互质的整数;✧ 0≠m 、1≠m 时,mn 才表示一个分数。
分数都能化为小数,但小数不都能化为分数。
只有有限小数和无限循环小数才能化为分数,因此分数包括有限小数和无限循环小数,当不包括无限不循环小数。
例如:π、3.212 212 221…(每两个1之间2的个数逐次增加)不能化为分数。
例1:下列说法正确的是( D )A. 正有理数和负有理数统称为有理数B. 非负整数就是指0、正整数和所有分数C. 正整数和负整数统称为整数D. 整数和分数统称为有理数知识点二:有理数的分类按有理数的定义:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0按有理数的性质符号:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0例2:把下列各数分别填入相应的大括号里:﹣2.5、3.14、﹣2、﹢72、6.0 -、0.618、722、0、﹣0.101、π1) 正数集合: 3.14,﹢72,0.618,722,π ;2) 非负整数集合: ﹢72,0 ;3) 整数集合: ﹣2,﹢72,0 ;4) 负分数集合: ﹣2.5,6.0-,﹣0.101 。
二:知识点复习知识点一:有理数的概念 1. 在下列各数:65-、﹢1、6.7、﹣14、0、227、﹣5、25%中,属于整数的有( C) A. 2个 B. 3个 C. 4个 D. 5个2. 已知下列各数:﹣2、﹢3.5、0、32-、﹣0.7、11,其中负分数有( B )A. 1个B. 2个C. 3个D. 4个3. 在﹣1、32、0.618、0、﹣5%、2017、0.5中,整数有 3 个,分数有 4 个。
人教版七年级数学上册:1.2.1《有理数》教学设计1
人教版七年级数学上册:1.2.1《有理数》教学设计1一. 教材分析《有理数》是初中数学的重要内容,为学生今后学习代数、几何等数学分支打下基础。
人教版七年级数学上册1.2.1《有理数》教学设计,主要让学生了解有理数的定义、分类和性质,会进行有理数的运算。
通过本节课的学习,学生能够理解有理数的概念,掌握有理数的加、减、乘、除运算方法,为后续学习更高级的数学知识奠定基础。
二. 学情分析七年级的学生已初步掌握了实数的概念,对数学运算有一定的了解。
但部分学生对实数的概念仍模糊不清,对有理数的定义、性质和运算方法认识不足。
因此,在教学过程中,要关注学生的个体差异,针对不同学生进行有针对性的引导和讲解,提高他们的数学素养。
三. 教学目标1.理解有理数的定义,掌握有理数的分类和性质。
2.学会有理数的加、减、乘、除运算方法,能熟练进行计算。
3.培养学生的逻辑思维能力和数学运算能力。
4.激发学生学习数学的兴趣,提高他们的数学素养。
四. 教学重难点1.有理数的定义、分类和性质。
2.有理数的加、减、乘、除运算方法。
3.运用有理数解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究有理数的定义和性质。
2.运用实例讲解法,让学生通过具体例子理解有理数的运算方法。
3.采用小组合作学习法,培养学生的团队协作能力和沟通能力。
4.运用练习法,巩固所学知识,提高学生的数学运算能力。
六. 教学准备1.准备相关课件、教案、练习题。
2.准备多媒体教学设备。
3.准备学生分组合作的材料。
七. 教学过程1.导入(5分钟)利用实例引入有理数的概念,如分数、整数等,让学生初步感知有理数。
2.呈现(10分钟)讲解有理数的定义、分类和性质,通过PPT展示相关知识点,引导学生主动探究。
3.操练(10分钟)让学生进行有理数的加、减、乘、除运算练习,教师巡回指导,解答学生疑问。
4.巩固(10分钟)出示一些有关有理数的应用题,让学生运用所学知识解决问题,巩固所学内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 有理数
1.2.1 有理数
教学目标
1.知识与技能
①理解有理数的意义.
②能把给出的有理数按要求分类.
③了解0在有理数分类的作用.
2.过程与方法
经历本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力.
3.情感、态度与价值观
通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.
教学重点难点
重点:会把所给的各数填入它所在的数集的图里.
难点:掌握有理数的两种分类.
教与学互动设计
(一)创设情境,导入新课
讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究
学生列举:3,5.7,-7,-9,-10,0,1
3
,
2
5
,-3
5
6
, -7.4,5.2…
议一议你能说说这些数的特点吗?
学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.说明:我们把所有的这些数统称为有理数.
试一试你能对以上各种类型的数作出一张分类表吗?
有理数⎧⎧
⎪⎨
⎩
⎪
⎨
⎧
⎪
⎨
⎪
⎩
⎩
正整数整数
零
正分数分数
负分数
说明:以上分类,若学生思考有困难,可加以引导:因为整数和分数统称为有理数,所
以有理数可分为整数和分数两大类,那么整数又包含那些数?分数呢?
做一做 以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.
有理数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩
正整数正有理数正分数零负整数负有理数负分数
(3)数的集合
把所有正数组成的集合,叫做正数集合.
试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.
(三)应用迁移,巩固提高
例1 把下列各数填入相应的集合内:
127,3.1416,0,2004,-85,-0.23456,10%,10.l ,0.67,-89
正数集合 负数集合 整数集合 分数集合
【答案】 正数集合227,2004,10%,10.1,0.67,... 负数集合-3.1416,-85,-0.23456,-89,...
整数集合0,2004,-89,... 分数集合127,-3.1416,-85,-0.23456,10%,10.1,
0.67,...
例2 以下是两位同学的分类方法,你认为他们的分类的结果正确吗?为什么?
有理数⎧⎧
⎪⎨
⎪⎩
⎨
⎧
⎪
⎨
⎪
⎩
⎩
正整数正有理数
正分数
负整数负有理数
负分数
有理数⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩
正数整数分数负数零
【答案】两者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈.
【点评】以上是对各类有理数的特点及有理数的分类进行的训练,基础性强,需要重视(B)
①0是最小的正整数②0是最小的有理数
③0不是负数④0既是非正数,也是非负数
A.1个
B.2个
C.3个
D.4个
例4 如果用字母表示一个数,那a可能是什么样的数,一定为正数吗?与你的伙伴交流一下你的看法.
【答案】不一定,a可能是正数,可能是负数,也可能是0.
【点评】此题开放性较强.同时,要求学生能用分类的思想对a全面认识.
备选例题
(2004·浙江温州)观察下列数,按某种规律在横线上填入适当的数,并说明你的理
由.2
3
,
3
4
,
4
5
,________,
6
7
,…你的理解是_________.
【点拨】找出各项数的特点是本题关键所在,第一个数为2
3
,后一个数是前一个数的
分子,分母都加1所得的数.
【答案】5 6
(四)总结反思,拓展升华
提问:今天你获得了哪些知识?
由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.
1.请你在图1-2-1的圈中填上适合的数,使得圈内的数依次为整数集、•有理数集、正数集、分数集、负数集.
【答案】答案不唯一,如图1-2-2所示.
-12
5
0.4
81
3
2.有理数按正、负可分为⎧
⎪
⎨
⎪
⎩
正有理数零
负有理数
按整数分,可分为⎧
⎨
⎩
整数分数
(1)你能自己再制定一个标准,对有理数进行另一种分类吗?
(2)生活中,我们也常常对事物进行分类,请你举例说明.
【答案】(1)如将有理数分成大于1的数,小于1的数,等于1的数.
(2)例如对人按年龄可分为:婴儿、幼儿、儿童、少年、青年、中年、老年.
3.下面两个圈分别表示负数集和分数集,你能说出两个图的重叠部分表示什么数的集合呢?
分数集合
负数集合
答案负分数
(五)课堂跟踪反馈
夯实基础
1.把下列各数填入相应的大括号内:
-7,0.125,1
2
,-3
1
2
,3,0,50%,-0.3
(1)整数集合{-7,3,0}
(2)分数集合{0.125,1
2
,-3
1
2
,50%,-0.3}
(3)负分数集合{-31
2
,-0.3}
(4)非负数集合{0.125,1
2
,3,0,50%}
(5)有理数集合{-7,0.125,1
2
,-3
1
2
,3,0,50%,-0.3}
2.下列说法正确的是(D)
A.整数就是自然数B.0不是自然数
C.正数和负数统称为有理数D.0是整数而不是正数
3.某商店出售的三种规格的面粉袋上写着(25±0.1)千克,(25±0.2•千克),(25±0.3)千克的字样,从中任意两袋,它们质量相差最大的是 0.6 千克.
提升能力
4.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?
【答案】a可以表示正整数,正分数,0,负整数或负分数.
5.某校对初一新生的男生进行了引体向上的测试,以能做5个为标准,•超过的次数记为正数,不足的次数记为负数,其中10名男生的测试成绩如下:
-2 -1 2 -1 3 0 -1 -2 1 0
(1)这10名男生有百分之几达标(即达标率)?
(2)这10名男生共做了多少个引体向上?
【答案】(1)50%;(2)5×10-1=49(个)
开放探究
6.应用创新题
若向东8米记作+8米,如果一个人从A地出发先走+12米,再走-15米,又走+18米,最后走-20米,你能判断这个人此时在何处吗?
【答案】在A地西边5米处.
7.新中考题
(2004·内蒙古赤峰)我市2004年元月某一天的天气预报中,宁城县的最低温度是-22℃,克旗的最低温度是-26℃,这一天宁城县的最低气温比克旗的最低气温高(A) A.4℃ B.-4℃ C.8℃ D.-8℃
(六)资料采撷
原始的计算工具
计算是人类的一种思维活动,人类初期的计算主要是计数.最早用来帮助计数的工具是人类的四肢(手、脚、手指、脚趾)或身边的小石头、贝壳、绳子等.中国有句古话叫“屈指可数”,说明人们常用手指来计算简单的数.
在美国纽约的博物馆里,珍藏着一件从秘鲁出土的古代文物,名叫“基普”,意即打了绳结的绳子.基普是古人用来计数和记事的.传说公元前6世纪,•波斯国王在一次征战中曾命令一支部队守桥,他把一条打了结的皮带交给留守将士,要他们每守一天解开一个结,一直守到皮带上的结全部解完了才准撤退.
在没有文字的我国古代,人们用在绳子上打结的方法来计数和记事.一件事打一个结,大事打个大结,小事打个小结,办完了一件事就解掉一个结.
古人不仅用绳结计数,而且还使用小石子等其他工具来计数.例如,他们饲养的羊,早晨放牧到草地里,晚上必须圈到栅栏里.这样,早晨从栅栏里放出来的时候,出来一只就往罐子里扔一块小石子;傍晚羊进栅栏时,进去一只就从罐子里拿出一块小石子.如果石子全部拿光了,就说明羊全部进圈了;如果罐子里还剩下石子,说明有羊丢失了,必须立刻寻找.。